
Simplified and Biased Introduction
to Density Functional Approaches in Chemistry

THIS WAS WRITTEN IN 1996 – IT IS OBSOLETE!!!
There are many typos in this paper – Igor Vilfan from J. Stefan

Institute (igor.vilfan@ijs.si) found a score of them, but I am sure
there are more: Thank you Igor!!!.

Jan K. Labanowski (jkl@osc.edu)

Ohio Supercomputer Center, 1224 Kinnear Rd, Columbus, OH
43221-1153

(Unreviewed, uncorrected, and unfinished draft currently in preparation)

There are many approaches of computational chemistry which are popular
in molecular modeling in biological sciences:

• Simple Comparative Approaches – graphical inspection, molecular
superposition, overlapping/nonoverlaping volume, topological indices,
traditional QSAR, rigid conformational search, ComFA, shape analy-
sis, etc. Used as a first step in scanning biologically active molecules
and useful in detecting characteristic molecular features needed for ac-
tivity. These methods are not quantitative, since they do not consider
energetics of receptor-ligand interactions.

• Emiprical approaches – molecular mechanics, molecular dynamics.
Using simple models of harmonic potential, electrostatic interaction,
and dispersion forces, allow for basic comparisons of energetics and
geometry optimization. Solvent effects can be included explicitly or via
empirical models. Very useful and fast, compared to rigorous quantum
calculations. Major drawbacks: experimental information needed to
”standardize” models and parameters. In principle, these approaches
are not able to model chemical reactions, bond forming/breaking –
electronic structure does not enter these models.

• Quantum Approaches – based on explicit consideration of the elec-
tronic structure. These methods are substantially more computation-
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ally demanding then comparative and empirical approaches for the
molecules of the same size. They can be roughly divided into:

– Semiempirical methods – approximate methods in which some
quantities are taken from experiment, some small quantities are
neglected, and some quantities estimated by fitting to experimen-
tal data. May only be used for chemical species for which they
were parametrized. For distorted, uncommon bonding situations
produce unreliable results.

– Nonempirical methods – do not require empirical parameters and
can be used for any molecular system.

∗ Traditional ab initio – use Hartree-Fock method as a start-
ing point, i.e., wave function is used to describe electronic
structure.

∗ Density Functional Methods – electron density as a pri-
mary way of describing the system.

There is a justified interest in Density Functional Approaches among
chemists. While they have been a domain of physicists for a long time,
these methods have now found their way into mainstream chamistry. The
traditional ab initio approaches, which are the workhorse of Quantum Chem-
istry offer a prescription for calculated truth. In principle, one can calculate
chemical properties with any desired accuracy. The methods are known and
proven to work. The only problem is that for systems larger than hydrogen or
lighter HnX molecules, the calculations involved in obtaining accurate results
are frequently impractical. We know how to compute it, but we do not have
computational power to do it (probably for many years to come, even with
the spectacular progress in computer technology). For this reason, the con-
temporary research in traditional ab initio methods is concerned mainly with
better approximations to a Full CI method, or infinite order perturbational
expansions, which would give good quality reliable results with reasonable
computational effort. Still, the most promising Coupled Cluster (CC) and
Complete Active Space SCF (CASSCF) calculations scale more than 5th
power in molecular size, and are impractical for molecules containing tens of
atoms.

Density Functional Theory does not provide a prescription how to calcu-
late truth. It only provides the existence proof for possibility of obtaining
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accurate results, but no prescription for systematic improvement. The DFT
is accurate, if we knew how to derive necessary relations between density
and energy. Unfortunately, energy functionals relating electronic density to
energy are unknown, and there is no general way to improve them beside try-
ing new ones and judging their quality by the results. As Prof. Perdew once
said: ”We are like a blind person who wants to find out how the elephant
looks like by touching its legs” (sorry, the quatation is from memory, and
may not be accurate). But the Density Functional Theory provides a hope
for a method which scales with the size as N 3 in the worst case, and possibly
linearly for larger molecules (Zhou, 1995; Yang, 1991). So it is used in the
spirit of late prof. Slater saying (about his Xα method): Do you want to
calculate it, or do you want it to be accurate? The DFT results are in many
cases surprisingly good if one takes into account the crude approximations on
which some of them are based. For example, Local Spin Density calculations
yield results on many molecular properties which are of quality compara-
ble with higher order ab initio correlated methods, yet, the LSD assumes
that electrons in molecules behave like electrons in an uniform electron gas.
Moreover, DFT methods frequently provide reliable answer for cases which
are especially difficult to address with conventional ab initio methods, like,
e.g., transition metals. On the other hand, they frequently fail miserably,
e.g., in charge-transfer complexes.

The fact that more, and more ab initio packages provide options for DFT
calculations, is a sign of changing times, and the indication that even the
most vigorous opponents of this method see that it is just another way of
doing things. On the other hand, DFT is in principle only applicable to the
ground state, and there is little hope that it will be extended in a practical
way to excited states in a straightforward manner any time soon.

Wave Functions
Since inception of quantum mechanics by Heisenberg, Born, and Jordan
in 1925, and Schrödinger in 1926, there were basically two competing ap-
proaches to find the energy of a system of electrons. One was rooted in
statisticial mechanics and the fundamental variable was the total electron
density ρ(r), i.e., the number of electrons per unit volume at a given point
in space (e.g., in cartesian coordinates: r = (x, y, z)). In this approach, elec-
trons were treated as particles forming a special gas, called electron gas. The
special case, the uniform electron gas, corresponds to the ρ(r) = const.
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Another approach was to derive the many particle wave function Ψ(r1, r2, · · · rN , t)
(where the r1 denotes the coordinates of the 1st electron, r2 the 2nd elec-
tron, and so on, and t is time) and solve the stationary (time-independent)
Schrödinger equation for the system:

ĤΨk(r1, r2, · · · rN) = EkΨk(r1, r2, · · · rN) (1)

(where Ĥ is the hamiltonian, i.e., the operator of the total energy for the
system), and calculate the set of possible wave functions (called eigenfunc-
tions) Ψk and corresponding energies (eigenvalues) Ek. The eigenfunctions
have to be physically acceptable, and for finite systems:

1. they should be continuous functions,

2. they should be at least doubly differentiable,

3. its square should be integrable,

4. they should vanish at infinity (for finite systems),

When the Schrödinger equation is solved exactly (e.g., for the hydrogen
atom), the resulting eigenfunctions Ek form a complete set of functions, i.e.,
there is an infinite number of them, they are orthogonal to each other (or can
be easily made orthogonal through a linear transformation), and any function
which is of “physical quality” can be expressed through the combination of
these eigenfunctions. Orthogonal means, that:

∫

Ψ∗
kΨld

Nr = 0 if k 6= l (2)

The eigenfunction Ψ0 corresponding to the lowest energy E0, describes the
ground state of the system, and the higher energy values correspond to ex-
cited states. Physicists like to call Ψ’s the states (since they contain all
possible information about the state), while chemists usually call them wave
functions.

Once the function Ψ (or its approximation, i.e., in case when the Schrödinger
equation is solved only approximately) is known, the corresponding energy
of the system can be calculated as an expectation value of the hamiltonian
Ĥ, as:

E =

∫ ∫ · · · ∫ Ψ∗(r1, r2, · · · rN)ĤΨ(r1, r2, · · · rN)dr1dr2 · · · drN
∫ ∫ · · · ∫ Ψ∗(r1, r2, · · · rN)Ψ(r1, r2, · · · rN)dr1dr2 · · · drN

(3)
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Figure 1: Volume element for a particle

where Ψ∗ denotes the complex conjugate of Ψ since in general these functions
may produce complex numbers. This is needed since the operator in this case
represents a physical observable, and the result has to be a real number. This
equation is frequently written using Dirac bra (〈|) and ket ( |〉) notation to
save space (and to confuse the innocent):

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 (4)

And if 〈Ψ|Ψ〉 = 1, i.e., the wave function is normalized, the equation looks
even simpler:

E = 〈Ψ|H|Ψ〉 (5)

