----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- | | | COUPLED CHANNEL MOLECULAR SCATTERING PROGRAM OF J. M. HUTSON AND S. GREEN | | VERSION 1 BY S. GREEN (NOV 1973); THIS IS VERSION 12 (NOV 93) | | | | RUN ON 23 May 1994 AT 14:42:39 | | | ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- PUBLICATIONS RESULTING FROM THE USE OF THIS PROGRAM SHOULD REFER TO J. M. HUTSON AND S. GREEN, MOLSCAT COMPUTER CODE, VERSION 12 (1993) DISTRIBUTED BY COLLABORATIVE COMPUTATIONAL PROJECT NO. 6 OF THE SCIENCE AND ENGINEERING RESEARCH COUNCIL (UK) 0 /INPUT/ DATA ARE -- 0 RUN LABEL = TEST MOLSCAT -- ITYPE=2 MOCK-UP 0 SCRATCH CORE STORAGE ALLOCATION IS 250000(8-BYTE) WORDS ( 1953.12 KBYTES) 2 INTEGER(S) CAN BE STORED IN EACH WORD. 0 INTEGRATOR REQUESTED BY INPUT VALUE INTFLG = 8 +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + HIBRIDON: MODIFIED LOG DERIVATIVE - AIRY INTEGRATOR + + ALL PUBLICATIONS RESULTING FROM USE OF THIS INTEGRATOR MUST INCLUDE + + THE FOLLOWING REFERENCE: + + M. H. ALEXANDER AND D. E. MANOLOPOULOS, J. CHEM. PHYS. 86, 2044-2050 (1987) + +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + 0 INTEGRATION PARAMETERS ARE RMIN = .50 STEPS = 5.0 RMAX = 10.00 IABSDR = 0 0 AIRY PARAMETERS RMID = .0000 DRAIRY= -1.0000 TOLHI= 1.050000 POWRX = 3.00 0 RVFAC = 1.05 OVERRIDES INPUT RMID 0 DRAIRY.LT.0 TAKES INITIAL AIRY STEP SIZE FROM MODIFIED LOG-DERIVATIVE VALUE. 0 TOLHI.GE.1 -- AIRY STEP SIZE INCREASED BY FACTOR OF TOLHI AT EACH STEP 0 IRXSET = 1 OPTION. RMAX ADJUSTED AUTOMATICALLY FOR EACH NEW JTOT,MVAL 0 IRMSET = 8 OPTION. RMIN CHOSEN AUTOMATICALLY FOR EACH NEW JTOT 0 ENERGY-INDEPENDENT MATRICES WILL BE SAVED TEMPORARILY ON UNIT 1 0 REDUCED MASS FOR COLLISION = 20.000000000 A.M.U. 0 CONTROL DATA FOR TOTAL ANGULAR MOMENTUM IS JTOT FROM 10 TO 40 IN STEPS OF 10 0 INPUT ENERGY VALUES ASSUMED TO BE IN UNITS OF 1/CM BY DEFAULT. 0 CONTROL DATA FOR TOTAL ENERGIES. CALCULATIONS WILL BE PERFORMED FOR 2 VALUES ENERGY NO. 1 = 1250.000000000 (1/CM) = .154980304483 E.V. ENERGY NO. 2 = 1000.000000000 (1/CM) = .123984243586 E.V. 0 PRINT LEVEL (PRNTLV) = 3 OTHER PRINT CONTROLS ISIGPR = 1 ITHROW = 0 0======================================================================================================================== 0 /BASIS/ DATA ARE -- 0 INPUT ENERGY VALUES ASSUMED TO BE IN UNITS OF 1/CM BY DEFAULT. 0 COUPLED STATES APPROXIMATION OF MCGUIRE AND KOURI (C.F. J. CHEM. PHYS. 60, 2488 (1974)) WILL BE USED. 0 ITYPE = 22 L(I) = JTOT + ( 0) * J(I) 0 COLLISION TYPE IS DIATOMIC VIB-ROTOR - ATOM. 0 TARGET ROTATIONAL LEVELS TAKEN FROM &BASIS (JLEVEL) INPUT. NLEVEL = 6 0 TARGET ENERGY LEVELS COMPUTED FROM WE = 1200.0000, B(E) = 30.0000, WITH ZERO ENERGY AT V=0, J=0. *** NOTE. IN CS CALCULATION MINUS/PLUS M-VALUE ASSUMED TO BE IDENTICAL. 0 * * * NOTE. IN CS OR DLD APPROXIMATION SUBSPACE IS LIMITED BY JZCSMX = 2. CROSS SECTIONS BETWEEN HIGHER J NO GOOD. 0 LEVEL ENERGY(1/CM) J V SIG INDX 1 .0000000 0 0 1 2 180.0000000 2 0 2 3 600.0000000 4 0 3 4 1260.0000000 6 0 4 5 1200.0000000 0 1 5 6 1380.0000000 2 1 6 0======================================================================================================================== 0 STANDARD MOLSCAT POTENL ROUTINE CALLED FOR POTENTIAL. 