From owner-chemistry@ccl.net Sun Sep 23 12:35:01 2007 From: "Dr Ponnadurai Ramasami ramchemi#%#intnet.mu" To: CCL Subject: CCL:G: 3rd Workshop on Computational Chemistry and Its Applications (Part of ICS 2008) Message-Id: <-35232-070923122933-31976-eA8LMfjt548O/LFSy9iH9Q^server.ccl.net> X-Original-From: "Dr Ponnadurai Ramasami" Content-Type: multipart/related; type="multipart/alternative"; boundary="----=_NextPart_000_0024_01C7FD57.17A9BB10" Date: Sat, 22 Sep 2007 20:28:10 -0700 MIME-Version: 1.0 Sent to CCL by: "Dr Ponnadurai Ramasami" [ramchemi-#-intnet.mu] This is a multi-part message in MIME format. ------=_NextPart_000_0024_01C7FD57.17A9BB10 Content-Type: multipart/alternative; boundary="----=_NextPart_001_0025_01C7FD57.17A9BB10" ------=_NextPart_001_0025_01C7FD57.17A9BB10 Content-Type: text/plain; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable Sorry for cross posting Please forward to those who may be interested -------------------------------------------------------------------------= ------- You are invited to submit papers for the 3rd Workshop on Computational = Chemistry and Its Applications. This workshop is part of ICCS 2008 to be held in 23-25 June 2008, = Krakow, Poland. http://www.iccs-meeting.org/iccs2008/ All papers will be reviewed by three independent reviewers. All papers must be original and have not been published. Papers will be published in Lecture Notes in Computer Science. See below for more details. I remain at your disposal for any query. Deadline for submission is 22 Dec 2007. Looking forward to receive your submissions. Workshop Organiser Dr Ponnadurai Ramasami University of Mauritius Workshop website: http://pages.intnet.mu/ramasami/iccs_2008.htm -------------------------------------------------------------------------= ------- =20 3rd Workshop on Computational Chemistry and Its Applications (3rd = CCA) part of The International Conference on Computational Science=20 23-25 June 2008, Krakow, Poland Workshop website: http://pages.intnet.mu/ramasami/iccs_2008.htm =20 Description of Workshop=20 Computational chemistry is a rapidly expanding with the explosive = growth of computational power. It is widely used in research and more = interestingly, interdisciplinary research. = =20 The major goals of this workshop are to highlight the latest = scientific advances within the broad field of computational chemistry in = education, research, industry and society. This workshop will provide = the opportunity for researchers coming from corners of the world to be = on a single platform for discussion, exchanging ideas and possibly = developing collaborations.=20 =20 It will also be a suitable platform for researchers from different = fields of computational science to meet so that ideas for = interdisciplinary research can emerge. =20 This is the third workshop after being successful events in = ICCS-2006 and ICCS-2007.=20 =20 This workshop aims for high standards, only original work not = published (part or complete) will be considered after peer reviewing. = The general acceptance rate is about 30% of submitted papers. =20 Accepted papers will be published in Lecture Notes in Computer = Science. =20 Topics =20 Topics will include aspects of computational chemistry such as: (i) Methods Force fields, semiempirical, Ab initio, density functional=20 (ii) Applications Kinetics, reaction mechanisms, catalysis, molecular properties, = spectroscopic properties, conformational analysis, thermodynamics, = solvent effects (iii) Other research involving computational chemistry (iv) Computational chemistry in chemical education (v) Theoretical chemistry (v) Interdisciplinary computational research involving chemistry =20 Workshop Organiser International Advisory Members =20 Ponnadurai Ramasami Faculty of Science Department of Chemistry University of Mauritius Mauritius =20 E-mail ramchemi^^intnet.mu Hassan H. Abd Allah, Baghdad University, Iraq Edet F. Archibong, University of Namibia, Republic of Namibia Paul Blowers, University of Arizona, USA Mike Drew, The University Whiteknights, UK Tony Ford, University of Natal, South Africa Gernot Frenking, Fachbereich Chemie, Germany Jan Hrusak, J. Heyrovsky Institute for Physical Chemistry, Czech = Republic=20 Rita Kakkar, University of Delhi, India Jerzy Leszczynski, Jackson State University, USA Zijing Lin, University of Science and Technology, China Ruth M. Lynden-Bell, University of Cambridge, UK Janusz Mrozek, Jagiellonian University, Poland Sourav Pal, National Chemical Laboratory, India Henry F. Schaefer III, Centre of Computational Chemistry, USA Alfredo Simas, Universidade Federal de Pernambuco, Brazil=20 Zhigang Shuai, Institute of Chemistry, China=20 Ajit T Thakkar, University of New Brunswick Fredericton, Canada=20 John Zeng Hui Zhang, New York University, USA =20 Instructions for Authors =20 Authors are invited to submit their papers, written in English, of = up to 8 pages (a paper without figures can be around 4500 words = maximally), presenting the results of original research or innovative = practical applications relevant to the workshop topics. Papers should be = prepared according to the rules of LNCS=20 (Lecture Notes in Computer Science, = http://www.springer.com/east/home/computer/lncs?SGWID=3D5-164-6-73659-0) Papers should be submitted in pdf or word file format.=20 Paper submissions should be done electronically, using submission = system on page:=20 http://www.iccs-meeting.org/iccs2008/papers/upload.php=20 At least one author of an accepted paper must register and present = the paper at the workshop. =20 Important Dates =20 Full paper submission: December 22, 2007 http://www.iccs-meeting.org/iccs2008/papers/upload.php Notification of acceptance: March 1, 2008 Camera-ready papers: March 15, 2008 =20 Useful information =20 For information on conference venue and accommodation, = registration and fee, please refer to the conference site.=20 http://www.iccs-meeting.org/iccs2008/papers.html =20 =20 =20 ------=_NextPart_001_0025_01C7FD57.17A9BB10 Content-Type: text/html; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable
Sorry for cross = posting
Please forward = to those who=20 may be interested

You are invited to submit papers for = the 3rd=20 Workshop on Computational Chemistry and Its Applications.
This workshop is part of ICCS 2008 to = be held in=20 23-25 June 2008, Krakow, Poland.
http://www.iccs-meeting.or= g/iccs2008/
All papers will be reviewed by three = independent=20 reviewers.
All papers must be original and have = not been=20 published.
Papers will be published in Lecture = Notes in=20 Computer Science.
See below for more = details.
I remain at your disposal for any=20 query.
Deadline for submission is 22 = Dec=20 2007.
Looking forward to receive your = submissions.
 
Workshop Organiser
Dr Ponnadurai Ramasami
University of Mauritius
Workshop website: http://pages.intne= t.mu/ramasami/iccs_2008.htm

3rd=20 Workshop on Computational Chemistry and Its Applications = (3rd=20 CCA)
part=20 of The = International=20 Conference on Computational Science
23-25 June 2008,=20 Krakow, = Poland

=

Workshop=20 website: http://pages.intne= t.mu/ramasami/iccs_2008.htm

Description=20 of Workshop

Computational = chemistry=20 is a rapidly expanding with the explosive growth of computational = power.=20 It is widely used in research and more interestingly, = interdisciplinary=20 research.

           &nbs= p;            = ;            =             &= nbsp;           &n= bsp;           &nb= sp;           &nbs= p;            = ;            =    =20

The major goals = of this=20 workshop are to highlight the latest scientific advances within = the broad=20 field of computational chemistry in education, research, industry = and=20 society. This workshop will provide the opportunity for = researchers coming=20 from corners of the world to be on a single platform for = discussion,=20 exchanging ideas and possibly developing collaborations.=20

 

It will also be = a=20 suitable platform for researchers from different fields of = computational=20 science to meet so that ideas for interdisciplinary research can=20 emerge.

 

This is the = third=20 workshop after being successful events in ICCS-2006 and ICCS-2007. =

 

This workshop = aims for=20 high standards, only original work not published (part or = complete) will=20 be considered after peer reviewing. The general acceptance rate is = about=20 30% of submitted papers.

 

Accepted papers will be published in = Lecture=20 Notes in Computer Science.

Topics

Topics will = include=20 aspects of computational chemistry such as:

(i)=20 Methods

Force = fields,=20 semiempirical, Ab initio, density functional=20

(ii)=20 Applications

Kinetics, = reaction=20 mechanisms, catalysis, molecular properties, spectroscopic = properties,=20 conformational analysis, thermodynamics, solvent=20 effects

(iii) Other = research=20 involving computational chemistry

(iv) = Computational=20 chemistry in chemical education

(v) Theoretical = chemistry

(v) = Interdisciplinary=20 computational research involving chemistry

Workshop=20 Organiser

International=20 Advisory Members

Ponnadurai=20 Ramasami

Faculty=20 of Science

Department=20 of Chemistry

University of=20 Mauritius

Mauritius<= SPAN=20 lang=3DEN-GB=20 style=3D"FONT-WEIGHT: normal; FONT-SIZE: 10pt; COLOR: blue; = mso-bidi-font-size: 12.0pt; mso-ansi-language: EN-GB; = mso-bidi-font-weight: bold">

 

E-mail

ramchemi^^intnet.mu

Hassan H. = Abd=20 Allah,=20 Baghdad=20 University, = Iraq

Edet F.=20 Archibong, = University of Namibia, Republic of Namibia<= /P>

Paul=20 Blowers,=20 University of = Arizona,=20 USA

Mike=20 Drew, The=20 University Whiteknights, UK

Tony=20 Ford,=20 University of = Natal,=20 South=20 Africa

Gernot=20 Frenking,=20 Fachbereich = Chemie,=20 Germany

Jan=20 Hrusak,=20 J. Heyrovsky = Institute=20 for Physical=20 Chemistry,=20 Czech=20 Republic=20

Rita=20 Kakkar,=20 University of = Delhi,=20 India

Jerzy=20 Leszczynski,=20 Jackson State=20 University, USA

Zijing=20 Lin,=20 University of = Science and Technology, China

Ruth M.=20 Lynden-Bell,=20 University of=20 Cambridge, UK

Janusz=20 Mrozek,=20 Jagiellonian=20 University, Poland

=

Sourav=20 Pal,=20 National Chemical Laboratory, India

Henry F.=20 Schaefer III, Centre=20 of Computational Chemistry, USA

Alfredo=20 Simas,=20 Universidade Federal de Pernambuco, Brazil=20

Zhigang=20 Shuai, = Institute of Chemistry, China

Ajit=20 T Thakkar,=20 University of = New Brunswick Fredericton, Canada=20

John Zeng=20 Hui Zhang,=20 New York = University,=20 USA=

Instructions=20 for Authors

Authors=20 are invited to submit their papers,=20 written in English, of up to 8=20 pages (a=20 paper without figures can be around 4500 words=20 maximally),=20 presenting the results of original research or innovative = practical=20 applications relevant to the workshop topics.=20 Papers should be prepared according to = the rules of=20 LNCS =

(Lecture Notes = in=20 Computer Science, http://www.springer.com/east/home/computer/lncs?SGWID=3D5-164-6-7= 3659-0)

Papers=20 should be submitted in pdf=20 or word=20 file format.=20

Paper=20 submissions should be done electronically,=20 using=20 submission system=20 on page:=20

http://ww= w.iccs-meeting.org/iccs2008/papers/upload.php=20

At=20 least one author of an accepted paper must register and present = the paper=20 at the workshop.