Once we know the wave function Ψ for a given state of our system, we can
calculate the expectation value for any quantity for which we can write down
the operator. The wave function itself, does not correspond to any physical
quantity, but its square represents the probablity density. In other words:

|Ψ(r1, r2, · · · rN)|2dr1dr2 · · · drN (6)

or
Ψ∗(r1, r2, · · · rN)Ψ(r1, r2, · · · rN)dr1dr2 · · · drN (7)
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or
|Ψ〉 〈Ψ| dV (8)

represents the probablity that electron 1 is in the volume element dr1 around
point r1, electron 2 is in the volume element of the size dr2 around point
r2, and so on. If Ψ describes the system containing only a single electron,
the |Ψ(r)|2dr simply represents the probability of finding an electron in the
volume element of a size dr centered around point r. If you use cartesian
coordinates, then dr = dxdydz and the volume element would be a brick
(rectangular parallelipiped) with dimensions dx×dy×dx whose vertex closes
to the origine of coordinate system is located at (x, y, z). Now, if we inte-
grate the function Ψ over all the space for all the variables (i.e., sum up the
probablilities in all the elements dri), we should get a probability of finding
our electrons anywhere in the Universe, i.e., 1. This is why it is a good idea
to normalize fundtion Ψ. If it is not normalized, it can easily be done by
multiplying it by a normalization constant:

Ψnormalized =

Normalization constant
︷ ︸︸ ︷

1
√

〈Ψunnormalized|Ψunnormalized〉
Ψunnormalized (9)

Since square of Ψ represents the probablility density of finding electrons, one
may suspect, that it should be easy to calculate the total electron density
from it. And actually it is:

ρ(r) = N 〈Ψ|δ(r− ri)|Ψ〉 (10)

where N is the total number of electrons, and δ(r− r′) is the famous Dirac
delta function. In cartesians, it simply amounts to integrating over all elec-
tron positions vectors ri but one. Which one, is not important, since electrons
are indistinguishable, and a proper wave function has to reflect this:

ρ(r1) = N
∫ ∫

· · ·
∫

︸ ︷︷ ︸

N−1

|Ψ(r1, r2, · · · rN , )|2 dr2dr3 · · · drN
︸ ︷︷ ︸

N−1

(11)

It is interesting to note, that for the wave function which describes the system
containing only a single electron (but only then !!!):

ρ(r) = Ψ∗(r)Ψ(r) = |Ψ(r)|2 = |Ψ〉 〈Ψ | (12)
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i.e., logically, the electron density and the probability density of finding the
single electron are the same thing.

Function, Operator, Functional
Before we move any further, let us introduce a few definitions.

FUNCTION
Functions is a prescription which maps one or more numbers to another
number. For example: take a number and multiply it by itself: y = f(x) =
x2, or take two numbers and add them together: z = g(x, y) = x + y.
Sometimes function does not have a value for some numbers, and only certain
numbers can be used as an argument for a function. E.g., square root is only
defined for nonnegative numbers (if you want to have a real number as a
result).

OPERATOR
Operator (usually written with a hat, e.g., F̂ or in calligraphic style F ) is
a prescription which maps one function to another function. For example:
take a function and square its value: F̂ = 2, e.g., F̂ sin(x) = sin2(x). Or
calculate second derivative of a function versus x: F̂ = ∂2

∂x2 , and F̂ f(x) =
∂2

∂x2f(x) =
∂2f(x)
∂x2 . Nabla is the popular differenial operator in 3 dimensions.

In cartesians it is:

∇ =

(

~i
∂

∂x
+~j

∂

∂y
+ ~k

∂

∂z

)

It is used to calculate forces (which are vectors), i.e., gradients of poten-
tial energy: Force = −grad V = −∇. Its square is called laplacian, and
represents the sum of second derivatives:

∆ = ∇2 =

(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

The ∇2 or ∆ appears in the kinetic energy operator. The prescription of
forming the quantum mechanical operators, are called Jordan rules. For
cartesian coordinate representation (coordinate space), they are obtained as
follows:

1. write a classical expression for the physical quantity and rearrange it in
such a way, that everything depends either on coordinates, or momenta
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(e.g., if something depends on the component of velocity, vxi
, change

it to pxi
/mi).

2. replace coordinates with the operators of multuplying by the coordi-
nate:

xi → x̂i = xi·
yi → ŷi = yi·
zi → ẑi = zi·

3. replace components of momenta with their operators:

pxi
→ p̂xi

= −ih̄ ∂

∂x

pyi
→ p̂yi

= −ih̄ ∂

∂y

pzi
→ p̂zi

= −ih̄ ∂
∂z

The operators can also be obtained in momentum space – the physicists
like them this way very much. Chemists are interested more in where is
the electron, rather than how fast it moves, so they use coordinate space
representation as a rule.

The Schrödinger equation (1) is an example of an eigenproblem, i.e.,
the equation in which an operator acts on a function and as a result it
returns the same function multiplied by a constant. For some operators,
there are no nontrivial solutions (trivial means: F̂0 = C ·0), but for operators
which correspond to some physical quantity of some physical system, these
equations have solutions in principle, i.e., one can find a set of functions, and
corresponding constants, which satisfy them. While these eigenproblems
have solutions in principle, these equations may not be easy to solve. They
frequently have the form of partial second order differential equations, or
integro-differential equations, and they may not be analytically solved in
general, some special cases may have an analytic solution (e.g., one particle,
or two particles which interact in a special way).

FUNCTIONAL
Functional takes a function and provides a number. It is usually written with
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the function in square brackets as F [f ] = a. For example: take a function

and integrate it from −∞ to +∞: F [f ] =
+∞∫

−∞
f(x)dx. Note that the formula

for the expectation value (3) is the total energy functional E[Ψ], since it
takes some function Ψ and returns the value of energy for this Ψ.

Functionals can also have derivatives, which behave similarly to tradi-
tional derivatives for functions. The differential of the functional is defined
as:

δF [f ] = F [f + δf ]− F [f ] =
∫ δF

δf(x)
δf(x)dx (13)

The functional derivatives have properties similar to traditional function
derivatives, e.g.:

δ

δf(x)
(C1F1 + C2F2) = C1

δF1

δf(x)
+ C2

δF2

δf(x)
(14)

δ

δf(x)
(F1F2)

δF1

δf(x)
F2 +

δF2

δf(x)
F1 (15)

Hamiltonian, variational principle, Hartree and Hartree-Fock
method
Let us say more about quantum mechanical approches to calculating energy
of the system of electrons. One very important principle of quantum me-
chanics is called variational principle or variational theorem which leads to
a method (variational method or variation method). It was discovered very
early in the history of quanum mechanics. The variational principle states
that if we take some wave function Ψ (e.g., some approximate one) for a
system and calculate the expectation value of energy E, this energy will be
either higher, or equal to the ground state energy E0 for this system.

E =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 ≥ E0 =

〈Ψ0|H|Ψ0〉
〈Ψ0|Ψ0〉

(16)

The E = E0 occurs only if Ψ is equivalent to Ψ0, but otherwise, E > E0.
This theorem can be easily proven (see for example: Levine, 1983; Slater,
1968, or Szabo & Ostlund, 1989). What is more important however, that
this theorem provides us with the prescription how to find the good wave
function: try to go as low with the expectation value of energy, as you can
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(you cannot go lower than the true value). And the lower you go, the better
you are. The word of caution here... The principle is true only if we are
applying a true hamiltonian in the expression for expectation energy. Of
course, if your hamiltonian does not represent a physical system, you can get
whatever you wish, −∞ included!!!

As said before, we can rarely solve the Schrödinger equation exactly. And
we have to use approximations.

The first successful attempt to derive approximate wave functions for
atoms was devised by Hartree (1928). In this approach the many-electron
wave function Ψ is approximated by the product of one-electron functions φ
for each of the N electrons:

Ψ(r1, r2, · · · rN) = φ1(r1)φ2(r2) · · ·φN(rN) (17)

In this equation, ri are the positional coordinates and a spin coordinate for
the i-th electron. For example, in cartesians ri = (xi, yi, zi,msi

) though
to solve this equation for atoms, the spherical coordinates are more useful
ri = (ri, θi, ϕi,msi

), where msi
can adopt only 2 values: + 1/2 (spin up, or α

or ↑) or −1/2 (spin down, β, or ↓). The individual one-electron functions φi
are called orbitals, (or spinorbitals) and describe each electron in the atom
(or molecule). Is this a reasonable approximation? Not really...

1. It assumes that electrons in the atom can be described independently,
i.e., their movements do not depend upon each other and their inter-
action is not pairwise, but each electron interacts with some averaged
field of other electrons. This is a neat idea, the problem is that it is not
true. Electrons have to avoid each another (correlate their movements),
since they repel each other being of the same charge.

