torsion constants for angle 1 2 3 7 (type 13 80 30 1) unk; set = 0 torsion constants for angle 1 2 3 11 (type 13 80 30 5) unk; set = 0 torsion constants for angle 2 3 7 8 (type 80 30 1 1) unk; set = 0 torsion constants for angle 2 3 7 9 (type 80 30 1 1) unk; set = 0 torsion constants for angle 2 3 7 10 (type 80 30 1 1) unk; set = 0 torsion constants for angle 4 2 3 7 (type 13 80 30 1) unk; set = 0 torsion constants for angle 4 2 3 11 (type 13 80 30 5) unk; set = 0 torsion constants for angle 5 2 3 7 (type 13 80 30 1) unk; set = 0 torsion constants for angle 5 2 3 11 (type 13 80 30 5) unk; set = 0 torsion constants for angle 6 2 3 7 (type 13 80 30 1) unk; set = 0 torsion constants for angle 6 2 3 11 (type 13 80 30 5) unk; set = 0 atom # 1 mmtype 13 charge: 0.000 atom # 2 mmtype 80 charge: 0.600 atom # 3 mmtype 30 charge: 0.933 atom # 4 mmtype 13 charge: 0.000 atom # 5 mmtype 13 charge: 0.000 atom # 6 mmtype 13 charge: 0.000 atom # 7 mmtype 1 charge: 0.029 atom # 8 mmtype 1 charge: 0.000 atom # 9 mmtype 1 charge: 0.000 atom # 10 mmtype 1 charge: 0.000 atom # 11 mmtype 5 charge: 0.038 atom # 12 mmtype 5 charge: 0.000 atom # 13 mmtype 5 charge: 0.000 atom # 14 mmtype 5 charge: 0.000 atom # 15 mmtype 5 charge: 0.000 atom # 16 mmtype 5 charge: 0.000 atom # 17 mmtype 5 charge: 0.000 atom # 18 mmtype 5 charge: 0.000 atom # 19 mmtype 5 charge: 0.000 atom # 20 mmtype 5 charge: 0.000 generalized constants for angle 1 2 3 (type 13 80 30) are used generalized constants for angle 1 2 4 (type 13 80 13) are used generalized constants for angle 1 2 5 (type 13 80 13) are used generalized constants for angle 1 2 6 (type 13 80 13) are used generalized constants for angle 3 2 4 (type 30 80 13) are used generalized constants for angle 3 2 5 (type 30 80 13) are used generalized constants for angle 3 2 6 (type 30 80 13) are used generalized constants for angle 4 2 5 (type 13 80 13) are used generalized constants for angle 4 2 6 (type 13 80 13) are used generalized constants for angle 5 2 6 (type 13 80 13) are used generalized constants for angle 2 3 7 (type 80 30 1) are used generalized constants for angle 2 3 11 (type 80 30 5) are used generalized constants for angle 7 3 11 (type 1 30 5) are used generalized constants for angle 3 7 8 (type 30 1 1) are used generalized constants for angle 3 7 9 (type 30 1 1) are used generalized constants for angle 3 7 10 (type 30 1 1) are used MMX Energy 28.24 STR 23.76 BND 0.44 S-B 0.02 TOR 0.30 VDW 3.73 DIP/CHRG 0.00 Dipole Moment 10.20 Heat of Formation 16.958 kcal/mole; Strain Energy 8.077 start WBr4CHtBu 0 * * * * * Energy is minimized within 0.0030 kcal * * * * * * * * * * MM2 energy is -0.3069 kcal/mol * * * * * Accumulated movement is 0.2367 ang/atom ------------------------------------------------------------ Heat of Formation, Strain Energies and Entropies at 300 k (units are kcal or eu.) Bond Enthalpy (be) and Entropy: # Bond or Structure Each Total Tot S contrib. * * * * * error - bond 2- 1 does not have programmed enthalpy increments. * * * * * error - bond 3- 2 does not have programmed enthalpy increments. * * * * * error - bond 4- 2 does not have programmed enthalpy increments. * * * * * error - bond 5- 2 does not have programmed enthalpy increments. * * * * * error - bond 6- 2 does not have programmed enthalpy increments. 3 C-C SP3-SP3 -0.004 -0.012 -49.200 9 C-H ALIPHATIC -3.205 -28.845 116.100 1 H-C+ 86.300 86.300 0.000 S contrib. above is unk. 1 C-C+ 56.000 56.000 0.000 S contrib. above is unk. 3 C(SP3)-METHYL -1.510 -4.530 ---------------- --------------- be = 108.913 s = 66.900 3 & 4 Ring corrections to entropy are included w/o symmetry corrections. for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.; for each 8-ring add 14 eu.; for higher rings add 12 eu. each. there are no symmetry corrections to the entropy. Heat of Formation calculation: Partition Function Contribution (PFC) Conformational Population Increment (POP) 0.000 Torsional Contribution (TOR) 0.000 Translation/Rotation Term (T/R) 2.400 ------------- PFC = 2.400 Heat of Formation (hf0) = energy + be + pfc 111.006 Strain Energy (energy+environment corrs.)= -2.527 CAUTION, delta hf is not correct because of missing parameters. Use total energy or strain energy to compare the stabilities of conformers and diastereomers. Caution, energy parameters for metal systems are generalized and may not represent a particular metal or oxidation state. Use heats of formation to compare stabilities of structural isomers like acetaldehyde and enol or allyl chloride and cyclopropyl chloride. Many bond contributions to the heat of formation are unknown-these contribute 0.0 to the value given. MMX Energy -0.31 STR 0.56 BND 0.37 S-B 0.01 TOR 0.30 VDW -1.54 DIP/CHRG 0.00 Dipole Moment 10.10 Incomplete heat of formation 111.006 kcal/mole end WBr4CHtBu torsion constants for angle 1 2 3 7 (type 13 80 30 1) unk; set = 0 torsion constants for angle 1 2 3 16 (type 13 80 30 5) unk; set = 0 torsion constants for angle 1 2 4 11 (type 13 80 6 1) unk; set = 0 torsion constants for angle 1 2 4 17 (type 13 80 6 20) unk; set = 0 torsion constants for angle 1 2 4 18 (type 13 80 6 20) unk; set = 0 torsion constants for angle 2 3 7 8 (type 80 30 1 1) unk; set = 0 torsion constants for angle 2 3 7 9 (type 80 30 1 1) unk; set = 0 torsion constants for angle 2 3 7 10 (type 80 30 1 1) unk; set = 0 generalized constants for angle 2 4 11 12 (type 80 6 1 1) are used 0.000 0.000 0.500 torsion constants for angle 3 2 4 11 (type 30 80 6 1) unk; set = 0 torsion constants for angle 3 2 4 17 (type 30 80 6 20) unk; set = 0 torsion constants for angle 3 2 4 18 (type 30 80 6 20) unk; set = 0 torsion constants for angle 4 2 3 7 (type 6 80 30 1) unk; set = 0 torsion constants for angle 4 2 3 16 (type 6 80 30 5) unk; set = 0 torsion constants for angle 5 2 3 7 (type 13 80 30 1) unk; set = 0 torsion constants for angle 5 2 3 16 (type 13 80 30 5) unk; set = 0 torsion constants for angle 5 2 4 11 (type 13 80 6 1) unk; set = 0 torsion constants for angle 5 2 4 17 (type 13 80 6 20) unk; set = 0 torsion constants for angle 5 2 4 18 (type 13 80 6 20) unk; set = 0 torsion constants for angle 6 2 3 7 (type 13 80 30 1) unk; set = 0 torsion constants for angle 6 2 3 16 (type 13 80 30 5) unk; set = 0 torsion constants for angle 6 2 4 11 (type 13 80 6 1) unk; set = 0 torsion constants for angle 6 2 4 17 (type 13 80 6 20) unk; set = 0 torsion constants for angle 6 2 4 18 (type 13 80 6 20) unk; set = 0 atom # 1 mmtype 13 charge: 0.000 atom # 2 mmtype 80 charge: 0.600 atom # 3 mmtype 30 charge: 0.933 atom # 4 mmtype 6 charge: 0.153 atom # 5 mmtype 13 charge: 0.000 atom # 6 mmtype 13 charge: 0.000 atom # 7 mmtype 1 charge: 0.029 atom # 8 mmtype 1 