From owner-chemistry@ccl.net Tue Jan 11 01:07:00 2011 From: "Davor Sakic davor.sakic],[gmail.com" To: CCL Subject: CCL: Force field calculations-getting started Message-Id: <-43597-110111005947-945-dypa6x7Bca3XihurN0f3JA#%#server.ccl.net> X-Original-From: Davor Sakic Content-Type: multipart/alternative; boundary=Apple-Mail-16-738273861 Date: Tue, 11 Jan 2011 06:59:29 +0100 Mime-Version: 1.0 (Apple Message framework v1082) Sent to CCL by: Davor Sakic [davor.sakic!A!gmail.com] --Apple-Mail-16-738273861 Content-Transfer-Encoding: quoted-printable Content-Type: text/plain; charset=windows-1250 Hi Aaron, Although I haven't extensively used FF calculations, I used Tinker for = some tautomer/isomer search. Molden http://www.cmbi.ru.nl/molden/ can = generate everything you need.=20 Hope for the best. Sincerely Davor Sakic Department of General and Inorganic Chemistry Faculty of Pharmacy and Biochemistry, www.pharma.hr University of Zagreb Ante Kovacica 1 10000 Zagreb Croatia davor.sakic||gmail.com dsakic||pharma.hr On 11. sij. 2011., at 05:34, Alavi, Saman Saman.Alavi!A!nrc-cnrc.gc.ca = wrote: > Hi Aaron, > =20 > You may want to look at DL_FIELD which is a new utility for = constructing the FIELD file for use in DL_POLY. It is free of charge and = only requires registration. > http://www.cse.scitech.ac.uk/ccg/software/DL_FIELD/index.shtml > =20 > An alternative is to use the AMBER "antechamber" program to determine = the atom types, count (and list) bounds between the atoms (and harmonic = force constants between them,) angles and harmonic angle bend harmonic = force constants, dihedrals (proper and improper) along with the related = parameters, etc. according to the AMBER force field functions. = Parameters for many types of potential (including OPLS) are available in = AMBER. Once you get the list of bonds, angles, dihedrals from the = antechamber program, it is a much easier task to prepare the DL_POLY = FIELD file. I can send a more detailed description of the procedure if = you have access to AMBER and antechamber. > =20 > I hope this helps. > =20 > Best regards, > Saman Alavi > =20 > From: owner-chemistry+saman.alavi=3D=3Dnrc.ca{:}ccl.net = [owner-chemistry+saman.alavi=3D=3Dnrc.ca{:}ccl.net] On Behalf Of = Deskins, N Aaron nadeskins++WPI.EDU [owner-chemistry{:}ccl.net] > Sent: January-10-11 9:29 AM > To: Alavi, Saman > Subject: CCL: Force field calculations-getting started >=20 > Hello fellow CCL=92ers, > =20 > I find myself increasingly in need of running some force field = calculations (e.g. OPLS) for organic/biological molecules, and am = looking for the best way to get started. I come from an electronic = structure background where making an input file is pretty = straight-forward. Choose atomic coordinates (xyz), basis set, = methodology, and run the calculation. > =20 > Setting up an input file for the various molecular mechanics methods = however seems more complicated. You can start with the xyz atomic = coordinates, but you also have to worry about various atom types for the = same element, atom connectivity, etc. > =20 > Can anyone suggest some software/website/tutorial that would help in = setting up an input file? > =20 > I=92m leaning towards using DL_POLY (I have experience with this = code for =91simpler=92 systems) with the OPLS force field, but this = isn=92t set in stone. OPLS seems to be widely used for the types of = molecules I=92m interested in (organics). > =20 > Thank you,=20 > =20 > N. Aaron Deskins > Assistant Professor > Chemical Engineering Department > Worcester Polytechnic Institute > Worcester, MA > http://users.wpi.edu/~nadeskins > =20 > =20 --Apple-Mail-16-738273861 Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset=windows-1250 Hi Aaron,
Although I haven't extensively used = FF calculations, I used Tinker for some tautomer/isomer search. Molden = http://www.cmbi.ru.nl/molden/ = can generate everything you need. 
Hope for the = best.
Sincerely

Davor = Sakic

Department of General and Inorganic = Chemistry
Faculty of Pharmacy and Biochemistry, www.pharma.hr
University of = Zagreb
Ante Kovacica 1
10000 = Zagreb
Croatia
davor.sakic||gmail.com
dsakic||pharma.hr

On 11. sij. 2011., at 05:34, Alavi, Saman = Saman.Alavi!A!nrc-cnrc.gc.ca wrote:

Hi = Aaron,
 
You may want to look at DL_FIELD which is a new utility = for constructing the FIELD file for use in DL_POLY. It is free of charge = and only requires registration.

 

 

 

 

 

 