2. The function does not have a proper symmetry for interchanging par-
ticle indices for fermions. It was discovered long time ago that the
many electron wave function has to be antisymmetric to the exchange
of neighboring indices, i.e., change sign:

Ψ(r1, r2, · · · ri, ri+1, · · · rN) = −Ψ(r1, r2, · · · ri+1, ri, · · · rN) (18)

e.g., Ψ(r1, r2, r3) = −Ψ(r1, r3, r2) = −Ψ(r2, r1, r3).
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Does the Hartree method work? Yes, it works quite well, at least for atoms...
Now, let us describe how it works. For an atom or molecule, the hamiltonian
operator can be written as:

Ĥtot = T̂nucl + T̂e + Ûnucl + V̂ext + Ûee (19)

where

T̂nucl is the operator of kinetic energy of nuclei,

T̂e represents the kinetic energy of electrons,

Ûnucl is the interaction energy of nuclei (Coulombic repulsion),

V̂ext is the external potential (in this case, the electrostatic potential coming
form nuclei, with which electrons interact),

Ûee denotes electrostatic repulsion between electrons.

Since nuclei are much heavier than electrons (a proton is 1836 times
heavier than an electron), they have much larger intertia than electrons, and
we can consider that electrons will adjust their positions instantly whenever
nuclei move. Prof. Rod Bartlett once used an analogy of flies around the
wedding cakes – you move the cakes, and the flies move with them. Without
much error, we can therefore separate the movement of electrons and nuclei,
and assume that the movement of electrons depends on positions of nuclei
in a parametric way. This is the contents of the Born-Oppenheimer (1927)
approximation. It allows us to use the electronic hamiltonian Ĥel to study
electrons, and add the components of energy coming from nuclei (i.e., their
kinetic energy, Tnucl, and internuclear repulsion energy, Vnucl) at the end of
calculations.

Ĥel = T̂e + V̂ext + Ûee (20)

The form of these operators will be given below. Atomic units are used
here, i.e., mass of electron me = 1; h̄ = 1; length is expressed in bohrs (1
bohr = 0.529177249Å; it is the radius of the first Bohr orbit in hydrogen
atom); energy is in hartrees (1 hartree is 2 rydbergs, and the ground state
energy of hydrogen atom is −1 rydberg, or 0.5 hartree, 1 hartree = 627.51
kcal/mol = 2625.5 kJ/mol); 1 unit of charge is a charge of a proton, the
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gaussian electrostatic system is used (the unit of permittivity is 4πε0 and it
does not appear in the Coulomb law for vacuum).

T̂e =
N∑

i=1

−1

2
∇2
i (21)

V̂ext =
N∑

i=1

v̂i =
N∑

i=1





Nnucl∑

α=1

−Zα
|ri −Rα|





︸ ︷︷ ︸

vi

(22)

Ûee =
N−1∑

i=1

N∑

j=i+1

1

|ri − rj|
(23)

Here, the Zα is the charge of an α-th nucleus (atomic number), |ri −Rα| is
the distance between electron i and the nucleus α, Nnucl is the total number
of nuclei in the molecule (but it is obviously equal to 1 for an atom), |ri− rj|
is the distance between electron i and j. Note, that |ri −Rα| and |ri − rj|
can be expressed in cartesian coordinates:

|ri −Rα| =
√

(xi −Xα)2 + (yi − Yα)2 + (zi − Zα)2

(note that nuclear coordinates for each of the Nnucl nuclei: Xα, Yα, Zα
are constants/parameters rather than variables in the electronic hamiltonian
Ĥel),

|ri − rj| =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

We can rewrite again the electronic hamiltionian:

Ĥel =
N∑

i=1

ĥi + Ûee (24)

where operator

ĥi = −
1

2
∇2
i + v̂i (25)

and ĥi only depends on coordinates of ri of a given i-th electron. In the
product function from equation (17), ĥi would only affect the function for the
i-th electron. Unfortunately, there is still this Ûee which depends on pairs of
electrons, and we cannot separate variables in the the Schrödinger equation,
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(a second order differential equation). So, Hartree found an approximation,
in which electron does not interact with other electrons one by one, but with
the averaged density of electrons. If we assume for the moment that we know
the one-electron functions φi(r), for each electron (they make the total wave
function in equation (17)) we can calculate densities corresponding to each
electron using equation (12):

ρi(r) = |φi(r)|2 (26)

And the total density of the electrons will be a sum of individual electron
densities:

ρtot(r) =
N∑

i=1

ρi(r) =
N∑

i=1

|φi(r)|2 (27)

However, the k-th electron does not interact with the whole density ρtot, since
it is itself a part of it. Electron cannot interact with itself! It is not a human
being!!! This would be a self-interaction. So, if we want to find a correct
density with which the k-th electron interacts (let us denote it by ρ(k)(r)),
we need to subtract its own density from ρtot:

ρ(k)(r) = ρtot(r)− ρk(r) =

(
N∑

i=1

ρi(r)

)

− |φk(r)|2 =
N∑

i=1
i6=k

|φi(r)|2 (28)

Now, let us assume that we know some approximate functions for the or-
bitals. And we want to calculate the energy of interation of point charge
(our electron) located at position r, with other electrons represented as a
smeared electron density. Out point charge is −e, which in atomic units is
−1, and the electron density is also negative, so we get a positive contribution
to energy:

ĝk(r) =
∫

ρ(k)(r′)
1

|r− r′|dr
′ (29)

Now, if we make such an approximation, we can write:

Ûee ≈
N∑

i=1

ĝi(r) (30)
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(it is not entirely true, as we will see later, since we doubly count interaction,
but let us leave it at that for a moment), and our Ĥel consists of sums of
one-electron operators:

Ĥel ≈
N∑

i=1

(−1

2
∇2
i + v̂i + ĝi) (31)

and the many electron Schrödinger equation can be solved as N independent
one electron equations:

(−1

2
∇2
i + v̂i + ĝi)φi(r) = εiφi(r) (32)

The εi is the energy of the i-th electron. In practice, we start with some
approximate orbitals φi (e.g., from hydrogen atom). We need them, since
the ĝi depends on them. We solve all N equations and obtain the N new
φ′i’s. The new φ′i’s are different from the old φi’s, and we believe that they
are better. And now we have better approximations for orbitals, and use
the new φ′i’s as a starting point and repeat the process. At some point,
φ′i’s do not change from iteration to iteration, and we obtained the self-

consistent field orbitals. From these orbitals we can form a many electron
wave function Ψ, and then calculate the total energy E of the ground state.
Note, that the total energy is not equal to the sum of orbital energies εi. We
calculate the expectation value of energy using the accurate hamiltonian Ĥel

from equation (20). When we solved equation for φ1 and ε1 we included the
Coulomb interactions between electron: (1, 2), (1, 3), (1, 4), etc. When we
solved second equation, we included interactions: (2, 1), (2, 3), (2, 4), etc.
But the interaction (1, 2) is the same as (2, 1), i.e., adding the energies we
would count interactions twice. For this reason, the correct total energy can
be represented as:

E =
N∑

i=1

εi +
N−1∑

i=1

N∑

j=i+1

Jij (33)

where Jij’s represent Coulomb interaction of electron i and j. They are called
Coulomb integrals and are defined as:

Jij =
∫ ∫ ρi(r1)ρj(r2)

|r1 − r2|
dr1dr2 =

∫ ∫

|φi(r1)|2
1

|r1 − r2|
|φj(r2)|2dr1dr2 (34)
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Jij =
∫ ∫

φ∗i (r1)φ
∗
j(r2)

1

|r1 − r2|
φi(r1)φj(r2)dr1dr2 (35)

The Hartree approximation works well for atoms. The one-electron func-
tions are quite good, and allow us to produce an approximate many-electron
function for the whole atom. But the form of the function adopted by Hartree
was basically wrong. It was known at that time that interchanging the elec-
tron labels in the wave functions for the system of electrons has to change
its sign. This is not something which can be derived. It is simply a law of
nature. And it is important, since without this property, the function will
not correctly describe the system. Electrons (fermions) have this propery,
and we should use it. In the system of fermions, no two particles can be de-
scribed by the same one particle function. So, few years later, Fock (1930),
and independently Slater(1930) proposed a fix to the Hartree method. They
also used one-electron functions, but the total wave function for the system
was not a simple product of orbitals, but an antisymmetrized sum of all
the products which can be obtained by interchanging electron labels. It is
conveniently represented as a determinant (called Slater determinant):

Ψ(r1, r2, · · · rN) =
1√
N !

