CCL:G: Help with DFT convergence failure for Fe2CO2 in Gaussian software



Looks like there still will be room for some human knowledge in comp. chem. for a while….

It is difficult to find anything correct in the free flowing text below.

 

Frank

 

Frank Jensen
Assoc. Prof.
Dept. of Chemistry
Aarhus University
https://tildeweb.au.dk/au23758/

 

From: owner-chemistry+frj==chem.au.dk _ ccl.net <owner-chemistry+frj==chem.au.dk _ ccl.net> On Behalf Of Cheng Fei Phung feiphung|hotmail.com
Sent: Thursday, March 2, 2023 2:38 PM
To: Frank Jensen <frj _ chem.au.dk>
Subject: CCL:G: Help with DFT convergence failure for Fe2CO2 in Gaussian software

 

Hi,

the following is from chatGPT, what do you guys think ?

 

 

When using the 6-311G basis set, it is common to add diffuse functions to improve the description of electron correlation and dispersion interactions. One commonly used set of diffuse functions is the "polarization-consistent basis set" (pcS-n, where n is an integer), which adds diffuse functions to the valence and polarization sets in a consistent way.

 

For Fe2+ ferrous ion, a suitable choice of diffuse functions would depend on the level of accuracy required and the size of the system. As a starting point, you could consider adding diffuse functions up to the pcS-4 level, which would add 4 sets of diffuse functions to the 6-311G basis set.

 

To specify the pcS-4 basis set in Gaussian, you can use the following basis set specification:

 

 

```

# opt umn15l/6-311++g(d,p) scrf=(solvent=water) geom=connectivity

 

Fe2CO2_OPT

 

2 3

 Fe                 2.74538330    8.28679554    5.00000000

 O                  4.55208397    8.06717607    5.00000000

 C                  5.30819317    9.07309328    5.00000000

 O                  5.97838127    9.96470142    5.00000000

 

 1 2 1.0

 2 3 2.0

 3 4 3.0

 4

 

Fe S 4

6-311G(d,p)  Fe 4,4,4,4,4,4

****

C S 1

6-311G(d,p)  C 3,3,3,3,3,3

****

O S 2

6-311G(d,p)  O 3,3,3,3,3,3

****

```

 

 

In this input file, the "S" keyword specifies that diffuse functions should be added to the basis set, and the "4" after "Fe S" indicates that 4 sets of diffuse functions should be added to the iron atom. The same format is used for the carbon and oxygen atoms.

 

It is also worth noting that the use of solvent models, such as the SCRF model with water as the solvent, can further improve the accuracy of calculations by including the effects of solvation. However, the choice of solvent model and the level of theory used for the calculation of solvent effects can also affect the accuracy of the results.

 

 

 


From: owner-chemistry+feiphung==hotmail.com:-:ccl.net <owner-chemistry+feiphung==hotmail.com:-:ccl.net> on behalf of David Shobe shobedavid]^[gmail.com <owner-chemistry:-:ccl.net>
Sent: Wednesday, March 1, 2023 7:53 PM
To: Phung, Cheng Fei <feiphung:-:hotmail.com>
Subject: CCL:G: Help with DFT convergence failure for Fe2CO2 in Gaussian software

 

Dear Cheng Fei Phung --

 

Isolated Fe^2+ is a quintuplet in the ground state. The coordination with the CO2 molecule may change it to a different electronic state, most likely to a triplet. 

 

The charge and multiplicity are specified by replacing the "0 1" line with "2 5" for the quintuplet or "2 3" for the triplet. The "++" in GaussView is a red herring (if you don't know this _expression_, it refers to a misleading clue), as the "++" refers to diffuse functions in the basis set. 

 

Good luck! Calculations of transition metals are difficult. I should warn you that even if you get a converged SCF, it might not be the correct electronic state. Take a look at the manual under the keywords SCF and stable for more information.

 

 

--David Shobe 

On Wed, Mar 1, 2023, 2:48 AM Cheng Fei Phung feiphung-*-hotmail.com <owner-chemistry::ccl.net> wrote:

Hi,

 

Since my messages contains the image and is longer than a limit for general distribution,

the CCL Admin saved my message under

so please open this link to read my response

 

Note that I am doing Fe2+ ferrous ion for MOF carbon capture

 

 

What do you guys think about the following xtb result from https://calcus.cloud/ ?

