From owner-chemistry@ccl.net Sun Jan 9 04:40:00 2011 From: "Serdar Bado?lu sbadoglu/a\gazi.edu.tr" To: CCL Subject: CCL: to orca users! Message-Id: <-43571-110109043039-24530-Xi4btNh2lhk5j8zpYTGeHQ++server.ccl.net> X-Original-From: "Serdar Bado?lu" Content-Type: text/plain; charset="iso-8859-9" Date: Sun, 9 Jan 2011 09:29:17 -0000 Sent to CCL by: "Serdar Bado?lu" [sbadoglu[a]gazi.edu.tr] Instead of coding dat files, you can use Gabedit program to create your input files. It's a graphical user interface, and it's free. Visit http://gabedit.sourceforge.net/ -- Serdar BADOGLU Gazi University Department of Physics From owner-chemistry@ccl.net Sun Jan 9 07:43:00 2011 From: "Andrew Voronkov drugdesign:yandex.ru" To: CCL Subject: CCL: diversity libraries creation tools Message-Id: <-43572-110109074059-5087-8P6nObCXv/bTxqoOoS+H7g:server.ccl.net> X-Original-From: Andrew Voronkov Content-Transfer-Encoding: 7bit Content-Type: text/plain Date: Sun, 09 Jan 2011 15:40:44 +0300 MIME-Version: 1.0 Sent to CCL by: Andrew Voronkov [drugdesign- -yandex.ru] Dear CCL users, I am interested in overview of tools which may be used to create chemical diversity libraries something in a way like it described here: http://www.ncbi.nlm.nih.gov/pubmed/19685275 just curious about free software for academics or maybe open source software which can help to create diversity sets from big chemical libraries. For example to create 50 000 -100 000 diversity library from PubChem analysis. Best regards, Andrew From owner-chemistry@ccl.net Sun Jan 9 14:19:00 2011 From: "Jerome Kieffer jerome.Kieffer%esrf.fr" To: CCL Subject: CCL:G: Phonon calculation ... Message-Id: <-43573-110108040432-1829-wQJL9HWpXDVsGfyOXRfi/w^server.ccl.net> X-Original-From: Jerome Kieffer Content-Transfer-Encoding: 7bit Content-Type: text/plain; charset=US-ASCII Date: Sat, 8 Jan 2011 10:04:05 +0100 Mime-Version: 1.0 Sent to CCL by: Jerome Kieffer [jerome.Kieffer*esrf.fr] Hello, I am pretty new to PW-DFT (with Castep) but I have a bit background with Gaussian ( G'03 and others). I wonder if it makes sense to calculate phonons on 50x50x50 k-points with energy k-points are only 5x5x5 ? (regardless to resources consumed) With gaussian basis set it would not make sense to calculate frequencies with triple-Zeta basis whereas energy optimisation is only made with double-Zeta. On the other hand does it make sense to calculate phonons on 5x5x5 k-points and energy optimized on 10x10x10 ? Thanks for your help. -- Jerome Kieffer Online Data Analysis / ISDD / ESRF jerome.Kieffer[a]esrf.fr From owner-chemistry@ccl.net Sun Jan 9 14:54:00 2011 From: "Arindam Ganguly arindamganguly::gmail.com" To: CCL Subject: CCL: QSAR/QSPR for Polymers Message-Id: <-43574-110108205234-20467-NM+zviJIZc73rzhPZw5xfg##server.ccl.net> X-Original-From: Arindam Ganguly Content-Type: multipart/alternative; boundary=001636831950197efc0499601ae1 Date: Sat, 8 Jan 2011 20:52:20 -0500 MIME-Version: 1.0 Sent to CCL by: Arindam Ganguly [arindamganguly(!)gmail.com] --001636831950197efc0499601ae1 Content-Type: text/plain; charset=ISO-8859-1 Dear Dr. Winkler, Thank you very much for the prompt response. Sincerely, Arindam On Sat, Jan 8, 2011 at 7:23 PM, Dave.Winkler|*|csiro.au < owner-chemistry~!~ccl.net> wrote: > > Sent to CCL by: [Dave.Winkler(-)csiro.au] > We have just completed a comprehensive critical review of QSPR in polymers > and materials which is under consideration by Chemical Reviews. Hopefully > this will be accepted and in press soon. > > Prof. Dave Winkler > Senior Principal Research Scientist > Biomaterials & Regenerative Medicine > CSIRO Materials Science and Engineering > Clayton 3168, Australia > ________________________________________ > > From: owner-chemistry+dave.winkler==csiro.au(a)ccl.net[owner-chemistry+dave.winkler==csiro.au(a) > ccl.net] On Behalf Of Arindam Ganguly arindamganguly_-_gmail.com[owner-chemistry(a) > ccl.net] > Sent: Sunday, 9 January 2011 9:46 AM > To: Winkler, Dave (CMSE, Clayton) > Subject: CCL: QSAR/QSPR for Polymers > > Sent to CCL by: "Arindam Ganguly" [arindamganguly*o*gmail.com] > To CCL Members, > Wish you A Very Happy New Year. I am reaching to all of you for information > regarding QSAR/QSPR for Polymers. > > Could you please guide me to any review papers, research groups or textbook > which introduces the concept of QSAR/QSPR for Polymers. > > Thank you all for your time and consideration. > > Sincerely, > Arindamhttp:// > www.ccl.net/cgi-bin/ccl/send_ccl_messagehttp://www.ccl.net/chemistry/sub_unsub.shtmlhttp://www.ccl.net/spammers.txt> > > -- Arindam Ganguly, Ph.D. Postdoctoral Researcher University of Michigan, Ann Arbor Dept. of Chemistry, 930 N. University Avenue, Ann Arbor, MI-48109-1055 Phone:-816-419-1806 Email:- ArindamGanguly~!~gmail.com http://www.linkedin.com/in/arindamganguly --001636831950197efc0499601ae1 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: quoted-printable Dear Dr. Winkler,
Thank you very much for the prompt response.
Sincer= ely,
Arindam

On Sat, Jan 8, 2011 at 7:= 23 PM, Dave.Winkler|*|csiro.au <owner-chemistry~!~ccl.net> wrote:

Sent to CCL by: [Dave.Winkler(-)csiro.au]
We have just completed a comprehensive critical review of QSPR in polymers = and materials which is under consideration by Chemical Reviews. Hopefully t= his will be accepted and in press soon.

Prof. Dave Winkler
Senior Principal Research Scientist
Biomaterials & Regenerative Medicine
CSIRO Materials Science and Engineering
Clayton 3168, Australia
________________________________________
> From: owner-chemistry+dave.winkler=3D=3Dcsiro.au(a)ccl.net [owner-chemistry+dave.winkler=3D=3Dcs= iro.au(a)ccl.net] On Behal= f Of Arindam Ganguly arindamganguly_-_gmail.com [owner-chemistry(a)ccl.net]
Sent: Sunday, 9 January 2011 9:46 AM
To: Winkler, Dave (CMSE, Clayton)
Subject: CCL: QSAR/QSPR for Polymers

Sent to CCL by: "Arindam =A0Ganguly" [arindamganguly*o*gmail.com]
To CCL Members,
Wish you A Very Happy New Year. I am reaching to all of you for information= regarding QSAR/QSPR for Polymers.

Could you please guide me to any review papers, research groups or textbook= which introduces the concept of QSAR/QSPR for Polymers.

Thank you all for your time and consideration.

Sincerely,
Arindamhttp://www.ccl.net/cgi-bin/ccl/send_ccl_messagehttp://www.c= cl.net/chemistry/sub_unsub.shtmlhttp://www.ccl.net/spammers.txt



--
Arindam Gan= guly, Ph.D.
Postdoctoral Researcher
University of Michigan, Ann Arbor=
Dept. of Chemistry,
930 N. University Avenue,
Ann Arbor, MI-48109= -1055
Phone:-816-419-1806
Email:- = ArindamGanguly~!~gmail.com
http://www.linkedin.com/in/arindamganguly
--001636831950197efc0499601ae1-- From owner-chemistry@ccl.net Sun Jan 9 15:29:00 2011 From: "Trinoga, Rolf rolf.trinoga:+:mpi-mail.mpg.de" To: CCL Subject: CCL: to orca users! Message-Id: <-43575-110109004448-17881-P0GL1OO8xxROfCAbCpILZA*server.ccl.net> X-Original-From: "Trinoga, Rolf" Content-Language: de-DE Content-Transfer-Encoding: 8bit Content-Type: text/plain; charset="utf-8" Date: Sun, 9 Jan 2011 06:48:02 +0100 MIME-Version: 1.0 Sent to CCL by: "Trinoga, Rolf" [rolf.trinoga . mpi-mail.mpg.de] Try to use the extension .inp and type orca myfile.inp > myfile.out Here you get some examples http://www.thch.uni-bonn.de/tc/orca/index.php?option=com_docman&task=doc_download&gid=26&Itemid=26 _____________________________________ Rolf Trinoga MPI fuer Bioanorganische Chemie +49 171 5611279 Am 09.01.2011 um 03:23 schrieb "Olawale Lukman Olasunkanmi waleolasunkanmi##gmail.com" >: Sent to CCL by: "Olawale Lukman Olasunkanmi" [waleolasunkanmi:gmail.com] Hi, Kindly explain to me in simple manner, how I can create orca input file. I have gone through the manuals, I cannot get it right. This is what I have tried: I copied a sample input codes from a manual and pasted it in notepad. I saved it as a .dat file in the orca folder. I went to the command prompt and typed in the orca directory: orca myinputfile But it all resulted in an error. Thank you in anticipation of your response.E-mail to subscribers: CHEMISTRY/a\ccl.net or use: or use http://www.ccl.net Job: http://www.ccl.net/jobs Conferences: http://server.ccl.net/chemistry/announcements/conferences/ Search Messages: http://www.ccl.net/chemistry/searchccl/index.shtml http://www.ccl.net/chemistry/aboutccl/instructions/ From owner-chemistry@ccl.net Sun Jan 9 16:04:00 2011 From: "Prasenjit SEAL prasenjit.seal a crm2.uhp-nancy.fr" To: CCL Subject: CCL: to orca users! Message-Id: <-43576-110109050405-4012-K0H6fmH09svLzZmAjboa7w###server.ccl.net> X-Original-From: Prasenjit SEAL Content-Transfer-Encoding: 8bit Content-Type: text/plain; charset=ISO-8859-1; format=flowed Date: Sun, 09 Jan 2011 11:03:50 +0100 MIME-Version: 1.0 Sent to CCL by: Prasenjit SEAL [prasenjit.seal ~ crm2.uhp-nancy.fr] Hello, Olasunkanmi save it as .inp file and then try to run it. orca filename.inp filename.out Prasenjit On 1/8/2011 9:16 PM, Olawale Lukman Olasunkanmi waleolasunkanmi##gmail.com wrote: > Sent to CCL by: "Olawale Lukman Olasunkanmi" [waleolasunkanmi:gmail.com] > Hi, > Kindly explain to me in simple manner, how I can create orca input file. > I have gone through the manuals, I cannot get it right. This is what I have tried: > I copied a sample input codes from a manual and pasted it in notepad. > I saved it as a .dat file in the orca folder. > I went to the command prompt and typed in the orca directory: orca myinputfile > But it all resulted in an error. > Thank you in anticipation of your response.> > -- Prasenjit Seal Post-Doctoral Research Fellow CRM2 Université Henri Poincaré - Nancy I B.P. 239 F-54506 Vandoeuvre-les-Nancy, France From owner-chemistry@ccl.net Sun Jan 9 16:39:00 2011 From: "Frank Neese neese++thch.uni-bonn.de" To: CCL Subject: CCL: to orca users! Message-Id: <-43577-110109033333-18494-LtriY4+D5vnyEXHa/FnwCg*_*server.ccl.net> X-Original-From: Frank Neese Content-Transfer-Encoding: 8bit Content-Type: text/plain; charset=us-ascii Date: Sun, 9 Jan 2011 09:34:21 +0100 Mime-Version: 1.0 (iPad Mail 7B405) Sent to CCL by: Frank Neese [neese||thch.uni-bonn.de] Please create a file Myjob.inp # my first orca job ! SVP B3LYP * xyz 0 1 C 0 0 0 O 0 0 1.2 * Make sure the orca executables are in the %path Run orca. Myjob.inp > Myjob.out That's it - it is btw all described in the manual! Good luck, Frank Neese Am 08.01.2011 um 21:16 schrieb "Olawale Lukman Olasunkanmi waleolasunkanmi##gmail.com" : > > Sent to CCL by: "Olawale Lukman Olasunkanmi" [waleolasunkanmi:gmail.com] > Hi, > Kindly explain to me in simple manner, how I can create orca input file. > I have gone through the manuals, I cannot get it right. This is what I have tried: > I copied a sample input codes from a manual and pasted it in notepad. > I saved it as a .dat file in the orca folder. > I went to the command prompt and typed in the orca directory: orca myinputfile > But it all resulted in an error. > Thank you in anticipation of your response.> From owner-chemistry@ccl.net Sun Jan 9 17:13:00 2011 From: "Olawale Lukman Olasunkanmi waleolasunkanmi ~ gmail.com" To: CCL Subject: CCL: MOPAC users Message-Id: <-43578-110109153728-25985-/XeYFym9AjsF9J61hPrS8A{:}server.ccl.net> X-Original-From: "Olawale Lukman Olasunkanmi" Date: Sun, 9 Jan 2011 15:37:27 -0500 Sent to CCL by: "Olawale Lukman Olasunkanmi" [waleolasunkanmi|,|gmail.com] Dear all, I appreciate your earlier contributions while I was getting started. Please, how do I correct the following errors emanating from or stopping my calculations: 1. the gradient norm is too high for force field calculations 2. the gradient norm is too high, results may be inaccurate Can you suggest a molecular builder that I can readily download and use to generate my input file? Thank you in anticipation of your responses. From owner-chemistry@ccl.net Sun Jan 9 17:49:01 2011 From: "Frank Neese neese-,-thch.uni-bonn.de" To: CCL Subject: CCL: to orca users! Message-Id: <-43579-110109162134-2615-2MTQrrCjPpMNMDctfVFAzQ[-]server.ccl.net> X-Original-From: Frank Neese Content-Transfer-Encoding: 8bit Content-Type: text/plain; charset=us-ascii Date: Sun, 9 Jan 2011 22:21:18 +0100 Mime-Version: 1.0 (Apple Message framework v1082) Sent to CCL by: Frank Neese [neese^-^thch.uni-bonn.de] Please create a file Myjob.inp # my first orca job ! SVP B3LYP * xyz 0 1 C 0 0 0 O 0 0 1.2 * Make sure the orca executables are in the %path Run orca. Myjob.inp > Myjob.out That's it - it is btw all described in the manual! Good luck, Frank Neese Am 08.01.2011 um 21:16 schrieb Olawale Lukman Olasunkanmi waleolasunkanmi##gmail.com: > > Sent to CCL by: "Olawale Lukman Olasunkanmi" [waleolasunkanmi:gmail.com] > Hi, > Kindly explain to me in simple manner, how I can create orca input file. > I have gone through the manuals, I cannot get it right. This is what I have tried: > I copied a sample input codes from a manual and pasted it in notepad. > I saved it as a .dat file in the orca folder. > I went to the command prompt and typed in the orca directory: orca myinputfile > But it all resulted in an error. > Thank you in anticipation of your response.> From owner-chemistry@ccl.net Sun Jan 9 18:24:00 2011 From: "Victor Milman Victor.Milman#accelrys.com" To: CCL Subject: CCL:G: Phonon calculation ... Message-Id: <-43580-110109172111-30699-9leE147ZEA1VAcqv1OleYg++server.ccl.net> X-Original-From: Victor Milman Content-Language: en-GB Content-Transfer-Encoding: 8bit Content-Type: text/plain; charset="us-ascii" Date: Sun, 9 Jan 2011 22:20:44 +0000 MIME-Version: 1.0 Sent to CCL by: Victor Milman [Victor.Milman_-_accelrys.com] Dear Jerome, First of all I'd like to be sure that you are comparing in both cases k-point grids for electronic calculations - i.e. you do phonon calculations after say a geometry optimization run and for some reason you want a more accurate Brillouin zone integration in a phonon run. [that's what k-points give you, just the integration accuracy, so they are not really analogous to basis set in Gaussian - that role is played by the plane-wave cutoff that determines the size of the basis] This scenario thought is fairly far-fetched, so what I think you are really comparing is the k-point grid for electronic calculations, and the q-vector grid which you specify for phonons. The latter simply says that you want phonon frequencies calculated for lattice vibrations with specified wave vectors; these are completely decoupled from the electronic Brillouin zone integration. In fact, if you use an interpolation scheme, there can be different q-vector grids - one on which actual dynamical matrices are calculated, and a finer one on which phonon frequencies are interpolated for the purposes of getting an accurate phonon DOS and dispersion curves. So if this is actually your question, then you can use any of the combinations you described. Finally, www.castep.org is a very good resource that includes tutorials - especially for phonon calculations. I think it also links up to the CASTEP forum where you can ask more detailed CASTEP questions. Yours ======================================================= Victor Milman Senior Fellow Accelrys Inc tel: (01223) 228500/228619 334 Science Park fax: (01223) 228501 Cambridge CB4 0WN tel. from abroad: +44 1223 228500 UK e-mail: victor.milman()accelrys.com ======================================================= ________________________________________ > From: owner-chemistry+vmilman==accelrys.com()ccl.net [owner-chemistry+vmilman==accelrys.com()ccl.net] On Behalf Of Jerome Kieffer jerome.Kieffer%esrf.fr [owner-chemistry()ccl.net] Sent: 08 January 2011 09:04 To: Victor Milman Subject: CCL:G: Phonon calculation ... Sent to CCL by: Jerome Kieffer [jerome.Kieffer*esrf.fr] Hello, I am pretty new to PW-DFT (with Castep) but I have a bit background with Gaussian ( G'03 and others). I wonder if it makes sense to calculate phonons on 50x50x50 k-points with energy k-points are only 5x5x5 ? (regardless to resources consumed) With gaussian basis set it would not make sense to calculate frequencies with triple-Zeta basis whereas energy optimisation is only made with double-Zeta. On the other hand does it make sense to calculate phonons on 5x5x5 k-points and energy optimized on 10x10x10 ? Thanks for your help. -- Jerome Kieffer Online Data Analysis / ISDD / ESRF jerome.Kieffer]![esrf.frhttp://www.ccl.net/cgi-bin/ccl/send_ccl_messagehttp://www.ccl.net/chemistry/sub_unsub.shtmlhttp://www.ccl.net/spammers.txtAccelrys Limited (http://accelrys.com) Registered office: 334 Cambridge Science Park, Cambridge, CB4 0WN, UK Registered in England: 2326316 From owner-chemistry@ccl.net Sun Jan 9 19:07:00 2011 From: "Nancy nancy5villa]^[gmail.com" To: CCL Subject: CCL: Pioglitazone Tautomers Message-Id: <-43581-110109180916-14590-7E3+MJ2ZVD0/4BnZXj3h4Q#,#server.ccl.net> X-Original-From: Nancy Content-Type: multipart/mixed; boundary=20cf30433e32fd0028049971ef97 Date: Sun, 9 Jan 2011 18:09:03 -0500 MIME-Version: 1.0 Sent to CCL by: Nancy [nancy5villa.^^.gmail.com] --20cf30433e32fd0028049971ef97 Content-Type: multipart/alternative; boundary=20cf30433e32fd0021049971ef95 --20cf30433e32fd0021049971ef95 Content-Type: text/plain; charset=ISO-8859-1 Hi All, I am performing molecular docking and molecular dynamics simulations of the thiazolidinedione pioglitazone binding to the PPAR-gamma receptor protein (PDB ID: 1ZGY). The thiazolidinedione ring can exist in numerous different tautomeric states; I have attached a figure depicting several of them. Which tautomer would be dominant at the physiological pH of ~7.0? Also, are there any software programs that can predict which tautomer would be correct? Thanks in advance, Nancy --20cf30433e32fd0021049971ef95 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: quoted-printable Hi All,

I am performing molecular docking and molecular dynamics sim= ulations of the thiazolidinedione pioglitazone binding to the PPAR-gamma re= ceptor protein (PDB ID: 1ZGY).=A0 The thiazolidinedione ring can exist in n= umerous different tautomeric states; I have attached a figure depicting sev= eral of them.=A0 Which tautomer would be dominant at the physiological pH o= f ~7.0?

