From owner-chemistry@ccl.net Fri Nov 7 02:10:01 2008 From: "Gianluca Santarossa gianluca.santarossa-$-chem.ethz.ch" To: CCL Subject: CCL:G: Relaxed scan using GDIIS with Gaussian Message-Id: <-38050-081106082605-4359-rFu2R4IyGHa40ZIPBNn9dw-#-server.ccl.net> X-Original-From: "Gianluca Santarossa" Date: Thu, 6 Nov 2008 08:26:00 -0500 Sent to CCL by: "Gianluca Santarossa" [gianluca.santarossa^chem.ethz.ch] Dear CCL subscribers, I am trying to run a relaxed scan simulation of a molecule at PM3 level using Gaussian03. In order to make the geometry converge during the optimization I need to use the GDIIS algorithm. When the GDIIS option is activated, the program is only performing the first geometry optimization, and then it exits instead of moving the dihedral. This is the relevant part of the input: $RunGauss #P PM3 Opt(Z-matrix,tight,GDIIS) gfinput gfprint IOP(6/7=3) pop=full Theta scan of KDO disaccharide ! [cut] ... here comes the z-matrix ... dih9 0.000 S 35 10.0 [cut] ... here are more z-matrix parameters ... When only the parameter Opt=Z-matrix is used, the scan is performed correctly. The 'Initial Parameters' section of the output shows that the 'Scan' is on: [cut] ! cco9 109.737 estimate D2E/DX2 ! ! dih9 0.0 Scan ! ! cc10 1.5379 estimate D2E/DX2 ! [cut] However, adding the GDIIS options to the input - Opt(Z-matrix,GDIIS) - results in a geometry optimization that stops without the scan. Apparently, the program redefines the Z-matrix, as it is shown in the output, and could not scan anything: [cut] ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! --------------------------------------------------------------------- ! R1 R(1,2) 1.4317 estimate D2E/DX2 ! ! R2 R(1,6) 1.4288 estimate D2E/DX2 ! [cut] May you please suggest me how to run a relaxed scan using the GDIIS optimizer? Regards, Gianluca From owner-chemistry@ccl.net Fri Nov 7 02:44:00 2008 From: "Kshatresh Dutta Dubey kshatresh/./gmail.com" To: CCL Subject: CCL: Water Droplet Simulation Message-Id: <-38051-081107023559-26684-gl69Iuwl/7JvsYOAvDJ0tg],[server.ccl.net> X-Original-From: "Kshatresh Dutta Dubey" Content-Type: multipart/alternative; boundary="----=_Part_36378_20298765.1226043347307" Date: Fri, 7 Nov 2008 00:35:47 -0700 MIME-Version: 1.0 Sent to CCL by: "Kshatresh Dutta Dubey" [kshatresh,+,gmail.com] ------=_Part_36378_20298765.1226043347307 Content-Type: text/plain; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit Content-Disposition: inline Dear all, I want to do water droplet simulation, in which i want to simulate my system for only desired sctive site. Can anyone tell me any simulation package by which i can do my work? Thanks in advance. Kshatresh Dutta dubey ------=_Part_36378_20298765.1226043347307 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit Content-Disposition: inline

Dear all,

I want to do water droplet simulation, in which i want to simulate my system for only desired sctive site. Can anyone tell me any simulation package by which i can do my work?

Thanks in advance.

Kshatresh Dutta dubey

------=_Part_36378_20298765.1226043347307-- From owner-chemistry@ccl.net Fri Nov 7 03:35:00 2008 From: "Jose Pedro Ceron jpceron ~~ um.es" To: CCL Subject: CCL:G: Relaxed scan using GDIIS with Gaussian Message-Id: <-38052-081107033323-32571-BH1M2PzKg8z5Tl9WH8yVeQ * server.ccl.net> X-Original-From: "Jose Pedro Ceron" Date: Fri, 7 Nov 2008 03:33:20 -0500 Sent to CCL by: "Jose Pedro Ceron" [jpceron:um.es] Dear Gianluca, You only have to include in calculation route the Modredundant keyword instead of Z-matrix. In the case of dihedral dih9=N1-N2-N3-N4 your input should be: #P PM3 opt=(tight,gdiis,modredundant) gfinput gfprint IOP(6/7=3) pop=full Then Z-matrix and geometrical parameters. (Blank line) * N2 N3 * R N1 N2 N3 N4 0.000 S 35 10.0 You have more information in G03 Manual, Opt keyword, Relaxed Potential Energy. And that's all. I hope this helps you. Jose P. Ceron From owner-chemistry@ccl.net Fri Nov 7 06:26:01 2008 From: "gnli gnli##dicp.ac.cn" To: CCL Subject: CCL:G: Relaxed scan using GDIIS with Gaussian Message-Id: <-38053-081107062239-12163-NxE9/1CiiHfAmF1QnVwwhA*_*server.ccl.net> X-Original-From: "gnli" Date: Fri, 7 Nov 2008 19:22:31 +0800 Sent to CCL by: "gnli" [gnli,+,dicp.ac.cn] Why it need to add the line "* N2 N3 * R"? Isn't the purpose scan the N1 N2 N3 N4 ? Thank you for a explanation! best wishes Guanna Li gnli*|*dicp.ac.cn -----Original Message----- > From: owner-chemistry*|*ccl.net [mailto:owner-chemistry*|*ccl.net] Sent: Friday, November 07, 2008 4:33 PM To: Li, Guanna Subject: CCL:G: Relaxed scan using GDIIS with Gaussian Sent to CCL by: "Jose Pedro Ceron" [jpceron:um.es] Dear Gianluca, You only have to include in calculation route the Modredundant keyword instead of Z-matrix. In the case of dihedral dih9=N1-N2-N3-N4 your input should be: #P PM3 opt=(tight,gdiis,modredundant) gfinput gfprint IOP(6/7=3) pop=full Then Z-matrix and geometrical parameters. (Blank line) * N2 N3 * R N1 N2 N3 N4 0.000 S 35 10.0 You have more information in G03 Manual, Opt keyword, Relaxed Potential Energy. And that's all. I hope this helps you. Jose P. Ceronhttp://www.ccl.net/cgi-bin/ccl/send_ccl_messagehttp://www.ccl.net/chemistry/sub_unsub.shtmlhttp://www.ccl.net/spammers.txt-- No virus found in this incoming message. Checked by AVG. Version: 7.5.549 / Virus Database: 270.9.0/1772 - Release Date: 2008-11-6 20:23 From owner-chemistry@ccl.net Fri Nov 7 07:01:01 2008 From: "gnli gnli-$-dicp.ac.cn" To: CCL Subject: CCL:G: how to define the D2O solvent field? Message-Id: <-38054-081107062539-12399-SJ35gl5Imeg2A5y1+np5eA*|*server.ccl.net> X-Original-From: "gnli" Content-Type: multipart/alternative; boundary="----=_NextPart_000_0003_01C9410E.A0250CA0" Date: Fri, 7 Nov 2008 19:25:42 +0800 MIME-Version: 1.0 Sent to CCL by: "gnli" [gnli,dicp.ac.cn] This is a multi-part message in MIME format. ------=_NextPart_000_0003_01C9410E.A0250CA0 Content-Type: text/plain; charset="iso-2022-jp" Content-Transfer-Encoding: 7bit Dear CCLer, I wonder how to define the D2O PCM or other solvent field in Gaussian input session。 I find a literature that had reported Gaussian can do D2O Onsager SCRF calculation for raman optical activity. (J. Phys. Chem. Volume 99 1995 pages 835-843) I have the version D.01 Could you please give me a favor how to do this? I really need help about it. A simple example is ok. Thank you in advance! best wishes Guanna Li gnli-*-dicp.ac.cn ------=_NextPart_000_0003_01C9410E.A0250CA0 Content-Type: text/html; charset="iso-2022-jp" Content-Transfer-Encoding: quoted-printable

Dear CCLer,

I wonder how to define the D2O PCM or other solvent field in = Gaussian input session=1B$B!#=1B(J<= /b>

I find a literature that had reported Gaussian can do D2O Onsager = SCRF calculation for raman optical activity. (J. Phys. Chem. Volume 99 1995 = pages 835-843) I have the version D.01

Could you please give me a favor how to do this? I really need = help about it. A simple example is ok.

Thank you in advance!

 

 

best wishes
Guanna Li
gnli-*-dicp.ac.cn



 