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

φ1(r1) φ2(r1) · · · φN(r1)
φ1(r2) φ2(r2) · · · φN(r2)
φ1(r3) φ2(r3) · · · φN(r3)

. . . .

. . . .

. . . .
φ1(rN) φ2(rN) · · · φN(rN)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(36)

Let us examine some properties of this function taking a 2-electron case:

Ψ(r1, r2) =
1√
2

∣
∣
∣
∣
∣

φ1(r1) φ2(r1)
φ1(r2) φ2(r2)

∣
∣
∣
∣
∣
=

1√
2
[φ1(r1)φ2(r2)− φ2(r1)φ1(r2)] (37)

If we change electron labels 1→ 2 and 2→ 1 we get

Ψ(r2, r1) =
1√
2

∣
∣
∣
∣
∣

φ1(r2) φ2(r2)
φ1(r1) φ2(r1)

∣
∣
∣
∣
∣
=

1√
2
[φ1(r2)φ2(r1)− φ2(r2)φ1(r1)] (38)

that is: Ψ(r1, r2) = −Ψ(r2, r1). Moreover, if we assume that two electrons
are described by the same spinorbital: φ1 = φ2 = φ we get:

Ψ(r2, r1) =
1√
2

∣
∣
∣
∣
∣

φ(r2) φ(r2)
φ(r1) φ(r1)

∣
∣
∣
∣
∣
=

1√
2
[φ(r2)φ(r1)− φ(r2)φ(r1)] ≡ 0 (39)
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i.e., such wave function whould be zero everywhere, and hence, the proba-
blility of finding such electrons is zero. So, Slater determinant satisfies the
Pauli exclusion principle that each electron has to be described by a different
wave function. It was originally formulated by Pauli (1925) for electrons in
atoms, that no two electrons can have the same values of all four quantum
numbers: n, l, ml, and ms. The single determinant wave function is much
better than the Hartree product function as it naturally includes some basic
fermion characteristics.

However, it complicates equations compared to Hartree method and intro-
duces a new term, electron exchange. The method of finding the best single
determinant wave function for the system is called Hartree-Fock method.

The expectation value of total energy for the single determinant wave
function Ψ is given by:

E = 〈Ψ|H|Ψ〉 =
N∑

i=1

Hi +
1

2

N∑

i=1

N∑

j=1

(Jij −Kij) (40)

where:

Hi =
∫

φ∗i (r)[−
1

2
∇2
i + v̂i]φi(r)d(r) (41)

is an element of one-electron operator ĥi which was defined by equation (25),
the Jij is the Coulomb integral defined by equation (34), and Kij is the new
term, called exchange integral, which is defined by

Kij =
∫ ∫

φ∗i (r1)φj(r1)
1

|r1 − r2|
φi(r2)φ

∗
j(r2)dr1dr2 (42)

Note, that Kij is similar in form to the Jij but the functions φi and φj were
exchanged. Also, electrons i and j have to be of the same spin for Kij to be
nonzero, due to othogonality of their spin parts. It does not have a simple
physical interpretation like Jij (i.e., purely electrostatic interaction of two
charge densities for electron i and j). The exchange integral comes as a
result of the determinantal form of Ψ which sums all possible products of
permutations of electrons among orbitals. Jij and Kij are equal only when
i = j. This is very important, since there is no contribution to the total
energy coming from electron self-interaction. It can be shown that Jij’s are
larger (or equal to) Kij’s and they are positive numbers.
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There are essentially two approaches to HF method: purely numerical,
and the one in which orbitals φ are represented as combinations of basis
functions. The numerical HF was used at some point to derive orbitals
for many-electron atoms. There are also some numerical HF programs for
molecules. However, these methods are quite intensive. It is much more
popular to represents orbitals φ as a linear expansion into a set of some basis
functions χ:

φi(r) =
n∑

k=1

Ckiχk(r) (43)

and optimizing coefficients Cki rather than basis functions.
The derivation of specific equations for Hartree-Fock method will not

be given here, but can be found in many books, (see, e.g.: McWeeny &
Sutcliffe, 1969; Parr, 1963; Pilar, 1968; Slater, 1968; Szabo & Ostlung, 1989)
and landmark papers of Roothaan (1951, 1960). In the SFC LCAO MO
(Self Consistent Field – Linear Combination of Atomic Orbitals, Molecular
Orbitals) method, we are looking for the coefficients Cki which minimize the
energy.

They are derived using varational principle, i.e. the goal here is to find a
single determinant function Ψ as represented by equation (36) which corre-
sponds to the lowest possible value of energy. It is done by the variational
calculus. The condition of minimum of energy is:

δE0 ≡ δ 〈Ψ0|H|Ψ0〉 = 0 (44)

Another condition is that orbitals φ have to be orthonormal, i.e.:

〈φi|φj〉 = δij (45)

where δij is called a Kronecker delta, and is equal to 1 only if i = j, but is
zero otherwise.

The problem of minimization of a function with some subsidiary condi-
tions is done efficiently with the Lagrange’s method of undetermined multi-
pliers. In this method, the constraints are converted into expressions whose
value is zero when the constraint is met. Such expressions are then multiplied
by an undetermined constant and added (or subtracted, according to taste)
to the minimized function. The resulting sum is then minimized:

δ [〈Ψ0|H|Ψ0〉 − E (〈Ψ0|Ψ0〉 − 1)] = 0 (46)
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As a result, one gets Hartree-Fock eigenequations.

f̂(r1)φi(r1) = εiφi(r1) (47)

where the Fock operator is defined as:

f̂(r1) = ĥ(r1) +
N∑

a=1

[

ĵa(r1)− k̂a(r1)
]

(48)

In these equations, the fact that operators act on certain coordinates is
stressed by writing explicitly their dependence on coordinates of electron 1
(it could be any electron number, since it does not matter how we number
them). The ĥ(r1) was defined in equation (25). The Coulomb operator,

ĵa(r1)φb(r1) = φb(r1)
∫

|φa(r2)|2
1

|r1 − r2|
dr2 = φb(r1)

∫

ρa(r2)
1

|r1 − r2|
dr2

(49)
and the exchange operator

k̂a(r1)φb(r1) = φa(r1)
∫

φ∗a(r2)φb(r2)
1

|r1 − r2|
dr2 (50)

are defined by the result of their action on a function.
If we now introduce basis, i.e., replace φi’s with their expansions into

basis functions according to equation (43), the eigenproblems become a set
of algebraic equations. Substituting equation (43) into (47) one gets:

f̂(r1)
n∑

k=1

Ckiχk(r1) = εi
n∑

k=1

Ckiχk(r1) (51)

and multiplying on the left by χl(r1) and integrating over r1 one gets:

n∑

k=1

Cki

∫

χ∗
l (r1)f̂(r1)χk(r1)dr1 = εi

n∑

k=1

Cki

∫

χ∗
l (r1)χk(r1)dr1 (52)

Integrals are further denoted as:

(F)lk = Flk =
∫

χ∗
l (r1)f̂(r1)χk(r1)dr1 (53)
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which is an element of a n× n Fock matrix F, and

(S)lk = Slk =
∫

χ∗
l (r1)χk(r1)dr1 (54)

which is an element of a n × n overlap integrals matrix S. We can obtain
n (i.e., number of basis functions) of such equations, and it is convenient to
write them in a matrix form as:

FC = SCε (55)

The problem now is to find such marix C which diagonalizes F, which
is a standard procedure in linear algebra. First step is to find a matrix X
which diagonalizes overlap integrals S, which is a step ortogonalizing the
basis set (i.e., the basis set is converted to linear combinations of original
basis functions, which are mutually orthogonal).

X†SX = 1 (56)

Applying this matrix to equation (55) and rearranging it we get

C′†F′C′ = ε (57)

where C = XC′ and F′ = X†FX. The efficient routines for matrix diagonal-
ization (i.e., obtaining C′ in this case) are widely available.