Also, are there any software programs that can predict which tautomer w= ould be correct?

Thanks in advance,
Nancy


--20cf30433e32fd0021049971ef95-- --20cf30433e32fd0028049971ef97 Content-Type: image/png; name="Pioglitazone_Tautomers.png" Content-Disposition: attachment; filename="Pioglitazone_Tautomers.png" Content-Transfer-Encoding: base64 X-Attachment-Id: f_giqk3pid0 iVBORw0KGgoAAAANSUhEUgAABQYAAALyCAIAAAAHZZ57AAAgAElEQVR4nOzdfVyUdb7/8S8w6qSo 44ZGLW5DjgqtFqYmpRaWm+jqCVYqLCw07EALG6SESLPIjuxIowvu0JGSFJOzWtGRlNRT7IpJiRsm 3iSkuHKKipLcsSYdbZDfH9f+5nBQcLgZroHr9fzDx3Vx3X34uj0e+/Z759Hc3CwAAAAAAFAeT7kL AAAAAABAHkRiAAAAAIBCEYkBAAAAAApFJAYAAAAAKBSRGAAAAACgUERiAAAAAIBCEYkBAAAAAApF JAYAAAAAKBSRGAAAAACgUERiAAAAAIBCEYkBAAAAAApFJAYAAAAAKBSRGAAAAACgUERiAAAAAIBC EYkBAAAAAApFJAYAAAAAKBSRGAAAAACgUERiAAAAAIBCEYkBAAAAAApFJAYAAAAAKJRK7gIAuJDV ai0sLCwtLS0tLb1w4YJKpQoICPjlL3/5wAMPzJw5c+TIkdJtHh4eQojm5uZrvqT9qwAAAEDv5cH/ zQX6qr179z7++OMNDQ1t3eD4z59IDAAAAGVi4DTQN+3du3fWrFkNDQ13333322+//cMPPzQ3Nzc1 NVVXV7/55ptxcXFjx46Vu0YAAABAZvQSA32QzWYbNWrUV199lZCQ8Oc///m699NLDAAAAGWilxjo g15//fWvvvpqwoQJzuRhAAAAQLGIxEAf9N577wkhnnvuObkLAQAAANyaW0fiyMhIDw8PDw+P3Nxc eSuJioqSKsnJyWn5c/epEGjpb3/7mxDioYcekrsQAAAAwK2xCRPQB1mtViHEzTff3KGnpDnDAAAA gHK4qpe4rq7Oo139+vUbPnz4Pffc88ILLxw5cuSaL+nfv/+AAQMGDBigUrlpdG+nwosXL9bX1589 e1aWwgAAAAAA1yXbwGm73d7Y2FhRUWEymYKCgiIjI8+fP9/qntdff91ms9lsttjYWFmKvK52KvyP //iPkSNHPvLII7IUBoVTq9VCiK+//rpDTzW3wTU1AgAAAPLrid7Xhx9+2Nvbu+VPmpubrVbrP/7x jxMnTly5ckUI8cYbb3z22Wf79+9vdWfvVVFRIXcJUK6QkJCdO3fu2rXr6aeflrsWAAAAwH31RCRe s2aNTqe75qX6+vr09PSNGzcKIaqqqlJSUl5++eUeKKkHHDhwQO4SoFxz5szZuXPn2rVrFy5c2L9/ f7nLAQAAANyUzCtO+/n5vfbaa88884x0mp+f/89//lPekrpFfX39l19+KXcVUK4nn3zylltuqa6u joqKstvtcpcDAAAAuCm32IRp1apVnp6eQojLly/v3bvX8fPrbnF05syZtLS04ODgG2+8UaVSqdVq rVYbFhZWUFBw6dKltj536dIls9k8ffr0m266Sa1W33bbbY899ti+ffukq1OmTJE+evz48etWfnWF q1ev9vDwGDlypHS6b98+x4piNTU1LZ9tbm5+9913n3zyyYCAgMGDB3t5eQ0ePFin00VGRhYXF189 gXPVqlXtr1jmEBMT0y3N9cQTT0gvlHb0sdls2dnZwcHBQ4YM6dev34gRI2bOnLlp0yZp6Ps1ffvt t6tXrw4JCRk+fLhKpbrhhhtGjRr12GOPvfPOO8xQdamBAwe++eabgwYNeuutt+64445NmzY55hV/ //33u3btSk9Pv+uuuzr9/r17986ZM2fgwIFqtXrMmDGJiYnfffddN9UOAAAA9KC2FtTpojNnzjg+ cerUqeveP2bMGOnml156yfHDxx57TPqh2Wxudf+VK1cyMjL69evX1u/l7+//8ccfX7OwwMDAaz4S ExNjs9kcY7xPnz7teOqJJ56Qfpidnd3ybVdXaDQa2yqpurra8eDXX3997733tvP3cv/993/33Xct v2UwGNq5v6Wnn366W5pr0aJF0tWSkpLPP//89ttvv+az//Zv/9bU1HR1U2/atKmdmeHTpk378ssv r34K3ejIkSPjx49v538qjjtbnbZy9dWQkJC333770qVL0unhw4dnzZrlot8CAAAAcB132dxo0KBB 0sHly5eduT8lJcVkMknHISEh4eHht95666VLl6qqql5//fUvv/zyzJkzDz744IEDB1oGOZvNNmfO nOrqaiFEv379Fi5cOH369H79+h08eHDjxo35+fmXLl2SNnQVQnRuBubjjz8eHBy8b9++lStXCiHu vPPOnJwc6dIvfvEL6eCnn36aM2fO4cOHhRADBw6MjIy86667Bg8ebLVaDx06tHXr1osXL+7bty88 PLysrMyxVezcuXN9fX3b+u65c+dWrFjR1NQkhLg6u3auuRwR+ocffggPDz9x4sS0adNmz549bNiw +vr6N9544/Tp00KIHTt25OXlPfvssy2/+PLLL8fHx0vHU6dOffTRR/39/X/88cfKyspNmzadO3eu vLw8JCTk4MGDw4YN63Arwzl33HHH0aNH33vvva1btx46dOjkyZN2u93b2/u+++6bOHFieHh4p9/c cjSHECIoKOijjz7qcr0AAABAj3NR1O5oL7GPj49084YNGxw/bKuX+IMPPnC8PC8vr9Wrvv/+e0cH bHBwcMtLa9askX5+ww03fPjhhy0v/eMf//D392/ZMl988YXjqvO9xJK33npL+vn9999/9S+7detW 6eqgQYOOHTvW6urhw4cHDhwo3bBjx442Guz/sNvtv/rVr6RH5s2bd+XKlZZXO91cjp2l5syZ4+Xl tWnTppZXL1y4MHHiROmGCRMmtLz06aefOuL0unXrWn3x22+/dQzZXbx4sTO/INzc6dOnx44dK3cV AAAAQIe5xVzi8vLyxsZG6bj94cSSP/7xj9LBwoUL//3f/73V1cGDB2/ZskWlUgkhKioqPvzwQ8el V199VTpITk5u9SF/f/+ioiIvL6/O/hId8M0339x9991arXbhwoXjxo1rdTUoKGjBggXS8a5du5x5 YVpa2vvvvy+EGDNmzJYtWxwdy5JON5ejNXbt2pWSkhIdHd3ywRtuuEGv10vHR48etdlsjkt/+MMf fvrpJyHEkiVLfve737X64vDhw9944w3p5Zs3b2Ydsl7tm2++2bRpU2ho6J/+9Ce5awEAAAA6TP5I bLFYHGNuJ02a1NaE1Zb3S/FPCJGQkHDNe2677bYHH3xQOt6+fbt0cObMmZMnT0rH19ys9a677goL C+tg+Z3x3HPPHTx48MyZM+vXr7/mDY5O1C+++OK6bysqKsrKyhJCeHt7b9++fejQoS2vdrq5WlKr 1cuWLbv65/fdd5900NTU5Fi9yWq1FhcXS8dpaWnX/KJOp5s9e7b04I4dO9r79eCuPDw81Gr1yJEj Fy9e/Oyzz86ZM0fuigAAAIAOky0SX7hwobq6+s9//vMdd9xx7NgxIYSXl1d2dvZ1Hzx48KA0Y3bI kCGTJk1q6zZHWvv73/8uHThWkB45cqRjWm8rjoHQ8nIMnG7Z9XpNJ06ccCyCVVBQcPU/KHS6uVqa OnXqNWf8Dhs2zDEJ3DEH++DBg9L61f7+/rfeemtbX3zggQekg8rKyrbugTtrbm622WyXL18+derU oUOHHGu2AwAAAL1ITyyvNXr06OvXoVLl5+dPmzbtuneeOnVKOtDpdK1GCF/zo9ISUEIIx/TmVnOG W7r77ruvW0B3OXfu3Ouvv15aWlpdXf3NN99cuHChuYP7Ep0/fz48PFzKoqmpqfPnz7/6nk43V0u/ /OUv23pw0KBBP/74oxBCCt5CCEdXvJeXV0FBQVsPOv46Wu1NhV5Hp9Nt3rz5nnvuOXjwoNy1AAAA AB3jFitOP/DAAy+99JJjrab2OWYd33jjje3c9rOf/Uw6OHfunHTw/fffSwcajaatp37+8587U0PX bdiwYenSpT/88EOn39Dc3Lxw4UIpf86aNWvVqlXXvK3TzdVSq8HYLV0dsx3709bW1jp6sNvhqBCu s2fPnqysLF9fX8fSbt3L09PzyJEjrngzAAAA4FI9EYkfeeSRIUOGtPqhl5fX0KFDx4wZ88ADD9x2 223Ov82xS1M7u+yKFlsoSYN4hRAXL16UDgYMGNDWUyqVasCAAY5HXKSgoOCZZ56RjseMGfPUU09N mDBhxIgRjsLeeeedF198sf2X/OEPf9i5c6cQwt/f/y9/+Yun57XHwHe6uVpq6+Xtf9FJjhHXcJ2G hoaysjKtVuui9x89erStyQgAAACAO+uJSPzHP/5Rp9N119sc4a396OW46siZjgelxZCvqampydV5 2Gq1Pv/889JxZGTk66+/fnVYve702nfffTcjI0MIMXDgwO3btzv6eK/W6ebqNLVaLR3MmDHjb3/7 WxffBvd0//33x8fHh4eHe3p67tu3b/HixdJG3AAAAEDvIv+K0x01YsQI6aD9AbeOq477vb29pYN2 hit/88033VBiu95///1//vOfQoihQ4du2LDhmp231xy97HDq1KknnnhCmnicn59/5513tnNzp5ur 02666SbpwDGCGn3PqlWrNm/e7O3tPXDgwD/84Q9ms/mpp56SuygAAACgw9xiLnGHjBkzRjo4depU U1NTWzsJOxZ5ctzv5+cnHbSzs9E111vuXp999pl0EBwc7EjprVRUVLT1uNVqDQ8PP3/+vBAiKSnJ sYNxWzrdXJ02duxYxzt/+umn9gdso5eaPn369OnT5a4CAAAA6Kre10s8ZcoUKWX9+OOPBw4caOu2 vXv3SgdTp06VDhxh7/Tp01I/7dXefPPN7qz1WhwDswcPHnzNGxoaGtrZqnfx4sWffvqpECIkJOSl l1667uc63VydNmnSJGkTKZvNVlpa2tZtVqvVbrd38VsAAAAA0BW9LxIPHjx47ty50rHZbL7mPceP Hy8rKxNCeHh4OLYavvPOO318fIQQTU1Nb7311jWfKioq6pYiHeswXz1vefjw4dLB//zP/1z9YHNz c1xcnCM2t5rY/NJLL0mVjxw58s0331Sprt/J3+nm6jS1Wv2b3/xGOl61alVbO0vFx8ffeOONERER bMIEAAAAQC69LxILIV588UVpDeQ333xz/fr1ra5+8803CxYskJLY/PnzAwMDpZ97enpGRkZKx+np 6a0S6RdffDF//vygoKBBgwZ1vULHS2pqalrF2nvvvVc6qKysbDVA2mq1RkdHFxcXJyUlST/57LPP rly5Ih2XlpauWLFCCDFgwIC3337bEa2vq3PN1RUrVqyQuqY/+uijuLi4Vv8u0Nzc/Mc//nHz5s3f f//9Bx98cPPNN3f9iwAAAADQCb1vLrEQ4q677srIyNDr9UKIZ599dvv27Q8//PAtt9xitVo//vjj 119/XZpqq9VqX3755ZYPpqambtmy5fz58w0NDXfeeeeSJUsmTpzo6el58ODBDRs2XLx48YMPPvjV r37V9QrHjRsnHZw7d+7BBx8MDQ21Wq3BwcFhYWFBQUFTp0798MMPm5ubQ0NDly5dOnHixMuXL3/y yScbN2788ssvn3jiCb1ev27duitXrpw9e/a3v/3tww8/PHjw4AULFjQ1NQkhZsyYceTIkfa3gZ03 b55jmatON1enBQYGZmdnx8fHCyFeeeWVvXv3LliwYNSoUR4eHrW1tW+//fbx48eFEB4eHq+88ko7 mx4DAAAAgGs1u8aZM2ccnzh16lTnXuIYxGs2m6++umbNmnZ2DJo+ffoXX3xx9VN/+9vfrt4kWQhx ww03vPHGG83NzY4O3paPP/HEE9IPs7Oznazw4YcfbvUJo9EoXaqtrXWs9dVKZGTkpUuXmpubHaOd JR1dznf//v1db67f/va30tX09PS2/o4cwfvw4cOtLr322mttzZcWQowYMWL79u1tvRbda9OmTUII rVYrdyEAAACAe+mVA6clS5cu/eyzz9LS0qZMmaLRaDw9PdVqtU6ni4qKevfdd/ft23fN2DljxoxP P/30+eefDwwM9Pb2HjBggE6ni4+P//TTTx999FHRYofeLi6VvGXLlmeeeWb48OGenp5DhgyZOHGi o+t41KhRn3zySUpKyu23337DDTf0799/5MiRjz766Hvvvbd161ZpJ+HXXntt/vz5gwcP7tevX0BA wPjx47tSjOhsc3XF4sWLT58+bTQa77vvPh8fHy8vL5VKdfPNN//qV796+eWXT506FRYW1r1fBAAA AIAO8WhuY/UjZfr+++8d43htNls73apAL1JQULBo0SKtVtty+AYAAACAXtxL7AqVlZXSwS233EIe BgAAAIC+TVmR+LXXXgsPD7/jjjsyMjKuecPGjRulg/vuu68H6wIAAAAAyKBXrjjdaU1NTcXFxUKI M2fOzJgxo1Xu3bhx43/+539Kx7GxsTLUBwAAAADoQcqKxIsWLXrllVc++eQTq9X6wAMP/PrXv546 derw4cPPnj27e/fusrIy6bYnn3zy/vvvl7VSAAAAAIDLKSsS9+vXb9euXfPnz//www+bmpp27Nix Y8eOVvc8/fTT3bU9LwAAAADAnSkrEgshbrrppv379+/YsWPbtm2VlZVfffXVpUuXhg4deuutt957 771PP/30hAkT5K4RAAAAANATFBeJhRAeHh4PP/zwww8/LHchAAAAAAA5KWvFaQAAAAAAHIjEAAAA AACFIhIDAAAAABSKSAwAAAAAUCgiMQAAAABAoYjEAAAAAACFIhIDAAAAABSKSAwAAAAAUCgiMQAA AABAoYjEAAAAAACFIhIDAAAAABSKSAwAAAAAUCgiMQAAAABAoYjEAAAAAACFIhIDAAAAABSKSAwA AAAAUCgiMQAAAABAoYjEAAAAAACFIhIDAAAAABSKSAwAAAAAUCgiMQAAAABAoYjEAAAAAACFIhKj 1zt58uSIESOio6PlLsR9nT9/3vEnAAAAAAciMXoxu92+Zs2aO+644+zZs5s3b541a1ZlZaXcRbkX qYlWrFghhLBYLHV1dXJXBAAAALgRIjF6q5KSksDAwOTk5EuXLnl4eAgh3nvvvXvuuScpKclischd nVtwNNGFCxc8PDzGjh2r0WjkLgoAAABwI0Ri9D6VlZXz5s2bN29ebW2tEGLmzJlHjx7dvn27n5+f 3W7Pycnx9/fPy8uz2+1yVyqbVk0UEhJy9OjR6upqIjEAAADQkkdzc7PcNQDOslgsmZmZOTk5UtwN CAjIzs4ODQ2VrtpsttWrV69du9ZqtQohdDqd2Wx2XFWIVk0UEhKSnZ0dFBQkd10AAACAOyISo9fI zc3V6/XSoGg/Pz+j0RgREaFWq1vdVl9fn5SUVFxcLGXCuXPnpqenT5o0SYaKe1yrJjKZTBERESqV Su66AAAAADdFJEYvUFxcnJmZKS2dpVKpEhMT09LS2h8DXFlZGRcX51ht68UXX1y6dGkfHjbciSYC AAAAQCSGW6upqdHr9UVFRdLpzJkzs7Ozx40b5+TjBQUFer2+vr5eCKHRaNLT0xMTE11Vq0xaNVFI SIjZbHa+iQAAAAAlIxLDTVmt1tTU1Pz8fJvNJq6aNtyh92RkZOTl5UkTjIOCgrKzs0NCQrq94J7X qomYNgwAAAB0FJEYbsdut+fl5WVkZDQ2NgohvL2909LSEhMTr5427LyrJxgbjcbe25XaqomYNgwA AAB0DpEY7qW0tFSv11dUVEinERERJpNJq9V218tTU1OlCbdqtTolJSUxMbHXTbht2URMGwYAAAC6 gkgMd1FbW5uQkLBnzx7pdO7cuQaDwclhwMePH3eyy9dut69ZsyYrK0tallmj0ZjN5sjIyF7Rv9qy iVQqVWRkZEpKSu/t6wYAAABk5yl3AYCwWq1xcXGBgYFS2AsICNi9e/fOnTudzMOVlZUTJkwIDw9v aGi47s0qlWr58uXV1dXR0dEqlcpisSxcuHDy5MmOKO6eWjVRSEjI4cOHt2zZQh4GAAAAuoJIDJkV FBQEBgbm5eXZ7XaNRmM0Gg8fPtyhZbRefvllu91eXFzs7++flJQkLaPVPl9f302bNu3fv19aZ6uq qmr27NmPPPJIbW1tp38R12nZRFqtduvWre+//z5hGAAAAOg6Bk5DNi1n9gohoqOjjUajr69vR98j rTWVlZUlbbbk5+dnMBiioqKcHAu9bds2vV4vhWGpD9l9djBuNfk5NjbWYDB4e3vLXRcAAADQRxCJ IYNW6z+HhIQYjcbg4OCuvLPVZkvBwcFGo9HJzZZsNtvq1avXrl0rPevj42MymZwP1a7QqomioqIM BkN3LTMGAAAAQEIkRo+y2+0ZGRk5OTlS+PT19TUajdHR0d31/pqamtTU1OLiYuk0MjLSZDL5+fk5 82xdXV1GRkZhYaGUQoOCgkwm08yZM7urNie1aqKgoCCDwTB37tweLgMAAABQAiIxek5hYWFGRoY0 RFmtVku7DbtiGHBJSUlGRoZjvHFMTIzJZHJyW+OKiork5OTy8nLpNDo6Oj09vce6Z1s2kUajMZlM 0jJgPfN1AAAAQGmIxOgJ5eXler2+rKxMOg0LCzOZTDqdznVflCYYZ2ZmSstQ63S6tLQ058dCFxQU pKamSs9K6X3ZsmVOhurOadlE0rTh9PR0N5nSDAAAAPRVRGK4Vn19vV6vd4xGnjRpktls7uK0Yec1 NjZmZmbm5uY6vr5hwwYn93ayWCw5OTmOCcZ+fn4pKSmxsbHd3mfbqolCQkLMZjMLSgMAAAA9gEgM V2m1ELSvr6/BYJBlGHBVVVVGRoZjgnF0dLTBYHB+gnFqampRUZFjgvH69eu7K9K3aiKdTrd+/fqe n70MAAAAKBaRGC5RUlKi1+urqqqEECqVatmyZWlpafLuHlRSUpKcnFxTUyOEUKvVKSkpL774opP5 vKKiIiEhwbFfVExMjNFo9PHx6WI9jibSaDRpaWmxsbFssAQAAAD0JCIxullVVVVqauqePXuk08jI SIPB4NJpw86z2Wx5eXl6vV4aC93RCcb5+fmpqamNjY1CCG9vb2m6bydC7NVNlJ2d3YkNmQEAAAB0 EZEY3cZisaSmpubn50tjjMeNG2c2m53cGbgnSWOht23bJp2GhoYaDIZJkyY586zNZtPr9bm5uTab TQjh5+e3YcOG0NBQJz/dqommTZuWnZ3t5KcBAAAAdDsiMbqB3W6XelAtFosQws/Pz2AwON/7Kouy srKEhITjx49Lpx3awbi+vj4uLq6kpMTxrNFobH+jplZNpNVq09PT3byJAAAAgD6PSIyuapktVSpV bGxsSkqKk9lSXna7vbCw0LHZkre399KlS5cvX+7kZkulpaUJCQnS5GSVSiVNML7mtkmtmsgdZlYD AAAAEERidEVtbW1CQoJjTmxoaKjZbHaTacPOs1gsWVlZa9askQYz63Q6g8EQERHh/ATjzMzMuro6 IYSPj4/RaIyJiXFcbdVE0dHRaWlpva6JAAAAgL6KSIzOsNlsmZmZq1evdmxNlJ6eHhYWJnddndcq u86cOdNoNDo5y9dqtUqhWppgHBwcnJ2dHRQU1KqJDAbD3LlzXfcrAAAAAOgoIjE6bPbs2fv37//x xx+FEBqNJj09PT4+vm/MiW01wTg6Ojo7O/uaY6GvVlNTo9fri4qKpFMvL6+mpiYhhEajMZlMsmzI DAAAAKB9RGJ0TE1Nze23397c3Ozp6fnss8+mp6d3cXted9NqHSyNRpOSkrJs2TInA21paWlSUpIU qvtqEwEAAAB9BpEYHTZs2DCLxZKRkfH73/9e7lpcpdVuSX5+fkajMSoqypln7Xb7kCFDLl68+MIL L2RlZbm4UgAAAACd5yl3Aeh9hg4dKoT4xS9+IXchLqTRaNavX19dXS3tOVxfX79w4cLZs2fX1tZe 91mVSjVixAghRGBgoMsLBQAAANAFRGJ0mIeHh9wl9BCdTrd79+633npLWiN6z549gYGBS5YskTZt aodymggAAADo1YjEwHVEREQcO3bMZDJpNBpppvHo0aPz8vLkrgsAAABAVxGJ0c2mT5/u7++fk5Mj dyHdSa1WL1u2rLq6OiYmRqVSWa3WuLi40aNHl5aWyl0aAAAAgM4jEqOb1dfX19XVScs19zG+vr4b NmzYu3dvcHCwEKK2trayslLuogAAAAB0HpEY6Jhp06YdOHBg06ZNwcHBsbGxcpcDAAAAoPOIxEBn REdHHzhwQKPRyF0IAAAAgM4jEgMAAAAAFIpIDAAAAABQKCIxAAAAAEChiMQAAAAAAIUiEgMAAAAA FIpIDAAAAABQKCIxAAAAAEChiMQAAAAAAIUiEgMAAAAAFIpIDAAAAABQKCIxAAAAAEChiMQAAAAA AIUiEgMAAAAAFIpIDAAAAABQKCIxAAAAAEChiMQAAAAAAIUiEgMAAAAAFIpIDAAAAABQKCIxAAAA AEChiMQAAAAAAIUiEgMAAAAAFIpIDAAAAABQKCIxAAAAAEChiMQAAAAAAIUiEgMAAAAAFIpIDAAA AABQKCIxAAAAAEChiMQAAAAAAIUiEgMAAAAAFIpIDAAAAABQKCIxAAAAAEChiMQAAAAAAIUiEgMA AAAAFIpIDAAAAABQKCIxAAAAAEChiMQAAAAAAIUiEgMAAAAAFIpIDAAAAABQKCIxAAAAAEChiMQA AAAAAIUiEgOdUVlZGRcXZ7fb5S4EAAAAQOcRiYGOaWhoiIuLu+eee/Ly8nJycuQuBwAAAEDnqeQu AH2Nn5+fEEKj0chdSPez2+05OTmZmZkWi0UIodPpdDqd3EUBAAAA6DwiMbrZ/v375S7BJUpKSpKT k2tqaoQQGo0mJSUlPj7e29tb7roAAAAAdB6RGLiO48ePJycn79mzRzqNiYkxGAy+vr7yVgUAAACg 64jEQJsaGxszMzNzc3OlZbSmTZtmMpmCg4PlrgsAAABA9yASo8O+/fZbIcR3330ndyEuZLfb8/Ly 9Hq9NG3Yz8/PaDRGRkaqVE79J3PhwgXHnwAAAADcFitOowMqKiomT54sJb3ly5evWrXKZrPJXVT3 27Nnz/jx4xMSEiwWi7e3d3p6enV1dVRUlK2YEyMAACAASURBVDN5uLy8fPr06dK/GhQVFbm+WAAA AACdRySGUxobG+Pi4qZPn15ZWSn9xG636/X6wMBAxyTbPqCmpmb27NmzZ8+WltGKjIysrq5euXKl M8toWa3WRYsWzZgxo7y8XAgxaNCg0NBQl1cMAAAAoAuIxLgOu92em5s7evTovLw8u92u1Wq3bNly 5syZ+Ph4lUpVV1cnZciKigq5K+2Sr79ufOSRl+bMMUgJPzg4+OOPP966dau0p1T77Hb7mjVrxo8f X1BQ4Ggii8XywgsvuL5wAAAAAJ3n0dzcLHcNcF979uyJi4urq6sTQqhUqmXLlqWlpTm6TKuqquLi 4hxhOCYmxmg0+vj4yFVtp+3ceTIr6682m5cQ4ty5gt///hknh0kLIfbs2ZOUlCT1Kl/dRAAAAADc GZEY11ZTU5OcnFxSUiKdxsTELF26NCAg4Oo7t23blpGR4diw12g0xsTEOJknZXfixNk//elAVVWD dPrzn/9gNj/5i18Md+bZmpoavV7vmDDcThMBAAAAcE9EYrTW2NiYlZWVk5Mj7TwUHBycnZ3d/s5D 0sjhzMxMq9UqhAgICDCbzTNnzuyhijvlu+8uvPrqJ8XFNU1NV4QQQUG+8fGTg4JudubZxsZGvV6f n5/vfBMBAAAAcENEYvwfBQUFSUlJ0s5DPj4+BoPB+S7f+vr65OTkoqIiKShGRkYajUatVuvSgjvh 8uWmN974dOPGT3744bIQYsSIQfHxd8+aNcrL6/pT6+12e35+vl6vb2xsFB1vIgAAAABuhUiMfykv L09KSpIWlFapVImJiWlpaRqNpqPvqaioSEhIcLxHmmDcife4yF//+o9XX/3k9OlzQoj+/b2io4Oi ou4YOLCfM8+WlZUtWbKktrZWdK2JAAAAALgJIjFEXV1damqqo3c3JCTEbDaPGzeuK+/My8tr2ZUq TTDunnI76/Tpc+vWHfzooy+k04ceGhUXN3nkyCHOPNuqA7xbmggAAACA7IjEimaxWLKysnJzc6U5 wEFBQWazedq0ad3ycpvNJk0wttlsQohx4yKeeebRhIRHuuXlHfLDD5c3b676y1+OXb7cJIQYP37E c88FBwX5OvPs2bPn4uLWl5aaz5//RnR3EwEAAACQF5FYoex2e2FhYWpqakNDgxBCo9FIc2LVanX3 fqiuri4pKWnXrn233/57L6+B/v5XVq9+dNSon3XvV9rS1HRl586Tubl/t1hsQogRIwbFxU2eM0fn zLThpqYr77xTk5m5y8NjyHfffWSxvOOiJgIAAAAgFyKxEpWVlSUkJBw/flwIoVarU1JSEhMTXTon dseO/QbDgeZmjRDCy8vzscd+uWTJxMGD+7vui0KIQ4e+Wrfu4IkTZ4UQ/ft7Pf74+MWLJzg5bbiq quGllz48efI7IURz85VRoy6++uoipg0DAAAAfQyRWFmkacPbtm2TTqOjo9PT03tmUeimpitm896S ki+lDluNRh0XN2nevLH9+3u56Iu/+91uaebwgw/e9txzU265ZbAzT9XVWTZvrtq1q1banGnCBN8n nvAPCRnvoiIBAAAAyIhIrBQWiyUnJ2ft2rWOacMGg2Hu3Lk9XMbly02vvXZ4y5Yj0rTeW24ZvHz5 tHvvHemKb33xxfdpaX+Nj7/77rt/7sz9Fy78tGHDob/85bgUhkeN+tkLL9w7ceItrqgNAAAAgDsg EitCQUFBy2nD0vrPMm6lW1dnycgoO3bsW+k0JET7/PP3ONmL6yLvvXc6J6fi229/FEIMHNhvyZKJ jz8+zpkpxwAAAAB6LyJxH1dRUZGcnFxeXi6EUKlUy5cvX7p0qZvMiS0urtm48fBXX/0ghOjf30ua YOzkXN9udOzYt+vWVVRVNQghvLw858zRxcVNHjFiUA+XAQAAAKDnEYn7rLq6uoyMjMLCQmkr3blz 5xoMhqCgILnr+j+amq5s2XJ048bDFy78JIQYMWJQYmLwQw+N6pmvWyy29esri4trpJHSd9/98xde mKrVusW/FwAAAADoAUTiPshms61evdoxbVin05nN5tDQULnratO33/6Yk1Px3nunpdPbbx/u/ATg zrlw4afNm4+8/faJlmt9hYUFMFIaAAAAUBQicV9TXFycnJxcW1srhPD29jaZTPJOG3beoUNfrV9f KQ1gFkI89NCoxMRgVwxg/utf/7Fu3UFpwPbAgf3mzw986qkgjYbdhgEAAADFIRL3HTU1NXq9vri4 2G63q1Sq2NjYlJQUPz8/uevqmFbLXM2fH7h48V3dtYPxoUNfvfrqJ4cOfSWddmhzJgAAAAB9D5G4 L7BarRkZGXl5edJI6WnTpplMpuDgYLnr6qQffri8bl1FcXGNdKrRqNeseSgoyLeLr1216oOdO09K 04a1Ws3zz9/jos2fAAAAAPQWvWA8Ldpht9vz8vKysrLq6+uFEFqtNj09PSoqqleMlG7L4MH9X3zx vt/8JnDDhkP7939++XLT1R25kya9KoR48sk7f/e7KVe/QbpaWflMyx/eeOPApqYrI0YMio4OCgsL 6N/fy2W/AQAAAIDeoRcHJ5SWlqamplZWVgoh1Gp1YmJiWlqat7e33HV1j9tvH56dHfrRR198993F tmYUFxYenTt3zG23DXPmhVFRd0h/dtcwbAAAAAC9HZG4V6qvr09KSpKmDQshIiMjTSZTr5s27Iz2 xzZfudKclfXhK6/MdeZVgwf3j4ub1E11AQAAAOgL2HKml7FarcnJyYGBgUVFRXa7fdq0aXv37t26 dWufzMPXNXHiLYcOffXf/10rdyEAAAAAeiUicW9SUFAQGBi4Zs0aq9Xq6+ubnZ29d+/ekJAQueuS TUrKVE9Pj5ycigsXfpK7FgAAAAC9D5G4d6isrJw8efKiRYvq6+tVKlViYuKpU6cSExN79TJaXXfb bcOiou44e/ZCfv4nctcCAAAAoPchEru77du3+/v7T5kyRVpGKywsrLq6Ojs7u88so9VFMTF3DR8+ sLDwaF2dRe5aAAAAAPQyRGJ3ZzKZ6urqrly5EhQU9NZbb7311ls6nU7uotzIwIH9EhODr1xpNhrL 5a4FAAAAQC9DJHZ3jz/+uBBi2LBhH3/8cUREhMJHSl/TrFk61tkCAAAA0AlEYncnDZAeOnQoYbgd rLMFAAAAoBOIxOgLbrtt2OOPjz979sJrrx2WuxYAAAAAvQaRGH3EM89MHD584JYtR1hnCwAAAICT iMToI1hnCwAAAEBHEYnRdzjW2ZK7EAAAAAC9A5EYfYq0zpbcVQAAAADoHYjE6FOkdbbkrgIAAABA 78C+PuiVKiufaetSYmJwYmJwTxYDAAAAoJeilxgAAAAAoFBEYgAAAACAQhGJAQAAAAAKRSQGAAAA ACgUkRgAAAAAoFBEYgAAAACAQhGJAQAAAAAKRSQGAAAAACgUkRgAAAAAoFBEYgAAAACAQhGJAQAA AAAKRSQGAAAAACgUkRgAAAAAoFBEYgAAAACAQhGJAQAAAAAKRSQGAAAAACgUkRgAAAAAoFBEYgAA AACAQhGJAQAAAAAKRSQGAAAAACgUkRgAAAAAoFBEYgAAAACAQhGJAQAAAAAKRSQGAAAAACgUkRgA AAAAoFBEYgAAAACAQhGJAQAAAAAKRSQGAAAAACgUkRgAAAAAoFBEYgAAAACAQhGJAQAAAAAKRSQG AAAAACgUkRgAAAAAoFBEYgAAAACAQhGJAQAAAAAKRSQGAAAAACgUkRgAAAAAoFBEYgAAAACAQhGJ AQAAAAAKRSQGAAAAACgUkRgAAAAAoFBEYgAAAACAQhGJAQAAAAAKRSQGAAAAACgUkRgAAAAAoFBE YndntVqFEOfPn5e7EAAAAADoa4jE7stqter1+tTUVCGExWKpq6uTuyIAAAAA6FNUcheAayspKUlI SJBisIeHx9ixYzUajdxFAQAAAECfQi+x26mqqpo3b154eLiUh6Ojo0+ePFldXU0kBgAAAIDuRS+x G7FYLHq9Pj8/32azCSGCgoLWr18fHBwsd10AAAAA0DcRid2C3W4vLCxMTU1taGgQQmi1WoPBEBER oVar5S4NAAAAAPosIrH8Wk4bVqvVKSkpy5Yt8/b2lrsuAAAAAOjjiMRyqq2tTUpKKikpkU5DQ0PX r1+v1WplLQoAAAAAlILlteRhtVoTEhICAwOlPDxu3Li9e/fu3r2bPAwAAAAAPYZILINt27YFBgbm 5uba7XaNRmMymQ4fPhwSEiJ3XQAAAACgLAyc7lF7cnKS16w5/uWXQgiVSrVs2bKUlBR2VwIAAAAA WRCJe0pNTf7TTy/56CPpLDQ0NDs7OyAgQN6iAAAAAEDJPJqbm+Wuoa+zWkVmpsjJsdpsgUL43XCD 6c9/nhYTI3dZAAAAAKB0RGJXsttFQYHIzBR1dUII4eNT8+STuowMFRssAQAAAIAbIBK7TFmZSEgQ x48LIYRKJRITRVqaYNowAAAAALgN5hK7QEODSEoSRUXCbhdCiJAQYTaLcePkLgsAAAAA8H8QibuV zSZWrxbr1gmLRQghAgJEerqIiBAq2hkAAAAA3A5RrfuUlIiEhH9NG/b2FkajiIkRarXMVQEAAAAA 2kAk7g7l5SI1VZSX/+t07lxhNgutVs6SAAAAAADX4yl3Ab1cY6NYtEjMmPGvPBwcLHbuFDt3kocB AAAAwP3RS9xZVqvIyhK5uf+aNuzjI0wmERXFtGEAAAAA6C3Ib51SWSnCw0V9vRBCqFQiNlYYDGyw BAAAAAC9CwOnW9i1SyxYIG69VfTvL269VSxYIHbtuvadWq2wWoUQIiJCHDggzGbyMAAAAAD0Oh7N zc1y1+AGTp4Ujz4qjhy5xqUJE8SbbwqdrvXP8/OFTidCQlxfHAAAAADAJeglFuLECTF1qjhyRISE iJ07xaVLorlZXLokdu4UDzwgDh8W99wjTpxo/VRMDHkYAAAAAHo1xfcSX7kibr9dfPaZWLFCZGZe 44bly0VWlhg7Vpw4ITz5FwQAAAAA6DsUH4k3bxbR0eLuu8XBg23eM2WK+PvfxcaNYtGiHqwMAAAA AOBaiu/23LlTCCF+97v27pGuvvtuT9QDAAAAAOgpiu8lHj5cNDaKhgZx001t3nP2rBgxQgwbJs6d 68HKAAAAAACupfhI3L+/+Okncd1G8PAQ/fqJy5d7pCYAAAAAQE9Q/MBp57G2FgAAAAD0LYqPeTfe KIQQX3/d3j3ffCOEEMOG9UQ9AAAAAICeovhIPHWqEEKUlrZ3z3vv/e+dAAAAAIC+QvGRODxcCCGy s9u7Z906IYT49a97oh4AAAAAQE9RfCResEAEBorDh0Vi4rVveOEFceiQGDtWPPVUz1YGAAAAAHAt xUdiT0/xX/8lRowQ69aJBx8Ue/b8a1npy5fFjh1i+nRhMgkfH/Ff/8XyWgAAAADQxyh+EyZJba2I iBBHjlzj0sSJYts2odP1eE0AAAAAANciErewa5fYskV89JH4+muh1YopU8TCheKhh+QuCwAAAADg EkRiAAAAAIBCMT8WAAAAAKBQRGIAAAAAgEIRiQEAAAAACkUkBgAAAAAoFJEYAAAAAKBQROKr+PsL Dw9RUCB3HQAAAAAA1yISAwAAAAAUikgMAAAAAFAoIjEAAAAAQKGIxAAAAAAAhSISAwAAAAAUikgM