------=_NextPart_000_0003_01C9410E.A0250CA0-- From owner-chemistry@ccl.net Fri Nov 7 07:39:00 2008 From: "Gianluca Santarossa gianluca.santarossa[*]chem.ethz.ch" To: CCL Subject: CCL:G: Relaxed scan using GDIIS with Gaussian Message-Id: <-38055-081107061057-11439-DZuXyjDIq5ZRCSkF9O66hA[a]server.ccl.net> X-Original-From: "Gianluca Santarossa" Date: Fri, 7 Nov 2008 06:10:52 -0500 Sent to CCL by: "Gianluca Santarossa" [gianluca.santarossa{=}chem.ethz.ch] Dear Jose, thanks for your help. > You only have to include in calculation route the Modredundant keyword instead of Z-matrix. In the case of dihedral dih9=N1-N2-N3-N4 your input should be: > #P PM3 opt=(tight,gdiis,modredundant) gfinput gfprint IOP(6/7=3) pop=full > Then Z-matrix and geometrical parameters. > (Blank line) > * N2 N3 * R > N1 N2 N3 N4 0.000 S 35 10.0 Nice trick. It perfectly worked. > You have more information in G03 Manual, Opt keyword, Relaxed Potential Energy. You're right, I should have read the manual more carefully, although it is my opinion that the lines you're referring to should be added to the examples at the end of the page. It was confusing for me that the scan just worked with the Z-matrix keyword and without the GDIIS, while it did not when the GDIIS was turned on. Anyway, sorry for the RTFM question, and thanks again. Gianluca From owner-chemistry@ccl.net Fri Nov 7 08:11:00 2008 From: "Aimee Tomlinson altomlinson---ngcsu.edu" To: CCL Subject: CCL:G: Gaussian 03W benchmarks Message-Id: <-38056-081107073737-25798-vLQuCHF8xaZaTJwRdw4zCQ[]server.ccl.net> X-Original-From: "Aimee Tomlinson" Date: Fri, 7 Nov 2008 07:37:32 -0500 Sent to CCL by: "Aimee Tomlinson" [altomlinson*o*ngcsu.edu] I am looking for a comparison between the single versus multiprocessor version of Gaussian 03W. If there is info out there for these two versions on different machines that would also be very helpful. I need this data in order to put together a convincing plea for more hardware and software. From owner-chemistry@ccl.net Fri Nov 7 08:53:01 2008 From: "Tomoyuki Noda tomonoda[]rice.ocn.ne.jp" To: CCL Subject: CCL: Where is the Web page of Schrodinger, Inc. ? Message-Id: <-38057-081107075720-8182-zAlRR4w4twQCrbh6X+RJVA]-[server.ccl.net> X-Original-From: "Tomoyuki Noda" Date: Fri, 7 Nov 2008 07:57:15 -0500 Sent to CCL by: "Tomoyuki Noda" [tomonoda|a|rice.ocn.ne.jp] The Web page of the Schrodinger, Inc. http://www.schrodinger.com does't seem to be able to be accessed. Where is the Web page of Schrodinger, Inc. ? From owner-chemistry@ccl.net Fri Nov 7 09:52:01 2008 From: "Nicola Zonta zontan(!)cf.ac.uk" To: CCL Subject: CCL: Zodiac release Message-Id: <-38058-081107081637-21158-F5J5nz2XhaVy5a71LFwYFQ ~ server.ccl.net> X-Original-From: "Nicola Zonta" Date: Fri, 7 Nov 2008 08:16:33 -0500 Sent to CCL by: "Nicola Zonta" [zontan!A!cf.ac.uk] Dear fellow CCLers, I'd like to announce the release of the new version of Zodiac. (www.zeden.org). Among other improvements and bug fixes, version 0.6 includes new 2D - 3D builder menus, improved thread management, a front end for GAMESS, an updated front end for PLANTS, potential maps calculations and display... The source code and executable files can be found on sourceforge: https://sourceforge.net/projects/zodiac-zeden/ Many thanks to everyone who contributed Nicola Zonta From owner-chemistry@ccl.net Fri Nov 7 10:26:01 2008 From: "Jose Pedro Ceron jpceron^um.es" To: CCL Subject: CCL: Relaxed scan using GDIIS with Gaussian Message-Id: <-38059-081107101352-27536-eJ9s/Mp8/sWLLLm7VN7KNw() server.ccl.net> X-Original-From: "Jose Pedro Ceron" Date: Fri, 7 Nov 2008 10:13:48 -0500 Sent to CCL by: "Jose Pedro Ceron" [jpceron..um.es] Dear Guanna, This line is only to remove all dihedrals involving in N2-N3 bond. For example, if you add at the end of your input these two line: * N2 N3 * N1 N2 N3 N4 s 35 10.0 you obtain the potential energy curve for the complete N2-N3 bond twist. On the other hand, if you want to explore the potential energy surface around two different dihedrals, for instance N2-N3 and N12-N13 in a N1-N2-N3-N4 and N11-N12-N13-N14 chains, respectively, then you should include: * N2 N3 * N1 N2 N3 N4 s 35 10.0 * N12 N13 * N11 N12 N13 N14 s 35 10.0 I hope I answered your question. Regards, Jose From owner-chemistry@ccl.net Fri Nov 7 11:02:00 2008 From: "Nicholas Labello label030~!~umn.edu" To: CCL Subject: CCL: Where is the Web page of Schrodinger, Inc. ? Message-Id: <-38060-081107103247-7785-7es7j06aK/6xlSNqrj/dug{=}server.ccl.net> X-Original-From: Nicholas Labello Content-Transfer-Encoding: 7bit Content-Type: text/plain; charset=ISO-8859-1; format=flowed Date: Fri, 07 Nov 2008 09:02:29 -0600 MIME-Version: 1.0 Sent to CCL by: Nicholas Labello [label030(0)umn.edu] www.schrodinger.com is correct. They may be having some server issues. Tomoyuki Noda tomonoda[]rice.ocn.ne.jp wrote: > Sent to CCL by: "Tomoyuki Noda" [tomonoda|a|rice.ocn.ne.jp] > The Web page of the Schrodinger, Inc. > http://www.schrodinger.com > does't seem to be able to be accessed. > Where is the Web page of Schrodinger, Inc. ?> > > From owner-chemistry@ccl.net Fri Nov 7 15:00:01 2008 From: "Shi-Yi Liu Shi-Yi.Liu-x-schrodinger.com" To: CCL Subject: CCL: Where is the Web page of Schrodinger, Inc. ? Message-Id: <-38061-081107114835-31316-D7zuo+GS+2jQeIZKLozYSQ[*]server.ccl.net> X-Original-From: Shi-Yi Liu Content-Type: TEXT/PLAIN; charset=US-ASCII; format=flowed Date: Fri, 7 Nov 2008 07:54:24 -0800 (PST) MIME-Version: 1.0 Sent to CCL by: Shi-Yi Liu [Shi-Yi.Liu__schrodinger.com] Dear Tomoyuki-san, The URL you have, http://www.schrodinger.com, is correct. And you'll find our web page is back on-line. Our building had an electricity outage last night, and that's why the web server was off line. Best, Shi-Yi On Fri, 7 Nov 2008, Tomoyuki Noda tomonoda[]rice.ocn.ne.jp wrote: > > Sent to CCL by: "Tomoyuki Noda" [tomonoda|a|rice.ocn.ne.jp] > The Web page of the Schrodinger, Inc. > http://www.schrodinger.com > does't seem to be able to be accessed. > Where is the Web page of Schrodinger, Inc. ?> > -- Shi-Yi Liu, Ph.D. / Schrodinger / 503-299-1150 x108 / 503-299-4532 (fax) Shi-Yi.Liu() schrodinger.com / 101 SW Main Street, Suite 1300, Portland, OR 97204 From owner-chemistry@ccl.net Fri Nov 7 17:53:00 2008 From: "Alex Rudn rudikk99,+,yahoo.com" To: CCL Subject: CCL:G: difference in G89 and G03 Message-Id: <-38062-081106170410-2184-w7cKBpxAa3daA/RbQ5k0ow*server.ccl.net> X-Original-From: "Alex Rudn" Date: Thu, 6 Nov 2008 17:04:06 -0500 Sent to CCL by: "Alex Rudn" [rudikk99[#]yahoo.com] Dear CCLers, I want to calculate a molecule with different temperatures and in solvent. I used to do it on old G98 and it worked. Now I submitted the very same file to G03 and got error massage. Have somebody seen 2this before? How to fix it? Input file that works in G83 and does not work on G03: _________________________________ chk=hf_fts_ts_ts.chk %mem=6MW %nproc=1 # freq=noraman rb3lyp/3-21g freq 0 1 H F 1 R R=0.9161 --Link1-- %chk=hf_fts_ts_ts # guess=read Geom=allCheck freq=(readfc,readisotopes) rb3lyp/3-21g 300.0 1.0 --Link1-- %chk=hf_fts_ts_ts #rb3lyp/3-21g SCF=Tight guess=read Geom=allCheck SCRF=(IPCM,Solvent=toluene) --Link1-- %chk=hf_fts_ts_ts # guess=read Geom=allCheck freq=(readfc,readisotopes) rb3lyp/3-21g 350.0 1.0 --Link1-- %chk=hf_fts_ts_ts #rb3lyp/3-21g SCF=Tight guess=read Geom=allCheck SCRF=(IPCM,Solvent=toluene) --Link1-- %chk=hf_fts_ts_ts # guess=read Geom=allCheck freq=(readfc,readisotopes) rb3lyp/3-21g 400.0 1.0 --Link1-- %chk=hf_fts_ts_ts #rb3lyp/3-21g SCF=Tight guess=read Geom=allCheck SCRF=(IPCM,Solvent=toluene) ______________________________ error msg from G03: ===================================== it did: # freq=noraman rb3lyp/3-21g #rb3lyp/3-21g SCF=Tight guess=read Geom=allCheck SCRF=(IPCM,Solvent=toluene) and on the next step # guess=read Geom=allCheck freq=(readfc,readisotopes) rb3lyp/3-21g WANTED A FLOATING POINT NUMBER AS INPUT. FOUND A STRING AS INPUT. Atom number 2, atomic number 1: [1] ? Error termination via Lnk1e in /usr/apps/chemistry/gaussian/G03/pp5_e01/g03/l101.exe at Mon Oct 27 14:46:09 2008. Job cpu time: 0 days 0 hours 0 minutes 0.3 seconds. File lengths (MBytes): RWF= 13 Int= 0 D2E= 0 Chk= 10 Scr= 1 output file of G98: ====================================== Entering Link 1 = C:\G98W\l1.exe PID= 5076. Copyright (c) 1988,1990,1992,1993,1995,1998 Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 98 program. It is based on the Gaussian 94(TM) system (copyright 1995 Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992 Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990 Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988 Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986 Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983 Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under DFARS: RESTRICTED RIGHTS LEGEND Use, duplication or disclosure by the US Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013. Gaussian, Inc. Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraph (c) of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19. Gaussian, Inc. Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 98, Revision A.9, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998. ********************************************* Gaussian 98: x86-Win32-G98RevA.9 19-Apr-2000 26-Oct-2008 ********************************************* %chk=hf_fts_ts_ts.chk %mem=6MW %nproc=1 Will use up to 1 processors via shared memory. Default route: MaxDisk=2000MB --------------------------- # freq=noraman rb3lyp/3-21g --------------------------- 1/10=4,30=1,38=1/1,3; 2/17=6,18=5,40=1/2; 3/5=5,11=2,25=1,30=1/1,2,3; 4/7=1/1; 5/5=2,38=4,42=-5/2; 8/6=4,11=11,27=262144000/1; 11/6=1,8=1,9=11,15=111,16=11/1,2,10; 10/6=1/2; 6/7=2,8=2,9=2,10=2,18=1,28=1/1; 7/8=1,10=1,25=1/1,2,3,16; 1/10=4,30=1/3; 99//99; ---- freq ---- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 H F 1 R Variables: R 0.9161 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! ---------------------- ---------------------- ! Name Value Derivative information (Atomic Units) ! ------------------------------------------------------------------------ ! R 0.9161 calculate D2E/DX2 analytically ! ------------------------------------------------------------------------ Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 20 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad ------------------------------------------------------------------------ Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J ------------------------------------------------------------------------ 1 1 H 2 2 F 1 0.916100( 1) ------------------------------------------------------------------------ Z-Matrix orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 0.916100 --------------------------------------------------------------------- Stoichiometry FH Framework group C*V[C*(HF)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 -0.824490 2 9 0 0.000000 0.000000 0.091610 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 629.2083292 629.2083292 Isotopes: H-1,F-19 Standard basis: 3-21G (6D, 7F) There are 7 symmetry adapted basis functions of A1 symmetry. There are 0 symmetry adapted basis functions of A2 symmetry. There are 2 symmetry adapted basis functions of B1 symmetry. There are 2 symmetry adapted basis functions of B2 symmetry. Crude estimate of integral set expansion from redundant integrals=1.000. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 11 basis functions 18 primitive gaussians 5 alpha electrons 5 beta electrons nuclear repulsion energy 5.1987722312 Hartrees. One-electron integrals computed using PRISM. NBasis= 11 RedAO= T NBF= 7 0 2 2 NBsUse= 11 1.00D-04 NBFU= 7 0 2 2 Projected INDO Guess. Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (SG) (SG) (PI) (PI) Requested convergence on RMS density matrix=1.00D-08 within 64 cycles. Requested convergence on MAX density matrix=1.00D-06. Keep R1 and R2 integrals in memory in canonical form, NReq= 410362. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB+HF-LYP) = -99.8603303309 A.U. after 9 cycles Convg = 0.5949D-08 -V/T = 2.0052 S**2 = 0.0000 Range of M.O.s used for correlation: 1 11 NBasis= 11 NAE= 5 NBE= 5 NFC= 0 NFV= 0 NROrb= 11 NOA= 5 NOB= 5 NVA= 6 NVB= 6 G2DrvN: will do 2 atoms at a time, making 1 passes doing MaxLOS=1. FoFDir used for L=0 through L=1. Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Store integrals in memory, NReq= 414530. There are 9 degrees of freedom in the 1st order CPHF. 6 vectors were produced by pass 0. AX will form 6 AO Fock derivatives at one time. 6 vectors were produced by pass 1. 6 vectors were produced by pass 2. 4 vectors were produced by pass 3. 2 vectors were produced by pass 4. 1 vectors were produced by pass 5. Inv2: IOpt= 1 Iter= 1 AM= 3.55D-16 Conv= 1.00D-12. Inverted reduced A of dimension 25 with in-core refinement. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital Symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -24.48826 -1.14684 -0.47992 -0.33437 -0.33437 Alpha virt. eigenvalues -- 0.10393 0.94952 1.84906 1.84906 2.01591 Alpha virt. eigenvalues -- 3.28602 Condensed to atoms (all electrons): 1 2 1 H 0.390128 0.202850 2 F 0.202850 9.204172 Total atomic charges: 1 1 H 0.407022 2 F -0.407022 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 H 0.000000 2 F 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 12.8720 Charge= 0.0000 electrons Dipole moment (Debye): X= 0.0000 Y= 0.0000 Z= -1.9688 Tot= 1.9688 Quadrupole moment (Debye-Ang): XX= -5.1297 YY= -5.1297 ZZ= -3.4260 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -1.4149 XYY= 0.0000 XXY= 0.0000 XXZ= -0.1107 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.1107 XYZ= 0.0000 Hexadecapole moment (Debye-Ang**3): XXXX= -2.4150 YYYY= -2.4150 ZZZZ= -2.8352 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.8050 XXZZ= -1.0693 YYZZ= -1.0693 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 5.198772231197D+00 E-N=-2.496053658390D+02 KE= 9.934692645369D+01 Symmetry A1 KE= 8.644323163593D+01 Symmetry A2 KE= 0.000000000000D+00 Symmetry B1 KE= 6.451847408881D+00 Symmetry B2 KE= 6.451847408880D+00 Exact polarizability: 0.419 0.000 0.419 0.000 0.000 3.910 Approx polarizability: 0.402 0.000 0.402 0.000 0.000 4.876 Full mass-weighted force constant matrix: Low frequencies --- -955.2359 -955.2359 -0.0018 -0.0015 -0.0015 4326.6796 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering activities (A**4/AMU), Raman depolarization ratios, reduced masses (AMU), force constants (mDyne/A) and normal coordinates: 1 SG Frequencies -- 4326.6796 Red. masses -- 1.0583 Frc consts -- 11.6727 IR Inten -- 4.2200 Raman Activ -- 0.0000 Depolar -- 0.0000 Atom AN X Y Z 1 1 0.00 0.00 1.00 2 9 0.00 0.00 -0.05 ------------------- - Thermochemistry - ------------------- Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Atom 1 has atomic number 1 and mass 1.00783 Atom 2 has atomic number 9 and mass 18.99840 Molecular mass: 20.00623 amu. Principal axes and moments of inertia in atomic units: 1 2 3 EIGENVALUES -- 0.00000 2.86827 2.86827 X 0.00000 0.00000 1.00000 Y 0.00000 1.00000 0.00000 Z 1.00000 0.00000 0.00000 THIS MOLECULE IS A PROLATE SYMMETRIC TOP. ROTATIONAL SYMMETRY NUMBER 1. ROTATIONAL TEMPERATURE (KELVIN) 30.19706 ROTATIONAL CONSTANT (GHZ) 629.208329 Zero-point vibrational energy 25879.3 (Joules/Mol) 6.18530 (Kcal/Mol) VIBRATIONAL TEMPERATURES: 6225.09 (KELVIN) Zero-point correction= 0.009857 (Hartree/Particle) Thermal correction to Energy= 0.012217 Thermal correction to Enthalpy= 0.013162 Thermal correction to Gibbs Free Energy= -0.006537 Sum of electronic and zero-point Energies= -99.850473 Sum of electronic and thermal Energies= -99.848113 Sum of electronic and thermal Enthalpies= -99.847169 Sum of electronic and thermal Free Energies= -99.866867 E (Thermal) CV S KCAL/MOL CAL/MOL-KELVIN CAL/MOL-KELVIN TOTAL 7.667 4.968 41.459 ELECTRONIC 0.000 0.000 0.000 TRANSLATIONAL 0.889 2.981 34.922 ROTATIONAL 0.592 1.987 6.538 VIBRATIONAL 6.185 0.000 0.000 Q LOG10(Q) LN(Q) TOTAL BOT 0.101589D+04 3.006849 6.923525 TOTAL V=0 0.347279D+08 7.540678 17.363054 VIB (BOT) 0.292530D-04 -4.533830 -10.439529 VIB (V=0) 0.100000D+01 0.000000 0.000000 ELECTRONIC 0.100000D+01 0.000000 0.000000 TRANSLATIONAL 0.351729D+07 6.546208 15.073202 ROTATIONAL 0.987348D+01 0.994470 2.289852 ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 1 0.000000000 0.000000000 -0.056865304 2 9 0.000000000 0.000000000 0.056865304 ------------------------------------------------------------------- Cartesian Forces: Max 0.056865304 RMS 0.032831199 ------------------------------------------------------------------------ Internal Coordinate Forces (Hartree/Bohr or radian) Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J ------------------------------------------------------------------------ 1 H 2 F 1 0.056865( 1) ------------------------------------------------------------------------ Internal Forces: Max 0.056865304 RMS 0.056865304 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Search for a local minimum. Step number 1 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Second derivative matrix not updated -- analytic derivatives used. The second derivative matrix: R R 0.67801 Eigenvalues --- 0.67801 Angle between quadratic step and forces= 0.00 degrees. Linear search not attempted -- first point. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R 1.73118 0.05687 0.00000 0.08387 0.08387 1.81505 Item Value Threshold Converged? Maximum Force 0.056865 0.000450 NO RMS Force 0.056865 0.000300 NO Maximum Displacement 0.083871 0.001800 NO RMS Displacement 0.083871 0.001200 NO Predicted change in Energy=-2.384662D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad 1|1|UNPC-UNK|Freq|RB3LYP|3-21G|F1H1|PCUSER|26-Oct-2008|1||# FREQ=NORAM AN RB3LYP/3-21G||freq||0,1|H|F,1,R||R=0.9161||Version=x86-Win32-G98Rev A.9|State=1-SG|HF=-99.8603303|RMSD=5.949e-009|RMSF=3.283e-002|Dipole=0 .,0.,-0.7745926|DipoleDeriv=0.4474381,0.,0.,0.,0.4474381,0.,0.,0.,0.06 43647,-0.4474381,0.,0.,0.,-0.4474381,0.,0.,0.,-0.0643647|Polar=0.41891 58,0.,0.4189158,0.,0.,3.9097335|PG=C*V [C*(H1F1)]|NImag=0||-0.03304834 ,0.,-0.03304834,0.,0.,0.67801288,0.03304834,0.,0.,-0.03304834,0.,0.033 04834,0.,0.,-0.03304834,0.,0.,-0.67801288,0.,0.,0.67801288||0.,0.,0.05 686530,0.,0.,-0.05686530||||a| THERE IS NOTHING NOBLE IN BEING SUPERIOR TO SOME OTHER MAN. TRUE NOBILITY IS BEING SUPERIOR TO YOUR FORMER SELF. -- HINDU PROVERB Job cpu time: 0 days 0 hours 0 minutes 6.0 seconds. File lengths (MBytes): RWF= 10 Int= 0 D2E= 0 Chk= 5 Scr= 1 Normal termination of Gaussian 98. Entering Link 1 = C:\G98W\l1.exe PID= 5408. Copyright (c) 1988,1990,1992,1993,1995,1998 Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 98 program. It is based on the Gaussian 94(TM) system (copyright 1995 Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992 Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990 Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988 Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986 Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983 Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under DFARS: RESTRICTED RIGHTS LEGEND Use, duplication or disclosure by the US Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013. Gaussian, Inc. Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraph (c) of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19. Gaussian, Inc. Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 98, Revision A.9, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998. ********************************************* Gaussian 98: x86-Win32-G98RevA.9 19-Apr-2000 26-Oct-2008 ********************************************* %chk=hf_fts_ts_ts Default route: MaxDisk=2000MB ------------------------------------------------------------------ # guess=read Geom=allCheck freq=(readfc,readisotopes) rb3lyp/3-21g ------------------------------------------------------------------ 1/29=7,38=1/1; 2/40=1/2; 7/8=2,25=11/16; 99/5=2/99; ---- freq ---- Z-Matrix taken from the checkpoint file: hf_fts_ts_ts.chk Charge = 0 Multiplicity = 1 H F,1,R Variables: R=0.9161 Recover connectivity data from disk. ------------------------------------------------------------------------ Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J ------------------------------------------------------------------------ 1 1 H 2 2 F 1 0.916100( 1) ------------------------------------------------------------------------ Z-Matrix orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 0.916100 --------------------------------------------------------------------- Stoichiometry FH Framework group C*V[C*(HF)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 -0.824490 2 9 0 0.000000 0.000000 0.091610 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 629.2083292 629.2083292 Isotopes: H-1,F-19 Electric field and nuclear coordinate derivatives read from checkpoint file. Rotating electric field derivatives to standard orientation. Rotating nuclear coordinate derivatives to standard orientation. Atom 1 has atomic number 1 and mass 1.00783 Atom 2 has atomic number 9 and mass 18.99840 Full mass-weighted force constant matrix: Low frequencies --- -955.2359 -955.2359 -0.0018 -0.0015 -0.0015 4326.6796 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering activities (A**4/AMU), Raman depolarization ratios, reduced masses (AMU), force constants (mDyne/A) and normal coordinates: 1 SG Frequencies -- 4326.6796 Red. masses -- 1.0583 Frc consts -- 11.6727 IR Inten -- 4.2200 Raman Activ -- 0.0000 Depolar -- 0.0000 Atom AN X Y Z 1 1 0.00 0.00 1.00 2 9 0.00 0.00 -0.05 ------------------- - Thermochemistry - ------------------- Temperature 300.000 Kelvin. Pressure 1.00000 Atm. Atom 1 has atomic number 1 and mass 1.00783 Atom 2 has atomic number 9 and mass 18.99840 Molecular mass: 20.00623 amu. Principal axes and moments of inertia in atomic units: 1 2 3 EIGENVALUES -- 0.00000 2.86827 2.86827 X 0.00000 0.00000 1.00000 Y 0.00000 1.00000 0.00000 Z 1.00000 0.00000 0.00000 THIS MOLECULE IS A PROLATE SYMMETRIC TOP. ROTATIONAL SYMMETRY NUMBER 1. ROTATIONAL TEMPERATURE (KELVIN) 30.19706 ROTATIONAL CONSTANT (GHZ) 629.208329 Zero-point vibrational energy 25879.3 (Joules/Mol) 6.18530 (Kcal/Mol) VIBRATIONAL TEMPERATURES: 6225.09 (KELVIN) Zero-point correction= 0.009857 (Hartree/Particle) Thermal correction to Energy= 0.012232 Thermal correction to Enthalpy= 0.013182 Thermal correction to Gibbs Free Energy= -0.006659 Sum of electronic and zero-point Energies= -99.850473 Sum of electronic and thermal Energies= -99.848098 Sum of electronic and thermal Enthalpies= -99.847148 Sum of electronic and thermal Free Energies= -99.866990 E (Thermal) CV S KCAL/MOL CAL/MOL-KELVIN CAL/MOL-KELVIN TOTAL 7.676 4.968 41.502 ELECTRONIC 0.000 0.000 0.000 TRANSLATIONAL 0.894 2.981 34.952 ROTATIONAL 0.596 1.987 6.550 VIBRATIONAL 6.185 0.000 0.000 Q LOG10(Q) LN(Q) TOTAL BOT 0.110716D+04 3.044210 7.009552 TOTAL V=0 0.354879D+08 7.550081 17.384704 VIB (BOT) 0.311982D-04 -4.505871 -10.375152 VIB (V=0) 0.100000D+01 0.000000 0.000000 ELECTRONIC 0.100000D+01 0.000000 0.000000 TRANSLATIONAL 0.357211D+07 6.552924 15.088666 ROTATIONAL 0.993474D+01 0.997157 2.296038 ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 1 0.000000000 0.000000000 -0.056865304 2 9 0.000000000 0.000000000 0.056865304 ------------------------------------------------------------------- Cartesian Forces: Max 0.056865304 RMS 0.032831199 ------------------------------------------------------------------------ Internal Coordinate Forces (Hartree/Bohr or radian) Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J ------------------------------------------------------------------------ 1 H 2 F 1 0.056865( 1) ------------------------------------------------------------------------ Internal Forces: Max 0.056865304 RMS 0.056865304 This type of calculation cannot be archived. THERE IS NOTHING NOBLE IN BEING SUPERIOR TO SOME OTHER MAN. TRUE NOBILITY IS BEING SUPERIOR TO YOUR FORMER SELF. -- HINDU PROVERB Job cpu time: 0 days 0 hours 0 minutes 1.0 seconds. File lengths (MBytes): RWF= 10 Int= 0 D2E= 0 Chk= 5 Scr= 1 Normal termination of Gaussian 98. Entering Link 1 = C:\G98W\l1.exe PID= 5236. Copyright (c) 1988,1990,1992,1993,1995,1998 Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 98 program. It is based on the Gaussian 94(TM) system (copyright 1995 Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992 Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990 Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988 Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986 Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983 Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under DFARS: RESTRICTED RIGHTS LEGEND Use, duplication or disclosure by the US Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013. Gaussian, Inc. Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraph (c) of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19. Gaussian, Inc. Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 98, Revision A.9, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998. ********************************************* Gaussian 98: x86-Win32-G98RevA.9 19-Apr-2000 26-Oct-2008 ********************************************* %chk=hf_fts_ts_ts Default route: MaxDisk=2000MB ---------------------------------------------------------------------- #rb3lyp/3-21g SCF=Tight guess=read Geom=allCheck SCRF=(IPCM,Solvent=to luene) ---------------------------------------------------------------------- 1/8=3,29=7,30=1,38=1/1,17; 2/40=1/2; 3/5=5,11=2,25=1,30=1,43=-2/1,2,3; 4/5=1,7=1,9=2/1; 5/5=2,17=20,32=2,40=100,42=-5,53=14/2; 6/7=2,8=2,9=2,10=2,28=1/1; 1/8=3/17(1); 99/5=1,9=1/99; 3/5=5,11=2,25=1,30=1,43=-2/1,2,3; 4/5=5,7=1,9=2,16=2/1; 5/5=2,17=20,32=2,38=4,40=100,42=-5,53=14/2; 6/7=2,8=2,9=2,10=2,28=1/1; 1/8=3/17(-4); 99/5=1,9=1/99; ---- freq ---- Z-Matrix taken from the checkpoint file: hf_fts_ts_ts.chk Charge = 0 Multiplicity = 1 H F,1,R Variables: R=0.9161 Recover connectivity data from disk. --------------------------------------------------- Reaction Field using a Density IsoSurface Boundary --------------------------------------------------- First iteration - Do gas phase ------------------------------------------------------------------------ Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J ------------------------------------------------------------------------ 1 1 H 2 2 F 1 0.916100( 1) ------------------------------------------------------------------------ Z-Matrix orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 0.916100 --------------------------------------------------------------------- Stoichiometry FH Framework group C*V[C*(HF)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 -0.824490 2 9 0 0.000000 0.000000 0.091610 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 629.2083292 629.2083292 Isotopes: H-1,F-19 Standard basis: 3-21G (6D, 7F) There are 7 symmetry adapted basis functions of A1 symmetry. There are 0 symmetry adapted basis functions of A2 symmetry. There are 2 symmetry adapted basis functions of B1 symmetry. There are 2 symmetry adapted basis functions of B2 symmetry. Crude estimate of integral set expansion from redundant integrals=1.000. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Background charge distribution read from rwf: Nuclear-Charge attraction = 0.0000000000 11 basis functions 18 primitive gaussians 5 alpha electrons 5 beta electrons nuclear repulsion energy 5.1987722312 Hartrees. Nuclear repulsion after solvent point charges= 5.1987722312 Hartrees. One-electron integrals computed using PRISM. NBasis= 11 RedAO= T NBF= 7 0 2 2 NBsUse= 11 1.00D-04 NBFU= 7 0 2 2 SCF N**3 symmetry information disabled. Initial guess read from the checkpoint file: hf_fts_ts_ts.chk Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) Requested convergence on RMS density matrix=1.00D-08 within 64 cycles. Requested convergence on MAX density matrix=1.00D-06. Keep R1 and R2 integrals in memory in canonical form, NReq= 410382. SCF Done: E(RB+HF-LYP) = -99.8603303309 A.U. after 1 cycles Convg = 0.1449D-09 -V/T = 2.0052 S**2 = 0.0000 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital Symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -24.48826 -1.14684 -0.47992 -0.33437 -0.33437 Alpha virt. eigenvalues -- 0.10393 0.94952 1.84906 1.84906 2.01591 Alpha virt. eigenvalues -- 3.28602 Condensed to atoms (all electrons): 1 2 1 H 0.390128 0.202850 2 F 0.202850 9.204172 Total atomic charges: 1 1 H 0.407022 2 F -0.407022 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 H 0.000000 2 F 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 12.8720 Charge= 0.0000 electrons Dipole moment (Debye): X= 0.0000 Y= 0.0000 Z= -1.9688 Tot= 1.9688 Quadrupole moment (Debye-Ang): XX= -5.1297 YY= -5.1297 ZZ= -3.4260 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -1.4149 XYY= 0.0000 XXY= 0.0000 XXZ= -0.1107 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.1107 XYZ= 0.0000 Hexadecapole moment (Debye-Ang**3): XXXX= -2.4150 YYYY= -2.4150 ZZZZ= -2.8352 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.8050 XXZZ= -1.0693 YYZZ= -1.0693 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 5.198772231197D+00 E-N=-2.496053658075D+02 KE= 9.934692643494D+01 -------------------------------------------------- Reaction Field using a Density IsoSurface Boundary -------------------------------------------------- Epsi= 78.3000 Cont = 0.0010 Will Allow IsoSurface To Relax Throughout Convergence set to 1.00D-06 10 Phi and 5 Theta Values Per Atom NABMO STP ISTEP RAD NUMR CUTOFF DStMX0 MoBas? 4 5.00E-02 5 1.0E-01 20 1.0E-10 1.0E+01 F Using single center to handle rho isosurface. Intersections with the isosurface found. Max. Dist. Between Center of Nuclear Charge and Isosurface = 3.416383E+00 Min. Dist. Between Center of Nuclear Charge and Isosurface = 2.823988E+00 Total "Solvent Accessible Surface Area" of Solute = 1.096664E+02 Volume of Solute Cavity = 1.070442E+02 Total number of points on surface is 50 Tomasi Approximation I (1/(4*pi)) Times Flux of Nuclear E Field Thru Surface = 9.996458 Actual Positive Charge Within Cavity = 10.000000 (1/(4*pi)) Times Flux of Solute E Field Thru Surface = 0.032586 Tomasi Approximation II Iteration number 1 Iteration number 2 MaxDiff 0.275677647123E-02 Iteration number 3 MaxDiff 0.725535189598E-03 Iteration number 4 MaxDiff 0.199345938900E-03 Iteration number 5 MaxDiff 0.750460829954E-04 Iteration number 6 MaxDiff 0.289654848526E-04 Iteration number 7 MaxDiff 0.113976517408E-04 Iteration number 8 MaxDiff 0.454984819191E-05 Iteration number 9 MaxDiff 0.183530983171E-05 Self polarization converged in 9 iterations. Largest difference in charges from previous cycle is 0.145960072913E-01 Tomasi Approximation III Net Surface Polarization Charge Divided by -(1-1/epsi) = 0.000000 Standard basis: 3-21G (6D, 7F) There are 7 symmetry adapted basis functions of A1 symmetry. There are 0 symmetry adapted basis functions of A2 symmetry. There are 2 symmetry adapted basis functions of B1 symmetry. There are 2 symmetry adapted basis functions of B2 symmetry. Crude estimate of integral set expansion from redundant integrals=1.000. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Background charge distribution read from rwf: Nuclear-Charge attraction = 0.0699159678 11 basis functions 18 primitive gaussians 5 alpha electrons 5 beta electrons nuclear repulsion energy 5.1987722312 Hartrees. Nuclear repulsion after solvent point charges= 5.2337302151 Hartrees. One-electron integrals computed using PRISM. NBasis= 11 RedAO= T NBF= 7 0 2 2 NBsUse= 11 1.00D-04 NBFU= 7 0 2 2 SCF N**3 symmetry information disabled. Initial guess read from the read-write file: Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) Requested convergence on RMS density matrix=1.00D-08 within 64 cycles. Requested convergence on MAX density matrix=1.00D-06. Keep R1 and R2 integrals in memory in canonical form, NReq= 410382. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB+HF-LYP) = -99.8719035068 A.U. after 9 cycles Convg = 0.3742D-08 -V/T = 2.0053 S**2 = 0.0000 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital Symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -24.48459 -1.14265 -0.47848 -0.33669 -0.33669 Alpha virt. eigenvalues -- 0.13728 0.97396 1.84533 1.84533 2.00687 Alpha virt. eigenvalues -- 3.29057 Condensed to atoms (all electrons): 1 2 1 H 0.331461 0.213564 2 F 0.213564 9.241410 Total atomic charges: 1 1 H 0.454974 2 F -0.454974 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 H 0.000000 2 F 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 12.7347 Charge= 0.0000 electrons Dipole moment (Debye): X= 0.0000 Y= 0.0000 Z= -2.2175 Tot= 2.2175 Quadrupole moment (Debye-Ang): XX= -5.1183 YY= -5.1183 ZZ= -3.2642 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -1.7459 XYY= 0.0000 XXY= 0.0000 XXZ= -0.1641 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.1641 XYZ= 0.0000 Hexadecapole moment (Debye-Ang**3): XXXX= -2.3918 YYYY= -2.3918 ZZZZ= -2.4766 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.7973 XXZZ= -1.0267 YYZZ= -1.0267 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 5.233730215094D+00 E-N=-2.497006058524D+02 KE= 9.934396251397D+01 10 Phi and 5 Theta Values Per Atom NABMO STP ISTEP RAD NUMR CUTOFF DStMX0 MoBas? 4 5.00E-02 5 1.0E-01 20 1.0E-10 1.0E+01 F Using single center to handle rho isosurface. Intersections with the isosurface found. Max. Dist. Between Center of Nuclear Charge and Isosurface = 3.337238E+00 Min. Dist. Between Center of Nuclear Charge and Isosurface = 2.823810E+00 Total "Solvent Accessible Surface Area" of Solute = 1.083502E+02 Volume of Solute Cavity = 1.052086E+02 Total number of points on surface is 50 Tomasi Approximation I (1/(4*pi)) Times Flux of Nuclear E Field Thru Surface = 9.996864 Actual Positive Charge Within Cavity = 10.000000 (1/(4*pi)) Times Flux of Solute E Field Thru Surface = 0.030342 Tomasi Approximation II Iteration number 1 Iteration number 2 MaxDiff 0.322014572190E-02 Iteration number 3 MaxDiff 0.864963922002E-03 Iteration number 4 MaxDiff 0.226734327729E-03 Iteration number 5 MaxDiff 0.778594022059E-04 Iteration number 6 MaxDiff 0.301794873365E-04 Iteration number 7 MaxDiff 0.119215338637E-04 Iteration number 8 MaxDiff 0.477660165464E-05 Iteration number 9 MaxDiff 0.193379441036E-05 Self polarization converged in 9 iterations. Largest difference in charges from previous cycle is 0.213165600221E-02 Tomasi Approximation III Net Surface Polarization Charge Divided by -(1-1/epsi) = 0.000000 Standard basis: 3-21G (6D, 7F) There are 7 symmetry adapted basis functions of A1 symmetry. There are 0 symmetry adapted basis functions of A2 symmetry. There are 2 symmetry adapted basis functions of B1 symmetry. There are 2 symmetry adapted basis functions of B2 symmetry. Crude estimate of integral set expansion from redundant integrals=1.000. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Background charge distribution read from rwf: Nuclear-Charge attraction = 0.0654671060 11 basis functions 18 primitive gaussians 5 alpha electrons 5 beta electrons nuclear repulsion energy 5.1987722312 Hartrees. Nuclear repulsion after solvent point charges= 5.2315057842 Hartrees. One-electron integrals computed using PRISM. NBasis= 11 RedAO= T NBF= 7 0 2 2 NBsUse= 11 1.00D-04 NBFU= 7 0 2 2 SCF N**3 symmetry information disabled. Initial guess read from the read-write file: Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) Requested convergence on RMS density matrix=1.00D-08 within 64 cycles. Requested convergence on MAX density matrix=1.00D-06. Keep R1 and R2 integrals in memory in canonical form, NReq= 410382. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB+HF-LYP) = -99.8739012611 A.U. after 8 cycles Convg = 0.3321D-08 -V/T = 2.0053 S**2 = 0.0000 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital Symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -24.48258 -1.14060 -0.47678 -0.33562 -0.33562 Alpha virt. eigenvalues -- 0.14363 0.97908 1.84618 1.84618 2.00684 Alpha virt. eigenvalues -- 3.29269 Condensed to atoms (all electrons): 1 2 1 H 0.322668 0.214708 2 F 0.214708 9.247917 Total atomic charges: 1 1 H 0.462624 2 F -0.462624 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 H 0.000000 2 F 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 12.7150 Charge= 0.0000 electrons Dipole moment (Debye): X= 0.0000 Y= 0.0000 Z= -2.2557 Tot= 2.2557 Quadrupole moment (Debye-Ang): XX= -5.1171 YY= -5.1171 ZZ= -3.2401 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -1.7950 XYY= 0.0000 XXY= 0.0000 XXZ= -0.1718 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.1718 XYZ= 0.0000 Hexadecapole moment (Debye-Ang**3): XXXX= -2.3891 YYYY= -2.3891 ZZZZ= -2.4253 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.7964 XXZZ= -1.0209 YYZZ= -1.0209 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 5.231505784221D+00 E-N=-2.497148926155D+02 KE= 9.934353406069D+01 10 Phi and 5 Theta Values Per Atom NABMO STP ISTEP RAD NUMR CUTOFF DStMX0 MoBas? 4 5.00E-02 5 1.0E-01 20 1.0E-10 1.0E+01 F Using single center to handle rho isosurface. Intersections with the isosurface found. Max. Dist. Between Center of Nuclear Charge and Isosurface = 3.325800E+00 Min. Dist. Between Center of Nuclear Charge and Isosurface = 2.823829E+00 Total "Solvent Accessible Surface Area" of Solute = 1.081724E+02 Volume of Solute Cavity = 1.049608E+02 Total number of points on surface is 50 Tomasi Approximation I (1/(4*pi)) Times Flux of Nuclear E Field Thru Surface = 9.996965 Actual Positive Charge Within Cavity = 10.000000 (1/(4*pi)) Times Flux of Solute E Field Thru Surface = 0.030047 Tomasi Approximation II Iteration number 1 Iteration number 2 MaxDiff 0.329427934580E-02 Iteration number 3 MaxDiff 0.887830453341E-03 Iteration number 4 MaxDiff 0.233756092157E-03 Iteration number 5 MaxDiff 0.780845673772E-04 Iteration number 6 MaxDiff 0.302767114606E-04 Iteration number 7 MaxDiff 0.119642910904E-04 Iteration number 8 MaxDiff 0.479569390406E-05 Iteration number 9 MaxDiff 0.194240472956E-05 Self polarization converged in 9 iterations. Largest difference in charges from previous cycle is 0.337771508956E-03 Tomasi Approximation III Net Surface Polarization Charge Divided by -(1-1/epsi) = 0.000000 Standard basis: 3-21G (6D, 7F) There are 7 symmetry adapted basis functions of A1 symmetry. There are 0 symmetry adapted basis functions of A2 symmetry. There are 2 symmetry adapted basis functions of B1 symmetry. There are 2 symmetry adapted basis functions of B2 symmetry. Crude estimate of integral set expansion from redundant integrals=1.000. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Background charge distribution read from rwf: Nuclear-Charge attraction = 0.0645975592 11 basis functions 18 primitive gaussians 5 alpha electrons 5 beta electrons nuclear repulsion energy 5.1987722312 Hartrees. Nuclear repulsion after solvent point charges= 5.2310710108 Hartrees. One-electron integrals computed using PRISM. NBasis= 11 RedAO= T NBF= 7 0 2 2 NBsUse= 11 1.00D-04 NBFU= 7 0 2 2 SCF N**3 symmetry information disabled. Initial guess read from the read-write file: Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) Requested convergence on RMS density matrix=1.00D-08 within 64 cycles. Requested convergence on MAX density matrix=1.00D-06. Keep R1 and R2 integrals in memory in canonical form, NReq= 410382. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB+HF-LYP) = -99.8742221148 A.U. after 7 cycles Convg = 0.3782D-08 -V/T = 2.0053 S**2 = 0.0000 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital Symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -24.48225 -1.14027 -0.47649 -0.33544 -0.33544 Alpha virt. eigenvalues -- 0.14464 0.97991 1.84633 1.84633 2.00685 Alpha virt. eigenvalues -- 3.29303 Condensed to atoms (all electrons): 1 2 1 H 0.321292 0.214874 2 F 0.214874 9.248960 Total atomic charges: 1 1 H 0.463834 2 F -0.463834 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 H 0.000000 2 F 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 12.7120 Charge= 0.0000 electrons Dipole moment (Debye): X= 0.0000 Y= 0.0000 Z= -2.2616 Tot= 2.2616 Quadrupole moment (Debye-Ang): XX= -5.1170 YY= -5.1170 ZZ= -3.2363 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -1.8027 XYY= 0.0000 XXY= 0.0000 XXZ= -0.1730 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.1730 XYZ= 0.0000 Hexadecapole moment (Debye-Ang**3): XXXX= -2.3887 YYYY= -2.3887 ZZZZ= -2.4174 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.7962 XXZZ= -1.0200 YYZZ= -1.0200 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 5.231071010812D+00 E-N=-2.497171307827D+02 KE= 9.934346882179D+01 10 Phi and 5 Theta Values Per Atom NABMO STP ISTEP RAD NUMR CUTOFF DStMX0 MoBas? 4 5.00E-02 5 1.0E-01 20 1.0E-10 1.0E+01 F Using single center to handle rho isosurface. Intersections with the isosurface found. Max. Dist. Between Center of Nuclear Charge and Isosurface = 3.324018E+00 Min. Dist. Between Center of Nuclear Charge and Isosurface = 2.823835E+00 Total "Solvent Accessible Surface Area" of Solute = 1.081451E+02 Volume of Solute Cavity = 1.049227E+02 Total number of points on surface is 50 Tomasi Approximation I (1/(4*pi)) Times Flux of Nuclear E Field Thru Surface = 9.996982 Actual Positive Charge Within Cavity = 10.000000 (1/(4*pi)) Times Flux of Solute E Field Thru Surface = 0.030002 Tomasi Approximation II Iteration number 1 Iteration number 2 MaxDiff 0.330600539078E-02 Iteration number 3 MaxDiff 0.891462005766E-03 Iteration number 4 MaxDiff 0.234875877114E-03 Iteration number 5 MaxDiff 0.781144643415E-04 Iteration number 6 MaxDiff 0.302896139882E-04 Iteration number 7 MaxDiff 0.119700020270E-04 Iteration number 8 MaxDiff 0.479827160205E-05 Iteration number 9 MaxDiff 0.194358201331E-05 Self polarization converged in 9 iterations. Largest difference in charges from previous cycle is 0.533359068981E-04 Tomasi Approximation III Net Surface Polarization Charge Divided by -(1-1/epsi) = 0.000000 Standard basis: 3-21G (6D, 7F) There are 7 symmetry adapted basis functions of A1 symmetry. There are 0 symmetry adapted basis functions of A2 symmetry. There are 2 symmetry adapted basis functions of B1 symmetry. There are 2 symmetry adapted basis functions of B2 symmetry. Crude estimate of integral set expansion from redundant integrals=1.000. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Background charge distribution read from rwf: Nuclear-Charge attraction = 0.0644563775 11 basis functions 18 primitive gaussians 5 alpha electrons 5 beta electrons nuclear repulsion energy 5.1987722312 Hartrees. Nuclear repulsion after solvent point charges= 5.2310004200 Hartrees. One-electron integrals computed using PRISM. NBasis= 11 RedAO= T NBF= 7 0 2 2 NBsUse= 11 1.00D-04 NBFU= 7 0 2 2 SCF N**3 symmetry information disabled. Initial guess read from the read-write file: Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) Requested convergence on RMS density matrix=1.00D-08 within 64 cycles. Requested convergence on MAX density matrix=1.00D-06. Keep R1 and R2 integrals in memory in canonical form, NReq= 410382. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB+HF-LYP) = -99.8742728728 A.U. after 6 cycles Convg = 0.4392D-08 -V/T = 2.0053 S**2 = 0.0000 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital Symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -24.48219 -1.14022 -0.47645 -0.33541 -0.33541 Alpha virt. eigenvalues -- 0.14480 0.98004 1.84636 1.84636 2.00685 Alpha virt. eigenvalues -- 3.29309 Condensed to atoms (all electrons): 1 2 1 H 0.321076 0.214900 2 F 0.214900 9.249125 Total atomic charges: 1 1 H 0.464025 2 F -0.464025 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 H 0.000000 2 F 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 12.7115 Charge= 0.0000 electrons Dipole moment (Debye): X= 0.0000 Y= 0.0000 Z= -2.2626 Tot= 2.2626 Quadrupole moment (Debye-Ang): XX= -5.1170 YY= -5.1170 ZZ= -3.2357 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -1.8039 XYY= 0.0000 XXY= 0.0000 XXZ= -0.1731 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.1731 XYZ= 0.0000 Hexadecapole moment (Debye-Ang**3): XXXX= -2.3886 YYYY= -2.3886 ZZZZ= -2.4161 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.7962 XXZZ= -1.0198 YYZZ= -1.0198 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 5.231000419972D+00 E-N=-2.497174834228D+02 KE= 9.934345857498D+01 10 Phi and 5 Theta Values Per Atom NABMO STP ISTEP RAD NUMR CUTOFF DStMX0 MoBas? 4 5.00E-02 5 1.0E-01 20 1.0E-10 1.0E+01 F Using single center to handle rho isosurface. Intersections with the isosurface found. Max. Dist. Between Center of Nuclear Charge and Isosurface = 3.323738E+00 Min. Dist. Between Center of Nuclear Charge and Isosurface = 2.823835E+00 Total "Solvent Accessible Surface Area" of Solute = 1.081407E+02 Volume of Solute Cavity = 1.049166E+02 Total number of points on surface is 50 Tomasi Approximation I (1/(4*pi)) Times Flux of Nuclear E Field Thru Surface = 9.996984 Actual Positive Charge Within Cavity = 10.000000 (1/(4*pi)) Times Flux of Solute E Field Thru Surface = 0.029994 Tomasi Approximation II Iteration number 1 Iteration number 2 MaxDiff 0.330785169566E-02 Iteration number 3 MaxDiff 0.892033013694E-03 Iteration number 4 MaxDiff 0.235051694077E-03 Iteration number 5 MaxDiff 0.781196016044E-04 Iteration number 6 MaxDiff 0.302918417662E-04 Iteration number 7 MaxDiff 0.119709876323E-04 Iteration number 8 MaxDiff 0.479871469228E-05 Iteration number 9 MaxDiff 0.194378320212E-05 Self polarization converged in 9 iterations. Largest difference in charges from previous cycle is 0.840557253571E-05 Tomasi Approximation III Net Surface Polarization Charge Divided by -(1-1/epsi) = 0.000000 Standard basis: 3-21G (6D, 7F) There are 7 symmetry adapted basis functions of A1 symmetry. There are 0 symmetry adapted basis functions of A2 symmetry. There are 2 symmetry adapted basis functions of B1 symmetry. There are 2 symmetry adapted basis functions of B2 symmetry. Crude estimate of integral set expansion from redundant integrals=1.000. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Background charge distribution read from rwf: Nuclear-Charge attraction = 0.0644341336 11 basis functions 18 primitive gaussians 5 alpha electrons 5 beta electrons nuclear repulsion energy 5.1987722312 Hartrees. Nuclear repulsion after solvent point charges= 5.2309892980 Hartrees. One-electron integrals computed using PRISM. NBasis= 11 RedAO= T NBF= 7 0 2 2 NBsUse= 11 1.00D-04 NBFU= 7 0 2 2 SCF N**3 symmetry information disabled. Initial guess read from the read-write file: Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) Requested convergence on RMS density matrix=1.00D-08 within 64 cycles. Requested convergence on MAX density matrix=1.00D-06. Keep R1 and R2 integrals in memory in canonical form, NReq= 410382. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB+HF-LYP) = -99.8742808845 A.U. after 5 cycles Convg = 0.7063D-09 -V/T = 2.0053 S**2 = 0.0000 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital Symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -24.48219 -1.14021 -0.47644 -0.33540 -0.33540 Alpha virt. eigenvalues -- 0.14482 0.98006 1.84636 1.84636 2.00685 Alpha virt. eigenvalues -- 3.29310 Condensed to atoms (all electrons): 1 2 1 H 0.321041 0.214904 2 F 0.214904 9.249151 Total atomic charges: 1 1 H 0.464055 2 F -0.464055 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 H 0.000000 2 F 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 12.7114 Charge= 0.0000 electrons Dipole moment (Debye): X= 0.0000 Y= 0.0000 Z= -2.2627 Tot= 2.2627 Quadrupole moment (Debye-Ang): XX= -5.1170 YY= -5.1170 ZZ= -3.2356 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -1.8041 XYY= 0.0000 XXY= 0.0000 XXZ= -0.1732 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.1732 XYZ= 0.0000 Hexadecapole moment (Debye-Ang**3): XXXX= -2.3886 YYYY= -2.3886 ZZZZ= -2.4159 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.7962 XXZZ= -1.0198 YYZZ= -1.0198 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 5.230989297989D+00 E-N=-2.497175390404D+02 KE= 9.934345696253D+01 10 Phi and 5 Theta Values Per Atom NABMO STP ISTEP RAD NUMR CUTOFF DStMX0 MoBas? 4 5.00E-02 5 1.0E-01 20 1.0E-10 1.0E+01 F Using single center to handle rho isosurface. Intersections with the isosurface found. Max. Dist. Between Center of Nuclear Charge and Isosurface = 3.323694E+00 Min. Dist. Between Center of Nuclear Charge and Isosurface = 2.823835E+00 Total "Solvent Accessible Surface Area" of Solute = 1.081400E+02 Volume of Solute Cavity = 1.049157E+02 Total number of points on surface is 50 Tomasi Approximation I (1/(4*pi)) Times Flux of Nuclear E Field Thru Surface = 9.996985 Actual Positive Charge Within Cavity = 10.000000 (1/(4*pi)) Times Flux of Solute E Field Thru Surface = 0.029993 Tomasi Approximation II Iteration number 1 Iteration number 2 MaxDiff 0.330814174613E-02 Iteration number 3 MaxDiff 0.892122593297E-03 Iteration number 4 MaxDiff 0.235079238077E-03 Iteration number 5 MaxDiff 0.781205177216E-04 Iteration number 6 MaxDiff 0.302922446056E-04 Iteration number 7 MaxDiff 0.119711675758E-04 Iteration number 8 MaxDiff 0.479879606408E-05 Iteration number 9 MaxDiff 0.194382026560E-05 Self polarization converged in 9 iterations. Largest difference in charges from previous cycle is 0.132108486471E-05 Tomasi Approximation III Net Surface Polarization Charge Divided by -(1-1/epsi) = 0.000000 Standard basis: 3-21G (6D, 7F) There are 7 symmetry adapted basis functions of A1 symmetry. There are 0 symmetry adapted basis functions of A2 symmetry. There are 2 symmetry adapted basis functions of B1 symmetry. There are 2 symmetry adapted basis functions of B2 symmetry. Crude estimate of integral set expansion from redundant integrals=1.000. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Background charge distribution read from rwf: Nuclear-Charge attraction = 0.0644305450 11 basis functions 18 primitive gaussians 5 alpha electrons 5 beta electrons nuclear repulsion energy 5.1987722312 Hartrees. Nuclear repulsion after solvent point charges= 5.2309875037 Hartrees. One-electron integrals computed using PRISM. NBasis= 11 RedAO= T NBF= 7 0 2 2 NBsUse= 11 1.00D-04 NBFU= 7 0 2 2 SCF N**3 symmetry information disabled. Initial guess read from the read-write file: Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) Requested convergence on RMS density matrix=1.00D-08 within 64 cycles. Requested convergence on MAX density matrix=1.00D-06. Keep R1 and R2 integrals in memory in canonical form, NReq= 410382. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB+HF-LYP) = -99.8742821434 A.U. after 5 cycles Convg = 0.3346D-08 -V/T = 2.0053 S**2 = 0.0000 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital Symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -24.48219 -1.14021 -0.47644 -0.33540 -0.33540 Alpha virt. eigenvalues -- 0.14483 0.98006 1.84636 1.84636 2.00685 Alpha virt. eigenvalues -- 3.29310 Condensed to atoms (all electrons): 1 2 1 H 0.321036 0.214905 2 F 0.214905 9.249155 Total atomic charges: 1 1 H 0.464059 2 F -0.464059 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 H 0.000000 2 F 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 12.7114 Charge= 0.0000 electrons Dipole moment (Debye): X= 0.0000 Y= 0.0000 Z= -2.2628 Tot= 2.2628 Quadrupole moment (Debye-Ang): XX= -5.1170 YY= -5.1170 ZZ= -3.2356 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -1.8042 XYY= 0.0000 XXY= 0.0000 XXZ= -0.1732 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.1732 XYZ= 0.0000 Hexadecapole moment (Debye-Ang**3): XXXX= -2.3886 YYYY= -2.3886 ZZZZ= -2.4159 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.7962 XXZZ= -1.0198 YYZZ= -1.0198 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 5.230987503677D+00 E-N=-2.497175478024D+02 KE= 9.934345672267D+01 10 Phi and 5 Theta Values Per Atom NABMO STP ISTEP RAD NUMR CUTOFF DStMX0 MoBas? 4 5.00E-02 5 1.0E-01 20 1.0E-10 1.0E+01 F Using single center to handle rho isosurface. Intersections with the isosurface found. Max. Dist. Between Center of Nuclear Charge and Isosurface = 3.323686E+00 Min. Dist. Between Center of Nuclear Charge and Isosurface = 2.823835E+00 Total "Solvent Accessible Surface Area" of Solute = 1.081399E+02 Volume of Solute Cavity = 1.049156E+02 Total number of points on surface is 50 Tomasi Approximation I (1/(4*pi)) Times Flux of Nuclear E Field Thru Surface = 9.996985 Actual Positive Charge Within Cavity = 10.000000 (1/(4*pi)) Times Flux of Solute E Field Thru Surface = 0.029993 Tomasi Approximation II Iteration number 1 Iteration number 2 MaxDiff 0.330819214190E-02 Iteration number 3 MaxDiff 0.892139125662E-03 Iteration number 4 MaxDiff 0.235084640125E-03 Iteration number 5 MaxDiff 0.781201281739E-04 Iteration number 6 MaxDiff 0.302920674486E-04 Iteration number 7 MaxDiff 0.119710903475E-04 Iteration number 8 MaxDiff 0.479876327650E-05 Iteration number 9 MaxDiff 0.194380658044E-05 Self polarization converged in 9 iterations. Largest difference in charges from previous cycle is 0.222628571259E-06 Tomasi Approximation III Net Surface Polarization Charge Divided by -(1-1/epsi) = 0.000000 Convergence Achieved. 1|1|UNPC-UNK|SP|RB3LYP|3-21G|F1H1|PCUSER|26-Oct-2008|0||#RB3LYP/3-21G SCF=TIGHT GUESS=READ GEOM=ALLCHECK SCRF=(IPCM,SOLVENT=TOLUENE)||freq|| 0,1|H|F,1,0.9161||Version=x86-Win32-G98RevA.9|State=1-SG|HF=-99.874282 1|RMSD=3.346e-009|Dipole=0.,0.,-0.8902332|PG=C*V [C*(H1F1)]|||a| THERE IS NOTHING NOBLE IN BEING SUPERIOR TO SOME OTHER MAN. TRUE NOBILITY IS BEING SUPERIOR TO YOUR FORMER SELF. -- HINDU PROVERB Job cpu time: 0 days 0 hours 0 minutes 17.0 seconds. File lengths (MBytes): RWF= 10 Int= 0 D2E= 0 Chk= 5 Scr= 1 Normal termination of Gaussian 98. Entering Link 1 = C:\G98W\l1.exe PID= 408. Copyright (c) 1988,1990,1992,1993,1995,1998 Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 98 program. It is based on the Gaussian 94(TM) system (copyright 1995 Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992 Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990 Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988 Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986 Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983 Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under DFARS: RESTRICTED RIGHTS LEGEND Use, duplication or disclosure by the US Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013. Gaussian, Inc. Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraph (c) of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19. Gaussian, Inc. Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 98, Revision A.9, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998. ********************************************* Gaussian 98: x86-Win32-G98RevA.9 19-Apr-2000 26-Oct-2008 ********************************************* %chk=hf_fts_ts_ts Default route: MaxDisk=2000MB ------------------------------------------------------------------ # guess=read Geom=allCheck freq=(readfc,readisotopes) rb3lyp/3-21g ------------------------------------------------------------------ 1/29=7,38=1/1; 2/40=1/2; 7/8=2,25=11/16; 99/5=2/99; ---- freq ---- Z-Matrix taken from the checkpoint file: hf_fts_ts_ts.chk Charge = 0 Multiplicity = 1 H F,1,R Variables: R=0.9161 Recover connectivity data from disk. ------------------------------------------------------------------------ Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J ------------------------------------------------------------------------ 1 1 H 2 2 F 1 0.916100( 1) ------------------------------------------------------------------------ Z-Matrix orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 0.916100 --------------------------------------------------------------------- Stoichiometry FH Framework group C*V[C*(HF)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 -0.824490 2 9 0 0.000000 0.000000 0.091610 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 629.2083292 629.2083292 Isotopes: H-1,F-19 Electric field and nuclear coordinate derivatives read from checkpoint file. Rotating electric field derivatives to standard orientation. Rotating nuclear coordinate derivatives to standard orientation. Atom 1 has atomic number 1 and mass 1.00783 Atom 2 has atomic number 9 and mass 18.99840 Full mass-weighted force constant matrix: Low frequencies --- -955.2359 -955.2359 -0.0018 -0.0015 -0.0015 4326.6796 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering activities (A**4/AMU), Raman depolarization ratios, reduced masses (AMU), force constants (mDyne/A) and normal coordinates: 1 SG Frequencies -- 4326.6796 Red. masses -- 1.0583 Frc consts -- 11.6727 IR Inten -- 0.0000 Raman Activ -- 0.0000 Depolar -- 0.0000 Atom AN X Y Z 1 1 0.00 0.00 1.00 2 9 0.00 0.00 -0.05 ------------------- - Thermochemistry - ------------------- Temperature 350.000 Kelvin. Pressure 1.00000 Atm. Atom 1 has atomic number 1 and mass 1.00783 Atom 2 has atomic number 9 and mass 18.99840 Molecular mass: 20.00623 amu. Principal axes and moments of inertia in atomic units: 1 2 3 EIGENVALUES -- 0.00000 2.86827 2.86827 X 0.00000 0.00000 1.00000 Y 0.00000 1.00000 0.00000 Z 1.00000 0.00000 0.00000 THIS MOLECULE IS A PROLATE SYMMETRIC TOP. ROTATIONAL SYMMETRY NUMBER 1. ROTATIONAL TEMPERATURE (KELVIN) 30.19706 ROTATIONAL CONSTANT (GHZ) 629.208329 Zero-point vibrational energy 25879.3 (Joules/Mol) 6.18530 (Kcal/Mol) VIBRATIONAL TEMPERATURES: 6225.09 (KELVIN) Zero-point correction= 0.009857 (Hartree/Particle) Thermal correction to Energy= 0.012628 Thermal correction to Enthalpy= 0.013736 Thermal correction to Gibbs Free Energy= -0.010010 Sum of electronic and zero-point Energies= -99.864425 Sum of electronic and thermal Energies= -99.861654 Sum of electronic and thermal Enthalpies= -99.860546 Sum of electronic and thermal Free Energies= -99.884292 E (Thermal) CV S KCAL/MOL CAL/MOL-KELVIN CAL/MOL-KELVIN TOTAL 7.924 4.968 42.575 ELECTRONIC 0.000 0.000 0.000 TRANSLATIONAL 1.043 2.981 35.718 ROTATIONAL 0.696 1.987 6.856 VIBRATIONAL 6.185 0.000 0.000 Q LOG10(Q) LN(Q) TOTAL BOT 0.836025D+04 3.922219 9.031244 TOTAL V=0 0.608688D+08 7.784395 17.924231 VIB (BOT) 0.137349D-03 -3.862175 -8.892987 VIB (V=0) 0.100000D+01 0.000000 0.000000 ELECTRONIC 0.100000D+01 0.000000 0.000000 TRANSLATIONAL 0.525160D+07 6.720291 15.474043 ROTATIONAL 0.115905D+02 1.064103 2.450188 ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 1 0.000000000 0.000000000 0.000000000 2 9 0.000000000 0.000000000 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000000000 RMS 0.000000000 ------------------------------------------------------------------------ Internal Coordinate Forces (Hartree/Bohr or radian) Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J ------------------------------------------------------------------------ 1 H 2 F 1 0.000000( 1) ------------------------------------------------------------------------ Internal Forces: Max 0.000000000 RMS 0.000000000 This type of calculation cannot be archived. THERE IS NOTHING NOBLE IN BEING SUPERIOR TO SOME OTHER MAN. TRUE NOBILITY IS BEING SUPERIOR TO YOUR FORMER SELF. -- HINDU PROVERB Job cpu time: 0 days 0 hours 0 minutes 1.0 seconds. File lengths (MBytes): RWF= 10 Int= 0 D2E= 0 Chk= 5 Scr= 1 Normal termination of Gaussian 98. Entering Link 1 = C:\G98W\l1.exe PID= 3300. Copyright (c) 1988,1990,1992,1993,1995,1998 Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 98 program. It is based on the Gaussian 94(TM) system (copyright 1995 Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992 Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990 Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988 Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986 Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983 Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under DFARS: RESTRICTED RIGHTS LEGEND Use, duplication or disclosure by the US Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013. Gaussian, Inc. Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraph (c) of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19. Gaussian, Inc. Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 98, Revision A.9, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998. ********************************************* Gaussian 98: x86-Win32-G98RevA.9 19-Apr-2000 26-Oct-2008 ********************************************* %chk=hf_fts_ts_ts Default route: MaxDisk=2000MB ---------------------------------------------------------------------- #rb3lyp/3-21g SCF=Tight guess=read Geom=allCheck SCRF=(IPCM,Solvent=to luene) ---------------------------------------------------------------------- 1/8=3,29=7,30=1,38=1/1,17; 2/40=1/2; 3/5=5,11=2,25=1,30=1,43=-2/1,2,3; 4/5=1,7=1,9=2/1; 5/5=2,17=20,32=2,40=100,42=-5,53=14/2; 6/7=2,8=2,9=2,10=2,28=1/1; 1/8=3/17(1); 99/5=1,9=1/99; 3/5=5,11=2,25=1,30=1,43=-2/1,2,3; 4/5=5,7=1,9=2,16=2/1; 5/5=2,17=20,32=2,38=4,40=100,42=-5,53=14/2; 6/7=2,8=2,9=2,10=2,28=1/1; 1/8=3/17(-4); 99/5=1,9=1/99; ---- freq ---- Z-Matrix taken from the checkpoint file: hf_fts_ts_ts.chk Charge = 0 Multiplicity = 1 H F,1,R Variables: R=0.9161 Recover connectivity data from disk. --------------------------------------------------- Reaction Field using a Density IsoSurface Boundary --------------------------------------------------- First iteration - Do gas phase ------------------------------------------------------------------------ Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J ------------------------------------------------------------------------ 1 1 H 2 2 F 1 0.916100( 1) ------------------------------------------------------------------------ Z-Matrix orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 0.916100 --------------------------------------------------------------------- Stoichiometry FH Framework group C*V[C*(HF)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 -0.824490 2 9 0 0.000000 0.000000 0.091610 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 629.2083292 629.2083292 Isotopes: H-1,F-19 Standard basis: 3-21G (6D, 7F) There are 7 symmetry adapted basis functions of A1 symmetry. There are 0 symmetry adapted basis functions of A2 symmetry. There are 2 symmetry adapted basis functions of B1 symmetry. There are 2 symmetry adapted basis functions of B2 symmetry. Crude estimate of integral set expansion from redundant integrals=1.000. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Background charge distribution read from rwf: Nuclear-Charge attraction = 0.0000000000 11 basis functions 18 primitive gaussians 5 alpha electrons 5 beta electrons nuclear repulsion energy 5.1987722312 Hartrees. Nuclear repulsion after solvent point charges= 5.1987722312 Hartrees. One-electron integrals computed using PRISM. NBasis= 11 RedAO= T NBF= 7 0 2 2 NBsUse= 11 1.00D-04 NBFU= 7 0 2 2 SCF N**3 symmetry information disabled. Initial guess read from the checkpoint file: hf_fts_ts_ts.chk Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) Requested convergence on RMS density matrix=1.00D-08 within 64 cycles. Requested convergence on MAX density matrix=1.00D-06. Keep R1 and R2 integrals in memory in canonical form, NReq= 410382. SCF Done: E(RB+HF-LYP) = -99.8603303309 A.U. after 7 cycles Convg = 0.3970D-09 -V/T = 2.0052 S**2 = 0.0000 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital Symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -24.48826 -1.14684 -0.47992 -0.33437 -0.33437 Alpha virt. eigenvalues -- 0.10393 0.94952 1.84906 1.84906 2.01591 Alpha virt. eigenvalues -- 3.28602 Condensed to atoms (all electrons): 1 2 1 H 0.390128 0.202850 2 F 0.202850 9.204172 Total atomic charges: 1 1 H 0.407022 2 F -0.407022 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 H 0.000000 2 F 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 12.8720 Charge= 0.0000 electrons Dipole moment (Debye): X= 0.0000 Y= 0.0000 Z= -1.9688 Tot= 1.9688 Quadrupole moment (Debye-Ang): XX= -5.1297 YY= -5.1297 ZZ= -3.4260 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -1.4149 XYY= 0.0000 XXY= 0.0000 XXZ= -0.1107 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.1107 XYZ= 0.0000 Hexadecapole moment (Debye-Ang**3): XXXX= -2.4150 YYYY= -2.4150 ZZZZ= -2.8352 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.8050 XXZZ= -1.0693 YYZZ= -1.0693 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 5.198772231197D+00 E-N=-2.496053658234D+02 KE= 9.934692644377D+01 -------------------------------------------------- Reaction Field using a Density IsoSurface Boundary -------------------------------------------------- Epsi= 78.3000 Cont = 0.0010 Will Allow IsoSurface To Relax Throughout Convergence set to 1.00D-06 10 Phi and 5 Theta Values Per Atom NABMO STP ISTEP RAD NUMR CUTOFF DStMX0 MoBas? 4 5.00E-02 5 1.0E-01 20 1.0E-10 1.0E+01 F Using single center to handle rho isosurface. Intersections with the isosurface found. Max. Dist. Between Center of Nuclear Charge and Isosurface = 3.416383E+00 Min. Dist. Between Center of Nuclear Charge and Isosurface = 2.823988E+00 Total "Solvent Accessible Surface Area" of Solute = 1.096664E+02 Volume of Solute Cavity = 1.070442E+02 Total number of points on surface is 50 Tomasi Approximation I (1/(4*pi)) Times Flux of Nuclear E Field Thru Surface = 9.996458 Actual Positive Charge Within Cavity = 10.000000 (1/(4*pi)) Times Flux of Solute E Field Thru Surface = 0.032586 Tomasi Approximation II Iteration number 1 Iteration number 2 MaxDiff 0.275677647282E-02 Iteration number 3 MaxDiff 0.725535189903E-03 Iteration number 4 MaxDiff 0.199345939083E-03 Iteration number 5 MaxDiff 0.750460830754E-04 Iteration number 6 MaxDiff 0.289654848864E-04 Iteration number 7 MaxDiff 0.113976517548E-04 Iteration number 8 MaxDiff 0.454984819764E-05 Iteration number 9 MaxDiff 0.183530983404E-05 Self polarization converged in 9 iterations. Largest difference in charges from previous cycle is 0.145960072992E-01 Tomasi Approximation III Net Surface Polarization Charge Divided by -(1-1/epsi) = 0.000000 Standard basis: 3-21G (6D, 7F) There are 7 symmetry adapted basis functions of A1 symmetry. There are 0 symmetry adapted basis functions of A2 symmetry. There are 2 symmetry adapted basis functions of B1 symmetry. There are 2 symmetry adapted basis functions of B2 symmetry. Crude estimate of integral set expansion from redundant integrals=1.000. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Background charge distribution read from rwf: Nuclear-Charge attraction = 0.0699159678 11 basis functions 18 primitive gaussians 5 alpha electrons 5 beta electrons nuclear repulsion energy 5.1987722312 Hartrees. Nuclear repulsion after solvent point charges= 5.2337302151 Hartrees. One-electron integrals computed using PRISM. NBasis= 11 RedAO= T NBF= 7 0 2 2 NBsUse= 11 1.00D-04 NBFU= 7 0 2 2 SCF N**3 symmetry information disabled. Initial guess read from the read-write file: Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) Requested convergence on RMS density matrix=1.00D-08 within 64 cycles. Requested convergence on MAX density matrix=1.00D-06. Keep R1 and R2 integrals in memory in canonical form, NReq= 410382. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB+HF-LYP) = -99.8719035068 A.U. after 9 cycles Convg = 0.3742D-08 -V/T = 2.0053 S**2 = 0.0000 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital Symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -24.48459 -1.14265 -0.47848 -0.33669 -0.33669 Alpha virt. eigenvalues -- 0.13728 0.97396 1.84533 1.84533 2.00687 Alpha virt. eigenvalues -- 3.29057 Condensed to atoms (all electrons): 1 2 1 H 0.331461 0.213564 2 F 0.213564 9.241410 Total atomic charges: 1 1 H 0.454974 2 F -0.454974 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 H 0.000000 2 F 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 12.7347 Charge= 0.0000 electrons Dipole moment (Debye): X= 0.0000 Y= 0.0000 Z= -2.2175 Tot= 2.2175 Quadrupole moment (Debye-Ang): XX= -5.1183 YY= -5.1183 ZZ= -3.2642 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -1.7459 XYY= 0.0000 XXY= 0.0000 XXZ= -0.1641 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.1641 XYZ= 0.0000 Hexadecapole moment (Debye-Ang**3): XXXX= -2.3918 YYYY= -2.3918 ZZZZ= -2.4766 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.7973 XXZZ= -1.0267 YYZZ= -1.0267 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 5.233730215120D+00 E-N=-2.497006058525D+02 KE= 9.934396251397D+01 10 Phi and 5 Theta Values Per Atom NABMO STP ISTEP RAD NUMR CUTOFF DStMX0 MoBas? 4 5.00E-02 5 1.0E-01 20 1.0E-10 1.0E+01 F Using single center to handle rho isosurface. Intersections with the isosurface found. Max. Dist. Between Center of Nuclear Charge and Isosurface = 3.337238E+00 Min. Dist. Between Center of Nuclear Charge and Isosurface = 2.823810E+00 Total "Solvent Accessible Surface Area" of Solute = 1.083502E+02 Volume of Solute Cavity = 1.052086E+02 Total number of points on surface is 50 Tomasi Approximation I (1/(4*pi)) Times Flux of Nuclear E Field Thru Surface = 9.996864 Actual Positive Charge Within Cavity = 10.000000 (1/(4*pi)) Times Flux of Solute E Field Thru Surface = 0.030342 Tomasi Approximation II Iteration number 1 Iteration number 2 MaxDiff 0.322014572203E-02 Iteration number 3 MaxDiff 0.864963922018E-03 Iteration number 4 MaxDiff 0.226734327726E-03 Iteration number 5 MaxDiff 0.778594022180E-04 Iteration number 6 MaxDiff 0.301794873417E-04 Iteration number 7 MaxDiff 0.119215338659E-04 Iteration number 8 MaxDiff 0.477660165555E-05 Iteration number 9 MaxDiff 0.193379441074E-05 Self polarization converged in 9 iterations. Largest difference in charges from previous cycle is 0.213165599496E-02 Tomasi Approximation III Net Surface Polarization Charge Divided by -(1-1/epsi) = 0.000000 Standard basis: 3-21G (6D, 7F) There are 7 symmetry adapted basis functions of A1 symmetry. There are 0 symmetry adapted basis functions of A2 symmetry. There are 2 symmetry adapted basis functions of B1 symmetry. There are 2 symmetry adapted basis functions of B2 symmetry. Crude estimate of integral set expansion from redundant integrals=1.000. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Background charge distribution read from rwf: Nuclear-Charge attraction = 0.0654671061 11 basis functions 18 primitive gaussians 5 alpha electrons 5 beta electrons nuclear repulsion energy 5.1987722312 Hartrees. Nuclear repulsion after solvent point charges= 5.2315057842 Hartrees. One-electron integrals computed using PRISM. NBasis= 11 RedAO= T NBF= 7 0 2 2 NBsUse= 11 1.00D-04 NBFU= 7 0 2 2 SCF N**3 symmetry information disabled. Initial guess read from the read-write file: Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) Requested convergence on RMS density matrix=1.00D-08 within 64 cycles. Requested convergence on MAX density matrix=1.00D-06. Keep R1 and R2 integrals in memory in canonical form, NReq= 410382. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB+HF-LYP) = -99.8739012611 A.U. after 8 cycles Convg = 0.3321D-08 -V/T = 2.0053 S**2 = 0.0000 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital Symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -24.48258 -1.14060 -0.47678 -0.33562 -0.33562 Alpha virt. eigenvalues -- 0.14363 0.97908 1.84618 1.84618 2.00684 Alpha virt. eigenvalues -- 3.29269 Condensed to atoms (all electrons): 1 2 1 H 0.322668 0.214708 2 F 0.214708 9.247917 Total atomic charges: 1 1 H 0.462624 2 F -0.462624 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 H 0.000000 2 F 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 12.7150 Charge= 0.0000 electrons Dipole moment (Debye): X= 0.0000 Y= 0.0000 Z= -2.2557 Tot= 2.2557 Quadrupole moment (Debye-Ang): XX= -5.1171 YY= -5.1171 ZZ= -3.2401 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -1.7950 XYY= 0.0000 XXY= 0.0000 XXZ= -0.1718 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.1718 XYZ= 0.0000 Hexadecapole moment (Debye-Ang**3): XXXX= -2.3891 YYYY= -2.3891 ZZZZ= -2.4253 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.7964 XXZZ= -1.0209 YYZZ= -1.0209 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 5.231505784223D+00 E-N=-2.497148926155D+02 KE= 9.934353406069D+01 10 Phi and 5 Theta Values Per Atom NABMO STP ISTEP RAD NUMR CUTOFF DStMX0 MoBas? 