Important=20 Dates

Full paper = submission:         =20 December 22, 2007

http://ww= w.iccs-meeting.org/iccs2008/papers/upload.php<= SPAN=20 style=3D"COLOR: red">

Notification of acceptance:    March 1,=20 2008

Camera-ready papers:          =20 March 15, 2008

Useful=20 information

For information = on conference=20 venue and accommodation, registration and=20 fee, please refer to the conference=20 site.

http://www.iccs-meeting.org/iccs2008/papers.html<= /o:p>

 

 

------=_NextPart_001_0025_01C7FD57.17A9BB10-- ------=_NextPart_000_0024_01C7FD57.17A9BB10 Content-Type: image/jpeg; name="clip_image002.jpg" Content-Transfer-Encoding: base64 Content-ID: <002101c7fd91$c3ff6b50$0a01a8c0^^cousan> /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAoHBwgHBgoICAgLCgoLDhgQDg0NDh0VFhEYIx8lJCIf IiEmKzcvJik0KSEiMEExNDk7Pj4+JS5ESUM8SDc9Pjv/2wBDAQoLCw4NDhwQEBw7KCIoOzs7Ozs7 Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozv/wAARCACcAm8DASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDgqKKK +pPBCitXRNJs9VkaK51aOxkLKsSNEzmQn0xWnc+EdOhivfI8S2lxPZRs8kEcbFvl6j/PSuWpi6NO fJJu/o/ztY1jRnJXRy9FAORkUV1GQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFKOo+tAHZ6J8N7/WdNjvlmjjSTO0M3PFXz8J b4dbuH/vqu28HyY8L2g9Ae9bikSHmvGniqvM7M9KNCm4rQ8s/wCFUXn/AD9w/wDfVH/Cp7z/AJ+4 f++q9VeJRUW3J4qfrVXuV9Xp9jzD/hUt8f8Al7h/76p3/Co78/8AL1D/AN9V6bHIj7trhth2tjsa lEuF9qX1ut3D6vT7Hlv/AAqO/wD+fqH/AL6pP+FSX3/P3D/31Xp7ze9V2kPrT+tVu4vYU+x5sfhP eDreQ/8AfVJ/wqm87XkOe3zV6Izk96I2O4fWn9aq9xewp9jw6+0O4sdabS5MGVX2HByM1sv4Lhhb y59ShSQdVznFW/EH/JRf+2v9ag1zP9rz/wC9Xcpzny620ucU0oX06kP/AAiFp/0FYqX/AIRC0/6C sVVcH1pQD6mr5Z/zGXtF/KWf+EPtP+grFR/wh9p/0FYqg2mjafWnyz/mD2i/lHTeF7CADzNWiGeg GSak/wCERs9u7+1Ysde9Up7KOeaOSTJMZyOe9aUGmyTQGdpY4kwcb25OPasW6kLupOy6GvNGVlCN 31IJPCtjEAX1aIA/WoT4f0sf8xmH9aV445RgkOueoPBrmZnggeWQ5UMx25HXmuTFV61GzjK6fkdO Hpwq3Tjax0MmjaPGcNrcI/A0sOhaXdSiG21iF5W4VTkZNcTLC9xJshQjIOOetWPDKOviCzJzjzAP rzXP9dr2+I6fqtPsdRpugG71aSylkEYiyXY9gK1E8PaE77Bfvn/dq3pqhvFOpKehRqz7dB/aXTjk YrXF4qrCaUXbQjDYenOLcl1LEnhrQ41y2oN/3zUSaFoDqCNQfkZ+7WP4h1CUTtaW4CELnexwCPQe 9R+HWkvJIbOZgsjjMRI+8K5vrmItfmOj6rRvax0Q8M6GY9/9oNgnA+XrR/wjOigZ+2yY9dhroILK 3tIgFQEgY3EZNc/r3iH7PugtXG8cM55C/T3qFjsQ9pFfU6PYb/wjehf9BB/++aP+Ec0L/oIP/wB8 1yrarcliyM7sTyW5zVu11nPy3kXl/wC2oOPxqvrmI/mJ+rUOxvf8I9oOcf2g/wD3zSHw/oI66g// AHzVMhJYw6MGU8hgc037y+460vrtf+Yr6pS7FiXSfDsON+oP/wB8006b4bAJ/tGTj/YrJ1CL92Tj pWfndEc9waf1yv8AzEPC0r7G5qmj2kOmx6hYXPnQyMV5GCCKw63IP+RFQelwf5Vh17eDqSqUlKW5 5mIgoVGkFFFFdZzhRRRQBb0u4uLXVbW4tI/MuI5VaNMZ3NngV2upaXd6dYahqOn+DXsrq4gkE88l 2rrEjD59q57jNcXpF0LHV7S7Z2jWGZXLKu4gA+netzV7Hw3d/bbu2u/EDTMryrG9sSmevJI+7714 uYRvVhpp6N9dnZpffc7sM/dZykIxEKfTY/uCnV7Mdjie4UUUUxBSgEgkAkDqcdKSvSfCvxC8P6L4 VjsLnT5TcQhgypGpExJPOT/Wsa1SUFeMbmtOEZO0nY82opoleWaVzEYlZyyqewJ6U7NaRd1chqzs FFGRRVEhRRRmgAoozRQAUUZozQAUUZFFABRRRQAUUUUAFFFamkaM+qCRzKsUUQy7scACpnOMI80n oVGLk7Iy6K6BtB01MbtZgGfrW1D8Mru4iSWK8heNwGVg3BB71gsVRe0jT2FTscLRXdn4X3oOPtUX /fVIfhldjrdxf99VX1in3F7GfY4Wiu4Pw0uR/wAvkP8A31Sf8K2uP+f2H/vqj29PuHspnEUV2/8A wra4/wCf2H/vqj/hW8//AD+w/wDfVP28A9lI4iiu3/4VvP8A8/sP/fVVLnwXFZttn1SBTu24znn0 qZYmlFXk7DVGb2RydKOo+tdWnguN87dShOOvNZWuaBPodwkcrq4cBlZTkEUQxFKo7RdxSpTirtHp PhW+WBbK1YoouIPlJzlmB6D8Oa7SLGK8lOqDTp9HkDsjRxhyUIDFc8gZ45FeuRDKK2NoIBxXht+9 JebPVivdXoK575qIMBgE0y9kdYyUGTVWEykbnUj61ajpcTetivZ3ksmqalHJbrEscoVHHBcY6mrU lyfWsy3tbm21HUbiS7eaKeRSkbKP3fyjvTpJDmogtByepbNx70w3FUi59aTcfWtLElwz0sc37wfW qG41JCx81frRYDhNf5+Io/6607VbdpdYn7KNzE+wBP8ASm69/wAlDX/rpUev6l5GsTRiLJ3EHmtq +IlRUOVbowpUI1XLmezKkUZljV1GAwzzViCIJKC5AAzn8qp61c3mlJaM8Z3XR/1eACoyAD79azjq 10RclbaRvIcIMEfNyR6e1ZfXaslrYt4OlF6XN4MslqoMIhIIAAOSeDlj6U+3iRJC0nzDYwAHqVOP 1xWKLy+M/l/ZnAEPmsSw4OM46fSrNu9zLptrdzl4mmuzCUzkbAmd351lLEVbWjLc2hQpJ3nHY07K xSeaOKWTZ8pLuBnoM1atbWTyDbrpcs7TAnLqFJB9Mn+lVbG3uY3jubSO6meMbWkjQlSTkGt3SNWa 91eK1msiL6FQjySuVYJ7DFZSrVZRtOVzT2NFSvFWOMtF8maazaF4JI23eWx6A+lZPiSIRp5hXdlc DA6V0+oJEfEd1tVtwjTDNzgelYGuyW80e1XAkT5ufau6rNSw0ebc4acHHEPl2OUW8lgLggZxjBAP 4e1X/DTiTxBbSPjeZRx2H0qhcYlZioGR8zPjr/8AWq14WBbxHaAcnzAa89pWO89I0v8A5GrUf9xv 5VSiV0uGkKnjOK0NGOPF9+TzhW/lVYiR5/nOFLY57c1pjn+8XoiMGvcfqZer2X+h+ft86RM5AHAB HX8OtXfBVpG0pujCqPHCIwccn1P41dvLdrKUI7BkbofWrOjgQyz7fusgIx6VxOWljs5dbjfEmpmy tfLibEsnf+6O5rlNI0W61+6YKP3a8sT0FS6nLLqusNFGSd7hFFeg+GYF01jpSxREx5LuAdxYY/Dv SbcY6bjSTepyd14TeyeOOJN6NncxHK1h3WnvFKyOG4wK9Z1G4t4ZooZuJJfujHviuOmgmuddvIjG nlQyBVIHPQHn86KdSXUqUIvY52PTr+xjM9tGZYx8zx+1TRyxzxieE5Hcdx7Gu6tlFvLbQeQhE4OW IOR14/SuJ8W6f/wjOtR3Vt/x63Q3NGO3OD+XahS5mTJKOxVu0DxNjuKxRyrDHIq+2oKzuVXMJHyn PJqhktuYcZGcelaLYzkb8a7fBKj/AKb/ANKwa6DGPBKe839K5+vosv8A4C+Z4mL/AIrCiiiu85Qo oooAu6LcW1prljcXYBgjnVpMjPANdtfeInv9J1BLnxNaGGGG4gmjjcB5yeYmj7nOdp+hrlfDur6h YXH2TTrS0uJbuRUUXEIfnoMHt1rp9XuLi40u/trO/wDD97dwQubm3gsdrqo4Yox6kV8/mSUq0eZe j/pO339j0cM7QdjzyE5iFPpkX+rFPr3o7HnvcKKKKoR1Hw6s7W/8YW9teW8dxC0cmUkGRkDit34w 6NpmlaTpz2FjBbM87BjGgGRgVj/DD/kebX/rnJ/6DXSfHL/kD6X/ANd3/kK8nEN/WV6HoUUvYkXw 28CWOoadFrmqBblZMiG3I+UY4y3qfaurktPh/DK0Uo0SORCVZWkjBUjqCM034Yf8iFp//A//AEI1 4Z4lgWbxhqoI/wCXqT/0I1h79ao7s192nBaHufk/Dz+/oX/f2P8AxryPxDFa3fj64sNKaAW006JC 0RBjGcDjHbNc3/Z8dafhy2WHxDpxX/n6i/8AQhXVToVKTcrmE6sKi5T2zTvBHhjw5o4/tKO2mIOZ bq7wBk+meAPal8n4d/39C/7+x/40z4q/8k/v/qn/AKEK+foLJHjDEVyUqc62t9TonONPSx7f4oTw OnhfUmsG0c3Qt3MPlSIX3Y4xg9a4b4ceF4vFuoyPdy7ba0CvIi9ZMk4HsOOa43+z467v4ZeJtN8L 6jcRaizRxXgRVm6qhBP3vbnrXV7KrSpysYc9OpNXPS7rR/A1jN5F3baTbygA7JWVWx9CaiFp8Ph0 Gif9/E/xqnr/AId8EeJNSOo6hqkZmZAn7u8VRgdOKzf+FffDr/oJ/wDk8tcK5batnU730SNue18A C3k2f2Lu2HGJEznH1rwhJd8sq9lcgfnXqHiP4Q6bNov2vw1cSecg3gSS7llXHYjvXltvEIgRnnOD Xdg/i91nLifh1RNRRRXqHAFFFFABXU+G0D+HtVUjIMfI/GuWrqfDbsmh6htxzgEHuM1yYz+CzfD/ AMRHH32nSRmYu2NzZjGeuRmvUfhP4iN74fbS53zPp7YUE8mM9PyOR+VcbcW8VzFGw+YId/qDgVrf DDRXm1i61dbhoViUI8KjIfdnIP0wDXjU/iPUlsetB0b60MsbDDAH61UO9eoNAcnjqTXVydjD2ndE dzAuSynFNOn3H2XzdhIznjk4rn7/AFnVbqORtMhiWAOyCZsknBxn06isaHVtetoyd0nytsx6n/D3 rGeL5bKPQtYdy1Z1uykKfWsew8RtJIYL+zkjkXALxqWHPTIHSuot9OluMNjYh53NXbGvCSumcroz TtYw9RvI7CASSMcudox1+tefNK+oaiHLmRbcbQSfvyH7x/p+FdF4ine+uLt7MGaO2Rli7biOp/r+ FZeiWIt4UZCD5aHbxnJxkmvLxVb2sklsdtGnyR13LkaR2elzSSvgR8k+p/zxVPxXcNdafp0zjBZe noM1S1O6lvbpbGElY92T/te9XfFUSw6bpsajChOPzq8A/wB/FeROKX7tlbxM621rpNyXKlYSOBn/ ACKNI8f6/pEixQXTTQRIqi1u1zwPQ9qj8ZY/sfS/Xyqh0pptQS1hlPmFwQFKgkDnoetZTdpv1ZvC N4L0PRNM+LmkXOItVtZtPkxy+PMj/Mcj8qv63470fTYoJY7mC8jkbkRScgYzkHp+FeY3mhqJGiVt j917/kaw7mxks7+OGRBiUnBHYU+Zi5UdZo/iO1h8Qm9e7lWOSRy4mkLblboD24r0GC5gvYvNt5Fk T1Vgf5V49ptmt1dyQOOF4GMcV1fgeS30fUrhLm/SCOZMCKT5Q7BuCOw4/nRC8ZbilZo7llwM0yp2 ZWUMpDKehByDVZnG7bnnriugyHHFPhx5i/WosE1PBGTIv1oA4PXf+Shr/wBdK5zxNPjX7s7if3ld Hr3HxEH/AF0ri/EiST+KbtfM2qZORRi1pT9CMPvL1PQ4ZoLqTTbO7iWOd4hv2sG29NoHXAx/Ol1C 