To: CCL Subject: CCL: Pioglitazone Tautomers Message-Id: <-43598-110111040352-19746-E6crDHqgNHE/cWGbsuUmzQ:_:server.ccl.net> X-Original-From: Gabriele Cruciani Content-Transfer-Encoding: 8bit Content-Type: text/plain; charset=windows-1252; format=flowed Date: Tue, 11 Jan 2011 10:03:31 +0100 MIME-Version: 1.0 Sent to CCL by: Gabriele Cruciani [gabri::chemiome.chm.unipg.it] MoKa calculations in water (Tautomer Enumeration and Stability Prediction for Virtual Screening on Large Chemical Databases J. Chem. Inf. Model., 2009, 49 (1), pp 68–75 ). Moreover, this is confirmed by experimental evidence: pioglitazone is a weak acid (pKa 6.4) and the pKa value is in agreement with the diketone form, not with the other hydroxyl tautomeric forms. Gabriele Cruciani > How do you know that the first tautomer (diketone) is the most stable at pH > 7.0? > > Thanks, > Nancy > > > > On Mon, Jan 10, 2011 at 4:16 AM, Gabriele Cruciani gabri(0) > chemiome.chm.unipg.it wrote: > >> >> Sent to CCL by: Gabriele Cruciani [gabri##chemiome.chm.unipg.it] >> Nancy, >> the first form you reported is the most stable in water at pH 7.0. >> However, the fact that one form is more stable than another in water does >> not help you to understand which form will be more 'relevant' for docking. >> In protein the tautomeric equilibria may produce and stabilize different >> forms according to the complementary site. There are examples of tautomeric >> form in protein not stable in water, where the energy difference is more >> than 5 Kcal/mol. >> >> MoKa software (www.moldiscovery.com) is fast and accurate to produce >> tautomer stable in water, but it can produce also all the (plausible) >> tautomeric forms. >> >> Then, a possibility is to dock them into your protein, to see if docking >> methods may differentiate their binding. >> >> Gabriele Cruciani >> >> >> >> >> Hi All, >>> >>> I am performing molecular docking and molecular dynamics simulations of >>> the >>> thiazolidinedione pioglitazone binding to the PPAR-gamma receptor protein >>> (PDB ID: 1ZGY). The thiazolidinedione ring can exist in numerous >>> different >>> tautomeric states; I have attached a figure depicting several of them. >>> Which tautomer would be dominant at the physiological pH of ~7.0? >>> >>> Also, are there any software programs that can predict which tautomer >>> would >>> be correct? >>> >>> Thanks in advance, >>> Nancyhttp://www.ccl.net/chemistry/sub_unsub.shtmlConferences: >> http://server.ccl.net/chemistry/announcements/conferences/> >> >> > From owner-chemistry@ccl.net Tue Jan 11 07:53:01 2011 From: "Wendy Warr wendy---warr.com" To: CCL Subject: CCL: Events listing Message-Id: <-43599-110111075130-25015-oB4mxsLHohZUVKDDCjYRGw#server.ccl.net> X-Original-From: "Wendy Warr" Date: Tue, 11 Jan 2011 07:51:29 -0500 Sent to CCL by: "Wendy Warr" [wendy##warr.com] May we draw your attention to our 2011 events page at http://warr.com/meetings.html. If your favorite meeting is missing please use the form at http://warr.com/form.html to alert us. We advertise a fairly eclectic mix: broadly speaking, meetings that will interest computational chemists in drug discovery, research information specialists and library and information professionals. Dr. Wendy A. Warr Wendy Warr & Associates 6 Berwick Court, Holmes Chapel Cheshire, CW4 7HZ, England Tel./Fax +44 (0)1477 533837 wendy++warr.com http://www.warr.com From owner-chemistry@ccl.net Tue Jan 11 08:28:00 2011 From: "Keith Refson krefson]|[gmail.com" To: CCL Subject: CCL:G: Phonon calculation ... Message-Id: <-43600-110111031314-1773-85SrheIaI6XdYE4GVF//aA[#]server.ccl.net> X-Original-From: Keith Refson Content-Transfer-Encoding: 7bit Content-Type: text/plain; charset=ISO-8859-1 Date: Tue, 11 Jan 2011 08:12:37 +0000 MIME-Version: 1.0 Sent to CCL by: Keith Refson [krefson-x-gmail.com] Dear Jerome, There is a CASTEP email discussion list which you may sign up for at http://www.jiscmail.ac.uk/CASTEP, and you will find more information in the phonons user guide hosted at http://www.castep.org. Your question suggests an understandable confusion about the meaning of the ambiguous term "k-points" in the periodic electronic structure calculation. What you called "energy k-points" is really the grid of wavevectors for *electronic states* used for the integrations in reciprocal space for describing the infinite periodic system of electrons. Phonon calculations also require a description of the electronic states, and indeed it only makes sense to use the *same* grid as for the optimization calculation. Otherwise the phonon calculation will have a different level of convergence from the optimization. That would shift the structure away from the equilibrium configuration which is a prerequisite of a phonon calculation. But the term a "50x50x50 kpoint grid" of phonons is usually used to describe a set of calculations with wavevectors of the *phonons* computed on a dense grid. (50x50x50 is actually feasible at a sensible computational cost if using the Fourier interpolation or supercell methods.) Such a fine grid might be useful for computing a very accurate phonon DOS. Try to bear in mind that the concepts of electron and phonon wavevectors are distinct and describe different physics. The *electronic* k-point grid required for a calculation is independent of and can be very different from the *phonon* grid. sincerely Keith Refson On 08/01/11 09:04, Jerome Kieffer jerome.Kieffer%esrf.fr wrote: > I am pretty new to PW-DFT (with Castep) but I have a bit background > with Gaussian ( G'03 and others). > > I wonder if it makes sense to calculate phonons on 50x50x50 k-points > with energy k-points are only 5x5x5 ? (regardless to resources > consumed) > > With gaussian basis set it would not make sense to calculate > frequencies with triple-Zeta basis whereas energy optimisation is > only made with double-Zeta. > > On the other hand does it make sense to calculate phonons on 5x5x5 > k-points and energy optimized on 10x10x10 ? > > Thanks for your help. From owner-chemistry@ccl.net Tue Jan 11 09:03:00 2011 From: "Krishna Chaitanya Gunturu krishnachaitanya.gunturu|*|gmail.com" To: CCL Subject: CCL: problem with G09 wave function Message-Id: <-43601-110111011005-24409-MKOnjLcvikrgO1t75/TkYQ,,server.ccl.net> X-Original-From: "Krishna Chaitanya Gunturu" Date: Tue, 11 Jan 2011 01:10:04 -0500 Sent to CCL by: "Krishna Chaitanya Gunturu" [krishnachaitanya.gunturu|*|gmail.com] Dear CCL'ers I am trying to generate wave function for a heterocycle molecule which is expected to show diradical character. So I started with simple CH3 radical and there I could generate wave functions for total spin, alph-spin and beta-spin properly (here properly means in wave function files I could see proper occupation numbers and electron distribution between alpha and beta spins). But when it comes to my molecule, in beta spin wave function I could not find any MO with occupation 1 or near to 1. Most of the MOs are with negligible occupation numbers and even total MOs from alpha and beta spins are not matching with the total MOs in total spin wave function. But when I use UB3LYP method I could find the matching between occupation numbers and total MOs from these three wave functions. But surprisingly for CH3 radical even restricted method (B3LYP/6-31G**) gives properly, then why not for my molecule. I even