While they seem simple, the problem is that elements of F depend on or-
bitals φ, i.e., one can solve them only through iterative process as in Hartree’s
method. Moreover, due to Coulomb and exchange operators, the Fock matrix
elements involve a massive number of two-electron integrals of a type:

〈ij|kl〉 =
∫ ∫

χ∗
i (r1)χ

∗
j(r2)

1

|r1 − r2|
χk(r1)χl(r2)dr1dr2 (58)

To escape these difficulties and complexities, people tried for many years
to decribe electron systems using density, rather than wave function. In the
HF approach the two-electron integrals 〈ij|kl〉 dominate the computational
effort. Moreover, the HF is an approximation, as it does not account for dy-
namic correlation due to the rigid form of single determinant wave function.
To solve the HF equations, the assumption has to be made that electrons
interact with the averaged potential coming from other electrons, while in

19



fact, the interactions between electrons are pairwise. In reality, electrons cor-
relate their movements trying to avoid each other, so there is least amount of
electrostatic repulsion. To account for dynamic correlation, one has to go to
correlated methods, which use multideterminant wave functions, and these
scale as fifth, or even greater powers with the size of a system. While HF
method is quite successful for geometries, it fails miserably to describe bond
breaking or forming (for review of correlated ab initio methods see: Bartlett
& Stanton, 1994).

20



Density Functional Theory – early developments
For many years, the use of electron density as a fundamental description
of the system was based on intuition rather than hard proof that this can
be done. Electron density is more attractive (depends only on x, y, z, and
eventually, there may be two densities for spin polarized systems, one for spin
up electrons ρ↑(r) and one for spin down electrons ρ↓(r), as opposed to many
particle wave function which depends on all coordinates of all particles, i.e.,
for N electrons, it depends on 3N variables (or 4N if you count in spin). The
fact that the ground state properties are functionals of the electron density
ρ(r) was proved by Hohenberg and Kohn (1964) and it provides the basic
framework for modern Density Functional methods.

More specifically, according to the theorem proved by them, the total
ground state energy of an electron system can be written as a functional of
the electronic density, and this energy is at minimum if the density is an
exact density for the groud state. The theorem of HK is an existence proof
of such a functional, but there is no prescription how to construct it. If we
knew the form of this functional accurately, and if it was not complicated,
quantum chemistry would be a done deal. Unfortunately we do not know
the exact form of energy functional. It is necessary to use approximations
regarding parts of the functional dealing with kinetic energy and exchange
and correlation energies of the system of electrons.

The simplest approximation is the local density approximation (LDA)
which leads to a Thomas-Fermi (Fermi, 1928; Thomas, 1927) term for ki-
netic energy (for review see, e.g., Jones & Gunnarsson, 1989; Slater, 1968;
March, 1957) and the Dirac (1930)1 term for the exchange energy. The
corresponding functional is called Thomas-Fermi-Dirac energy. As you see,
these developments are not recent and were parallel to the work done in
the wave function approaches. These functionals can be further improved
but the results are not that encouraging for molecular systems. But, on the
other hand, the Thomas-Fermi-Dirac+improvments method is a true density
functional method, since all components of energy are expressed via density
alone, without using many particle wave functions. However, for the time
being, it seems that there is no way to avoid wave functions in molecular
calculations and for accurate calculations they have to be used as a map-
ping step between the energy and density. For example, the Thomas-Fermii

1actually Bloch (1929) came with it first, but Dirac is popularly blamed.
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theory does not predict chemical bonds. While ”pure” density functional
theories are very usefull in studying solid phase (e.g., conductivity), they fail
to provide meaningful results for molecular systems.

The predecessor of the modern chemical approaches to the DFT was un-
doubtely the Slater’s Xα method formulated in 1951 (Slater, 1951 & 1974,
for review see: Johnson 1973 & 1975). It was developed as an approximate
solution to the HF equations. In this method, the HF exchange was approx-
imated by:

EXα[ρ↑, ρ↓] = −
9

4
α
(

3

4π

) 1
3
∫

[ρ
4
3

↑ (r) + ρ
4
3

↓ (r)]dr (59)

The exchange energy EXα is given here are a functional of densities for spin
up (↑) and spin down (↓) electrons and contains an adjustable parameter α.
This parameter, was empirically optimized for each atom of the periodic table
(see, e.g., Slater, 1974, Schwartz, 1972 & 1974) and its value was between
0.7–0.8 for most atoms. For a special case of homogenous electron gas, its
value is exactly 2/3 (Gáspár, 1954).

Hohenberg and Kohn theorems
The field of rigorous density functional theory was born in 1964 with the
publication of the Hohenberg and Kohn paper (1964). They proved the
following:

I. Every observable of a stationary quantum mechanical system (including
energy), can be calculated, in principle exactly, from the ground-state
density alone, i.e., every observable can be written as a functional of
the ground-state density.

II. The ground state density can be calculated, in principle exactly, using
the variational method involving only density,

The original theorems refer to the time independent (stationary) ground
state, but are being extended to excited states and time-dependent potentials
(for review see, e.g., Gross & Kurth, 1994).

How these theorems were derived? By quite an original logic. Within a
Born-Oppenheimer approximation, the ground state of the system of elec-
trons is a result of positions of nuclei. This is obvious, if we look at the
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Ĥel hamiltonian in equation (20). In this hamiltonian, the kinetic energy of
electrons (T̂e) and the electron-electron interaction (Ûee) “adjust” themselves
to the external (i.e., coming from nuclei) potential V̂ext. Once the V̂ext is in
place, everything else is, including electron density, which simply adjusts
itself to give the lowest possible total energy of the system. The external
potential V̂ext is the only variable term in this equation, and everything else
depends indirectly on it.

Hohenberg and Kohn posed a more interesting question, which is quite
opposite to the traditional logic: Is V̂ext uniquely determined from the knowl-
edge of electron density ρ(r)? Can we find out (in principle, though it need
not be easy) where and what the nuclei are, if we know the density ρ(r) in
the ground state? Is there a precise mapping from ρ(r) to V̂ext? The answer
to this question is: Yes!. Actually the mapping is accurate within a constant,
which would not change anything, since Schrödinger equations with Ĥel and
Ĥel + const yields exactly the same eigenfunctions, i.e., states (it is easy to
prove based on the linear property of the hamiltonian), and the energies will
be simply elevated by the value of this const. Note that all energies are
known only within some constant, which establishes the frame of reference
(e.g., we do not include electron-Mars gravitational attraction within most
calculations).

Why was this question so important? Because, if this is true, the knowl-
edge of density provides total information about the system, and formally
if we know the density, we know everything there is to known. Since ρ(r)
determines number of electrons, N :

N =
∫

ρ(r)dr (60)

and ρ determines the V̂ext, the knowledge of total density is as good, as
knowledge of Ψ, i.e., the wave function describing the state of the system.
They proved it through a contradiction:

1. Assume that we have an exact ground state density ρ(r),

2. Assume that the ground state is nondegenerate (i.e., there is only one
wave function Ψ for this ground state (though HK theorems can be
easily extended for degenerate ground states, see, e.g., Dreizler & Gross,
1990; Kohn, 1985),
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3. Assume that for the density ρ(r) there are two possible external poten-
tials: V̂ext and V̂

′
ext, which obviously produce two different hamiltonians:

Ĥel and Ĥ ′
el, respectively. They obviously produce two different wave

functions for the ground state: Ψ and Ψ′, respectively. They correspond
to energies: E0 = 〈Ψ|H|Ψ〉 and E ′

0 = 〈Ψ′|H ′|Ψ′〉, respectively.

4. Now, let us calculate the expectation value of energy for the Ψ′ with
the hamiltonian Ĥ and use variational theorem:

E0 < 〈Ψ′|H|Ψ′〉 =
E′0

︷ ︸︸ ︷

〈Ψ′|H ′|Ψ′〉+ 〈Ψ′|H −H ′|Ψ′〉 = E ′
0+
∫

ρ(r)[V̂ext−V̂ ′
ext]dr

(61)

5. Now let us calculate the expectation value of energy for the Ψ with the
hamiltonian Ĥ ′ and use varational theorem:

E ′
0 < 〈Ψ|H ′|Ψ〉 = 〈Ψ|H|Ψ〉

︸ ︷︷ ︸

E0

+ 〈Ψ|H ′ −H|Ψ〉 = E0−
∫

ρ(r)[V̂ext−V̂ ′
ext]dr

(62)

6. By adding equations (61) and (62) by sides we obtain:

E0 + E ′
0 < E ′

0 + E0 (63)

and it leads to a contradiction.