2Gk2UguSfPmY+RhAVGM9eP1rz6ymeG4z55STjlDyoX0revdTkv5XeS5kYMAEBGQB371582ktDvjF 9ShNrt0J3izt3cHaoH069q7rwbaaVq1uDdTi+uolMjIMiNOccDufWvO4zD9qlMudrEjHXFW4/wC1 fDE8F7aS+UtyOAAePakivU9amtr+ewRPltxvjIRflAAzuHH4Vyc2sRaP4wuVuYJJTcSkpKj48tQO nvXVxapLqGk2clmRLLI4jZ5F25OBk4rh/G0ca+I42ST513KduOoNaQVyKkrFe4ubdtflQOzedEm0 t+PGaranptubWS4FoJZI1wqgdfaqd2AJHk83+5yOqEHg1bh8Q2JiUS3cCyA4cb+Pwr0qdWEaXLM8 6dKc6nNA5K9tJ4oJW+yrAr/JwMDj0+tO0C0e216xaRSjOVOCeTz+ldNc6rpVzt8y8tyqsGA3jqOl Zmh2Nm/iKGb+1LckylgiN78V51SrFyfLt6HfCjJQXNa/qdbpTBfFmoFs4CNnAyelZ8+r2SSxIDLm QkN+7bgjuOK0NKjM3izUYw20sjDI7cVSXw80V5FG0kwMenSXTZc/KdpIxW2OSdReiMcI3yu3cp6x q0d5qdkkcrBVALHa3Hr2rT0+8jK3IilD+Wpx+P8A9cVmeH1fUr5p5P8AlhYux3Z5KipbK6L20kQT nYSD7ccVwuOh3RZa8F6TNda8ZnRmEJ3ZXHXtXocNkkN60gEwuCCW+Rec9TXNeD4bi2gtWhwWmvhF I3+ztJP61JpzXo8XLKtz5ouZXDknIGM4A9OlQ7vUpdjcvLAXk8byORLDyv7s5659fpWTqGhCY3DG bDTyI7YVhgrjgce1VdH1DVZtfSGVyS7yMzMPY4GfSs+21jVSdcjd901rab1B7nI5/WkovowbS3Op ZGllikUKXiyE/dMR/T1rL8S6Muu6c6ndJNCh8sLGBjuR1rO07VdV/sHUbjO7ZJFtB5wG64/L9azN OvtStvEunuxkZr+cxHexwF9MfjTUWuom0cmEMDNbgY2dB7VArYJ98itzxJbG21y8ITb5czDA9M4r AlGJGIzWydzGWh0ynd4HjP8A02/pWBW5Ac+BUz/z3P8AKsOvosv/AIC+Z4uL/isKKKK7zlCiiigD Z8MaXqt/qi3GlJH5lkyyl5WCovPGSfWr+u6vY6LdahbW/httP1i4RoppGn3pGrj5ig9war6DPpMm h6jpmq6nJp63EkbrIkZfO3PHFW/EH/CJ6kftsfiOWS5gs44UjNsT5rIuASfevCxMubFctRPl20Uv J6taNXvp0PQpK1K8Xr8jkYgRGAafQDkZFFe4tEcD3CiiimI6/wCFoz44t/aGQ/pXR/HL/kD6X/13 f+Qry9Jp4D5ltM8MmMB0YqfzqC5m1O9UJd3s86A5CyOWA/OvPr0ZOtzo7KVWKp8rPZvhP4i0658P w6IJgl9bbiYn43qTnK+tXLr4UeG7y/nvZTe+dPI0jlZgBknPAx714hGHhZJIZGilT7rocEH6086n r2eNWu/+/wAaxqYWpGXNB7mkK8HG0j2r/hUfhr+/ff8Af8f4V5drEdp4a8ePbRCRrawukcAnLFQQ fzrF/tPX/wDoLXf/AH+NQBbia4ae6laWRvvO5yTWlKFZStJtpk1J0re6tT6Nni0bx54bMa3DTWNz gkxNtYEHOD6H2rCT4QeGEGFa+A/67j/CvFkuL+0Rlsb2e3VjlljkKgmj+09f/wCgtef9/jWP1atT doM09vTmveR6v4l+GmgaT4b1DUbZrzzraBpE3ygjI9RiuX+HPhXS/GD366iZttuqFPKfb97dnPHt XHSX2tzRtFLqd08bjDK0pII96LaW9sYSLS6lgZuvluVz+VbRhX5HFtmcp0uZNI9mPwY8Jnr9u/8A Aj/61H/Cl/CXpff+BH/1q8b/ALS17/oLXf8A3+NH9pa9/wBBa7/7/Guf6vWNvbUz6D1K90nwT4SC zzFLW2h8mFWOXc4wAPU186W0nmvK/IDMWAPuaW5fUb/Yt7eTXCocqJHLYqSOMRJtFdOFoShK7MK9 WMlZD6KKK9E4gooooAK6LR0MnhvUgCQQAQRXO11Phpd2iX4HX5cfnXHjf4DOjD/xEYmh37PEkU4W NjuJJbqM9a0IvEVx4R1eGe2c/ZrqQNcx4GGXp/Ksi7tCy/aIQBKittAGQOf/AK9E5/tTTC8gxJFn cCPT09q8O9tT1bHuaahBdKpikV1ddy45yKc+TC6KSpZSoI6jiuB8GPfW+mQQXsZ3QqNrbuqdRXfr yoPqK7otNHJK6kefWFhdXMEsw+0JHHI0UONwIQcEce+auPFqkUoHn3HOOG5BOc/z/wAK7adY7OCJ YRjO4kfU5J/Osma4uBqYkEuIVOGi2jHOOp9a8mWjep6UdjH0S3v7zWYIJJ12bw0m6NclVHIzjPYf jXU+MtWXTNLWCKULc3reVCufmx/ER+H86fBIgm3rjco645Fcd4hilHiGXUruTz2i2iBccRp6fXP5 1rDSFzOb1sUr91sdKe1RS0jod+Dg8j/OazL+5kttOhjtR8xjUOV/hBH9a05IitvLdXBKuYmHzH7m Qf51m6bZhUYSszCUgknk4x0rOXQEPNp5vlsVB8vGTmneNf8Aj003/rmKu2caObgMBhEJGeg61n+L 5UmsNNeNty+XjP411Zf/ABo/M58V/DZmeM/+QTpgOceUKd4U2f2jZjdlljYgfhTfGR/4lWmf9chW bojvFfo6MVIjPIrKorzfqzppO1Neh13ibUoreIIkCXE7HAU4yOK4uW4aWa2E25WichgzZ21uXqJc zwzOCgiU7nBxuORge9XbjQrCxtIxOoury7Hmyu4/1a9lUdqylUjB26lKLkY2kz28N+8kkyIGY8sR itGexTUVDRSqdpPQg7hmr0Oh2MsBC20KkrkELyGrVtfClndWUN/p6PDIV+dF5Rj3GDWbxMXuUqLR y0MmsaQ+beeWMZ5CnK4+hrVs/HrRzouo2gcsNu+Lgj6g1LHY3FrO1tcOfmJZGPzKQenXtVXUdCWW 8sw8XE2enc44reFTszKcO52mka3peqkC3u03943O1vyNdBHGgdcCvHbnQfLlKxSbXU/dY8irmla3 4h0e5iiE7yQ7gCknzr/iK19pfcjktsXPEH/JRR/11/rXL69Ds169lOC7SHA9BXSavKZvHkMrAAuw Ygds1y/ii5A1i6AzkOQSMVrjNY07djLC2Up37mWx/encCGZf4ea0FyUUT/djUEY4OfSs9PvhyTtV fvYzmklv2kAQBMjuM1w2udt7F63Dz3OyBt5YEhfQ1uW2lXcccEEkhtg8w2yMQFJ7c1ykVw8LK8Py yA9jjArSu9Zn1QQ/6S0Zh4VVGAo9cDvnvScbjuem+ENYurhYrK/CtPb3T7ZMgCT2rlfFXnJqckkp Bk818qBg5rA0fVLqy1GG7klVwgIDHOVPY/r3qbWtUF/diUXAJkf76grxnrirW1jOau0y1aWUtxIZ biMojADB6nB4q3e39jp8eZzEmBwu0Zrl7l7p9ReLT7i7eJGxvmypb6LWloWjwS3l02ty2ry7tqx3 L/MvqcY4rGdNy1m9OxvCpGmrQWptoUkiVzEqlhnG0cVJYErqtv5VqrsXHQAAfWq0ngOR9rRavJ+8 b5VXO0Dk8HNGieF4otegRdfEsqSYMW85JHUYrBUorVM3lVdrWNTSHEfi3UWOSAj9Poa6gLFPqdwI 9kj/ANmhOCD13cVzGjxmbxfqEY6srAflUemPd+GpL2BVzqlw262jMRdbnnnoflPtXq45XqL0R5WE doP1NDwRpOy2voLgFJWhaBkz0yKW58K/2Vosl07OXCBWG3ABJq14MubufUbo3kRgumlzNGR9w9xW x4+nceHlRHYK9witjoRya4t73O2+qsN8D20c+kCRwWaC63qAcc7cVv2+g2NvcrcRW4V1YsoBwAT1 /nWd4Mhjg0zag4c7iD610wYHpVQScSJyabM2HQ7O3mE0VuvmAkhmYkjP1qE+GdPHmlLSMGZdkmOr LnOCfStnIzQcd6tRRnzM4XxBNpXhqNLNrB3W8G5ghH8PTuPWsVdZ0R7u0uV0udp7Q741zhkPrycY rvdS8NWGqOXnaQE9sgj8jWRJ4B0/LeQYoyfWBc/nT5UPmZxnjewTzbbUVxtvUZ9o98H+tcBcQ4dl 3YFd94506bTbmzEryPmN1DFsjAI6Dt1rgbtv3zDnpUWsym7o34l2+BkGc/vzz+FYVbsJz4FT/ruf 5VhV9Dl/8BfM8XFfxWFFFFd5yhRRRQA6OF7iRYY42kdztVFGSx9AKt2OjWj3c0OqXR0wRRl/3sTF mI/hA9ahsdhv4PMuTap5gzOoJMYz97j0rv8AWp5n8OXKWUI8UQLGd1/NNGzW/HUKBuGOvJ7V5uNx DpSjG2/Xt82rfLc6qFPmTfb+vU88miSGd4o5UmVGwJE+6w9RTKZF/qwfWn16Edlc5nuFFFFUIKKK KACiiigAooooAKu6Vpp1W8MH2q3tVVDI81w+1FUdfqeelUqkt7ea7uI7e3iaWaRgqIgyWPoKT2Gt zT1PQDYWCahbahbajZtJ5Rmt9w2PjO1gwBGR0qew8KyXdpbTXGqWVi97n7JDcM26bnGeBhQTwCaf rTQaNoyeHYZUnuTMLi+kQ5VZAMLGp77QTk+tO8UBnudC8kHDaXbCPHduQcf8CrBSk0lffqbcsU27 GdZaDe3ury6ZhIJYN5naU4WFV+8WPoKfquhHTrOK+gvrfULKVzGJ7fICuOSpBAIOOa6jUir+IvGw hxuNmcY9mj3f1rAtuPh7qJf7rajAE9yEfdj8MUlUk7P0/EbhFaepLF4OkYwQXOr2Fpf3Cq0VnKzb zuGVBIGFJ44J71gXEEtrcy206FJYXKOp6qwOCK725utLh8SabZaxZNNqkcMA+3xn5WkZR5ZaPo4X KjOQTiuK1eO5h1q+ivJRLcpcSLLIP43DHJ/E06U5Sev9ehNSKS0KdFFFdBiFFFFABXTaBIYfD2pS KRuUAjP1rma6fw9bG80DUYFYKzgYJ6VyY3+Azow/8RGVbXMTL5WcOq59OoqC5ZraZ8ALEflOOgPO T9KolZLWdoXKyOrYwDnp6VehuoZbdo5SQxXjf/F3rwGesdvpGowwXP7xGkRoFRVHGK6zTr9ZVWFz h+w9q8ztvEtosvmAwMdoG0ydK1bPxtBbsQIo33dcSjP4VvGrYzlC532pzKZokUksFP8AOsmWRjIJ PNkAznbjg1lTeIpbxY5RB5asnyhWzkfXFUDNcLqTp5mdq5K474zn0rierOo7PTphJKw3EnH1rH11 1XUmMjBU3JnP8WB0qlZa79jmaeSEsqochBzVW81C28QIl5CkqrdEKu77yqD+mcVoprk5fMylF81y lqV3NerMkGUjVCS3Uf8A1/r2pftsNja2s0z7R5YIAGSeOwo1G6t7W0eKIeY20qFXoM8dfxrnZVZZ QbiTYuMZY5PHb6daiW6BDrrUpLsspcxxN1jU8t9f8K1fEgI0jSwRj5On41zMszR7RJ+7Dfd46+35 Gul8Rv5mkaYx/uYrvwtP2eIik77nPiXekyj40yNL0vj/AJZf1rD02eRLtcYVVQl2PO1a3/GxQaJp JJIbZ+YrloZ40sXYsA0jgYzztH/165qukpW7s6KfwpeRuWVy97q1uJBmMSAhO1bF9fyXWqXEm8bQ 5UewHA/lXKadqYtgZUsvNkB4dmPH4Crf9u3IyU063Qnv/k1xulJu9jfnVrHW21yFAJJBx1weRXWe A9SSXSJIJHUfZ5Soz1wen8q8kGt6iDhUhHsEq1pviPWrK4+0Wrx5xgoAAGqXh5WD2kT17V7C3uWn WNDutyJEYD5WVuoz9c1z2pnyZdNA+YCYDf8A59aw7b4oXAl3X1mQSmwlOMjP8+tWBr2m30Ea214s hSRXAcbGAz09D+FFOM4S1WgSalHRlLxtqMlvcLbpGrKfndiOcD0q/wCHxHqHltk8rkc5Hsap+OVS T7FKArKwcZz16Gn+B1HkwuGYnO3GeMc/4V120uZ31sGssIvHMRcgBWGaxtc8K6rP4gubhbZnRmyp HQ+lXPG7MniSQg/MO9ZK61qKKFW6kAHbNevPCSr04NO1keXGuqU5XV9RG8La2YuLZgR/DjrVZPCG suXV7NguOuD+VXP7d1P/AJ+5Pzo/t3U/+fuT86y/s2f8y+41+vLsVG8K6zGrqlm+C27OOtLb+GPE EZzDaOrEYPFWv7d1P/n7k/Oj+3dT/wCfuT86P7Nn/MvuF9dXYkTwxrE0Ije0k3qBzjr9afF4X1a1 uoVWzLqzgluuB6VB/bup/wDP3J+dH9u6n/z9yfnS/syf834DeOT6Hr+naHYFk1eS2zdbs7m9AMDi