 

 

4

 energy: -13.349149310898 gnorm: 0.000502022323 xtb: 6.5.1 (579679a)

Fe           2.73292919494009        7.81690557181600        4.99999999991402

O            4.23822629938734        8.62616541285678        4.99975863372067

C            5.28034049639189        9.19333556707946        5.00051367720569

O            6.33254571928068        9.75535975824776        4.99972768915961

 

 

Regards,

Cheng Fei  Phung

 


From: owner-chemistry+feiphung==hotmail.com_-_ccl.net <owner-chemistry+feiphung==hotmail.com_-_ccl.net> on behalf of Igors Mihailovs igorsm_._cfi.lu.lv <owner-chemistry_-_ccl.net>
Sent: Sunday, February 26, 2023 10:50 PM
To: Phung, Cheng Fei <feiphung_-_hotmail.com>
Subject: CCL:G: Re: CCL:G: Help with DFT convergence failure for Fe2CO2 in Gaussian software

 

Dear Cheng Fei  Phung,

I would use something like MN15 or MN15L, and a basis set with at least some polarization (6-311G(d,p), for example). Especially if I had to perform something like a token computation in order to get someone's experimental results published.

Trying to converge B3LYP for a transition metal compound may take more time than the options described above...

Best regards,
Igors Mihailovs
former employee at ISSP UL

On February 25, 2023 12:09:02 PM GMT+02:00, "Cheng Fei Phung feiphung=-=hotmail.com" <owner-chemistry^-^ccl.net> wrote:


Sent to CCL by: "Cheng Fei  Phung" [feiphung{:}http://hotmail.com" target="_blank">hotmail.com]
With the following gaussian16 gjf input file, I got some convergence failure issues.

Could anyone help ?


Gaussian input gjf file

```
%chk=step_000_DFT.chk
# opt b3lyp/6-31g geom=connectivity

Fe2CO2_OPT

0 1
Fe                 2.74538330    8.28679554    5.00000000
O                  4.55208397    8.06717607    5.00000000
C                  5.30819317    9.07309328    5.00000000
O                  5.97838127    9.96470142    5.00000000

1 2 1.0
2 3 2.0
3 4 3.0
4
```