0 /POTL/ DATA ARE -- 0 ANGULAR DEPENDENCE OF POTENTIAL EXPANDED IN TERMS OF LEGENDRE POLYNOMIALS, P(LAMBDA). INTEGRATED OVER DIATOM VIBRATIONAL FUNCTIONS 0 INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 1 WHICH HAS LAMBDA = 0 V = 0 V-PRIME= 0 .10000000D+01 * R **-12 -.20000000D+01 * R ** -6 0 INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 2 WHICH HAS LAMBDA = 2 V = 0 V-PRIME= 0 -.20000000D+00 * R ** -6 0 INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 3 WHICH HAS LAMBDA = 0 V = 1 V-PRIME= 1 .11000000D+01 * R **-12 -.22000000D+01 * R ** -6 0 INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 4 WHICH HAS LAMBDA = 2 V = 1 V-PRIME= 1 -.40000000D+00 * R ** -6 0 INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 5 WHICH HAS LAMBDA = 0 V = 1 V-PRIME= 0 .10000000D+00 * R **-12 0 INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 6 WHICH HAS LAMBDA = 2 V = 1 V-PRIME= 0 .10000000D-01 * R **-12 0 NUMBER OF UNIQUE POWERS = 2 POWER 1 = -12 POWER 2 = -6 0 ENERGY IN UNITS OF EPSILON = 50.00000 CM-1 R IN UNITS OF RM = 3.50000 ANGSTROMS 0 MXLAM = 6 NPOTL = 6 0======================================================================================================================== 0 STATE-TO-STATE INTEGRAL CROSS-SECTIONS WILL BE COMPUTED BUT NOT STORED ON DISK 0======================================================================================================================== 0 INITIALIZATION DONE. TIME WAS .02 CPU SECS. 171 WORDS OF STORAGE USED. 1=========================================== TEST MOLSCAT -- ITYPE=2 MOCK-UP =========================================== 0 ANGULAR MOMENTUM JTOT = 10 **************************** 0 INNER CLASSICAL TURNING POINT AT R = .7404 0 RMID = .78 OBTAINED FROM RVFAC = 1.050 AXSCAT. LOG DERIVATIVE MATRIX INTEGRATED FROM .6405 TO .7774 IN 29 STEPS. ** AIRY: RSTART = .777 REND = 10.000 DRMIN = .005 DRMAX = .436 NSTEP = 95 0 FOR JTOT = 10. 1 ENERGY( 1) = 1250.00, MAX CHANGE IN DIAG/OFF-DIAG SIG = .3229D+01 .1628D-02 TIME = .33 AXSCAT. LOG DERIVATIVE MATRIX INTEGRATED FROM .6405 TO .7774 IN 29 STEPS. ** AIRY: RSTART = .777 REND = 10.000 DRMIN = .000 DRMAX = .000 NSTEP = 95 0 FOR JTOT = 10. 1 ENERGY( 2) = 1000.00, MAX CHANGE IN DIAG/OFF-DIAG SIG = .1865D+00 .1398D-02 TIME = .15 0 0 INNER CLASSICAL TURNING POINT AT R = .7477 0 RMID = .79 OBTAINED FROM RVFAC = 1.050 AXSCAT. LOG DERIVATIVE MATRIX INTEGRATED FROM .6437 TO .7851 IN 28 STEPS. ** AIRY: RSTART = .785 REND = 10.000 DRMIN = .005 DRMAX = .427 NSTEP = 93 0 FOR JTOT = 10. 2 ENERGY( 1) = 1250.00, MAX CHANGE IN DIAG/OFF-DIAG SIG = .4377D-01 .9457D-06 TIME = .22 AXSCAT. LOG DERIVATIVE MATRIX INTEGRATED FROM .6437 TO .7851 IN 28 STEPS. ** AIRY: RSTART = .785 REND = 10.000 DRMIN = .000 DRMAX = .000 NSTEP = 93 0 FOR JTOT = 10. 2 ENERGY( 2) = 1000.00, MAX CHANGE IN DIAG/OFF-DIAG SIG = .4799D-01 .2375D-06 TIME = .08 0 0 INNER CLASSICAL TURNING POINT AT R = .7489 0 RMID = .79 OBTAINED FROM RVFAC = 1.050 AXSCAT. LOG DERIVATIVE MATRIX INTEGRATED FROM .6444 TO .7863 IN 28 STEPS. ** AIRY: RSTART = .786 REND = 10.000 DRMIN = .005 DRMAX = .427 NSTEP = 93 0 FOR JTOT = 10. 3 ENERGY( 1) = 1250.00, MAX CHANGE IN DIAG/OFF-DIAG SIG = .6741D-01 .8038D-06 TIME = .21 AXSCAT. LOG DERIVATIVE MATRIX INTEGRATED FROM .6444 TO .7863 IN 28 STEPS. ** AIRY: RSTART = .786 REND = 10.000 DRMIN = .000 DRMAX = .000 NSTEP = 93 0 FOR JTOT = 10. 3 ENERGY( 2) = 1000.00, MAX CHANGE IN DIAG/OFF-DIAG SIG = .5896D-01 .2195D-06 TIME = .11 0 0 ANGULAR MOMENTUM JTOT = 20 **************************** 0 INNER CLASSICAL TURNING POINT AT R = .7419 0 RMID = .78 OBTAINED FROM RVFAC = 1.050 AXSCAT. LOG DERIVATIVE MATRIX INTEGRATED FROM .6413 TO .7790 IN 29 STEPS. ** AIRY: RSTART = .779 REND = 10.000 DRMIN = .005 DRMAX = .436 NSTEP = 95 0 FOR JTOT = 20. 