charge: 0.000 atom # 9 mmtype 1 charge: 0.000 atom # 10 mmtype 1 charge: 0.000 atom # 11 mmtype 1 charge: 0.127 atom # 12 mmtype 1 charge: 0.000 atom # 13 mmtype 1 charge: 0.000 atom # 14 mmtype 1 charge: 0.000 atom # 15 mmtype 1 charge: 0.000 atom # 16 mmtype 5 charge: 0.038 atom # 17 mmtype 20 charge: -0.140 atom # 18 mmtype 20 charge: -0.140 atom # 19 mmtype 5 charge: 0.000 atom # 20 mmtype 5 charge: 0.000 atom # 21 mmtype 5 charge: 0.000 atom # 22 mmtype 5 charge: 0.000 atom # 23 mmtype 5 charge: 0.000 atom # 24 mmtype 5 charge: 0.000 atom # 25 mmtype 5 charge: 0.000 atom # 26 mmtype 5 charge: 0.000 atom # 27 mmtype 5 charge: 0.000 atom # 28 mmtype 5 charge: 0.000 atom # 29 mmtype 5 charge: 0.000 atom # 30 mmtype 5 charge: 0.000 atom # 31 mmtype 5 charge: 0.000 atom # 32 mmtype 5 charge: 0.000 atom # 33 mmtype 5 charge: 0.000 atom # 34 mmtype 5 charge: 0.000 atom # 35 mmtype 5 charge: 0.000 atom # 36 mmtype 5 charge: 0.000 atom # 37 mmtype 5 charge: 0.000 atom # 38 mmtype 5 charge: 0.000 generalized constants for angle 1 2 3 (type 13 80 30) are used generalized constants for angle 1 2 4 (type 13 80 6) are used generalized constants for angle 1 2 5 (type 13 80 13) are used generalized constants for angle 1 2 6 (type 13 80 13) are used generalized constants for angle 3 2 4 (type 30 80 6) are used generalized constants for angle 3 2 5 (type 30 80 13) are used generalized constants for angle 3 2 6 (type 30 80 13) are used generalized constants for angle 4 2 5 (type 6 80 13) are used generalized constants for angle 4 2 6 (type 6 80 13) are used generalized constants for angle 5 2 6 (type 13 80 13) are used generalized constants for angle 2 3 7 (type 80 30 1) are used generalized constants for angle 2 3 16 (type 80 30 5) are used generalized constants for angle 7 3 16 (type 1 30 5) are used generalized constants for angle 2 4 11 (type 80 6 1) are used generalized constants for angle 2 4 17 (type 80 6 20) are used generalized constants for angle 2 4 18 (type 80 6 20) are used generalized constants for angle 3 7 8 (type 30 1 1) are used generalized constants for angle 3 7 9 (type 30 1 1) are used generalized constants for angle 3 7 10 (type 30 1 1) are used MMX Energy 39.96 STR 17.12 BND 3.56 S-B 0.16 TOR 17.39 VDW 5.29 DIP/CHRG -3.55 Dipole Moment 9.32 Heat of Formation 111.006 kcal/mole; Strain Energy -2.527 start WBr3(OCH2CME3)CHtBu 0 * * * * * Energy is minimized within 0.0057 kcal * * * * * * * * * * MM2 energy is 5.8256 kcal/mol * * * * * Accumulated movement is 0.3877 ang/atom ------------------------------------------------------------ Heat of Formation, Strain Energies and Entropies at 300 k (units are kcal or eu.) Bond Enthalpy (be) and Entropy: # Bond or Structure Each Total Tot S contrib. * * * * * error - bond 2- 1 does not have programmed enthalpy increments. * * * * * error - bond 3- 2 does not have programmed enthalpy increments. * * * * * error - bond 4- 2 does not have programmed enthalpy increments. * * * * * error - bond 5- 2 does not have programmed enthalpy increments. * * * * * error - bond 6- 2 does not have programmed enthalpy increments. 7 C-C SP3-SP3 -0.004 -0.028 -114.800 20 C-H ALIPHATIC -3.205 -64.100 258.000 1 C-O ETHER & ALC. -16.668 -16.668 -4.000 1 H-C+ 86.300 86.300 0.000 S contrib. above is unk. 1 C-C+ 56.000 56.000 0.000 S contrib. above is unk. 1 NEO (ALKANE) -0.707 -0.707 6 C(SP3)-METHYL -1.510 -9.060 ---------------- --------------- be = 51.737 s = 139.200 3 & 4 Ring corrections to entropy are included w/o symmetry corrections. for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.; for each 8-ring add 14 eu.; for higher rings add 12 eu. each. there are no symmetry corrections to the entropy. Heat of Formation calculation: Partition Function Contribution (PFC) Conformational Population Increment (POP) 0.000 Torsional Contribution (TOR) 0.000 Translation/Rotation Term (T/R) 2.400 ------------- PFC = 2.400 Heat of Formation (hf0) = energy + be + pfc 59.963 Strain Energy (energy+environment corrs.)= -1.244 CAUTION, delta hf is not correct because of missing parameters. Use total energy or strain energy to compare the stabilities of conformers and diastereomers. Caution, energy parameters for metal systems are generalized and may not represent a particular metal or oxidation state. Use heats of formation to compare stabilities of structural isomers like acetaldehyde and enol or allyl chloride and cyclopropyl chloride. Many bond contributions to the heat of formation are unknown-these contribute 0.0 to the value given. MMX Energy 5.83 STR 2.05 BND 5.86 S-B -0.47 TOR 2.06 VDW 0.09 DIP/CHRG -3.76 Dipole Moment 9.31 Incomplete heat of formation 59.963 kcal/mole end WBr3(OCH2CME3)CHtBu torsion constants for angle 1 2 3 7 (type 13 80 30 1) unk; set = 0 torsion constants for angle 1 2 3 21 (type 13 80 30 5) unk; set = 0 torsion constants for angle 1 2 4 11 (type 13 80 6 1) unk; set = 0 torsion constants for angle 1 2 4 22 (type 13 80 6 20) unk; set = 0 torsion constants for angle 1 2 4 23 (type 13 80 6 20) unk; set = 0 torsion constants for angle 1 2 5 16 (type 13 80 6 1) unk; set = 0 torsion constants for angle 1 2 5 24 (type 13 80 6 20) unk; set = 0 torsion constants for angle 1 2 5 25 (type 13 80 6 20) unk; set = 0 torsion constants for angle 2 3 7 8 (type 80 30 1 1) unk; set = 0 torsion constants for angle 2 3 7 9 (type 80 30 1 1) unk; set = 0 torsion constants for angle 2 3 7 10 (type 80 30 1 1) unk; set = 0 generalized constants for angle 2 4 11 12 (type 80 6 1 1) are used 0.000 0.000 0.500 torsion constants for angle 3 2 4 11 (type 30 80 6 1) unk; set = 0 torsion constants for angle 3 2 4 22 (type 30 80 6 20) unk; set = 0 torsion constants for angle 3 2 4 23 (type 30 80 6 20) unk; set = 0 torsion constants for angle 3 2 5 16 (type 30 80 6 1) unk; set = 0 torsion constants for angle 3 2 5 24 (type 30 80 6 20) unk; set = 0 torsion constants for angle 3 2 5 25 (type 30 80 6 20) unk; set = 0 torsion constants for angle 4 2 3 7 (type 6 80 30 1) unk; set = 0 torsion constants for angle 4 2 3 21 (type 6 80 30 5) unk; set = 0 torsion constants for angle 4 2 5 16 (type 6 80 6 1) unk; set = 0 torsion constants for angle 4 2 5 24 (type 6 80 6 20) unk; set = 0 torsion constants for angle 4 2 5 25 (type 6 80 6 20) unk; set = 0 torsion constants for angle 5 2 3 7 (type 6 80 30 1) unk; set = 0 torsion constants for angle 5 2 3 21 (type 6 80 30 5) unk; set = 0 torsion constants for angle 5 2 4 11 (type 6 80 6 1) unk; set = 0 torsion constants for angle 5 2 4 22 (type 6 80 6 20) unk; set = 0 torsion constants for angle 5 2 4 23 (type 6 80 6 20) unk; set = 0 torsion constants for angle 6 2 3 7 (type 13 80 30 1) unk; set = 0 torsion constants for angle 6 2 3 