AAAAAFAoIjEAAAAAQKGIxAAAAAAAhSISAwAAAAAUikgMAAAAAFAoIjEAAAAAQKGIxAAAAAAAhSIS AwAAAAAUikgMAAAAAFAoIjEAAAAAQKGIxAAAAAAAhSISAwAAAAAUikgMAAAAAFAoldwFuJ2KS5ds QgScP+8rdyUAAAAAAJeil7i1BWfPzhBiz7FjchcCAAAAAHAtIjEAAAAAQKGIxFfx9RVCiMmT5a4D AAAAAOBaROKrqFRCCDFggNx1AAAAAABci0gMAAAAAFAoIjEAAAAAQKGIxAAAAAAAhSISAwAAAAAU ikgMAAAAAFAoIjEAAAAAQKGIxAAAAAAAhSISAwAAAAAUikgMAAAAAFAoIjEAAAAAQKGIxAAAAAAA hSISAwAAAAAUikgMAAAAAFAoIjEAAAAAQKGIxAAAAAAAhSISAwAAAAAUikjcWmNjoxDi7NmzchcC AAAAAHAtIvH/qqiomDJlitVqFUKsWLFi5cqVNptN7qIAAAAAAK7i0dzcLHcN8mtsbNTr9fn5+Xa7 XQjh4fGvZvHz8zObzWFhYXIXCAAAAADofkrvJbbb7bm5uaNHj87Ly7Pb7VqtdsuWLZ9//nlUVJQQ or6+Pjw8fMaMGRUVFXJXCgAAAADoZoruJd6zZ09cXFxdXZ0QQqVSLVu2LC0tzdvbW7paVlaWkJBw /Phx6WpsbGxKSoqfn5+MBQMAAAAAupFCI3FNTU1ycnJJSYl0GhMTs3Tp0oCAgFa32e32wsLC1NTU hoYGIYRarTYajfHx8SqVqqcrBgAAAAB0N8VF4sbGxqysrJycHGnacHBwcHZ2dnBwcDuPWCyWnJyc tWvXSitv6XQ6o9EYFhZGMAYAAACAXk1ZkbigoCApKclisQghfHx8DAZDTEyMk8m2rq4uOTm5uLhY ytKhoaFms1mn07m2YgAAAACAyyglEpeXlyclJVVWVgohVCpVYmJiWlqaRqPp6Hv27Nmj1+sd74mJ iTGZTI7pxwAAAACAXqTvR+K6urrU1NSioiKpdzckJMRsNo8bN64r78zLy8vMzKyvrxdC+Pr6Ll26 NDExkXHUAAAAANC79OVIbLFYsrKycnNzpTnAQUFBZrN52rRp3fJym82WkZHhePmkSZNMJlNISEi3 vBwAAAAA0AP6ZiRutVK0RqORpg2r1errPtvY2Giz2ZzcbKmurm7JkiWlpaXSaVhYmNFovHrlagAA AACAG/KUu4DuV1ZWNmHChEWLFjU0NKjV6vT09DNnzsTHxzuTh4UQycnJo0ePzs/PlwZat0+r1b7/ /vt79+6VYnBxcfHkyZNXrlwpreAFAAAAAHBnfaqXWJo2vG3bNuk0Ojo6PT1dq9V26A0TJkyQAq1O pzOZTGFhYc48KPVLJycnNzY2CiE0Go3ZbI6MjGSCMQAAAAC4rT7SS2yxWFauXDl+/HgpDwcFBe3c uXPTpk0dysNCCK1We+DAgYiICJVKVVtbGx4eHh4eXltbe90HVSpVdHT0qVOnli1bplKpLBbLwoUL J0+eXFZW1qlfCAAAAADgcn2hl7igoKDltGGj0ej8bsNt2bNnT0JCghSGVSpVbGys0Wh0crOlqqqq jIyM4uJi6TQqKspkMvn6+nalHgAAAABAt+vdkbiioiI5Obm8vFwIoVKpli9fvnTp0k7sNnxNdrt9 zZo1WVlZ0jjqjm62VFJSkpGRIe1grFar4+PjjUYj46gBAAAAwH301khcV1eXkZFRWFgoLYI1d+5c g8EQFBTU7R+yWCypqamO1bY6tNmS3W7Py8vLysqSdjDW6XQGgyEyMrLbiwQAAAAAdELvi8Q2m231 6tVr166VNgTW6XRmszk0NNSlHz1+/HhCQoJjYnCHNluyWCxJSUmO9B4SErJ+/Xo2agIAAAAA2fWy SFxcXJycnCxN8fX29jaZTF2fNuy8bdu2JScnS12+3t7e0jhqJ8dptwzVKpUqPj4+LS3Nx8fHpQUD AAAAANrRayJxTU2NXq8vLi622+3SelcpKSl+fn49XIbNZsvJycnMzJT6qH19fc1mc1hYmJOxvOWq XRqNJiUlJT4+3slVuwAAAAAA3asXRGKr1ZqRkZGXlyel0GnTpplMpuDgYBlLamhoyMjIcEwwDgoK 2rBhw6RJk5x51m635+bmZmRkSKt2+fn5mUwmJhgDAAAAQM9z60jcankqrVabnp4eFRXlJus2V1VV LVmyRFpTWqVSRUVFGY1GJzdbamxslHI+E4wBAAAAQC7uG4lLS0tTU1MdmxglJiampaW52xhju91e WFiYnJzc2NgohFCr1WlpacuXL3cytFdVVSUlJTkmGEdHRxuNRiYYAwAAAEDPcMdIXF9fn5SUJE0b FkJERkaaTKaenzbsPIvFkpOTk5WVZbPZhBA6nS4tLc353uyWq3ZpNBqj0diTa4YBAAAAgGK5VyS+ etqwwWBwchNg2dXW1mZmZjo2WwoNDTUYDE5OMLbZbGvWrMnMzJRCdVBQ0Pr16+WdLw0AAAAAfZ4b ReKCggK9Xi91lvr6+kqrMfe6ztKW472FENHR0SaTycmx0HV1dXq9vrCwUDqNjIxMT09ngjEAAAAA uIhbROLKysq4uDjHOlXx8fEGg8Hdpg07T1oVLDMzs6GhQQih0WjS0tJiY2Od/I3Ky8sTEhKqqqoE E4wBAAAAwJVkjsTbt29//vnnP//88ytXrgghwsLCTCaTTqeTsaTu0tjYmJWV5RgErtVqN23a5Pwg 8Pz8/NTUVGnVrv79+99///27du3qdX3mAAAAAODOZI7E995774EDB4QQQUFBaWlpYWFhfSz11dTU pKamFhcXS6ehoaFms9nJzG+xWLKysl566SXp3wsOHz4cFBTkwloBAAAAQGG8Vq5cKePnL168uHv3 7mHDhp06dWrcuHGenp4yFuMKPj4+kZGRAQEBR44cOXfuXG1t7fr168+ePXvvvfeq1er2n1Wr1TNn zuzfv/9f//rXIUOGrFu3rmdqBgAAAACFkDmCStNrhw4d2sc6h1uJjIysrq42Go0ajcZut+fm5o4e PTo/P9+ZZ2+++WYhxLBhw1xcIwAAAAAoTl/rlXVbKpVq+fLlp06dkpbRbmxsXLJkSWBgoGNMdfs8 PDxcXSEAAAAAKA2RuEf5+PiYzeYDBw5MmzZNCFFTUxMeHj5jxgzHpk0AAAAAgB7j1pG4qKjI39/f 399f7kK62aRJk/bv379z506tViuEKCsrmzx5clxcnLQ2NQAAAACgZ7h1JLZarXV1dXV1dXIX4hJz 5849depUenq6NKG6qKhI7ooAAAAAQFncOhL3eSqVauXKldXV1dHR0QaDQcrGAAAAAICe0ZfXee4t /Pz8Nm3aJHcVAAAAAKA49BIDAAAAABSKSAwAAAAAUCgiMQAAAABAoYjEAAAAAACFIhIDAAAAABSK SAwAAAAAUCgiMQAAAABAoYjEAAAAAACFIhIDAAAAABSKSAwAAAAAUCgiMQAAAABAoYjEAAAAAACF IhIDAAAAABSKSAwAAAAAUCgiMQAAAABAoYjEAAAAAACFIhIDAAAAABSKSAwAAAAAUCgiMQAAAABA oYjEAAAAAACFIhIDAAAAABSKSAwAAAAAUCgiMQAAAABAoYjEAAAAAACFIhIDAAAAABSKSAwAAAAA UCgiMQAAAABAoYjEAAAAAACFIhIDAAAAABSKSAwAAAAAUCgiMQAAAABAoYjEAAAAAACFIhIDAAAA ABSKSAwAAAAAUCgiMQAAAABAoYjEAAAAAACFIhIDAAAAABSKSAwAAAAAUCgiMQAAAABAoYjEAAAA AACFIhLLz2q1rly5sri4WO5CAAAAAEBZVHIXoHRFRUXJycl1dXW+vr4zZ8709vaWuyIAAAAAUAq3 jsTe3t5arVbuKlylqqoqISGhvLxcOg0LC7Pb7fKWBAAAAACK4tYDpyMiIs6cOXPmzBm5C+lmjY2N CxcunDx5spSHQ0JCDhw4sH79eo1GI3dpAAAAAKAgbt1L3PfYbLbc3NzMzEyLxSKE0Gq1JpMpIiJC 7roAAAAAQImIxD1n27ZtqampdXV1QggfH5/09PSoqCh6hgEAAABALjJH4p9++kkIYbVa5S3D1Soq KlJTU8vKyoQQKpUqNjY2PT3dx8fHmWfPnz/v+BMAAAAA0I1knkv8zjvvCCEaGxtnzJghJcY+prGx MSkpafr06dJvFxoaeuzYMbPZ7Ewettvta9asWbFihRDCYrFI3csAAAAAgO4icySeNWvW4MGDhRBl ZWUzZsxYsmRJfX29vCV1F2na8Pjx43Nycux2u1ar3bt37+7duwMCApx5vKSkJDAwMDk5+cKFCx4e HmPHjmWINQAAAAB0L5kjcUJCwvfff799+3Y/Pz8hRH5+/ujRo1euXNnbh1KXlJRMmDAhISGhoaHB 29vbZDIdO3YsJCTEmWcrKyvnzZs3b9682tpaIcTMmTOPHj1aXV1NJAYAAACA7uXR3Nwsdw1CCGGz 2VavXr127VopDGu1WqPRGBkZKXddHXb8+HG9Xl9cXCydRkVFGQwGJ3dXtlgsmZmZUq+yECIgICA7 Ozs0NNR11QIAAACAkrlLJJbU19cnJSUVFxdLmTAkJMRkMk2aNEnuupxisVhycnKysrJsNpsQIjg4 2Gw2O198bm6uXq+XNmfy8/MzGo0RERFqtdqFFQMAAACAsrlXJJZUVlbGxcVVVlZKp7GxsWlpadLI avdkt9sLCwuTk5MbGxuFEFqtVtpgSaVyakHv4uLizMxM6fdVqVSJiYlpaWkMkwYAAAAAV3PHSCwp KCjQ6/XSaltqtdpoNMbHxzsZMntSWVlZXFxcTU2NEEKtVsfGxhoMBm9vb2eeramp0ev1RUVF0unM mTOzs7PHjRvnwnIBAAAAAP+f+0ZiIYTVas3IyMj7f+zdf1xUZdo/8AsccbSxxhVtcsfEbVQszHFF w8QNVyoqfMKW3cUWV3x0CzfaKH8nvpAlX2ho6KoLrZT4yH7hSU13MaXEoEdMWjDGpEClmBZSVFxI UEcZmO8fN83OwswwAzNz5pz78371hzEHuNDP3JzrnHPfd1YWm2Cs0WjS09OjoqKErqtLY2PjmjVr cnJy2P+Gh4fv3r3bwbvZbW1ta9asyc7OZk9ZY9owAAAAAACA53l1S8x0m2AcFRW1du1aYScYGwyG rVu3btiwgfXqQUFBGRkZ4eHhjnyu0WjMyspKSUlhT1krFIq1a9cmJiZi2jAAAAAAAICHiaAlZoqK itasWWOecLt8+fJVq1YJMuE2Pz9/qyOQWQAAIABJREFUxYoV7IlupVK5du3ahIQEBxvaoqKidevW lZWVsf+Njo5OT093cD1qAAAAAAAAcC3RtMREZDQaN2/evGnTJrYss1KpTEtLW7JkiccmGJeVlb38 8suW636lpaU52JbX1ta+/PLLhYWF7H8jIyNTU1O1Wq27agUAAAAAAIDeiKklZtgM3tzcXPYcdVBQ UHp6urtn4Xb7puHh4WlpaQ4+vN3W1rZixYrs7GzsNgwAAAAAAOBVxNcSM2VlZWvWrCkpKWH/GxkZ mZGRodFoXP6Nut2a1mg0a9eudXyDJct1s5VK5apVqzBtGAAAAAAAwEuItSVm8vPz161bV1tbS0Qy mWz16tXLli1z4QRjy68vl8sTExOTk5MdnzZsnvxMRHFxcWlpaSqVylW1AQAAAAAAQD+JuyUmIoPB sHHjxi1btrDFn5VKZUZGhuN3cW2pqqp6+eWXzXehY2Nj09LSHNxgqdsS2WFhYWlpaSEhIf2pBwAA AAAAAFxO9C0xo9frU1JSzHN9tVptampqZGRkH75UU1PTpk2bzJshBwcHp6enh4WFOfK5RqMxJSVl 69at7HNVKlVaWlpcXFwfygAAAAAAAAB3k0hLzJSVla1YsaK0tJT9b1xcXHJyslNbHOn1+hkzZjQ2 NhKRUqlMTk5OSEhw8IZzbm5uSkqK+SlrttuwQqFw+scAAAAAAAAAj/AVugBXCgkJOXHixO7du9mU 3ZycnIkTJ77xxhsGg8HBrxAQEMA2RkpKSqqrq0tMTHSkHy4tLZ09e/aCBQtYPxwVFXX27NmkpCT0 wwAAAAAAAN5MUi0xExcXV11dnZycrFAoDAbDunXrxo0bt2PHDvZMda8yMzPLy8tTU1MdWaaroaFh 0aJFs2fPZrOOg4ODT506dfDgQXesfQ3Qf1FRUT4WfH1977nnnilTpqxaterixYtCVwfgSkg78ANp B34g7eAOknpwuhu9Xr9mzZr9+/ebJxhnZma6apkro9GYlZW1adMmtsGSSqVKTU2Ni4vr57JeAG4V FRX1t7/97a677vL39ycik8nU1NR08+ZNIlIqlR999NG0adOErhHANZB24AfSDvxA2sEdJHiX2Cwg ICAvL+/EiRPBwcFEpNPpZsyY8bvf/a6pqamfX/nw4cPTpk17+eWXGxoa2OZPFy5cWLJkCfphEIXo 6Gi9Xq/X67/99tvW1taCggJ/f/+WlpbY2NjOzk6hqwNwJaQd+IG0Az+QdnAtKbfETEhISHl5+a5d u9jFpOzs7LFjx65YsYItCu0snU731FNPzZ07V6fTEVFMTEx1dXVaWhqmDYNI+fr6RkZGbtu2jYjO nz9fWVkpdEUA7oK0Az+QduAH0g79J/2WmFmyZEl9ff3y5cvlcnlbW9vmzZsnTpxYWFjo+FdoaWlZ unTptGnT2GcFBQUVFxfn5eVh2jBIwOzZs9kfvv76a2ErAXA3pB34gbQDP5B26A9eWmIiksvl6enp Fy5cYPsVNzQ0PPXUU/Pnz9fr9fY/kU0bHjt2bFZWltFoVKvVu3fvrqysdHCzYgDv197ezv7g4+Mj bCUA7oa0Az+QduAH0g79wVFLzKjV6oKCgmPHjgUGBhJRfn7+uHHjli5d2tLSYvX4kpKSKVOmsANk MllCQsKpU6ewjBZITEFBAfvDlClThK0EwN2QduAH0g78QNqhP7hriZnw8PDq6updu3YFBASwm8Dj xo3Lzs62PKa2tvapp56aPXt2VVUVEUVERFRXV2/fvl2tVgtUNYCLmUymy5cv79y5c+XKlUT03HPP YSIASBXSDvxA2oEfSDu4hJQ3YXJEW1vbpk2bNm/ebDAYiCgkJCQjI0Or1W7YsGHjxo3m3ZuSk5Oj oqKELhagv9jWBT0/LpPJYmNjt2/fjoXiQDKQduAH0g78QNrBHTi9S2ymUChSU1MrKyujo6OJqKys bMaMGQqF4o033jAajUqlMiMjo7y8HP2w044cofnzacwY8vOjMWNo/nw6ckTomqDLXXfdNWbMmDFj xowaNYpNuVGpVAsXLsRvkT5yPO0+PmRnjpP9V6FPkHYXw9juxZB2F8PY7sWQdhdD2k3wg2PHjgUF BbG/Fh8fn4SEhKtXrwpdlAidO2eaPNlEZOW/KVNMFy4IXR/Xnn32WSJauHCh+SNNTU2LFy8mosGD B+t0OuFKEydn085essX+q+AkpN3FMLZ7MaTdxTC2ezGk3cWQdpPJZDLxfpfYUnh4eGVl5eDBg4no D3/4w/bt29lWxuCEr76imTPpzBkKC6OCArp9m0wmun2bCgro5z+nykqaMYO++kroKuHfhg8fvmvX rqeffvrWrVtxcXHY4N4JSLvYIO19h7SLDdLed0i72CDtfYe0/wAt8X+QyWQjR44kIq1WK3QtItTZ Sc89R01N9PrrVFxMkZHk50dE5OdHkZF0/DitWkVNTfTcc4TRypv4+Pj86U9/GjhwoE6n++tf/yp0 OSKBtIsT0t4XSLs4Ie19gbSLE9LeF0i7BbTE3WE3s77bu5fOnaPp02nDBusHbNxI06fTuXO0Z49n K4NePPDAA4sWLSKilJQUtqoc9AJpFy2k3WlIu2gh7U5D2kULaXca0m4BLTG4DtsR7g9/sHcMe/WD DzxRDzhj7dq1fn5+X3/99R4OBj4XQNrFDGl3DtIuZki7c5B2MUPanYO0W0BLDK7zySdEROHh9o55 4gkioo8/9kQ94Iz777+frU6Rmpp6584docvxeki7mCHtzkHaxQxpdw7SLmZIu3OQdgtoicF1vv+e iOjee+0dM2IEEVFbmyfqASe9/vrrgwYN+vbbb7Ozs4Wuxev1J+1si4Ke/4EHIe1OwNgucki7EzC2 ixzS7gSk3YKPyWQSugbvMnbsWL1ev3v37ri4OKFrERs/P2pvp14T5eNDgwaRweCRmgDco29pd+S3 BcZk8DYY24EfGNuBH0i7BdwlBtcZPpyI6NIle8dcvkxENGyYJ+oBcJ/+pN1ksv4fgHfC2A78wNgO /EDaLaAlBteZOZOIqKjI3jEfffTvIwHEC2kHfiDtwA+kHfiBtFtASwyuM28eEVFGhr1jtm0jInrm GU/UA+A+SDvwA2kHfiDtwA+k3QJaYnCd+fNp4kSqrKTEROsHrFxJp0/ThAm0cKFnKwNwNaQd+IG0 Az+QduAH0m4BLTG4jq8vvf8+jRxJ27bRnDlUWEhsBfw7d+jvf6dZsyg9nfz96f33yRfBA5FD2oEf