4 5.00E-02 5 1.0E-01 20 1.0E-10 1.0E+01 F Using single center to handle rho isosurface. Intersections with the isosurface found. Max. Dist. Between Center of Nuclear Charge and Isosurface = 3.325800E+00 Min. Dist. Between Center of Nuclear Charge and Isosurface = 2.823829E+00 Total "Solvent Accessible Surface Area" of Solute = 1.081724E+02 Volume of Solute Cavity = 1.049608E+02 Total number of points on surface is 50 Tomasi Approximation I (1/(4*pi)) Times Flux of Nuclear E Field Thru Surface = 9.996965 Actual Positive Charge Within Cavity = 10.000000 (1/(4*pi)) Times Flux of Solute E Field Thru Surface = 0.030047 Tomasi Approximation II Iteration number 1 Iteration number 2 MaxDiff 0.329427934581E-02 Iteration number 3 MaxDiff 0.887830453342E-03 Iteration number 4 MaxDiff 0.233756092157E-03 Iteration number 5 MaxDiff 0.780845673784E-04 Iteration number 6 MaxDiff 0.302767114611E-04 Iteration number 7 MaxDiff 0.119642910906E-04 Iteration number 8 MaxDiff 0.479569390415E-05 Iteration number 9 MaxDiff 0.194240472960E-05 Self polarization converged in 9 iterations. Largest difference in charges from previous cycle is 0.337771508300E-03 Tomasi Approximation III Net Surface Polarization Charge Divided by -(1-1/epsi) = 0.000000 Standard basis: 3-21G (6D, 7F) There are 7 symmetry adapted basis functions of A1 symmetry. There are 0 symmetry adapted basis functions of A2 symmetry. There are 2 symmetry adapted basis functions of B1 symmetry. There are 2 symmetry adapted basis functions of B2 symmetry. Crude estimate of integral set expansion from redundant integrals=1.000. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Background charge distribution read from rwf: Nuclear-Charge attraction = 0.0645975592 11 basis functions 18 primitive gaussians 5 alpha electrons 5 beta electrons nuclear repulsion energy 5.1987722312 Hartrees. Nuclear repulsion after solvent point charges= 5.2310710108 Hartrees. One-electron integrals computed using PRISM. NBasis= 11 RedAO= T NBF= 7 0 2 2 NBsUse= 11 1.00D-04 NBFU= 7 0 2 2 SCF N**3 symmetry information disabled. Initial guess read from the read-write file: Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) Requested convergence on RMS density matrix=1.00D-08 within 64 cycles. Requested convergence on MAX density matrix=1.00D-06. Keep R1 and R2 integrals in memory in canonical form, NReq= 410382. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB+HF-LYP) = -99.8742221148 A.U. after 7 cycles Convg = 0.3782D-08 -V/T = 2.0053 S**2 = 0.0000 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital Symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -24.48225 -1.14027 -0.47649 -0.33544 -0.33544 Alpha virt. eigenvalues -- 0.14464 0.97991 1.84633 1.84633 2.00685 Alpha virt. eigenvalues -- 3.29303 Condensed to atoms (all electrons): 1 2 1 H 0.321292 0.214874 2 F 0.214874 9.248960 Total atomic charges: 1 1 H 0.463834 2 F -0.463834 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 H 0.000000 2 F 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 12.7120 Charge= 0.0000 electrons Dipole moment (Debye): X= 0.0000 Y= 0.0000 Z= -2.2616 Tot= 2.2616 Quadrupole moment (Debye-Ang): XX= -5.1170 YY= -5.1170 ZZ= -3.2363 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -1.8027 XYY= 0.0000 XXY= 0.0000 XXZ= -0.1730 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.1730 XYZ= 0.0000 Hexadecapole moment (Debye-Ang**3): XXXX= -2.3887 YYYY= -2.3887 ZZZZ= -2.4174 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.7962 XXZZ= -1.0200 YYZZ= -1.0200 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 5.231071010812D+00 E-N=-2.497171307827D+02 KE= 9.934346882179D+01 10 Phi and 5 Theta Values Per Atom NABMO STP ISTEP RAD NUMR CUTOFF DStMX0 MoBas? 4 5.00E-02 5 1.0E-01 20 1.0E-10 1.0E+01 F Using single center to handle rho isosurface. Intersections with the isosurface found. Max. Dist. Between Center of Nuclear Charge and Isosurface = 3.324018E+00 Min. Dist. Between Center of Nuclear Charge and Isosurface = 2.823835E+00 Total "Solvent Accessible Surface Area" of Solute = 1.081451E+02 Volume of Solute Cavity = 1.049227E+02 Total number of points on surface is 50 Tomasi Approximation I (1/(4*pi)) Times Flux of Nuclear E Field Thru Surface = 9.996982 Actual Positive Charge Within Cavity = 10.000000 (1/(4*pi)) Times Flux of Solute E Field Thru Surface = 0.030002 Tomasi Approximation II Iteration number 1 Iteration number 2 MaxDiff 0.330600539078E-02 Iteration number 3 MaxDiff 0.891462005766E-03 Iteration number 4 MaxDiff 0.234875877114E-03 Iteration number 5 MaxDiff 0.781144643416E-04 Iteration number 6 MaxDiff 0.302896139882E-04 Iteration number 7 MaxDiff 0.119700020271E-04 Iteration number 8 MaxDiff 0.479827160206E-05 Iteration number 9 MaxDiff 0.194358201332E-05 Self polarization converged in 9 iterations. Largest difference in charges from previous cycle is 0.533359068339E-04 Tomasi Approximation III Net Surface Polarization Charge Divided by -(1-1/epsi) = 0.000000 Standard basis: 3-21G (6D, 7F) There are 7 symmetry adapted basis functions of A1 symmetry. There are 0 symmetry adapted basis functions of A2 symmetry. There are 2 symmetry adapted basis functions of B1 symmetry. There are 2 symmetry adapted basis functions of B2 symmetry. Crude estimate of integral set expansion from redundant integrals=1.000. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Background charge distribution read from rwf: Nuclear-Charge attraction = 0.0644563775 11 basis functions 18 primitive gaussians 5 alpha electrons 5 beta electrons nuclear repulsion energy 5.1987722312 Hartrees. Nuclear repulsion after solvent point charges= 5.2310004200 Hartrees. One-electron integrals computed using PRISM. NBasis= 11 RedAO= T NBF= 7 0 2 2 NBsUse= 11 1.00D-04 NBFU= 7 0 2 2 SCF N**3 symmetry information disabled. Initial guess read from the read-write file: Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) Requested convergence on RMS density matrix=1.00D-08 within 64 cycles. Requested convergence on MAX density matrix=1.00D-06. Keep R1 and R2 integrals in memory in canonical form, NReq= 410382. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB+HF-LYP) = -99.8742728728 A.U. after 6 cycles Convg = 0.4392D-08 -V/T = 2.0053 S**2 = 0.0000 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital Symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -24.48219 -1.14022 -0.47645 -0.33541 -0.33541 Alpha virt. eigenvalues -- 0.14480 0.98004 1.84636 1.84636 2.00685 Alpha virt. eigenvalues -- 3.29309 Condensed to atoms (all electrons): 1 2 1 H 0.321076 0.214900 2 F 0.214900 9.249125 Total atomic charges: 1 1 H 0.464025 2 F -0.464025 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 H 0.000000 2 F 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 12.7115 Charge= 0.0000 electrons Dipole moment (Debye): X= 0.0000 Y= 0.0000 Z= -2.2626 Tot= 2.2626 Quadrupole moment (Debye-Ang): XX= -5.1170 YY= -5.1170 ZZ= -3.2357 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -1.8039 XYY= 0.0000 XXY= 0.0000 XXZ= -0.1731 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.1731 XYZ= 0.0000 Hexadecapole moment (Debye-Ang**3): XXXX= -2.3886 YYYY= -2.3886 ZZZZ= -2.4161 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.7962 XXZZ= -1.0198 YYZZ= -1.0198 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 5.231000419972D+00 E-N=-2.497174834228D+02 KE= 9.934345857498D+01 10 Phi and 5 Theta Values Per Atom NABMO STP ISTEP RAD NUMR CUTOFF DStMX0 MoBas? 4 5.00E-02 5 1.0E-01 20 1.0E-10 1.0E+01 F Using single center to handle rho isosurface. Intersections with the isosurface found. Max. Dist. Between Center of Nuclear Charge and Isosurface = 3.323738E+00 Min. Dist. Between Center of Nuclear Charge and Isosurface = 2.823835E+00 Total "Solvent Accessible Surface Area" of Solute = 1.081407E+02 Volume of Solute Cavity = 1.049166E+02 Total number of points on surface is 50 Tomasi Approximation I (1/(4*pi)) Times Flux of Nuclear E Field Thru Surface = 9.996984 Actual Positive Charge Within Cavity = 10.000000 (1/(4*pi)) Times Flux of Solute E Field Thru Surface = 0.029994 Tomasi Approximation II Iteration number 1 Iteration number 2 MaxDiff 0.330785169566E-02 Iteration number 3 MaxDiff 0.892033013694E-03 Iteration number 4 MaxDiff 0.235051694077E-03 Iteration number 5 MaxDiff 0.781196016044E-04 Iteration number 6 MaxDiff 0.302918417662E-04 Iteration number 7 MaxDiff 0.119709876323E-04 Iteration number 8 MaxDiff 0.479871469228E-05 Iteration number 9 MaxDiff 0.194378320212E-05 Self polarization converged in 9 iterations. Largest difference in charges from previous cycle is 0.840557252927E-05 Tomasi Approximation III Net Surface Polarization Charge Divided by -(1-1/epsi) = 0.000000 Standard basis: 3-21G (6D, 7F) There are 7 symmetry adapted basis functions of A1 symmetry. There are 0 symmetry adapted basis functions of A2 symmetry. There are 2 symmetry adapted basis functions of B1 symmetry. There are 2 symmetry adapted basis functions of B2 symmetry. Crude estimate of integral set expansion from redundant integrals=1.000. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Background charge distribution read from rwf: Nuclear-Charge attraction = 0.0644341336 11 basis functions 18 primitive gaussians 5 alpha electrons 5 beta electrons nuclear repulsion energy 5.1987722312 Hartrees. Nuclear repulsion after solvent point charges= 5.2309892980 Hartrees. One-electron integrals computed using PRISM. NBasis= 11 RedAO= T NBF= 7 0 2 2 NBsUse= 11 1.00D-04 NBFU= 7 0 2 2 SCF N**3 symmetry information disabled. Initial guess read from the read-write file: Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) Requested convergence on RMS density matrix=1.00D-08 within 64 cycles. Requested convergence on MAX density matrix=1.00D-06. Keep R1 and R2 integrals in memory in canonical form, NReq= 410382. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB+HF-LYP) = -99.8742808845 A.U. after 5 cycles Convg = 0.7063D-09 -V/T = 2.0053 S**2 = 0.0000 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital Symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -24.48219 -1.14021 -0.47644 -0.33540 -0.33540 Alpha virt. eigenvalues -- 0.14482 0.98006 1.84636 1.84636 2.00685 Alpha virt. eigenvalues -- 3.29310 Condensed to atoms (all electrons): 1 2 1 H 0.321041 0.214904 2 F 0.214904 9.249151 Total atomic charges: 1 1 H 0.464055 2 F -0.464055 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 H 0.000000 2 F 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 12.7114 Charge= 0.0000 electrons Dipole moment (Debye): X= 0.0000 Y= 0.0000 Z= -2.2627 Tot= 2.2627 Quadrupole moment (Debye-Ang): XX= -5.1170 YY= -5.1170 ZZ= -3.2356 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -1.8041 XYY= 0.0000 XXY= 0.0000 XXZ= -0.1732 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.1732 XYZ= 0.0000 Hexadecapole moment (Debye-Ang**3): XXXX= -2.3886 YYYY= -2.3886 ZZZZ= -2.4159 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.7962 XXZZ= -1.0198 YYZZ= -1.0198 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 5.230989297989D+00 E-N=-2.497175390404D+02 KE= 9.934345696253D+01 10 Phi and 5 Theta Values Per Atom NABMO STP ISTEP RAD NUMR CUTOFF DStMX0 MoBas? 4 5.00E-02 5 1.0E-01 20 1.0E-10 1.0E+01 F Using single center to handle rho isosurface. Intersections with the isosurface found. Max. Dist. Between Center of Nuclear Charge and Isosurface = 3.323694E+00 Min. Dist. Between Center of Nuclear Charge and Isosurface = 2.823835E+00 Total "Solvent Accessible Surface Area" of Solute = 1.081400E+02 Volume of Solute Cavity = 1.049157E+02 Total number of points on surface is 50 Tomasi Approximation I (1/(4*pi)) Times Flux of Nuclear E Field Thru Surface = 9.996985 Actual Positive Charge Within Cavity = 10.000000 (1/(4*pi)) Times Flux of Solute E Field Thru Surface = 0.029993 Tomasi Approximation II Iteration number 1 Iteration number 2 MaxDiff 0.330814174613E-02 Iteration number 3 MaxDiff 0.892122593297E-03 Iteration number 4 MaxDiff 0.235079238077E-03 Iteration number 5 MaxDiff 0.781205177216E-04 Iteration number 6 MaxDiff 0.302922446056E-04 Iteration number 7 MaxDiff 0.119711675758E-04 Iteration number 8 MaxDiff 0.479879606408E-05 Iteration number 9 MaxDiff 0.194382026560E-05 Self polarization converged in 9 iterations. Largest difference in charges from previous cycle is 0.132108486435E-05 Tomasi Approximation III Net Surface Polarization Charge Divided by -(1-1/epsi) = 0.000000 Standard basis: 3-21G (6D, 7F) There are 7 symmetry adapted basis functions of A1 symmetry. There are 0 symmetry adapted basis functions of A2 symmetry. There are 2 symmetry adapted basis functions of B1 symmetry. There are 2 symmetry adapted basis functions of B2 symmetry. Crude estimate of integral set expansion from redundant integrals=1.000. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Background charge distribution read from rwf: Nuclear-Charge attraction = 0.0644305450 11 basis functions 18 primitive gaussians 5 alpha electrons 5 beta electrons nuclear repulsion energy 5.1987722312 Hartrees. Nuclear repulsion after solvent point charges= 5.2309875037 Hartrees. One-electron integrals computed using PRISM. NBasis= 11 RedAO= T NBF= 7 0 2 2 NBsUse= 11 1.00D-04 NBFU= 7 0 2 2 SCF N**3 symmetry information disabled. Initial guess read from the read-write file: Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) Requested convergence on RMS density matrix=1.00D-08 within 64 cycles. Requested convergence on MAX density matrix=1.00D-06. Keep R1 and R2 integrals in memory in canonical form, NReq= 410382. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB+HF-LYP) = -99.8742821434 A.U. after 5 cycles Convg = 0.3346D-08 -V/T = 2.0053 S**2 = 0.0000 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital Symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -24.48219 -1.14021 -0.47644 -0.33540 -0.33540 Alpha virt. eigenvalues -- 0.14483 0.98006 1.84636 1.84636 2.00685 Alpha virt. eigenvalues -- 3.29310 Condensed to atoms (all electrons): 1 2 1 H 0.321036 0.214905 2 F 0.214905 9.249155 Total atomic charges: 1 1 H 0.464059 2 F -0.464059 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 H 0.000000 2 F 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 12.7114 Charge= 0.0000 electrons Dipole moment (Debye): X= 0.0000 Y= 0.0000 Z= -2.2628 Tot= 2.2628 Quadrupole moment (Debye-Ang): XX= -5.1170 YY= -5.1170 ZZ= -3.2356 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -1.8042 XYY= 0.0000 XXY= 0.0000 XXZ= -0.1732 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.1732 XYZ= 0.0000 Hexadecapole moment (Debye-Ang**3): XXXX= -2.3886 YYYY= -2.3886 ZZZZ= -2.4159 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.7962 XXZZ= -1.0198 YYZZ= -1.0198 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 5.230987503677D+00 E-N=-2.497175478024D+02 KE= 9.934345672267D+01 10 Phi and 5 Theta Values Per Atom NABMO STP ISTEP RAD NUMR CUTOFF DStMX0 MoBas? 4 5.00E-02 5 1.0E-01 20 1.0E-10 1.0E+01 F Using single center to handle rho isosurface. Intersections with the isosurface found. Max. Dist. Between Center of Nuclear Charge and Isosurface = 3.323686E+00 Min. Dist. Between Center of Nuclear Charge and Isosurface = 2.823835E+00 Total "Solvent Accessible Surface Area" of Solute = 1.081399E+02 Volume of Solute Cavity = 1.049156E+02 Total number of points on surface is 50 Tomasi Approximation I (1/(4*pi)) Times Flux of Nuclear E Field Thru Surface = 9.996985 Actual Positive Charge Within Cavity = 10.000000 (1/(4*pi)) Times Flux of Solute E Field Thru Surface = 0.029993 Tomasi Approximation II Iteration number 1 Iteration number 2 MaxDiff 0.330819214190E-02 Iteration number 3 MaxDiff 0.892139125662E-03 Iteration number 4 MaxDiff 0.235084640125E-03 Iteration number 5 MaxDiff 0.781201281739E-04 Iteration number 6 MaxDiff 0.302920674486E-04 Iteration number 7 MaxDiff 0.119710903475E-04 Iteration number 8 MaxDiff 0.479876327650E-05 Iteration number 9 MaxDiff 0.194380658044E-05 Self polarization converged in 9 iterations. Largest difference in charges from previous cycle is 0.222628571044E-06 Tomasi Approximation III Net Surface Polarization Charge Divided by -(1-1/epsi) = 0.000000 Convergence Achieved. 1|1|UNPC-UNK|SP|RB3LYP|3-21G|F1H1|PCUSER|26-Oct-2008|0||#RB3LYP/3-21G SCF=TIGHT GUESS=READ GEOM=ALLCHECK SCRF=(IPCM,SOLVENT=TOLUENE)||freq|| 0,1|H|F,1,0.9161||Version=x86-Win32-G98RevA.9|State=1-SG|HF=-99.874282 1|RMSD=3.346e-009|Dipole=0.,0.,-0.8902332|PG=C*V [C*(H1F1)]|||a| WHEN YOU REACH FOR THE STARS, YOU MAY NOT QUITE GET ONE, BUT YOU WON'T COME UP WITH A HANDFUL OF MUD, EITHER. -- LEO BURNETT (AD AGENCY HEAD) Job cpu time: 0 days 0 hours 0 minutes 18.0 seconds. File lengths (MBytes): RWF= 10 Int= 0 D2E= 0 Chk= 5 Scr= 1 Normal termination of Gaussian 98. Entering Link 1 = C:\G98W\l1.exe PID= 2440. Copyright (c) 1988,1990,1992,1993,1995,1998 Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 98 program. It is based on the Gaussian 94(TM) system (copyright 1995 Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992 Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990 Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988 Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986 Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983 Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under DFARS: RESTRICTED RIGHTS LEGEND Use, duplication or disclosure by the US Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013. Gaussian, Inc. Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraph (c) of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19. Gaussian, Inc. Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 98, Revision A.9, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998. ********************************************* Gaussian 98: x86-Win32-G98RevA.9 19-Apr-2000 26-Oct-2008 ********************************************* %chk=hf_fts_ts_ts Default route: MaxDisk=2000MB ------------------------------------------------------------------ # guess=read Geom=allCheck freq=(readfc,readisotopes) rb3lyp/3-21g ------------------------------------------------------------------ 1/29=7,38=1/1; 2/40=1/2; 7/8=2,25=11/16; 99/5=2/99; ---- freq ---- Z-Matrix taken from the checkpoint file: hf_fts_ts_ts.chk Charge = 0 Multiplicity = 1 H F,1,R Variables: R=0.9161 Recover connectivity data from disk. ------------------------------------------------------------------------ Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J ------------------------------------------------------------------------ 1 1 H 2 2 F 1 0.916100( 1) ------------------------------------------------------------------------ Z-Matrix orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 0.916100 --------------------------------------------------------------------- Stoichiometry FH Framework group C*V[C*(HF)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 -0.824490 2 9 0 0.000000 0.000000 0.091610 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 629.2083292 629.2083292 Isotopes: H-1,F-19 Electric field and nuclear coordinate derivatives read from checkpoint file. Rotating electric field derivatives to standard orientation. Rotating nuclear coordinate derivatives to standard orientation. Atom 1 has atomic number 1 and mass 1.00783 Atom 2 has atomic number 9 and mass 18.99840 Full mass-weighted force constant matrix: Low frequencies --- -955.2359 -955.2359 -0.0018 -0.0015 -0.0015 4326.6796 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering activities (A**4/AMU), Raman depolarization ratios, reduced masses (AMU), force constants (mDyne/A) and normal coordinates: 1 SG Frequencies -- 4326.6796 Red. masses -- 1.0583 Frc consts -- 11.6727 IR Inten -- 0.0000 Raman Activ -- 0.0000 Depolar -- 0.0000 Atom AN X Y Z 1 1 0.00 0.00 1.00 2 9 0.00 0.00 -0.05 ------------------- - Thermochemistry - ------------------- Temperature 400.000 Kelvin. Pressure 1.00000 Atm. Atom 1 has atomic number 1 and mass 1.00783 Atom 2 has atomic number 9 and mass 18.99840 Molecular mass: 20.00623 amu. Principal axes and moments of inertia in atomic units: 1 2 3 EIGENVALUES -- 0.00000 2.86827 2.86827 X 0.00000 0.00000 1.00000 Y 0.00000 1.00000 0.00000 Z 1.00000 0.00000 0.00000 THIS MOLECULE IS A PROLATE SYMMETRIC TOP. ROTATIONAL SYMMETRY NUMBER 1. ROTATIONAL TEMPERATURE (KELVIN) 30.19706 ROTATIONAL CONSTANT (GHZ) 629.208329 Zero-point vibrational energy 25879.3 (Joules/Mol) 6.18530 (Kcal/Mol) VIBRATIONAL TEMPERATURES: 6225.09 (KELVIN) Zero-point correction= 0.009857 (Hartree/Particle) Thermal correction to Energy= 0.013024 Thermal correction to Enthalpy= 0.014290 Thermal correction to Gibbs Free Energy= -0.013440 Sum of electronic and zero-point Energies= -99.864425 Sum of electronic and thermal Energies= -99.861258 Sum of electronic and thermal Enthalpies= -99.859992 Sum of electronic and thermal Free Energies= -99.887722 E (Thermal) CV S KCAL/MOL CAL/MOL-KELVIN CAL/MOL-KELVIN TOTAL 8.173 4.968 43.503 ELECTRONIC 0.000 0.000 0.000 TRANSLATIONAL 1.192 2.981 36.382 ROTATIONAL 0.795 1.987 7.122 VIBRATIONAL 6.185 0.000 0.000 Q LOG10(Q) LN(Q) TOTAL BOT 0.405474D+05 4.607963 10.610227 TOTAL V=0 0.971329D+08 7.987367 18.391591 VIB (BOT) 0.417443D-03 -3.379403 -7.781364 VIB (V=0) 0.100000D+01 0.000000 0.000000 ELECTRONIC 0.100000D+01 0.000000 0.000000 TRANSLATIONAL 0.733282D+07 6.865271 15.807871 ROTATIONAL 0.132463D+02 1.122095 2.583720 ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 1 0.000000000 0.000000000 0.000000000 2 9 0.000000000 0.000000000 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000000000 RMS 0.000000000 ------------------------------------------------------------------------ Internal Coordinate Forces (Hartree/Bohr or radian) Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J ------------------------------------------------------------------------ 1 H 2 F 1 0.000000( 1) ------------------------------------------------------------------------ Internal Forces: Max 0.000000000 RMS 0.000000000 This type of calculation cannot be archived. WHEN YOU REACH FOR THE STARS, YOU MAY NOT QUITE GET ONE, BUT YOU WON'T COME UP WITH A HANDFUL OF MUD, EITHER. -- LEO BURNETT (AD AGENCY HEAD) Job cpu time: 0 days 0 hours 0 minutes 2.0 seconds. File lengths (MBytes): RWF= 10 Int= 0 D2E= 0 Chk= 5 Scr= 1 Normal termination of Gaussian 98. Entering Link 1 = C:\G98W\l1.exe PID= 6744. Copyright (c) 1988,1990,1992,1993,1995,1998 Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 98 program. It is based on the Gaussian 94(TM) system (copyright 1995 Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992 Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990 Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988 Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986 Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983 Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under DFARS: RESTRICTED RIGHTS LEGEND Use, duplication or disclosure by the US Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013. Gaussian, Inc. Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraph (c) of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19. Gaussian, Inc. Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 98, Revision A.9, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 1998. ********************************************* Gaussian 98: x86-Win32-G98RevA.9 19-Apr-2000 26-Oct-2008 ********************************************* %chk=hf_fts_ts_ts Default route: MaxDisk=2000MB ---------------------------------------------------------------------- #rb3lyp/3-21g SCF=Tight guess=read Geom=allCheck SCRF=(IPCM,Solvent=to luene) ---------------------------------------------------------------------- 1/8=3,29=7,30=1,38=1/1,17; 2/40=1/2; 3/5=5,11=2,25=1,30=1,43=-2/1,2,3; 4/5=1,7=1,9=2/1; 5/5=2,17=20,32=2,40=100,42=-5,53=14/2; 6/7=2,8=2,9=2,10=2,28=1/1; 1/8=3/17(1); 99/5=1,9=1/99; 3/5=5,11=2,25=1,30=1,43=-2/1,2,3; 4/5=5,7=1,9=2,16=2/1; 5/5=2,17=20,32=2,38=4,40=100,42=-5,53=14/2; 6/7=2,8=2,9=2,10=2,28=1/1; 1/8=3/17(-4); 99/5=1,9=1/99; ---- freq ---- Z-Matrix taken from the checkpoint file: hf_fts_ts_ts.chk Charge = 0 Multiplicity = 1 H F,1,R Variables: R=0.9161 Recover connectivity data from disk. --------------------------------------------------- Reaction Field using a Density IsoSurface Boundary --------------------------------------------------- First iteration - Do gas phase ------------------------------------------------------------------------ Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N1 Length/X N2 Alpha/Y N3 Beta/Z J ------------------------------------------------------------------------ 1 1 H 2 2 F 1 0.916100( 1) ------------------------------------------------------------------------ Z-Matrix orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.000000 2 9 0 0.000000 0.000000 0.916100 --------------------------------------------------------------------- Stoichiometry FH Framework group C*V[C*(HF)] Deg. of freedom 1 Full point group C*V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 -0.824490 2 9 0 0.000000 0.000000 0.091610 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 629.2083292 629.2083292 Isotopes: H-1,F-19 Standard basis: 3-21G (6D, 7F) There are 7 symmetry adapted basis functions of A1 symmetry. There are 0 symmetry adapted basis functions of A2 symmetry. There are 2 symmetry adapted basis functions of B1 symmetry. There are 2 symmetry adapted basis functions of B2 symmetry. Crude estimate of integral set expansion from redundant integrals=1.000. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Background charge distribution read from rwf: Nuclear-Charge attraction = 0.0000000000 11 basis functions 18 primitive gaussians 5 alpha electrons 5 beta electrons nuclear repulsion energy 5.1987722312 Hartrees. Nuclear repulsion after solvent point charges= 5.1987722312 Hartrees. One-electron integrals computed using PRISM. NBasis= 11 RedAO= T NBF= 7 0 2 2 NBsUse= 11 1.00D-04 NBFU= 7 0 2 2 SCF N**3 symmetry information disabled. Initial guess read from the checkpoint file: hf_fts_ts_ts.chk Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) Requested convergence on RMS density matrix=1.00D-08 within 64 cycles. Requested convergence on MAX density matrix=1.00D-06. Keep R1 and R2 integrals in memory in canonical form, NReq= 410382. SCF Done: E(RB+HF-LYP) = -99.8603303309 A.U. after 7 cycles Convg = 0.3970D-09 -V/T = 2.0052 S**2 = 0.0000 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital Symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -24.48826 -1.14684 -0.47992 -0.33437 -0.33437 Alpha virt. eigenvalues -- 0.10393 0.94952 1.84906 1.84906 2.01591 Alpha virt. eigenvalues -- 3.28602 Condensed to atoms (all electrons): 1 2 1 H 0.390128 0.202850 2 F 0.202850 9.204172 Total atomic charges: 1 1 H 0.407022 2 F -0.407022 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 H 0.000000 2 F 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 12.8720 Charge= 0.0000 electrons Dipole moment (Debye): X= 0.0000 Y= 0.0000 Z= -1.9688 Tot= 1.9688 Quadrupole moment (Debye-Ang): XX= -5.1297 YY= -5.1297 ZZ= -3.4260 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -1.4149 XYY= 0.0000 XXY= 0.0000 XXZ= -0.1107 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.1107 XYZ= 0.0000 Hexadecapole moment (Debye-Ang**3): XXXX= -2.4150 YYYY= -2.4150 ZZZZ= -2.8352 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.8050 XXZZ= -1.0693 YYZZ= -1.0693 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 5.198772231197D+00 E-N=-2.496053658234D+02 KE= 9.934692644377D+01 -------------------------------------------------- Reaction Field using a Density IsoSurface Boundary -------------------------------------------------- Epsi= 78.3000 Cont = 0.0010 Will Allow IsoSurface To Relax Throughout Convergence set to 1.00D-06 10 Phi and 5 Theta Values Per Atom NABMO STP ISTEP RAD NUMR CUTOFF DStMX0 MoBas? 4 5.00E-02 5 1.0E-01 20 1.0E-10 1.0E+01 F Using single center to handle rho isosurface. Intersections with the isosurface found. Max. Dist. Between Center of Nuclear Charge and Isosurface = 3.416383E+00 Min. Dist. Between Center of Nuclear Charge and Isosurface = 2.823988E+00 Total "Solvent Accessible Surface Area" of Solute = 1.096664E+02 Volume of Solute Cavity = 1.070442E+02 Total number of points on surface is 50 Tomasi Approximation I (1/(4*pi)) Times Flux of Nuclear E Field Thru Surface = 9.996458 Actual Positive Charge Within Cavity = 10.000000 (1/(4*pi)) Times Flux of Solute E Field Thru Surface = 0.032586 Tomasi Approximation II Iteration number 1 Iteration number 2 MaxDiff 0.275677647282E-02 Iteration number 3 MaxDiff 0.725535189903E-03 Iteration number 4 MaxDiff 0.199345939083E-03 Iteration number 5 MaxDiff 0.750460830754E-04 Iteration number 6 MaxDiff 0.289654848864E-04 Iteration number 7 MaxDiff 0.113976517548E-04 Iteration number 8 MaxDiff 0.454984819764E-05 Iteration number 9 MaxDiff 0.183530983404E-05 Self polarization converged in 9 iterations. Largest difference in charges from previous cycle is 0.145960072992E-01 Tomasi Approximation III Net Surface Polarization Charge Divided by -(1-1/epsi) = 0.000000 Standard basis: 3-21G (6D, 7F) There are 7 symmetry adapted basis functions of A1 symmetry. There are 0 symmetry adapted basis functions of A2 symmetry. There are 2 symmetry adapted basis functions of B1 symmetry. There are 2 symmetry adapted basis functions of B2 symmetry. Crude estimate of integral set expansion from redundant integrals=1.000. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Background charge distribution read from rwf: Nuclear-Charge attraction = 0.0699159678 11 basis functions 18 primitive gaussians 5 alpha electrons 5 beta electrons nuclear repulsion energy 5.1987722312 Hartrees. Nuclear repulsion after solvent point charges= 5.2337302151 Hartrees. One-electron integrals computed using PRISM. NBasis= 11 RedAO= T NBF= 7 0 2 2 NBsUse= 11 1.00D-04 NBFU= 7 0 2 2 SCF N**3 symmetry information disabled. Initial guess read from the read-write file: Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) Requested convergence on RMS density matrix=1.00D-08 within 64 cycles. Requested convergence on MAX density matrix=1.00D-06. Keep R1 and R2 integrals in memory in canonical form, NReq= 410382. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB+HF-LYP) = -99.8719035068 A.U. after 9 cycles Convg = 0.3742D-08 -V/T = 2.0053 S**2 = 0.0000 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital Symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -24.48459 -1.14265 -0.47848 -0.33669 -0.33669 Alpha virt. eigenvalues -- 0.13728 0.97396 1.84533 1.84533 2.00687 Alpha virt. eigenvalues -- 3.29057 Condensed to atoms (all electrons): 1 2 1 H 0.331461 0.213564 2 F 0.213564 9.241410 Total atomic charges: 1 1 H 0.454974 2 F -0.454974 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 H 0.000000 2 F 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 12.7347 Charge= 0.0000 electrons Dipole moment (Debye): X= 0.0000 Y= 0.0000 Z= -2.2175 Tot= 2.2175 Quadrupole moment (Debye-Ang): XX= -5.1183 YY= -5.1183 ZZ= -3.2642 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -1.7459 XYY= 0.0000 XXY= 0.0000 XXZ= -0.1641 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.1641 XYZ= 0.0000 Hexadecapole moment (Debye-Ang**3): XXXX= -2.3918 YYYY= -2.3918 ZZZZ= -2.4766 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.7973 XXZZ= -1.0267 YYZZ= -1.0267 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 5.233730215120D+00 E-N=-2.497006058525D+02 KE= 9.934396251397D+01 10 Phi and 5 Theta Values Per Atom NABMO STP ISTEP RAD NUMR CUTOFF DStMX0 MoBas? 4 5.00E-02 5 1.0E-01 20 1.0E-10 1.0E+01 F Using single center to handle rho isosurface. Intersections with the isosurface found. Max. Dist. Between Center of Nuclear Charge and Isosurface = 3.337238E+00 Min. Dist. Between Center of Nuclear Charge and Isosurface = 2.823810E+00 Total "Solvent Accessible Surface Area" of Solute = 1.083502E+02 Volume of Solute Cavity = 1.052086E+02 Total number of points on surface is 50 Tomasi Approximation I (1/(4*pi)) Times Flux of Nuclear E Field Thru Surface = 9.996864 Actual Positive Charge Within Cavity = 10.000000 (1/(4*pi)) Times Flux of Solute E Field Thru Surface = 0.030342 Tomasi Approximation II Iteration number 1 Iteration number 2 MaxDiff 0.322014572203E-02 Iteration number 3 MaxDiff 0.864963922018E-03 Iteration number 4 MaxDiff 0.226734327726E-03 Iteration number 5 MaxDiff 0.778594022180E-04 Iteration number 6 MaxDiff 0.301794873417E-04 Iteration number 7 MaxDiff 0.119215338659E-04 Iteration number 8 MaxDiff 0.477660165555E-05 Iteration number 9 MaxDiff 0.193379441074E-05 Self polarization converged in 9 iterations. Largest difference in charges from previous cycle is 0.213165599496E-02 Tomasi Approximation III Net Surface Polarization Charge Divided by -(1-1/epsi) = 0.000000 Standard basis: 3-21G (6D, 7F) There are 7 symmetry adapted basis functions of A1 symmetry. There are 0 symmetry adapted basis functions of A2 symmetry. There are 2 symmetry adapted basis functions of B1 symmetry. There are 2 symmetry adapted basis functions of B2 symmetry. Crude estimate of integral set expansion from redundant integrals=1.000. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Background charge distribution read from rwf: Nuclear-Charge attraction = 0.0654671061 11 basis functions 18 primitive gaussians 5 alpha electrons 5 beta electrons nuclear repulsion energy 5.1987722312 Hartrees. Nuclear repulsion after solvent point charges= 5.2315057842 Hartrees. One-electron integrals computed using PRISM. NBasis= 11 RedAO= T NBF= 7 0 2 2 NBsUse= 11 1.00D-04 NBFU= 7 0 2 2 SCF N**3 symmetry information disabled. Initial guess read from the read-write file: Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) Requested convergence on RMS density matrix=1.00D-08 within 64 cycles. Requested convergence on MAX density matrix=1.00D-06. Keep R1 and R2 integrals in memory in canonical form, NReq= 410382. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB+HF-LYP) = -99.8739012611 A.U. after 8 cycles Convg = 0.3321D-08 -V/T = 2.0053 S**2 = 0.0000 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital Symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -24.48258 -1.14060 -0.47678 -0.33562 -0.33562 Alpha virt. eigenvalues -- 0.14363 0.97908 1.84618 1.84618 2.00684 Alpha virt. eigenvalues -- 3.29269 Condensed to atoms (all electrons): 1 2 1 H 0.322668 0.214708 2 F 0.214708 9.247917 Total atomic charges: 1 1 H 0.462624 2 F -0.462624 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 H 0.000000 2 F 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 12.7150 Charge= 0.0000 electrons Dipole moment (Debye): X= 0.0000 Y= 0.0000 Z= -2.2557 Tot= 2.2557 Quadrupole moment (Debye-Ang): XX= -5.1171 YY= -5.1171 ZZ= -3.2401 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -1.7950 XYY= 0.0000 XXY= 0.0000 XXZ= -0.1718 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.1718 XYZ= 0.0000 Hexadecapole moment (Debye-Ang**3): XXXX= -2.3891 YYYY= -2.3891 ZZZZ= -2.4253 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.7964 XXZZ= -1.0209 YYZZ= -1.0209 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 5.231505784223D+00 E-N=-2.497148926155D+02 KE= 9.934353406069D+01 10 Phi and 5 Theta Values Per Atom NABMO STP ISTEP RAD NUMR CUTOFF DStMX0 MoBas? 