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The SYMPRJS and SYMPWS Matlab programs calculates the symmetry projection 
matrices for the double space groups and thereby taking different spin directions into 
account. SYMPRJS and SYMPWS are functionally, largely based on the FORTRAN 
programs SYMPRJ and SYMPW (QCPE no. 259), which calculates the symmetry 
projection matrices for the single space groups. 
 

1. Prodats 
 
Program Prodats creates 7 output files which are stored on disc; to be read by 
SYMPRJS/SYMPWS. 
 
prodats.dat is the input file for prodats.m execution. 
 
After defining the variables and the files, the program reads the Euler angles of the first 
24 elements of the double point group 2Oh into the matrix Oh(1:3,1:24). The inversion 
parameter, Oh(4,1:24), of these first 24 elements is set equal to 0, denoting that no 
inversion is involved. Euler angles for elements 25:48 are defined by 
Oh(1:4,25:48) = Oh(1:4,1:24) The Euler angles of the elements 49:96 of 2Oh are equal 
to the first 1:48, but the inversion parameter is set to equal to 1, denoting that the 
operations include inversion. The input angles are given in units of π , so the program 
multiplies the input angles by π  and then prints them, together with the inversion 
parameters. 
 
Similarly the Euler angles and inversion parameters of the double point group 2D6h are 
read into D6h(1:3,1:12), extended to the set D6h(1:4,1:48) and printed. 
 
Our conventions for Euler angles and enumeration of the point group elements are 
described in chapter  2. 
 
The next input is the upper left quarter of the multiplication table of 2Oh, which is read 
into MOh(1:48,1:48). From this quarter the complete multiplication table MOh(1:96,1:96) 
is calculated and then printed. 
 
The same procedure is followed for the multiplication table of 2D6h. 
 
The multiplication tables are the same as in reference  [2], since we have enumerated 
the group elements in the same way. 
 
The matrix npgo(1:2,1:36) is read, where npgo(1,1:36) contains the orders of the 36 
point groups (36 and not 32, since some point groups are defined in two different ways). 
The enumeration of the point groups is the same as in Table 3 of chapter  2. npgo(2,K) 
contains the index that denotes where the elements of group K are stored in the matrix 
nge(1:736). Then the indices of each point group, as listed in chapter  2, Table 3, 
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Subsequently the program will calculate the rotation matrices  for 

 for all different rotations. For operations including inversion the matrices are 
multiplied by . 
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All matrix elements  of group element I, for )2,1( LLDl 3 2, 1, 0,=l  are stored into matrix 
ldrmm(I,1:84). 
 
The matrices  are also stored into rcgr3(1:3,1:3,I) for later use. )1(1 =lD
 
Our convention for spherical harmonics is the following: 
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The rotations ),,( ψθφ are represented in this basis by 
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and ),'min(),',0max( 21 mlmlmm −+=−= κκ  
 
So if 
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Then for a point group element ),,,( λψθφP , including rotation ),,( ψθφR  and inversion 

 0 or 1): =λλ (I
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The matrices  are calculated by function dmatr. Since the highest value of l  is only 
3, no recursive techniques have been used and formula (2) has been programmed, 
making use of the factorial function fac. The angles and the matrices are printed. 
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The rotation of a function  is defined as follows: 
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By this we mean that the function ζRP  has at point 
_

r  the same value as function ζ  at 
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When we rotate a vector , then its components change according to: 
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This equation is used in the second and third terms of (5). Now the functions 321 ,, ζζζ  
are simple linear combinations of  and we can use this fact to calculate the 

rotation matrices R from the matrices . 
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In (10) we have restricted 
_

r  to the unit sphere. Then: 
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So we conclude that: 
 

QDQR ),,(),,( 11 ψθφψθφ −=        (13) 
 
The program calculates the rotation matrices this way. 
 
The matrices , which were stored in rcgr3(1:3,1:3,I), are all transformed by the Q  
matrix and the result is stored into rgr3(1:3,1:3,I). These matrices are also printed. 

D1

 
Then the program produces the 100 smallest primes, larger than 3, by calling the 
function primen. The primes are stored in NP(1:100). They will be used in charac, a 
function called by the function Irrep. The primes are also printed. 
 
To extend the program to higher values of present)at  ;3( max =ll , the dimension of 
ldrmm has to be changed to  
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and of matrix  in function dmatr to D )12  ,12( maxmax ++ llD . Further, statements have to 
be added, so that the matrices are stored correctly into ldrmm. 
 
The spin matrices are calculated and stored in spinm(1:2,1:2,1:144). The matrix 
elements of the spin matrices are calculated according to the expression: 
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After a proper execution; “Prodats has finished executing” is printed at the end of 
prodats execution. 
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See Figure 1 for the flowing scheme. 
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prodats

Define files

Read Euler angles for 2Oh and 2D6h and put 
inversion parameters into OH(K,I), D6H(K,I)

Read multiplication tables of 2Oh, 2D6h
into MOH(K,I), MD6H(K,I)

Read npgo(K,I), read nge(L)

Calculate lD for all elements of 2Oh and 2D6h 
for l = 0, 1, 2, 3. Store results into ldrmm(I,K). 
Store 1D into rcgr3.

Transform 1D by Q into R. Store result into 
rgr3(K,L,M).

Calculate primes NP(1:100).

Store rgr3 in rgr3
Store ldrmm in ldrmm
Store npgo in npgo
Store nge in nge
Store moh in moh
Store md6h in md6h
Store NP in NP
Store spinm in spinm

Prodats has finished executing

Calculate the spin matrices spinm(1:2,1:2,1:144)

 
Figure 1: Flowing scheme of prodats 
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2. Conventions for Point Groups and Space Groups 
The space group of a crystal with atomic positions , is the maximal set of 

operators , which, when acting on the atomic positions, according to 
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map the crystal onto itself.  is a point group operator,  is a primitive lattice vector and 

 is a nonprimitive lattice vector. The point group operators  of the space group form 
a point group. 

iP
_

n

iu
_

iP

 
The point group operators can be described by the Euler angles iii ψθφ ,,  and the 
inversion label iλ , which is equal to 1 if inversion is included and equal to 0 if there is no 
inversion. So: 
 

),,,( iiiiiP λψθφ=          (15) 
 
We define the Euler angles as follows: 
 
Start with a right-handed coordinate system x, y, z. All rotations will also be right-handed 
(counter-clockwise). First make a rotation φ  through the z-axis. This produces a rotated 
coordinate system x’, y’, z’ from the original coordinate system. Then follows a rotation 
θ  through the y’-axis, transforming (x’, y’, z’) into (x”, y”, z”). Finally follows a rotation ψ  
through the z”-axis, transforming (x”, y”, z”) into (x”’, y”’, z”’). See Figure 2. 
 
All point groups are subgroups of either point group 2Oh or point group 2D6h. We have 
written a list of the Euler angles of these point groups in Table 1 and Table 2. For the 
other point groups we denote which elements are included in each of them (Table 3). 
Our enumeration of the point group operators of 2Oh and 2D6h is the same as in reference 
 [2], but we have another definition of Euler angles. 
 
In Table 1 we list also the transformation of the Cartesian coordinates x, y, z by the 
point group operators of 2Oh. For point group 2D6h this is done in Table 2. 
 