21 (type 13 80 30 5) unk; set = 0 torsion constants for angle 6 2 4 11 (type 13 80 6 1) unk; set = 0 torsion constants for angle 6 2 4 22 (type 13 80 6 20) unk; set = 0 torsion constants for angle 6 2 4 23 (type 13 80 6 20) unk; set = 0 torsion constants for angle 6 2 5 16 (type 13 80 6 1) unk; set = 0 torsion constants for angle 6 2 5 24 (type 13 80 6 20) unk; set = 0 torsion constants for angle 6 2 5 25 (type 13 80 6 20) unk; set = 0 atom # 1 mmtype 13 charge: 0.000 atom # 2 mmtype 80 charge: 0.600 atom # 3 mmtype 30 charge: 0.933 atom # 4 mmtype 6 charge: 0.153 atom # 5 mmtype 6 charge: 0.153 atom # 6 mmtype 13 charge: 0.000 atom # 7 mmtype 1 charge: 0.029 atom # 8 mmtype 1 charge: 0.000 atom # 9 mmtype 1 charge: 0.000 atom # 10 mmtype 1 charge: 0.000 atom # 11 mmtype 1 charge: 0.127 atom # 12 mmtype 1 charge: 0.000 atom # 13 mmtype 1 charge: 0.000 atom # 14 mmtype 1 charge: 0.000 atom # 15 mmtype 1 charge: 0.000 atom # 16 mmtype 1 charge: 0.127 atom # 17 mmtype 1 charge: 0.000 atom # 18 mmtype 1 charge: 0.000 atom # 19 mmtype 1 charge: 0.000 atom # 20 mmtype 1 charge: 0.000 atom # 21 mmtype 5 charge: 0.038 atom # 22 mmtype 20 charge: -0.140 atom # 23 mmtype 20 charge: -0.140 atom # 24 mmtype 20 charge: -0.140 atom # 25 mmtype 20 charge: -0.140 atom # 26 mmtype 5 charge: 0.000 atom # 27 mmtype 5 charge: 0.000 atom # 28 mmtype 5 charge: 0.000 atom # 29 mmtype 5 charge: 0.000 atom # 30 mmtype 5 charge: 0.000 atom # 31 mmtype 5 charge: 0.000 atom # 32 mmtype 5 charge: 0.000 atom # 33 mmtype 5 charge: 0.000 atom # 34 mmtype 5 charge: 0.000 atom # 35 mmtype 5 charge: 0.000 atom # 36 mmtype 5 charge: 0.000 atom # 37 mmtype 5 charge: 0.000 atom # 38 mmtype 5 charge: 0.000 atom # 39 mmtype 5 charge: 0.000 atom # 40 mmtype 5 charge: 0.000 atom # 41 mmtype 5 charge: 0.000 atom # 42 mmtype 5 charge: 0.000 atom # 43 mmtype 5 charge: 0.000 atom # 44 mmtype 5 charge: 0.000 atom # 45 mmtype 5 charge: 0.000 atom # 46 mmtype 5 charge: 0.000 atom # 47 mmtype 5 charge: 0.000 atom # 48 mmtype 5 charge: 0.000 atom # 49 mmtype 5 charge: 0.000 atom # 50 mmtype 5 charge: 0.000 atom # 51 mmtype 5 charge: 0.000 atom # 52 mmtype 5 charge: 0.000 atom # 53 mmtype 5 charge: 0.000 atom # 54 mmtype 5 charge: 0.000 atom # 55 mmtype 5 charge: 0.000 atom # 56 mmtype 5 charge: 0.000 generalized constants for angle 1 2 3 (type 13 80 30) are used generalized constants for angle 1 2 4 (type 13 80 6) are used generalized constants for angle 1 2 5 (type 13 80 6) are used generalized constants for angle 1 2 6 (type 13 80 13) are used generalized constants for angle 3 2 4 (type 30 80 6) are used generalized constants for angle 3 2 5 (type 30 80 6) are used generalized constants for angle 3 2 6 (type 30 80 13) are used generalized constants for angle 4 2 5 (type 6 80 6) are used generalized constants for angle 4 2 6 (type 6 80 13) are used generalized constants for angle 5 2 6 (type 6 80 13) are used generalized constants for angle 2 3 7 (type 80 30 1) are used generalized constants for angle 2 3 21 (type 80 30 5) are used generalized constants for angle 7 3 21 (type 1 30 5) are used generalized constants for angle 2 4 11 (type 80 6 1) are used generalized constants for angle 2 4 22 (type 80 6 20) are used generalized constants for angle 2 4 23 (type 80 6 20) are used generalized constants for angle 2 5 16 (type 80 6 1) are used generalized constants for angle 2 5 24 (type 80 6 20) are used generalized constants for angle 2 5 25 (type 80 6 20) are used generalized constants for angle 3 7 8 (type 30 1 1) are used generalized constants for angle 3 7 9 (type 30 1 1) are used generalized constants for angle 3 7 10 (type 30 1 1) are used MMX Energy 50.84 STR 2.03 BND 4.51 S-B -0.20 TOR 50.17 VDW -2.01 DIP/CHRG -3.67 Dipole Moment 15.92 Heat of Formation 59.963 kcal/mole; Strain Energy -1.244 start WBr2(OCH2CME3)2CHtBu 0 * * * * * Energy is minimized within 0.0084 kcal * * * * * * * * * * MM2 energy is 20.2924 kcal/mol * * * * * Accumulated movement is 0.2760 ang/atom ------------------------------------------------------------ Heat of Formation, Strain Energies and Entropies at 300 k (units are kcal or eu.) Bond Enthalpy (be) and Entropy: # Bond or Structure Each Total Tot S contrib. * * * * * error - bond 2- 1 does not have programmed enthalpy increments. * * * * * error - bond 3- 2 does not have programmed enthalpy increments. * * * * * error - bond 4- 2 does not have programmed enthalpy increments. * * * * * error - bond 5- 2 does not have programmed enthalpy increments. * * * * * error - bond 6- 2 does not have programmed enthalpy increments. 11 C-C SP3-SP3 -0.004 -0.044 -180.400 31 C-H ALIPHATIC -3.205 -99.355 399.900 2 C-O ETHER & ALC. -16.668 -33.336 -8.000 1 H-C+ 86.300 86.300 0.000 S contrib. above is unk. 1 C-C+ 56.000 56.000 0.000 S contrib. above is unk. 2 NEO (ALKANE) -0.707 -1.414 9 C(SP3)-METHYL -1.510 -13.590 ---------------- --------------- be = -5.439 s = 211.500 3 & 4 Ring corrections to entropy are included w/o symmetry corrections. for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.; for each 8-ring add 14 eu.; for higher rings add 12 eu. each. there are no symmetry corrections to the entropy. Heat of Formation calculation: Partition Function Contribution (PFC) Conformational Population Increment (POP) 0.000 Torsional Contribution (TOR) 0.000 Translation/Rotation Term (T/R) 2.400 ------------- PFC = 2.400 Heat of Formation (hf0) = energy + be + pfc 17.253 Strain Energy (energy+environment corrs.)= 8.372 CAUTION, delta hf is not correct because of missing parameters. Use total energy or strain energy to compare the stabilities of conformers and diastereomers. Caution, energy parameters for metal systems are generalized and may not represent a particular metal or oxidation state. Use heats of formation to compare stabilities of structural isomers like acetaldehyde and enol or allyl chloride and cyclopropyl chloride. Many bond contributions to the heat of formation are unknown-these contribute 0.0 to the value given. MMX Energy 20.29 STR 2.46 BND 20.55 S-B -0.83 TOR 2.77 VDW -0.49 DIP/CHRG -4.16 Dipole Moment 14.24 Incomplete heat of formation 17.253 kcal/mole end WBr2(OCH2CME3)2CHtBu torsion constants for angle 1 2 3 7 (type 13 80 30 1) unk; set = 0 torsion constants for angle 1 2 3 26 (type 13 80 30 5) unk; set = 0 torsion constants for angle 1 2 4 11 (type 13 80 6 1) unk; set = 0 torsion constants for angle 1 2 4 27 (type 13 80 6 20) unk; set = 0 torsion constants for angle 1 2 4 28 (type 13 80 6 20) unk; set = 0 torsion constants for angle 1 2 5 16 (type 13 80 6 1) unk; set = 0 torsion constants for angle 1 2 5 29 (type 13 80 6 20) unk; set = 0 torsion constants for angle 1 2 5 30 (type 13 