4 5.00E-02 5 1.0E-01 20 1.0E-10 1.0E+01 F Using single center to handle rho isosurface. Intersections with the isosurface found. Max. Dist. Between Center of Nuclear Charge and Isosurface = 3.325800E+00 Min. Dist. Between Center of Nuclear Charge and Isosurface = 2.823829E+00 Total "Solvent Accessible Surface Area" of Solute = 1.081724E+02 Volume of Solute Cavity = 1.049608E+02 Total number of points on surface is 50 Tomasi Approximation I (1/(4*pi)) Times Flux of Nuclear E Field Thru Surface = 9.996965 Actual Positive Charge Within Cavity = 10.000000 (1/(4*pi)) Times Flux of Solute E Field Thru Surface = 0.030047 Tomasi Approximation II Iteration number 1 Iteration number 2 MaxDiff 0.329427934581E-02 Iteration number 3 MaxDiff 0.887830453342E-03 Iteration number 4 MaxDiff 0.233756092157E-03 Iteration number 5 MaxDiff 0.780845673784E-04 Iteration number 6 MaxDiff 0.302767114611E-04 Iteration number 7 MaxDiff 0.119642910906E-04 Iteration number 8 MaxDiff 0.479569390415E-05 Iteration number 9 MaxDiff 0.194240472960E-05 Self polarization converged in 9 iterations. Largest difference in charges from previous cycle is 0.337771508300E-03 Tomasi Approximation III Net Surface Polarization Charge Divided by -(1-1/epsi) = 0.000000 Standard basis: 3-21G (6D, 7F) There are 7 symmetry adapted basis functions of A1 symmetry. There are 0 symmetry adapted basis functions of A2 symmetry. There are 2 symmetry adapted basis functions of B1 symmetry. There are 2 symmetry adapted basis functions of B2 symmetry. Crude estimate of integral set expansion from redundant integrals=1.000. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Background charge distribution read from rwf: Nuclear-Charge attraction = 0.0645975592 11 basis functions 18 primitive gaussians 5 alpha electrons 5 beta electrons nuclear repulsion energy 5.1987722312 Hartrees. Nuclear repulsion after solvent point charges= 5.2310710108 Hartrees. One-electron integrals computed using PRISM. NBasis= 11 RedAO= T NBF= 7 0 2 2 NBsUse= 11 1.00D-04 NBFU= 7 0 2 2 SCF N**3 symmetry information disabled. Initial guess read from the read-write file: Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) Requested convergence on RMS density matrix=1.00D-08 within 64 cycles. Requested convergence on MAX density matrix=1.00D-06. Keep R1 and R2 integrals in memory in canonical form, NReq= 410382. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB+HF-LYP) = -99.8742221148 A.U. after 7 cycles Convg = 0.3782D-08 -V/T = 2.0053 S**2 = 0.0000 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital Symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -24.48225 -1.14027 -0.47649 -0.33544 -0.33544 Alpha virt. eigenvalues -- 0.14464 0.97991 1.84633 1.84633 2.00685 Alpha virt. eigenvalues -- 3.29303 Condensed to atoms (all electrons): 1 2 1 H 0.321292 0.214874 2 F 0.214874 9.248960 Total atomic charges: 1 1 H 0.463834 2 F -0.463834 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 H 0.000000 2 F 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 12.7120 Charge= 0.0000 electrons Dipole moment (Debye): X= 0.0000 Y= 0.0000 Z= -2.2616 Tot= 2.2616 Quadrupole moment (Debye-Ang): XX= -5.1170 YY= -5.1170 ZZ= -3.2363 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -1.8027 XYY= 0.0000 XXY= 0.0000 XXZ= -0.1730 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.1730 XYZ= 0.0000 Hexadecapole moment (Debye-Ang**3): XXXX= -2.3887 YYYY= -2.3887 ZZZZ= -2.4174 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.7962 XXZZ= -1.0200 YYZZ= -1.0200 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 5.231071010812D+00 E-N=-2.497171307827D+02 KE= 9.934346882179D+01 10 Phi and 5 Theta Values Per Atom NABMO STP ISTEP RAD NUMR CUTOFF DStMX0 MoBas? 4 5.00E-02 5 1.0E-01 20 1.0E-10 1.0E+01 F Using single center to handle rho isosurface. Intersections with the isosurface found. Max. Dist. Between Center of Nuclear Charge and Isosurface = 3.324018E+00 Min. Dist. Between Center of Nuclear Charge and Isosurface = 2.823835E+00 Total "Solvent Accessible Surface Area" of Solute = 1.081451E+02 Volume of Solute Cavity = 1.049227E+02 Total number of points on surface is 50 Tomasi Approximation I (1/(4*pi)) Times Flux of Nuclear E Field Thru Surface = 9.996982 Actual Positive Charge Within Cavity = 10.000000 (1/(4*pi)) Times Flux of Solute E Field Thru Surface = 0.030002 Tomasi Approximation II Iteration number 1 Iteration number 2 MaxDiff 0.330600539078E-02 Iteration number 3 MaxDiff 0.891462005766E-03 Iteration number 4 MaxDiff 0.234875877114E-03 Iteration number 5 MaxDiff 0.781144643416E-04 Iteration number 6 MaxDiff 0.302896139882E-04 Iteration number 7 MaxDiff 0.119700020271E-04 Iteration number 8 MaxDiff 0.479827160205E-05 Iteration number 9 MaxDiff 0.194358201332E-05 Self polarization converged in 9 iterations. Largest difference in charges from previous cycle is 0.533359068339E-04 Tomasi Approximation III Net Surface Polarization Charge Divided by -(1-1/epsi) = 0.000000 Standard basis: 3-21G (6D, 7F) There are 7 symmetry adapted basis functions of A1 symmetry. There are 0 symmetry adapted basis functions of A2 symmetry. There are 2 symmetry adapted basis functions of B1 symmetry. There are 2 symmetry adapted basis functions of B2 symmetry. Crude estimate of integral set expansion from redundant integrals=1.000. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Background charge distribution read from rwf: Nuclear-Charge attraction = 0.0644563775 11 basis functions 18 primitive gaussians 5 alpha electrons 5 beta electrons nuclear repulsion energy 5.1987722312 Hartrees. Nuclear repulsion after solvent point charges= 5.2310004200 Hartrees. One-electron integrals computed using PRISM. NBasis= 11 RedAO= T NBF= 7 0 2 2 NBsUse= 11 1.00D-04 NBFU= 7 0 2 2 SCF N**3 symmetry information disabled. Initial guess read from the read-write file: Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) Requested convergence on RMS density matrix=1.00D-08 within 64 cycles. Requested convergence on MAX density matrix=1.00D-06. Keep R1 and R2 integrals in memory in canonical form, NReq= 410382. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB+HF-LYP) = -99.8742728728 A.U. after 6 cycles Convg = 0.4392D-08 -V/T = 2.0053 S**2 = 0.0000 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital Symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -24.48219 -1.14022 -0.47645 -0.33541 -0.33541 Alpha virt. eigenvalues -- 0.14480 0.98004 1.84636 1.84636 2.00685 Alpha virt. eigenvalues -- 3.29309 Condensed to atoms (all electrons): 1 2 1 H 0.321076 0.214900 2 F 0.214900 9.249125 Total atomic charges: 1 1 H 0.464025 2 F -0.464025 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 H 0.000000 2 F 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 12.7115 Charge= 0.0000 electrons Dipole moment (Debye): X= 0.0000 Y= 0.0000 Z= -2.2626 Tot= 2.2626 Quadrupole moment (Debye-Ang): XX= -5.1170 YY= -5.1170 ZZ= -3.2357 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -1.8039 XYY= 0.0000 XXY= 0.0000 XXZ= -0.1731 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.1731 XYZ= 0.0000 Hexadecapole moment (Debye-Ang**3): XXXX= -2.3886 YYYY= -2.3886 ZZZZ= -2.4161 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.7962 XXZZ= -1.0198 YYZZ= -1.0198 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 5.231000419972D+00 E-N=-2.497174834228D+02 KE= 9.934345857498D+01 10 Phi and 5 Theta Values Per Atom NABMO STP ISTEP RAD NUMR CUTOFF DStMX0 MoBas? 4 5.00E-02 5 1.0E-01 20 1.0E-10 1.0E+01 F Using single center to handle rho isosurface. Intersections with the isosurface found. Max. Dist. Between Center of Nuclear Charge and Isosurface = 3.323738E+00 Min. Dist. Between Center of Nuclear Charge and Isosurface = 2.823835E+00 Total "Solvent Accessible Surface Area" of Solute = 1.081407E+02 Volume of Solute Cavity = 1.049166E+02 Total number of points on surface is 50 Tomasi Approximation I (1/(4*pi)) Times Flux of Nuclear E Field Thru Surface = 9.996984 Actual Positive Charge Within Cavity = 10.000000 (1/(4*pi)) Times Flux of Solute E Field Thru Surface = 0.029994 Tomasi Approximation II Iteration number 1 Iteration number 2 MaxDiff 0.330785169566E-02 Iteration number 3 MaxDiff 0.892033013694E-03 Iteration number 4 MaxDiff 0.235051694077E-03 Iteration number 5 MaxDiff 0.781196016044E-04 Iteration number 6 MaxDiff 0.302918417662E-04 Iteration number 7 MaxDiff 0.119709876323E-04 Iteration number 8 MaxDiff 0.479871469228E-05 Iteration number 9 MaxDiff 0.194378320212E-05 Self polarization converged in 9 iterations. Largest difference in charges from previous cycle is 0.840557252918E-05 Tomasi Approximation III Net Surface Polarization Charge Divided by -(1-1/epsi) = 0.000000 Standard basis: 3-21G (6D, 7F) There are 7 symmetry adapted basis functions of A1 symmetry. There are 0 symmetry adapted basis functions of A2 symmetry. There are 2 symmetry adapted basis functions of B1 symmetry. There are 2 symmetry adapted basis functions of B2 symmetry. Crude estimate of integral set expansion from redundant integrals=1.000. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Background charge distribution read from rwf: Nuclear-Charge attraction = 0.0644341336 11 basis functions 18 primitive gaussians 5 alpha electrons 5 beta electrons nuclear repulsion energy 5.1987722312 Hartrees. Nuclear repulsion after solvent point charges= 5.2309892980 Hartrees. One-electron integrals computed using PRISM. NBasis= 11 RedAO= T NBF= 7 0 2 2 NBsUse= 11 1.00D-04 NBFU= 7 0 2 2 SCF N**3 symmetry information disabled. Initial guess read from the read-write file: Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) Requested convergence on RMS density matrix=1.00D-08 within 64 cycles. Requested convergence on MAX density matrix=1.00D-06. Keep R1 and R2 integrals in memory in canonical form, NReq= 410382. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB+HF-LYP) = -99.8742808845 A.U. after 5 cycles Convg = 0.7063D-09 -V/T = 2.0053 S**2 = 0.0000 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital Symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -24.48219 -1.14021 -0.47644 -0.33540 -0.33540 Alpha virt. eigenvalues -- 0.14482 0.98006 1.84636 1.84636 2.00685 Alpha virt. eigenvalues -- 3.29310 Condensed to atoms (all electrons): 1 2 1 H 0.321041 0.214904 2 F 0.214904 9.249151 Total atomic charges: 1 1 H 0.464055 2 F -0.464055 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 H 0.000000 2 F 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 12.7114 Charge= 0.0000 electrons Dipole moment (Debye): X= 0.0000 Y= 0.0000 Z= -2.2627 Tot= 2.2627 Quadrupole moment (Debye-Ang): XX= -5.1170 YY= -5.1170 ZZ= -3.2356 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -1.8041 XYY= 0.0000 XXY= 0.0000 XXZ= -0.1732 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.1732 XYZ= 0.0000 Hexadecapole moment (Debye-Ang**3): XXXX= -2.3886 YYYY= -2.3886 ZZZZ= -2.4159 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.7962 XXZZ= -1.0198 YYZZ= -1.0198 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 5.230989297989D+00 E-N=-2.497175390404D+02 KE= 9.934345696253D+01 10 Phi and 5 Theta Values Per Atom NABMO STP ISTEP RAD NUMR CUTOFF DStMX0 MoBas? 4 5.00E-02 5 1.0E-01 20 1.0E-10 1.0E+01 F Using single center to handle rho isosurface. Intersections with the isosurface found. Max. Dist. Between Center of Nuclear Charge and Isosurface = 3.323694E+00 Min. Dist. Between Center of Nuclear Charge and Isosurface = 2.823835E+00 Total "Solvent Accessible Surface Area" of Solute = 1.081400E+02 Volume of Solute Cavity = 1.049157E+02 Total number of points on surface is 50 Tomasi Approximation I (1/(4*pi)) Times Flux of Nuclear E Field Thru Surface = 9.996985 Actual Positive Charge Within Cavity = 10.000000 (1/(4*pi)) Times Flux of Solute E Field Thru Surface = 0.029993 Tomasi Approximation II Iteration number 1 Iteration number 2 MaxDiff 0.330814174613E-02 Iteration number 3 MaxDiff 0.892122593297E-03 Iteration number 4 MaxDiff 0.235079238077E-03 Iteration number 5 MaxDiff 0.781205177216E-04 Iteration number 6 MaxDiff 0.302922446056E-04 Iteration number 7 MaxDiff 0.119711675758E-04 Iteration number 8 MaxDiff 0.479879606408E-05 Iteration number 9 MaxDiff 0.194382026560E-05 Self polarization converged in 9 iterations. Largest difference in charges from previous cycle is 0.132108486430E-05 Tomasi Approximation III Net Surface Polarization Charge Divided by -(1-1/epsi) = 0.000000 Standard basis: 3-21G (6D, 7F) There are 7 symmetry adapted basis functions of A1 symmetry. There are 0 symmetry adapted basis functions of A2 symmetry. There are 2 symmetry adapted basis functions of B1 symmetry. There are 2 symmetry adapted basis functions of B2 symmetry. Crude estimate of integral set expansion from redundant integrals=1.000. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. Background charge distribution read from rwf: Nuclear-Charge attraction = 0.0644305450 11 basis functions 18 primitive gaussians 5 alpha electrons 5 beta electrons nuclear repulsion energy 5.1987722312 Hartrees. Nuclear repulsion after solvent point charges= 5.2309875037 Hartrees. One-electron integrals computed using PRISM. NBasis= 11 RedAO= T NBF= 7 0 2 2 NBsUse= 11 1.00D-04 NBFU= 7 0 2 2 SCF N**3 symmetry information disabled. Initial guess read from the read-write file: Initial guess orbital symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) Requested convergence on RMS density matrix=1.00D-08 within 64 cycles. Requested convergence on MAX density matrix=1.00D-06. Keep R1 and R2 integrals in memory in canonical form, NReq= 410382. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB+HF-LYP) = -99.8742821434 A.U. after 5 cycles Convg = 0.3346D-08 -V/T = 2.0053 S**2 = 0.0000 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital Symmetries: Occupied (SG) (SG) (SG) (PI) (PI) Virtual (SG) (SG) (PI) (PI) (SG) (SG) The electronic state is 1-SG. Alpha occ. eigenvalues -- -24.48219 -1.14021 -0.47644 -0.33540 -0.33540 Alpha virt. eigenvalues -- 0.14483 0.98006 1.84636 1.84636 2.00685 Alpha virt. eigenvalues -- 3.29310 Condensed to atoms (all electrons): 1 2 1 H 0.321036 0.214905 2 F 0.214905 9.249155 Total atomic charges: 1 1 H 0.464059 2 F -0.464059 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 H 0.000000 2 F 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 12.7114 Charge= 0.0000 electrons Dipole moment (Debye): X= 0.0000 Y= 0.0000 Z= -2.2628 Tot= 2.2628 Quadrupole moment (Debye-Ang): XX= -5.1170 YY= -5.1170 ZZ= -3.2356 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= -1.8042 XYY= 0.0000 XXY= 0.0000 XXZ= -0.1732 XZZ= 0.0000 YZZ= 0.0000 YYZ= -0.1732 XYZ= 0.0000 Hexadecapole moment (Debye-Ang**3): XXXX= -2.3886 YYYY= -2.3886 ZZZZ= -2.4159 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -0.7962 XXZZ= -1.0198 YYZZ= -1.0198 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 5.230987503677D+00 E-N=-2.497175478024D+02 KE= 9.934345672267D+01 10 Phi and 5 Theta Values Per Atom NABMO STP ISTEP RAD NUMR CUTOFF DStMX0 MoBas? 4 5.00E-02 5 1.0E-01 20 1.0E-10 1.0E+01 F Using single center to handle rho isosurface. Intersections with the isosurface found. Max. Dist. Between Center of Nuclear Charge and Isosurface = 3.323686E+00 Min. Dist. Between Center of Nuclear Charge and Isosurface = 2.823835E+00 Total "Solvent Accessible Surface Area" of Solute = 1.081399E+02 Volume of Solute Cavity = 1.049156E+02 Total number of points on surface is 50 Tomasi Approximation I (1/(4*pi)) Times Flux of Nuclear E Field Thru Surface = 9.996985 Actual Positive Charge Within Cavity = 10.000000 (1/(4*pi)) Times Flux of Solute E Field Thru Surface = 0.029993 Tomasi Approximation II Iteration number 1 Iteration number 2 MaxDiff 0.330819214190E-02 Iteration number 3 MaxDiff 0.892139125662E-03 Iteration number 4 MaxDiff 0.235084640125E-03 Iteration number 5 MaxDiff 0.781201281739E-04 Iteration number 6 MaxDiff 0.302920674486E-04 Iteration number 7 MaxDiff 0.119710903475E-04 Iteration number 8 MaxDiff 0.479876327650E-05 Iteration number 9 MaxDiff 0.194380658044E-05 Self polarization converged in 9 iterations. Largest difference in charges from previous cycle is 0.222628571137E-06 Tomasi Approximation III Net Surface Polarization Charge Divided by -(1-1/epsi) = 0.000000 Convergence Achieved. 1|1|UNPC-UNK|SP|RB3LYP|3-21G|F1H1|PCUSER|26-Oct-2008|0||#RB3LYP/3-21G SCF=TIGHT GUESS=READ GEOM=ALLCHECK SCRF=(IPCM,SOLVENT=TOLUENE)||freq|| 0,1|H|F,1,0.9161||Version=x86-Win32-G98RevA.9|State=1-SG|HF=-99.874282 1|RMSD=3.346e-009|Dipole=0.,0.,-0.8902332|PG=C*V [C*(H1F1)]|||a| WHEN YOU REACH FOR THE STARS, YOU MAY NOT QUITE GET ONE, BUT YOU WON'T COME UP WITH A HANDFUL OF MUD, EITHER. -- LEO BURNETT (AD AGENCY HEAD) Job cpu time: 0 days 0 hours 0 minutes 16.0 seconds. File lengths (MBytes): RWF= 10 Int= 0 D2E= 0 Chk= 5 Scr= 1 Normal termination of Gaussian 98. From owner-chemistry@ccl.net Fri Nov 7 20:23:00 2008 From: "David Hose Anthrax_brothers*hotmail.com" To: CCL Subject: CCL:G: difference in G89 and G03 Message-Id: <-38063-081107200951-3876-njH0pmGbMe1Dg9Fnm0v9ww],[server.ccl.net> X-Original-From: "David Hose" Date: Fri, 7 Nov 2008 20:09:47 -0500 Sent to CCL by: "David Hose" [Anthrax_brothers::hotmail.com] Alex, The G03 manual is wrong, at least regarding the --Link1-- example quoted. The temperature and pressure you want to obtain the thermochemical data for, is now part of the route selection/command line. e.g. # guess=read Geom=allCheck freq=(readfc,readisotopes) rb3lyp/3-21g TEMPERATURE=373 PRESSURE=1.5 btw, to change the PCM temperature you need to use the option TABS=temperature. See http://www.gaussian.com/g_ur/k_scrf.htm Regards, Dave. ________ Sent to CCL by: "Alex Rudn" [rudikk99[#]yahoo.com] Dear CCLers, I want to calculate a molecule with different temperatures and in solvent. I used to do it on old G98 and it worked. Now I submitted the very same file to G03 and got error massage. Have somebody seen 2this before? How to fix it? Input file that works in G83 and does not work on G03: _________________________________ chk=hf_fts_ts_ts.chk %mem=6MW %nproc=1 # freq=noraman rb3lyp/3-21g freq 0 1 H F 1 R R=0.9161 --Link1-- %chk=hf_fts_ts_ts # guess=read Geom=allCheck freq=(readfc,readisotopes) rb3lyp/3-21g 300.0 1.0