tried with CCSD method also but failed. I would be great-full if some one rectify me if I am in wrong direction or having wrong concept about wave function generation. Thanking you Best Regards Dr. G. Krishna Chaitanya Assistant Professor School of Chemical Sciences SRTM University Nanded-431 606 India From owner-chemistry@ccl.net Tue Jan 11 09:39:01 2011 From: "Paul Fleurat-Lessard Paul.Fleurat-Lessard++ens-lyon.fr" To: CCL Subject: CCL:G: MOPAC job,which other way? Message-Id: <-43602-110110045732-17265-yE/IonOS8NCeWaM0Q6MGiQ .. server.ccl.net> X-Original-From: Paul Fleurat-Lessard Content-Transfer-Encoding: 8bit Content-Type: text/plain; charset=ISO-8859-1; format=flowed Date: Mon, 10 Jan 2011 10:57:18 +0100 MIME-Version: 1.0 Sent to CCL by: Paul Fleurat-Lessard [Paul.Fleurat-Lessard]_[ens-lyon.fr] Hi, Another option is Gabedit. It is a freely available code that works on Linux, Mac and Windows. It is a grahical interface for many ab initio code such as Mopac2009, Gaussian, Firefly (ex-PC Gamess), QChem and others: http://sites.google.com/site/allouchear/Home/gabedit Regards, Paul. Le 09/01/2011 00:11, Thomas Patko tpatkoa/gmail.com a écrit : > I typically run MOPAC 2009 using WebMO whether on Linux, Mac or Windows: > > http://www.webmo.net/ > > The offer support for MOPAC 2009, and there is a fully functional free version > available (although some features are restricted to the commercial version). > > Cheers, > > Thomas > > On Sat, Jan 8, 2011 at 11:51 AM, Olawale Lukman Olasunkanmi waleolasunkanmi ~ > gmail.com > wrote: > > > Sent to CCL by: "Olawale Lukman Olasunkanmi" [waleolasunkanmi__gmail.com > ] > when I want to run calculations with MOPAC I go thus: > - I draw the molecule with chemdraw > - I save the 3D model as a mopac input file > - I then open the saved file with mopac > the geometry optimization is done automatically, using default settings. > But the problem is, I need more than the default settings. I want to use the > mopac keywords. Kindly, explain how I can do it so that I can use the > various keywords to suite my calculations. > Thank you.> > > > E-mail to subscribers: CHEMISTRY..ccl.net or use:> > E-mail to administrators: CHEMISTRY-REQUEST..ccl.net > or use> > > -- Fleurat-Lessard Paul, Assistant Professor Laboratoire de Chimie e-mail: Paul.Fleurat-Lessard-,-ens-lyon.fr Ecole Normale Supérieure de Lyon Tel: + 33 (0)4 72 72 81 54 46, Allée d'Italie Fax: + 33 (0)4 72 72 88 60 69364 Lyon Cedex 07 From owner-chemistry@ccl.net Tue Jan 11 16:10:00 2011 From: "Rinderspacher, Berend (Cont, ARL/WMRD) berend.rinderspacher(a)us.army.mil" To: CCL Subject: CCL:G: How to calculate Hyperpolarizability using G03 Message-Id: <-43603-110111140733-14106-Usu0dEtqcuEEaU8x86m3Dw[#]server.ccl.net> X-Original-From: "Rinderspacher, Berend (Cont, ARL/WMRD)" Content-class: urn:content-classes:message Content-Type: multipart/signed; protocol="application/x-pkcs7-signature"; micalg=SHA1; boundary="----=_NextPart_000_004D_01CBB198.D649FEB0" Date: Tue, 11 Jan 2011 14:07:13 -0500 MIME-Version: 1.0 Sent to CCL by: "Rinderspacher, Berend (Cont, ARL/WMRD)" [berend.rinderspacher * us.army.mil] This is a multi-part message in MIME format. ------=_NextPart_000_004D_01CBB198.D649FEB0 Content-Type: text/plain; charset="us-ascii" Content-Transfer-Encoding: 7bit Dear Veerpendian, If you use plain "Polar" and put '#p' in your route section you will find a nice section detailing (hyper)polarizabilities as outlined by http://www.gaussian.com/g_tech/g_ur/k_polar.htm where you should find all the necessary information. Sincerely, Christopher -----Original Message----- > From: owner-chemistry+berend.rinderspacher==us.army.mil(!)ccl.net [mailto:owner-chemistry+berend.rinderspacher==us.army.mil(!)ccl.net] On Behalf Of veera pandian ponnuchamy veera.pandi33[a]gmail.com Sent: Monday, January 10, 2011 5:53 AM To: Rinderspacher, Berend (Cont, ARL/WMRD) Subject: CCL:G: How to calculate Hyperpolarizability using G03 Sent to CCL by: "veera pandian ponnuchamy" [veera.pandi33(_)gmail.com] I am a beginner in computational chemistry doing my M.Sc project on prediction of hyperpolarizability of organic molecule using Gaussian 03/09. When I use polar=enonly in the route section, the program completed successfully. I dont know which value I have to take from the output to get the hyperpolarizability? Whether my keyword is right or wrong? Any suggestions will be helpful Thanks in advance. By Veerpandian.Phttp://www.ccl.net/cgi-bin/ccl/send_ccl_messagehttp://www.ccl.net/chemistry/sub_unsub.shtmlhttp://www.ccl.net/spammers.txt------=_NextPart_000_004D_01CBB198.D649FEB0 Content-Type: application/x-pkcs7-signature; name="smime.p7s" Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="smime.p7s" MIAGCSqGSIb3DQEHAqCAMIACAQExCzAJBgUrDgMCGgUAMIAGCSqGSIb3DQEHAQAAoIIRlzCCA3Aw ggJYoAMCAQICAQUwDQYJKoZIhvcNAQEFBQAwWzELMAkGA1UEBhMCVVMxGDAWBgNVBAoTD1UuUy4g R292ZXJubWVudDEMMAoGA1UECxMDRG9EMQwwCgYDVQQLEwNQS0kxFjAUBgNVBAMTDURvRCBSb290 IENBIDIwHhcNMDQxMjEzMTUwMDEwWhcNMjkxMjA1MTUwMDEwWjBbMQswCQYDVQQGEwJVUzEYMBYG A1UEChMPVS5TLiBHb3Zlcm5tZW50MQwwCgYDVQQLEwNEb0QxDDAKBgNVBAsTA1BLSTEWMBQGA1UE AxMNRG9EIFJvb3QgQ0EgMjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAMAswfaNO6z/ PzzWcb64dCIH7HBBFfyrQOMHqsHD2J/+2kw6vz/I2Ch7SzYBwKxFJcPSDgqPhRhkED0aE3Aqb47X 3I2Ts0EPOCHNravCPSoF01cRNw3NjFH5k+PMRkkhjhS0zcsUPjjNcjHuqxLyZeo0LlZd/+5jdctt upE0/J7z9C0cvlDEQt9ZiP9qs/qobD3LVnFxBZa7n4DlgEVZZ0Gw68OtYKSAdQYXnA70Q+CZDhv7 f/WzzLKBgrH9MsG4vkGkZLVgOlpRMIzO3kEsGUdcSRBkuXSph0GvfW66wbihv2UxOgRn+bW7jpKK AGO4seaMOF+D/1DVO6Jda7IQzGMCAwEAAaM/MD0wHQYDVR0OBBYEFEl0uwxeunr+AlTve6DGlcYJ gHCWMAsGA1UdDwQEAwIBhjAPBgNVHRMBAf8EBTADAQH/MA0GCSqGSIb3DQEBBQUAA4IBAQCYkY0/ ici79cBpcyk7Nay6swh2PXAJkumERCEBfRR2G+5RbB2NFTctezFp9JpEuK9GzDT6I8sDJxnSgyF1 K+fgG5km3IRAleio0sz2WFxm7z9KlxCCHboKot1bBiudp2RO6y4BNaS0PxOtVeTVc6hpmxHxmPIx Hm9A1Ph4n46RoG9wBJBmqgYrzuF6krV94eDRluehOi3MsZ0fBUTth5nTTRpwOcEEDOV+2fGv1yAO 8SJ6JaRzmcw/pAcnlqiile2CuRbTnguHwsHyiPVi32jfx7xpUe2xXNxUVCkPCTmarAPB2wxNrm8K ehZJ8b+R0jiU0/aVLLdsyUK2jcqQjYXZMIIEQzCCAyugAwIBAgIDIrD/MA0GCSqGSIb3DQEBBQUA MF0xCzAJBgNVBAYTAlVTMRgwFgYDVQQKEw9VLlMuIEdvdmVybm1lbnQxDDAKBgNVBAsTA0RvRDEM MAoGA1UECxMDUEtJMRgwFgYDVQQDEw9ET0QgRU1BSUwgQ0EtMTkwHhcNMDkwNjI1MDAwMDAwWhcN MTExMjA5MjM1OTU5WjCBhDELMAkGA1UEBhMCVVMxGDAWBgNVBAoTD1UuUy4gR292ZXJubWVudDEM MAoGA1UECxMDRG9EMQwwCgYDVQQLEwNQS0kxEzARBgNVBAsTCkNPTlRSQUNUT1IxKjAoBgNVBAMT IVJJTkRFUlNQQUNIRVIuQkVSRU5ELkMuMTM3OTI0NjE5OTCBnzANBgkqhkiG9w0BAQEFAAOBjQAw gYkCgYEA54EBcw0kg7VnGaEVnsuDOExEL6Ji0Ba8ca20wDvgXnh0EDHTu0mgNcfTlTOnlJO7n8cw QfpmYeG5Pzdku6HSiILh04aie2txz/Vrtv8cwFKzHjejkhL6kJ/fvW6XqetYoCJYSsY+gZ+nmYVL DTdwgB9811VcP3Qmyub48rVr/dsCAwEAAaOCAWYwggFiMB8GA1UdIwQYMBaAFANtfbnAQe/2R68k HTuYHHQOjGTbMD8GA1UdHwQ4MDYwNKAyoDCGLmh0dHA6Ly9jcmwuZGlzYS5taWwvZ2V0Y3JsP0RP RCUyMEVNQUlMJTIwQ0EtMTkwDgYDVR0PAQH/BAQDAgUgMBYGA1UdIAQPMA0wCwYJYIZIAWUCAQsJ MB0GA1UdDgQWBBQFttboZjjGk/uvB9SoNWHwOxwE1DBtBggrBgEFBQcBAQRhMF8wOwYIKwYBBQUH MAKGL2h0dHA6Ly9jcmwuZGlzYS5taWwvZ2V0c2lnbj9ET0QlMjBFTUFJTCUyMENBLTE5MCAGCCsG AQUFBzABhhRodHRwOi8vb2NzcC5kaXNhLm1pbDArBgNVHREEJDAigSBiZXJlbmQucmluZGVyc3Bh Y2hlckB1cy5hcm15Lm1pbDAbBgNVHQkEFDASMBAGCCsGAQUFBwkEMQQTAlVTMA0GCSqGSIb3DQEB BQUAA4IBAQA2xvHZxvD8aoURtszedQy5wXgLUaCfOWmxCIZLRRPpGP4QgjrXofvwvvSSIntqsZn9 1NdSG1rnvqDxZAWSE+BpuTuH5L2FiUETQWhBniQ3q1smiW2cmiJZRG3S784VopznsACu76SNPZMJ Li8cDRhCuwx0DZ4csq+wDncGI6ii12BIdYOjnRhTt8sJ7UnUYPDqe7JyhOqmSyClWEwaZn6jMH7r