vJ/EXh3VrvXby5jtHYSyls49ar/25qX/AD9yfnS/27qf/P3J+dOOWSjtIJY5S6GUnhrxNDJmKK5j 2tkFWYYrqPC2na/BrFvLd7cBss7IQ/54rM/t3U/+fuT86Rta1F1KtdyEHtmlLK5S3kvuCOP5dkdd 4flVvGd46HOQ2PfrWjqNidWiaJoNkgbck3Ro27EGvPbDVLrTbwXVvIVlH8QrbHj7WR/GufoKvFYG pUmpRfQmhio04tSQX2p6xoCSWu2X+0Hk3+aq+YlyD69wav8A2nxRquhibVbZobQSKFBj27m/n0zW W/jTUZGDukTMOhKAmppPiBrUsYjkkDoDkKQMCuf+zatuht9ehfqepeFkYaeg24O2t0FlPIrxKP4i a7EMRzbB6AYp/wDwsnxD/wA/RojltWKtdBLHU272Pa93PU0uT65rxL/hZHiH/n5NH/CyfEP/AD9G q/s+r5E/XKfY9t34GKY0vtXiv/CyPEH/AD8mj/hZHiD/AJ+TT/s+r5B9cpnU/E+MyW9gyIWcM44H bAry28tZzKT5L/d9K6Obx7rFxjz2WTHTcAcVCfGN8TkwwH/gAqXl1a/Qf12naw1I2i8DorqVJmOA fpWDWlqWuXeqIscxAReiqMAVm162FpSpUlGW559aanPmQUUUV0mIUUUUAXtKtLq4vrdre1W4BnSM LIuYyx6BvY11OvLcajZXdppvii2eW0jZ59Os7fyI2RfvBSPvY965fRrvUbfUIYtOn8uWWZMKzYR2 Byu7PHWuru0mi0/Vr238MQaJcmOSK5vLi4O0k/eWJT1Lf1rw8wb9rFu3lt3631/8B1O/DW5X/X9f M4OMYQU6mQ/6sU+vbWxwvcKKKKYgooooAKKKKACiiigArQ0TWrrQNQ+3WawtLsZMTJuXB68Vn0Um k1ZjTad0bF/4jfULN7ZtI0i3D4/eW9mEkGDnhs8U/TvFmpabZxW0aWky25Jt3uLdZHgJ5+QnpzzW JRU+zja1iueV73Ltlq99YamdSgmzcsWLs43CTd94MD1B71Nq2vXerxRQSx21vbwkslvawiOMMerY HesyinyRvewuZ2tc37fxpq1vbQxbbSWW3TZBdS26tNEvYK59KwndpHZ3YszElmJySfWm0UKEY7IH JvcKKKKokKKKKACug0rjwzqJyR93p9a5+un8PWpvNB1CEMFJwcn61x47+BI6MMr1UjiYpAvmyRSq TvByfX0rWhtvtRLABWaMudvTqByK0bTwjJrGu2OmblgS4f5pIl3bQBknH0Fdb4n8J6Rov2mXT55l lt7QeZC/zF89SD2OOcV8/wA10me1yuLaOCtdIsXeOKTT5LlwNoeK72jcTx1X17V2UHwu0i4gBkmV pgNsghfIU++O9czoUcGpK9q8rW+z523D5GA9W7D9a7Ozuj4a0SZNPkgvrVrkSSNbkq0LEccY5HHW s5SV0rjimIugQ6RpgF1eMsVuhAwM8L6fhXOHxPpf2lpl+2bWHMrWxxj165xWrqOqXVzqDTyMJFEG NobPUZzjp1rDs9mtTzavab7Cext1NzbnkXKjgkD9Pyq5Upx+JBdPRG5NZteLHHp8v2pp1BXqgwfc ngVXbS7/AEmzt9NufLWOAFmMbAhsliOc1naprklg6QtEQyoG+THTsP5VDYTNJo8sttKr+XJvfzCQ VyeAuev9KmMJy+Ec48krS6bonkvLWdbi1jR/OWFX3P0GSAMfTNYUtg073aXMhk8nhTuJ5xyefWtF sXEbBm8p5Y4w7bfmxuFUbueG2nu4oHkkR5sK5XnYOp+tNp9DPQpaxdLDNCsY3oFwBnoM11niAq2i aUU+6Y+MmsPQ9Bn8Xaq8dkyxxW8ZLGX5eCTtH4mt/wATQtb6bp9u6hWiyhUHIBBxXXgkliIrrqYY qUnR12M/xywGkaOoQbjHw2e2a4wBIwGbk12Pja4aPT9LUxxuvkg/MvI/GuRWaEgtNAe2PmOP8azl 8cvVlQfuI0rOJZrdjzg9KZOzl/Lj+Xtn1qTSziybaCB1APpTmBMqsMkH0oLKsc00RDMSy9wa3tIi jlLZRSpUnpWbJaFrRXCuHLbSCw4+o6itCzAjt5huAwnHzbc9OM0mCM681KOS8ZIIYhGpwBg5Yeua f9it57ZrqMYURtkZ5VhVTWIGg1AkAjcVZQeSPxHBrV0mNtkoKHa3HT2NLoUa/iFt3hPSJXXcwRQc 9eUqt4ZvriDSmNuF3LKAxY/dXd19+tW/Gcu/QUOCQkkZGO2RWP4SuP3dxFgtknjuelS/hDqanjMl tbLN1Kgn8q5+t/xl/wAho8EfIOD9KwK+kw/8KPoeHV+NkluIDcRi5aRYNw8wxgFgvfAPGa1tX0JI L+1g0k3F0lzZrdIJFAcKQScgccAZqjpukahq8rxafatcPGu5lUgYH4mutieKLxhpdk88Xmw6T9jk IcFVlMTjbnp1YCufE13Tn7ju0m2vlpfqaU4c0dV1RxYtZzafbBExt/MEXmY+XfjO3645q5ceH9Zt LeW4uNMuYooW2yO0ZAU+9a95pd3pHgj7PfIsUx1VWMe8MyjyiOcHitW7uZZPHHiSJ52aL7BcKFL5 XAjBAA+tZyxkm7ws0r/NJx2+8pUV130/U5Cx0TVdTieWx0+4uY04Zo0yBVJlZHKOpVlOCpGCDXe2 ccGp6BpIstLudQNrDtkW21DyDFJkkkpjvwd1cv4pme48SXk0tuttI5UtEsok2naM/MOCe5960w+K nVqyg1a1+19HbvfX0XzJqUlGCaZPpOm6DqH2a1m1K7jvrkhFC24MSOTgAnOT25HrVa1s9LguLqHW Lu5ieCQxqlrEHLkEgnJIAHFbegeHtRtdMi1yzsWvbuYH7IqldsPbzGyeT6D8azdM0jxEmqzS2ETD ULOTEi703qxBycE89+az9tFyqJVNF3aVnf00Wy1RXI0o+6VNd0uPSb6OKC4M8M0KTRs67XCt0DDs aza3fF/lnWVO6Nro28f2wxHK+fj5sdvTp3qlp2pWtjE6T6PaXxZsh5y4K+w2kV00ak3QjK13by/4 CMpxXO1sjProbHRdE1TFnZandHUDEXUSQBYWYLuK5zkdDzXPE9T0rtLXwzrOmaSJNP0+S6vr6HBn Rl228bD7q5PLEdT2FRjKqhFe/wAre21vnfoiqMeZvS6MXStM0qbRLjVNUuLuKOK4SBVtkViSylsn cR6VnX62C3RGmyXElvtGGuFVXz34BIxW74eg8WQWkp0MkRGUrKitGcMvHzBug96TXNP/ALX8UPb6 aLYzLbq9yY2CxeYqZkIPTGazjW5a8lKV1q99rW3VtPvKcLwVlqc1XQ2ei6JqYNpY6ndNqHktIolg CxMVXcVznI4B5Nc90Ga7W28Mazpek7tP0+S6vr6HDToy7YI2H3VyeWI6nsOK0xlVU4r3+Vvba3zv 0RNGPM3pdGLZ6TpcelQahrN7cQLdswgjt4g7bVOCzZI4zx68VMPDEVvqF8L69KWFlGkpuIky0qv9 zaD3Oe/oanfSrzX/AA/pcemxrNPp4lt7iHeoaPLlgxyenPX2rRu2j1Q6rodnNFLci1tI4iHAEzQj DBT0J5/SuSWInzO0+rvt7q5kk/LTXX1NlTjbb/g6f5mQvhiC/udPOk3ryWl/I0e+4j2vEyjLBgOD xyMdaa+jaNd2d6+k6hdvPYxGWRLqAIrqCAdpB4PPQ1q2VtDpMWi6TrEq28zX73UiiTmIbAqBiDxl gPwqTUE1c6Pqv/CTJbxIyb7eaMorzS5+UDb99cZ69Kj6xU5klPTptr7zXb3tO1u/Ufs422/4Gn4H DUUUV7ZwhRRRQAUUUUAFFFFAGrot5pNr5i6lo8uovIVEQjmKFT6YHXNdZ4ilutX0creeCdRUWdu3 lTzXRHlDH3jn72PzrjtAma38Q6fKkLTslwhEajluegrpb/XtNe01GC91m7lkt1uLZbZ0b/SgxyhP YFGJz9K8HMab9vGUU313l6aJPT+vM9DDSXI0/wBDiI/9Wv0p1Mh/1S5p9e7HY4HuFFFFMQUUUUAF FFbMmhWdo5g1DxBp9ncp/rIHJLIcZwcd6idSMPiZcKcp/CjGoq7qGl3Gn3CxtiZHQSRyxAlZFPQg 0llpV5fXPkRxGMhS7PL8ioo6sSegp80bXuHJK9rFOirt/pc2npFK0sE8E2fLnt33xsR1GfUVVaKV EDtG6oejFSAfxpqSauhOLTs0MopQCxAAJJ6Y704QTMcLDIT6BTTFZjKKdsfzPL2Nvzjbjn8qkjs7 mW5itkgk86ZgqIVILE0rhZkNFb9t4OvruQrb3dlOI22zNDNv8k/7QxVG8021j05dQ0/UkvrYS+RI wiZCj4zjB6j3rNVqbdkzR0ppXaM6invDLEAZInQHoWUjNCRSyY2Ru+em1Sa0M7MZRTljkdyixszj qoUk/lVrT9LudQ1KGwVTFJKesikbQOScUNpasaTexTrW0TXptFdzGiyLIMMrDIIqC70prezW+gu7 a9tHcxia3fcFbGQGHY4OcVQ68VDUKsbPVMr3qcuzOutfHZsrlLm3sIklThWx04xTrrx6967vcWMT tJ94461z/wDY8kTbL67s9PfGRHdziNyP93qPxqGfTbmCNJQqzwyEhJoGEiMR2BHf2rlWGwr91JG7 qYi122bSeKbWMEJpUKg4yB3xUq+Mo0EgXTYQJVCuMdQK5iSOSIgSRshPQMpH86VYZnGUikYdflUm tPqlC3wke3q9zqE8aRopVdMgAK7T8valXxsiyxyjSrbfGCFOwdMY/GsG20mWWJZ7me3sLdmKrNdv 5asR1C+pFOvdGuLVY5YXjvbabPl3FqS6MRwRn1FS6OHb5XuVz17c2tjVufFVrdyiWfSbdnC7c47U ReKbWBGSPSYFV8ZAHpXOFGV9jKwfptIwfypuR61awlFbRIder1Z0n/CUWm7d/ZMGc7unell8VWky BX0e2wM8hME59T3rnXiljAaSN0B6FlIzQkUsn+rjd/8AdUmp+qUP5Q9tV7nT6d4zj0kubHTIIS+N 2FznFZOta5LrMyvIioF6KowBWYAS20Ak5xjvmnPHJFjzY3TPTepGauGHpU5c0Y2ZMqtSSs3obg1v Trqygt9SsPPMAwjqcGmG78NEYOkuf+B1jtHIiB2hZUPRipAP40zI/uioeDoybdi1XqJWudDFq3h+ FSqaUwB/2qP7X0HnGmSDIwcNXPj5mCqmSeABkk0sitEdskRQ9cMCDS+pUO34h9Yq9zo11zQAm3+y Cf8AaLc/nSHW9BYYbSmIznBaueEUrKWWByoGSQpximZH90UvqVDsP6xVXU6geIdEGP8AiU5x0yc4 +lSL4o0dMBdKwB71zNpaz39yltawGWVz8qj/ADxWidI05GMMviTS0uRwY97FQfTeOKiWFw0PiX4l xq157Gnd+JdGvoBBPpbFAABhvTpTLLX9D05i9tpGHJzknNYd3pt3ZXbW0tuWdQCDGCwYHkEEdQRV UghthTDZxtwc5q1g8O+n4kOvVWjZd1nU21bUJLtlC7z90dqoVIYJgu4wyBfXYcU143ix5iMmeRuU jNdcUoqyMHdu7G0VIIJmGVhkIAzkIelR54zVCswoq1p+nXGpTGOAKFVSzyudqIo6knsKlvtIubFY ZN8VzDOCY5rZvMRscEZ9anmje19SuSVr20KFFSG3nXG6CUZ4GUIzWunhLUZWMUUtpJcoAZLVJgZY wcfeHbqKUpxjuwjCUtkYuT6mkrYu9BihjvFttSju7nT8fa4EiZTHk4yCeG59KymhmRN7RSKn94qQ PzojOM1eLCUJR0aGUU5EeQ4RGf8A3RmgxyLJ5bIwc/wlTn8qsmzG0uT6mp4rG6lnigWCQPK4Rdyk ZJOKv3miQw2929pqUd3JYOEu41jZfKJOOp4IzxxUOcU0m9y1Tk02lsZFWrK/msEuRCFBuYTCzHqq kjOPyxVWtYaHHbxRvq2q2emGVdyRzMTIR2JUcgfWlUcFH39ghGUn7pk0uT6n86vX2lG0t0u4Lu3v bORyiz275G7GcEdQaXT9GuL2SUy5tYIImlmnljbaij2xz9KfPHl5r6B7OXNy21M+itC+0xYILa7s roX1pdBvKmSNlJKnBBU8iqMkbxNtkRkPXDDB/WnGSkroUoyi7MbRUggmZdywyEAZyEOKaiNI21FZ 29FGTTJsxtFOZHR9joyt/dYYP5UPFJEQJI3QnoGUjNMLDaKKKBBRRRQAUUUUAX9KW6tpk1eK1lmt 7KVGlZCQFOeASOma3ZbrTvENtqN1ZeByHSN5JLpblgsZxndjgE98VH4Ki1L7TPNZXFkIAAlzbXcw RZ0PbH9a2/Gum389kYdK1PTbfRreHebOKdUOQOQcffPpXgYytH6yoPR97tadml17dD0KEH7O/Q87 QgoCPSlpEGEApa95bHA9wooopiCiiigAre1oR32q+ELm4giaW8ZftDbAPOxIoy3rxWD3ro9T/s7X