Figure 3 shows the points to which point 1 are mapped by the application of the point 
group operators of 2Oh. Figure 4 shows the points into which point 1 is transformed by 
the application of the operators of group 2D6h. To this figure belongs a skew coordinate 
system (x, y, z). The z-axis is directed along a sixth-order axis and forms right angles 
with the x- and y-axes. Both of these point towards an edge of the prism and the angle 
between them is 3/2π . 
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Figure 2: Definition of Euler angles 
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In Table 3 we list the point groups. In the first column we give the index number of the 
point group. In column two we give the name of the point group. In column three we give 
the point group operators (enumerated as in Table 1 and Table 2), which belong to this 
point group. In column four we give the names of the space groups, which have exactly 
this point group as their point group of the space group. We also give the index numbers 
of these space groups, according to the enumeration in reference  [3]. In order to obtain 
complete correspondence with these tables, we had to write some of the point groups in 
two isomorphic forms. This resulted in a total of 36 point groups. Some of the space 
groups in reference  [3] are given for two different systems of coordinates. For such 
groups we give an extra subscript 1 or 2, meaning the first or second setting in reference 
 [3] to this form of the point groups. So 2C6

3v,2 = 161 means that the second set of 
coordinate axes in reference  [3] for space group 2C6

3v, with space group index 161 
corresponds to the given form of the point group. We write h(1,13) instead of h1, h13 and 
we write h(1-4) instead of h1, h2, h3, h4. 
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Figure 3: The operations of double point group Oh 
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Figure 4: The operations of double point group D6h 
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Table 1: Double point group operators of 2Oh 

Element Transformed 
Cartesian 

coordinates 

Euler angles 
 

φ π θ π ψ / ,/ ,/ π
 

Inversion 
 
λ  

Description of the double point 
group operation 

h1 z  yx  0        0       0 0 tiontransformaidentity  
h2 __

z  yx  
0        1       1 0 (1,0,0)  aboutrotation−π  

h3 __

zy  x  
0        1       0 0 (0,1,0)  aboutrotation−π  

h4 z y 
__

x  
1        0       0 0 (0,0,1)  aboutrotation−π  

h5  xzy  3/2     3/2     0 0 (1,1,1)  3/4 aboutrotation−π  
h6 __

x zy  
3/2     1/2     0 0 

)1(1,1,  3/2
_

aboutrotation−π  
h7 __

x z y  
1/2     1/2     0 0 

,1,1)1(  3/2
_

aboutrotation−π  
h8  xz y

__

 
1/2     3/2     0 0 

,1)1(1,  3/2
_

aboutrotation−π  
h9 y x z  0     1/2     1/2 0 (1,1,1)  3/2 aboutrotation−π  
h10 __

y x z  
0     1/2     3/2 0 

,1)1(1,  3/4
_

aboutrotation−π  
h11 __

y xz  
0     3/2     1/2 0 

)1(1,1,  3/4
_

aboutrotation−π  
h12 y

__

x z  
0     3/2     3/2 0 

,1,1)1(  3/4
_

aboutrotation−π  
h13 ___

zxy  
1/2      1      0 0 

,1,0)1(  
_

aboutrotation−π  
h14 zxy  

_

 
1/2      0      0 0 (0,0,1)  2/ aboutrotation−π  

h15 zxy  
_

 
3/2      0      0 0 (0,0,1)  2/3 aboutrotation−π  

h16 _

 x zy  
3/2      1      0 0 (1,1,0)  aboutrotation−π  

h17 ___

x yz  
3/2     1/2     3/2 0 

,1)1(0,  
_

aboutrotation−π  
h18 y x

_

z  
1/2     1/2     1/2 0 (0,1,1)  aboutrotation−π  

h19 yzx
_

 
3/2     1/2     1/2 0 (1,0,0)  2/ aboutrotation−π  

h20 _

 yzx  
3/2     3/2     1/2 0 (1,0,0)  2/3 aboutrotation−π  

h21 ___

xyz  
1      1/2     0 0 

,0,1)1(  
_

aboutrotation−π  
h22 xyz  

_

 
0      3/2     0 0 (0,1,0)  2/3 aboutrotation−π  

h23 xyz  
_

 
1      3/2     0 0 (1,0,1)  aboutrotation−π  

h24 _

 xyz  
0      1/2     0 0 (0,1,0)  2/ aboutrotation−π  
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h24+i = hi  for i=1…24    
h49 ___

zyx  
0        0       0 1 inversion  

h50 zy  
_

x  
0        1       1 1 )0,0,1(   planeinreflection  

h51 zyx
_

 
0        1       0 1 )0,1,0(   planeinreflection  

h52 _

zy x  
1        0       0 1 )1,0,0(   planeinreflection  

h53 ___

y xz  
3/2     3/2     0 1 .)1,1,1(  3/4 invaboutrotation− +π

 
h54 xz y

_

 
3/2     1/2     0 1 

.)1,1,1(  3/2
_

invaboutrotation +−π
 

h55 x
_

zy  
1/2     1/2     0 1 

.)1,1,1(  3/2
_

invaboutrotation +−π
 

h56 _

y xz  
1/2     3/2     0 1 

.)1,1,1(  3/2
_

invaboutrotation +−π
 

h57 ___

yxz  
0     1/2     1/2 1 .)1,1,1(  3/2 invaboutrotation− +π

 
h58 y z

_

x  
0     1/2     3/2 1 

.)1,1,1(  3/4
_

invaboutrotation +−π
 

h59 y
_
xz  

0     3/2     1/2 1 
.)1,1,1(  3/4

_

invaboutrotation +−π
 

h60 _

 xz y  
0     3/2     3/2 1 

.)1,1,1(  3/4
_

invaboutrotation +−π
 

h61 zy x  1/2      1      0 1 
)0,1,1(   

_

planeinreflection  
h62 __

zxy  
1/2      0      0 1 )1,0,0(   2/3 aboutrotationmirror−π

 
h63 __

zxy  
3/2      0      0 1 1,0,0(   2/ aboutrotationmirror−π

 
h64 

zx
__

y  
3/2      1      0 1 )0,1,1(   planeinreflection  

h65 yzx    3/2     1/2     3/2 1 
)1,1,0(   

_

planeinreflection  
h66 __

yzx  
1/2     1/2     1/2 1 )1,1,0(   planeinreflection  

h67 __

yzx  
3/2     1/2     1/2 1 ,0,1(   2/3 aboutrotationmirror−π

 
h68 

yzx
__

 
3/2     3/2     1/2 1 ,0,1(   2/ aboutrotationmirror 0−π

 
h69 xyz    1      1/2     0 1 

)1,0,1(   
_

planeinreflection  
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h70 __

xyz  
0      3/2     0 1 0,1,0(   2/ aboutrotationmirror−π

 
h71 __

xyz  
1      3/2     0 1 )1,0,1(   planeinreflection  

h72 
xyz

__

 
0      1/2     0 1 )0,1,0(   3 aboutrotationmirror−π

 
h24+i = hi  for i=49…72    

 
 

Table 2: Double point group operators of 2D6h 
 
Element Transformed 

skew 
coordinates 

Euler angles 
 

πψπθπφ / ,/ ,/  

Inversion 
 
λ  

Description of the double point group 
operation 

g1 z  yx  0        0       0 0 tiontransformaidentity  
g2 zxyx   −  1/3       0      0 0 (0,0,1)  3/ aboutrotation−π  
g3 zyx  y

_

−  
2/3        0       0 0 (0,0,1)  3/2 aboutrotation−π  

g4 z y 
__

x  
1        0       0 0 (0,0,1)  aboutrotation−π  

g5 zxy-x
_

 
4/3     0     0 0 (0,0,1)  3/4 aboutrotation−π  

g6 x zy y −  5/3     0     0 0 (0,0,1)  3/5 aboutrotation−π  
g7 _

zxyx 
_

−  
1/3     1     0 0 (0,1,0)  aboutrotation−π  

g8 ___

zxy  
2/3     1     0 0 

,0)1(1,  
_

aboutrotation−π  
g9 __

zyx-y  
1       1     0 0 (1,0,0)  aboutrotation−π  

g10 _

zx-yx  
4/3     1     0 0 (2,1,0)  aboutrotation−π  

g11 _

 zxy  
5/3     1     0 0 (1,1,0)  aboutrotation−π  

g12 _

 zyy-x  
0     1     0 0 (1,2,0)  aboutrotation−π  

g12+i = gi  for i=1…12    
g25 ___

zyx  
0      0      0 1 inversion  

g26 __

 zxxy −  
1/3      0      0 1 (0,0,1)  3/4 aboutrotation−π  

g27 _

 zxyy −  
2/3      0      0 1 (0,0,1)  3/5 aboutrotation−π  

g28 _

 zyx  
1      0      0 1 )1,0,0(   planeinreflection  

g29 _

 zxyx −  
4/3     0     0 1 (0,0,1)   3/ aboutrotationmirror−π  

g30 __

zyxy −  
5/3     0     0 1 (0,0,1)   3/2 aboutrotationmirror−π
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g31 _

 zyxx −  
1/3     1     0 1 )0,1,0(   planeinreflection  

g32 zxy    2/3     1     0 1 )0,1,1(   planeinreflection  
g33 zxyy   −  1       1     0 1 )0,0,1(   planeinreflection  
g34 zxyx   