j69TMxnuUcvIzy2vIpce+JkjOadVODhZE7MT4k/ps41WfZ98VBRbqpsNDM0hLvj3edsvtZhvTrg5 9AjU39zfLLFPQa5VMEvRhNtbV0wr0AU8Mu2GoLrQE4Fiy9mmMIIEjjCCA3agAwIBAgIDIrD7MA0G CSqGSIb3DQEBBQUAMF0xCzAJBgNVBAYTAlVTMRgwFgYDVQQKEw9VLlMuIEdvdmVybm1lbnQxDDAK BgNVBAsTA0RvRDEMMAoGA1UECxMDUEtJMRgwFgYDVQQDEw9ET0QgRU1BSUwgQ0EtMTkwHhcNMDkw NjI1MDAwMDAwWhcNMTExMjA5MjM1OTU5WjCBhDELMAkGA1UEBhMCVVMxGDAWBgNVBAoTD1UuUy4g R292ZXJubWVudDEMMAoGA1UECxMDRG9EMQwwCgYDVQQLEwNQS0kxEzARBgNVBAsTCkNPTlRSQUNU T1IxKjAoBgNVBAMTIVJJTkRFUlNQQUNIRVIuQkVSRU5ELkMuMTM3OTI0NjE5OTCBnzANBgkqhkiG 9w0BAQEFAAOBjQAwgYkCgYEA0IMjD6rNuyPWoSmi7SGI5xl5iZsxsjboOEMMGbL6Z87z6pralL+4 BLk/Jz9LGuYNd3TqZq3Nw7TNz951ovVbFp4Bp14FLGA3poNJjnZRNDnLdLsFEl1PhuYpgDHVW/J9 Q06szyToScW+gLMq1ecZPpBSchfnUn8YCGt7FD5Vh50CAwEAAaOCAbEwggGtMB8GA1UdIwQYMBaA FANtfbnAQe/2R68kHTuYHHQOjGTbMD8GA1UdHwQ4MDYwNKAyoDCGLmh0dHA6Ly9jcmwuZGlzYS5t aWwvZ2V0Y3JsP0RPRCUyMEVNQUlMJTIwQ0EtMTkwDgYDVR0PAQH/BAQDAgbAMBYGA1UdIAQPMA0w CwYJYIZIAWUCAQsJMB0GA1UdDgQWBBRV/12NniO2hz8gHYPJ2BUIuE/+9zBtBggrBgEFBQcBAQRh MF8wOwYIKwYBBQUHMAKGL2h0dHA6Ly9jcmwuZGlzYS5taWwvZ2V0c2lnbj9ET0QlMjBFTUFJTCUy MENBLTE5MCAGCCsGAQUFBzABhhRodHRwOi8vb2NzcC5kaXNhLm1pbDBLBgNVHREERDBCgSBiZXJl bmQucmluZGVyc3BhY2hlckB1cy5hcm15Lm1pbKAeBgorBgEEAYI3FAIDoBAMDjEzNzkyNDYxOTlA bWlsMBsGA1UdCQQUMBIwEAYIKwYBBQUHCQQxBBMCVVMwKQYDVR0lBCIwIAYKKwYBBAGCNxQCAgYI KwYBBQUHAwIGCCsGAQUFBwMEMA0GCSqGSIb3DQEBBQUAA4IBAQBl6Ff0PK4loKmUVYLFmTFIQyOd bSh1xIrom8+GR4NLIjnRLtdxORlVZfba0RH95a0/PJJQiE/cuf3KB3wzYyoxy1ze6pi3qjNGgWlW 6iHBdmEBKms3sWQVS9bE/FqKLKIT036fY2j+TCfDwiuLSb820e/JNMQYNA9wd+UcxSvdy9FFAe5O Km1BzxGtdsQcMuaACPGEzPtPl+1QtFx4VZRQ2+kQZXAGZv/w+D/J5B4uBxbA2trSxZJ8i/K5+tRt CRWnPVXfmXZbA5+XgR13ZLjadZPdKVl68dv4m9aGW96H6PL8aPuG4iz/txS6gdOqmK1KmYOMJPNw K8zQ//m1Pu9OMIIFRjCCBC6gAwIBAgIBKTANBgkqhkiG9w0BAQUFADBbMQswCQYDVQQGEwJVUzEY MBYGA1UEChMPVS5TLiBHb3Zlcm5tZW50MQwwCgYDVQQLEwNEb0QxDDAKBgNVBAsTA1BLSTEWMBQG A1UEAxMNRG9EIFJvb3QgQ0EgMjAeFw0wODA0MjMyMTAzMDZaFw0xNDA0MjMyMDAzMDZaMF0xCzAJ BgNVBAYTAlVTMRgwFgYDVQQKEw9VLlMuIEdvdmVybm1lbnQxDDAKBgNVBAsTA0RvRDEMMAoGA1UE CxMDUEtJMRgwFgYDVQQDEw9ET0QgRU1BSUwgQ0EtMTkwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAw ggEKAoIBAQCquadeBhCmM9ZLS6On02wtefnXHHh82jw8LVsmc0EWTWQp+m0v9RULSFEOBsz05IvJ KVH3P7wnd/qV6pIk87CnDtRpr/K5N4eg/CeIGiDl4EtP8oFVAhR/TTuk4e2golS54hQIAfRcXIh3 X1xGQqR8HFRzF0SW6thTVP+/x323aXlyo2TV/ujhhICzGsJInk3PvZc8wIFVKMNIZEkwgBEhpOrV Xl9YibRX7sab9YNrWJfbm6t94De+vWjY3Ugilv94tnven3LmcXSCOrUM/iyd/e0qZrI036HKLCC7 nSRL75WVvCicwlebEYL1nadM3anyE8GvAhzpF1YW8K6obgsbAgMBAAGjggIRMIICDTAOBgNVHQ8B Af8EBAMCAYYwHwYDVR0jBBgwFoAUSXS7DF66ev4CVO97oMaVxgmAcJYwHQYDVR0OBBYEFANtfbnA Qe/2R68kHTuYHHQOjGTbMAwGA1UdJAQFMAOAAQAwEgYDVR0TAQH/BAgwBgEB/wIBADBXBgNVHSAE UDBOMAsGCWCGSAFlAgELBTALBglghkgBZQIBCwkwCwYJYIZIAWUCAQsKMAsGCWCGSAFlAgELEjAL BglghkgBZQIBCxMwCwYJYIZIAWUCAQsUMD8GA1UdHwQ4MDYwNKAyoDCGLmh0dHA6Ly9jcmwuZGlz YS5taWwvZ2V0Y3JsP0RvRCUyMFJvb3QlMjBDQSUyMDIwgf4GCCsGAQUFBwEBBIHxMIHuMD8GCCsG AQUFBzAChjNodHRwOi8vY3JsLmRpc2EubWlsL2dldElzc3VlZFRvP0RvRCUyMFJvb3QlMjBDQSUy MDIwIAYIKwYBBQUHMAGGFGh0dHA6Ly9vY3NwLmRpc2EubWlsMIGIBggrBgEFBQcwAoZ8bGRhcDov L2NybC5nZHMuZGlzYS5taWwvY24lM2REb0QlMjBSb290JTIwQ0ElMjAyJTJjb3UlM2RQS0klMmNv dSUzZERvRCUyY28lM2RVLlMuJTIwR292ZXJubWVudCUyY2MlM2RVUz9jQUNlcnRpZmljYXRlO2Jp bmFyeTANBgkqhkiG9w0BAQUFAAOCAQEAblkGi+5rkf+Xt69e+sCyAoBeq0MNtmUVS36uVpAxV1j8 V8GOKY+scDCaUTphdRYY/XbsnwAImP9komD3nl3Q2/KQGIW0ybEHSmdy7e3kC7zbvyLiB8xNuH5K wcuJ5I0EeK8hnsFo6pubpceN9TKs2AqMetByPiBnEDm6iSOn1JmlaE6EBekhEHzjsZJZBXrohI5e 12rU+XslxkJ4vI2yi1St0be7wU02oWhn9xEO+a51Izes6LPMSi23ZhhzY02c8PjhlzbNJhxZCFCz 5QNxdYBcHBI7TeJXKGS6V22301GWqAAO8XoLyfcvwnzQwzS+/zX4iwIH61ACKWuKdEmXJTGCAsAw ggK8AgEBMGQwXTELMAkGA1UEBhMCVVMxGDAWBgNVBAoTD1UuUy4gR292ZXJubWVudDEMMAoGA1UE CxMDRG9EMQwwCgYDVQQLEwNQS0kxGDAWBgNVBAMTD0RPRCBFTUFJTCBDQS0xOQIDIrD7MAkGBSsO AwIaBQCgggGyMBgGCSqGSIb3DQEJAzELBgkqhkiG9w0BBwEwHAYJKoZIhvcNAQkFMQ8XDTExMDEx MTE5MDcwOVowIwYJKoZIhvcNAQkEMRYEFJFmObCoM1Q2TXv+Q+Iujw74QDs1MGcGCSqGSIb3DQEJ DzFaMFgwCgYIKoZIhvcNAwcwDgYIKoZIhvcNAwICAgCAMA0GCCqGSIb3DQMCAgFAMAcGBSsOAwIH MA0GCCqGSIb3DQMCAgEoMAcGBSsOAwIaMAoGCCqGSIb3DQIFMHMGCSsGAQQBgjcQBDFmMGQwXTEL MAkGA1UEBhMCVVMxGDAWBgNVBAoTD1UuUy4gR292ZXJubWVudDEMMAoGA1UECxMDRG9EMQwwCgYD VQQLEwNQS0kxGDAWBgNVBAMTD0RPRCBFTUFJTCBDQS0xOQIDIrD/MHUGCyqGSIb3DQEJEAILMWag ZDBdMQswCQYDVQQGEwJVUzEYMBYGA1UEChMPVS5TLiBHb3Zlcm5tZW50MQwwCgYDVQQLEwNEb0Qx DDAKBgNVBAsTA1BLSTEYMBYGA1UEAxMPRE9EIEVNQUlMIENBLTE5AgMisP8wDQYJKoZIhvcNAQEB BQAEgYCL1r2gh+6w1iNhTaj8QRiomgIKzrU2tVZ0Rz2Ssv+aE97g1THOYcJUkTyHDNqp3uFH08sp u9NhzxKGATLZas9HEcjKmwxqDdkcxmm6ToXaaKFgeoHn6Mgx4EqXue5cJrzooOBqz0F7OqbN9xiO 0Mgimceu63wp5AhzpPGD0n9YOAAAAAAAAA== ------=_NextPart_000_004D_01CBB198.D649FEB0-- From owner-chemistry@ccl.net Tue Jan 11 16:45:00 2011 From: "Nancy nancy5villa%x%gmail.com" To: CCL Subject: CCL:G: Pioglitazone Tautomers Message-Id: <-43604-110111155619-6891-GNor3OvCB0AJzpnE4p0KDw[]server.ccl.net> X-Original-From: Nancy Content-Type: multipart/mixed; boundary=0015174734b60a79410499985054 Date: Tue, 11 Jan 2011 15:56:03 -0500 MIME-Version: 1.0 Sent to CCL by: Nancy [nancy5villa%gmail.com] --0015174734b60a79410499985054 Content-Type: multipart/alternative; boundary=0015174734b60a793b0499985052 --0015174734b60a793b0499985052 Content-Type: text/plain; charset=ISO-8859-1 Hi All, Using MarvinSketch v5.3.3 (ChemAxon software), the predicted pKa value of the acidic hydrogen on the thiazolidinedione ring of pioglitazone is 4.57 (see attached "Figure_1.gif"). Therefore, the predominant species at pH 7.0 predicted by MarvinSketch is the one depicted in "Figure_2.gif". The different tautomeric forms predicted by MarvinSketch are shown in "Figure_3.gif". Can anyone explain where these predictions come from, and if they are correct? Thanks, Nancy On Mon, Jan 10, 2011 at 4:16 AM, Gabriele Cruciani gabri(0) chemiome.chm.unipg.it wrote: > > Sent to CCL by: Gabriele Cruciani [gabri##chemiome.chm.unipg.it] > Nancy, > the first form you reported is the most stable in water at pH 7.0. > However, the fact that one form is more stable than another in water does > not help you to understand which form will be more 'relevant' for docking. > In protein the tautomeric equilibria may produce and stabilize different > forms according to the complementary site. There are examples of tautomeric > form in protein not stable in water, where the energy difference is more > than 5 Kcal/mol. > > MoKa software (www.moldiscovery.com) is fast and accurate to produce > tautomer stable in water, but it can produce also all the (plausible) > tautomeric forms. > > Then, a possibility is to dock them into your protein, to see if docking > methods may differentiate their binding. > > Gabriele Cruciani > > > > > Hi All, >> >> I am performing molecular docking and molecular dynamics simulations of >> the >> thiazolidinedione pioglitazone binding to the PPAR-gamma receptor protein >> (PDB ID: 1ZGY). The thiazolidinedione ring can exist in numerous >> different >> tautomeric states; I have attached a figure depicting several of them. >> Which tautomer would be dominant at the physiological pH of ~7.0? >> >> Also, are there any software programs that can predict which tautomer >> would >> be correct? >> >> Thanks in advance, >> Nancyhttp://www.ccl.net/chemistry/sub_unsub.shtmlConferences: > http://server.ccl.net/chemistry/announcements/conferences/> > > --0015174734b60a793b0499985052 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: quoted-printable Hi All,