NTg1EeKJLAWpU2tu1ln7NjHCkHB5FcuJTdrI68LJJu7NrxJqOsweNdM0HR76OyguIMBWhVlQ/Nzj GegrNtL7X5ovFGg32qmaSzgLLcmMZwPvL9GH5VNNqWiz+IdN12bWZpZtPhETobQgznBy2c4Gc0kG oeHrfWNW1N9QnnXV4zG0C25UxA8H5s81xKjPszt9rDuUfDtxqOh/D99b+3JPaIXSGwkgUqshbAYt 1684qJfEurxpp91HqF9qTysPtdnNY4hCn+6cfhmp7AaRY6VJpd14jlvdIlVgtoloVkVjyGJ7YIzT raZbWzjtk8dXI0+PG2BbUiXbn7uf/r1TpS7B7SHdFyO88S6p4t1rStKv7W1gtT+7M0Cnylz/AA4X r9aQXfijVvEutaVZa0lpHZLuBMKk8DopAyMnvTYtZ0fTNZ1TXLW9lu5dRYAWxgKeWMg5LE80/TdX 0LT9d1PWDfzyNqa4MAtiDD+OeaXsp9mL2sO4zStenvvA7X+oawmm3UV35TXwhDyyKBnaABktz1qP QfEGpyeMrbSk1W5vrW7jby5ry1CSRttYhlyM9voaoLp3h99BXSE191mS6N1FcPasqA7QNpGT+daM dzp8XiSy8Q6h4ma/ubRNhjjsyobhgApzwPm70/ZO+zH7SHdFf4f2GqvqGqyQawYY4Lr/AEmPyVP2 j72ef4fw9ajtfF+oWngS7vG8mS7fUPIhYwoBH8uc4AAJwOpqzpkunadqtze6f4ne1s7ubzJrSS1J Y8k4B9OetVoofDMHh260KfU7i4E9x56XMdtt8psYHBPNL2Ur7MPaQ7l6+ute8MXmjyarqi6vaX7K s8E0QwhOM7fz/Soob3xRqt34hgstaSzg0x2KKIF3EAnCggccDrUI+wG+0+51zxM2rQ6fg29vBbkd MY3E/QflVvTdS0HTJ9ZmGpzzf2vuyBakeTnPvz1o9lK2zD2kO46012S78EWepXutrpNy1w0ctzFb h5bgL0AAHXkc+1J4W8QahP4vk0qa/m1C1e2eSOW7t/LlXC5474rNFjoTaPY6dB4gaO6sLh54rmW0 IjOSDgjJ9BWla3el2viYeIL7xK9/ceQYXRbMrnK7cjHQCj2Ur7MPaQ7owNI4+HEv/YU/9pip/Cka SeI7YugcRh5Qp7sqFh+oFMmbT9N8NrpFhetfeZdG5eRoTHs+UKFwSeeM1RsbybT72G8t2AlhYMue h9j7V20oP2TWxw1px9qmaPhdYptH1XxDdafHquoNdBCk67wgbktj9K2tX1C40HTdK0vQrQaVc6zP vdWG4QEkL8uemc59qzbVbKK9m1DQvEb6E9zzNbTQl1Bz/CRkEencU+6XQ76whtbjX7yTUYbgzpqL wEgMcZGM528A1xulLblO72kd7mol3q2h+M7XQ9Yvl1i2vIt8Uk0K7o2weR+I/Wsa31TxdqPhjUdX j11YY9PlI8tIVVnHHGQOg9Ku2txpltr6a1revvrF4kflxeRbkJGMEZOcep496bYTaBZeG9Q0H+15 XGoOXNx9kIEWccEZ56UvZStsw9pDuij4gm1DWpvCd7JeKj3iAKoiBWKQMAz4754OPatTV9ev7HXY fDj6pPbxWsO+6u7K0DSzOeeFAwo5HSoJG8PtDoaf21LnRD2tD+/+bPHPHSi+1TTda1pdYttQudC1 JBsEoj8xJF7Zx0OOKfspdg9rDuRL4m1pPDWsTSO7XVnJH9mv5bULI6M2MHI61bv9W8RaJ4YTW76e xuDexxpbRpbr+6YjO88cnAPtmo7q4sb/AEu+0/U/FlxeTXRQic2h8uMKc4UZ70l9ruk6jp8WgXSz SabHDGi3SrtkSRR98L6e1CozeyE6tNdRLHX9Sj1zS4hfX2r21y6pdxXdjsWMkgZU46c/pTbfUPFW qxeIntdbS1i0qViqiBQzAFsKCBwMLU9nqItJLQ3Xje5urO3dWW3jtSrsByFY56du9Lp17oGlwa1E NVmm/tksxK2hHkZ3deefvUnRl2Y/aQ7opP4lvX0HRprS3to9a1SRoXvfKXdhW2g9MAnjJ9q2NVfW /Cuk3moXesLrKIohjS5gGY5yR8wz1AGf0rHaLw03h+z0Z9TuvOs5Gkhv47YjaWOcbc5xViW6sJ4p 7fX/ABPc6xFND5apDb7REcgh+erDH86HSm+jF7SHdFVfEGpq+nML291aO4IW9tLix2xAHGdhx27G s7WrOPT9avLOIkxwzMq59O1bVtdi0toIj44upLCErttktCJSoPCk54HHrWFql6NR1W6vQmwTylwp OcZrqw8JRb7HNiZRklZmqj3emRaJpmkvHb6hrJ3yXZQM0aFsKq56eprTGo6tovii40LVL1NUVrN5 ra4lhXfGwQkfqDWLBNZanY2UF3fvp19prk2l4E3rtJztYdRg9DV+2m0mDVrnUtY16TVL+eBoUlht yI4QVK5xxnjtWE6c3Ntm9OdNQWpTXV/F0/gv/hIxrqrHBNsMKwKpfnGSQMEe2Ki8RwxLeW9zFGsX 221juGjQYVWYc49sjP41oI+gReD5PC/9sTMHl8z7ULQ4HOcbc1l65e295cWyWrM8NrbJbrIy7S+3 vjt1rXDwlGWxliJxlDRiwSNZ+DtbvYGxcN5VvkdURm+Yj69K1tO0zT7XRdGsk8PRaimpQb7i42kv uJ7N/DisXSr+C1a4tr2Fp7G8j8q4jU4bHUMPcHkVoWsS2entZ2XjqWDTmz+4+zN5oB6gen4GlWpv ncrXHQqR5LXsbE93q+q+MX8L6RqTaXZ6bbhWlVAzttAHX8RWS3ijV7bQ9bhmmibVNLnRFvVhXcyl 9pzkVLJJpcmrR6pouvy6VeRwLDI9zAWWYABd3GeTgVXW28Orot/pkmszyXd/Ksk98bYlSVOcAZzj rzWCpS6pm/tId0WJ9T8XWOo6Iz6zDP8A2vENsTQDy4icDJHc8g5q7ot/rEXiHXNG1a9TUWsrdpYp niHyOACCBjgc9Paobu+0C8n0Sb+1Z4/7GVVwbQnzsY9+OlW7FtKvfEWsavaam0k19aSKLRoCrLhR 3zz0pOnKKvZjVSL0uY0Oo+LbzwU/iNfEAQWrkGBYFUuNwHJAwevTFalr4gu73xF4cgVYYrTUbUSX MCwptdvmyeme1YOkaVLN4LiGo+IJbDTJLhg9mIMs5GDx3/pV69fRtVl0640zVJNDuNMQRRGaMvuQ dCCO/Wmqbaugc4p2bLV9qOqXmo+LNIjvhBaWlqWijWJcKoxlencZH40vg231G28Em/bxClnY+XII 43gUrA277+ep+nvUFg+g6ZfalcXWu3OpHU4DFKRbEMM9WznH6VDa2umjQ5dGn8Ws+nSKfKh+yFWj fOQzfQjp70vZStsL2kO6GjxVqFhq+mtZ67d6tazyqkgu7TYjDIHyk/XtUumaZq83xK1qC21s29wg zJceQreYuV+XHbtz7UyaCxlt9Njv/FouF0x1MMUNkdu0EcdjnjrVme706bxJc69pPiKXS5bhcTRy 2pfcOM7frgVXsnbYPaR7olHie90/UfFksvlzLZACBDEo+YtgZIGT+NVbu+8U6X4YsvE8+tC7iuXX zLKSJfLCtnA/SpBN4aW61me51C4uY9ZXDRpbFWh5znJPJzzVJ7Oxk062sL7xc1zpNs++O0jtiJD7 H060vZS7MPaQ7mtJqOt6n40bR9F1GLTrWWzSZAYFPl5RSccZzz60zQdZvrnQdZGq6rFb3WnzCNNS kiDOgJwQOOenH1p9vq/h+28Wt4iS9mAMAgWzFscqAAB82cdqzDa+HJtO1OxbW5t2o3AuEkNqQIWB Jw3JyOaHSl2Ye0h3RNp/ifULbxRpcFvrN3qlldyBH+2Wvl9TjKE/XtUEAx/wmv8A13T/ANG1Yb7A 17pV5qPiv7W+mMuyOGyO0qCOB09OSar3l3pdtBrL2V7JdyavKrFGgMYhAbd1yc1dOk1JOxFSpHla uY1owW9gZl3ASqSvryOK3tZ0zVtD8Y3+tTaCmtWdySyGRN4RTj06EDjpXP28vkXMU23d5bq+PXBz XTG+kmubm60zxpJpsV27SPa3EBYxFuSFPIx9MVviYttNK5z4WUUmmyKbxjp9p4UeTw3pyWN1d3gS SJ1DLE+37yg8cgccetbj2HiPStPvrm58RtfCGzczwywjCPtypUkYIBrmVi8Kx6Q+ivJeSl5fObUl jAIkAxwmc7eo/Gr6XkIt3h1HxlcX0LW7wRxJaH5dy43NzyRXLKjLomdftYdyBvF+oweFdDiSYRXV 9JJ5lylupaNA+PkUDGfw7Va0zXdQ/ti8tTPdalZfZJJILm9s9rxSKhI6j1FVCvhttDsNL/tS7S5s HZ4L9LYrtLHOCuc46Vfh1SKKV21XxjPqKtBJEkcVqQo3Ljc3qRmn7KXZh7SHcyhq/i+TwYviMa6q pDN5fkrCoL84ySBg/TFaU+o3t7r+naJoPkaQ95bJc3dzFECxJXcQPbjoPWq6voC+DW8Mf2xNh5fM +1fZDgc5xtzS3k2hX1xYT2Wr3Om6hYQrCl59nysgAxyM5Hf86SpS2sxe0h3RZ1/UtZ8M6dCkupJq E1/PttryS2BlhQAbuMcnJGKr2l5dan4gj0ee5vdV028iKma8tPLeCTBIKnHHIH50y8fR7+zkt9X8 RXl9eeaJYryO32rAQMYVc8j8ulWYtbewmjurvxbcasIVby7WO38tXJGBvb8c/hTjSmtbO4OpCzu0 ckylGKN1U4NJQSSck5Jor1TyQooooEFFFFACMoZcGoPsi5zmrFFS4qW5Sk1sIo2gClooqhBRRRQI KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKkhnltpkngkaOVDlXU4INR0UDLV9qV9qUiyX11Lc Mowpds4qrRRSSS2BtvVhRRRTEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB/9k= ------=_NextPart_000_0024_01C7FD57.17A9BB10 Content-Type: image/jpeg; name="clip_image004.jpg" Content-Transfer-Encoding: base64 Content-ID: <002201c7fd91$c400f1f0$0a01a8c0^^cousan> /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAoHBwgHBgoICAgLCgoLDhgQDg0NDh0VFhEYIx8lJCIf IiEmKzcvJik0KSEiMEExNDk7Pj4+JS5ESUM8SDc9Pjv/2wBDAQoLCw4NDhwQEBw7KCIoOzs7Ozs7 Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozs7Ozv/wAARCACAAHUDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDZowfS iul8P2lrcWRMsCOwPU/U1glc44x5nY5va390/lRsf+435Gu9+x2uABbpgdOtO8qL/nmv5VfIa+y8 zgCrDqpH4UYPofyruZLG1kPz26HNc54g1/R9BDQxW0dxd4/1YPyp/vH+lJxsHsWZO1v7p/KoZVbd 90/lXL3vivxHPMWhvobdSfuJbLgficmqi67r6nc+s3Jbv0A/lRCpGErmkcNLc7DY391vyo2n0P5V m6V45u7YpHqcCXsPQtja4989D+NegabPo+tWS3VnHFNGTggjDIfQjsa6o14y2B0mtzkQCegJ/Cja 390/lXcCxs4zlLSJc+gP+NDW8BHMMZH0p+1XYXIcNg+lFdlJYWTDBtIvrisPX7SC0njEESxhlBIX 6VUZqTsJxsZNFFFaElmur8MJtsGP95s1yldZ4ab/AIl5Hof6mvNhuRT+I2cUmKM0ma2Ok5zxrrU2 k6WsVo+y6uiUVx/yzUfeYe/YfWvK5VySBn8Tkn3JrtPiBOZNaihB4igHHuSf8BXFvNAJSJXIA4zj iueq30OikluwS3XjLAn2qRrVCDgVdtobSaMSRTqR6CpJ44IVaSWYIqjPNcbud6tYwmh25A7VpeGN Zk0PW4Zw5FtOwiuUzwQeA31B/TNUria2mYvbu7n2HFUpHJRgDkg1rTunqc9Xla0PejyMjkU01U0e 5N1o1pMerRDNWzXccBG1YfihcTwn/YX+VbhxXP8AiR2a7jVj0Rf5VpT+ImWxjUUUV0mZZrq/DSka ezdiRj8zXKV1nh5/+JXt9D/U150NyafxGtmo5ZkhieWVgiIpZmPYDrQSapavvOj3gQZbyHwPwrQ6 Ueb+L9VtNR1/ztPm81XtlOSCAMEj865Ca6vUlIigEgL7PJPXGPvemK3JI2TaWUDcmPrRbWpdgVA3 etcbq31aO6NGzsmS3stjFpsEVlAY7pCDLIejfQf41SnkZptsrA9AFI56dxVhrV57vZH8wQ4Bx1NQ 