1 ENERGY( 1) = 1250.00, MAX CHANGE IN DIAG/OFF-DIAG SIG = .7491D+01 .3043D-02 TIME = .30 AXSCAT. LOG DERIVATIVE MATRIX INTEGRATED FROM .6413 TO .7790 IN 29 STEPS. ** AIRY: RSTART = .779 REND = 10.000 DRMIN = .000 DRMAX = .000 NSTEP = 95 0 FOR JTOT = 20. 1 ENERGY( 2) = 1000.00, MAX CHANGE IN DIAG/OFF-DIAG SIG = .1008D+00 .2555D-02 TIME = .13 0 0 INNER CLASSICAL TURNING POINT AT R = .7495 0 RMID = .79 OBTAINED FROM RVFAC = 1.050 AXSCAT. LOG DERIVATIVE MATRIX INTEGRATED FROM .6446 TO .7870 IN 28 STEPS. ** AIRY: RSTART = .787 REND = 10.000 DRMIN = .005 DRMAX = .427 NSTEP = 93 0 FOR JTOT = 20. 2 ENERGY( 1) = 1250.00, MAX CHANGE IN DIAG/OFF-DIAG SIG = .4193D-01 .1461D-05 TIME = .20 AXSCAT. LOG DERIVATIVE MATRIX INTEGRATED FROM .6446 TO .7870 IN 28 STEPS. ** AIRY: RSTART = .787 REND = 10.000 DRMIN = .000 DRMAX = .000 NSTEP = 93 0 FOR JTOT = 20. 2 ENERGY( 2) = 1000.00, MAX CHANGE IN DIAG/OFF-DIAG SIG = .2089D+00 .4433D-06 TIME = .11 0 0 INNER CLASSICAL TURNING POINT AT R = .7507 0 RMID = .79 OBTAINED FROM RVFAC = 1.050 AXSCAT. LOG DERIVATIVE MATRIX INTEGRATED FROM .6453 TO .7882 IN 28 STEPS. ** AIRY: RSTART = .788 REND = 10.000 DRMIN = .005 DRMAX = .427 NSTEP = 93 0 FOR JTOT = 20. 3 ENERGY( 1) = 1250.00, MAX CHANGE IN DIAG/OFF-DIAG SIG = .3127D-01 .1257D-05 TIME = .23 AXSCAT. LOG DERIVATIVE MATRIX INTEGRATED FROM .6453 TO .7882 IN 28 STEPS. ** AIRY: RSTART = .788 REND = 10.000 DRMIN = .000 DRMAX = .000 NSTEP = 93 0 FOR JTOT = 20. 3 ENERGY( 2) = 1000.00, MAX CHANGE IN DIAG/OFF-DIAG SIG = .2036D+00 .3986D-06 TIME = .09 0 0 ANGULAR MOMENTUM JTOT = 30 **************************** 0 INNER CLASSICAL TURNING POINT AT R = .7446 0 RMID = .78 OBTAINED FROM RVFAC = 1.050 AXSCAT. LOG DERIVATIVE MATRIX INTEGRATED FROM .6426 TO .7818 IN 29 STEPS. ** AIRY: RSTART = .782 REND = 10.000 DRMIN = .005 DRMAX = .436 NSTEP = 95 0 FOR JTOT = 30. 1 ENERGY( 1) = 1250.00, MAX CHANGE IN DIAG/OFF-DIAG SIG = .2247D+00 .4195D-02 TIME = .30 AXSCAT. LOG DERIVATIVE MATRIX INTEGRATED FROM .6426 TO .7818 IN 29 STEPS. ** AIRY: RSTART = .782 REND = 10.000 DRMIN = .000 DRMAX = .000 NSTEP = 95 0 FOR JTOT = 30. 1 ENERGY( 2) = 1000.00, MAX CHANGE IN DIAG/OFF-DIAG SIG = .1793D+00 .3372D-02 TIME = .14 0 0 INNER CLASSICAL TURNING POINT AT R = .7526 0 RMID = .79 OBTAINED FROM RVFAC = 1.050 AXSCAT. LOG DERIVATIVE MATRIX INTEGRATED FROM .6461 TO .7902 IN 28 STEPS. ** AIRY: RSTART = .790 REND = 10.000 DRMIN = .005 DRMAX = .427 NSTEP = 93 0 FOR JTOT = 30. 2 ENERGY( 1) = 1250.00, MAX CHANGE IN DIAG/OFF-DIAG SIG = .9923D-01 .1480D-05 TIME = .21 AXSCAT. LOG DERIVATIVE MATRIX INTEGRATED FROM .6461 TO .7902 IN 28 STEPS. ** AIRY: RSTART = .790 REND = 10.000 DRMIN = .000 DRMAX = .000 NSTEP = 93 0 FOR JTOT = 30. 2 ENERGY( 2) = 1000.00, MAX CHANGE IN DIAG/OFF-DIAG SIG = .3578D+00 .4021D-06 TIME = .07 0 0 INNER CLASSICAL TURNING POINT AT R = .7537 0 RMID = .79 OBTAINED FROM RVFAC = 1.050 AXSCAT. LOG DERIVATIVE MATRIX INTEGRATED FROM .6468 TO .7914 IN 28 STEPS. ** AIRY: RSTART = .791 REND = 10.000 DRMIN = .005 DRMAX = .427 NSTEP = 93 0 FOR JTOT = 30. 3 ENERGY( 1) = 1250.00, MAX CHANGE IN DIAG/OFF-DIAG SIG = .3468D-01 .1329D-05 TIME = .21 AXSCAT. LOG DERIVATIVE MATRIX INTEGRATED FROM .6468 TO .7914 IN 28 STEPS. ** AIRY: RSTART = .791 REND = 10.000 DRMIN = .000 DRMAX = .000 NSTEP = 93 0 FOR JTOT = 30. 