Using MarvinSketch v5.3.3 (ChemAxon software), the predicted= pKa value of the acidic hydrogen on the thiazolidinedione ring of pioglita= zone is 4.57 (see attached "Figure_1.gif").=A0 Therefore, the pre= dominant species at pH 7.0 predicted by MarvinSketch is the one depicted in= "Figure_2.gif".=A0 The different tautomeric forms predicted by M= arvinSketch are shown in "Figure_3.gif".

Can anyone explain where these predictions come from, and if they are c= orrect?

Thanks,
Nancy


On Mo= n, Jan 10, 2011 at 4:16 AM, Gabriele Cruciani gabri(0)chemiome.chm.unipg.it <owner-chemistry|-|ccl.net> = wrote:

Sent to CCL by: Gabriele Cruciani [gabri##chemiome.chm.unipg.it]
Nancy,
the first form you reported is the most stable in water at pH 7.0.
However, the fact that one form is more stable than another in water does n= ot help you to understand which form will be more 'relevant' for do= cking. In protein the tautomeric equilibria may produce and stabilize diffe= rent forms according to the complementary site. There are examples of tauto= meric form in protein not stable in water, where the energy difference is m= ore than 5 Kcal/mol.

MoKa software (ww= w.moldiscovery.com) is fast and accurate to produce tautomer stable in = water, but it can produce also all the (plausible) tautomeric forms.

Then, a possibility is to dock them into your protein, to see if docking me= thods may differentiate their binding.

Gabriele Cruciani




Hi All,

I am performing molecular docking and molecular dynamics simulations of the=
thiazolidinedione pioglitazone binding to the PPAR-gamma receptor protein (PDB ID: 1ZGY). =A0The thiazolidinedione ring can exist in numerous differe= nt
tautomeric states; I have attached a figure depicting several of them.
Which tautomer would be dominant at the physiological pH of ~7.0?

Also, are there any software programs that can predict which tautomer would=
be correct?

Thanks in advance,
Nancy




-=3D This is automatically added to each message by the mailing script =3D-=
E-mail to subscribers: CHEMISTRY|-|ccl.net or use:
=A0 =A0 http://www.ccl.net/cgi-bin/ccl/send_ccl_message

E-mail to administrators: CHEMISTRY-REQUEST|-|ccl.net or use
=A0 =A0 http://www.ccl.net/cgi-bin/ccl/send_ccl_message
http://www.ccl.net/chemistry/sub_unsub.sh= tml

Before posting, check wait time at: http://www.ccl.net

Job: http://www.ccl.n= et/jobs Conferences: http://server.ccl.net/chemistry/anno= uncements/conferences/

Search Messages: http://www.ccl.net/chemistry/searchccl/index.shtml
=A0 =A0
http= ://www.ccl.net/spammers.txt