Gaussian log file

```
%chk=step_000_DFT.chk

 # opt b3lyp/6-31g geom=connectivity

 1/18=20,19=15,26=3,38=1,57=2/1,3;
2/9=110,12=2,17=6,18=5,40=1/2;
3/5=1,6=6,11=2,25=1,30=1,71=1,74=-5/1,2,3;
4//1;
5/5=2,38=5/2;
6/7=2,8=2,9=2,10=2,28=1/1;
7//1,2,3,16;
1/18=20,19=15,26=3/3(2);
2/9=110/2;
99//99;
2/9=110/2;
3/5=1,6=6,11=2,25=1,30=1,71=1,74=-5/1,2,3;
4/5=5,16=3,69=1/1;
5/5=2,38=5/2;
7//1,2,3,16;
1/18=20,19=15,26=3/3(-5);
2/9=110/2;
6/7=2,8=2,9=2,10=2,19=2,28=1/1;
99/9=1/99;

 Fe2CO2_OPT

 Symbolic Z-matrix:
Charge =  0 Multiplicity = 1
Fe                    2.74538   8.2868    5.
 O                     4.55208   8.06718   5.
 C                     5.30819   9.07309   5.
 O                     5.97838   9.9647    5.
 

 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Initialization pass.

                          
 !    Initial Parameters   
 !
                           ! (Angstroms and Degrees)  !
--------------------------                            --------------------------
! Name  Definition              Value          Derivative Info.                !

 ! R1   
 R(1,2)                 
 1.82           estimate
 D2E/DX2               
 !
! R2    R(2,3)                  1.2584         estimate D2E/DX2                !
! R3    R(3,4)                  1.1154         estimate D2E/DX2                !
! A1    A(1,2,3)              120.0            estimate D2E/DX2                !
! A2    L(2,3,4,1,-1)         180.0            estimate D2E/DX2                !
! A3    L(2,3,4,1,-2)         180.0            estimate D2E/DX2                !

 Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 EigMax=2.50D+02
 EigMin=1.00D-04
Number of steps in this run=     20 maximum allowed number of steps=    100.
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

                          Input orientation:                         

 Center     Atomic     
 Atomic            
 Coordinates (Angstroms)
Number     Number       Type             X           Y           Z

     
 1        
 26          
 0        2.745383   
 8.286796    5.000000
      2          8           0        4.552084    8.067176    5.000000
      3          6           0        5.308193    9.073093    5.000000
      4          8           0        5.978381    9.964701    5.000000

                   
 Distance matrix
 (angstroms):
                    1          2          3          4
     1  Fe   0.000000
     2  O    1.820000   0.000000
     3  C    2.680720   1.258400   0.000000
     4  O    3.642478   2.373800   1.115400   0.000000
Stoichiometry    CFeO2
Framework group  CS[SG(CFeO2)]
Deg. of freedom     5
Full point group                 CS      NOp   2
Largest Abelian subgroup         CS      NOp   2
Largest concise Abelian subgroup C1      NOp   1
                         Standard orientation:                        

 Center     Atomic     
 Atomic            
 Coordinates (Angstroms)
Number     Number       Type             X           Y           Z

     
 1        
 26          
 0       -1.018287  
 -0.652610   -0.000000
      2          8           0       -0.000000    0.855864    0.000000
      3          6           0        1.255302    0.767619    0.000000
      4          8           0        2.367956    0.689403    0.000000

 Rotational constants
 (GHZ):         
 37.1744583          
 2.4897380          
 2.3334561
Standard basis: 6-31G (6D, 7F)
There are    42 symmetry adapted cartesian basis functions of A'  symmetry.
There are    14 symmetry adapted cartesian basis functions of A"  symmetry.
There are    42 symmetry adapted basis functions of A'  symmetry.
There are    14 symmetry adapted basis functions of A"  symmetry.
    56 basis functions,   160 primitive gaussians,    56 cartesian basis functions
    24 alpha electrons       24 beta electrons
       nuclear repulsion energy       178.7145642873 Hartrees.
NAtoms=    4 NActive=    4 NUniq=    4 SFac= 1.00D+00 NAtFMM=   60 NAOKFM=F Big=F
Integral buffers will be    131072 words long.
Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.
One-electron integrals computed using PRISM.
NBasis=    56 RedAO= T EigKep=  1.76D-03  NBF=    42    14
NBsUse=    56 1.00D-06 EigRej= -1.00D+00 NBFU=    42    14
ExpMin= 4.11D-02 ExpMax= 6.11D+04 ExpMxC= 9.18D+03 IAcc=3 IRadAn=         5 AccDes= 0.00D+00
Harris functional with IExCor=  402 and IRadAn=       5 diagonalized for initial guess.
HarFok:  IExCor=  402 AccDes= 0.00D+00 IRadAn=         5 IDoV= 1 UseB2=F ITyADJ=14
ICtDFT=  3500011 ScaDFX=  1.000000  1.000000  1.000000  1.000000
FoFCou: FMM=F IPFlag=           0 FMFlag=      100000 FMFlg1=           0
         NFxFlg=           0 DoJE=T BraDBF=F KetDBF=T FulRan=T