3 ENERGY( 2) = 1000.00, MAX CHANGE IN DIAG/OFF-DIAG SIG = .3513D+00 .3451D-06 TIME = .10 0 0 ANGULAR MOMENTUM JTOT = 40 **************************** 0 INNER CLASSICAL TURNING POINT AT R = .7485 0 RMID = .79 OBTAINED FROM RVFAC = 1.050 AXSCAT. LOG DERIVATIVE MATRIX INTEGRATED FROM .6446 TO .7859 IN 30 STEPS. ** AIRY: RSTART = .786 REND = 10.000 DRMIN = .005 DRMAX = .436 NSTEP = 95 0 FOR JTOT = 40. 1 ENERGY( 1) = 1250.00, MAX CHANGE IN DIAG/OFF-DIAG SIG = .1628D+02 .4909D-02 TIME = .31 AXSCAT. LOG DERIVATIVE MATRIX INTEGRATED FROM .6446 TO .7859 IN 30 STEPS. ** AIRY: RSTART = .786 REND = 10.000 DRMIN = .000 DRMAX = .000 NSTEP = 95 0 FOR JTOT = 40. 1 ENERGY( 2) = 1000.00, MAX CHANGE IN DIAG/OFF-DIAG SIG = .5693D+00 .3826D-02 TIME = .15 0 0 INNER CLASSICAL TURNING POINT AT R = .7570 0 RMID = .79 OBTAINED FROM RVFAC = 1.050 AXSCAT. LOG DERIVATIVE MATRIX INTEGRATED FROM .6482 TO .7948 IN 29 STEPS. ** AIRY: RSTART = .795 REND = 10.000 DRMIN = .005 DRMAX = .427 NSTEP = 93 0 FOR JTOT = 40. 2 ENERGY( 1) = 1250.00, MAX CHANGE IN DIAG/OFF-DIAG SIG = .2429D+00 .1576D-05 TIME = .20 AXSCAT. LOG DERIVATIVE MATRIX INTEGRATED FROM .6482 TO .7948 IN 29 STEPS. ** AIRY: RSTART = .795 REND = 10.000 DRMIN = .000 DRMAX = .000 NSTEP = 93 0 FOR JTOT = 40. 2 ENERGY( 2) = 1000.00, MAX CHANGE IN DIAG/OFF-DIAG SIG = .4606D+00 .3782D-06 TIME = .10 0 0 INNER CLASSICAL TURNING POINT AT R = .7582 0 RMID = .80 OBTAINED FROM RVFAC = 1.050 AXSCAT. LOG DERIVATIVE MATRIX INTEGRATED FROM .6489 TO .7961 IN 29 STEPS. ** AIRY: RSTART = .796 REND = 10.000 DRMIN = .005 DRMAX = .427 NSTEP = 93 0 FOR JTOT = 40. 3 ENERGY( 1) = 1250.00, MAX CHANGE IN DIAG/OFF-DIAG SIG = .2232D+00 .1330D-05 TIME = .23 AXSCAT. LOG DERIVATIVE MATRIX INTEGRATED FROM .6489 TO .7961 IN 29 STEPS. ** AIRY: RSTART = .796 REND = 10.000 DRMIN = .000 DRMAX = .000 NSTEP = 93 0 FOR JTOT = 40. 3 ENERGY( 2) = 1000.00, MAX CHANGE IN DIAG/OFF-DIAG SIG = .4415D+00 .3056D-06 TIME = .10 0 1 TEST MOLSCAT -- ITYPE=2 MOCK-UP ENERGY JTOTL JSTEP JTOTU F I SIG(F,I) 0 *** N.B. CROSS SECTIONS HAVE BEEN MULTIPLIED BY JSTEP = 10 1250.000000 10 10 40 1 1 .344691E+01 1250.000000 10 10 40 2 1 .137754E+00 1250.000000 10 10 40 3 1 .141368E-05 1250.000000 10 10 40 5 1 .451971E-08 1250.000000 10 10 40 1 2 .321855E-01 1250.000000 10 10 40 2 2 .555816E+01 1250.000000 10 10 40 3 2 .130877E-03 1250.000000 10 10 40 1 3 .302068E-06 1250.000000 10 10 40 2 3 .119691E-03 1250.000000 10 10 40 3 3 .716234E+01 1250.000000 10 10 40 1 5 .112993E-06 1250.000000 10 10 40 2 5 .296742E-08 1250.000000 10 10 40 3 5 .174457E-09 1250.000000 10 10 40 5 5 .272289E+03 1000.000000 10 10 40 1 1 .786212E+01 1000.000000 10 10 40 2 1 .111509E+00 1000.000000 10 10 40 3 1 .206146E-06 1000.000000 10 10 40 1 2 .271973E-01 1000.000000 10 10 40 2 2 .135972E+02 1000.000000 10 10 40 3 2 .307124E-04 1000.000000 10 10 40 1 3 .572629E-07 1000.000000 10 10 40 2 3 .349780E-04 1000.000000 10 10 40 3 3 .219875E+02 0 0 ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- | | | COUPLED CHANNEL MOLECULAR SCATTERING PROGRAM OF J. M. HUTSON AND S. GREEN, VERSION 12 (NOV 93) | | | | THIS RUN USED 4.32 CPU SECS AND 948 OF THE ALLOCATED 250000 WORDS OF STORAGE | | | ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- | | | COUPLED CHANNEL MOLECULAR SCATTERING PROGRAM OF J. M. HUTSON AND S. GREEN | | VERSION 1 BY S. GREEN (NOV 1973); THIS IS VERSION 12 (NOV 93) | | | | RUN ON 23 May 1994 AT 14:42:49 | | | ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- PUBLICATIONS RESULTING FROM THE USE OF THIS PROGRAM SHOULD REFER TO J. M. HUTSON AND S. GREEN, MOLSCAT COMPUTER CODE, VERSION 12 (1993) DISTRIBUTED BY COLLABORATIVE