SDvwA2kHfiDtFrDidHdYcbq/amspOprOnLHy0tSplJ9PGo3HawLr9Ho9EalUKrlcLnQt4uRs2tk6 jbZGXfuvQv8g7f2FsV08kPb+wtguHkh7fyHtRIS7xOB6Gg3pdPTBBxQTQ/ffTwMH0rhxFBtLH35I FRU4Z/IqY8eOHTt2bFlZmdCFiBbSLh5Ie38h7eKBtPcX0i4eSHt/Ie1ERCQTugCQqKefpqefFroI AI9wPO32r5uK8KoqcAdjO/ADYzvwg/u04y4xAAAAAAAAcAotMQAAAAAAAHAKLTEAAABY09BAbW1C FwEAAOBeaInBFbKzae5cWr9e6DoAPA49A0hYSgoNHUpLlwpdB4DHYWwHfiDtaInBNU6epMOH6bPP hK4DwOPQM4CElZQQESmVApcB4HkY24EfSDtaYnCNwkIiojlzrL/6xhv0y19Sbq4nKwLwEPQMIFUN DVRbS0T05JPWD5g7l0aPpqwsTxYF4CEY24EfSDtaYnCBpiZqbCQiCgmxfsDx47R/P33yiSeLAvCE pqZeegYA8aqq6vpDcLCVV41GKivD43YgTRjbgR9IOxGhJQYX0Om6/qDVWnm1rY1KS4ls30MGEK+K iq4/WO0ZAESNtcRqNSkUVl7V6aipiYgoMtKjVQF4AMZ24AfSTkRoicEFWEus0Vg/baqpIaORiCg0 1KNVAXjA8eNEtnsGAFE7eZLIxrVO+mHkVypJo/FcSQCegbEd+IG0ExFaYnCBDz4gsv3UtPm0SaXy XEkAnlFWRmS7ZwAQtaIiItuP0p07R0Sk0ZBM5rmSADwDYzvwA2knIrTE4ALs4brHHrP+6pkzRERB QThtAgmqqSHiffoNSJN5krCtR+nYWRTfD9qBZGFsB34g7USElhj6q6GhazpZUJD1A9h9Bjw1DdKj 13eFH10BSI95kQirY3tLS1dLjEUiQHowtgM/kPYfoCWG/mFLZ8lkNk+b2Cp2M2d6tCoAD2B7j5Ht 60EA4vXhh0REWq312WW1tV2LRNiaMgMgXhjbgR9I+w/QEkP/sPVXQkN7OW3ifooCSNCXXxLZ7hkA RI2tQRoebu9VLBIBkoSxHfiBtP8ALTH0D3u4ztbjFmzvb39/Uqs9VhGAh9jvGQBEjS0SMWGC9VfZ CqXBwVgkAiQIYzvwA2n/AVpi6B/WEts6bfrkEyLsWglS1NbWS/gBxEun61pby9YDPmwiMffLsYAE YWwHfiDtFtASQz+UlHSdNoWFWT+AvdMeeshjFQF4SFkZGQxEmBQAUsSWRVSprMe7pYUaG4mIAgM9 WhWAB2BsB34g7RbQEkM/sCfr/P1Jo7Hyqvm0Ce80kB62aYGtngFA1NjmeVqt9eeiKyq6FongfoVS kCCM7cAPpN0CWmLoB3baZOusqLCQjEaSy/FOAwkyr8eLuZQgPew8ydYCpCz8QUFYWwskCGM78ANp t4CWGPqB3SW2ddrEGuagIPL391xJAJ7BVqTgftMCkCCDoWtsnzzZ+gFsRgy2XwJJwtgO/EDaLaAl hr5qael6Lz3yiPUD2EkVnqwD6Wlq6poUYKtnABCvkpKu2WW21iC13zADiBfGduAH0v6f0BJDX5WV dU0ns7W2FmuYsbYWSE9padcfsG8BSA/reDUa689FNzZibS2QLIztwA+k/T+hJYa+YqdNarX156Jr arpOm/BwHUgP25TVVs8AIGZtp08T2e54CwuJiORyPAEEEoSxHfiBtP8ntMTQR2/k5KwhKrT1RmIX n5RKrK0F0tP25ZdEuEsG0jRj//6xRIfuusv6y6xhDg4mpdKTVQF4AMZ24AfS3g1aYuijv9bUbCSq GD7c+svnzhERBQVhFTuQGoPhvpKSiXZ6BgDRajx1qsZo1BMZH37Y+hH2F6MGEC+M7cAPpL0HtMTQ F/pz52o6Oogo/Ne/tnrAq/n564lq1GqPlgXgfhW5uW0mU42dngFAtEr/+U8jkczXN2LxYisvGwyj P/74KaIK3CIGycHYDvxA2nvCHTzoi4qzZ4lIJpNp58/v+aqxpSW7oaGNSK1U4oEMkJiS774jOz0D gJidqaoiosAHH1Tce2/PV6vee6+hs7OBKHn6dI+XBuBeGNuBH0h7T7hLDH1RU1NDRIGBgXK5vOer pceOtRERUdhvf+vZugDc7kxtLdnuGQBEzTy2W3215OJFIlL6+QXPnevRsgDcD2M78ANp7wktMfTF mTNniEhrY+msqsuXiUitVmtmzPBoWQDux3qGIMylBCmqqKggoqlTp1p99czXXxNRyM9/LsMiESA5 GNuBH0h7T2iJwWlGo7GoqIiIHnnkEasHsIYZ7zSQHoPBUFVVRUTPPvus0LUAuFhVVZVeryeicBvb VLLwY2wH6cHYDvxA2q1CSwxOq62tbWlpIaKwsDCrB+h0OsJpE0hRSUmJwWAgxBukiN03kMvlVp8A MhqN7Cxq8uTJnq4MwM0wtgM/kHar0BKD09hZkVwutzrfrKWlhbXEM2fO9HRlAG5mP/wAonb69Gki 0mg0Vp+LLioqamtrI6LQ0FBPVwbgZhjbgR9Iu1VoicFpJ0+eJNunTWVlZUajkWw/egcgXmxSQEhI COZSgvSwGTEhISFWX2VnUWq1OiAgwJNVAXgAxnbgB9JuFVpicBo7bYqMjLT6qvm0SaFQeLQsAPdj 4cddMpAeg8HAHvB58sknrR6ARSJAwjC2Az+QdqvQEoNzjEZjbW0t2V6S9LPPPiPbi1GDdyopKZk/ fz57KhJsqa2tbWxsJMylFDmk3ara2lr2gI+tR+lKS0sJYztIEcZ24AfSbgtaYntKSkqWLl2KMydL NTU1bFK+zY0rS0rI9n0G8E4pKSn5+fnTpk1j/3xgFVt8iHCjTOSQdqvKysqISKFQWB3bGxoa2GLU WKEUpAdjO/ADabcFLbFNBoNh0aJFWVlZ48aNY1s1AhEVFhYSkUqlsnXa1NTURETBwcGergz6SqfT sd6gpqbm8ccf37hxo9AVeSk2DgQGBmJFCvFC2m358MMPiSgsLMzq7DI2I4ZwFgVShLEd+IG024KW 2KaUlBR2UbyxsXHWrFmHDh0SuiKvwJYkDQ0NxWmTZOzZs8f8Z6PRuGbNmnnz5rF9tsAS6xmQbVFD 2m1hE4lt7TbPXtVoNFgkAqQHYzvwA2m3BS2xdd99993mzZvN/2swGObNm7dgwQI8RG1/X8rjx48T kVarxWmTiLCTXUuHDh2aNGmS+QIHMOwvBLuLiRrSblVbWxu7BGxrqvDf/vY3wnIsIFEY24EfSLst aImty87OZguNWMrNzZ02bRpbXIpPBoOBTUKw9bgFm42G7ZckoKGhYcqUKevXrxe6EG9RW1vLrogh 3tKDtFdVVdlfWwtnUWL0ySef9DyTgW4wtksD0u4IpN0OtMTWsevlPdXU1EyZMiUrK8uz5XiLkpIS NuLYmirM7sBgFTtpMBqNKSkpjz/+OFuckHMs2zKZTKPRCF0LuB7naWeLRAQEBFjdc9h8FoXlpkWB XZsmovXr18+YMYPzJyB6hbFd1JB2pyDtdqAl7m7SpEn2t65ua2tbunTpokWL2MLLXDl58iQRBQYG 2j9twpR9sXDkX6qoqGjatGls/xWesUkBgYGBcrlc6FqgL5B2O+wvEmFeoRRjuyiEhIQkJSWxf6yK ioopU6YsWrSooaFB6Lq8FMZ2UUPanYK024GWuLsBAwY48uhFTk7OrFmzzCcKnGA/r61J+exanVwu x6x9USgpKXEwwA0NDbNmzVqxYgXPTyWxRRojIiKELgT6Amm3j/3lPPTQQ1Zf/eCDD4goODgYi0SI RWpqanV1dV5enkajMRqNOTk548aN27hxI9ZD6Qlju9gh7Y5D2u1AS/wfcnNzHV9Zml2Oys/Pd2tJ XoW9l2w9F/3JJ58QUVhYGC4+iUJKSopTx2/evHn27NncXnytrq4moqlTpwpdCPQF0m6HXq/vtrZW S0uL5dkkG/nDwsIEKA76ISYmprq6evXq1QqFwmAwrFmzZtKkSdg+oxuM7dKAtDsCabcDLfG/NTU1 rVixwqlPMRgM8+fPX7duHQ/3E2pqathpk3lS/u9+97uYmBjzAWwKB24Ri0JJSQnbndUppaWlkyZN KioqckNFXu3NN9+8ceMGYS6lOCHt9pWWlhqNRrlczpreAwcOjBkz5qc//an5AHYPGYtEiJFMJktL S7tw4UJMTIxMJtPr9fPmzXvqqafYZQ7A2C4lSLt9SHsvTPCDJUuW9PmvUavVXrhwQeifwL0qKyvZ g3PNzc179+798Y9/zH72Y8eOmUym9vZ29kzd3r17ha4UetfPGz5Lliy5deuW0D+E27W3t+/atcty Mbnly5cLXRQ4DWm3r66uLj09feXKlVbTXl5ezv63vLxc6EqhX06cOGH+95XJZImJic3NzUIXJQyM 7ZKHtJsh7Q5CS/xvxcXF7MJS306blErlvn37hP4h3Kuurm7lypVKpdLyBx86dGh5eXlxcTH730uX LgldJvTu1KlTcXFx/XnEXdqXgZqbm5OSklQqlfnnHTBgAPtDXl6e0NWBc5B2+3qmfdCgQea0p6en E5FKpWpvbxe6UnCBvLw8tVrN/n2VSmV6ejpX/7IY27mCtCPtjkNL3N2FCxdWr17dretzXGJioiTf bxcuXIiNjbW8XhAREZGbm+vv78/OljIyMhQKhUajEbpScEJzc3NycrL5F4azlErlwYMHhf4hXKy6 ujoxMdGyfQoNDc3Ly9Pr9WyhdblcfvToUaHLBKch7T05kvZNmzYtWbIkISFB6GLBZW7dupWcnGz+ ha7VaiV/Qd+EsZ1XSDvS7iC0xNY1NzdnZmb2bduu0NDQ+vp6oX8ClykoKAgLCzOPJnK5PC4uznzD pLy8nD0vrVarL1261NraKmy10Aft7e15eXl9frh09erV0nis9OjRo1FRUZY/WlRU1IkTJ8wHVFdX s2tAcrnc8uMgIkg7g7TDhQsXLDMQGxsr1UchkHZA2s0HIO22oCW2p729/ejRo304eVIoFGyGrXjd unVr+/btlvsPq1Sq1NTUnt3+sWPHWFccFhYmjZNFblVXV8fHx/fhEYnAwMDq6mqhy+8jNs3GcrUJ pVK5fPnyurq6ngdXVlay3yVqtVqqv1A5gbQj7WAymYqLi83bTctkstTUVMlc2kbaoRuknUHarUJL 7BA2Fc3ZacaJiYlibBHr6uqSkpIsHy8MCgratWuXnZ/l4MGD7MiIiAgx/shgqW+PSMjlctFNTbl6 9Wq3qKvV6rS0tKtXr9r5rOLiYjYUqNVqq79sQESQdqQd2tvbd+/ezU6RiUilUmVmZop6ChjSDrYg 7QzS3hNaYifU19cnJyc7dVchODhYRMtNnThxotsCY+Hh4UePHnVksEhOTmafEh8f74FSwd3YIxIR ERFOXQmKj48XxTXXs2fPxsbGWk6zCQ4O3r17t4O/F3fv3s3+WoKCguz/1gFRQNrtQNo5wSbbm3MS EhIixocqkXZwBNJuQtp7QEvstFu3bu3evdvxuwoqlaq4uFjoqu1pb28vKCgIDQ011yyTyeLi4ior K536OklJSezTk5KS3FQqeJ6zC84FBAScOnVK6KptOnr0aGRkpLnzkclkkZGRxcXFzl4k3r59u/lX KZ6MkAyk3SqknR9nz561nIgYExMjlrVRkHZwFtKOtFtCS9xHzk4zXr16tRc+mNHc3Jyenm45Ydjf 3z8pKanPd7bNeztnZGS4tlQQFrsSFBIS4kja5XJ5Zmam0CX/B1Z/UFCQZZHx8fH9mRSamprKvlRs bKwXvruhz5D2npB2rhQUFJh3MVUoFMnJyV57uoy0Qz8h7Ug7g5a4v6qrqx3c8TIsLMx7HqK+cOFC t6VlNBpNZmZm/58DjIyMJCKZTIbl3SXJ8e27Y2NjveGx0p7zHdRqdXJyskseE4qNjWVfMy4ujvPf JZKEtFtC2rnS3t6+fft2846mGo1m3759XvXvjrSDqyDtSLsJLbGrOLjjpUqlKigoELbU4uLiblPm wsLCDh486Kq3QWtrK7vehuXdJYyNzr0GXtjHStnlKsuoBwUF7d6924Wty61btyIiItgXT05OdtWX Ba+CtDNIO4euXr26fPlytqkEEYWEhHjD+rRIO7gD0s552tESuxJbyM68wrst6enpnr8Mw2qzfBRQ qVTGx8eXl5e7/Hs1NzezrlipVLrj64OXcGSLV5lMtn37dg8Hvri4uFtVMTExfWtX8vLy7F83vXXr Vnh4OPsuu3bt6kfV4NV4SHuvkHY+VVdXm8+YZTJZfHx8c3OzIJW4MO1Hjx6NiYmx84gs0s4npJ3b tKMldoued2K7CQ8P99h77NatW5mZmZZzD1Qq1erVq936FPelS5fYIygqlcp7HhcHN+l1+kB0dLQH 1jNk02wsr0n5+/snJCT0eZqNeZeC2NhYO4c1NzebJ+QfPHiwb98LxEKqaXcQ0s6tvLw888Ki/v7+ njxvdmHau83GtP9TIO3cQtr78ROIFVpiN+o5X9eSWq1290rUly5dWr16teXzfhqNJi8vzzNz3sxb gWu1WizvzoPm5ua0tDRbi7GrVCr3PTLAZi5YvtcCAgLS0tL6H3XzinGrV6+2c1h9fT37XYJZ9JyQ ZNodhLRzq729PS0tzZy9wMBAd0+5dGHa2SmZeb4oEYWGhvY6lw1p5xbS3tefQ6zQErudnTMnuVzu poeoKysr4+PjzTMiiCgsLOzYsWOef6KP3UvRaB68elX4tWfAA+xs8SqTydLS0lwbwp637EJDQx3f l88R0dHR7CvbX0f97Nmz7BqQXK44eVLnqu8O3kx6aXcQ0s6zq1evWk5uDAkJcccFIBem/cSJEzEx MZZfKiwszPEzfqSdZ0g7P9ASe4ideWiRkZEuvIlaUFBgeX4ml8v7sMOwCx09enTAgAFENH78nBs3 DEKVAZ539uzZxMREy4uU5oHeJYGvrKw0T/gxv5XcsaJba2ureY6N/aeJTp06NWDAQCK6664Ren2j yysBryWZtDsOaedcZWWl5eokLpxy6cK0d1tCxd/ff/ny5X14ABVp5xzSzgO0xJ5WXFwcHR3dbR6a Wq0+duxYf74smzBs3lqNiJRKZXJysjdsO/7cc68Q0ZAho1999ZDR2CF0OeBRt27dysjI6PaUhFqt 7vMzOe3t7QUFBSEhIebrPv7+/omJiXV1dS4t/D80Nzez2Thyudz+o0evv57h4+N7331PL116+PZt o/tKAi8kjbQ7DmmHffv2mSdn9XPKpQvTfuvWre3bt1vOxlSr1Wlpaf3ZbxZpB6Rd2tASC+PSpUvL ly+3nDAgk8n69hB1zwnDgYGBu3fv9qqtxqOiVk2evGXq1Le3bhVskxIQ1rFjx6Kjoy2fL129erVT gWfjfre58WlpaZ5Zqa66uprNsVEoFPafm0pP/9vUqW9Pnfr2unUf4xoQn8Sedsch7dDa2pqcnGy+ 0B8YGOjs2jwuTHvPk6uIiIiDBw+65IwIaQekXcLQEgupubk5NTXV8pZCRESE4++KnhOG2ZvBrTX3 jdHY8fLLR9i7689/xrZM/Kqrq7Nccy4sLMyRBcl7jvvBwcFHjx718BRK8xwbpVJp/1Lu1q2nWNrX ry/m5HcJ9CTqtDsOaQeTyVRXV2dedoGdjTiyp6sL037ixAnLOZ9s+xyXT/tE2sGEtEsUWmLhtbe3 Hzx4UKvVsmQ7slQpmz3v7jcBmRlyAAAgAElEQVSDa924cWfBgvfZu+vvfz8ndDkgpFu3bu3atYtl XqlU7tu3z9aRlZWVMTEx5us+crmc7csnVHtw7Ngxdnk4MDDQ/hzR1NRPWNr/+tcvPFYeeCHxpt1x SDswJ06cMO/4IpPJkpKSbF3ld2Hauy3UolAoVq9e7UiL0jdIOzBIu8SgJfYip06dYu8ZuVyekZHR 863S3t6+d+9eyzeDv79/cnKyWLY4un79NuuKZ8zIPnnyn0KXA8IrLi6OioqSyWTLly/v9qhPt2k2 SqXSS6ZQ7tu3j1XV6+5iy5Z9yH6XHDzo3q1iQRTEmHbHIe3AtLe379q1iz1Qw85SMjMzLQPvqrSz B1DNtxOISKPRZGRkeGA3MqQdGKRdStASe536+nr2rF1UVJT5glNzc3O3VVs0Gs327du9/+5BN3V1 zXPm7GFdcWVl788QAg/q6+uTkpLCw8Orq6tv3bq1efNmy4Ui2LjvVVMoMzIy2G+4yMhIO+9B8zWg qVPfLi6u82CB4L1El3YHIe1gqbm5OTEx0dwJBAQEvPfee65K+9WrV5cvX95tz1VPTi5A2sES0i4N aIm9VGtra2ZmZmRkZHp6+uTJkwcNGmR+M0RGRh48eFB0zbDZuXNNrCsOC9v95ZdXhC4HvEV7e7tW q/Xx8TFHXavV7tu3z6sWijNLSkpiRcbFxdnviufP3z916tvTp+/CkxFgJq60Owhph26qq6vNO9hZ 6nPaT506Zbl9q0wmi4qKOnVKgGU7kXboBmkXO7TE3m7GjBnszcB2GBbkzeByFRXfzZiRPXXq2088 