3kEkNxG0y9GwcjoKiVROV7Gip2i1cTVgltFarZTq4kQtN+52hG/ujHWsWWR/sjTSqULjGF5YH+td XdRnyVVlVlA+U4rEMRNzHGMfNIAM1SqJvYiVJpbnqng68gufD0McLMxt/wB2+5cc1tE1yHgUqkt9 Ft2sCCB7V1xNdVOXNFM4qkeWTQxqwvEsZWeGTPDIB+lbjGsbxQzebAn8IRSPyren8RlLYwaKKK6T Ms11fh8D+yh65/qa5Sum0KVItLZ5HVEU5LMcAcmvOhuTT+I16QqGUqRkEYNc7f8Ajvw/Ykp9qa5c doF3D8+lYd18UoRxa6Yx95ZMfoK6FSm9kaSqwW7Od1myn06/ntZRjynIQ+q9j+VUlu3h3DOB3NW9 X8UTeI5lM9rBCyKdrR5yR6HNZMwMqhQxVj3Fcdai4Sszuo1+dcyLdvdXHn+ZFKV29Mjikvbm6lk3 yzb89cDrTtPjupPl84EL6YX9Kl1CK4ihDCQFT64/lWXKjpXM1e5CdRkMe3OVx19KouXW5iI5IbIF JllUh33bunbmqmqyGaWKJSf3jc4OPlHWnCneSS6mc6totvoeq+BYdumSXMmBJK+OvpXTnpXgSNLG oVGZQOAATxVmK/v4TmK7nT02yEV6ywjirJnjvFXd2j29jWJ4iJZ4XJ/hA/IV55a+NNfsSCbs3CDq k43Z/HrXYf2qNa0iz1DyTC0uQyZzgg449qSpShLUtVFNWRBRRRWgWLVU/GBlTwjaqh+SS6+f8A2K uVdvbC11Pw9aw3Icqk5cBTjPXvXm0ZqE1KWyOmrFyg0jyyOFpGCgF2PZeTWpbeGtSuhkW/lr6yHb /wDXrura1tbJdltbJEO5Uc/nViOPzCTjAroqZg9qa+854YJLWbOSsfBUxuY2nuYwoOWWPJJHpmsr W9Lm0nUXt5Adv3o3x95T0NemwRKg3AVY1nQLfXdMNs4CSIN0MuOQf6j2pe9WhzT3NIqNKVo7HkMM SO2XNOnhi/hP61PeaXdWdy9rLmOWM4IP+elVDZzD70p/KuNqzsdqbauVJCXkCDJOa3P+ELu0cXDT IJWjUeW+Rs7kVf8ABfh1ri7OqzoDbW7fJu/5aP2/AV1txCZJXwc4OS3ua6KalBc8dznqWk+Rnndx oOo2wy1sXX1j+aqBXadpUgjqCOa9PEZTgjNV7vSbLUI8TwqT/fAww/GtqeYvapH7jmqYJfYZ5s6B hjFdzpQC+FdOAGMbx9fmNZ2oeEJI8vYzeb/0zfg/ga21tpLPQ9Nt5EKFYckH1JJNdc61OpFcjFha U4VfeRDRRRWJ6lkWK2Lfa2hnPJSQYH1zWPWpAy/2WseDl3zn0xn/ABry3szHqRFdxG38qtIoRQo/ OoQuD8tAk2Ek1gnY0aNCFc2zE44bNacZxECxwU/lWHHeCO3ICbnOevQVbgkcmOSb5wy9McD8K9Sh OLikmcVSLTbZjeLf7E1GREF2Ev0GAIkLYHo2OntWZovhazvJlbUb1NuflhDY3+xP9Ku+LdNjaSLW IPkkDrFMOxBPynHsT+VUrC0fWPESWpyLazXzpAOAxB+Ufnz+FYVL+2SsdtKMXQcrs626WOBI4LaN Y44/lVVGAB9KrSQiKzHq7Zz6irV2wRfNC5AyMA5qtPNFNajY/wB0jINdNWSUWr9DhgndMpyKdh4+ lMjPy09mwOufSkVeu6vJO4bj0pNcbItgAABEvA+lO/H8abrilfs2Tn90v8q6sL8bDqZNFFFeiWWK 3IlH9gQOOokIP61h1so4XQYVOctIcfrXl9GYdUVncgdqap3GklORxTQcGuVm6HE56d62LQj7LEAM kdax1GTVvzWj0yV9xBRTg+/+TXVhXaTMayukjmNe1A6rdx2kRwkcrKgJ4cjv7+1P0y5i0bxD5kpY C5UICDwS3HOfQ4rONndW87pB5c6FsneM9f8A9dUdcjeOJH2vGQc7Q2cHPWsnVk58x6ioxjT9n0PT dQZVsgB1JxzWXgk57VKLv7bo1jLu3eZGGJ98c1Fkheta4mXNNeh5dGNk0DMQADQjs3HYdaidj1NP TKp9eTXMaj88YPXtRrakRWpJzmMc/hTN2Rmm6sSVth/0yWuvCfGxdUZtFFFekUWK2LdVudJiiWWN HjYnDtjOax6MV5ZgbK6VM/8Ay8Wo+swpzaPMelxaD/tqKxMAdqXOaXLHsPmkbLaVIoyLu1Y+nm0k 1hcvpMtvHLbLMx+VmmGOo96xsD0owPQVUbRd0hNtkz6HcBQJDbHjkrOvPb61jaroN7dSDy3iwBgB pRitPA9KikHzU6dKM5WZ1LE1G+hc0bT7i30yC0uLi3DxFhkScYJzV6SxdAStzbH3EorCwPSjA9K6 XhoPcz1NQQgt880S8/3s1I6wqCVukbA9DWPiiksLTCzNAyxhsBhj1o1Fo3igKNlguGGaz6KuFCMH dAFFFFbjP//Z ------=_NextPart_000_0024_01C7FD57.17A9BB10 Content-Type: image/jpeg; name="clip_image005.jpg" Content-Transfer-Encoding: base64 Content-ID: <002301c7fd91$c400f1f0$0a01a8c0^^cousan> /9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja3kAAQAEAAAAQQAA/+4ADkFkb2JlAGTAAAAAAf/b AIQABQQEBAQEBQQEBQcFBAUHCQYFBQYJCggICQgICg0KCwsLCwoNDAwMDQwMDA8PEREPDxcWFhYX GRkZGRkZGRkZGQEGBgYKCQoTDQ0TFhEOERYZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZGRkZ GRkZGRkZGRkZGRkZGRkZGRkZ/8AAEQgAOQCZAwERAAIRAQMRAf/EALIAAAICAwEAAAAAAAAAAAAA AAUGAAQBAgMHAQABBQEBAQAAAAAAAAAAAAAAAQIDBAUGBwgQAAEEAQMCBAMDCQYHAAAAAAIBAwQF BgAREiEHMSITFEFRFTJCFmFxkdFSkiOTNIFicoKyQ9IzU1RVVhcRAAEDAgMEBgUJBQkBAAAAAAEA AgMRBCESBTFBURNhcYGRIgahscEyFNHhQlJykiMVFvCCslM08WLC0jNDczUHJP/aAAwDAQACEQMR AD8A88VUFN1XZPy6rr11ZRUVEVOqL4LoQpoSKaEKaEKaEKaEq1UxRUFSRCXwTQiiyhCW6Iu+3joR RZ0JFNCFNCF0aEyVfTA3FAVcNGxI+ID4kvFF2FPiq9NIUjiBtXp+P2TtLiVdJivI2Uu0Ft5FHdCA lRFTf82uSv7VtzePa8VyxVHWsqZmeUg7moV3EvLlrIHq/wB0Q17StvMx024rtsSL+Xrq15fsoDbN flGc1BO9TWMLDHWmKx3BY961T5Gy4jv1BgWXUb8fUFPkmnaE/lmS3Ipy3VHUUWLspcw7kbx+gt8k xH6JatlCZjui7AkuD5uPxRE8dZ+oX8Fne86M53OFHAKCaZkc2ZuPFChu8awyULNNHWwsWi4yZz33 dl2NB/s1ddZXWoMJmORh2NHoqpeTLOKuNBwVPuIw3JmxciguG9X2TQ7H12AxT7OptAcWRmB4AfGe 8cU+xdQFh2hKHB/9hz90tbuZvEK5UI/26XbuHiSeKFaNoqL4bKB6e3aqerH/AOST7KzTY9Mznupl GPNyEjB+IbknpCApq1FjSXFLg2P2i6oIj810tKlZ9rqHI08Su8VAAOngmBO1h2FziMOqfsq6vypq e84GRw/aWMEashF5XWBVEX1UJFaTp0XdemlyKKLzE0xvc9ozNpTKcHV68RTesYOz2ivYuey4Um4t YFBQuSxsJsRkCZUReRyRFbQxQ3EQBJtHRHSAA1VO61q5IZQBni3Vx6PlohtJhtNcx+3Uli0nDGz2 bZRWyeZZF1lmvN0Wz4opJzcQBUk3VE3XbRl2K4dfc3OCwVa1pG3EkVK3nYniVNiF5l95kcqJHqbu zx2LFGMLhzJcI3AjAHHfgTvp8jVfKib+Hjoy4Jv6hcXNAYMQ0nE4Y0PX0Ilc9qXqejuXnXLVMgx2 pbu7Rx6ArdI6Ch6j8aLL/wBx6OG6kvVF+Sebipalj8xh0wblHLJoMfF0E7uzcifa8aay7d5RR3Be nGyS3jUkKZw5+hMnRRSI4u3XyyOG35V0NGCh12Z8dzG9hxa2vpxXGxxGyyay7cY3aPLSDUYfLlZG 4TXNxhK99th5UBNuRersifn36+CmXYqlrqxgfI+mbO6oG6p/tVfEMUwibk+A2IzJlzhmbMzzqY8u ODb/AL2u3RxiYgEgo2mxEhBvuQ8VRRXloDRVWptekfbvDQGSCmI4HeOnr9aGVmI0eQTMvu4H1+Ri tHa/S2YlTWjJs3Zbjqo6DTDSmIxoqEi8i6qP5eioGpzdfeyJoIBkO8k0w9p7lec7ZQqp3NFuZ1lY sYhLjRTiY5EblWBszGG5ASTZcLytg26nPjv9k1ToOjLtUknmLwsLGCrhjmJphuFEv9t1tbKJl0yj uXqImMYmzXXAYZkE+w3svpEjqEgKv7QdU0NU+tSNMMZI2vHZ0r0TH8LobHEMKwtb+S1kOR0reTVb ZR0NoCFht0hdNP8Ab3c2TbzdF6+Gs0WDRd87Maublp86yTrjmSl2QFoNNu0fKhFnTU+V11Xlc+e3 WRSjC1K4ry5OD0VEX8iprmbDUZrZ77eNhkdmJHQFs2l2QCGDNXYr+PXGMrDeoqJPXkQWykQiljyQ 3U8eO/XTL+zu+YJpjRrzldl3BLNFJXO/ekF/OsnO1bnyZitORjUfbimzYpvsqKPx10bNFtBCWNbU O37+9aAs4slANqO3GA2FrPjWFI6MqHaB7h6SaoItmvUt9tZ1rrsUMbmTDK+M0A48FBDehjS1wxam +kbpaiEGKHMbuLFhDktR9kIRcFN+KL+fWHem4nk+JDTDGaNJ30VOUveeZTKClv8AHWUf+EY/lr+r Wv8Akdp/Nd95WPhYvrLz6juSxu9qsiCKs4qiSMxIYmjSu8BJOKGqFx338dtdaDirl9CZoHsG1wR2 q7kEWcQbzt52ykQcjlzZcq5ilYSJq2Tc0SKQ2IqH8BeS+qhgPEVTqnHdNLXeAuYFjOLd0crqRjEV oKHrXSxybIMEzuhu4uG2tHMr48tx6pyG7ftgmxJnBsgZJ1XPbcOHQk33VB5IqDsqk0Vex074mN4B rw6+9C6LuFQ49YXY03bp2Nhd5UFT22OnZOG84ThuEbjUghUxFQc9Pgm37SEi6QGiuyadcS24Y73o 3VGA2cFbxzu2zj1RjMGV2+W0k4pPlS8blfUDbKLGmumRtmKAqOuC2aghF5fsltunUBoFDc6TO92Y fSAr2CiXMhy+ZlOLOYmdC5BbmZfMy45pSBdRsJfr7R1BAHcg9f7e/Xbw0E1U9npEkcrHO2U9qL5p 3IczGBIi2+OWYZPMitwZFxAupbNY5w4irxV6fwfOCcSDwXfx30taqJuivjnG+Ovo70Lfv5sXBbLC K2veJ2xsYVslyy6oey9kraCqigqu/IE2LmmyrpK4LT1HTjPNG6uAFPTVNth3tySxzGoyh3GmyWup X6G8hHJ2asmZRAbqtELe7G5toQovLbw0uZZQ0B4zAHZi1BI/ciYxf4VNxvFBpcV7ejJ+lUT8o3np JzkUZJOSFHoRoq8fIvEt16ouyFcU6HRJXtdnNCR6tiZcYvcmnxsvl0PbO3e7dXktLI4kG0ehS409 pE9w8xMDibouGi8mx6J4eG4qAngqV1aZGNa9wEjcKb6E144JYxTuNT4peTc2r8MtpV9LfUqw3r2Q 6gxTjAwEeWRgpSQE0VxOe+3lT7qLpAaYq1NpEromgduHzrtFn5N2uk5VU5LTDLyS9p5UCVDiyGwb j/VVV1HUIEcEhDdU4ov9ujZVXnRfGWkeR2bI6vdgmHBu4lm5lOHyG8bIncOxT8Psx1lAizXRbaD1 AJW9m+jf2V38dUb65Fu1spFQ049xHtWXcaPIxjuk1VLt7XzpWNz+3Vwox58dTkRQd6kLikpKKKv5 9YuovZBJHesFWnB1OC3o28ljJB2rbFMXypq6ZmxYvt/Yuqjr8jyNqgrsSdfHpqzqmpWZgLHurnGw YlXrm4iLKE1qnXJKbE4LkjLJUdZwqqC5HjqhNI98VLb56wNNvL2UC2acnS7blVGCWVwEYNEMpMp/ FxycacVKiO+2qVvoLxVFHrxVU1cvNMFiBcgc1wPjr61LNbGGj/e4pEjfUsVyYEVsisIT+xAiKquC q/D58k10MnKvbU4+B7e5X3ZZougr1v8AGzP/AK3O/kr+rXFfkbv57PvLI+GP1m968K16It9ejdtn