COMPUTATIONAL PROJECT NO. 6 OF THE SCIENCE AND ENGINEERING RESEARCH COUNCIL (UK) 0 /INPUT/ DATA ARE -- 0 RUN LABEL = TEST MOLSCAT -- ITYPE=2 MOCK-UP -- * IOS * 0 SCRATCH CORE STORAGE ALLOCATION IS 250000(8-BYTE) WORDS ( 1953.12 KBYTES) 2 INTEGER(S) CAN BE STORED IN EACH WORD. 0 INTEGRATOR REQUESTED BY INPUT VALUE INTFLG = 8 +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + HIBRIDON: MODIFIED LOG DERIVATIVE - AIRY INTEGRATOR + + ALL PUBLICATIONS RESULTING FROM USE OF THIS INTEGRATOR MUST INCLUDE + + THE FOLLOWING REFERENCE: + + M. H. ALEXANDER AND D. E. MANOLOPOULOS, J. CHEM. PHYS. 86, 2044-2050 (1987) + +- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + 0 INTEGRATION PARAMETERS ARE RMIN = .50 STEPS = 5.0 RMAX = 10.00 IABSDR = 0 0 AIRY PARAMETERS RMID = .0000 DRAIRY= -1.0000 TOLHI= 1.050000 POWRX = 3.00 0 RVFAC = 1.05 OVERRIDES INPUT RMID 0 DRAIRY.LT.0 TAKES INITIAL AIRY STEP SIZE FROM MODIFIED LOG-DERIVATIVE VALUE. 0 TOLHI.GE.1 -- AIRY STEP SIZE INCREASED BY FACTOR OF TOLHI AT EACH STEP 0 IRXSET = 1 OPTION. RMAX ADJUSTED AUTOMATICALLY FOR EACH NEW JTOT,MVAL 0 IRMSET = 8 OPTION. RMIN CHOSEN AUTOMATICALLY FOR EACH NEW JTOT 0 ENERGY-INDEPENDENT MATRICES WILL BE SAVED TEMPORARILY ON UNIT 1 0 REDUCED MASS FOR COLLISION = 20.000000000 A.M.U. 0 CONTROL DATA FOR TOTAL ANGULAR MOMENTUM IS JTOT FROM 10 TO 40 IN STEPS OF 10 0 INPUT ENERGY VALUES ASSUMED TO BE IN UNITS OF 1/CM BY DEFAULT. 0 CONTROL DATA FOR TOTAL ENERGIES. CALCULATIONS WILL BE PERFORMED FOR 1 VALUES ENERGY NO. 1 = 1250.000000000 (1/CM) = .154980304483 E.V. 0 PRINT LEVEL (PRNTLV) = 3 OTHER PRINT CONTROLS ISIGPR = 1 ITHROW = 0 0======================================================================================================================== 0 /BASIS/ DATA ARE -- 0 ******************* ****** I O S ****** ******************* 0 PROCESSED BY IOSBIN ROUTINE (FEB/MAY 92). MODIFIED/NEW ITYPE 102/103. 0 INPUT ITYPE = 102 0 BASIS TAKEN FROM NLEVEL, JLEVEL INPUT. NO. OF LEVELS (NLEVEL) = 6 0 0 2 0 4 0 6 0 0 1 2 1 IOSBIN (FEB 92). LEVEL 2 V,J = 2 0 DUPLICATES AN EARLIER VIB LEVEL. VIBRATIONAL VALUE IGNORED, HIGHER J-VALUE KEPT. IOSBIN (FEB 92). LEVEL 2 V,J = 4 0 DUPLICATES AN EARLIER VIB LEVEL. VIBRATIONAL VALUE IGNORED, HIGHER J-VALUE KEPT. IOSBIN (FEB 92). LEVEL 2 V,J = 6 0 DUPLICATES AN EARLIER VIB LEVEL. VIBRATIONAL VALUE IGNORED, HIGHER J-VALUE KEPT. IOSBIN (FEB 92). LEVEL 3 V,J = 2 1 DUPLICATES AN EARLIER VIB LEVEL. VIBRATIONAL VALUE IGNORED, HIGHER J-VALUE KEPT. 0 IOSBIN (FEB 92). NUMBER OF VIB. CHANNELS (NVC) = 2 0 TARGET ENERGY LEVELS (TAKING V = 0 AS ZERO ENERGY) COMPUTED FROM WE = 1200.0000 LEVEL 1 LEVV = 0 EV = .0000 LEVEL 2 LEVV = 1 EV = 1200.0000 0======================================================================================================================== 0 STANDARD MOLSCAT POTENL ROUTINE CALLED FOR POTENTIAL. 0 /POTL/ DATA ARE -- 0 ANGULAR DEPENDENCE OF POTENTIAL EXPANDED IN TERMS OF LEGENDRE POLYNOMIALS, P(LAMBDA). INTEGRATED OVER DIATOM VIBRATIONAL FUNCTIONS 0 INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 1 WHICH HAS LAMBDA = 0 V = 0 V-PRIME= 0 .10000000D+01 * R **-12 -.20000000D+01 * R ** -6 0 INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 2 WHICH HAS LAMBDA = 2 V = 0 V-PRIME= 0 -.20000000D+00 * R ** -6 0 INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 3 WHICH HAS LAMBDA = 0 V = 1 V-PRIME= 1 .11000000D+01 * R **-12 -.22000000D+01 * R ** -6 0 INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 