RTFI: http://www.ccl.net/chemistry/aboutccl/instructions/



--0015174734b60a793b0499985052-- --0015174734b60a79410499985054 Content-Type: image/gif; name="Figure_1.gif" Content-Disposition: attachment; filename="Figure_1.gif" Content-Transfer-Encoding: base64 X-Attachment-Id: f_gita6ghr0 R0lGODdhqwJ5AfAAAAAA/wD//ywAAAAAqwJ5AYcAAAAKAQELCwAKCgoJCRYLCxoUDg4SEgAREREa GhoODisSEjcgCAguLhIvLxkgICAqKioyMjI6Ojo1NUs2NlUkJGo3N3xUHR1APj5IPz9UJiZsAABk Hx9/AABsJydoNDR4Ly9rJW9lZQBoaARsbAtxcRN0dBh6eiJ+fihBQUFJSUlSUlJZWVl0VVVgYGBq ampiYnlycnJ9fX0tLYUtLYgwMIEzM5QzM5k8PJc6OpwBAf8LC/8REf8cHP8kJP8rK/8zM/88PP9C QolAQJ9aWoNDQ6FKSqRQUKdVVapaWqxpaZZ7e4FgYK9lZbJsbLVwcLdzc7l8fL1CQv9MTP9TU/9Y WP9iYv9vb/9ycv96ev+jAAC7GhqjT0+jbW3fCgrjBATtAAD/AAD/CQn/EhL/GRnvPDz/IyP/Kir/ MjL/Ojr/Q0P/S0v/U1P/W1v/ZGT/bGz/cXH/fHyBgS2FhTSIiDmOjkKRkUeTk0uWllCcnFqhoWKl pWmpqW+qqnGurnixsX2EhISMjIyUlJSUlJ+enp6CgqWKiqKLi6uHh7qLi7SQkK6/lZWgoIm1tYO6 uo2+vpOkpKSsrKyrq7q3oKC0tLS+vr6FhcKLi8WQkMeUlMmbm82Cgv+Li/+Tk/+dnf+jo9GsrNWz s8O0tNm8vN2hof+qqv+zs/+8vP/Lrq7ToaH/hYX/jY3/k5P/nJznsbHjvLz/o6P/rKz/s7P/vb3B wZfDw5vJyaXLy6jHx7/T07XW1rvZ2b/ExMTMzMzBwdHXw8Pb28Pe3sjV1dXf0dHe3t7Dw+HLy+XB wf/Ly//S0unb2+bd3e3S0v/jx8f/wsL/zc3/09P/29vi4s/l5dPm5tzq6t3k5OTr4ODt7eHt7e3j 4/Hj4//r6/Xr6///4uL/6+vx8efz8+z09PX09Pn/9fX5+fX+/v4AAAD///8AAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI /wDNCRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihxJsqTJkyhTqlzJsqXLlzBj ypxJs6bNmzhz6tzJs6fPn0CDCh1KtKjRo0iTKl3KtKnTp1CjSp1KtarVq1izat3KtavXr2DDih1L tqzZs2jTql3Ltq3bt3Djyp1Lt67du3jz6t3Lt6/fv4ADCx5MuLDhw4gTK17MuLHjx5AjS55MubLl y5gza97MubPnz6BDix5NurTp06hTq17NurXr17Bjy55Nu7bt27hz697Nu7fv38CDCx9OvLjx48iT K1/OvLnz59CjS59Ovbr169iza9/Ovbv37+DDi/8fT768+fPo06tfz769+/fw48ufT7++/fv48+vf z7+///8ABijggAQWaOCBCCao4IIMNujggxBGKOGEFFZo4YUYZqjhhhx26OGH/xHzQgQDADCABDEI MxAAABzEIogwShUIizTWuGKLBr0Y445MCcLiC7wM1AshEdzoIo48JmmUNSxSspCOBUGp5JRByQCA CwxJaSSVXP4UAQBBPokkQVp2aaZCL6AIiAxrsimDm3C2Keebc8b5ppMFldhQjXyWeeafUfYp6KCE CspCjmMmVGiigDZqzowDxPDmpJRWaumllwISiUF6ZsmoOX46aqY1JUKykgRgenqkqKK6AIAELFn/ iaWYq7IKaC8sVsISMU3SiuhAlKxQIgSA2Jrkl7Oy5CMAL/QiJCGwCuQnlCtEIo451qwQg7ExUmKi NS8tK+iWgSKUzQDcgihOAgAUC5OIJJqIoorSfhqqOOim6yEgADxwrVPWsLCtvhySCsCmTdEIAcEd rgBAClFZo8KhDGeIKwDOSpVvxRd++cJU53J8ISQAIABuUyxkLEwKMohc4boABPJUJagOEIEgLlcY Q7//5uzzScKwGObPRJOUAgAqFK20SCQDQMzSUHv0AAAtR211Rvwm0PPVXEt0LgA4dy12RCy8OvbZ Dl08NNpsH3Q0xW3HTRDJAzwt993mTC0z3nJb/6k133ETg8DBgMftKsSFs80Li3YnfjaqHzt+trcD ZCP52OJA0O7lY/PrL+ddG4ww6Fe/8DDpXC+OMepXf1k161BHAsDfsC8N8+i1F21ltLlD2EsEgRBC CCTCEz988cgfr7zxzCff/PLC87t67xCqsOj12GdfMvUQ8vqqC+CHL/745Jdv/vngfwnAydwz6PDC MDmcdPsLVpJrTMSUqCv9CX65wkw7gx//DEQIFrEPJuIY3N4GOCCYDWwmJEPA1hj4H79ZriaaixwF /yOMwRHiIDHA00h6ATeCXIxeG+yP9YpkENkN4IAgYdcCCeIwxKVwP/abXkGm5q6RyC4BFySI6P9u uJ+plXAgnjsJ5A7CLwES0T4+qpxBvra/kgQNACgcCMxm+ET5ZGNwPSTI4VLiqvkVhGQGgGEX32O6 zxXkYhk7yRcJZxDraRBC3jBDGBQShj76cSB+DCS3fDEDBeBuIEd7IEp85EQhCU1CbIjFHhMyyYW0 og3cEsINLHAQuqnRJHo7SNl456BYrMEclTxIKhOSBmcYyxg3uEEoDAKzD7LEflIsyNds2aBvmMEb qOQjQ6JhBm4l4QaXAGG/XnK0ZBFkRkB0kBtYIZBVFiQMYwiDGNjwjIPEQRXGAsUNisANgxisirti URwJMrXXKWgWaQCkQtrQTXPIggyyMAgZvmH/q3EY4QagOIj1zOiSMh7EhY1LkBmgIU+HQOMMBZnF KW2ViRsg4SCSMFEWW3K7gzjsiAcKpCAbsso2zMJW3IhlMWg5AxrAYCY+cqMJ7/cgayYEGsUcCDnI YKwo3AAKB0GEDWygDJpojosCCSCEVplKNrjSHM4wQysIwgpwsqoYsVyGQcaRgxskoibechotDQAA XjIoDLFsqDluEAI1aDMNsSgIGoDJqmNq4iAVvahNrPc/g0AziAxKq0EEKzJxGmEcBllGLI1xE++t bSCac+eCCEsQyjKMqzcYxUGgcAMn5MR0jRRIDhOqIMsKxLT6qmgTDiKKG+RAGzmppUdP1yDU/6KW W9pY7EGQgMyd+CiaBclfqgJ7g4Pc1licjcJBNDHOcu4ksgexUmgPFMvqWve4rIJlDpxLEG50VRQ9 GS0tBxe20l73uhy7xA3uapCKJuEnYzRIAXOZINsWl2PFQGxBktHVZPzEsQfRnCKpe9+CYLdiTfhp UJRqkBxutED2VRpWtysUdpWXhrRFUISL9s9MDMVHCACsQLxnVggXuLInPlMsi6Dfgdx2FKslisei O7sJDmjDgKoue12cYqWojrQC4aGGe7xWInOpujlocZGhYtAWfmuNz4klZz3MY6gYTIQEOVpfoUwa HXj5ywoxxRR0sIMgmGIgnPiBl3/AiYRk1f+13D2wUWb0gINcEZ1cBo0OHJIFKSBDIMeYgkCw4GeB IEMKV0BIWn2azNMaOSlbPIjpEpDn0eyZIacAAkJ00A2CdOPSgy1ubm8A2yVHxYUiNkc2WGRDAa1Y yaY2EKgVMoUzH4QHnR5IN3ig6PuqV7mxhkoKWKDGAgLAVATSsYEf/R8yk5kKfz7IDk4RBDKbeSCb KLQ5kBGETfRaICm9gVbl/JQ5SjZASFYyufdThWiboge2LogOenAMgZzCB6QYyJi/LOhvC0S9QF13 U3YG3GT/9AZUdnSDkPEDaTODIMzwwaC1zW0s+NscmE2GwJfivUO6WtxwrnKDZj0QTctbIJz/9vQO Lm4O1W5cKSuMDTTcoEcxmMENDHXKonurcAZF/CCbePhAfm6OHeRaIN1YuXFPPI4iVDcrqlsna1Qh Uj9alSlpHXWpX34fKtTbHMfwgScGAupuBOEUgBb7oIMQ7Yqz3BzM5bpRxPElkKqGFX2EQ86hAYc+ rqIpgv11zw10CilYuxQEmfU2qLADHQAB8dhWsw5+4O23N13uRYliqlPjjT7GtSCSDANdlSLYcI+b 2ZWOiMHCyJo4hMENCHFDGOKA9QIDPNipt0gAbayaNIThpAeZRRjiuRTCZhzzXFqpVC7m8dWIwaaA