ZUTGu6FpSqQ5VAx3lUONb+u2Bi+TxtbdeQk22qbfFE05u9cz5ke6kTfolxr14U9qU+2VJUFR5hn2 Rq9lLmLUwTGa2ZIdIHnn1dJPUPdT9MCAlVPmSquhtCo79zrCJghNHSVqeqmzrXo8XHMLduxtHqIf olv25PNEx8ZLiFEltkypCy90MEIXOIqqfaRV226ItB6FTOs3QjDM34gkpmoMRwKJUlV26vbPAoK4 YEQu4mPyLE3GpjyjXuRWRd3ZBU8xn6myn08B6fa3dlCqjWb0A/iHw47BjswPQlrCkwlzGu0rlziI XFpnkqwq5s1JDzatJGkG2jytguxkmw9dx4ihaa0CgVm61a6Mj8j8rRQ0w+rVYfxnH6+nxtpYIyZR 90Sw+dNdU/UkVzcuQz6Z7Lt5gbHfbr00lKd6f+eTueTWgMezg6m0ItOuKTE8U73wm8YhzarH7mta bguOvttyG5DrANtuKJcxRg15jxLrvsunGgBVKS8nmfE8uOcAgHsrXtrRaM4jg1TitNCySZj0CTb4 ulw5eWNska3SzkDzZSNFNUbOKGyhvv5/lui8kyimKtS61dCeoJo11MtMKD2n0epRz17GqLD8Cj1W NoWT5jQwLOVb+sYhG9MWnHjBpUJCOR6hCa7oiIibb6SmCt2Go3M9yRm8GZ3h6Pm3IjSOV3dqjpe1 5WVjjGaY1GlO0ciGZpXWTBIikj4tqJC5xTYlX+8SKXJQ0oocFW1SE290ZXDNG81S9kruOYP23xGP Extq9yDN6qRNS8lvuCEFOICAR2x8pGyjib9U6p15b7I3cOJVll/cT3OWJ1I2buIG2vWn9/AcSrs9 7oy2INcMbGIVMsCHkFg9Gq/XsWV5PSpLhGaCHDYRVdlVdunRUfTErMj1SaOFoaaOcSSRtw9XWsNR +3lPI7jZLSMQcir8Yqqq8rGqyxJ5iNKdWT68VuUyqqoEbAqvJN+K7bJqOSJkgLXCrTuT5dZunxtb Wh8VcB4uHaE6OTaMLeZkI0rahFwlnNHKpot5LrrqPbMC4icuOzW2+32l8PhrFfosJlynNyA2uSpy 1+ToUPx8wZkLsc1KpexrJ2M3weTn9nCpayO7aM1I09zauQKxhgRbN5z10Hc5DqH5BJNk8evxmtNI toZHPDGipGXowT5ri4gLWEmtM1aVOOzs9a88ZuaaozjI8co5rdzhZSkCK5EdSYyrUloHUQHRU0P0 SNW9+Sr5evXT9TsxI3O2gkZsPsXR2czrqAPcKSN7NiJF2+lwLEJrVk3Fq2lF5qaXlMfiibLrJHmC OWMsLC6U4Fqt/FhzaEVKaZt5Dmx3rjHGGLK8gCjT7xj5lFE6kifHWPBZSROENw4xwvxAHqVVsRBD X1DSkz/6DnPzL+Qv6tb/AOn9O4D7yufCQ/sUj66BXlYrre/x6xau8Xsiq7pgCaCQIi4BtObc2nWz QgcAtkXZU6KiKnVE0oNFTvrJl1HkcrBZ53Ofu3Mids4DNicEqpyMzCZ9lIhmZOE2+woqLnIjVd16 /pXS1WS3Q/wsjnb6jbt71TPKe4sm2tcjmXLLt5b1R468qx2/btVbioSsMtIiC2m6boqJ47r1VV0V QzQWhlCca1XWBlncCsl45MhWsUXsSr3KqhUorZemw8Atmh/9RVEB6lozJToDDmx95HI/dG4xHAcD wvBLJprJ6pbNbpZMEXgY9y8bjLrTr7ahy4Omn8NV8diT4aWtAKLMdpD33LmkYYY9nR0oFQZd3JxG qeq8dvWuEuaVpJOfGYluDOcVFcfbN4DUSPbr+lNlVV0gctKbQGODabRt6e4raFmHcWulZHaR7OG5 YZYQlfMSIbLsR7gCgCo0QqgqIqvh0X4oujMg6C3ltaD4mmtcfl6FXXJc+TG4+JuTa+ypo0VyDFWy gR5MmLHeHg42w+YK4Kceidd0TZEXZE2AU5+iAyB4PX0rnLsMiuHaULuY1IhY7XDU07bTQtE3GAQF BMh6muwD1XSEq5aaaIJnSD6SMudxO6MWqDHqS4i19U3FWvaktRGUnNxV8Wxf4qSeP2k82/Xffrpa 4Kpd6KJZi+uBNTt28dqEsZBnNZif4Fr7KLIxhWnWW48+Ky+7GR/l6vt3SHmHLkW3Xy/d20VSu0QN kD4zlIVwMz7kDkNxln1iMVzdx24Now5EZcgyozIcAbdjmKguyfeTr1VN9lVNFVH+QMyZa4jYqBXm anEySMMmuht5cyxEvGIcJhlko8UCbbFoQEUaVBNeo9V0lU78kBY0OOLa+lX4uYdxIeRwcoi3TTFr U1TdDAJuO2jRV7RKaMvNqnFxOS77+O6IqbKmh2ONcUP0Fjg4E7TUdadsZusuuXLeZBvK2Lb2qM/U aGTAYOrkJHFAbIWDRUFwURPMJdem++ybYN/fz2h8TM8R3jd6Fn3GkyNYA7HLsKP08SZFYnrLhMQ8 klvk65NZigEcnFXxAW04imudupuZIHl+eI4lodSnYrtpBy2AE1CqRazKfeujdS2JtW4u7jRpuip/ dH4asS3tlywYWuZJu+daJ5dPCKFXayvqa2S89RR1bmueUkc5o3t8uvw1WubmeZgFw7wdFKpHlzh4 ijXubf8A7SN+8v8Aw6zuXb/Xf+3aq+Rq8hC7oBq0glicM56R/RW1WTIRxXdtvW4IvDlv128NeiG2 m5mbnOy1rlytpThVaRglz5uYctfdoO5a1d5QV8NGbHFYlq+JkZTH5MholFfAeILx2HSz28z3VbK5 g4BrSiWCV7qtkLeigVmIH06xtyscJWYEc2RfrnzlNpAWW4iMCSivL+LzEA5+PTTpYJXNAbI5pG05 Rio3uD2NyzUrXHw+Km3u3rq5ClS7NmziYE63VsSkrH6tr3ZtPTQIhJlTXz+py6EI+G3XSst5RGWm RxcfpUFR2JBKxrC0zDMRmr4fd49SqZDNriU6xvE2Mes4jyjL4vyDdRUHZWzBxdk6qi6SC3ljdV8r njgWgepSWzXe9zeY0jDAUW0i9xp2I4wzhkGPMNr0wnjKlEYHtt6iCq7Ku/XZdRttZw4EzOIrsyt7 kjbaUOqZSeig7lRi5PQ1TDcSdiMO1kCqmcx6TJbM0Jd0RRBeKcU6dNb1n5ffesMouHx40yhrSMOt cb5m8yz6fd8pmLSxrt2+vQUOrMnq4cqY9PxqLZsSF3jRXX32xjpyVdhIC3LovHzfLWvc+VmvY0Rz PjcNpo12bsOzjgucb58viTmDabqCnftqrIXcaxuFsK7EGSrIEYpU+nYdkuNegyio4+44i8wEeQqq +CdNNHliNkBY6d/MccH0aKdGXYU9vnnUHOo0DLvwq7727uXe9nnLr234GD/QmWmmZ7s5opTonElm rLBqrnlRt11FEC+8SbJptn5bijeebcOmrgB4W0IxOzfTcnv866iBVjR+8M2HcFbt7hiLDsYkjt03 UzIitQ5Ux12YhxZL4c2uYmqIhmCKYiXimoLfyu3mNcbp72bcuVniHCoRJ52v2AnLQjjs7qe1DarL qKFDaj2GIQ7WUBEpzXZMlozRS3RFEF4pxTp01NdeU+Y8ujuJI2/VytdTtOKib57vSPEBXooB3UK5 UmR1bEyT9RxyLZMyl3jMuPvtpHRFIthUC3JNlQfN8tRav5eEdvnilexzKV905q0HZxwUbvP1+Gku Deigp37aq+5bUx27VgGPR264BQTqBffVk1RFTkpqvPfdd+i7dNc4LaQRFvMOb61BXu2Kof8A0TUc 2GXJwoK/eUuLamsGWm67Ho9OYEpOPR3nnCNFTZBVHFVERPHRb20kZJfIZOsAepEn/omo/wC3lHWA 5GXpMUob8djAxizArUsVmtuTFcaiqKbTdlXb0+vLkvl1CLOYOqZnFvDK3ZwVg+e9TIwZ4qV2VHXS mxbRJvcOrhuyQiWK10N0WJBvsGbbbp8dgMlHcVXmHx+8nz0y40W0mNXMFeIwVM+ctXIzFrKDb+HR aTs6yRqQ7EkMNRJUYyZkMk2qGDgKokJIS9FFU2VNVGeWrVu3Me1Nk8+ai00yxtI/un2laD3DuxbQ fTjqaJt6igW/6OW2kPlm1Jr4u9H6/wBQpTLHX7J/zLH/ANDyD5sfuL+vTv01acHd6i/Xmo8I/u/O lTWyveVzfBXGXAH7RCqJ+dU0JwNCvS5PcbD4uR5RbxHp9rHyuXUJY1ztc4yrMOJs1KEXCPzOCCeq 0Q7ecUTTq4krivgbl0bYw2hjc6hrx9iBP5hST8hpMpZvJ1JZ0r1lFjR5VS7NiORps6ZJWYTYO7by WZKNSG1RD36ovRNBONVJFZytY5r482dopjsIoPRSoSvJepH7OzexmA7XY6colq4r+6GjXEd14kpE AkfIgEiVRFUTddtIV0OmiQQNEnvBa6RXkJsv6hP8Ca7Ty7/Sn7Z9i8e8/wD/AGQ/4mf4lS1uriUy 4hb01UeQsX0x+vg3dBOpBmxoxzDadmE1xNWW1EiFEBd9l1nanG98YyCpa4HuWlpcjWyHMaVCcond DDiqa7H7QZj1bWsY3HblhALm81WTRlz2HB58vTImGybVf2yTWRLaTmQvaNpd6RgteO5hyhpIrRLm ZZ5U5ZVynY7c+Pf3j9FMs4kpPVQHqtibFeVZIi2DnJo46ovBN+vTourFlbTRyNDhg2vpoVWu54nM cQak09FUma6Bc+u8L+qb/wA3+ldZmsf0j/3f4gop/cKMa4hZ6i+CppEL0D8d45VyFuYUiRYWxYhD xl6jfguDHV2N6AvCT6koG1IbF0N0Hy+Om711kd3CGMdUf6eUj7vyFdp/cXFTg5BGZ9+ZT500a4Ai OBM9tI+mK0XulJAaZRYJeu0okTqcUTbx0tVMby3yOAdtPyfIkW5ns22Q5BbxuaxLK3nzYquioGrM iQbjaqK9RXiSdNKFzWoyNfO5zdhVPSqkp00JFvqBfVqmhCz8tCVT5aELGhCmhCE2X/PT/Cmu08vf 0p+2fYvHfP8A/wBkP+JntVLW6uJWdCFNKhTSIWNCFYhf1Tf+b/SuszWP6R/7v8QUU/uFGNcQs9TQ hZ+GhIpoQsaEKaEqmhC//9k= ------=_NextPart_000_0024_01C7FD57.17A9BB10-- From owner-chemistry@ccl.net Sun Sep 23 13:10:01 2007 From: "Gert Kiss gkiss(a)chem.ucla.edu" To: CCL Subject: CCL: PDB structures and associated ligand database Message-Id: <-35233-070923015020-6227-9N2ibROBQDE+5nCBqjQjIg~~server.ccl.net> X-Original-From: "Gert Kiss" Content-Transfer-Encoding: 7bit Content-Type: text/plain; charset="us-ascii" Date: Sat, 22 Sep 2007 22:10:43 -0700 MIME-Version: 1.0 Sent to CCL by: "Gert Kiss" [gkiss[]chem.ucla.edu] Hi, You could also try the PDBbind database at http://sw16.im.med.umich.edu/databases/pdbbind/index.jsp (or www.pdbbind.org) It offers quite a selection and comes pre-formatted/pre-processed (a feature that you are looking for, I think). Best of luck, Gert -----Original Message----- > From: owner-chemistry _ ccl.net [mailto:owner-chemistry _ ccl.net] Sent: Saturday, September 22, 2007 10:22 AM To: Kiss, Gert Subject: CCL: PDB structures and associated ligand database Sent to CCL by: "Deepangi Pandit" [deepangi.pandit{:}gmail.com] Hi Professor: You could try http://www.bindingmoad.org/ and contacts given on the page. I am not sure if it will fulfill your requirements. THX Deepangi On 9/21/07, Rajarshi Guha rguha|*|indiana.edu wrote: > > Sent to CCL by: Rajarshi Guha [rguha**indiana.edu] > Hi, I am looking for a database that contains protein structures from > PDB that are associated with a bound ligand. I know I could download > the PDB and process the structures, but I did a literature search > turned up PDB-Ligand (published in Nuc. Acids Res. http:// > nar.oxfordjournals.org/cgi/content/full/33/suppl_1/D238). > > However, all their email addresses are bouncing. Does anybody know > how I could get in touch with the authors or whether there are > alternatives to PDB-Ligand? > > Thanks > > ------------------------------------------------------------------- > Rajarshi Guha > GPG Fingerprint: 0CCA 8EE2 2EEB 25E2 AB04 06F7 1BB9 E634 9B87 56EE > ------------------------------------------------------------------- > All science is either physics or stamp collecting. > -- Ernest Rutherford> > > > -- - Deepangihttp://www.ccl.net/cgi-bin/ccl/send_ccl_messagehttp://www.ccl.net/chemistry/sub_unsub.shtmlhttp://www.ccl.net/spammers.txt From owner-chemistry@ccl.net Sun Sep 23 16:29:01 2007 From: "=?iso-8859-1?Q?Jes=FAs_Orduna?