4 WHICH HAS LAMBDA = 2 V = 1 V-PRIME= 1 -.40000000D+00 * R ** -6 0 INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 5 WHICH HAS LAMBDA = 0 V = 1 V-PRIME= 0 .10000000D+00 * R **-12 0 INTERACTION POTENTIAL FOR SYMMETRY TYPE NUMBER 6 WHICH HAS LAMBDA = 2 V = 1 V-PRIME= 0 .10000000D-01 * R **-12 0 NUMBER OF UNIQUE POWERS = 2 POWER 1 = -12 POWER 2 = -6 0 ENERGY IN UNITS OF EPSILON = 50.00000 CM-1 R IN UNITS OF RM = 3.50000 ANGSTROMS 0 MXLAM = 6 NPOTL = 6 0======================================================================================================================== 0 IOSDRV ENTERED. SET-UP FOR INFINITE ORDER SUDDEN CALCULATION. 0 * * * NOTE. * * * NOTE. USE WILL BE MADE OF FACT THAT POTENTIAL HAS ONLY EVEN LEGENDRE TERMS. 0 * * * NOTE. NGL = 8 TAKEN FROM &BASIS IOSNGP(1) = 8 0 THETA INTEGRATION DONE BY 8-POINT GAUSSIAN QUADRATURE. POINTS/WEIGHTS ARE .019855 .101229 .101667 .222381 .237234 .313707 .408283 .362684 .591717 .362684 .762766 .313707 .898333 .222381 .980145 .101229 0 LMAX TAKEN FROM &INPUT LMAX = 11 0 STORAGE ALLOCATED FOR NVC (NO. VIB. CHANNELS) = 2 NGPT (NO. GAUSS PTS.) = 8 LMAX (NO. LEGENDRE COEFFS.) = 11 MXXXXL (NO. SYMMETRIES IN POTL) = 2 NQL (NO. QLT) = 11 NIXQL (NO. INDICES IN IXQL) = 2 NEXT LOCATION = 426 0 TIME TO SET UP CALCULATION WAS .02 SECONDS. EXIT IOSDRV 0======================================================================================================================== 1 IOSCLC (MAY 92). ENERGY( 1) = 1250.0000 (1/CM). 0 ***** PARTIAL WAVE = 10 FOR ENERGY( 1) = 1250.0000 ***** 0 ***** PARTIAL WAVE = 20 FOR ENERGY( 1) = 1250.0000 ***** 0 ***** PARTIAL WAVE = 30 FOR ENERGY( 1) = 1250.0000 ***** 0 ***** PARTIAL WAVE = 40 FOR ENERGY( 1) = 1250.0000 ***** 1 ***** ***** ***** END OF CALCULATION FOR ENERGY = 1250.0000 (1/CM) ***** ***** ***** PARTIAL WAVES 10 ( 10 ) 40 0 ***** ***** ***** TIME WAS 3.83 SEC. 0 ***** ***** STORAGE SO FAR USED 582 OF THE 250000 AVAILABLE WORDS. 0 FOR ORIENTATION 1 SIG( 1, 1) = 5.7799E-01 SIG( 1, 2) = 1.4914E-09 SIG( 2, 1) = 3.7285E-08 SIG( 2, 2) = 2.0470E+01 0 FOR ORIENTATION 2 SIG( 1, 1) = 5.6886E-01 SIG( 1, 2) = 1.4369E-09 SIG( 2, 1) = 3.5922E-08 SIG( 2, 2) = 2.0771E+01 0 FOR ORIENTATION 3 SIG( 1, 1) = 5.2834E-01 SIG( 1, 2) = 1.1131E-09 SIG( 2, 1) = 2.7827E-08 SIG( 2, 2) = 2.2002E+01 0 FOR ORIENTATION 4 SIG( 1, 1) = 4.4404E-01 SIG( 1, 2) = 3.7761E-10 SIG( 2, 1) = 9.4401E-09 SIG( 2, 2) = 2.4336E+01 0 FOR ORIENTATION 5 SIG( 1, 1) = 3.5458E-01 SIG( 1, 2) = 4.4135E-10 SIG( 2, 1) = 1.1034E-08 SIG( 2, 2) = 2.7650E+01 0 FOR ORIENTATION 6 SIG( 1, 1) = 3.4867E-01 SIG( 1, 2) = 2.1515E-09 SIG( 2, 1) = 5.3788E-08 SIG( 2, 2) = 8.1260E+00 0 FOR ORIENTATION 7 SIG( 1, 1) = 4.5943E-01 SIG( 1, 2) = 2.5092E-09 SIG( 2, 1) = 6.2731E-08 SIG( 2, 2) = 2.6583E+01 0 FOR ORIENTATION 8 SIG( 1, 1) = 5.9011E-01 SIG( 1, 2) = 2.0389E-09 SIG( 2, 1) = 5.0973E-08 SIG( 2, 2) = 3.3747E+01 0 AVERAGE OVER ORIENTATIONS SIG( 1, 1) = 4.5584E-01 SIG( 1, 2) = 1.2780E-09 SIG( 2, 1) = 3.1951E-08 SIG( 2, 2) = 2.2162E+01 1 STATE-TO-STATE CROSS SECTIONS (IN ANG**2) FOR KINETIC ENERGY = 1250.0000 (1/CM). 0 PROCESSED BY IOSOUT (FEB 92). 