_

−  
4/3     1     0 1 )0,1,2(   planeinreflection  

g35 zxy
__

 
5/3      1     0 1 )0,1,1(   planeinreflection  

g36 zyyx
_

−  
0      1     0 1 )0,2,1(   planeinreflection  

g12+i = gi  for i=25…36    
 
 

Table 3: The double point groups and the double space groups to which they 
belong 

Double 
point 
group 
index 

Double 
point 
group 
name 

Double point group operators, 
belonging to the double point group 

Names and labels of the 
double space groups to which 
this double point group 
belongs 

1 2C1 h(1,25) 2C1
1 = 1 

2 2Ci = 2S2 h(1,13,25,37) 2C1
i = 2 

3 2C2 h(1,4,25,28) 2C1
2,1 – 2C3

2,1 = 3-5 
4 2Cs h(1,25,52,76) 2C1

s,1 – 2C4
s,1 = 6-9 

5 2C2h h(1,4,25,28,49,52,73,76) 2C1
2h,1 – 2C6

2h,1 = 10-15 
6 2D2 h(1-4,25-28) 2D1

2 – 2D9
2 = 16-24 

7 2C2v h(1,4,25,28,50,51,74,75) 2C1
2v – 2C22

2v = 25-46 
8 2D2h h(1-4,25-28,49-52,73-76) 2D1

2h – 2D28
2h = 47-74 

9 2C4 h(1,4,14,15,25,28,38,39) 2C1
4 – 2C6

4 = 75-80 
10 2S4 h(1,4,25,28,62,63,86,87) 2S1

4 = 81, 2S2
4 = 82 

11 2C4h h(1,4,14,15,25,28,38,39,49,52,62, 
    63,73,76,86,87) 

2C1
4h – 2C6

4h = 83-88 

12 2D4 h(1-4,13-16,25-28,37-40) 2D1
4 – 2D10

4 = 89-98 
13 2C4v h(1,4,14,15,25,28,38,39,50,51,61, 

    64,74,75,85,88) 
2C1

4v – 2C12
4v = 99-110 

14 2D2d h(1-4,25-28,61-64,85-88) 2D1
2d – 2D12

2d = 111-122 
15 2D4h h(1-4,13-16,25-28,37-40,49-52, 

    61-64,73-76,85-88) 
2D1

4h – 2D20
4h = 123-142 

16 2C3 g(1,3,5,13,15,17) 2C1
3 – 2C3

3 = 143-145, 
2C4

3,2 = 146 
17 2C3i = 2S6 g(1,3,5,13,15,17,25,27,29,37,39,41) 2C1

3i = 147, 2C2
3i = 148 

18 2D3 g(1,3,5,8,10,12,13,15,17,20,22,24) 2D1
3 = 149, 2D3

3 = 151, 
2D5

3 = 153 
19 2D3 g(1,3,5,7,9,11,13,15,17,19,21,23) 2D2

3 = 150, 2D4
3 = 152, 

2D6
3 = 154, 2D7

3,2 = 155 
20 2C3v g(1,3,5,13,15,17,31,33,35,43,45,47) 2C1

3v = 156, 2C3
3v = 158, 

2C5
3v,2 = 160, 2C6

3v,2 = 161 
21 2C3v g(1,3,5,13,15,17,32,34,36,44,46,48) 2C2

3v = 157, 2C4
3v = 159 

22 2D3d g(1,3,5,7,9,11,13,15,17,19,21,23,25 2D3
3d = 164, 2D4

3d = 165, 
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  27,29,31,33,35,37,39,41,43,45,47) 2D5
3d = 166, 2D6

3d,2 = 167 
23 2D3d g(1,3,5,8,10,12,13,15,17,20,22,24 

    25,27,29,32,34,36,37,39,41,44, 
     46,48) 

2D1
3d = 162, 2D2

3d = 163 

24 2C6 g(1-6,13-18) 2C1
6 – 2C6

6 = 168-173 
25 2C3h g(1,3,5,13,15,17,26,28,30,38,40,42) 2C1

3h = 174 
26 2C6h g(1-6,13-18,25-30,37-42) 2C1

6h = 175, 2C2
6h = 176 

27 2D6 g(1-24) 2D1
6 – 2D6

6 = 177-182 
28 2C6v g(1-6,13-18,31-36,43-48) 2C1

6v – 2C4
6v = 183-186 

29 2D3h g(1,3,5,8,10,12,13,15,17,20,22,24, 
    26,28,30,31,33,35,38,40,42,43, 
    45,47) 

2D1
3h = 187, 2D2

3h = 188 

30 2D3h g(1,3,5,7,9,11,13,15,17,19,21,23,26,
    28,30,32,34,36,38,40,42,44,46, 
    48) 

2D3
3h = 189, 2D4

3h = 190 

31 2D6h g(1-48) 2D1
6h – 2D4

6h = 191-194 
32 2T h(1-12,25-36) 2T1 – 2T5 = 195-199 
33 2Th h(1-12,25-36,49-60,73-84) 2T1

h – 2T7
h = 200-206 

34 2O h(1-48) 2O1 – 2O8 = 207-214 
35 2Td h(1-12,25-36,61-72,85-96) 2T1

d – 2T6
d = 215-220 

36 2Oh h(1-96) 2O1
h – 2O10

h = 221-230 
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3. Program SYMPRJS 
This is the main program, which calculates the coefficients to the spherical harmonics, 
so that these functions form irreducible bases for the given space group and wave 
vector. 
 
This program uses all datasets prepared by program prodats.  

3.1 Description of the input 
 
The input to the program shall consist of a sequence of sets in the following order: 
 
1. There shall be 20 logical 1’s (true) and 0’s (false). These logical parameters are read 

into an array steer(1:20) and the parameters steer the amount of output data that will 
be printed. See Table 4 for the meaning of steer(I) = ‘true’ or ‘false’ for each I. 
 

Table 4: Conventions for input data steer 
 

I If steer(I) ~= 0 If steer(I) == 0 

1 The multiplication table is printed for each group 
for which the irreducible representations are 
calculated (function Irrep). 

No print 

2 Calculate the irreducible representatives (function 
Irrep) and not only the irreducible characters. 
Using Irrep as a function of SYMPRJS/SYMPWS 
one should have steer(2) = ‘true’ in all cases. 

Calculate only the 
irreducible characters. 

3 Print the inverse group elements (function 
inverse) 

No print. 

4 Print the number of generators nmberg, the 
group indices of the generators ngen(I), the map 
map(1:G,1:2) by which each group element can 
be constructed as a product of generators 
(function genera). Print loop structure (function 
permu) of the group element with a unique 
eigenvalue (function repres). 

No print. 

5 Print the number of classes and the group 
elements in each class (function classes). 

No print. 

6 Print the table of primes (function primen). Print 
the exponent ex of the group, the prime P used in 
the calculations of the present group, Zprim, the 
used primitive root of unity modulus P, the 
characters as sums of roots of unity (function 
charac). 

No print. 

7 Print the dimensions lj(1:ncl) of the irreducible 
representations and the irreducible characters 
ch(1:ncl,1:ncl) as complex numbers (function 

No print 
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charac). Print the numbering of the irreducible 
representations (function repres). 