= jorduna]*[unizar.es" To: CCL Subject: CCL:G: Gaussian hyperpolarizability Message-Id: <-35234-070923134554-17151-5XbS3XDiYTqxKukhpZvAbw.@.server.ccl.net> X-Original-From: =?iso-8859-1?Q?Jes=FAs_Orduna?= Content-Type: multipart/mixed; boundary="----=_NextPart_000_0007_01C7FE12.2DFDC260" Date: Sun, 23 Sep 2007 18:47:15 +0200 MIME-Version: 1.0 Sent to CCL by: =?iso-8859-1?Q?Jes=FAs_Orduna?= [jorduna/./unizar.es] This is a multi-part message in MIME format. ------=_NextPart_000_0007_01C7FE12.2DFDC260 Content-Type: text/plain; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable Hi Carlos,=20 The different values of hyperpolarizability are due to different orientations of the molecule. The values in the results are in the standard orientation while the = values in the archive are in the input orientation. Jesus =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D Jesus Orduna Instituto de Ciencia de Materiales de Aragon Unidad de Nuevos Materiales Org=E1nicos Facultad de Ciencias CSIC-Universidad de Zaragoza E-50009 Zaragoza (Spain) Phone/FAX: +34 976 761194 e-mail: jorduna]|[unizar.es =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D -----Mensaje original----- De: owner-chemistry]|[ccl.net [mailto:owner-chemistry]|[ccl.net]=20 Enviado el: s=E1bado, 22 de septiembre de 2007 17:56 Para: Orduna, Jesus Asunto: CCL: Gaussian hyperpolarizability Sent to CCL by: "Carlos H" [c.hernandez a inbox.com] Hi all Could someone kindly explain why the hyperpolarizability values in = Gaussain differ in the results and archive section? which values should be used? Example give below: results section -------------------------------------------------------- Static Hyperpolarizability: K=3D 1 block: 1 1 0.180271D+03 K=3D 2 block: 1 2 1 -0.162104D+02 2 0.115211D+02 -0.344414D+01 K=3D 3 block: 1 2 3 1 -0.109560D+01 2 -0.301726D+00 0.352466D+00 3 0.358494D+02 -0.134111D+02 -0.437962D-01 archive section -------------------------------------------------------- \Polar=3D71.4354916,-0.0213953,39.0194471,-2.4339167,0.018 = 6441,99.7860715\HyperPolar=3D-3.9069764,0.348697,-13.8830837,0.0081696,1 = 1.9268094,-0.2692509,35.669279,-18.2738757,-1.065183,179.5902115\PG=3DC0.= .. Carlos c.hernandez#%#inbox.com -=3D This is automatically added to each message by the mailing script = =3D-=look up = the X-Original-From: line in the mail header.http://www.ccl.net/cgi-bin/ccl/send_ccl_messageSubscribe/Unsubscribe:=20Search Messages: http://www.ccl.net/htdig (login: ccl, Password: = search)http://www.ccl.net/spammers.txt--=20 Estoy usando la versi=F3n gratuita de SPAMfighter para usuarios = privados. Ha eliminado 329 correos spam hasta la fecha. Los usuarios de pago no tienen este mensaje en sus correos. Obtenga SPAMfighter gratis aqu=ED: http://www.spamfighter.com/les ------=_NextPart_000_0007_01C7FE12.2DFDC260 Content-Type: text/x-vcard; name="=?iso-8859-1?Q?Jes=FAs_Orduna.vcf?=" Content-Transfer-Encoding: quoted-printable Content-Disposition: attachment; filename="=?iso-8859-1?Q?Jes=FAs_Orduna.vcf?=" BEGIN:VCARD VERSION:2.1 N:Orduna Catal=E1n;Jes=FAs;;Dr. FN:Jes=FAs Orduna ORG:ICMA. CSIC-Universidad de Zaragoza TITLE:Cient=EDfico Titular TEL;WORK;VOICE:976761194 TEL;WORK;FAX:976761194 ADR;WORK;ENCODING=3DQUOTED-PRINTABLE:;;Departamento de Qu=3DEDmica = Org=3DE1nica.=3D0D=3D0AFacultad de Ciencias. Universid=3D ad de Zaragoza.=3D0D=3D0APlaza San Francisco = s/n.;Zaragoza;Zaragoza;E-50009;Spai=3D n LABEL;WORK;ENCODING=3DQUOTED-PRINTABLE:Departamento de Qu=3DEDmica = Org=3DE1nica.=3D0D=3D0AFacultad de Ciencias. Universidad=3D de Zaragoza.=3D0D=3D0APlaza San Francisco s/n.=3D0D=3D0AZaragoza, = Zaragoza E-50009=3D =3D0D=3D0ASpain EMAIL;PREF;INTERNET:jorduna]|[unizar.es REV:20060111T082014Z END:VCARD ------=_NextPart_000_0007_01C7FE12.2DFDC260-- From owner-chemistry@ccl.net Sun Sep 23 17:05:01 2007 From: "Omar Haq omar.haq[#]gmail.com" To: CCL Subject: CCL: PDB structures and associated ligand database Message-Id: <-35235-070922165810-17701-TKJUA1UeCFFtb7agft0p7g#%#server.ccl.net> X-Original-From: "Omar Haq" Content-Disposition: inline Content-Transfer-Encoding: 7bit Content-Type: text/plain; charset=ISO-8859-1 Date: Sat, 22 Sep 2007 15:52:43 -0400 MIME-Version: 1.0 Sent to CCL by: "Omar Haq" [omar.haq|*|gmail.com] Or perhaps http://ligand-depot.rutgers.edu/ On 9/22/07, Deepangi Pandit deepangi.pandit*gmail.com wrote: > > Sent to CCL by: "Deepangi Pandit" [deepangi.pandit{:}gmail.com] > Hi Professor: > You could try > http://www.bindingmoad.org/ and contacts given on the page. > > I am not sure if it will fulfill your requirements. > > THX > Deepangi > > On 9/21/07, Rajarshi Guha rguha|*|indiana.edu wrote: > > > > Sent to CCL by: Rajarshi Guha [rguha**indiana.edu] > > Hi, I am looking for a database that contains protein structures from > > PDB that are associated with a bound ligand. I know I could download > > the PDB and process the structures, but I did a literature search > > turned up PDB-Ligand (published in Nuc. Acids Res. http:// > > nar.oxfordjournals.org/cgi/content/full/33/suppl_1/D238). > > > > However, all their email addresses are bouncing. Does anybody know > > how I could get in touch with the authors or whether there are > > alternatives to PDB-Ligand? > > > > Thanks > > > > ------------------------------------------------------------------- > > Rajarshi Guha > > GPG Fingerprint: 0CCA 8EE2 2EEB 25E2 AB04 06F7 1BB9 E634 9B87 56EE > > ------------------------------------------------------------------- > > All science is either physics or stamp collecting. > > -- Ernest Rutherford> > > > > > > > > > -- > - Deepangi> > > > -- Omar