0 CROSS SECTIONS (BUT NOT QL) MULTIPLIED BY JSTEP = 10 0 NO. OF VIBRATIONAL LEVELS = 2. LEVELS ARE 0 1 0 MAXIMUM J-VALUE REQUESTED IS 6 0 QLOLD(0) 1 TO 1 = -1.4408E-01 1 TO 2 = 6.8797E-10 2 TO 1 = 1.7199E-08 2 TO 2 = -9.3040E+00 0 Q( 0 ) 1 TO 1 = 3.1176E-01 1 TO 2 = 6.8797E-10 2 TO 1 = 1.7199E-08 2 TO 2 = 1.2858E+01 0 Q( 1 ) 1 TO 1 = 0.0000E+00 1 TO 2 = 0.0000E+00 2 TO 1 = 0.0000E+00 2 TO 2 = 0.0000E+00 0 Q( 2 ) 1 TO 1 = 1.3328E-01 1 TO 2 = 2.0338E-11 2 TO 1 = 5.0845E-10 2 TO 2 = 1.9201E+00 0 Q( 3 ) 1 TO 1 = 0.0000E+00 1 TO 2 = 0.0000E+00 2 TO 1 = 0.0000E+00 2 TO 2 = 0.0000E+00 0 Q( 4 ) 1 TO 1 = 1.0451E-02 1 TO 2 = 1.9685E-10 2 TO 1 = 4.9212E-09 2 TO 2 = 2.7864E+00 0 Q( 5 ) 1 TO 1 = 0.0000E+00 1 TO 2 = 0.0000E+00 2 TO 1 = 0.0000E+00 2 TO 2 = 0.0000E+00 0 Q( 6 ) 1 TO 1 = 3.4239E-04 1 TO 2 = 2.0321E-10 2 TO 1 = 5.0802E-09 2 TO 2 = 2.3386E+00 0 Q( 7 ) 1 TO 1 = 0.0000E+00 1 TO 2 = 0.0000E+00 2 TO 1 = 0.0000E+00 2 TO 2 = 0.0000E+00 0 Q( 8 ) 1 TO 1 = 6.1573E-06 1 TO 2 = 9.0960E-11 2 TO 1 = 2.2740E-09 2 TO 2 = 1.0182E+00 0 Q( 9 ) 1 TO 1 = 0.0000E+00 1 TO 2 = 0.0000E+00 2 TO 1 = 0.0000E+00 2 TO 2 = 0.0000E+00 0 Q( 10 ) 1 TO 1 = 6.4253E-08 1 TO 2 = 6.8224E-11 2 TO 1 = 1.7056E-09 2 TO 2 = 1.0708E+00 0 ***** ***** ***** BELOW FOR VIB LEVEL 1 TO 1 0 FOR INITIAL LEVEL J = 0 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 3.1176E+00 1 0.0000E+00 2 1.3328E+00 3 0.0000E+00 4 1.0451E-01 5 0.0000E+00 6 3.4239E-03 0 FOR INITIAL LEVEL J = 1 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 0.0000E+00 1 3.6507E+00 2 0.0000E+00 3 8.4614E-01 4 0.0000E+00 5 5.9644E-02 6 0.0000E+00 0 FOR INITIAL LEVEL J = 2 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 2.6656E-01 1 0.0000E+00 2 3.5283E+00 3 0.0000E+00 4 7.1367E-01 5 0.0000E+00 6 4.8398E-02 0 FOR INITIAL LEVEL J = 3 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 0.0000E+00 1 3.6263E-01 2 0.0000E+00 3 3.4928E+00 4 0.0000E+00 5 6.5827E-01 6 0.0000E+00 0 FOR INITIAL LEVEL J = 4 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 1.1613E-02 1 0.0000E+00 2 3.9648E-01 3 0.0000E+00 4 3.4812E+00 5 0.0000E+00 6 6.2746E-01 0 FOR INITIAL LEVEL J = 5 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 0.0000E+00 1 1.6267E-02 2 0.0000E+00 3 4.1890E-01 4 0.0000E+00 5 3.4759E+00 6 0.0000E+00* 0 FOR INITIAL LEVEL J = 6 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 2.6338E-04 1 0.0000E+00 2 1.8615E-02 3 0.0000E+00 4 4.3439E-01 5 0.0000E+00* 6 3.4729E+00* 0 ***** NOTE. FOR CROSS SECTIONS MARKED WITH A STAR, SOME CONTRIBUTING Q(L) ARE NOT AVAILABLE. 0 ***** ***** ***** BELOW FOR VIB LEVEL 1 TO 2 0 FOR INITIAL LEVEL J = 0 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 6.8797E-09 1 0.0000E+00 2 2.0338E-10 3 0.0000E+00 4 1.9685E-09 5 0.0000E+00 6 2.0321E-09 0 FOR INITIAL LEVEL J = 1 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 0.0000E+00 1 6.9610E-09 2 0.0000E+00 3 9.9691E-10 4 0.0000E+00 5 2.0315E-09 6 0.0000E+00 0 FOR INITIAL LEVEL J = 2 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 4.0676E-11 1 0.0000E+00 2 7.5002E-09 3 0.0000E+00 4 1.2554E-09 5 0.0000E+00 6 1.7117E-09 0 FOR INITIAL LEVEL J = 3 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 0.0000E+00 1 4.2725E-10 2 0.0000E+00 3 7.7655E-09 4 0.0000E+00 5 1.1247E-09 6 0.0000E+00 0 FOR INITIAL LEVEL J = 4 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 2.1872E-10 1 0.0000E+00 2 6.9742E-10 3 0.0000E+00 4 7.7186E-09 5 0.0000E+00 6 1.0713E-09 0 FOR INITIAL LEVEL J = 5 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 0.0000E+00 1 5.5404E-10 2 0.0000E+00 3 7.1572E-10 4 0.0000E+00 5 7.7088E-09 6 0.0000E+00* 0 FOR INITIAL LEVEL J = 6 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 1.5632E-10 1 0.0000E+00 2 6.5833E-10 3 0.0000E+00 4 7.4165E-10 5 0.0000E+00* 6 7.6140E-09* 0 ***** NOTE. FOR CROSS SECTIONS MARKED WITH A STAR, SOME CONTRIBUTING Q(L) ARE NOT AVAILABLE. 