8 Print the one-dimensional group representation 
(function repres). 

No print. 

9 Print the irreducible representations of the group 
of dimension higher than one (function repres). 

No print. 

10 Not used. No print. 
11 In the input, steer(11) should always be “true”. 

This means that no error has occurred so far for 
this group. The program may change the value of 
the steer(11) if it detects an error. 

Stop execution for the 
present group and continue 
with the next wave vector, 
giving another group. 

12-17 No effect. These parameters can be neglected or 
used for own purposes. 

No effect. 

18 Print messages about the tests on a non-
symmorphic space group. 

No print 

19 Print the irreducible characters, where the 
irreducible representations are numbered in the 
same way the main output. When using 
SYMPRJS/SYMPWS, this output should be used 
to identify the irreducible representations, instead 
of that of steer(7). 

No print 

20 The space group is symmorphic. Information to 
the program. 

Nonsymmorphic space 
group. 

 
 
2. There shall follow three lines with three numbers each, defining the three rows of a 

matrixA . The matrix A  describes the primitive unit cell vectors 3

_

2

_

1  according 

to A),( zy ee  

where ),,  are the unit vectors in the Cartesian coordinate system. 
 

_

,, aaa

,(),,
___

3

_

2

_

1

_

xeaaa =

(
___

zyx eee

3. Three numbers are read, pgnr, nel and lmax. pgnr is the index number of the point 
group which belongs to the space group, as described in section  2. The indices are 
given in Table 3, column 1. nel is the number of chemical elements in the crystal. 
lmax is the maximum value of orbital quantum number l, for which one wants to 
make calculations. Maximum value for lmax is 3. 
 

4. There is a set of nel numbers, denoting the number of atoms per unit cell for each of 
the nel chemical elements. These numbers are stored into nat(1:nel). 
 

5.  triplets, each triplet containing the coordinates of one atom. First the 

atoms of chemical element no. 1, then the atoms of chemical element no. 2 etc. The 
integer atco in the first column informs the program about the coordinate system in 
which the coordinates are given. If atco = 1, the numbers are coordinates to the 

Cartesian vectors ),, . If atco = 0 the numbers are coordinates to the lattice 

∑
=

nel

I
Inat

1
)(

(
___

zyx eee
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vectors ),, . 
 

( 3

_

2

_

1

_

aaa

6. This set of numbers must be given only for a nonsymmorphic space group. steer(20) 
must be set to ‘false’ (0) for a nonsymmorphic space group. If steer(20) = ‘true’ the 
program assumes that the space group is symmorphic and it will attempt to read the 
set of numbers in point 7, immediately after those of point 5. 
 
For nonsymmorphic space groups the input should consist of order numbers, where 
order is the number of elements in the point group of the space group, the index of 
which (pgnr) was given as input earlier (point 3). The nth set should contain the 
nonprimitive translation associated with the nth point group element, where the point 
group elements are given in the order of Table 3, column 3. 
 
For example, if pgnr = 9, the point group is 2C4 and there should be 8 sets if the 
space group is nonsymmorphic. Then the second set for example, should give the 
coordinates of the nonprimitive translation to the second point group operator, which 
according to Table 3 is h4. Table 1 informs that h4 is the rotation through angle π  
about (0,0,1). 
 
Even when there is no nonprimitive translation associated with a particular point 
group operator, it should be given as a zero vector, in order to obtain as many sets 
as there are point group operators and to have them in the required order. The 
integer uco in the first column of each set informs the program about the coordinate 
system in which the nonprimitive translations are given. uco = 1 means Cartesian 
coordinates. uco = 0 means lattice coordinates. 
 

7. The number of -vectors (number_of_wave_vectors) that follows shall be 

supplied. The following set contains the wave vectors  for which the symmetry 
projection matrices will be calculated. Each set contains five numbers: 
 
last, wvco, rk(1), rk(2), rk(3), nfacto 
 
Here last = 1 means that this is the end of the input. For all wave vectors one should 
have last = 0 
 
wvco = 1 means that the wave vector is given in Cartesian coordinates, wvco = 0 

that it is given in reciprocal lattice coordinates ),,  with 
 

_
k

_
k

( 3

_

2

_

1

_

bbb

)(
___

__
_

kji

kj
i

aaa

aab
×⋅

×
=  

 
The input coordinates should be given in units of π2 , since they are multiplied by 
π2  as soon as they have been read. 

 
The number nfacto must be set equal to zero if the symmetry projection should be 
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done for only one wave vector in the same direction. Then the next wave vector set 
may follow immediately after this set. 
 
If however, the symmetry projection should be repeated for several wave vectors 
with the same direction but different lengths, nfacto should be set equal to the 
number of such wave vectors (the first one included). In the case that nfacto > 0, 
there must be added a set of nfacto factors by which the given vector must be 
multiplied, in order to obtain the other wave vectors for which the symmetry 
adaptation should be made. The factors must be given in decreasing order and the 
first factor must be equal to 1. Then comes the set for the next wave vector. 
 
The last set should contain the information last = 1 in the first column. A wave vector 
occurring in this set is not treated, the program stops executing after writing 
‘SYMPRJS has finished executing’. 

 
You will have to update the following statements in SYMPRJS.m: 
 
read_inputdata = fopen('xx.dat','r'); where xx is the name of your ASCII input data file. 
 
fid = fopen(‘yy.m','a');   where yy is the name of your .m output data file. 
 
write_proj = fopen(‘zz','a');  where zz is the name of your binary output data file. 
 

3.2 Formula, which has been programmed 
We refer to references  [4] and  [5] for the theory, which leads to the following formula for 
the projection matrix. 
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S c
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The space group  of the crystal consists of the operators .  is the 
input wave vector.  is the little group of the second kind, or group of the wave vector, 

it consists of space group operators  with 

G )|(
__
nuPF ii +=

_
k

_
k

G

)|(
__
nuP ii + _

k
i PP ∈ . The little point group  

consists of the point group operators  with  and , where 

_
k

P

iP GuP ii ∈)|(
_ ___

KkkPi +=
_

K  is 
a reciprocal lattice vector. 
 
j  is the index of the irreducible representation of . These irreducible representations 

are formed from those of the group  or, for the case  lies on the Brillouin zone 

boundary and  is nonsymmorphic, from the allowable irreducible representations of 

_
k

G

_
k

P
_
k

_
k

G
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the factor group . Here  is the group of lattice translations  for which 

. An irreducible representation of  is allowable if an element of the coset 

 is represented by  times the unit matrix. 

__ /
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TG _
k

T )|(
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nE

1
__

=⋅− nkie __ /
kk
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_)|(
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k
TmE

__
mkie ⋅−

 
_
kj

l  is the dimension of the irreducible representation. 

*
_
))|((

_

ddA
kj uPΓ  is the complex conjugate of the dth diagonal element of the 

representative of  in the allowable irreducible representation  of . For 

symmorphic groups and nonsymmorphic groups with a symmorphic  or  within the 

first Brillouin zone boundary, all irreducible representations are allowable and the 

subscript A is superfluous.  is the set of elements  with 

 where  is a lattice vector. c  is the index for the 

chemical element.  is the order of . 
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λ  is the inversion label of the point group operator  and  is defined in 
section  1. This formula corresponds to formula (5.38) in reference  [4] which we refer to 
for the theory. 

P mm
l D '),,( ψθφ

 

3.3 Description of the program 
 
The projection matrix defined in the previous section is block diagonal with respect to the 
subscripts  and l . For each particular  and l  there is a diagonal block, which is a 

projection matrix by itself. One can construct a matrix  of orthonormal columns from 
each of those sub-projection matrices. These matrices form the output of the program. 
They give the coefficients for the harmonics which are adapted to the symmetry of the 
space group. This output is given for all wave vectors of the input and all irreducible 
representations. The text in the output is explaining the details, so it is not necessary to 
read through this section to understand the form of the output. 

c c

cl
kj t
_

 
This section gives a detailed description of the functioning of the program and comments 
to possible input or program errors. 
 