Since now, we know that ρ(r) determines N and V̂ext, it also determines all
properties of the ground state, including the kinetic energy of electrons Te
and energy of interaction among electrons Uee, i.e., the total ground state
energy is a functional of density with the following components2:

E[ρ] = Te[ρ] + Vext[ρ] + Uee[ρ] (64)

2Please, excuse my notation here. I use “hats” above operators/potentials (e.g., V̂ext

is the external potential) and no “hats” above the corresponding energy components (e.g.
Vext is the energy corresponding to external potential). The exception is a hamiltonian for
which Ĥ is the operator, while E is the value of energy. This may add confusion, since in
much of the literature energy components are denoted with capital letters or subscripted
E’s, while the operators are in capital letters, and potentials in lowercase letters. But this
notation also leads to a conflict with notation for one-particle operators, which are written
often in lower case.
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Additionally, HK grouped together all functionals which are secondary
(i.e., which are responses) to the Vext[ρ]:

E[ρ] = Vext[ρ] + FHK [ρ] =
∫

ρ(r)V̂ext(r)dr + FHK [ρ] (65)

The FHK functional operates only on density and is universal, i.e., its form
does not depend on the particular system under consideration (note that N-
representable densities integrate to N, and the information about the number
of electrons can be easily obtained from the density itself).

The second HK theorem provides variational principle in electron density
representation ρ(r)3. For a trial density ρ̃(r) such that ρ̃(r) ≥ 0 and for
which

∫

ρ̃(r)dr = N ,
E0 ≤ E[ρ̃] (66)

where E[ρ̃] is the energy functional. In other words, if some density represents
the correct number of electrons N , the total energy calculated from this
density cannot be lower than the true energy of the ground state.

As to the necessary conditions for this theorem, there is still some con-
troversy concerning the, so called, representability of density. The N -rep-
resentability, i.e., the fact that the trial ρ̃ has to sum up to N electrons is
easy to achieve by simple rescaling. It is automatically insured if ρ(r) can
be mapped to some wave function (for further discussion see: Parr & Yang,
1989; Gilbert, 1975; Lieb, 1982; and Harriman, 1980). Assuring that the
trial density has also Vext-representability (usually denoted in the literature
as v-representability) is not that easy. Levy (1982) and Lieb (1983) have
shown, that there are some “reasonable” trial densities, which are not the
ground state densities for any possible Vext potential, i.e., they do not map
to any external potential. Such densities do not correspond therefore to any
ground state, and their optimization will not lead to a ground state. More-
over, during energy minimization, we may take a wrong turn, and get stuck
into some non v-representable density and never be able to converged to a
physically relevant ground state density. For an interesting discussion, see
Hohenberg et al. (1990). Assuming that we restrict ourselved only to trial
densities which are both N and v representable, the variational principle for

density is easly proven, since each trial density ρ̃ defines a hamiltonian ˆ̃Hel.

3actually, in the original HK paper, and many papers with a physical slant, the density
is denoted as n(r).
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From the hamiltonian we can derive the corresponding wave function Ψ̃ for
the ground state represented by this hamiltonian. And according to the tra-
ditional variational principle, this wave function Ψ̃ will not be a ground state
for the hamiltonian of the real system Ĥel:

ρ̃→ ˆ̃Hel → Ψ̃; 〈 Ψ̃|H|Ψ̃ 〉 = E[ρ̃] ≥ E[ρ0] ≡ E0 (67)

where ρ0(r) is the true ground state density of the real system.
The condition of minimum for the energy functional: δE[ρ(r)] = 0 needs

to be constrained by the N -representability of density which is optimized4.
The Lagrange’s method of undetermined multipliers is a very convenient
approach for the constrained minimization problems. In this method we
represent constraints in such a way that their value is exactly zero when
they are satisfied. In our case, the N representability constraint can be
represented as:

constraint =
∫

ρ(r)dr−N = 0 (68)

These constraints are then multiplied by an undetermined constants and
added to a minimized function or functional.

E[ρ(r)]− µ
[∫

ρ(r)dr−N
]

(69)

where µ is yet undetermined Lagrange multiplier. Now, we look for the
minimum of this expression by requiring that its differential is equal to zero
(a necessary condition of minimum).

δ
{

E[ρ(r)]− µ
[∫

ρ(r)dr−N
]}

= 0 (70)

Solving this differential equation will provide us with a prescription of finding
a minimum which satisfies the constraint. In our case it leads to:

δE[ρ(r)]− µδ
{∫

ρ(r)dr
}

= 0 (71)

4it also needs to be constrained by v-representability, but we still do not know how to
express v-representability in a closed mathematical form. There exist, however, methods,
e.g., constrained search (Levy, 1982) and local-scaling transformation (Petkov et al, 1986)
which assure v-representability during density optimization, though their algorithmic im-
plementation needs to be done.
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since µ and N are constants. Using the definition of the differential of the
functional (see, e.g., Parr & Yang, 1989):

F [f + δf ]− F [f ] = δF =
∫ δF

δf(x)
δf(x)dx (72)

and the fact that differential and integral signs may be interchanged, we
obtain

∫ δE[ρ(r)]

δρ(r)
δρ(r)dr− µ

∫

δρ(r)dr = 0 (73)

Since integration runs over the same variable and has the same limits, we
can write both expressions under the same integral:

∫
{

δE[ρ(r)]

δρ(r)
− µ

}

δρ(r)dr = 0 (74)

which provides the condition for constrained minimisation and defines the
value of the Lagrange multiplier at minium. It is also expressed here via
external potential from equation (65):

µ =
δE[ρ(r)]

δρ(r)
= V̂ext(r) +

δFHK(ρ(r)

δρ(r)
(75)

Density functional theory gives a firm definition of the chemical potential µ,
and leads to several important general conclusions. For review, please refer
to Parr & Yang (1989), chapters 4 and 5.

Kohn and Sham Method
Above equations provide a prescription of minimizing energy by changing
corresponding density. Unfortunately, the expression relating kinetic energy
to density is not known with satisfactory accuracy. The current expressions,
even those improved upon from the original Thomas-Fermi theory, are quite
crude and quite unsatisfactory for atoms and molecules in particular. On the
other hand, the kinetic energy is easily calculated from the wave function,
provided that it is known. For that reason, Kohn & Sham (1965) proposed
an ingenious method of marrying wave function and density approach. They
repartitioned the total energy functional into following parts:

E[ρ] = T0[ρ] +
∫ [

V̂ext(r) + Ûcl(r)
]

ρ(r)dr + Exc[ρ] (76)
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where T0[ρ] is the kinetic energy of electrons in a system which has the
same density ρ as the real system, but in which there is no electron-electron
interactions. This is frequently called a system on noninteracting electrons,
but it may be misunderstood, since electrons still interact with nuclei.

Ûcl(r) =
∫ ρ(r′)

|r′ − r|dr
′ (77)

is a pure Coulomb (“classical”) interaction between electrons. It includes
electron self-interaction explicitly, since the corresponding energy is

Ecl[ρ] =
∫ ∫ ρ(r′)ρ(r)

|r′ − r| drdr
′ (78)

and it represents interaction of ρ with itself. V̂ext(r) is the external potential,
i.e., potential coming from nuclei:

V̂ext =
∑

α

−Zα
|Rα − r| (79)

The last functional, Exc[ρ], called exchange-correlation energy, is defined by
this equation. Exc[ρ] includes all the energy contributions which were not
accounted for by previous terms, i.e.:

• electron exchange

• electron correlation, since non-interacting electrons do need to correlate
their movements. Please note, however, that this correlation compo-
nent is not the same as defined by Löwdin for ab initio methods.

• a portion of the kinetic energy which is needed to correct T0[ρ] to obtain
true kinetic energy of a real system Te[ρ].

• correction for self-interaction introduced by the classical coulomb po-
tential.