80 6 20) unk; set = 0 torsion constants for angle 1 2 6 21 (type 13 80 6 1) unk; set = 0 torsion constants for angle 1 2 6 31 (type 13 80 6 20) unk; set = 0 torsion constants for angle 1 2 6 32 (type 13 80 6 20) unk; set = 0 torsion constants for angle 2 3 7 8 (type 80 30 1 1) unk; set = 0 torsion constants for angle 2 3 7 9 (type 80 30 1 1) unk; set = 0 torsion constants for angle 2 3 7 10 (type 80 30 1 1) unk; set = 0 generalized constants for angle 2 4 11 12 (type 80 6 1 1) are used 0.000 0.000 0.500 torsion constants for angle 3 2 4 11 (type 30 80 6 1) unk; set = 0 torsion constants for angle 3 2 4 27 (type 30 80 6 20) unk; set = 0 torsion constants for angle 3 2 4 28 (type 30 80 6 20) unk; set = 0 torsion constants for angle 3 2 5 16 (type 30 80 6 1) unk; set = 0 torsion constants for angle 3 2 5 29 (type 30 80 6 20) unk; set = 0 torsion constants for angle 3 2 5 30 (type 30 80 6 20) unk; set = 0 torsion constants for angle 3 2 6 21 (type 30 80 6 1) unk; set = 0 torsion constants for angle 3 2 6 31 (type 30 80 6 20) unk; set = 0 torsion constants for angle 3 2 6 32 (type 30 80 6 20) unk; set = 0 torsion constants for angle 4 2 3 7 (type 6 80 30 1) unk; set = 0 torsion constants for angle 4 2 3 26 (type 6 80 30 5) unk; set = 0 torsion constants for angle 4 2 5 16 (type 6 80 6 1) unk; set = 0 torsion constants for angle 4 2 5 29 (type 6 80 6 20) unk; set = 0 torsion constants for angle 4 2 5 30 (type 6 80 6 20) unk; set = 0 torsion constants for angle 4 2 6 21 (type 6 80 6 1) unk; set = 0 torsion constants for angle 4 2 6 31 (type 6 80 6 20) unk; set = 0 torsion constants for angle 4 2 6 32 (type 6 80 6 20) unk; set = 0 torsion constants for angle 5 2 3 7 (type 6 80 30 1) unk; set = 0 torsion constants for angle 5 2 3 26 (type 6 80 30 5) unk; set = 0 torsion constants for angle 5 2 4 11 (type 6 80 6 1) unk; set = 0 torsion constants for angle 5 2 4 27 (type 6 80 6 20) unk; set = 0 torsion constants for angle 5 2 4 28 (type 6 80 6 20) unk; set = 0 torsion constants for angle 5 2 6 21 (type 6 80 6 1) unk; set = 0 torsion constants for angle 5 2 6 31 (type 6 80 6 20) unk; set = 0 torsion constants for angle 5 2 6 32 (type 6 80 6 20) unk; set = 0 torsion constants for angle 6 2 3 7 (type 6 80 30 1) unk; set = 0 torsion constants for angle 6 2 3 26 (type 6 80 30 5) unk; set = 0 torsion constants for angle 6 2 4 11 (type 6 80 6 1) unk; set = 0 torsion constants for angle 6 2 4 27 (type 6 80 6 20) unk; set = 0 torsion constants for angle 6 2 4 28 (type 6 80 6 20) unk; set = 0 torsion constants for angle 6 2 5 16 (type 6 80 6 1) unk; set = 0 torsion constants for angle 6 2 5 29 (type 6 80 6 20) unk; set = 0 torsion constants for angle 6 2 5 30 (type 6 80 6 20) unk; set = 0 atom # 1 mmtype 13 charge: 0.000 atom # 2 mmtype 80 charge: 0.600 atom # 3 mmtype 30 charge: 0.933 atom # 4 mmtype 6 charge: 0.153 atom # 5 mmtype 6 charge: 0.153 atom # 6 mmtype 6 charge: 0.153 atom # 7 mmtype 1 charge: 0.029 atom # 8 mmtype 1 charge: 0.000 atom # 9 mmtype 1 charge: 0.000 atom # 10 mmtype 1 charge: 0.000 atom # 11 mmtype 1 charge: 0.127 atom # 12 mmtype 1 charge: 0.000 atom # 13 mmtype 1 charge: 0.000 atom # 14 mmtype 1 charge: 0.000 atom # 15 mmtype 1 charge: 0.000 atom # 16 mmtype 1 charge: 0.127 atom # 17 mmtype 1 charge: 0.000 atom # 18 mmtype 1 charge: 0.000 atom # 19 mmtype 1 charge: 0.000 atom # 20 mmtype 1 charge: 0.000 atom # 21 mmtype 1 charge: 0.127 atom # 22 mmtype 1 charge: 0.000 atom # 23 mmtype 1 charge: 0.000 atom # 24 mmtype 1 charge: 0.000 atom # 25 mmtype 1 charge: 0.000 atom # 26 mmtype 5 charge: 0.038 atom # 27 mmtype 20 charge: -0.140 atom # 28 mmtype 20 charge: -0.140 atom # 29 mmtype 20 charge: -0.140 atom # 30 mmtype 20 charge: -0.140 atom # 31 mmtype 20 charge: -0.140 atom # 32 mmtype 20 charge: -0.140 atom # 33 mmtype 5 charge: 0.000 atom # 34 mmtype 5 charge: 0.000 atom # 35 mmtype 5 charge: 0.000 atom # 36 mmtype 5 charge: 0.000 atom # 37 mmtype 5 charge: 0.000 atom # 38 mmtype 5 charge: 0.000 atom # 39 mmtype 5 charge: 0.000 atom # 40 mmtype 5 charge: 0.000 atom # 41 mmtype 5 charge: 0.000 atom # 42 mmtype 5 charge: 0.000 atom # 43 mmtype 5 charge: 0.000 atom # 44 mmtype 5 charge: 0.000 atom # 45 mmtype 5 charge: 0.000 atom # 46 mmtype 5 charge: 0.000 atom # 47 mmtype 5 charge: 0.000 atom # 48 mmtype 5 charge: 0.000 atom # 49 mmtype 5 charge: 0.000 atom # 50 mmtype 5 charge: 0.000 atom # 51 mmtype 5 charge: 0.000 atom # 52 mmtype 5 charge: 0.000 atom # 53 mmtype 5 charge: 0.000 atom # 54 mmtype 5 charge: 0.000 atom # 55 mmtype 5 charge: 0.000 atom # 56 mmtype 5 charge: 0.000 atom # 57 mmtype 5 charge: 0.000 atom # 58 mmtype 5 charge: 0.000 atom # 59 mmtype 5 charge: 0.000 atom # 60 mmtype 5 charge: 0.000 atom # 61 mmtype 5 charge: 0.000 atom # 62 mmtype 5 charge: 0.000 atom # 63 mmtype 5 charge: 0.000 atom # 64 mmtype 5 charge: 0.000 atom # 65 mmtype 5 charge: 0.000 atom # 66 mmtype 5 charge: 0.000 atom # 67 mmtype 5 charge: 0.000 atom # 68 mmtype 5 charge: 0.000 atom # 69 mmtype 5 charge: 0.000 atom # 70 mmtype 5 charge: 0.000 atom # 71 mmtype 5 charge: 0.000 atom # 72 mmtype 5 charge: 0.000 atom # 73 mmtype 5 charge: 0.000 atom # 74 mmtype 5 charge: 0.000 generalized constants for angle 1 2 3 (type 13 80 30) are used generalized constants for angle 1 2 4 (type 13 80 6) are used generalized constants for angle 1 2 5 (type 13 80 6) are used generalized constants for angle 1 2 6 (type 13 80 6) are used generalized constants for angle 3 2 4 (type 30 80 6) are used generalized constants for angle 3 2 5 (type 30 80 6) are used generalized constants for angle 3 2 6 (type 30 80 6) are used generalized constants for angle 4 2 5 (type 6 80 6) are used generalized constants for angle 4 2 6 (type 6 80 6) are used generalized constants for angle 5 2 6 (type 6 80 6) are used generalized constants for angle 2 3 7 (type 80 30 1) are used generalized constants for angle 2 3 26 (type 80 30 5) are used generalized constants for angle 7 3 26 (type 1 30 5) are used generalized constants for angle 2 4 11 (type 80 6 1) are used generalized constants for angle 2 4 27 (type 80 6 20) are used generalized constants for angle 2 4 28 (type 80 6 20) are used generalized constants for angle 2 5 16 (type 80 6 1) are used generalized constants for angle 2 5 29 (type 80 6 20) are used generalized constants for angle 2 5 30 (type 80 6 20) are used generalized constants for angle 2 6 21 (type 80 6 1) are used generalized constants for angle 2 6 31 (type 80 6 20) are used generalized constants for angle 2 6 32 (type 80 6 20) are used generalized constants for angle 3 7 8 (type 30 1 1) are used generalized constants for angle 3 7 9 (type 30 1 1) are used generalized constants for angle 3 7 10 (type 30 1 1) are used MMX Energy 29.25 STR 2.64 BND 5.94 S-B -0.96 TOR 31.22 VDW -2.33 DIP/CHRG -7.26 Dipole Moment 77.99 Heat of Formation 17.253 kcal/mole; Strain Energy 8.372 start WBr(OCH2tBu)3CHtBu 0 * * * * * Energy is minimized within 0.0111 kcal * * * * * * * * * * MM2 energy is 7.3149 kcal/mol * * * * * Accumulated movement is 0.1088 ang/atom ------------------------------------------------------------ Heat of Formation, Strain Energies and Entropies at 300 k (units are kcal or eu.) Bond Enthalpy (be) and Entropy: # Bond or Structure Each Total Tot S contrib. * * * * * error - bond 2- 1 does not have programmed enthalpy increments. * * * * * error - bond 3- 2 does not have programmed enthalpy increments. * * * * * error - bond 4- 2 does not have programmed enthalpy increments. * * * * * error - bond 5- 2 does not have programmed enthalpy increments. * * * * * error - bond 6- 2 does not have programmed enthalpy increments. 