         wScrn=  0.000000 ICntrl=       500 IOpCl=  0 I1Cent=   200000004 NGrid=           0
         NMat0=    1 NMatS0=      1 NMatT0=    0 NMatD0=    1 NMtDS0=    0 NMtDT0=    0
Petite list used in FoFCou.
Initial guess orbital symmetries:
       Occupied  (A') (A') (A') (A') (A") (A') (A') (A') (A') (A')
                 (A') (A") (A') (A') (A') (A') (A') (A") (A') (A")
                 (A') (A') (A") (A')
       Virtual   (A") (A') (A') (A") (A') (A") (A') (A') (A') (A')
                 (A") (A') (A') (A") (A') (A') (A') (A") (A') (A')
                 (A') (A") (A') (A') (A') (A") (A") (A') (A') (A')
                 (A') (A')
The electronic state of the initial guess is 1-A'.
Keep R1 ints in memory in symmetry-blocked form, NReq=2159799.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on             energy=1.00D-06.
No special actions if energy rises.
EnCoef did     3 forward-backward iterations
EnCoef did   100 forward-backward iterations
EnCoef did     2 forward-backward iterations
EnCoef did     2 forward-backward iterations
SCF Done:  E(RB3LYP) =  -1451.84990065     A.U. after   22 cycles
            NFock= 22  Conv=0.66D-08     -V/T= 2.0016

**********************************************************************

            Population analysis using the SCF Density.

**********************************************************************

Orbital symmetries:
       Occupied  (A') (A') (A') (A') (A") (A') (A') (A') (A') (A')
                 (A") (A') (A') (A') (A') (A') (A") (A') (A') (A")
                 (A') (A') (A") (A')
       Virtual   (A") (A') (A") (A') (A') (A") (A') (A') (A') (A')
                 (A") (A') (A') (A") (A') (A') (A') (A") (A') (A')
                 (A') (A") (A') (A') (A') (A") (A') (A") (A') (A')
                 (A') (A')
The electronic state is 1-A'.
Alpha  occ. eigenvalues -- -256.04016 -29.99951 -25.87326 -25.85859 -25.85805
Alpha  occ. eigenvalues --  -19.31120 -19.28742 -10.45249  -3.41064  -2.20510
Alpha  occ. eigenvalues --   -2.17421  -2.16694  -1.26882  -1.17261  -0.64217
Alpha  occ. eigenvalues --   -0.58881  -0.57965  -0.57594  -0.44473  -0.43175
Alpha  occ. eigenvalues --   -0.22416  -0.22137  -0.20382  -0.15336
Alpha virt. eigenvalues --   -0.07558  -0.07420  -0.03518  -0.03067  -0.02764
Alpha virt. eigenvalues --   -0.00807   0.00082   0.10567   0.12952   0.29804
Alpha virt. eigenvalues --    0.31948   0.36712   0.41870   0.45104   0.54770
Alpha virt. eigenvalues --    0.63606   0.74556   0.85137   0.88355   0.92857
Alpha virt. eigenvalues --    0.96917   1.00808   1.01595   1.25495   1.50958
Alpha virt. eigenvalues --    1.51252   1.55992   1.59723   1.70732   1.86833
Alpha virt. eigenvalues --    2.01356  20.37339
          Condensed to atoms (all electrons):
               1          2          3          4
     1  Fe  26.065938  -0.058002   0.083106  -0.030239
     2  O   -0.058002   8.304619   0.168196   0.010116
     3  C    0.083106   0.168196   4.724609   0.417125
     4  O   -0.030239   0.010116   0.417125   7.724230
Mulliken charges:
               1
     1  Fe  -0.060803
     2  O   -0.424929
     3  C    0.606964
     4  O   -0.121232
Sum of Mulliken charges =  -0.00000
Mulliken charges with hydrogens summed into heavy atoms:
               1
     1  Fe  -0.060803
     2  O   -0.424929
     3  C    0.606964
     4  O   -0.121232
Electronic spatial extent (au):  <R**2>=            453.0609
Charge=             -0.0000 electrons
Dipole moment (field-independent basis, Debye):
    X=              1.6708    Y=              1.8514    Z=             -0.0000  Tot=              2.4938
Quadrupole moment (field-independent basis, Debye-Ang):
   XX=            -35.0872   YY=            -34.7815   ZZ=            -32.5686
   XY=              0.8912   XZ=              0.0000   YZ=              0.0000
Traceless Quadrupole moment (field-independent basis, Debye-Ang):
   XX=             -0.9415   YY=             -0.6357   ZZ=              1.5772
   XY=              0.8912   XZ=              0.0000   YZ=              0.0000
Octapole moment (field-independent basis, Debye-Ang**2):
  XXX=             -8.4875  YYY=              8.6001  ZZZ=             -0.0000  XYY=              3.5470
  XXY=              1.7153  XXZ=              0.0000  XZZ=              0.7336  YZZ=              1.9407
  YYZ=             -0.0000  XYZ=             -0.0000
Hexadecapole moment (field-independent basis, Debye-Ang**3):
XXXX=           -415.5041 YYYY=           -171.1039 ZZZZ=            -55.1637 XXXY=            -84.4690
XXXZ=              0.0000 YYYX=            -75.7822 YYYZ=              0.0000 ZZZX=              0.0000
ZZZY=              0.0000 XXYY=            -90.7121 XXZZ=            -70.9019 YYZZ=            -36.9432
