Vibrational Transition Moments and Dipole Derivatives

T. Daniel Crawford, Virginia Tech, Blacksburg, Virginia November 9, 2006

Oscillator strengths and integrated absorption intensities of simple vibrational absorption (infrared) spectra are related to the squares of electric-dipole transition moments,¹

$$D_{vv'}^{n} = \langle \Psi_{nv} | \hat{\mu} | \Psi_{nv'} \rangle \cdot \langle \Psi_{nv'} | \hat{\mu} | \Psi_{nv} \rangle, \tag{1}$$

where n denotes the electronic state, v and v' denote vibrational states, and $|\Psi_{nv}\rangle$ and $|\Psi_{nv'}\rangle$ denote initial and final vibronic states, respectively.

We may compute the electric-dipole vibrational transition moment beginning from the Born-Oppenheimer approximation, in which we assume that the total vibronic wave function, $\Psi_{nv}(\mathbf{r}, \mathbf{R})$, may be written as a product of an electronic wave function, $\psi_n(\mathbf{r}; \mathbf{R})$ and a vibrational wave function, $\chi_{nv}(\mathbf{R})$, where \mathbf{r} and \mathbf{R} denote the collective electronic and nuclear coordinates, respectively. Then the electric-dipole transition matrix element may be written as

$$\langle \Psi_{nv}(\mathbf{r}, \mathbf{R}) | \hat{\mu} | \Psi_{nv'}(\mathbf{r}, \mathbf{R}) \rangle = \langle \chi_{nv}(\mathbf{R}) | \langle \psi_n(\mathbf{r}; \mathbf{R}) | \hat{\mu} | \psi_n(\mathbf{r}; \mathbf{R}) \rangle | \chi_{nv'}(\mathbf{R}) \rangle = \langle \chi_{nv} | \langle \hat{\mu} \rangle_n | \chi_{nv'} \rangle$$
(2)

where $\langle \hat{\mu} \rangle_n$ denotes the expectation value of the electric-dipole operator in the n-th Born-Oppenheimer electronic state. The dependence of the $\langle \hat{\mu} \rangle_n$ on the nuclear coordinates is usually approximated by the first term of its Taylor expansion about a reference geometry \mathbf{R}^0 (i.e., the electrical harmonic approximation):

$$\langle \hat{\mu} \rangle_n \approx \langle \hat{\mu} \rangle_0 + \sum_{\alpha} \left(\frac{\partial \langle \hat{\mu} \rangle_n}{\partial R_{\alpha}} \right)_0 (R_{\alpha} - R_{\alpha}^0),$$
 (3)

where the subscript 0 indicates that the given quantity is evaluated at the reference geometry. The dipole-moment derivatives may be easily computed using analytic gradient techniques, and the final expressions vary depending on the level of theory employed.² The total electric-dipole transition matrix element then becomes

$$\langle \Psi_{nv}|\hat{\mu}|\Psi_{nv'}\rangle = \sum_{\alpha} \left(\frac{\partial \langle \hat{\mu}\rangle_n}{\partial R_{\alpha}}\right)_0 \langle \chi_{nv}|(R_{\alpha} - R_{\alpha}^0)|\chi_{nv'}\rangle.$$
 (4)

The vibrational wave functions, χ_{nv} , are usually taken to be harmonic oscillator functions (*i.e., the mechanical harmonic approximation*), which subsequently leads to relatively simple programmable equations in terms of the normal vibrational modes.³

References

- [1] L. D. Barron, *Molecular Light Scattering and Optical Activity*, 2nd edition ed. (Cambridge University Press, Camridge, U.K., 2004).
- [2] Y. Yamaguchi, Y. Osamura, J. D. Goddard, and H. F. Schaefer, A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory, No. 29 in International Series of Monographs on Chemistry (Oxford Univ. Press, New York, 1994).
- [3] E. B. Wilson, J. C. Decius, and P. C. Cross, *Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra* (Dover, New York, 1980).