0 ***** ***** ***** BELOW FOR VIB LEVEL 2 TO 1 0 FOR INITIAL LEVEL J = 0 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 1.7199E-07 1 0.0000E+00 2 5.0845E-09 3 0.0000E+00 4 4.9212E-08 5 0.0000E+00 6 5.0802E-08 0 FOR INITIAL LEVEL J = 1 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 0.0000E+00 1 1.7403E-07 2 0.0000E+00 3 2.4923E-08 4 0.0000E+00 5 5.0787E-08 6 0.0000E+00 0 FOR INITIAL LEVEL J = 2 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 1.0169E-09 1 0.0000E+00 2 1.8750E-07 3 0.0000E+00 4 3.1384E-08 5 0.0000E+00 6 4.2791E-08 0 FOR INITIAL LEVEL J = 3 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 0.0000E+00 1 1.0681E-08 2 0.0000E+00 3 1.9414E-07 4 0.0000E+00 5 2.8118E-08 6 0.0000E+00 0 FOR INITIAL LEVEL J = 4 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 5.4680E-09 1 0.0000E+00 2 1.7436E-08 3 0.0000E+00 4 1.9297E-07 5 0.0000E+00 6 2.6782E-08 0 FOR INITIAL LEVEL J = 5 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 0.0000E+00 1 1.3851E-08 2 0.0000E+00 3 1.7893E-08 4 0.0000E+00 5 1.9272E-07 6 0.0000E+00* 0 FOR INITIAL LEVEL J = 6 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 3.9079E-09 1 0.0000E+00 2 1.6458E-08 3 0.0000E+00 4 1.8541E-08 5 0.0000E+00* 6 1.9035E-07* 0 ***** NOTE. FOR CROSS SECTIONS MARKED WITH A STAR, SOME CONTRIBUTING Q(L) ARE NOT AVAILABLE. 0 ***** ***** ***** BELOW FOR VIB LEVEL 2 TO 2 0 FOR INITIAL LEVEL J = 0 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 1.2858E+02 1 0.0000E+00 2 1.9201E+01 3 0.0000E+00 4 2.7864E+01 5 0.0000E+00 6 2.3386E+01 0 FOR INITIAL LEVEL J = 1 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 0.0000E+00 1 1.3626E+02 2 0.0000E+00 3 2.3905E+01 4 0.0000E+00 5 2.6274E+01 6 0.0000E+00 0 FOR INITIAL LEVEL J = 2 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 3.8402E+00 1 0.0000E+00 2 1.4203E+02 3 0.0000E+00 4 2.4472E+01 5 0.0000E+00 6 2.1972E+01 0 FOR INITIAL LEVEL J = 3 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 0.0000E+00 1 1.0245E+01 2 0.0000E+00 3 1.4422E+02 4 0.0000E+00 5 2.2045E+01 6 0.0000E+00 0 FOR INITIAL LEVEL J = 4 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 3.0960E+00 1 0.0000E+00 2 1.3595E+01 3 0.0000E+00 4 1.4340E+02 5 0.0000E+00 6 2.1623E+01 0 FOR INITIAL LEVEL J = 5 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 0.0000E+00 1 7.1655E+00 2 0.0000E+00 3 1.4029E+01 4 0.0000E+00 5 1.4373E+02 6 0.0000E+00* 0 FOR INITIAL LEVEL J = 6 CROSS SECTIONS (ANG**2) TO FINAL LEVELS ARE 0 1.7989E+00 1 0.0000E+00 2 8.4508E+00 3 0.0000E+00 4 1.4970E+01 5 0.0000E+00* 6 1.4237E+02* 0 ***** NOTE. FOR CROSS SECTIONS MARKED WITH A STAR, SOME CONTRIBUTING Q(L) ARE NOT AVAILABLE. 0 0 ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- | | | COUPLED CHANNEL MOLECULAR SCATTERING PROGRAM OF J. M. HUTSON AND S. GREEN, VERSION 12 (NOV 93) | | | | THIS RUN USED 3.87 CPU SECS AND 582 OF THE ALLOCATED 250000 WORDS OF STORAGE | | | ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- | | | COUPLED CHANNEL MOLECULAR SCATTERING PROGRAM OF J. M. HUTSON AND S. GREEN | | VERSION 1 BY S. GREEN (NOV 1973); THIS IS VERSION 12 (NOV 93) | | | | RUN ON 23 May 1994 AT 14:42:58 | | | ----MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT--------MOLSCAT---- PUBLICATIONS RESULTING FROM THE USE OF THIS PROGRAM SHOULD REFER TO J. M. HUTSON AND S. GREEN, MOLSCAT COMPUTER CODE, VERSION 12 (1993) DISTRIBUTED BY COLLABORATIVE COMPUTATIONAL PROJECT NO. 6 OF THE SCIENCE AND ENGINEERING RESEARCH COUNCIL (UK)