XXYZ=              0.0000 YYXZ=              0.0000 ZZXY=            -24.7602
N-N= 1.787145642873D+02 E-N=-3.807626875025D+03  KE= 1.449497603530D+03
Symmetry A'   KE= 1.287179877057D+03
Symmetry A"   KE= 1.623177264732D+02
Calling FoFJK, ICntrl=      2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0.
***** Axes restored to original set *****

 Center     Atomic 
                  Forces
 (Hartrees/Bohr)
Number     Number              X              Y              Z

      1      
 26         
 -0.048820174    0.005157682   
 0.000000000
      2        8           0.068584660    0.015861998    0.000000000
      3        6          -0.104728901   -0.126023309    0.000000000
      4        8           0.084964415    0.105003629   -0.000000000

 Cartesian Forces:  Max     0.126023309
 RMS     0.066118707

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4.
Internal  Forces:  Max     0.134986320 RMS     0.059949734
Search for a local minimum.
Step number   1 out of a maximum of   20
All quantities printed in internal units (Hartrees-Bohrs-Radians)
Mixed Optimization -- RFO/linear search
Second derivative matrix not updated -- first step.
The second derivative matrix:
                          R1        R2        R3        A1        A2
           R1           0.22791
           R2           0.00000   0.80209
           R3           0.00000   0.00000   1.62060
           A1           0.00000   0.00000   0.00000   0.25000
           A2           0.00000   0.00000   0.00000   0.00000   0.05456
           A3           0.00000   0.00000   0.00000   0.00000   0.00000
                          A3
           A3           0.05456
ITU=  0
     Eigenvalues ---    0.05456   0.05456   0.22791   0.25000   0.80209
     Eigenvalues ---    1.62060
RFO step:  Lambda=-2.30438557D-02 EMin= 5.45649275D-02
Linear search not attempted -- first point.
Iteration  1 RMS(Cart)=  0.10911805 RMS(Int)=  0.00403264
Iteration  2 RMS(Cart)=  0.00524126 RMS(Int)=  0.00001569
Iteration  3 RMS(Cart)=  0.00001737 RMS(Int)=  0.00000000
Iteration  4 RMS(Cart)=  0.00000000 RMS(Int)=  0.00000000
ClnCor:  largest displacement from symmetrization is 2.67D-10 for atom     3.
Variable       Old X    -DE/DX   Delta X   Delta X   Delta X     New X
                                 (Linear)    (Quad)   (Total)
    R1        3.43930   0.04909   0.00000   0.19560   0.19560   3.63490
    R2        2.37803  -0.02868   0.00000  -0.03476  -0.03476   2.34327
    R3        2.10780   0.13499   0.00000   0.08213   0.08213   2.18993
    A1        2.09440   0.00265   0.00000   0.00969   0.00969   2.10408
    A2        3.14159   0.01018   0.00000   0.13112   0.13112   3.27271
    A3        3.14159   0.00000   0.00000   0.00000   0.00000   3.14159
         Item               Value     Threshold  Converged?
Maximum Force            0.134986     0.000450     NO
 RMS     Force            0.059950     0.000300     NO
 Maximum Displacement     0.164913     0.001800     NO
 RMS     Displacement     0.111408     0.001200     NO
 Predicted change in Energy=-1.225354D-02
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

                          Input orientation:                         

 Center     Atomic     
 Atomic            
 Coordinates (Angstroms)
Number     Number       Type             X           Y           Z

     
 1        
 26          
 0        2.658115   
 8.232499    5.000000
      2          8           0        4.576263    8.089032    5.000000
      3          6           0        5.284531    9.106861    5.000000
      4          8           0        6.065132    9.963375    5.000000

                   
 Distance matrix
 (angstroms):
                    1          2          3          4
     1  Fe   0.000000
     2  O    1.923506   0.000000
     3  C    2.768135   1.240008   0.000000
     4  O    3.821478   2.393719   1.158859   0.000000
Stoichiometry    CFeO2
Framework group  CS[SG(CFeO2)]
Deg. of freedom     5
Full point group                 CS      NOp   2
Largest Abelian subgroup         CS      NOp   2
Largest concise Abelian subgroup C1      NOp   1
                         Standard orientation:                         

 Center     Atomic     
 Atomic            
 Coordinates (Angstroms)
Number     Number       Type             X           Y           Z

     
 1         26   
        0      
 -1.022093   -0.757193  
 -0.000000
      2          8           0        0.000000    0.872286    0.000000
      3          6           0        1.239558    0.838897    0.000000
      4          8           0        2.392133    0.959419    0.000000

 Rotational constants
 (GHZ):         
 40.3135828          
 2.2660782          
 2.1454781