The program SYMPRJS can be divided into 9 sections. 
 
Section 1. Input (See chapter 3.1 for the sequence of input data). 
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1.1 Read input 1 (the numbers refer to the points in chapter  3.1). 
 

1.2 Read input 2, matrix A  with A), . 
 

,(),,(
___

3

_

2

_

1

_

zyx eeeaaa =

1.3 Print input 2. 
 

1.4 Calculate matrix B  so that B),  form the reciprocal lattice 
vectors. It is easy to prove that B  is the inverse of the transpose of A : 

T)( 1− . Store 1−B  in bi and 1−A  in ai. 
 

,(),,(
___

3

_

2

_

1

_

zyx eeebbb =

= AB

1.5 Print the matrix B . 
 

1.6 Read the input 3: pgnr, nel, lmax. 
 

1.7 Print nel, the number of chemical elements. 
 

1.8 Read input 4. 
 

1.9 Read input 5 and transform, if necessary to Cartesian coordinates. 
 

1.10 Print the number of atoms of each chemical element and their positions, according 
to  1.8 and  1.9. 
 

1.11 Read order, the order of the point group with index pgnr and the position of the 
first element of this point group (first). 
 

1.12 Read the elements of the point group into gel(1:order). Read the primes into 
npri(1:100). 
 

1.13 For nonsymmorphic space groups (steer(20) = ‘false’): Read the nonprimitive 
translations associated with each point group operator into u(1:order,1:3). 
Transform if necessary to lattice coordinates. 
 

1.14 If the point group is a subgroup of 2D6h (16 ≤ pgnr ≤ 31), go to  1.16. 
 

1.15 Print “The point group no ‘pgnr’ of the crystal is a subgroup of Oh”. Set the reading 
index K96 = 0. Read from the multiplication table of 2Oh, the rows with row indices 
gel(1:order) into mtab(I,K). If pgnr = 36 the point group is 2Oh itself, the complete 
table is read into mtab, no selection of columns has to be made. Go in that case 
directly to  1.18. Otherwise, go to  1.17. 
 

1.16 Read from the multiplication table of 2D6h, the rows with row indices gel(1:order) 
into mtab(I,K). Set the read index K96 = 96. Print “The point group no ‘pgnr’ of the 
crystal is a subgroup of D6h with element nrs”. If pgnr = 31 the point group is 2D6h 
itself, no selection of columns has to be made. In this case, go directly to  1.18. 
 

1.17 Select in mtab the columns with column indices gel(1:order) and then shift to the 
left, so that the upper left order x order block of mtab becomes the multiplication 
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table, where the elements are indexed as in 2Oh or 2D6h. Renumber the elements 
from 1 to order using the matrix inver(I) and obtain finally the multiplication table 
of the point group. 
 

1.18 Print the element numbers gel(1:order). This output follows immediately the 
printing under  1.15 or  1.16. Print the maximum number of orbital quantum number 
l, lmax, according to  1.6. 
 

1.19 Read the three dimensional orthogonal rotation matrices (or rotation-inversion 
matrices) corresponding to the elements of the point group PG  of the space group. 
The position of these matrices is determined by the value of K96 + gel(1:order). 
 

1.20 Read the number of wave vectors for which the projection matrices shall be 
calculated, into variable number_of_wave_vectors. This variable as well as nel, 
nat(1:nel) and lmax(1:nel) are written to the binary output file. Read a wave 
vector for which symmetry projection matrices must be calculated. Further read the 
number nfacto which is the number of wave vectors in the same direction for 
which the calculation should be repeated. If the index last in column 1 is equal to 
1, go to section 9. Transform, if necessary the given coordinates of the wave 
vector to reciprocal lattice coordinates. If nfacto > 1, read the factors by which the 
original vector should be multiplied to obtain the successive wave vectors in the 
same direction. The original vector is stored into ark(1:3). 
 

1.21 The index IV enumerates the number of vectors in the same direction for which a 
symmetry projection has been made. Set IV = 1 and set the factor by which the 
original vector should be multiplied, for the first calculation equal to 1. 
 

1.22 If all vectors for the present direction have been treated (IV > nfacto, nfacto > 1 or 
IV > 1, nfacto = 0) go to  1.20 to read a new wave vector. 
 

1.23 If IV = 1, go to  2.1 for the formation of _ , the point group of the wave vector. If the 

original vector (IV = 1, nfacto > 1) lies on the Brillouin zone boundary, the next 
vector (IV = 2) may have lower symmetry: Go to 

k
P

 2.1 to form _
k

P . If IV > 2 and 

IV ≤ nfacto, the new vector will have the same symmetry as the preceding one. 
_  and its irreducible representations do not have to be calculated again. In this 

case, go to section 8. If 
__
0=k , P

k
GP

k
P

=_ , go to  2.2. 

 
 
Section 2. Formation of the point group of the wave vector . _

k
P

 
2.1 Multiply the original wave vector with factor(IV) and π2 , kgord will be the order of 

_
k

P . kgel(I) will be the index of the Ith element of _
k

P , where the index refers to the 

enumeration 1:order of point group PG . Transform the wave vector to Cartesian 
coordinates and operate on it successively with all the rotation matrices of group 
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PG . Transform back to reciprocal lattice coordinates and subtract the original 

wave vector. The result is 
__
kkP − . If _

k
PP∈  this difference will be a reciprocal 

lattice vector 
_

K . Since 
_
k  lies within or on the first Brillouin zone boundary, the 

components 
_

K  (in reciprocal lattice coordinates) can only be 0 or π2± . Test the 

components of 
__
kkP −  for these values. If each component is equal to 0 or π2± , 

the element P  belongs to _  and is registered as such. When all elements P  of 

PG  have been tested, go to 
k

P

 2.3. 
 

2.2 If 0=k  then P
k

GP =_  and we register the elements of _
k

P  in this way into kgel. 

The indices of the elements in the enumeration of 2Oh/2D6h are registered into 

kkgel. Further  lies of course within the first Brillouin zone. Set ibz = ‘true’. The 
multiplication table mtab2 of _  is in this case equal to the multiplication table 

mtab of PG . Go to section 5. 
 

__

_
k

k
P

2.3 Form the multiplication table mtab2 of _
k

P  from the multiplication table mtab of 

PG , using the information in kgel. Register the indices of the elements of _
k

P  in the 

enumeration of the elements of 2Oh/2D6h into kkgel. If G is symmorphic 
(steer(20) = ‘true’), go to section 5. 

 
 
Section 3. Tests for the nonsymmorphic space group. 
 

The vector  is tested by function bztest. 
_
k

 

3.1 If 
_
k  lies within the first Brillouin zone, ibz is set to ‘true’. 

If  lies on the first Brillouin zone boundary, ibz is set to ‘false’. 

If  lies outside the first Brillouin zone, the user have supplied unallowed input, a 
message is printed and control goes to section 

_
k
_
k

 1.20. 

bztest tests if 3

_

2 bb ++ . 

If  itself does not lie in the first octant, then the appropriate signs are changed, 

for example etc.3−  
If steer(18) = ‘true’ and ibz = ‘true’ print “Nonsymmorphic but within Bz”. If ibz = 
‘true’, go to section 5. 
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3.2 The space group _  associated with _  may be symmorphic even when the 

complete space group is nonsymmorphic. If _
k

G  is symmorphic, ksym is set to 

‘true’, otherwise ksym = ‘false’. _
k

G  is symmorphic if the “nonprimitive” translations 

u(I,K), associated with the point group operators of _  are all equal to zero 

translations. If steer(18) = ‘true’ and ksym = ‘true’, print “Nonsymmorphic but 
symmorphic _

k
G ”. If ksym = ‘true’, go to section 5. 

k
G

k
P

k
P

 
 
Section 4. Formation of the factor group . __ /

kk
TG

If G  is nonsymmorphic and  is on the Brillouin zone boundary and  is 

nonsymmorphic, one has to form the factor group  in order to form a projection 

matrix, based on the irreducible representations of this group (see for example reference 
 [4]). 