15 C-C SP3-SP3 -0.004 -0.060 -246.000 42 C-H ALIPHATIC -3.205 -134.610 541.800 3 C-O ETHER & ALC. -16.668 -50.004 -12.000 1 H-C+ 86.300 86.300 0.000 S contrib. above is unk. 1 C-C+ 56.000 56.000 0.000 S contrib. above is unk. 3 NEO (ALKANE) -0.707 -2.121 12 C(SP3)-METHYL -1.510 -18.120 ---------------- --------------- be = -62.615 s = 283.800 3 & 4 Ring corrections to entropy are included w/o symmetry corrections. for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.; for each 8-ring add 14 eu.; for higher rings add 12 eu. each. there are no symmetry corrections to the entropy. Heat of Formation calculation: Partition Function Contribution (PFC) Conformational Population Increment (POP) 0.000 Torsional Contribution (TOR) 0.000 Translation/Rotation Term (T/R) 2.400 ------------- PFC = 2.400 Heat of Formation (hf0) = energy + be + pfc -52.900 Strain Energy (energy+environment corrs.)= -9.455 CAUTION, delta hf is not correct because of missing parameters. Use total energy or strain energy to compare the stabilities of conformers and diastereomers. Caution, energy parameters for metal systems are generalized and may not represent a particular metal or oxidation state. Use heats of formation to compare stabilities of structural isomers like acetaldehyde and enol or allyl chloride and cyclopropyl chloride. Many bond contributions to the heat of formation are unknown-these contribute 0.0 to the value given. MMX Energy 7.31 STR 3.44 BND 11.91 S-B -1.56 TOR 3.92 VDW -2.90 DIP/CHRG -7.51 Dipole Moment 78.23 Incomplete heat of formation -52.900 kcal/mole end WBr(OCH2tBu)3CHtBu torsion constants for angle 1 2 3 7 (type 6 80 30 1) unk; set = 0 torsion constants for angle 1 2 3 33 (type 6 80 30 5) unk; set = 0 torsion constants for angle 1 2 4 11 (type 6 80 6 1) unk; set = 0 torsion constants for angle 1 2 4 34 (type 6 80 6 20) unk; set = 0 torsion constants for angle 1 2 4 35 (type 6 80 6 20) unk; set = 0 torsion constants for angle 1 2 5 16 (type 6 80 6 1) unk; set = 0 torsion constants for angle 1 2 5 36 (type 6 80 6 20) unk; set = 0 torsion constants for angle 1 2 5 37 (type 6 80 6 20) unk; set = 0 torsion constants for angle 1 2 6 21 (type 6 80 6 1) unk; set = 0 torsion constants for angle 1 2 6 38 (type 6 80 6 20) unk; set = 0 torsion constants for angle 1 2 6 39 (type 6 80 6 20) unk; set = 0 generalized constants for angle 2 1 26 27 (type 80 6 1 1) are used 0.000 0.000 0.500 torsion constants for angle 2 3 7 8 (type 80 30 1 1) unk; set = 0 torsion constants for angle 2 3 7 9 (type 80 30 1 1) unk; set = 0 torsion constants for angle 2 3 7 10 (type 80 30 1 1) unk; set = 0 torsion constants for angle 3 2 1 26 (type 30 80 6 1) unk; set = 0 torsion constants for angle 3 2 1 31 (type 30 80 6 20) unk; set = 0 torsion constants for angle 3 2 1 32 (type 30 80 6 20) unk; set = 0 torsion constants for angle 3 2 4 11 (type 30 80 6 1) unk; set = 0 torsion constants for angle 3 2 4 34 (type 30 80 6 20) unk; set = 0 torsion constants for angle 3 2 4 35 (type 30 80 6 20) unk; set = 0 torsion constants for angle 3 2 5 16 (type 30 80 6 1) unk; set = 0 torsion constants for angle 3 2 5 36 (type 30 80 6 20) unk; set = 0 torsion constants for angle 3 2 5 37 (type 30 80 6 20) unk; set = 0 torsion constants for angle 3 2 6 21 (type 30 80 6 1) unk; set = 0 torsion constants for angle 3 2 6 38 (type 30 80 6 20) unk; set = 0 torsion constants for angle 3 2 6 39 (type 30 80 6 20) unk; set = 0 torsion constants for angle 4 2 1 26 (type 6 80 6 1) unk; set = 0 torsion constants for angle 4 2 1 31 (type 6 80 6 20) unk; set = 0 torsion constants for angle 4 2 1 32 (type 6 80 6 20) unk; set = 0 torsion constants for angle 4 2 3 7 (type 6 80 30 1) unk; set = 0 torsion constants for angle 4 2 3 33 (type 6 80 30 5) unk; set = 0 torsion constants for angle 4 2 5 16 (type 6 80 6 1) unk; set = 0 torsion constants for angle 4 2 5 36 (type 6 80 6 20) unk; set = 0 torsion constants for angle 4 2 5 37 (type 6 80 6 20) unk; set = 0 torsion constants for angle 4 2 6 21 (type 6 80 6 1) unk; set = 0 torsion constants for angle 4 2 6 38 (type 6 80 6 20) unk; set = 0 torsion constants for angle 4 2 6 39 (type 6 80 6 20) unk; set = 0 torsion constants for angle 5 2 1 26 (type 6 80 6 1) unk; set = 0 torsion constants for angle 5 2 1 31 (type 6 80 6 20) unk; set = 0 torsion constants for angle 5 2 1 32 (type 6 80 6 20) unk; set = 0 torsion constants for angle 5 2 3 7 (type 6 80 30 1) unk; set = 0 torsion constants for angle 5 2 3 33 (type 6 80 30 5) unk; set = 0 torsion constants for angle 5 2 4 11 (type 6 80 6 1) unk; set = 0 torsion constants for angle 5 2 4 34 (type 6 80 6 20) unk; set = 0 torsion constants for angle 5 2 4 35 (type 6 80 6 20) unk; set = 0 torsion constants for angle 5 2 6 21 (type 6 80 6 1) unk; set = 0 torsion constants for angle 5 2 6 38 (type 6 80 6 20) unk; set = 0 torsion constants for angle 5 2 6 39 (type 6 80 6 20) unk; set = 0 torsion constants for angle 6 2 1 26 (type 6 80 6 1) unk; set = 0 torsion constants for angle 6 2 1 31 (type 6 80 6 20) unk; set = 0 torsion constants for angle 6 2 1 32 (type 6 80 6 20) unk; set = 0 torsion constants for angle 6 2 3 7 (type 6 80 30 1) unk; set = 0 torsion constants for angle 6 2 3 33 (type 6 80 30 5) unk; set = 0 torsion constants for angle 6 2 4 11 (type 6 80 6 1) unk; set = 0 torsion constants for angle 6 2 4 34 (type 6 80 6 20) unk; set = 0 torsion constants for angle 6 2 4 35 (type 6 80 6 20) unk; set = 0 torsion constants for angle 6 2 5 16 (type 6 80 6 1) unk; set = 0 torsion constants for angle 6 2 5 36 (type 6 80 6 20) unk; set = 0 torsion constants for angle 6 2 5 37 (type 6 80 6 20) unk; set = 0 atom # 1 mmtype 6 charge: 0.153 atom # 2 mmtype 80 charge: 0.600 atom # 3 mmtype 30 charge: 0.933 atom # 4 mmtype 6 charge: 0.153 atom # 5 mmtype 6 charge: 0.153 atom # 6 mmtype 6 charge: 0.153 atom # 7 mmtype 1 charge: 0.029 atom # 8 mmtype 1 charge: 0.000 atom # 9 mmtype 1 charge: 0.000 atom # 10 mmtype 1 charge: 0.000 atom # 11 mmtype 1 charge: 0.127 atom # 12 mmtype 1 charge: 0.000 atom # 13 mmtype 1 charge: 0.000 atom # 14 mmtype 1 charge: 0.000 atom # 15 mmtype 1 charge: 0.000 atom # 16 mmtype 1 charge: 0.127 atom # 17 mmtype 1 charge: 0.000 atom # 18 mmtype 1 charge: 0.000 atom # 19 mmtype 1 charge: 0.000 atom # 20 mmtype 1 charge: 0.000 atom # 21 mmtype 1 charge: 0.127 atom # 22 mmtype 1 charge: 0.000 atom # 23 mmtype 1 charge: 0.000 atom # 24 mmtype 1 charge: 0.000 atom # 25 mmtype 1 charge: 0.000 atom # 26 mmtype 1 charge: 0.127 atom # 27 mmtype 1 charge: 0.000 atom # 28 mmtype 1 charge: 0.000 atom # 29 mmtype 1 charge: 0.000 atom # 30 mmtype 1 charge: 0.000 atom # 31 mmtype 20 charge: -0.140 atom # 32 mmtype 20 charge: -0.140 atom # 33 mmtype 5 charge: 0.038 atom # 34 mmtype 20 charge: -0.140 atom # 35 mmtype 20 charge: -0.140 atom # 36 mmtype 20 charge: -0.140 atom # 37 mmtype 20 charge: -0.140 atom # 38 mmtype 20 charge: -0.140 atom # 39 mmtype 20 charge: -0.140 atom # 40 mmtype 5 charge: 0.000 atom # 41 mmtype 5 charge: 0.000 atom # 42 mmtype 5 charge: 0.000 atom # 43 mmtype 5 charge: 0.000 atom # 44 mmtype 5 charge: 0.000 atom # 45 mmtype 5 charge: 0.000 atom # 46 mmtype 5 charge: 0.000 atom # 47 mmtype 5 charge: 0.000 atom # 48 mmtype 5 charge: 0.000 atom # 49 mmtype 5 charge: 0.000 atom # 50 mmtype 5 charge: 0.000 atom # 51 mmtype 5 charge: 0.000 atom # 52 mmtype 5 charge: 0.000 atom # 53 mmtype 5 charge: 0.000 atom # 54 mmtype 5 charge: 0.000 atom # 55 mmtype 5 charge: 0.000 atom # 56 mmtype 5 charge: 0.000 atom # 57 mmtype 5 charge: 0.000 atom # 58 mmtype 5 charge: 0.000 atom # 59 mmtype 5 charge: 0.000 atom # 60 mmtype 5 charge: 0.000 atom # 61 mmtype 5 charge: 0.000 atom # 62 mmtype 5 charge: 0.000 atom # 63 mmtype 5 charge: 0.000 atom # 64 mmtype 5 charge: 0.000 atom # 65 mmtype 5 charge: 0.000 atom # 66 mmtype 5 charge: 0.000 atom # 67 mmtype 5 charge: 0.000 atom # 68 mmtype 5 charge: 0.000 atom # 69 mmtype 5 charge: 0.000 atom # 70 mmtype 5 charge: 0.000 atom # 71 mmtype 5 charge: 0.000 atom # 72 mmtype 5 charge: 0.000 atom # 73 mmtype 5 charge: 0.000 atom # 74 mmtype 5 charge: 0.000 atom # 75 mmtype 5 charge: 0.000 atom # 76 mmtype 5 charge: 0.000 atom # 77 mmtype 5 charge: 0.000 atom # 78 mmtype 5 charge: 0.000 atom # 79 mmtype 5 charge: 0.000 atom # 80 mmtype 5 charge: 0.000 atom # 81 mmtype 5 charge: 0.000 atom # 82 mmtype 5 charge: 0.000 atom # 83 mmtype 5 charge: 0.000 atom # 84 mmtype 5 charge: 0.000 atom # 85 mmtype 5 charge: 0.000 atom # 86 mmtype 5 charge: 0.000 atom # 87 mmtype 5 charge: 0.000 atom # 88 mmtype 5 charge: 0.000 atom # 89 mmtype 5 charge: 0.000 atom # 90 mmtype 5 charge: 0.000 atom # 91 mmtype 5 charge: 0.000 atom # 92 mmtype 5 charge: 0.000 generalized constants for angle 2 1 26 (type 80 6 1) are used generalized constants for angle 2 1 31 (type 80 6 20) are used generalized constants for angle 2 1 32 (type 80 6 20) are used generalized constants for angle 1 2 3 (type 6 80 30) are used generalized constants for angle 1 2 4 (type 6 80 6) are used generalized constants for angle 1 2 5 (type 6 80 6) are used generalized constants for angle 1 2 6 (type 6 80 6) are used generalized constants for angle 3 2 4 (type 30 80 6) are used generalized constants for angle 3 2 5 (type 30 80 6) are used generalized constants for angle 3 2 6 (type 30 80 6) are used generalized constants for angle 4 2 5 (type 6 80 6) are used generalized constants for angle 4 2 6 (type 6 80 6) are used generalized constants for angle 5 2 6 (type 6 80 6) are used generalized constants for angle 2 3 7 (type 80 30 1) are used generalized constants for angle 2 3 33 (type 80 30 5) are used generalized constants for angle 7 3 33 (type 1 30 5) are used generalized constants for angle 2 4 11 (type 80 6 1) are used generalized constants for angle 2 4 34 (type 80 6 20) are used generalized constants for angle 2 4 35 (type 80 6 20) are used generalized constants for angle 2 5 16 (type 80 6 1) are used generalized constants for angle 2 5 36 (type 80 6 20) are used generalized constants for angle 2 5 37 (type 80 6 20) are used generalized constants for angle 2 6 21 (type 80 6 1) are used generalized constants for angle 2 6 38 (type 80 6 20) are used generalized constants for angle 2 6 39 (type 80 6 20) are used generalized constants for angle 3 7 8 (type 30 1 1) are used generalized constants for angle 3 7 9 (type 30 1 1) are used generalized constants for angle 3 7 10 (type 30 1 1) are used MMX Energy 12.99 STR 4.66 BND 15.66 S-B -1.84 TOR 5.38 VDW -1.12 DIP/CHRG -9.74 Dipole Moment 78.42 Heat of Formation -52.900 kcal/mole; Strain Energy -9.455 start W(OCH2tBu)4CHtBu 0 * * * * * Energy is minimized within 0.0138 kcal * * * * * * * * * * MM2 energy is 10.1920 kcal/mol * * * * * Accumulated movement is 0.1447 ang/atom ------------------------------------------------------------ Heat of Formation, Strain Energies and Entropies at 300 k (units are kcal or eu.) Bond Enthalpy (be) and Entropy: # Bond or Structure Each Total Tot S contrib. * * * * * error - bond 2- 1 does not have programmed enthalpy increments. * * * * * error - bond 3- 2 does not have programmed enthalpy increments. * * * * * error - bond 4- 2 does not have programmed enthalpy increments. * * * * * error - bond 5- 2 does not have programmed enthalpy increments. * * * * * error - bond 6- 2 does not have programmed enthalpy increments. 19 C-C SP3-SP3 -0.004 -0.076 -311.600 53 C-H ALIPHATIC -3.205 -169.865 683.700 4 C-O ETHER & ALC. -16.668 -66.672 -16.000 1 H-C+ 86.300 86.300 0.000 S contrib. above is unk. 1 C-C+ 56.000 56.000 0.000 S contrib. above is unk. 4 NEO (ALKANE) -0.707 -2.828 15 C(SP3)-METHYL -1.510 -22.650 ---------------- --------------- be = -119.791 s = 356.100 3 & 4 Ring corrections to entropy are included w/o symmetry corrections. for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.; for each 8-ring add 14 eu.; for higher rings add 12 eu. each. there are no symmetry corrections to the entropy. Heat of Formation calculation: Partition Function Contribution (PFC) Conformational Population Increment (POP) 0.000 Torsional Contribution (TOR) 0.000 Translation/Rotation Term (T/R) 2.400 ------------- PFC = 2.400 Heat of Formation (hf0) = energy + be + pfc -107.199 Strain Energy (energy+environment corrs.)