Standard basis: 6-31G (6D, 7F)
There are    42 symmetry adapted cartesian basis functions of A'  symmetry.
There are    14 symmetry adapted cartesian basis functions of A"  symmetry.
There are    42 symmetry adapted basis functions of A'  symmetry.
There are    14 symmetry adapted basis functions of A"  symmetry.
    56 basis functions,   160 primitive gaussians,    56 cartesian basis functions
    24 alpha electrons       24 beta electrons
       nuclear repulsion energy       172.3989508234 Hartrees.
NAtoms=    4 NActive=    4 NUniq=    4 SFac= 1.00D+00 NAtFMM=   60 NAOKFM=F Big=F
Integral buffers will be    131072 words long.
Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.
One-electron integrals computed using PRISM.
NBasis=    56 RedAO= T EigKep=  1.76D-03  NBF=    42    14
NBsUse=    56 1.00D-06 EigRej= -1.00D+00 NBFU=    42    14
Initial guess from the checkpoint file:  "step_000_DFT.chk"
B after Tr=     0.000000    0.000000   -0.000000
         Rot=    0.999288   -0.000000   -0.000000   -0.037733 Ang=  -4.32 deg.
Initial guess orbital symmetries:
       Occupied  (A') (A') (A') (A') (A") (A') (A') (A') (A') (A')
                 (A") (A') (A') (A') (A') (A') (A") (A') (A') (A")
                 (A') (A') (A") (A')
       Virtual   (A") (A') (A") (A') (A') (A") (A') (A') (A') (A')
                 (A") (A') (A') (A") (A') (A') (A') (A") (A') (A')
                 (A') (A") (A') (A') (A') (A") (A') (A") (A') (A')
                 (A') (A')
ExpMin= 4.11D-02 ExpMax= 6.11D+04 ExpMxC= 9.18D+03 IAcc=3 IRadAn=         5 AccDes= 0.00D+00
Harris functional with IExCor=  402 and IRadAn=       5 diagonalized for initial guess.
HarFok:  IExCor=  402 AccDes= 0.00D+00 IRadAn=         5 IDoV= 1 UseB2=F ITyADJ=14
ICtDFT=  3500011 ScaDFX=  1.000000  1.000000  1.000000  1.000000
FoFCou: FMM=F IPFlag=           0 FMFlag=      100000 FMFlg1=           0
         NFxFlg=           0 DoJE=T BraDBF=F KetDBF=T FulRan=T
         wScrn=  0.000000 ICntrl=       500 IOpCl=  0 I1Cent=   200000004 NGrid=           0
         NMat0=    1 NMatS0=      1 NMatT0=    0 NMatD0=    1 NMtDS0=    0 NMtDT0=    0
Petite list used in FoFCou.
Keep R1 ints in memory in symmetry-blocked form, NReq=2159799.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on             energy=1.00D-06.
No special actions if energy rises.
SCF Done:  E(RB3LYP) =  -1451.86533909     A.U. after   18 cycles
            NFock= 18  Conv=0.23D-08     -V/T= 2.0018
Calling FoFJK, ICntrl=      2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0.
***** Axes restored to original set *****

 Center    
 Atomic                  
 Forces (Hartrees/Bohr)
Number     Number              X              Y              Z

      1      
 26         
 -0.021775369    0.002114287   
 0.000000000
      2        8           0.036955110    0.014737157    0.000000000
      3        6          -0.039695691   -0.040384091    0.000000000
      4        8           0.024515951    0.023532647   -0.000000000

 Cartesian Forces:  Max     0.040384091
 RMS     0.023135364

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Using GEDIIS/GDIIS optimizer.
FormGI is forming the generalized inverse of G > from B-inverse, IUseBI=4.
Internal  Forces:  Max     0.033908365 RMS     0.018980685
Search for a local minimum.
Step number   2 out of a maximum of   20
All quantities printed in internal units (Hartrees-Bohrs-Radians)
Mixed Optimization -- RFO/linear search
Update second derivatives using D2CorX and points    1    2
DE= -1.54D-02 DEPred=-1.23D-02 R= 1.26D+00
TightC=F SS=  1.41D+00  RLast= 2.52D-01 DXNew= 5.0454D-01 7.5596D-01
Trust test= 1.26D+00 RLast= 2.52D-01 DXMaxT set to 5.05D-01
The second derivative matrix:
                          R1        R2        R3        A1        A2
           R1           0.18668
           R2           0.04604   0.76870
           R3          -0.08608   0.12904   1.50110
           A1           0.00316   0.00128   0.01538   0.25104
           A2          -0.00501   0.00702  -0.00784   0.00077   0.05407
           A3           0.00000  -0.00000   0.00000   0.00000   0.00000
                          A3
           A3           0.05456
ITU=  1  0
Use linear search instead of GDIIS.
     Eigenvalues ---    0.05364   0.05456   0.17607   0.25109   0.75296
     Eigenvalues ---    1.52783
RFO step:  Lambda=-2.40357398D-03 EMin= 5.36398691D-02
Quartic linear search produced a step of  0.74433.
Iteration  1 RMS(Cart)=  0.12055350 RMS(Int)=  0.00970928
Iteration  2 RMS(Cart)=  0.01171440 RMS(Int)=  0.00007671
Iteration  3 RMS(Cart)=  0.00008339 RMS(Int)=  0.00000000
Iteration  4 RMS(Cart)=  0.00000000 RMS(Int)=  0.00000000
ClnCor:  largest displacement from symmetrization is 4.24D-12 for atom     3.