sbep6YbQ5YC3ePLJJ4nIx8cnLi7Oy+fGm0ymmJiYH7ri39s57PLltqioPHYN6J///N5j5YGXE1fa HYS0Q09Hjx4dMmQIGy1/+9vf9i3tPadQJiQk9GHPVRdC2qEnpF28fEwmU89LGuA93n333cWLFxNR c3Oz5Tp1Yvfpp/WvvvphR0fn+PHD//znZ5RKee+fA1K3efPmFStWqFSqS5cuCV2LQ+bOnXv48GEi euqpxUeOZNs6rL7++m9/+35r651Ro4ZmZUWOGjXUgzWClxJd2h2EtENPb7755qpVq4YPH97U1OTU JxoMhpycnHfeeaeiooJ9RKPRLF68OCEhwXK7DaEg7dAT0i5SvkIXAL14+OGH2R8MBoOwlbjWo4+O TkiYTkTnz1/7/e8/aG29I3RFIDy2eGNTU5NY0r53715/fw0RffLJR3v36mwdNnr03Zs2Pe7nN+Di xdb4+MPXrt30YI3gpUSXdgch7dATO5P5/vvvHU97Y2PjmjVrxo0bt3TpUtYhaLXavLy86urq1atX e0OHQEg7WIO0ixRaYm9nnp1fW1srbCUut2DBw0uXBhPR+fPX3njj/zo6OoWuCATG0m40GhsaGoSu xSFKpbKy8qRG8/Nx4xJ37Kj46KOvbR05ffqPN29+gv0uef31j2/ebPdkneCFRJd2xyHt0I1Tadfp dIsWLRo9evTGjRvZ8ZGRkceOHSsvL7fcftJLIO3QDdIuUmiJvR3bk4mIWlpahK7F9RYv/unzz08i ouPHv0FXDOapAc4+biQgtXpkWVnB/fff19HRuW5d8enTF20d+eijo1eunElEp09fXL26CGnnnBjT 7jikHSw5mPbDhw/Pnj17ypQpOTk5RqNRLpcnJCRUVlYWFBSEh4d7W3tghrSDJaRdpNASi4BarSai xsZGoQtxi1deeeTRR0cTUUHB+b/85XOhywEhKZVKdgFIXE3C8OFDsrIilUp5R0fn669//PXX/7J1 ZFRUIHsy4tNP63ENiHMiTbvjkHYw6zXtOTk506ZNmzt3bklJCRGp1eq0tLRLly5124vVayHtYIa0 ixRaYhFg25GdO3dO6ELcYsAA382bn9BqVUT0zjuf/7//d1boikBIbPPtmpoaoQtxzqhRQzMyIvz8 Bly7dvP3vz9y8WKrrSMXL/7pL37xIOEaEIg27Y5D2sHMftq3bNnCplBqNJrMzEw2hVJcS4oi7WCG tIsRWmIRYG8tqd4lJiI/vwEZGREPPjiCiLZt++zEiX8KXREIhl0AunbtmtCFOG3SpJGbNz8xZMjA a9duvvrqhy0tNtfVWLMm9OmnxxHRO+98fuiQZNsh6JV40+44pB0Y+2lftmxZWFjY0aNHq6ur4+Pj vWQ9IWch7cAg7WKEllgE/P39SdItMRENHeqXkfHk8OFDOjo6t20ru3OnQ+iKQBhsmoBIFxx69NHR SUk/GzDA9+uv//Xqq4V2YpyU9LNJk0YS0TffNHuwQPAuok6745B2oN7SHhcXV1xcHBER4bVTKB2E tAMh7eIk7n8MTgwfPpyk3hIT0fDhQ7Zvf+rNN0/+8Y+z/fwGCF0OCEPsF4CeeOKBpqabb7116uzZ K+vWFScnPzZkyMCeh/n5DfjTn54+ceJbdpEV+CT2tDsIaQdC2oEnSLsY4S6xCLD13KW3CVNP48cP z87+L+lt/w2Oe+CBB0jkaX/++UnmddTfeuuUrcOGDvWTxm8R6DMJpN1BSDsg7cAPpF2M0BKLALva ZDAY2trahK7Fo4KD/xIc/Jc//ekzO6/a/4jjr4KXYGkX+xq8r702g608cehQzd69XzjyKc6mHSRA GmnvA6SdQ0i7nVftf8TxV8FLIO12XvVwSY5DSywCbE4CcfAMhlW5uV9IY5YCOIItStHW1mYw2Fye ShRWrnyUraO+bVvZe+996eBnIe1ckUza+wZp5wrSjrTzA2kXY9rREosAu9pEvLbEnZ2mTZtOCl0F eIj5ApDY1xwaMMDXvI76li2nPv203pHPQtq5Ipm09w3SzhWkHWnnB9IuxrSjJRYBhULBlmjnsyWe OnXU6dMXP/xQ+lMygIiUSiVbg1ECaR861G/nzmdGjRra0dG5fPlHOl3vPxHSzhUppb0PkHauIO1I Oz+QdjGmHS2xOLCtiXmYqd/TqlUzfX19tm4tu3mzXehawO2USiV7LEIaaR861C8rK3L06Lu1WlVA gLLX45F2rkgs7c5C2rmCtCPt/EDaxZh2tMTiwN5atnb9lraf/GRYbOzDV6/ezM7+XOhawBMkti7F qFFDd+58ZuvWCKVS3uvBSDtvJJZ2pyDtvEHakXZ+IO2iSztaYnFg0xL4fACDiJYs+emIEUNyc7/Q 61uErgXcjq1LIaULQKNGDXV8q22knSvSS7tTkHauIO1IOz+QdtGlHS2xOLC3ll6vF7oQYQwZMjAx MaSz05SWVtrrwWyR957/eaBOcAm2EXdNTY3QhQjDqbSD2CHtSDs/kHacyfADaRfd2I6WWBwmTJjg 50dNTTzOSWCefFIj0vn64Kwf/YgefphMpjNCFyIYpJ0fSDvSzg+kHWnnB9IuurTLhC4AHHLnTm1c HHV2cvrgNLNq1cyYmP1bt5bNmjVmyJCBtg6rqHjB6sdxeVUs/Pyuh4TQ7dsO7VokVQ6mHcQOaSek nRtIO+FMhhtIO4ltbMddYnEYNeoBIvL1pcuXvxW6FsH85CfDnn9+0tWrN995p1LoWsCNfvSjUUTk 59fR3s7jHvcM0s4JpJ2Qdm4g7YS0cwNpJ7GlHS2xOAQH/4z94fp1Hnf9NnvhhakjRgzZu/eMiObr g7OefPJZIvLxMTU3I+1Iu8Qh7QzSzgOknUHaeYC0MyJKO1picRg5cszAgXIiunWrWehahCTG+frg LJUqkP2hrY3H3QvMkHYeIO0M0s4DpJ1B2nmAtDMiSjtaYnHw9ZXdfbeKiK5f53o6MVnM1xe6EHCX IUOUvr4y4v4XCSHtHEDazZB2yUPazZB2yUPazcSSdrTEoqFQ+BPRtWv8ziU2W7Vqpq+vj9BVgBsN G8Y24uZ09wJLSLvkSS/thw7V9O3sB2mXPOmlvc+QdsmTXtqlPbajJRaNe+5hu37rhS5EeGy+vtBV gBuxtN+4weke95aQdsmTWNrr66+/+ebJF188fODAV85+LtIueRJLe38g7ZInsbRLfmz3MZlMQtcA DnnvvVePH986cWJ4YuIxoWsBcK93313w2We5Wm3U0qUHha4FwL0klvZVq4qOH/9GqZQfPBgzdKif 0OWAd5FY2gHskFjaJT+24y6xaNx9971EdOWKODa8BugPNk0AM3CAB1JKu07XWFKiJ6LY2Iclec4E /SSltAPYJ6W08zC2oyUWDba8ljTeWgD2KRTDiYjzrQuAE5JJe0dH51tvnero6HzggR8tWPCw0OWA N5JM2gF6JZm0czK2oyUWDTZN//btttu324Suxe30+paOjk6hqwDBsN0L2tqaOjuNQtfidu+88/mV KzeErgIEI5m0HzlS+9VXV4koIWH6gAHWzy6Qds5JJu2OQNo5J5m0czK2oyUWjZEjNewPkn92uqXF 8OKLh5cs+fvXX/9L6FpAGOyZiNu3277/XuK7jh05ciEzs+LXv96HtHNLGmlvbb2zY8c/iGj69B8/ +qja6jFIO0gj7Y5A2kEaaednbEdLLBpsTgJxsDVxZmbFtWs3v/66efDggULXAsJgz0SQ1NPe0dGZ lVVBRAEByoAApdDlgDCkkfYdO/5x7drNAQN8bd1GQNqBpJL2XiHtQFJJOz9jO1pi0Rg0SDFwoJyk fpf44sXWjz6qJaKFCyePGjVU6HJAGIMHd42q0k77//7vlxcvthLRa689authJJA8CaT9ypUbBQXn iGju3PEPPjjC6jFIO5Ak0u4IpB1IEmnnamwXcekcYhecrl+/LHQhbvTWW6daW+8olfJf/OJBoWsB wQwZomQXgCS8nlxLi2HXrtNE9OijoydNGil0OSAYCaR9y5ZTd+50DB3ql5Aw3eoBSDswEkh7r5B2 YCSQdq7GdrTEYsKmJbS0iH7xOls+/bSeLfKekDBdqZQLXQ4IacQIDUn6AtC2bWWtrXcGDPB97bUZ QtcCAhN12ktK9MePf0NE//3fP7U1biPtYCbqtDsCaQczUaedt7EdLbGYsBW2xHu1qVfbtn1GRJMm jZw7d7zQtYDA7rlHRUTXrumFLsQt6uuvHzlSS0QvvPBTUc+9AZcQb9o7OjrffPMkEQ0fPuTXv37I 6jFIO1gSb9odgbSDJfGmncOxHS2xmLAVthoba4QuxC2OHLnAlqoT+2wEcAk2TUCMv0gcsW1bWUdH 5/DhQxYsmCx0LSA88ab9f//3S7bxxrJlM/z8Blg9BmkHS+JNuyOQdrAk3rRzOLaj8RCTu+4aTkQ3 b7YIXYjr3bzZzhZ5l8BsBHAJdgFI1Os02lJSojdPELD1mwa4ItK0X7lyg80imz79x3PmjLV6DNIO 3Yg07Y5A2qEbkaadz7EdLbGYmHf9Ft27q1dZWRVXrtyQxmwEcIl7751AYl6n0ZaOjs633jpFRFqt 6umnNUKXA15BpGnfubOstfUOES1ePMXW5hxIO3Qj0rT3CmmHnkSadj7HdrTEYmLemlhi04mvXLmx f/9XRBQXp5XAbARwiSFDupIgsbSbtytYuXImJggAI8a0f/zx6TffjG1p0c2dO37q1FFWj0HaoScx pt0RSDv0JMa0czu2S+TH4IR51+/vv5fUXeI33zzJFnmPjX1Y6FrAW7D11UmETxzZceXKDbaj/Zw5 Pxk/frjQ5YC3EGPaf/e7Vw2GRr3+3fnzH7B6ANIOVokx7b1C2sEqMaad27FdJnQB4ASFwn/8+LB7 7lGZLztJgHk2wmuvPTp0qJ/Q5YC3GD1a+9//vffuu1VKpVroWlxm69aymzfb/fwGvPLKI0LXAl5E dGkvKSn55psTRBQVFT9+/GirxyDtYJXo0u4IpB2sEl3aeR7bfUwmk9A1AL/u3OmIjn7v4sVWrVb1 9tuRknn6AqCn06cv/v73Rzo6Ol94YeoLL0wVuhyAvpsyZYpOp9NoNDrdmbvuGtLzAKQd+IG0g2Tw PLajAwEhsdkIAwb4Smk2AoBVf/nL5x0dnaNGDY2L0wpdC0Df5eTk6HQ6IkpPT7d6zkRIO/AEaQdp 4HxsRxMCgmltvbNnj46IoqICpTQbAaCn48e/OX36IhHFxwdLY7sC4FNbW9u6deuIKDIyMioqyuox SDvwA2kHacDYjpYYBJOZWd7SYvDzG7BwoRT2+Aaw5ebN9m3bPiOiSZNGPvmk9fUqAEQhJSWloaGB iFJTU60egLQDP5B2kAyM7WiJQRjnz187cKCaiOLitKNGDRW6HAA32rPnDJsgkJT0M0wQAPGqra3d sWMHEcXHx2u11p+aQ9qBH0g7SAPGdsKK0+JiMFw/dmxLefn/NjV94+sru/fe8RMmhM2YETd6tPge 6F+5cofReO+Pf3yP9GYjQP9JKepffHHuj398ZcSI/4qL+9kDD/xI6HLA64go7StWrDAYDCqVKi0t zeoBSDvYJ6K09wppB/tElHaM7YQVp0Xk+vXLmzY92tT0DftfmWyQ0Xib/fntt0X2j/jmm7tWrXpB odDs2vXXmJjpQpcD3kVKUSeiBx/8WXX1iUGDhlVX14wdO1LocsC7iCjtRUVFjz/+OBGlpaWtXr3a 6jFIO9ghorQ7AmkHO0SUdoztDO4Si8aBAyubmr6ZNOmZuXNT7r9/io+P740b17744nBpabbQpTnH aDRu2pRMREOGDJo3z+sulYHgJBN1IqqoqKiuPkFEzz//slR/i0B/iCXtRqNxzZo1RBQUFLR8+XKr xyDtYJ9Y0u4IpB3sE0vaMbab4S6xaLz0ktxovL1jx62BA+VC19IvWVlZS5cuJaLDh08880yo0OWA 15FM1Ilo9uzZJSUl48dPqKw8M2TIIKHLAa8jlrTv2LHj5ZdfJqLi4uKwsDCrxyDtYJ9Y0u4IpB3s E0vaMbabSXB6tLRdvVordAn90tTUlJKSQkTR0dHoh8EOsUediHJzc0tKSoho06aNEv4tAv3n5Wlv aWlh43ZsbKytcyakHRzk5Wl3BNIODvLytGNst4SWWDQeeeQ3RLRt25Nff31S6Fr67tVXX21sbFQo FOnp6ULXAl5KGlFva2tjDyNFRETY2uIPQBRpX7NmTVNTk1wuX7t2rdUDkHZwhCjS3iukHRwhirRj bLc0YP369ULXAA4ZN+5nNTVFly+fP3ny3YsXq9TqhxUKf6GLck5hYeGqVauIKCUlJTIyUuhywEtJ IOpEtGrVqo8++kgmk/3tb3/z9xdf/eAZ3p/2qqqqF198sbOzc+3atdHR0VaPQdrBEd6fdkcg7eAI 7087xvZu0BKLxsCBg2fMiDOZOr/55tOLF78sKdnZ1FQ3dux0ufxuoUtz1Lx5865cuRIYGJiTkyOT YWk3sE4CUW9sbFywYIHRaHz99dd/9atfCV0OeC/vT/vixYtrampUKlV+fr6fn1/PA5B2cJD3p71X SDs4yPvTjrG9GyyvJT5NTd8cObLh1Kk9nZ0dcvnQ2Ni3p02bL3RRvcvNzV2wYAERHT16NCIiQuhy QAREGnUiWrRoUU5OjlKprKurUyqVQpcDIuCdaa+pqZk2bVpbW9uuXbuWLFli9RikHZzlnWl3BNIO zvLOtGNs7wl3icVnyJBhkyc/O21azLVr33733dnPPz+gVj98330TrR58+3abTGbl2o+HtbW1zZs3 7/r16yEhIW+88YavLyaxQ++cijoRVVcX+fr6Dhki8MBdWlq6bNmyzs7OtLQ0W+tVAHTjnWn39/d/ 7rnnhg0blpiYaHXcRtqhD7wz7b1C2qEPvDPtGNt7wl1icTtwYOVHH6Wr1ZPXrdNZPWDdunEGQ1tQ UMT9908dMyb4Jz8J8XCFzKuvvrp161YiKi8vDw4OFqQGELVeo37zZsuyZSM6O40qVeDo0dpRox4K DAwPCAj29fXoI/oGg2HKlCk1NTVBQUHl5eVyuVfvvgDeCWkHfiDtwA+k3ZuhJRY3o/HOSy8NGjBg 4J//fKfnq21tTStW3NfZaTR/ZMgQ5ahRQaNHa8ePf2zs2JBhw9QeKLKqqmratGkGgyEhIWH79u0e +I4gPfajTkS1taVbtsy2TDsRDRwoV6kCR40KGj/+MY0mdORIjbt/r6xfvz4lJUUmk504cSIkRJgr UCB2SDvwA2kHfiDt3gwtsbh9//2llStHKZWjNm36ruert2+36XSHamqO19aWXrliZW80hcL/oYci xoyZOmpU0JgxwW56TmPu3LmHDx8OCAiorKzkYTYCuIP9qDPt7Ybz50tqa09evFhVX6+7dk3f7YCB A+WjRgVNmvTM6NHa0aO1w4cHuLbIlpaWsWPHtrS0JCYmZmRkuPaLAz+QduAH0g78QNq9GVpi0UhN 1T788NyxYx+ZMCFs0CCFydRZU/Px/v3LGxrOzJ27PjIy2f6n377d9t13VV9+WfjPf57+7rsqq++x 0aO1o0YFqdWTH3440lXvsdLS0tmzZxuNxry8vJiYGJd8TZC2fkbdrLGxpr5ed/Hilw0NuurqovZ2 Q7cDhg1TazShavXkUaOCRoyYeN99D/Sz8pdffnnHjh1yuby+vl7y2xWASyDtwA+kHfiBtIsOWmLR ePFFH6sff/jhuUuXvu/sQxQ3b7aw9rixsUavr7h+vbHbAUOGKGtqhsnlo5577vm5c5/v291do9E4 bdo0nU7H1WwE6CfXRp1pbzc0NtZcvFh1/vwn7KGJbg8m5eWRyTTw5z+f9fjj84KCgoKDgxUKhVPf QqfTTZs2zWg0JicnY9lCcBDSDvxA2oEfSLvooCUWjUuXvjp9el9Nzcd1dZ91dhr9/IZMnBj+yCOx U6Y818+v3NlprK/XsatQX35Z2NhYwz6el0etrV3HqFSq0NDQxx57TKvVBgUFOdghb9y4cc2aNURU XFzMyYJ10H/ui7rZ7dttjY01X3xxuKHhTH29rr5en5v7HwfI5fLg4GCtVjthwoTQ0FCtVtvr15w1 a1ZpaWlAQEB1dTWu/oCDkHbgB9IO/EDaRQctMXTHHrHW6yv/+Me3vvrq26tX23seExgYGB4e/tBD D2m1Wq1Wa/Vto9frJ06caDAYYmNjFy9erNPpEhMT3V8+gNNu3GjJy9tRVPThlSuys2ermpqauh3g 7+8fFBSk1WqffPLJ4ODgno8S5eTkLFq0iIh27NjR2NhYW1ubl5fnoeoBnOHCtB88eDAqKspDdQM4 D2M78ANjez+hJYZeNDU16XS6qqqqDz/8sKysrKWlpdsBSqWSXYWaOnVqRESE+QbyggULcnNzFQrF smXLUlJS5HJ5XV2dSqXy+E8A4JzGxsbCwsLTp09XVVXpdLqemVepVCEhIXPmzGEPTSgUikmTJtXU 1ERFRf3iF79YsGABYb8xEIn+pP3gwYOC1AzQNxjbgR8Y252Flhic09jYqNPpjh8/XlZWVlVV1fM9 