= -11.428 CAUTION, delta hf is not correct because of missing parameters. Use total energy or strain energy to compare the stabilities of conformers and diastereomers. Caution, energy parameters for metal systems are generalized and may not represent a particular metal or oxidation state. Use heats of formation to compare stabilities of structural isomers like acetaldehyde and enol or allyl chloride and cyclopropyl chloride. Many bond contributions to the heat of formation are unknown-these contribute 0.0 to the value given. MMX Energy 10.19 STR 4.46 BND 15.66 S-B -1.80 TOR 5.27 VDW -1.97 DIP/CHRG -11.44 Dipole Moment 78.81 Incomplete heat of formation -107.199 kcal/mole end W(OCH2tBu)4CHtBu torsion constants for angle 1 2 3 5 (type 6 80 6 1) unk; set = 0 torsion constants for angle 1 2 3 41 (type 6 80 6 20) unk; set = 0 torsion constants for angle 1 2 3 42 (type 6 80 6 20) unk; set = 0 torsion constants for angle 1 2 4 10 (type 6 80 6 1) unk; set = 0 torsion constants for angle 1 2 4 43 (type 6 80 6 20) unk; set = 0 torsion constants for angle 1 2 4 44 (type 6 80 6 20) unk; set = 0 torsion constants for angle 1 2 21 20 (type 6 80 80 6) unk; set = 0 torsion constants for angle 1 2 21 22 (type 6 80 80 6) unk; set = 0 torsion constants for angle 1 2 21 23 (type 6 80 80 6) unk; set = 0 generalized constants for angle 2 1 15 16 (type 80 6 1 1) are used 0.000 0.000 0.500 torsion constants for angle 2 21 20 34 (type 80 80 6 1) unk; set = 0 torsion constants for angle 2 21 20 78 (type 80 80 6 20) unk; set = 0 torsion constants for angle 2 21 20 79 (type 80 80 6 20) unk; set = 0 torsion constants for angle 2 21 22 24 (type 80 80 6 1) unk; set = 0 torsion constants for angle 2 21 22 80 (type 80 80 6 20) unk; set = 0 torsion constants for angle 2 21 22 81 (type 80 80 6 20) unk; set = 0 torsion constants for angle 2 21 23 29 (type 80 80 6 1) unk; set = 0 torsion constants for angle 2 21 23 82 (type 80 80 6 20) unk; set = 0 torsion constants for angle 2 21 23 83 (type 80 80 6 20) unk; set = 0 torsion constants for angle 3 2 1 15 (type 6 80 6 1) unk; set = 0 torsion constants for angle 3 2 1 39 (type 6 80 6 20) unk; set = 0 torsion constants for angle 3 2 1 40 (type 6 80 6 20) unk; set = 0 torsion constants for angle 3 2 4 10 (type 6 80 6 1) unk; set = 0 torsion constants for angle 3 2 4 43 (type 6 80 6 20) unk; set = 0 torsion constants for angle 3 2 4 44 (type 6 80 6 20) unk; set = 0 torsion constants for angle 3 2 21 20 (type 6 80 80 6) unk; set = 0 torsion constants for angle 3 2 21 22 (type 6 80 80 6) unk; set = 0 torsion constants for angle 3 2 21 23 (type 6 80 80 6) unk; set = 0 torsion constants for angle 4 2 1 15 (type 6 80 6 1) unk; set = 0 torsion constants for angle 4 2 1 39 (type 6 80 6 20) unk; set = 0 torsion constants for angle 4 2 1 40 (type 6 80 6 20) unk; set = 0 torsion constants for angle 4 2 3 5 (type 6 80 6 1) unk; set = 0 torsion constants for angle 4 2 3 41 (type 6 80 6 20) unk; set = 0 torsion constants for angle 4 2 3 42 (type 6 80 6 20) unk; set = 0 torsion constants for angle 4 2 21 20 (type 6 80 80 6) unk; set = 0 torsion constants for angle 4 2 21 22 (type 6 80 80 6) unk; set = 0 torsion constants for angle 4 2 21 23 (type 6 80 80 6) unk; set = 0 torsion constants for angle 5 3 2 21 (type 1 6 80 80) unk; set = 0 torsion constants for angle 10 4 2 21 (type 1 6 80 80) unk; set = 0 torsion constants for angle 15 1 2 21 (type 1 6 80 80) unk; set = 0 torsion constants for angle 20 21 22 24 (type 6 80 6 1) unk; set = 0 torsion constants for angle 20 21 22 80 (type 6 80 6 20) unk; set = 0 torsion constants for angle 20 21 22 81 (type 6 80 6 20) unk; set = 0 torsion constants for angle 20 21 23 29 (type 6 80 6 1) unk; set = 0 torsion constants for angle 20 21 23 82 (type 6 80 6 20) unk; set = 0 torsion constants for angle 20 21 23 83 (type 6 80 6 20) unk; set = 0 torsion constants for angle 21 2 1 39 (type 80 80 6 20) unk; set = 0 torsion constants for angle 21 2 1 40 (type 80 80 6 20) unk; set = 0 torsion constants for angle 21 2 3 41 (type 80 80 6 20) unk; set = 0 torsion constants for angle 21 2 3 42 (type 80 80 6 20) unk; set = 0 torsion constants for angle 21 2 4 43 (type 80 80 6 20) unk; set = 0 torsion constants for angle 21 2 4 44 (type 80 80 6 20) unk; set = 0 torsion constants for angle 22 21 20 34 (type 6 80 6 1) unk; set = 0 torsion constants for angle 22 21 20 78 (type 6 80 6 20) unk; set = 0 torsion constants for angle 22 21 20 79 (type 6 80 6 20) unk; set = 0 torsion constants for angle 22 21 23 29 (type 6 80 6 1) unk; set = 0 torsion constants for angle 22 21 23 82 (type 6 80 6 20) unk; set = 0 torsion constants for angle 22 21 23 83 (type 6 80 6 20) unk; set = 0 torsion constants for angle 23 21 20 34 (type 6 80 6 1) unk; set = 0 torsion constants for angle 23 21 20 78 (type 6 80 6 20) unk; set = 0 torsion constants for angle 23 21 20 79 (type 6 80 6 20) unk; set = 0 torsion constants for angle 23 21 22 24 (type 6 80 6 1) unk; set = 0 torsion constants for angle 23 21 22 80 (type 6 80 6 20) unk; set = 0 torsion constants for angle 23 21 22 81 (type 6 80 6 20) unk; set = 0 atom # 1 mmtype 6 charge: 0.153 atom # 2 mmtype 80 charge: 0.600 atom # 3 mmtype 6 charge: 0.153 atom # 4 mmtype 6 charge: 0.153 atom # 5 mmtype 1 charge: 0.127 atom # 6 mmtype 1 charge: 0.000 atom # 7 mmtype 1 charge: 0.000 atom # 8 mmtype 1 charge: 0.000 atom # 9 mmtype 1 charge: 0.000 atom # 10 mmtype 1 charge: 0.127 atom # 11 mmtype 1 charge: 0.000 atom # 12 mmtype 1 charge: 0.000 atom # 13 mmtype 1 charge: 0.000 atom # 14 mmtype 1 charge: 0.000 atom # 15 mmtype 1 charge: 0.127 atom # 16 mmtype 1 charge: 0.000 atom # 17 mmtype 1 charge: 0.000 atom # 18 mmtype 1 charge: 0.000 atom # 19 mmtype 1 charge: 0.000 atom # 20 mmtype 6 charge: 0.153 atom # 21 mmtype 80 charge: 0.127 atom # 22 mmtype 6 charge: 0.153 atom # 23 mmtype 6 charge: 0.153 atom # 24 mmtype 1 charge: 0.127 atom # 25 mmtype 1 charge: 0.000 atom # 26 mmtype 1 charge: 0.000 atom # 27 mmtype 1 charge: 0.000 atom # 28 mmtype 1 charge: 0.000 atom # 29 mmtype 1 charge: 0.127 atom # 30 mmtype 1 charge: 0.000 atom # 31 mmtype 1 charge: 0.000 atom # 32 mmtype 1 charge: 0.000 atom # 33 mmtype 1 charge: 0.000 atom # 34 mmtype 1 charge: 0.127 atom # 35 mmtype 1 charge: 0.000 atom # 36 mmtype 1 charge: 0.000 atom # 37 mmtype 1 charge: 0.000 atom # 38 mmtype 1 charge: 0.000 atom # 39 mmtype 20 charge: -0.140 atom # 40 mmtype 20 charge: -0.140 atom # 41 mmtype 20 charge: -0.140 atom # 42 mmtype 20 charge: -0.140 atom # 43 mmtype 20 charge: -0.140 atom # 44 mmtype 20 charge: -0.140 atom # 45 mmtype 5 charge: 0.000 atom # 46 mmtype 5 charge: 0.000 atom # 47 mmtype 5 charge: 0.000 atom # 48 mmtype 5 charge: 0.000 atom # 49 mmtype 5 charge: 0.000 atom # 50 mmtype 5 charge: 0.000 atom # 51 mmtype 5 charge: 0.000 atom # 52 mmtype 5 charge: 0.000 atom # 53 mmtype 5 charge: 0.000 atom # 54 mmtype 5 charge: 0.000 atom # 55 mmtype 5 charge: 0.000 atom # 56 