Variable       Old X    -DE/DX   Delta X   Delta X   Delta X     New X
                                 (Linear)    (Quad)   (Total)
    R1        3.63490   0.02187   0.14559   0.04745   0.19304   3.82794
    R2        2.34327  -0.02250  -0.02587  -0.02538  -0.05125   2.29202
    R3        2.18993   0.03391   0.06113  -0.01980   0.04133   2.23126
    A1        2.10408  -0.00172   0.00721  -0.01780  -0.01059   2.09349
    A2        3.27271   0.00495   0.09759   0.11009   0.20769   3.48040
    A3        3.14159   0.00000   0.00000   0.00000   0.00000   3.14159
         Item               Value     Threshold  Converged?
Maximum Force            0.033908     0.000450     NO
 RMS     Force            0.018981     0.000300     NO
 Maximum Displacement     0.157853     0.001800     NO
 RMS     Displacement     0.126480     0.001200     NO
 Predicted change in Energy=-2.644271D-03
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

                          Input orientation:                          

 Center     Atomic     
 Atomic            
 Coordinates (Angstroms)
Number     Number       Type             X           Y           Z

     
 1        
 26     
      0       
 2.586226    8.170844   
 5.000000
      2          8           0        4.611490    8.130764    5.000000
      3          6           0        5.237660    9.169515    5.000000
      4          8           0        6.148665    9.920644    5.000000

                   
 Distance matrix
 (angstroms):
                    1          2          3          4
     1  Fe   0.000000
     2  O    2.025661   0.000000
     3  C    2.833275   1.212885   0.000000
     4  O    3.968976   2.359359   1.180730   0.000000
Stoichiometry    CFeO2
Framework group  CS[SG(CFeO2)]
Deg. of freedom     5
Full point group                 CS      NOp   2
Largest Abelian subgroup         CS      NOp   2
Largest concise Abelian subgroup C1      NOp   1
                         Standard orientation:                        

 Center     Atomic     
 Atomic            
 Coordinates (Angstroms)
Number     Number       Type             X           Y           Z

     
 1        
 26          
 0       -0.994550  
 -0.879340   -0.000000
      2          8           0       -0.000000    0.885361    0.000000
      3          6           0        1.212831    0.896868    0.000000
      4          8           0        2.322666    1.299844    0.000000

 Rotational constants
 (GHZ):         
 47.4271405          
 2.0987230          
 2.0097869
Standard basis: 6-31G (6D, 7F)
There are    42 symmetry adapted cartesian basis functions of A'  symmetry.
There are    14 symmetry adapted cartesian basis functions of A"  symmetry.
There are    42 symmetry adapted basis functions of A'  symmetry.
There are    14 symmetry adapted basis functions of A"  symmetry.
    56 basis functions,   160 primitive gaussians,    56 cartesian basis functions
    24 alpha electrons       24 beta electrons
       nuclear repulsion energy       168.0152669884 Hartrees.
NAtoms=    4 NActive=    4 NUniq=    4 SFac= 1.00D+00 NAtFMM=   60 NAOKFM=F Big=F
Integral buffers will be    131072 words long.
Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.
One-electron integrals computed using PRISM.
NBasis=    56 RedAO= T EigKep=  1.76D-03  NBF=    42    14
NBsUse=    56 1.00D-06 EigRej= -1.00D+00 NBFU=    42    14
Initial guess from the checkpoint file:  "step_000_DFT.chk"
B after Tr=     0.000000   -0.000000   -0.000000
         Rot=    0.998838   -0.000000   -0.000000   -0.048193 Ang=  -5.52 deg.
Initial guess orbital symmetries:
       Occupied  (A') (A') (A') (A') (A") (A') (A') (A') (A') (A')
                 (A") (A') (A') (A') (A') (A') (A") (A') (A') (A")
                 (A') (A') (A") (A')
       Virtual   (A') (A") (A') (A") (A') (A") (A') (A') (A') (A')
                 (A") (A') (A') (A") (A') (A') (A') (A") (A') (A')
                 (A') (A") (A') (A') (A') (A") (A') (A") (A') (A')
                 (A') (A')
ExpMin= 4.11D-02 ExpMax= 6.11D+04 ExpMxC= 9.18D+03 IAcc=3 IRadAn=         5 AccDes= 0.00D+00
Harris functional with IExCor=  402 and IRadAn=       5 diagonalized for initial guess.
HarFok:  IExCor=  402 AccDes= 0.00D+00 IRadAn=         5 IDoV= 1 UseB2=F ITyADJ=14
ICtDFT=  3500011 ScaDFX=  1.000000  1.000000  1.000000  1.000000
FoFCou: FMM=F IPFlag=           0 FMFlag=      100000 FMFlg1=           0
         NFxFlg=           0 DoJE=T BraDBF=F KetDBF=T FulRan=T
         wScrn=  0.000000 ICntrl=       500 IOpCl=  0 I1Cent=   200000004 NGrid=           0
         NMat0=    1 NMatS0=      1 NMatT0=    0 NMatD0=    1 NMtDS0=    0 NMtDT0=    0
Petite list used in FoFCou.