plartVrtiBEj/ud//qejoyMtLS0+Pn706NFtbW0czkwACSgrK6uoqDh37lxpaalOZ2UvwWHDhjU3 NxNRZWVlUFDQuHHj9Hp9fHx8Zmamx4sF6Jde037XXXfduHGDiCorKx15DA/Aa2FsB35gbO8VWmLo l5qamqKiojNnzrA7yQbDfyyFN2jQoMbGRqVSuWjRopycHKVSWV9f7+xcfwDvYfnQREVFheWDScHB weXl5fTDFHqZTHbhwoWAgADBagXoHztpHzly5OXLlwWsDcC1MLYDPzC2W4WWGFzmxIkTp06d8vX1 1el077///q1bt37961/n5+cTUW1t7cSJE41G4+7du+Pi4oSuFKBfqqqqtm3bNmHChNjY2M8//zwt La28vPzw4cPh4eFEZDAY7rvvvpaWltTU1KSkJKGLBXCNxsbGzz///IUXXvjuu+/uueeehoYGXN8E icHYDhzC2M6gJQbXWLdu3caNG1Uq1YULF9hqWzk5OREREebJw48//nhRUZFGo6murpbJ+rL6PICX mD9/fn5+vkqlqqurY2k3GAyWi8wtXbo0KytLqVTW1dX1bQMzAO9UU1MzceJEIkJXANKDsR24hbHd V+gCQCKeffZZo9HY0NBQWFjIPhIXF2e5mNbatWuJqLa2tqSkRJAKAVyFhbmxsfHQoUPsI90WXV+7 dq1MJmtpadm/f78A9QG4TWBgYGxsLBHt2bNH6FoAXAxjO3ALYztaYnANtug0EW3YsMFoNPY8ICws LCgoiB3g6eIAXCooKCgkJIRsh1mtVrMH7Xbu3Gn17QAgXgsXLiSi2tra3G6bYAKIHMZ24BnnYzta YnAZdnm1oqKioqLC6gHJyclEVFJSUlNT49HKAFwtNTWViKqqqsrKyqwesGzZMiLS6XR4LAIkJjw8 PDQ0lIjefvttoWsBcDGM7cAtzsd2tMTgMtHR0exJ6S1btlg9IDIykh2wadMmj1YG4Grh4eFsxdF1 69bZOoA9N4G0g/S8+OKLRFRaWmrrAiiASGFsB57xPLajJQZXYldP9+/fr9fre74ql8vZAbm5uVYP ABAR9lhEUVFRQ0OD1QNeeukldgAeiwCJiY6OVqvVRLRt2zahawFwMYztwC2ex3a0xOBK8fHxbA3G d955x+oBS5YsUSqVRqORwzcbSExMTAxLu63HIuLi4vz9/e0cACBScrmc3UzIz8/H9U2QGIztwC2e x3a0xOBKCoUiOjqaiHbs2NHS0tLzAKVSyfYlzs3NtXoAgFgoFIolS5YQUXZ2dltbW88DZDIZu5mQ k5PT1NTk6foA3IldADUajXzOOgMJw9gOPON2bEdLDC62bNkytkVBfn6+rQPkcnlTU1NOTo5nSwNw sZdeekkmk7W1tWVnZ1s9ICEhQS6XG43GHTt2eLg2ALfy9/ePiYkhouzsbFzfBInB2A7c4nZsR0sM LhYYGMi2KNi0aZPVLQrUanVUVBRhDwMQv4CAAPabY9u2bVbD7O/vz+427Ny502AweLo+AHd65ZVX ZDIZrm+C9GBsB57xObajJQbXY0tT6PX6oqIiqwewO8m1tbWHDx/2bGkALsYen9Pr9YcOHbJ6wOLF i4moqanJ1t0GAJEKDDYdKcsAACAASURBVAyMjIwkXN8EKcLYDtzic2xHSwyuFxoaGhQUREQpKSlW DwgODmZbn23YsMGjlQG4WkhICAuzrRXjtFqt+VeLRysDcL9XXnmFiHB9E6QHYzvwjMOxHS0xuAW7 UVxWVmZrs3t2QEVFhU6n82hlAK7GthYrLS0tLS21egC721BTU2Pr7QAgUmFhYWyP1g0bNvBzMwE4 gbEduMXh2I6WGNyi153NwsPDAwICCDeKQfwiIyM1Gg3ZvldgTvu61as9WRiAB5ivb1ZUVAhdC4Ar YWwHnvE2tqMlBrcwb1Gwf/9+WzubJa9bxw5o/OILT9YG4Fq9pl0mk6199VUiKvrkE/3+/R4uD8Ct oqOjVSoVEe3Zs0foWgBcCWM78Iy3sR0tMbhLfHy8QqEwGo229rKPefJJpY8PEW1ZssSzpQG42JIl S1QqldFotPVYRPTzzyt8fYloy5o1ni0NwO3YbvPZ2dl6XN8EacHYDjzjamxHSwzuolQq4+PjiSg/ P9/qFgXyH//4lWnTAonGXLhA2MMAxEyhULDfHPv377eadqW/f/LTT6cSper1ZOO5CQCRWrVqlXLI EKPRmIvrmyAtGNuBZ1yN7WiJwY1+85vfkN0tCpLefbeaKKGlhbCHAYjcwoULiaihoSE7M9PqAcv3 7k1SKJRGI9l4bgJApJRKZeQDDxDRloqKtm+/FbocAFfC2A7c4mpsR0sMbvTvLQrWriVrC9bJHnqI oqOJiN55x8O1AbhWYGBgbGQkEb3z+utW005KJcXHExHl5lJbm2erA3CvtX/+c6yPz1GTSbF3r9C1 ALgSxnbgGT9jO1picK+XnnqKiGquXz+8YoX1IxYvJiLS6Yibrc9AqhY++ywR6QyGw6+9Zv2IxYtJ JqOWFsrK8mhlAG4WGBq69ze/CSGinTuttw0AooWxHbjFz9juYzKZhK4BJG7S3XfLW1vTxo8PP3fO +hGzZlFpKUVE0NGjni0NwMV+N3r0mIaGhOBgZXm59SN++Uvav580GqquJpnMs9UBuFNVFU2aRES0 dy/FxgpdDYArYWwHfvExtuMuMbjdie3by4nCz5+3eR944UIiosJC4mPrM5CwXbt3JxEpKyqosND6 ES+9RERUW4vHIkBqgoIoNJSIaNMmoUsBcDGM7cAvPsZ2tMTgdsqFCykoiIjI1s5mcXEUEECEGcUg fuHhXWm3FeawMNJqiYhsbOkBIGKrVhERVVWRTid0KQAuhbEdeMbB2I6WGDyCTRjev5+qqqy8KpN1 HZCdjT0MQPReeYWIaP9+qqmxd0BJCZWVea4qAA+IjOy6vrlhg8CVALgcxnbgFgdjO1pi8Ij4ePL3 J7J9ozghgZRKMhpxeRVELy6O1Goiorfftn5AbGzXrxZbBwCIl7ltaGwUuhQAl8LYDjyT+tiOlhg8 Qi6nuDgiouxs61sUKJVdb7bsbGpp8WRpAC4mk3VtLZaTYz3MMlnX/PncXKqt9WhtAO62ZAkplUSE PVpBajC2A8+kPrajJQZPeemlXrYoiIsjmYza2mjrVs9WBuBqy5aRXE4tLZSTY/2AxMSuxyIwfx4k RqGghAQioqwsXN8EqcHYDtyS+tiOlhg8JSCAoqKIiN55x/rOZgEBXWu779kj7a3PQPrU6q60b9lC BoOVA5RKiokhkuyvFuDawoVd1zdttQ0AIoWxHXgm6bEdLTF40KpVJJNRTQ0dOmT9gBdfJCLS6yk3 15N1AbjesmUkk1FDg80dO9gBLS1IO0iNRtN1fXPnTlzfBKnB2A7ckvTYjpYYPCg4mIKDiWxvURAS QmFhREQ7d3qsKAC3CA7u2sdvwwbrvzk0GoqI6DrA6t0GAPFi1zdrayk/X+hSAFwKYzvwTLpjO1pi 8Cy2s1lpKVVUWD+AbXZfUYHN7kH02IpxFRVUWmr9gORkIqLGRioq8lxVAB5gvr6JGZUgPRjbgVvS HdvREoNnRUVRYCCR7Z3NoqMpKIjI9nZNAGIRFdW1IYetxyKCg7vSjr3HQHrY9c2SEpttA4BIYWwH nkl0bEdLDB7H3kuHDlFDg/UD2B4G+/dTVZXnqgJwh7VriYgOHSK93voB7G5DUZHN5yYARMp8fRN7 tIL0YGwHbkl0bEdLDB4XF9fLzmYJCeTvTyTBpzKAOzExXWlPSbF+QFwcqdVEUvvVAkD0w/XNQ4eo qUnoUgBcCmM78EyKYztaYvA4885m2dnU1mblALm8a0W7rCwpvdmARwpF172C/HzrG3LIZBQXR0RU WGj97QAgXkuWkEJBbW02L4ACiBTGduCZFMd2tMQghFde6drZbP9+6wesWkXBwbR9e9dVWADxiosj mYwMBpvLM77yCu3aRWfPkkLh2coA3EyppPh4IqKcHOnt2AG8w9gO3JLi2O5jMpmErgG4NHcuHT5M Gg1VV5NMJnQ1AO701FNUWEhqNdXVIe3Al5oamjSJjEbat4+io4WuBsClMLYDtyQ3tqMlBoFUVNC0 aUREx45ReLjQ1QC4U1kZzZhBRFRQQJGRQlcD4Fk5OaTRdG3lCiAlGNuBZ9Ia29ESg3CmTCGdjsLC qLhY6FIA3GzSJKqqoshIKigQuhQAAHARjO0AkoCWGISzfz9t20aLF3ctQQEgYYWFpNdTbCwmlQEA SAfGdgBJQEsMAAAAAAAAnMKK0wAAAAAAAMAptMTglY4cofnzacwY8vOjMWNo/nw6ckTomgDcA2kH fjiedh8f8vGx+XXsvwrgDTC2Az/EP7bjwWnwMufP069+RWfOWHlpyhR67z3SaDxeE4B7IO3AD2fT zs6KbJ2i2H8VQFgY24EfUhnbcZcYvMlXX9HMmXTmDIWFUUEB3b5NJhPdvk0FBfTzn1NlJc2YQV99 JXSVAK6AtAM/kHbgB9IO/JBQ2nGXGLxGZyc9+CCdO0evv04bNlg5YPVq2rSJJkygr74iX1zNATFD 2oEffUu7t95JALAHYzvwQ1pjO1pi8Bp79lBcHE2fTp99ZvOYRx6hf/yD3n2XFi3yYGUAroa0Az/6 lnZvPW0CsAdjO/BDWmM7LlCB12Db3P/hD/aOYa9+8IEn6gFwH6Qd+IG0Az+QduCHtNKOu8TgNUaM oKYmamyke++1eczVqzRyJA0bRv/6lwcrA3A1pB340be0e+udBAB7MLYDP6Q1tqMlBq/h50ft7b2/ DXx8aOBAunPHIzUBuAfSDvzoW9od2YcDJzDgbTC2Az+kNbbjwWkQIaxIAfxA2oEfSDvwA2kHfogh 7SIoEXgxfDgR0aVL9o65fJmIaNgwT9QD4D5IO/CjP2k3maz/B+CdMLYDP6Q1tqMlBq8xcyYRUVGR vWM++ujfRwKIF9IO/EDagR9IO/BDWmlHSwxeY948IqKMDHvHbNtGRPTMM56oB8B9kHbgB9IO/EDa gR/SSjtaYvAa8+fTxIlUWUmJidYPWLmSTp+mCRNo4ULPVgbgakg78ANpB34g7cAPaaUdLTF4DV9f ev99GjmStm2jOXOosLBrebo7d+jvf6dZsyg9nfz96f33RTFNH8AepB34gbQDP5B24Ie00o5NmMDL 1NZSdDSdOWPlpalTKT+fNBqP1wTgHkg78MPZtHvr3pUAvcPYDvyQytiOlhi80pEjtHcvffopXbpE AQH0yCO0YAE98YTQZQG4AdIO/HA87d562gTgKIztwA/xj+1oiQEAAAAAAIBTIni2GwAAAAAAAMAd 0BIDAAAAAAAAp9ASAwAAAAAAAKfQEgMAAAAAAACn0BIDAAAAAAAAp9ASAwAAAAAAAKfQEgMAAAAA AACn0BIDAAAAAAAAp9ASAwAAAAAAAKfQEgMAAAAAAACn0BIDAAAAAAAAp9ASAwAAAAAAAKfQEgMA AAAAAACn0BIDAAAAAAAAp9ASAwAAAAAAAKfQEgMAAAAAAACn0BIDAAAAAAAAp9ASAwAAAAAAAKfQ EgMAAAAAAACn0BIDAAAAAAAAp9ASAwAAAAAAAKfQEgMAAAAAAACn0BIDAAAAAAAAp9ASAwAAAAAA AKfQEgMAAAAAAACn0BIDAAAAAAAAp9ASAwAAAAAAAKfQEgMAAAAAAACn0BIDAAAAAAAAp9ASAwAA AAAAAKfE2hLrdDofHx8fH5+qqiqha+muqqqK1VZRUcE+YqvaAwcOTJ48WS6XDx48+I033uj14wDC 6n8y9Xo9ey+UlJS4ujo3VuKdA465Kp1O1+0jjtTp+EjlYV5bmJt48qfrZ2YAwJL3/EYTNSmdWrhJ z6HbG3hnVX3mLS1xSEiIjwOysrKErtRlTp8+/ctf/vKLL764ffu2XC5vbW21/3Hvd/PmzdLS0osX L7rp+P7z/HeUEmeT6T1/295TCYAo4C3jCDvnLYMHDw4ICIiOjj5w4IDJZBK6Uo64L7o8vync+rOL 99QCJMZbWmJnBQQE5OXl5eXljR49Wuhaeme12kOHDplMpsGDB1dVVTU3N2/atMn+x73fRx99NGvW rPfee89Nx/ef57+jlDibTO/52+5/JWIZcPpZp9f+mF5bmEsI+9NZ/e7e8+YVKYPB8O233x44cCA6 OjosLOz7778XuiJeuC+6PL8p3Pqzi/fUAiRGJnQB/2HmzJm5ubl2Dhg+fDj7g1KpjImJ8UhRLmC1 2suXLxPRpEmTHnroIUc+7v0+++wztx7ff57/jlLibDK952+7/5WIZcDpZ51e+2N6bWEuIexPZ/W7 e8+b1/v97Gc/O3DgQLcPtra2VlVVZWVlHTly5P/+7/9iY2MLCgoEKY837osuz28Kt/7s4j21AInx rpZYLpcHBAQIXYWHdHZ2EtHAgQMd/Lj3+8c//uHW4/vP899RSpxNpvf8bXtPJQCigLeM4wYOHOjv 79/tg/7+/mPHjp07d+6iRYtycnIOHz585syZyZMnC1IhV9wXXZ7fFG792cV7agFSY/IOjzzyCBHN mTPHweMrKytZ/WfPnjWZTHPmzCGi6dOnWz24sLCQHXzy5EnzBzs7O//6178+88wzI0eOlMlk99xz z6OPPpqZmdnR0eF42VVVVb/61a/YV1CpVAsWLDh//vzZs2fZtysvL7da7cKFC3v+QyxbtszWx52t +fPPP2efe/369Q8++GDixIkDBgzow9cxT5dvbm5uaWlZvnx5QEDAwIED77777scee+zvf/+7+cgX X3yxZ+XNzc22/t56Pf5f//rX+vXrg4OD7777bplM9qMf/eixxx7btWtXtwqLi4vZ5164cKHbtzhx 4oTlS71+x/b29r/85S9z5szx9/cfOHDg8OHDZ86cuXnz5hs3btj6O6mvr//Nb37j7+8/YMAAtVqd kJDQ2tpqMpm+//77ZcuWjR49WiaTjRw5csGCBQ0NDd3Kc8k/pdFozM7OnjNnzogRI2Qy2eDBgydM mLB06dJz587Z+pvvyZEfvNdkdmPnb7uuro79b0lJyffff//aa6+NGTNGJpP9//buPbiK8vwD+HNu CbmZExICEm4BBIKNaVoqlSQFRFGQCEmVDGgzGaE62o5aOh2mdbz+oW2tF5iODCIoFipGJxgoUwOm iKFgChiIchoVy0UuCiQE8EDu+/vjmb6/7dlz2ct7Tg7s9/MXvGez+777Pvte9ux5NyUlpaioaPPm zdq9WblUZeUk4BIWdAZqxJvfly9fNlop6lw1NTWFz6e5lkox0giYqy/TGTN0oqJdCi3R/rS2th46 dGjhwoWDBw92uVxer3fOnDn79u1Tb2yxdMzn8919991ZWVlutzsnJ+ehhx46ffq03+/nPdfX1wcc K1TMyGqcoxTzUa3KJ598knd+5syZIJWqoWfc8vnnn/M+ly9fHnGHsvpuQ+En66CKwS4pxuMQK91l /PRoSszry+joTri6hxaKvNGg6e7eRCm6u7tfeeWVKVOmpKWleTye4cOHV1ZWNjc3q7fRP66Wlav4 cZVMiV977TUicjgcX3/9tXbjRYsWEVFubq5IuXTp0m233cZ78Hq9EydOFI9kl5SUfPfdd3rysHPn zgEDBvBf5ebmXnfddS6XKykp6amnnuLEUOO5Z555ZvLkyYMGDSKitLS0yZMnT548efny5aHSjebZ 5/NxujqHopXRv5+WlhZO9/l8PL7xer1er1e0ROvWreMt//CHP0yePNnlchHRyJEjOefcIgQVfvvP P/986NChfIhrrrlm2LBhiYmJ/N/S0tKenh6xH/2XbvgjtrW1/fjHP1afE64FIho3btyxY8e052T/ /v3Dhw93Op3cl3Di/Pnz/X5/YWEhEWVmZiYlJYmdqMd/Uqqyu7v71ltv5ZTU1NSxY8dee+21/N+k pKT3338/dOT+P50FDx+ZhupX9Ft1dXUiqNLT00VQvfXWW+pdWbxUZeUk6KRFf6DOmDEjJxhRpx0d HUYrRdE9JTbdUilGGgET9WUlY4ZOVFRLEZRYK3v79u38FaI6ujwez5YtW7T1aK50iqI0NDSI1mbY sGH8q+Dc3Nzm5mZO3L17t86YkdU4Rynmo1qV0ZgSi7sSTz/9dMQdyuq7DYWfrIMa6pJiPA6x2F3G T48W+/oyOrpjV/3QQpE0GrTS3RstxYULF4qKivhTt9t9zTXX8L89Hs9f/vIXsZn1KbGUGVa/uEqm xG1tbQkJCRTsRmx3dzdXxmOPPSYS77vvPiJKSUlZv34937To6+vbvHnzwIEDiejee++NmIGurq4x Y8YQUW5u7meffcaJ33777dy5c8UVGH48xxP1oqKigD2HStef50OHDvHhZs6cOXbs2NWrV3/wwQci kyb2c8cdd+Tn5zc2NnL6v/71ryFDhtD/3mVQFIVbn5deeini2Qu/fUlJCRFlZ2d/9NFHnNLR0fHs s89yZl599VWxpaFLN8wRy8vLiSg1NbW6ulrcxPrggw84coqLi/v6+rTndtasWSdOnFAUpb29fc6c