_

k _
k

G
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TG

_
k

T  is the subgroup of the translation group of the crystal lattice such that if  

then . The elements of  are the cosets of  with the respect to . Two 

elements of ,  and  belong to the same coset if 
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. So the elements of  can be characterized by the index of 

the point group operator and the value of the exponential term. We form the group 

, starting with the elements  with 
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i PP ∈  and the multiplication table of 

. These elements form the first kgord elements of  (kgord is the order of ). 

We form the multiplication table, using the multiplication rule 
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The index l is determined from the multiplication table of . _
k

P

If  then  does not belong to the coset of , but to a new coset 
with the same index for the point group operator but a different value for the exponential 
term. These two indices determine a new element of the group . 
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k2gord is the order of . At the beginning of the process k2gord = kgord. listp(I) 

is the index of the point group operator (in the enumeration of the elements of ). 

listp(1:kgord). til(I,1:3) are the vectors . For the first kgord elements these are equal 
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_
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to the  corresponding to the iu
_

_
k

i PP ∈ . s(I) are the exponential values . 

nopi(1:kgord) are the numbers of group elements of  with the same point group 

operator index I. The Kth operator, which has index I for its point group operator, is the 
nopli(I,K)th element of . Its exponential term is equal to sil(I,K). We go through 

the multiplication table row by row, forming the elements in each row. If a new element is 
created, the multiplication table will obtain a new row and a new column. For all 
preceding rows this new element in the last column must be calculated, so the program 
returns to row 2, last column. The number of elements, already determined in row I is 
nr(I). When a new element in row I has been calculated, nr(I) is increased by one. The 
point group index of a product is calculated by the statement index1 = mtab2(N1,N2). 

 is calculated straightforwardly. Its exponential value, sres, is compared with 
the given exponential values for this point group operator, that is with 
sil(index1,1:nopi(index1)). If it is equal to sil(index1,K1), the element in the 
multiplication table is set equal to nopi(index1,K1). 

__
tkie ⋅−

__ /
kk

TG

__ /
kk

TG

iji uuP
__

+

 
If it is not equal to any of the given exponentials, we have found a new element: k2gord 
is increased by one, the multiplication table is enlarged with one row and column and the 
program sets the row count to 2 in order to calculate the element in the new column. 
 
After a few such steps no new elements have to be added and the multiplication table is 
calculated as described above. 
 
At the end of the process the order of  is put into kgord and its multiplication 

table into mtab2 in order to be used by function Irrep. The point group indices, as 
numerated in group 2Oh/2D6h are put into llistp. 

__ /
kk

TG

 
 
Section 5. Wave vectors in the same direction. 
 
In the case that the new wave vector has the same symmetry as the preceding one, the 
diagonal elements of the irreducible representations of  are still stored. Go 

immediately to section 8. 

_
k

P

 
 
Section 6. Calculation of the diagonal elements of the irreducible representations. 
 
6.1 First print a few lines of output: 

Print “Projection matrices for the wave vector srk” 
Print “The point group of the wave vector consists of kg operators, indexed as nrs. 
kkgel.” 
If __ /

kk
TG  had to be formed, print “The factor group __ /

kk
TG  consists of I point group 

operators llistp(I), nonprimitive translations til(I,K), exp = s(I). 
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6.2 Function Irrep will calculate the irreducible representations of the group of order 
kgord with multiplication table mtab2. It writes the diagonal elements of the 
irreducible representatives. 
Function Irrep and its subfunctions have been described as an independent 
program in reference  [1]. The following changes have been made: The group order 
and multiplication table have not to be read as input by Irrep, since they already 
exist. In Irrep, the value kgord is called G and mtab2 is called multab. 
A few statements have been added at the end of function repres, in order to write 
the diagonal elements of the (allowable) irreducible representations. 
An irreducible representation of __ /  is allowable if an element of the coset 

_)|  is represented by  times the unit matrix. The dimensions of the 

irreducible representations are stored in increasing order into laj(J). If steer(19) = 
‘true’, the irreducible character will be printed. Function charac, a function called 
by Irrep, uses the primes stored in npri. 
 

kk
TG

(
_

k
TmE

__
mkie ⋅−

6.3 The number of projection matrices is equal to the sum of the dimensions of the 
(allowable) irreducible representations. This number is stored into nup. 
Each projection matrix is blockdiagonal for the index of the chemical element, 
which runs from 1 to nel and for the orbital quantum number l which runs from 0 to 
lmax. 
So each projection matrix consists of nel·(lmax + 1) blocks along the main 
diagonal. This number is stored into nblock. Each block is itself a projection 
matrix. 

 
 

Section 7. Formation of the summation sets . ),(
__

νμG
 
Each block of a projection matrix, with fixed indices for the chemical element and orbital 
quantum number, which itself forms a projection matrix, can be divided further into 

subblocks labelled by the atomic positions  of the actual chemical element in the 
unit cell. In the calculation of such a subblock, the elements of  (or ) give only 

then a contribution, if they belong to the set  defined by 

__

,νμ
_
k

P __ /
kk

TG

),(
__

νμG
 

),,()|( if ),()|(
_____

1
____

νμνμνμ inuPGuP iiii +=∈ −  
 

where  is a lattice vector (see chapter  3.2). ),,(
___

νμin

In this section we form the sets  with the corresponding lattice vectors  
for all chemical elements. np(K,I,J) is the order of the set of space group operators F, for 
chemical element K, for which 

),(
__

νμG ),,(
___

νμin

F*(coordinate of atom I) – (coordinate of atom J) is a lattice vector. 
npl(K,I,J,1:np(K,I,J)) are the indices of the space group operators F, which belong to 
this set. nvec(K,I,J,L,1:3) are the coordinates of the corresponding lattice vector. 
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The procedure is as follows: Initiate the index I1 for the chemical element, initiate the 

index of the first atom index I3 (corresponding to ). Transform this atom position 
successively with all operators of  (or ) and check which new atom position, 

denoted by I9 (corresponding to 

_

μ
_
k

P __ /
kk

TG
_
ν ), is obtained, up to a lattice vector. 

If for chemical element I1, atom I3 is transformed to atom I9 by operator I4 of  (or 

), up to a lattice vector difi(1:3), then np(I1,I3,I9) is increased by one, 

npl(I1,I3,I9,np(I1,I3,I9)) = I4 and nvec(I1,I3,I9,K,1:3) = difi(1:3). This process is 
repeated for all allowed values of I1 and I3. If it occurs that an atomic position is 
transformed to a position which is not a position of an atom of the same chemical 
element, this means that the input is in error. The space group given in the input does 
not describe the crystal symmetry of the input. In this case the program prints a 
message: “Wrong space group, I1, I3, I4, I5”. This informs the user that atom I3 of 
chemical element I1 is not transformed to an atom position of the same chemical 
element by operator I4 of  ( ). I5 is the index of the point group operator 

corresponding to I4, in the enumeration of the point group of the space group. After this 
message the program goes to section 9. When all chemical elements have been treated, 
control goes to section 8. 

_
k

P

__ /
kk

TG

_
k

P __ /
kk

TG

 
 
Section 8. The formation of the projection matrices. 
 
The projection matrices are formed according to the formula in chapter  3.2. All 
necessary information is now available. 
 
8.1 Initiate the values for J (j), JD (d), the chemical element ichem (c), L (l) and the 

atom positions mu1  and mu2 )( . If all values of these indices have been 
treated, go to section 

_

)(μ
_

ν
 1.20. ncoset is set equal to np(ichem,mu1,mu2). This is the 

number of terms in the summation and is equal to the number of operators which 
transform atom mu1 to atom mu2, up to a lattice vector. 
If ncoset is zero, this means that the operations which transform atom mu1 to 
atom mu2 were not included in the input space group. This means that the actual 
symmetry is higher than that of the given space group. The following message is 
printed: “Space group is not maximal, ichem, mu1, mu2”. The case that the given 
space group is not the maximal space group, may also occur when ncoset is not 
zero, but has a lower value than it would have with the maximal space group. But 
such a case can not be detected by the program. 
 