FINB+EkUyroc9aKy6FSORkrX9JGP1jzD/xlaQY6dJEOrKCbI5ZGvpMsHFCphBTJrns9H6RMkGtnE ZhzKbxNu+PS96UcQcYd9jiJOLPYUmQMAA+Yavgd8BiF8xEcQ5MAKeoRNcDB6MDEOmdBVN9AE3IV7 60cQpZYuvNVoTRFFvNd6YYBJB9EGs5cQslCBYeBUMCEKvGVRmjURWPV+3KJd6LcUBnNhsNF5YfB5 BBF6GBh8a+BHaDBVK5EMxzROn2ARlhBLU5gunAVUTMFgtIF3YfAGe/cGfURNDRENb/B8+sd/JTEO VRhLlzCCFdGGlpAuinUD/qUUF4NnskF1VRcGV+cQ30CBfTQGcZCEHwEKHOgEP4gRnxBLUf8Aa46S V0vRTLkxcxV4czk3EbFwBn30BRewCCAxCjdoBDnIEYjYWZAIKP50A1d4FPFnHLGgBvnkELKwBh3A IhGAbBqxDE4QSzmQCamYEcXQVUlwdKIyCiE3d5rDesLhe2FgBn/nEK8AAmTVL4SQgg/BDUrAgVEA hx9hDE6XBN7YKAmWcEQBYtjoG96gCvlHBqtAfQwhDoQwNSUjA5vXEINAAABAA03AWCWhDU5XBIvY KBonbkUhOGW1HK1ABn0kBnAQDQ9BCJrDIizwWAuxMixSAIqQEtxwTEVwhzthidqEie7hU1o4FKPk HLCABn60Bg7IELzgMLioiwmRDWVTMkv/kI4hMQ5NYAM3oHw5wYdV94fp4V034I9BkUNStxzO4IJ9 1IQPQQwyMDj9QpMFAQglwiz3eBKcdQPghRNeqHcCwXd+1x7MZQRbmROUKB3eEAf5J1VquBDySI8I IAMHVAn0qAIPxhLqtV43QYRGOBBI2B44cANEEBTz9UnOQQ6tUIFjwAW/8BCCMJEDsCkYCQAQ0Hwu wVwLMAHBOBLkMAurAHsF4XqkaRCyR3vsUQg3UAHyhxMJFDPZ0QpnAAYBAAAZgGULUQkqMAC9YDom IgM6yRKHwCIr8Jkd4Q2xEAec6EcQSRANiBAQ6B4UAABbxhNWIlPY4QoccJsAEAG6mRDi/zCVFKmY MmEIJSIBw0kR3yALcaAG+edHZzBNSUh/lGR/7KE2PUEN+ogL3mENMsAu/SII6SiRLCIBFnkTvDA1 EPCaEwENrcAGDBlIYpAGbxALcXlN0FdNG2oerjJdNlE2rdYd4gAIAhop8keVCWCVOyEMU5MADiqX lQAIGsAAXkChFtoKmbgQ9okQ2vQeBlNiNuFg5AEJ6oM0ePYlEpCWsPklCaCHCWENkSADKZCVLKIF Y6AGqgANGdoQ0Rl8wwcf/CJBByEOlVAJvHCmaYqmatqmbPqmaxqnbiqnlZCCS2QevHCT3ylCPkJQ QJENRzMA4TkQUkqlVEkjCCABLdAFzf9wEa7HggbhgqrpHuIwNQtoDjmkPZo6KFAaQeYJHtYQA1QJ AYKQDbhCaUUhkxcmDITwAhNJIyfyAoSwlxUBmAYxmPDRNA+2oA/Qq776q8AarMI6rL6aAEs5Ryx6 HjKQlQMwI2JVFFYimzFgpSySACoACIO6EV4IhmMphmFAhvGBKt0nE6Yzrukxl1TjMEIoFNLzAiDG MpHwqRKhnHGwBmhgEEIpUkT5HleUrS1hMAm6HpWQDTPiTEQhOw9DqxXxDK3gBiwZSF0qks+Ic/bh KnVGEw5znfFhPyAaFJQwOCqwngoBoW/gjH4kBmoAB7CwowEyR0jVEq9IH6v2KUPRQSb/ErAJMQzO sAptgIZ+RAZroAqyAI8HAinyehKWeh9Tg7NBIQzD0hCREAMYcJtg8LNBKwuGmCCVyiwxYSVkah9l 87JDcUIIMSQucKQ0sgVtsAr1NCFNIwhwOqdyG7d0S6d2q6aRUCL++h4zYndDYTp3RAyEcLZ98gAr AAiTcA0acqib2rjYc7H3wbFJYTC9wAuBwAKvyiIIcLgD+yElMgAJQKyiO7qk+6uDc6lexCIiqxNW kgJHUyMQ4AKCwAurOyE7A7kuUbvroTma+RMwUwmuKru0qyTCtbc7YiV3NBQF1LE8MlCA4i3mChRf sq5KElZLSSVMsjFD4S200yVTk7xd/1IOAgAA/kkU1oO6PDIjIeYoDXAAjEAUuPJCZoIvYCMqeiAC jUAUZQO+SmKxrFILInAHQ/E10mAmACYq0yACJFAOQrEzGHAmR+OnjXICIgAMFQYAs9Ql1msseSAC jxAUTcTA3ks13OIIIqAHQSFDZgJNussjuiACcgAUBdS9U/I1ydoo4TACIyDCPXGnXOIwLJQuFGzB 4WVAXQJHBNPBjuAT1uO3O4IsDGPCedAT3qOwMBJBTAooL4wCPeEq0RsjMHNuxlIOJCAC1bATsXnD MdJEInMHImALO5GdXTJEHPMHIrAHO6HCXOLFLpMLIkAHOlFAXzslFxOjtoINCqwTGf/UJV+Cvumi B33QwiZBpFQiyFmcQtZjsDzyNWLbRQc8JaYTxKkXX1PiPcZ7Q3PUuyCylrlHZ1wiXj8TDn1wAiNA AnLQBwUcE1NDvTGStD+DDSYgAsI8zCIAOoIsyYDSwXJAxNhQC4B8OdlgYUVTxthQO6YzojkzAsUM O1dkxQwzB3fMwyhhDQmQLMLgAlMzABCQIgOxOKp8IXa0NMCgzSNQB3twC+IsEnQHueICu+zEvBay OPK7NNJwB9oszCSwxAiBAihQB3ngB49wC7tQDfncEGWTMZQTCBfUCzJwR1bCtBUiZFeTC7RgByIw ArSAEMS80iNwAnRwB3vQCLWQC9P/QA0IITvJcjTG6y38eyF0hswEA8AxfBDgIA25UAuNsAd3QAcU vNIr7QASsGUJRF+hQhDi8J0dYjBqDDUnHRHlUA3AcAuO4Ad6UAcoIMzjiyT8okilkiXaGxXiAAnE MNfWQNd2TQx1jdd3ndd8vdd+rdeAbQ2QcMlUEQm9ENh/3deIvdiK3dh2XTYayzXVkMgakQ3SUAm6 ODgHtDMlwwKQoJhVzRTR6rikXSjYrBVXXdqqPSiGLDJ04AjBMBC5QMtTDBKyg82CQI8s4gITdNVv DRWaMwClO9zEDayDQ19cEa3FvdzDzS4A7TJOfdImcMYg4SpiSwyQIJPJuziiDBU//wTUG+EwPW0V n5y7VzMNf2AHZTwCc/AH4SASXwLS8VsQPqLJTZENoQQT3dwVH5V7LdEpvoJIdBQVOxMB4M0RBc4V uHS0/g0SoS0QsiPKTIIAUyFcII0S9PvOUPElzNjgJgHg5gAILkAJFySVLII7VtLhTJGxNZE1By4U M0zYHt4RqNIzMtknYXQug/wUAs3gKcHhWAEzWz3jIWE6ImQNgdCbLPIALrBRpqPhR9HIByXjF5Gs YeXjSZHgRK4Si6PiZQsATqwUBaSdAhE0BRcSmjOoDmPfT3FF17vlJBEB3a0QmQMBL64TsmUQ8lMS XEgQ3vPmTXE04w3nIiE7gF4Q6P+M5USxM+a64CahxwVRroVdMlRO6NDwBtlUEE35fGcArgcRDWsg BmKwBs85ELX4fGkwi1SBxAYxYyYBYqmW51CRgLxM6AmBBqoQDUy1BgwF6vsqEN8wBk7YCmMAj+/5 VM7ABlahZQdBZ5V+EVBsEL915zjx07Y+Eas0qebwDfhZmtoeB6o5C/eqFS6kRlqdEkpJS64DFXN0 yteuSgpBDtCHBm1rDs8w7mug6lgh0oiO1SrhMI3OOE/xARn27hDRoXEABwjR7QJhf2IAT2+l71Hh OTbG6ilhw24D5k6RCiyCCgYvERsqC2fQpdVkEJP0jMA3C2YACyAzOM3H7LHCM1P/VCIXHhRlsAEe 8PEgjxCbSLQFwfDm4PA7ilNT0WRnVDKKLjWbYxCMzhStoE2lrvMOYVOw8EsKQe8Ece8CMe4E0aFI EXUHwe8sMV+pFs31mxQ79YJSf/AG0Zg+bxDgThBxbw6qUO9EnxC9AKVeQsIG4eIwgSr2fcxJ4Xpk QPJrT0kFsQpn8PYlD+zCLhCssE/A3koCEVUsX6Z9HhRYbE4lAuUkYfHsxLVH4Q3Pd/mHzxAiBUhV 1/X3t4SjHvXewAbPhwaBSRDzaJzPHhMwQ718LBOkPFN1cxQuyPWnnxPCoD4RUPM4wS9zbg5kKxOp PFsSDBTO0EdPVfzLzyID4OU9/3FlBwH4NWHtwaU/RcGSkIr9N0EyLqBG9vgT/S3tlG4T30tjzw2W 2JS16D8TDwYJp+sThUxLAJEAQCBzBQ0eRJhQ4UKGDSsBGEAsoTgEAAQ1xJhR48aE38aEWcVR5EiS JU2eRJlS5UqWLV2+hBlT5syExFIAAJAgEk2XEADIUBgDQASeKFcAUKEwEgAE4oq+fBPGDLmnVa1e xZpV61auXblmY4FzACCnXjcCyln2ILEBAHaaXSgMZyWFEQC4gMsRmpgwsvL+BRxY8GDChWUGEnjX