mmtype 5 charge: 0.000 atom # 57 mmtype 5 charge: 0.000 atom # 58 mmtype 5 charge: 0.000 atom # 59 mmtype 5 charge: 0.000 atom # 60 mmtype 5 charge: 0.000 atom # 61 mmtype 5 charge: 0.000 atom # 62 mmtype 5 charge: 0.000 atom # 63 mmtype 5 charge: 0.000 atom # 64 mmtype 5 charge: 0.000 atom # 65 mmtype 5 charge: 0.000 atom # 66 mmtype 5 charge: 0.000 atom # 67 mmtype 5 charge: 0.000 atom # 68 mmtype 5 charge: 0.000 atom # 69 mmtype 5 charge: 0.000 atom # 70 mmtype 5 charge: 0.000 atom # 71 mmtype 5 charge: 0.000 atom # 72 mmtype 5 charge: 0.000 atom # 73 mmtype 5 charge: 0.000 atom # 74 mmtype 5 charge: 0.000 atom # 75 mmtype 5 charge: 0.000 atom # 76 mmtype 5 charge: 0.000 atom # 77 mmtype 5 charge: 0.000 atom # 78 mmtype 20 charge: -0.140 atom # 79 mmtype 20 charge: -0.140 atom # 80 mmtype 20 charge: -0.140 atom # 81 mmtype 20 charge: -0.140 atom # 82 mmtype 20 charge: -0.140 atom # 83 mmtype 20 charge: -0.140 atom # 84 mmtype 5 charge: 0.000 atom # 85 mmtype 5 charge: 0.000 atom # 86 mmtype 5 charge: 0.000 atom # 87 mmtype 5 charge: 0.000 atom # 88 mmtype 5 charge: 0.000 atom # 89 mmtype 5 charge: 0.000 atom # 90 mmtype 5 charge: 0.000 atom # 91 mmtype 5 charge: 0.000 atom # 92 mmtype 5 charge: 0.000 atom # 93 mmtype 5 charge: 0.000 atom # 94 mmtype 5 charge: 0.000 atom # 95 mmtype 5 charge: 0.000 atom # 96 mmtype 5 charge: 0.000 atom # 97 mmtype 5 charge: 0.000 atom # 98 mmtype 5 charge: 0.000 atom # 99 mmtype 5 charge: 0.000 atom # 100 mmtype 5 charge: 0.000 atom # 101 mmtype 5 charge: 0.000 atom # 102 mmtype 5 charge: 0.000 atom # 103 mmtype 5 charge: 0.000 atom # 104 mmtype 5 charge: 0.000 atom # 105 mmtype 5 charge: 0.000 atom # 106 mmtype 5 charge: 0.000 atom # 107 mmtype 5 charge: 0.000 atom # 108 mmtype 5 charge: 0.000 atom # 109 mmtype 5 charge: 0.000 atom # 110 mmtype 5 charge: 0.000 atom # 111 mmtype 5 charge: 0.000 atom # 112 mmtype 5 charge: 0.000 atom # 113 mmtype 5 charge: 0.000 atom # 114 mmtype 5 charge: 0.000 atom # 115 mmtype 5 charge: 0.000 atom # 116 mmtype 5 charge: 0.000 generalized constants for angle 2 1 15 (type 80 6 1) are used generalized constants for angle 2 1 39 (type 80 6 20) are used generalized constants for angle 2 1 40 (type 80 6 20) are used generalized constants for angle 1 2 3 (type 6 80 6) are used generalized constants for angle 1 2 4 (type 6 80 6) are used generalized constants for angle 1 2 21 (type 6 80 80) are used generalized constants for angle 3 2 4 (type 6 80 6) are used generalized constants for angle 3 2 21 (type 6 80 80) are used generalized constants for angle 4 2 21 (type 6 80 80) are used generalized constants for angle 2 3 5 (type 80 6 1) are used generalized constants for angle 2 3 41 (type 80 6 20) are used generalized constants for angle 2 3 42 (type 80 6 20) are used generalized constants for angle 2 4 10 (type 80 6 1) are used generalized constants for angle 2 4 43 (type 80 6 20) are used generalized constants for angle 2 4 44 (type 80 6 20) are used generalized constants for angle 21 20 34 (type 80 6 1) are used generalized constants for angle 21 20 78 (type 80 6 20) are used generalized constants for angle 21 20 79 (type 80 6 20) are used generalized constants for angle 20 21 22 (type 6 80 6) are used generalized constants for angle 20 21 23 (type 6 80 6) are used generalized constants for angle 2 21 20 (type 80 80 6) are used generalized constants for angle 22 21 23 (type 6 80 6) are used generalized constants for angle 2 21 22 (type 80 80 6) are used generalized constants for angle 2 21 23 (type 80 80 6) are used generalized constants for angle 21 22 24 (type 80 6 1) are used generalized constants for angle 21 22 80 (type 80 6 20) are used generalized constants for angle 21 22 81 (type 80 6 20) are used generalized constants for angle 21 23 29 (type 80 6 1) are used generalized constants for angle 21 23 82 (type 80 6 20) are used generalized constants for angle 21 23 83 (type 80 6 20) are used MMX Energy 98.77 STR 5.43 BND 34.70 S-B -1.39 TOR 69.74 VDW -5.14 DIP/CHRG -4.57 Dipole Moment 44.57 Heat of Formation -107.199 kcal/mole; Strain Energy -11.428 start Chisholm complexes 0 * * * * * Energy is minimized within 0.0174 kcal * * * * * * * * * * MM2 energy is 49.6699 kcal/mol * * * * * Accumulated movement is 0.1417 ang/atom ------------------------------------------------------------ Heat of Formation, Strain Energies and Entropies at 300 k (units are kcal or eu.) Bond Enthalpy (be) and Entropy: # Bond or Structure Each Total Tot S contrib. * * * * * error - bond 2- 1 does not have programmed enthalpy increments. * * * * * error - bond 3- 2 does not have programmed enthalpy increments. * * * * * error - bond 4- 2 does not have programmed enthalpy increments. * * * * * error - bond 21- 20 does not have programmed enthalpy increments. * * * * * error - bond 21- 2 does not have programmed enthalpy increments. * * * * * error - bond 22- 21 does not have programmed enthalpy increments. * * * * * error - bond 23- 21 does not have programmed enthalpy increments. 24 C-C SP3-SP3 -0.004 -0.096 -393.600 66 C-H ALIPHATIC -3.205 -211.530 851.400 6 C-O ETHER & ALC. -16.668 -100.008 -24.000 6 NEO (ALKANE) -0.707 -4.242 18 C(SP3)-METHYL -1.510 -27.180 ---------------- --------------- be = -343.056 s = 433.800 3 & 4 Ring corrections to entropy are included w/o symmetry corrections. for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.; for each 8-ring add 14 eu.; for higher rings add 12 eu. each. there are no symmetry corrections to the entropy. Heat of Formation calculation: Partition Function Contribution (PFC) Conformational Population Increment (POP) 0.000 Torsional Contribution (TOR) 0.000 Translation/Rotation Term (T/R) 2.400 ------------- PFC = 2.400 Heat of Formation (hf0) = energy + be + pfc -291.125 Strain Energy (energy+environment corrs.)= 20.431 CAUTION, delta hf is not correct because of missing parameters. Use total energy or strain energy to compare the stabilities of conformers and diastereomers. Caution, energy parameters for metal systems are generalized and may not represent a particular metal or oxidation state. Use heats of formation to compare stabilities of structural isomers like acetaldehyde and enol or allyl chloride and cyclopropyl chloride. Many bond contributions to the heat of formation are unknown-these contribute 0.0 to the value given. Poor convergence MMX Energy 49.53 STR 6.66 BND 46.85 S-B -2.66 TOR 9.08 VDW -5.57 DIP/CHRG -4.81 Dipole Moment 44.32 Incomplete heat of formation -291.125 kcal/mole end Chisholm complexes MMX Energy 49.53 STR 6.66 BND 46.85 S-B -2.66 TOR 9.08 VDW -5.57 DIP/CHRG -4.81 Dipole Moment 44.32 Incomplete heat of formation -291.125 kcal/mole end Chisholm complexes