8.2 Initiate the values for M1 (m) and M2 (m’). Calculate the number N3, which 
determines the address of the elements ') , and read them into 
ldmm(1:144). 
 

1( mm
ll Dλ−

8.3 Calculate the terms and add them according to the formula in chapter  3.2. Perform 
8.2 and 8.3 for all the allowed values of m and m’. The resulting sub-projection 
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matrix is stored into jdpk(K4,K5). 
 

8.4 Test if the resulting matrix is idempotent and hermitian. If not, print a message. 
 

8.5 Orthonormalise the columns of the sub-projection matrix and store the resulting 
rectangular t-matrix into tmatri. We make use of some properties of the projection 
matrix: If the diagonal terms of a column is equal to 0 or 1, all the other elements in 
that column vanish. We select first the columns with 1 in the diagonal terms; these 
are already orthonormal. Then we orthonormalise the remaining columns by the 
Schmidt procedure. The process is stopped as soon as we have got ntr columns, 
where ntr is the trace of the sub-projection matrix. If it is possible to select ntr 
orthonormal columns (for example by rounding off errors or because the program 
discarded some columns, since these had so small elements that errors would be 
large after normalisation) then the program prints an error message “Error, not 
enough orthonormal columns”. Then the program goes to section 9. This error has 
never occurred when the authors ran the program. Therefore, one can perhaps 
discard the statements for the test and the error message. 
 

8.6 Write the produced t-matrix. Go to section  8.1. 
 
 
Section 9. End of the program. 
 
Print “SYMPRJS has finished executing” and stop. 
 

3.4 Program proj_symprjs.m 
 
Program proj_symprjs.m reads the binary output file from SYMPRJS.m and orders the 
columns into a super projection matrix, where the submatrix blocks are ordered along 
the main diagonal as: 
 
(chem_elem_1, atom_1, L = 0), (chem_elem_1, atom_1, L = 1),…,(chem_elem_1, 
atom_1, L = lmax(chem_elem_1), (chem_elem_1, atom_2, L = 0),…,(chem_elem_1, 
atom_2, L = lmax(chem_elem_1), (chem_elem_2, atom_1, L = 0),…, (chem_elem_2, 
atom_1, L = lmax(chem_elem_2),… 
 
In proj_symprjs.m, the following statements have to be adapted to your naming the 
input/output files: 
 
in_proj = fopen(‘xx’, ‘r’);      where xx is your name for the SYMPRJS.m binary output file. 
out_proj = fopen(‘yy’, ‘a’),   where yy is your name for the proj_symprjs.m binary output 
file. 
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Symprjs

Define input files

IV = 1 or IV ≤ nfacto?

symmorphic?

Calculate irreducible representations 
and store the diagonal elements.

IV = 1

Print ”SYMPRJS 
has finished exec.” Stop

_
k

Symmorphic space group?

_
k

G

__ /
kk

TG

no

no

yes

yes

Form the group

Form the projection matrix.

Form sets

Orthonormalise to t-matrix. Print t-matrix.

yes

no

IV = IV + 1

yes

Form

Last    -vector?

_
k

P

Within first Brillouin zone?

yes

no

IV>2?
yes

),(
__
νμG

=       factor(IV)
_
k ⋅

_
k

no
Last projection matrix for this wave vector?

yes

no

no

 
Figure 5: Flowing scheme of program Symprjs 



 32

4. Program SYMPWS 
 
This is the main program, which calculates the coefficients to the plane waves, so that 
the linear combinations form irreducible basis functions for the given space group and 
wave vector. 
 
Large parts of this program are identical with parts in program SYMPRJS. We shall refer 
for the description of those parts to the previous descriptions in chapter  3. This program 
uses some of the datasets prepared by program prodats. 
 

4.1 Description of the input 
 
The input of the program should consist of a sequence of data sets in the following 
order. 
 
1 There shall be 20 logical 1’s (true) and 0’s (false). These logical parameters are 

read into an array steer(1:20) and the parameters steer the amount of output data 
that will be printed. See Table 4 for the meaning of steer(I) = ‘true’ or ‘false’ for each 
I. Additionally to what is stated in Table 4, we have that if steer(17) = ‘true’ then it is 
printed how the stable basis of plane waves transforms under the point group _

k
P . 

See chapter 4.3, section 3. 
 

2 Three sets with three numbers each, defining the three rows of a matrix A . The 

matrix A  describes the primitive unit cell vectors 3  according to 

A), zy ee  

where ),,  are the unit vectors in the Cartesian coordinate system. 
 

_

2

_

1

_

,, aaa

,(), 3

_

2,(
____

1

_

xeaaa =

(
___

zyx eee

3 One set, giving pgnr. This is the index of the point group which belongs to the 
space group, as described in chapter  2. The indices are given in Table 3, column 1. 
 

4 The sets of this point must be given only for a nonsymmorphic space group. 
steer(20) of point 1 in the input must be set equal to ‘false’ for a nonsymmorphic 
space group. If steer(20) = ‘true’ the program assumes that the space group is 
symmorphic and it will attempt to read the sets under input 5 immediately after those 
of input 3. 
 
For nonsymmorphic space groups the input should consist of order sets, where 
order is the number of elements in the point group of the space group, the index of 
which (pgnr) was given as input under input 3. 
 
Set no. n should contain the nonprimitive translation associated with the nth point 
group element, where the point group elements are given in order of Table 3, 
column 3. 
 
For example, if pgnr = 9, the point group is 2C4 and there should be 8 sets under 
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point 6 if the space group is nonsymmorphic. Then the second set for example, 
should give the coordinates of the nonprimitive translation associated to the second 
point group operator, which according to Table 3 is h4. Table 1 informs then that h4 
is the rotation through angle π  about (0,0,1). 
 
Even when there is no nonprimitive translation associated with a particular point 
group operator, it should be given as a zero vector, in order to obtain as many sets 
as there are point group operators and to have them in the required order. The 
integer uco in the first column of each set, informs the program about the coordinate 
system in which the nonprimitive translations are given. uco = 1 means Cartesian 
coordinates. uco = 0 means lattice coordinates. 
 

5 This set contains the wave vectors  and the reciprocal lattice vectors nK  for which 
the calculations will be made. The set containing the wave vector is: 
 
last, wvco, rk(1), rk(2), rk(3), nrec, krep 
 
If last = 1, the program stops assuming that this is the last set in the input. 
 

rk(1:3) are the coordinates of 
_

k . When wvco = 1 these coordinates should be in 
Cartesian coordinates, when wvco = 0 in reciprocal lattice coordinates. The input 
coordinates should be given in units of 

_

k
_

π2 , they are multiplied by π2  in the 
program. 
 
nrec is the number of sets, each with one reciprocal lattice vector that follow after 
the present set. 
 

For the first 
_

k -vector it is necessary that krep = 0, this is explained below. 
 
Then follow nrec sets. Each set contains the reciprocal lattice coordinates of one 

reciprocal lattice vector nK
_

. These are the vectors nK
_

, defining the plane waves 
))((

___

_
rKki

k

n

n

e ⋅+=ψ  that should be included in the basis, which will be symmetrized. 

One does not have to bother if the given nK -vectors define a stable basis, since the 
program itself extends the basis to form a stable basis. 
 

Thereafter follows the next -vector in the input. If one wants to use the same 

reciprocal lattice vectors nK  for this -vector as for the preceding one, one sets 

krep = 1. Then the program uses the same set of nK
_

. Then one can give 

immediately the next 
_
k -vector etc. One ends the input with a set with last = 1. 

Other information in that set is ignored, the program stops after writing ‘SYMPWS 
has finished executing’. 