OUTkdDoffPDB8ePHc+vQ3d0txlh//etfxeGkVOXq1auJKDExsaamRuT56NGjnJOcnJyurq6IVaC/ 4EroyAwl6NkW/daMGTOuv/56EVS7du3ioBo1apR6e+uXqpScBL2E9QdqUD6fLzU1lYiWLl2qTtdf KXqmxBZbKqONgP76st6EmrhspZciFJHhkpKSKVOmiAI2NDQMGzaMiAYNGiS+BLBYuq6uLv7B0YgR I/bu3cuJjY2No0eP5uengp7J8LdRrDfOQVmP+ahW5YoVKwoKCgoKCvR8CaboG7eIuxKrVq2KuENZ fbeh8JN1UENdUozHIVK6yzjp0fqlvoyO7uwwtJAyGrTS3RstxYIFC4goKyvrvffe49uXR48enTdv HofBF198wZtZnxJLGbb1i6tkSqwoSmlpKRFNmzYtYMu6ujre0ufzccrBgwcdDgcRqe+LsHfffZeI HA5HS0tL+AyIpTK2bt2qTr98+fLIkSP5I4lTYkN5Fk1DWlpawEMa5vbj9XpPnTql3njZsmX80dGj R0WilCnx8ePHOYfLli0L2L64uDggSKRMicXTL9rxnFjSUIz/xDkZPny4+lafeDrO5XKJSFMUpbe3 l5vjX/ziF5wiqyp/9rOfEVFZWVnATvx+/9SpU+fPnx/wPZKWoYIrsvstr9d78uRJ9Ud//vOf+aMj R45wipRLVUpOtJewoUDVunjx4oQJE4ho+vTp6u/WDFWKnumNxZbKUCNgqL4sZszcZSu9FKGIDGdk ZJw9e1b9keiS1q5dK6V0NTU1nFJXV6fe0ufziZ/nSZkSx0PMx74qw9AzbuGlyxwOx+HDhyPuUFbf bSj8ZB1Uf5cU+3GI9e4y1J5j36PFvr5ClT0UmwwtrI8GLXb3hkohfo5UU1Oj3rKzs5Mf/PnVr37F KRanxNFudaPqSn0JkxZ3PA0NDWfOnFGnv/POO0RUWFiYl5fHKfz4xODBgxcuXBiwk/Ly8uzsbEVR amtrwx9u69atRJSVlXXLLbeo0wcMGFBZWWmtKEGYy/OCBQtycnKs76eyspKvZEE86XH8+HFzJQol Jyens7Pz+PHj3Eqq8fjjq6++kntEvkpTU1O5h1ArKyvLyMggok2bNgV8VFVVJZ5ZIqJx48alpKQQ UXFxsYg0InI6nbykiniHnqyqVBRFvVshOTn5ww8/fPvttyO+0MVcwWWpqqoSj2kxbVBJuVSl5ETL YqAuWrSopaUlJydnw4YN/BgYk14psloqPY2AofqymDFzJ0p6KSJauHCheGaMzZw5k/OwY8eOUH9l qHT19fVElJ2dPXPmTPWWeXl5P/3pT3XmU4+4ivnYV6Uh33333c6dO+fOnbthwwYiuv/++w0tHSqr 7zYUfhYPqr9Liv04xHp3GVHse7SY1ZdRdhtamB4NWjxRhkrBU6HMzEz+WlhISEjg77dffPFFneUN rx9bXevia0pcX18f6sX37Jtvvgn1t3Pnzk1OTu7t7VWf656eno0bNxLRPffcIxL37NlDRDfccIPT GVh8h8Pxwx/+kIjEzZtQ/v3vfxPR9773Pb4dovajH/1IT2ENMZfnKVOmSNmP+PmBIHrZy5cvGymH Lh6PJycnh9sUNX7iTvoRebGKwsJCdaPG3G43/xREe074XKlx+zVp0qSg6SLbsqry5ptvJqLGxsZ5 8+bt2rWL12w0xFzBZdEGFZ8oIuro6OB/SLlUpeQkKNOB+vLLL1dXV3s8nurq6uzsbPVH0itFVkul pxEwVF8WM2buREkvRUQ/+clPtIn5+flE9OWXX4b6K0Ol4y8lvv/972v3c/vtt+vMp07xE/Oxr8pQ go5b0tLSSkpKeDg7f/785cuXG9qnrL7bUPhZPKj+Lin24xDr3WVEse/RYlZfRtltaGF6NGjxRBkq BW9cUFCg7XDlik2rGyXx9RImK1JSUubMmVNdXV1TU7N48WJO3L59e2trq9Pp5GfoGd+h2bZtW5jI OHHiRPjD8XfRgwcP1n4UNNEic3kOuFVmej/aN0yIe/x8o1G6urq6tWvX7tmz58SJE9GYdaudOnWK iMSaMQH4tjS/N09NNLICnxP+sYQ2XZwoWVVZVVVVX1+/fv362tra2trajIyMkpKS22+/vaysLOBW eijmCi5LwHcXRCQaUIvnKho5CcVEoP7zn//8zW9+Q0TPP/+8dkwjvVJktVR6GgFD9WUxY+ZOlPRS RMQ/3QzAc8LW1tZQf2WodHwmg17148eP15lP/eIk5mNflSZUVVXde++94hfd+snquw2Fn8WD6u+S Yj8Osd5dRhT7Hi1m9WWU3YYWpkeDFk+UoVLwPwJuR0ZDv7e6VsTXlPimm25as2ZNmA3EUmxBLViw oLq6ur6+/vz58/xjA35UYNq0aeqY6+zsJKKUlBRtCyuIpdhC4aEAr+kVQKzAKZG5PGuzZ24/2ps9 UfXAAw+8+uqrROTxePLy8rKzs7kdOXTokPSnpono0qVLFLrWOJ23UQt1TiKeK1lV6XA41q1bV1FR sWLFivr6+nPnzm3atGnTpk0PP/xwZWXlCy+8oF6TMyhzBZdFz61KKZeqlJwEZSJQv/322/nz5/f0 9FRUVDzyyCPaDaRXiqyWSk8jYKi+LGZM7mWrJjfqxEKjalxqPlBQhkrHZ1L7PQP998tbieIn5mNf laFMmzZN/DCeNTU1TZ06VVGU/Px8E/Nhktd3Gwo/iwfV3yXFfhxivbvUc4iI28gNyJjVl1F2G1qY Hg1aPFGGSsHfkOt/+bNpsWl1oyS+psTJycm8/IY5s2bNSk9PP3/+/N/+9rd77rmnt7dX+9Q0EaWl pfHGPGE2h4O1q6tL+1E0LnUpeZa4n+hZu3YtD7l+/vOf//GPf1Q3yk899dTTTz+tcz+9vb06t+SH AEMNTzld4shSbhWUlpaWlpb6/f4dO3a8//77tbW1x44dW7NmzYEDB3bv3h2++YtxwU2I53A1Eai9 vb0VFRUnT57My8vj98ZpSa+UWLZUhurLYsaiF71yoy7os/dc6qCTWGaodDwy7unp0W4pt4qvlJgX YtOAuFyugOyVlJQsXrx41apVTzzxRHl5uaFfEYdirizmws/KQfV0Sf3VsFvpLqWIdsGjVF9GYWih k8UTZagUycnJZPmHh3rG1XFybs2Jr98SW5SYmFhWVkZEvALn9u3bz549m5iYGLDECC9IYPGLe342 I+gjDceOHbOy56Ck5FnifqJn3bp1RDRx4sSVK1cG3KTUPuglbgdqfwYTsMpaGPwEgXaRCcbp2ieU TItGFaSkpMyePXv58uWHDx/+05/+RET79u177733wv9VjAtuQjyHq6FAZb/97W937NiRmppaU1MT qp+TXimxbKkM1ZfFjEUveuVGXdAChnlonBkqHT+2F7TFE2ufSnGlxLzQjw3Ic889l5mZ6ff7H3jg ASk7NFcWc+Fn8aAUqUvq34bdXHcpRbQLHqX6MgpDC50snihDpeDF0vRsbHFcHSfn1pyrakpM/113 uq6urrOzk78injNnjvpt3UR04403ElFTU9PFixe1ewh6r12Lf6PF74IL+GjXrl2m8h6OlDxL3E/0 fP3110R04403Bjz9oqjeHiGIB07a2toCPtq5c6fOI/ISCJ988on2/llXVxevf6BdPsE0iVWg/QbA 6XT++te/HjduHBF99tln4f88xgU3IZ7D1VCgEtHGjRuff/55IlqzZk2YZ2GkV0osWypD9WUxY9GL XrlRt3fvXm0ivw9DVhiMHTtW7DNA0FA07UqJeaEfG5DMzMzf//73RLR169Y333zT+g7NlcVc+Jk+ qM4uqV/qxWJ3KUW0Cx6l+jIKQwudLJ4oQ6X4wQ9+wBtrHx2aNWuWw+HgLxTJ8rg6Ts6tOVfblHjG jBn8DvqdO3fy0tMBT00TUUVFhcPh6OjoePnllwM+unDhwujRo6dOnXrgwIHwB5o+fToRnT17ll8l IrS3t69fv95qMTSk5FnifoLicVJ3d7eV7fmhi3PnzgVsvGzZMl4hU31FiZ+If/zxx+qNT58+HXQU EvSId999NxH5TnvuPgAACSFJREFU/f61a9cGbL9hw4YLFy6IbaSQUgUnT56cOHGi1+sN+n0a93MR fwgU7YIbjQctWeFqPSdahgL1yy+/rKqqIqJHH300/CmVXimxbKkM1ZfFjEUveuU2kuvWrQt4Lu7D Dz/kVVV4xdegDJWO3wl85MiRgPlPS0uL6UfXrDfO/RjzQlT7u4gWLVrEb39ZsmSJ/qeWQjFXFnPh Z+KghrqkGI9DpHSXQfdsVLQDMkr1RQbLbp+hhUUWT5ShUvDTsh0dHStXrlRvefz4cX4RsXg9gdFx tZVcxR15rzi2RM8r79XE66E//fTTgI8efPBBIpo9ezYReb3ejo4O7Z/zktQul+vFF18Ur9hubm7m bAwdOvTixYvhM+D3+3k5uBEjRnz88cecePDgwSlTpoieZs+ePWFyG+rt5KHS9edZvEB8+/btVsoe Zj/io23btolE/sXUzTff7Pf7u7u71e8uDyro9rz+SkJCgnhBeXt7+2OPPZaQkLBkyRI+6OHDhwN2 MmTIkL1793LKvn37CgoK7rjjDt5Y/bbxUDnk96elpqbW1taKjbds2cJdwl133aUteENDQ0BxRo4c SUTPPfdcQDrflLnttttEipQq4AX6b7jhht27d/f19XFia2vro48+SkRut1v7mnUt/QVXQkdmKEHP ttGgsn6pSsmJ9hLWH6h+v5/felJcXNzd3R0xt/orReSqqakpVD4ttlTRqy/rTaiJyzZmUScyTETl 5eVnz57ldJ/PN2bMGC51V1eXlNK1tbXxaiX5+flfffUVJ+7Zs2f06NGzZs0KdSbDxIxiuXGOXsxH tSpXrFhRUFBQUFBw7ty5iHlWdIxbmpqaePmxBQsW6NmhrL7bUPjJOqihLinG4xAp3WWc9Gj9Ul9G R3d2GFpIGQ1a6e6NluKuu+4iogEDBrz22mudnZ28T35V8vDhwy9duhRwhvWMq63n6ne/+53L5XK5 XEEnazF2FU6JP/roI9EZLF68OOif+/1+MVZITk4eN26ceF4/MzOzsbFRTx42b94s3gGQnp7OEZye nr57925OFOM8KVNi/XkO32JK2U/QJub+++/nRKfT6Xa7N2/eHP4EBt3+2LFjvHK9w+GYOHHi9ddf n5CQ4HQ6V65c+Z///IdX8Bs4cGBhYWFPT4+iKOq7Vl6vl2thwoQJLS0tnMhPZobPYXt7e0lJCX+U nZ1dUFAg1jYvLi5WD4+kNIJSquDTTz8V6+mnpqbm5uZee+21fPfU6XS+8sor4U++0YIrxvutoGfb aFBJuVSt50R7CesPVBGiAwcOzAnh2WefFUfXXyk6pzdWWqqo1pfFJtTEZRuzqBMZfuKJJxITE91u d15e3nXXXcdX6IABA3bs2KHd2FzpFEV5/fXX+SOHwzFmzBge0EyaNIlfEUnGp8QWG+foxXxUq/LJ J5/kj86cOROxihV945aHH36Y97lly5aIO5TVdxsKP1kHNdQlxXgcIqW7jJMerV/qy+jozg5DCymj QSvdvdFStLe381PN9L+LAmZlZYmpL9M/rraeq6VLl/JHEe+zxMBVOCXu6+vj35ET0T/+8Y9Qe+jr 69uwYcPs2bOzs7PdbndaWlphYeHjjz+usy9kjY2Nc+fOzcrKcrlc2dnZ5eXlBw4c8Pv9AVemlCmx /jyHbzGl7CdoE9PW1jZv3rykpCSPxzNmzJiIbUqo7b/44ouKiopBgwa5XK6srKw777xTtDjLli3L yspyu90FBQW9vb2cuHHjxpKSkrS0NLfbPWrUqCVLlrS1tYmfMXzyySd6ctjd3b1q1arp06dnZma6 3e6srKwZM2asXr2aJ97agltpBBVJVXn69OnHH3980qRJ6enpTqczKSlp/PjxixcvVrdNEeksuGK8 3wp6to0GlSLjUrWek6CXsM5A1T4TpbV06VJ1BnRWis7pjWKhpYp2fVlpQvWfqNhHnTrDPp+vsrJy 6NChTqczIyPjzjvvbG5uDrWxidKxurq6W265xev1ejye8ePHP/PMM5cuXfL5fAHNoM6Ysdg4Ry/m o1qVYkrc2tqqPcNaesYt58+fF09DWPwCUH9ZDIWfrIMqBrukGI9DrHeXcdKj9Ut9GR3dKTYYWsga DZru7k2Uoqur66WXXpo0aVJKSorH48nNzf3lL3954sQJ7ZY6x9XWcxVXU2KHEukV5wAAAKDf/v37 +bnE/fv385Np/aKxsZF/znro0CF+YhbCe+ONN+67776Ojo6gb8y+UsRJ+AEAXEGutuW1AAAA4kTM bjq3tbVp15s5ePAgEXk8nmHDhsUmG1c6/g32FT0fVsN3HgAAOmFKDAAAcKU6cuTIkCFDMjMz3333 3YCP3njjDSK66aabxHs1IIyLFy++9dZbpaWl/Z0RAACINUyJAQAArlSjRo0aMWIEET3yyCPbtm3j xPb29oceeqihoYGIeAlZiKi5ubmyslKsng0AAPbh7u8MAAAAgHlvvvnm9OnTv/nmm5kzZ2ZkZKSl pZ08eZLfErxkyZKysrL+zuCVoaioqKioqL9zAQAA/QDfEgMAAFzBJkyY0NzcvHTp0vz8/M7OzlOn Tg0aNGjevHl///vfX3jhhf7OHQAAQLzDitMAAAAAAABgU/iWGAAAAAAAAGwKU2IAAAAAAACwKUyJ AQAAAAAAwKYwJQYAAAAAAACbwpQYAAAAAAAAbApTYgAAAAAAALApTIkBAAAAAADApjAlBgAAAAAA AJvClBgAAAAAAABsClNiAAAAAAAAsClMiQEAAAAAAMCmMCUGAAAAAAAAm8KUGAAAAAAAAGwKU2IA AAAAAACwKUyJAQAAAAAAwKYwJQYAAAAAAACbwpQYAAAAAAAAbApTYgAAAAAAALApTIkBAAAAAADA pjAlBgAAAAAAAJvClBgAAAAAAABsClNiAAAAAAAAsClMiQEAAAAAAMCmMCUGAAAAAAAAm8KUGAAA AAAAAGwKU2IAAAAAAACwKUyJAQAAAAAAwKYwJQYAAAAAAACbwpQYAAAAAAAAbApTYgAAAAAAALAp TIkBAAAAAADApjAlBgAAAAAAAJvClBgAAAAAAABsClNiAAAAAAAAsClMiQEAAAAAAMCmMCUGAAAA AAAAm8KUGAAAAAAAAGzq/wCoxXpvHJ1sPgAAAABJRU5ErkJggg== --20cf30433e32fd0028049971ef97-- From owner-chemistry@ccl.net Sun Jan 9 20:11:00 2011 From: "Theodore S. Dibble tsdibble*o*syr.edu" To: CCL Subject: CCL: Software for calculating DOS in windows Message-Id: <-43582-110109200933-29807-QEOs90hWdjt8G9H28b8s0w-,-server.ccl.net> X-Original-From: "Theodore S. Dibble" Date: Sun, 9 Jan 2011 20:09:28 -0500 Sent to CCL by: "Theodore S. Dibble" [tsdibble],[syr.edu] Ehsan, The MultiWell package of Barker includes the program Densum for calculating sums and densities of states. It is available as binaries for Windows (as well as UNIX source code). It is available at http://aoss-research.engin.umich.edu/multiwell/ The programs are well documented and the download provides a few examples. Dr. Barker is very good about helping people use it. Theodore S. Dibble Chemistry Department SUNY-Environmental Science and Forestry 1 Forestry Drive Syracuse, NY 13210 (315) 470-6596 (315) 470-6856 (fax) http://www.esf.edu/chemistry/faculty/dibble.htm > "Ehsan shakerzadeh ehsan_shakerzadeh**yahoo.com" wrote: > > Sent to CCL by: "Ehsan shakerzadeh" [ehsan_shakerzadeh|yahoo.com] > Dear all, > I would be pleased if any one tell me with what software I can calculate Density of States (DOS)? > All the software I found work with Linux. > I want softwar for windows. > >