In fact, all the difficult things were “swept under the carpet” in this func-
tional. However, better and better approximations for this functional are
being published. To finish the derivation of Kohn-Sham equations, let us
assume for a while, that we know this energy functional reasonably well. In
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a similar fashion, as was done for the equation defining chemical potential
(75) we may apply the variational principle and obtain:

µ =
δE[ρ(r)]

δρ(r)
=
δT0[ρ(r)]

δρ(r)
+ V̂ext(r) + Ûcl(r) +

δExc[ρ(r)]

δρ(r)
(80)

There is another trick which can be done with this equation, namely:

µ =
δE[ρ(r)]

δρ(r)
=
δT0[ρ(r)]

δρ(r)
+ V̂eff (r) (81)

where we lumped together all terms, except our noninteracting electron ki-
netic energy, into an effective potential depending upon r:

V̂eff (r) = V̂ext(r) + Ûcl(r) + V̂xc(r) (82)

where the exchange correlation potential is defined as a functional derivative
of exchange correlation energy:

V̂xc(r) =
δExc[ρ(r)]

δρ(r)
(83)

The form of equation (81) asks for a solution as a Schrödinger equation for
noninteracting particles:

[

−1

2
∇2
i + V̂eff (r)

]

φKSi (r) = εiφi(r)
KS (84)

Yes!!! it is very similar to the eigenequation of the Hartree-Fock method,
with one difference, it is much simpler. The Fock operator in equation (48)
contains the potential which is nonlocal, i.e., different for each electron.
The Kohn-Sham operator depends only on r, and not upon the index of the
electron. It is the same for all electrons. The Kohn-Sham orbitals, φi(r)

KS,
which are quite easily derived from this equation5, can be used immediately
to compute the total density:

ρ(r) =
N∑

i=1

|φKSi (r)|2 (85)

5if expansion into basis sets is used, the matrix equation (57) for expansion coefficients
is identical as in Hartree-Fock method.
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which can be used to calculate an improved potential V̂eff (r), i.e., lead to
a new cycle of self-consistent field6. Density can also be used to calculate
the total energy from equation (76), in which the kinetic energy T0[ρ] is
calculated from the corresponding orbitals, rather than density itself:

T0[ρ] =
1

2

N∑

i=1

〈

φKSi |∇2
i |φKSi

〉

(86)

and the rest of the total energy as:

Veff [ρ] =
∫

V̂eff (r)ρ(r)dr (87)

In practice, total energy is calculated more economically using orbital ener-
gies εi as:

E[ρ] =
N∑

i=1

εi −
1

2

∫ ∫ ρ(r)ρ(r′)

|r− r′| drdr
′ −

∫

V̂xc(r)ρ(r)dr + Exc[ρ] (88)

It is a popular misconception to look at this method as describing noninter-
acting electrons moving in a potential given by nuclei. In fact, they move in
an effective potenitial V̂eff (r) which includes electron interaction, though in
an artificial way. While this is more philosophical than physical, when you
look at the form of V̂eff (r), which in Kohn-Sham equations takes a role of
”external potential”, the electron-electron interaction is replaced by interac-
tion with some medium which mimics the electron-electron interaction. This
medium actually, in a way, exaggerates the interaction between electrons,
what is evidenced by the fact that the correction which needs be added to
T0

7 is positive, i.e., the ”noninteracting electrons” move slower than the real,
interacting ones.

Implementations of Kohn and Sham method
The derivation of Kohn-Sham equations presented here is close to the original

6It has to be stressed that φi(r)
KS ’s are not the real orbitals, and they do not corre-

spond to a real physical system. Their only role in the theory is to provide a mapping
between kinetic energy and density. For one, the total KS wave function is a single deter-
minant and is unable to model situations where more determinants are needed to describe
the system (e.g., for cases when molecules dissociate to atoms). Interesting discussion
about the symmetry of this wave function is given by Dunlap (1991, 1994). More studies
are needed to asses physical relevance of these orbitals.

7∆T = Te − T0 is embedded in Exc.
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presentation, in which nonpolarized electron density is used, and occupation
numbers for Kohn-Sham orbitals are assumed one. However extensions exist
both for polarized spin densities (i.e., different orbitals for spin up, and spin
down electrons), and for nonintegral occupation numbers in the range (0, 1).
For review see Parr & Yang (1989) and Salahub et al (1994). Several uneasy
questions can be asked here. What are the Kohn-Sham orbitals and energies?
Formally, they are artifacts with no real physical significance. However,
they are being used, and it seems, that they are quite close to the Hartee-
Fock orbitals (Zhao & Parr, 1993). Also, the Kohn-Sham formalism can be
extended to fractional occupation numbers 0 ≤ ni ≤ 1 (Janak, 1978; Perdew
& Zunger, 1981; Parr & Yang, 1989). Orbital energies εi are in this case:

εi =
∂E

∂ni
(89)

and one application may be to integrate energy from N − 1 to N electrons,
and calculate ionization potential. The derivatives of energy versus occupa-
tion numbers provide also other response functions and can provide rigurous
definitions of chemical potential, electronegativity, softness and hardness,
(Parr, 1994; Parr & Yang, 1989; Neshev & Proynov, 1993)

First implementations of the Kohn-Sham method were using the local
approximations to the exchange correlation energy. The appropriate func-
tionals were taken from data on homogenous electron gas. There were two
variants of the method: spin unpolarized (LDF/LDA – Local Density Func-
tional/Approximation) and spin polarized (LSD – Local Spin Density) where
arguments require both α and β electron densities, rather than a total den-
sity.

For historical reasons, the exchange correlation energy was partitioned
into 2 parts:

Exc[ρ] = Ex[ρ] + Ec[ρ] (90)

the exchange energy, and correlation energy. This partition is quite arbitrary,
since exchange and correlation have slightly different meaning than in ab

initio approaches. The exchange energy in LDF/LSD was approximated with
the homogenous gas exchange result given by equation (59) with α = 2/3. The
correlation energy was expressed as:

Ec[ρ] =
∫

ρ(r)εc[ρ↑(r)ρ↓(r)]dr (91)
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where εc[ρ↑(r)ρ↓(r)] is the correlation energy per one electron in a gas with
spin densities ρ↑(r) and ρ↓(r). This function is not known analytically, but is
constantly improved on the basis of quantum Monte Carlo simmulations, and
fitted to analytical expansion (Vosko et al, 1980; von Barth & Hedin, 1979).
The local functionals derived from electron gas data worked suprisingly well,
taking into account that they substantially underestimate the exchange en-
ergy (by as much as 15%) and grossly overestimate the correlation energy,
sometimes by a 100%. The error in exchange is however larger than the
correlation error in absolute values. LSD/LDF is known to overbind normal
atomic bonds, on the other hand, it produces too weak hydrogen bonds.

Early attempts to improve functionals by GEA (Gradient Expansion Ap-
proximation), in which Exc[ρ] was expanded in Taylor series versus ρ and
truncated at a linear term, did not improve results too much (see, e.g.
Langreth & Vosko, 1990). Only GGA (Generalized Gradient Approxima-
tion) provided notable improvements by expanding Exc[ρ]. The expansion
here is not a simple Taylor expansion, but tries to find the right asymp-
totic behaviour and right scaling for the usually nonlinear expansion. These
enhanced functionals are frequently called nonlocal or gradient corrections,
since they depend not only upon the density, but also the magnitude of the
gradient (i.e., first derivative) of density at a given point. While the term
corrections has a historical meaning, where the corrections were added on the
top of local density functionals, it is probably no longer correct, since mod-
ern nonlocal functionals are quite complicated functions in which the value
of density and its gradient are integral parts of the formula. There are many
different corrections, and it will take some time when their respective merit,
accuracy, and best domains of applications will be established. For review
of the existing functionals see e.g.: Clementi (1994), Johnson et al (1993),
Seminario & Politzer (1995), Ziegler (1991). The most widely used local
potentials are: Slater for exchange (Slater, 1974), and VWN for correlation
(Vosko et al, 1980). Probably the most frequently in use today are:

• For exchange: B88 (Becke, 1988), PW86 (Perdew & Wang, 1986)

• For correlation: P86 (Perdew, 1986), LYP (Lee at al, 1988),

Beside different exchange and correlation functionals, there is recent inter-
est in the ACM (Adiabatic Connection Method) (see: Harris, 1984; Becke,
1993) to include at least partially the exact exchange from Hartree-Fock
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type calculation, or exchange Kohn-Sham orbitals. This method looks very
promising but its application is not without cost. In the worst case, ACM
calculation of exact exchange via exchange integrals (see equation 42) scales
as N4.