Keep R1 ints in memory in symmetry-blocked form, NReq=2159799.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on             energy=1.00D-06.
No special actions if energy rises.
SCF Done:  E(RB3LYP) =  -1451.86779894     A.U. after   19 cycles
            NFock= 19  Conv=0.32D-08     -V/T= 2.0018
Calling FoFJK, ICntrl=      2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0.
***** Axes restored to original set *****

 Center    
 Atomic                  
 Forces (Hartrees/Bohr)
Number     Number              X              Y              Z

      1      
 26         
 -0.002475531    0.002170910   
 0.000000000
      2        8          -0.009275511   -0.015400826    0.000000000
      3        6           0.012873515    0.005174131    0.000000000
      4        8          -0.001122473    0.008055785   -0.000000000

 Cartesian Forces:  Max     0.015400826
 RMS     0.007028017

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Using GEDIIS/GDIIS optimizer.
FormGI is forming the generalized inverse of G > from B-inverse, IUseBI=4.
Internal  Forces:  Max     0.017401591 RMS     0.010265616
Search for a local minimum.
Step number   3 out of a maximum of   20
All quantities printed in internal units (Hartrees-Bohrs-Radians)
Mixed Optimization -- RFO/linear search
Update second derivatives using D2CorX and points    1    2    3
DE= -2.46D-03 DEPred=-2.64D-03 R= 9.30D-01
TightC=F SS=  1.41D+00  RLast= 2.91D-01 DXNew= 8.4853D-01 8.7386D-01
Trust test= 9.30D-01 RLast= 2.91D-01 DXMaxT set to 8.49D-01
The second derivative matrix:
                          R1        R2        R3        A1        A2
           R1           0.14042
           R2           0.04009   0.84593
          R3          -0.15330   0.08559   1.42002
           A1           0.01583  -0.02335   0.04566   0.25643
           A2           0.00387  -0.03883   0.02611   0.01417   0.08070
           A3           0.00000  -0.00000   0.00000   0.00000   0.00000
                          A3
           A3           0.05456
ITU=  1  1  0
Use linear search instead of GDIIS.
     Eigenvalues ---    0.05456   0.07570   0.11658   0.25847   0.84223
     Eigenvalues ---    1.45052
RFO step:  Lambda=-2.28883397D-03 EMin= 5.45649275D-02
Quartic linear search produced a step of -0.27572.
Iteration  1 RMS(Cart)=  0.11082651 RMS(Int)=  0.00968836
Iteration  2 RMS(Cart)=  0.01008655 RMS(Int)=  0.00002336
Iteration  3 RMS(Cart)=  0.00002996 RMS(Int)=  0.00000000
Iteration  4 RMS(Cart)=  0.00000000 RMS(Int)=  0.00000000
ClnCor:  largest displacement from symmetrization is 3.37D-09 for atom     3.
Variable       Old X    -DE/DX   Delta X   Delta X   Delta X     New X
                                 (Linear)    (Quad)   (Total)
    R1        3.82794   0.00252  -0.05323   0.09099   0.03776   3.86570
    R2        2.29202   0.01740   0.01413  -0.00542   0.00871   2.30074
    R3        2.23126   0.00426  -0.01140   0.02206   0.01067   2.24192
    A1        2.09349  -0.00809   0.00292  -0.02802  -0.02510   2.06839
    A2        3.48040  -0.01548  -0.05726  -0.11944  -0.17670   3.30370
    A3        3.14159   0.00000   0.00000   0.00000   0.00000   3.14159
         Item               Value     Threshold  Converged?
Maximum Force            0.017402     0.000450     NO
 RMS     Force            0.010266     0.000300     NO
 Maximum Displacement     0.128723     0.001800     NO
 RMS     Displacement     0.114165     0.001200     NO
 Predicted change in Energy=-1.691720D-03
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

                          Input orientation:                         

 Center     Atomic     
 Atomic            
 Coordinates (Angstroms)
Number     Number       Type             X           Y           Z

     
 1        
 26          
 0        2.587635   
 8.230504    5.000000
      2          8           0        4.627577    8.077882    5.000000
      3          6           0        5.286906    9.101397    5.000000
      4          8           0        6.081924    9.981983    5.000000

                   
 Distance matrix
 (angstroms):
                    1          2          3          4
     1  Fe   0.000000
     2  O    2.045643   0.000000
     3  C    2.836286   1.217497   0.000000
     4  O    3.908674   2.395981   1.186375   0.000000
Stoichiometry    CFeO2
Framework group  CS[SG(CFeO2)]
Deg. of freedom     5
Full point group                 CS      NOp   2
Largest Abelian subgroup         CS      NOp   2
Largest concise Abelian subgroup C1      NOp   1
                         Standard orientation:                        

 Center     Atomic     
 Atomic            
 Coordinates (Angstroms)
Number     Number       Type             X           Y           Z