_

_

k
_ _

k

 
You will have to update the following statements in SYMPWS.m: 
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read_inputdata = fopen('xx.dat','r'); where xx is the name of your ASCII input data file. 
 
fid = fopen(‘yy.m','a');   where yy is the name of your .m output data file. 
 
write_proj = fopen(‘zz','a');  where zz is the name of your binary output data file. 
 

4.2 Formula, which has been programmed 
We refer to references  [4] and  [5] for the theory which leads to the following formula for 
the projection matrix: 
 

ssimnii
PP

ddiiA
kj

k

kj
ssmndd

kj PDuPuP
g

l
S

k
i

'
2/1

_
*

_

'' )())|(())|(())((
_

_

_

__

∑
∈

= ΓΓ  

with  if  and otherwise . 
All other symbols are the same as in chapter  3.2. The stable basis consists of functions 

. 
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_ ___

))|(( im uKki
mnii euP ⋅+−=Γ mni KkKkP

____

)( +=+ 0))|((
_

=mnii uPΓ

))((
___

_
rKki

k

n

n

e ⋅+=ψ

 
The columns of the projection matrix are orthonormalized to each other, forming the 

matrix . These columns are the coefficients of the plane waves mndd
kj t )(
_

mk
_ψ , forming 

linear combinations that are symmetry adapted to the dth row of the irreducible 

representation  of , the little group of  of the second kind. This gives 

immediately the symmetry adaptation for the whole space group. 
A

kj Γ
_

_
k

G
_

k

 

4.3 Description of the program 
 

The matrices  form the output of the program. They give the coefficients 
for the plane waves which form linear combinations that are adapted to the symmetry of 
the space group. This output is given for all wave vectors of the input and all irreducible 

representations . The functions 

mndd
kj

dd
kj t )(

__

=t

Γ
_
kj ))((

___

_
rKki

k

n

n

e ⋅+=ψ  are written as  in the output. A 

list of correspondence between  and  is given in the output under the heading 
‘The following lattice vectors form a stable basis’. 

)(nK

nK
_

)(nK

 
The text in the output is explaining the details, it is not necessary to read through chapter 
4.3 to understand the form of the output. 
 
Here follows a detailed description of the functioning of the program and comments to 
possible input or program errors. Since whole sections of program SYMPWS are 
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identical to sections of program SYMPRJS, we refer for those sections to the description 
in chapter 3.3. 
 
The program Sympws can be divided into 9 sections. 
 
Section 1. Input (see chapter 4.1 for the sequence of input). 
 
 
1.1 Read input 1 (chapter 4.1, input 1). 

 
1.2 Read input 2 (chapter 4.1, input 2). 

 
1.3 Print input 2. 

 
1.4 Calculate matrix B (chapter 3.3, section  1.4). 

 
1.5 Print matrix B. 

 
1.6 Read input 3 (chapter 4.1, input 3), the index pgnr of the point group. 

 
1.7 Read order (chapter 3.3, section  1.11) 

 
1.8 Read the elements of the point group (chapter 3.3, section  1.12). 

 
1.9 For nonsymmorphic space groups (steer(20) = ‘false’), read the nonprimitive 

lattice translations (chapter 3.3, section  1.13). 
 

1.10 If the point group is a subgroup of 2D6h (16 ≤ pgnr ≤ 31), go to section  1.12. 
 

1.11 See chapter 3.3, section  1.15, go to section  1.13. 
 

1.12 See chapter 3.3, section  1.16. 
 

1.13 See chapter 3.3, section  1.17. 
 

1.14 Print the element numbers gel(1:order). This output follows immediately the 
printing under  1.11 or  1.12. 
 

1.15 See chapter 3.3, section  1.19. 
 

1.16 Transform the rotation matrices to the reciprocal lattice coordinates. 
 

1.17 Read input 5 (chapter 4.1), transform if necessary the coordinates of 
_
k  to the 

reciprocal lattice coordinates. Print the vectors nK
_

 of the input. For last = 1, 
control goes to section 8. 
 

 
Section 2. Formation of the point group of the wave vector . _

k
P



 36

 

2.1 Test  with respect to the Brillouin zone (see chapter 3.3 section 
_

k  3.1). 
 

2.2 See chapter 3.3, section  2.1- 2.3. A difference with chapter 3.3, section 2 is that the 
transformations are made in reciprocal lattice coordinates instead of Cartesian 
coordinates. 

 
Section 3. Formation of a stable basis. 
 

The reciprocal lattice vectors  of the input are transformed by the operations of the 

point group  into each other or in new lattice vectors . The set is extended to be 

stable under . kmat(I,J) gives the index of the reciprocal lattice vector, to which the 

Jth reciprocal lattice vector is transformed by the Ith operator of . The stable basis 

consists of nrec vectors .They are printed under the heading “The following nrec 
lattice vectors form a stable basis”. If steer(17) = ‘true’ then also kmat(I,J) will be 
printed. 

nK
_

_
k

P mK
_

_
k

P

_
k

P

nK
_

For symmorphic space group or  within Bz, go to section 6. 
_

k
 
Section 4. Tests for the symmorphic group. 
 
 
See chapter 3.3, section  3.2. 
 
Section 5. Formation of the factor group . __ /

kk
TG

 
See chapter 3.3, section 4. 
 
Section 6. Calculation of the diagonal elements of the irreducible representations. 
 
 
6.1 See chapter 3.3, section  6.1. 

 
6.2 See chapter 3.3, section  6.2. 

 
6.3 The number of projection matrices is equal to the sum of the dimensions of the 

(allowable) irreducible representations. This number is stored into nup. 
 
Section 7. The formation of the projection matrices. 
 
The projection matrices are formed according to the formula in chapter 4.2. All 
necessary information is now available. 
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7.1 Initiate the values for J (j) and JD (d). 

Read the diagonal elements dd
kj Γ  if steer(18) = ‘true’, these elements will also be 

printed. The dimension of the projection matrix, stored in jdpk(I,K) will be nrec, 

which is the dimension of mnii u  in chapter 4.2. This is the summation for 
the group elements. The factors to be summed are constructed a little differently, 

depending on if (1) _  is symmorphic, (2) _  is nonsymmorphic but  within the 

Bz, (3) Nonsymmorphic _
k

G , 
_

k  on the Bz-boundary. 

 

_

P ))|((
_

Γ

k
G

k
G

_

k

7.2 Test if the resulting matrix is idempotent and hermitian. If not, print a message. 
 

7.3 Orthonormalisation of the columns of the projection matrix, see chapter 3.3, 
section  8.5. 
 

7.4 Write the produced t-matrix, go to section  7.1. 
 
 
Section 8. End of the program. 
 
 
Print “SYMPWS has finished executing” and stop. 
 

4.4 Program proj_sympws.m 
 
Program proj_sympws.m reads the binary output file from SYMPWS.m and orders the 

columns for each -vector into separate projection matrices. 
_

k
 
In proj_sympws.m, the following statements have to be adapted to your naming the 
input/output files: 
 
in_proj = fopen(‘xx’, ‘r’);      where xx is your name for the SYMPWS.m binary output file. 
out_proj = fopen(‘yy’, ‘a’),   where yy is your name for the proj_sympws.m binary output 
file. 
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Sympws

Define input files

Use previous set of        ? 

Read  

Form      , test    to Bz

Extend the set of     
so that       form a 
stable basis

symmorphic?

Form the projection matrix

Last    -vector Print ”SYMPWS 
has finished exec.”

Stop

nK
_

nK
_

_
k

_
k_

k
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nK
_

nk
_ψ

G symmorphic or    within Bz
_
k

_
k

G

Form    __ /
kk
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no

no

yes

yes

Calculate the irreducible 
representations and store the 
diagonal elements     

Orthonormalise to t-matrix. Print t-matrix.

Last projection matrix for this wave vector?

yes

no

no

yes

 
Figure 6: Flowing scheme of program SYMPWS 
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