Most molecular DFT codes use basis functions, with a notable exception
of a totally basis free NUMOL (Becke & Dickinson, 1990) program. Quite
impressive variety of basis sets is used. Since most energy components have
to be calculated via numerical integration, the use of contracted gaussians
as a basis is not that essential. But most program use them, as it allows
a substantial code reuse from the well developed traditional ab initio tech-
niques. The well known deMon (Salahub et al, 1992), , DGauss (Andzelm &
Wimmer, 1992), and DeFT (a program similar to deMon written aby Alain
St-Amant et al. and available at
ftp://ccl.osc.edu/pub/chemistry/software/SOURCES/FORTRAN/DeFT)
all use gaussian basis functions. Some traditional ab initio packages also
include options to perform DFT calculations: ACES2 (Bartlett & Stanton,
1994), Cadpac5 (Cambridge Analytic Derivative Package, e.g., Murray et al,
1993), Gaussian (Gaussian, Inc.), Spartan (Wavefunction, Inc.), and I hear
that many others.

The AMOL, recently renamed to ADF (Amsterdam Density Functional)
(Boerrigter et al 1998) uses Slater type basis.

The DVM (Ellis & Painter, 1970) and DMol (Delley, 1995) use numerical
basis sets, which are given as spline functions for radial part (the angular
part is taken as appropriate spherical harmonics).

There are also programs for extended systems like: Corning (Teter et al,
1989), Crystal94 (Univ. Turin & SERC Daresbury Lab), and Wien95 (Blaha
et al, 1995) which use LAPW (Linearized Augmented Plane Wave’s) as basis
functions. NOTE: This stuff was written in 1996 – there
are many new codes and new versions out there

Typical Program Organization for SCF-KS equations
The single geometry SCF cycle or geometry optimization involve following
steps:

1. Start with a density (for the 1st iteration, superposition of atomic den-
sities is typically used).

2. Establish grid for charge density and exchanger correlation potential
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3. Compute KS matrix (equivalent to the F matrix in Hartree-Fock method
in equation (57)) elements and overlap integrals matrix.

4. Solve the equations for expansion coefficients to obtain KS orbitals.

5. Calculate new density ρ =
∑

i=occ |φi(r)|2.

6. If density or energy changed substantially, go to step 1.

7. If SCF cycle converged and geometry optimization is not requested, go
to step 10.

8. Calculate derivatives of energy vs. atom coordinates, and update atom
coordinates. This may require denser integration grids and recomput-
ing of Coulomb and exchange-correlation potential.

9. If gradients are still large, or positions of nuclei moved appreciably, go
to step 1.

10. Calculate properties and print results.

Of course, there may be other variants of this method (e.g., when one com-
putes vibrational frequencies from the knowledge of gradients and energies
only).

It is quite popular to limit expense of numerical integration during the
SCF cycle. It is frequently done by fitting auxiliary functions to charge
density and exchange correlation potential. This allows for much faster in-
tegral evaluation. These auxiliary fitting functions are usually uncontracted
gaussians (though quite different from the atomic basis sets) for which the
integrals required for KS matrix can be calculated analytically. Different
auxilliary sets are used for fitting charge density and exchange-correlation
potential (see e.g., Dunlap & Rösch, 1990). The need for fitting is recently
questioned (see e.g., Johnson, 1995) since it scales as N 3 even for very large
systems, however, it is still very popular in DFT codes. The fitting proce-
dures are in general non sparse, while for large molecules many contributions
coming from distant portions may be neglected leading to less steep scaling
with molecular size.

Early DFT codes were impaired by the lack of analytical gradients. Cur-
rently, expressions for first and second derivatives exist (see e.g.: Dunlap
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& Andzelm, Komornicki & Fitzgerald, 1993) and are implemented in many
programs, thus facilitating geometry optimization and vibrational frequency
calculations.

Performance of DFT
This will be a very short list of DFT applications, as there are many excellent
reviews on this topic (see e.g.: Labanowski & Andzelm, 1991; Parr & Yang,
1989; Seminario & Politzer 1995; Ziegler, 1991; Bartolotti and Flurchick,
1996; St-Amant. 1996).

The G1 database of Pople and coworkers is a benchmark for accuracy
of the traditional ab initio methods. The database containes 55 molecules
for which experimental values of atomization energies are known within 1
kcal/mol. Curtiss et al (1991) achieved the 1.2 kcal/mol mean absolute
error for these 55 atomization energies using the G2 procedure, which is
a quite involved prescription incorporating higher order correlated meth-
ods. Becke (1992) was able to reproduce values in this database with a
mean absolute error of 3.7 kcal/mol using his NUMOL program with gra-
dient corrected functionals. This result was additionally improved by Becke
(1993) to 2.4 kcal/mol when portion of the electron exchange entering the
echange-correlation energy, Exc was calculated exactly form Kohn-Sham or-
bitals While the error in DFT is considered still too big, these results were
obtained with a method which is substantially less computationally demand-
ing than original correlated ab initio procedures used by Pople and coworkers.
Obviusly, the errors refer to absolute atomization energies, which in general
are very difficult to calculate with good occuracy (for review see, e.g., Hehre
et al, 1986). The relative differences are usually reproduced much better with
DFT methods.

Even without gradient corrections DFT results for bond dissociation en-
ergies are usually much better then the Hartree-Fock (which routinely under-
binds) results, though they have an overbinding tendency. The LDA results
are approximately of MP2 quality. The inclusion of gradient corrections to
DFT provides bond dissociaction energies which pair in occuracy with MP4
and CC results.

Molecular geometries even with LSD are much better than correspond-
ing HF results and are of the MP2 quality. However, LSD fails to correctly
treat hydrogen bonding. This deficiency is removed when one uses gradi-
ent corrected DFT approaches. Quite estonishingly, DFT provides excellent
results for molecules which are notoriously difficult for traditional ab initio
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approaches like FOOF, FON, and metalorganic or inorganic moities. There
seems to be a funny regularity: ”If something does not work with ab initio,
try it with DFT, and vice versa”.

Transition states of organic molecules are frequently not reproduced well
with ”pure” DFT. However, it seems that admixture of exact exchange (see
Becke, 1993) via ACM dramatically improves the problem cases. DFT is
however a metod of choice for transition states in metalorganic reactions.
These systems are notoriously difficult to treat with even high quality ab

initio and have problems with convergence.
Vibrational frequencies are well reproduced even by LSD, though gradient

corrections improve agreement with experiment even further.
Ionization potentials, electron affinities, and proton affinities are repro-

duced fairly well within gradient corrected DFT.
Recently, there is much interest in using DFT for high spin species, since

preliminary results are very promissing. On the other hand good performance
of DFT in this field comes as a surprise, since high multiplets are poorly
described by a single determinant wave function. For all the wrong reasons,
with KS wave function of broken symmetry, the multiplets splitting are quite
well reproduced by DFT.

The scope of applcations for DFT grows rapidly with calculations of new
molecular properties being added to actively developed software. Recent
extensions include parameters for NMR and ESR spectroscopy, diamagnetic
properties, polarizabilities, relativistic calculations, and others.

The DFT methodology is still far from mature. It is encouraging that
several groups which were primarily focused on the development of traditional
ab initio approaches are now actively working in the DFT area. It will
bring new methodological developments, as well as, more carefull assesment
of applicability. With all the hopes which DFT brings, one has to keep
in mind, that it is primarily a ground state oriented method, and cannot
compete with semiempirical and correlated ab initio methods in calculations
concerning excited states.

Advantages of DFT in biological chemistry

• Computational demands are much less severe than for ab initiomethods
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of similar quality – hence the method is applicable to much larger
molecules.

• Metals are frequently present in active centers of enzymes. Traditional
ab initio methods have severe problems with transition metals. In fact,
it can be proved that Hartree-Fock equation cannot be solved for the
true metalic state. It is related to the fact that there is a difficulty to
converge HF when highest occupied orbitals are very close in energy
(the situation very popular for transition metals).

• The DFT, similar to ab initio methods, is nonparametric, i.e., appli-
cable to any molecule. While some say that basis sets are parameters
for ab initio and DFT methods, this is an exaggeration. Basis sets are
easily derived from atomic calculations, and beside, they were derived
long time ago for all elements of periodic table.

• The restriction of DFT being applicable to the ground state only is
not usually a problem, unless you study interaction of radiation with
biological molecules (e.g., UV induced mutations).
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