mmGE4tpeTHiUBWMZACAofAhAImODasKs4Rxa9GjSpU2XzByhV8JKLwq/AJACM//OzYWzVYSM0AVS 0bPChIF2Wvhw4sWNb3VBKaE1FXMHywXAq+7P0IRyZktIra1yzmbCvDkeXvx48uVFymg7Vi1gCQBW KITEdL1hu64TCn0wXzCsMGK8mQcwQAEHFA2SB3BiYbHBltJsIoFy4+yhiCY6ECjGYoGFQA035LDD ooRpzzK6CvMphqAAkKC0sJJKiBKIFPQwRhlnpHE42JgiZD5iXICwq0AAeEAh6EYcjRjnEroJrxqX ZLJJJ7k66gXsEAqkrQT0yyqbtt5C6KbJTEMryIR6wUmYJ89EM001TSLGTIQoOdC92rqCLcWE4hsA RtLEEQgQhXaTzSto3PBODDP/3AhuTUUXZRSwXm4CkjuzeMFJuoQONFE46xCY8iA+ASCkK1V+I5VU VRpFNVVVaRInLKYIaowru75EKMzi2rMPoU2xfIqV3+BIFBo4fgtpVWOPRZYjQSoaIIZODQJkADex wlPPghxzqzgyo5suU6y8+S2WhGL57b9kz0U32cpQnLOgSOL09iqB4jVIKKKMC8tOhDKz9qk4wnBj ITfCiCNdgw9uNJsIuDTIJpwQCDUrtC6rSQAAiCTutmwTau49rNIIY5aFfEsDYZNPXjQbnFZmuWWX X4Y5ZpgZNqg5eokTJK2EVJY55g5KBTro39RAiK+G+kM5aaWZXLZnp5+GGiea/80RRwICnjUOggem NciaqFv+WWixwyj5oN+ODmNptdfWsBK7hpKUq8ryU0ga8ojBMiyPrzKaIaTZBjzw47I5iqkev6rI QhkpbfDjkEcmW3DJJy9NY2cBW2pCGX1S/Kp/21ioDYIpJ730wihZTTC7lPRwV63ADUNchMgNw1zT b8ddTcYt5TCbB7ny9btgowqDldyPR97J3e7lsDJ9txpV6FOTp756D40EABIOscd4q0G9kwpR68cn f8CcE+gXwCTLZ799wAXKVUAX83S/fvtNnp9rAO26+X7//09Ve1gUoJzRDTA6QGACMbINH+gAIaUA gg52QIVtANCCF0xJL9rCu//yZONA2guMAzlChVKIsCCe8MEpCnKKIHQDgy+E4UaEQjHzCOV5fzFh RkoxBXPk0AfMOAgzNhFDIhYRIb4biHmE0ZbUhXAj3fBBBXOYw4IAwYhXLKJ1BoC143iJMBKUIBWQ wRArdKIgPgSiQZixAyy2EYYHYl144sMpwlRhjOYwRQ9MoRAWGiSHpEhhQY7RQDcW0oLQaVdxDgQr uCSQigVBxg8U8kM/PjAIO9BBEEzBRkN28n5HCdRx0HKl0Tyyh45UoEJMQQVPttJ91qhI94Sjsbgx hhk+yIgpDRIEFbrSl+SrDCmLE5ZQEoYKxxCkDzxRSYXk8JiQlEIWfjlN64n/Y5HaKhNjTiEFCQah FAfRZQ5NEQQJSmGP1ERn8lwEgPSNpj7phGc8uzKr4cyxnfLEZz5fgr0m7kkgEdNnQAXqkt3cUDS2 GmhCFXoSawhkaoyxxnYWOlGKbiRnTSFNcwZYUY521CDWpI5oJNRPj5aUopTSHGc4Z1KWcvQmezPM RXnVUpriEzocHMynGFlTngYUPzOFC2wiANSeFnWav1vOA5S6VKY21alPhWpTHxpRAJDUqFdFp3WE uZavdRVmAD3IbmCKVbJSc6U1IUZa1bpWtrbVrW9dq34yk8iy1tWTcxVMiey611/uZqNwOR9R+TrY GGrpYn/R2EMJu9giBlOw4VWpE2Ml28ZPHU4rVLXqZDWLQa0+lid622xoiegTr5b2aVsUbWoxiBbT tjZmxVRtbO0nDkgIA663xW1u2woJLsrWt78FbnCFO1ziFte4x0VucpW7XOY217nPhW50pTtd6lbX utfFbna1u13udte73wVveMU7XvKW17znRW961bte9rbXve+Fb3zlO1/61te+98VvfvW7X/7217// BXCABTxgAhfYwAdGcIIVvGAGN9jBD4ZwhCU8YQpX2MIXxnCGNbxhDnfYwx8GcYhFPGISl9jEJ0Zx ilW8Yha32MUvNl1AAAA7 --0015174734b60a79410499985054 Content-Type: image/gif; name="Figure_2.gif" Content-Disposition: attachment; filename="Figure_2.gif" Content-Transfer-Encoding: base64 X-Attachment-Id: f_gita6i711 R0lGODdhJgIsAfAAAAAA/wD//ywAAAAAJgIsAYcAAAAEBAoMAAAKCgYKCgoICBQKCh0UAwMcHAsR EREaGhokBQUoCAgkFBQwCAg4AAAhISErKysyMjI6OjoqKkEpKXpAEhJQGRlALi5oAAB/AABRUQBc XB5lZQBoaARsbApxcRJ1dRp4eB5nZyZ6eiF/fylAQEBJSUlSUlJcUlJZWVlZWXRgYGBqampycnJ9 fX0vL401NYAxMY0+PoEyMpEzM5k6OpxFRYJAQJ5ERKFLS6VQUKdUVKpbW61gYIp7e5RgYK9lZbJt bbZ4eK9xcbZ0dLl7e7V6eryfKCiHf3+nZma/bm7XHh7rAADzAAD/AAD/CQn/ERH/Ghr/IiL/LCz/ NDT/ODjHUVH/QUH/SEj/UlL/Wlr/YWH/aWn/cHD/fX2AgCyEhDOJiTqNjUKMjF6SkkqWllCYmFSb m1mhoWOnp2yqqnKurnixsX2FhYWNjY2BgZGXjo6UlJSenp6AgL+JibycnKW7j4+kpIm1tYS6uoy+ vpOlpaWsrKymprSrq7SoqLy7u6u1tbW+vr6EhMKLi8WQkMeTk8mbm8ykpNGtrda1tcKzs9m7u93X l5fXoaHbubn/goL/jY3/lpb/np7vvr7/paX/qqr/trb/vb3FxZ7GxqHJyaXOzq3R0bPT07jZ2b/E xMTBwcjNzcbMzMzCwtXfw8Pc3MXf38rU1NTf1dXd3d3Dw+HMzOXV1eHT0+nf3+bc3O3n3Nzv0dH/ w8P/zMzz3Nz/1NT/3Nzi4s/j49Hp6dzl5eXj4+7t7eLt7e3j4/Hq6vTz7+//5ub/7u7x8efy8ur0 9PTz8/n+9fX5+fX+/v4AAAD///8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAI /wCXCRxIsKDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihxJsqTJkyhTqlzJsqXLlzBj ypxJs6bNmzhz6tzJs6fPn0CDCh1KtKjRo0iTKl3KtKnTp1CjSp1KtarVq1izat3KtavXr2DDih1L tqzZs2jTql3Ltq3bt3Djyp1Lt67du3jz6t3Lt6/fv4ADCx5MuLDhw4gTK17MuLHjx5AjS55MubLl y5gza97MubPnz6BDix5NurTp06hTq17NurXr17Bjy55Nu7bt27hz697Nu7fv38AXzzlBoHiEFqQG BghgcHnw54x/RVhOnbpy5gWdQ99+eLqCOb6WKf9bNWfC9ebYuasPLCcAhF8KlyvLHmD++vtTVUBA waK///8ABigggPARZEIAfCykHUEL4udgU8dUJ+GEFFY44SoFERDAMQpa+OCHTLkQQASBDDJIiSea iOKKKraY4osoDsIhg+klZGF9IOZo1CrLhYLSAAEY0+F8RC7ToI5I/nRCACykdGCC8dUo0JFJVpmT IMvtklJ770Vp33VfWimmTRAEkMRK00EwR4G88GHelFIamV4oKmiogAsFjqnnlu6FeZIvElR4Hn0D TdAHh7+4YMKejJp0jIaBuDSHCUCOyMIoYNLn50ADNOqpSC0E8GZMm0b0ywsofKpqR6ksl0pS1EH/ MOOqtF40QQAtLKXMLiioUOuvFA0SQAKzKvUosMhCpEAAbzj1CwHJRruQGwFIUKpQKiS3TComvCDt twY9GkCkSQ1y6wASyAHuugOF6iu78DrVagCqxGvvUreeee++RvXhnpD8BixUmX0IbPBP1E5w7cEM y/RsAJg2LLFNKuA68cUzkTIswBh33NKtzXosskr+RrDwyCh3dEyZ5KbsckjUnvDyzB+tQsAAr9Ks s0YsBODCzkBfpLECHAdtNES3Qnn00g35qzDTUCu0cgA+Rm21QdS+e/XWy/BCQALhcb01CmaKvfXQ J5u9Z54qTVew2rUemAAEdNdt991456133hpK/wB3rRHeKPjghFf7N63uiqd4kYwv7njjkD8u3jEJ DDDI4Z/aHEDYK7UXAeaekv2zS7eqC7qewhL7UurFnp7kdEq7JLrrVrb3NEy73MwL7UhSTjXWLbDd 0Som5EyQiIvynmOoqRakedUfvRBA8gQds+zlyj/YKgGcD9Rz8yBNHbtAJWf/4K1uGBTKcvWK5K8C rS8T6Bzm3+cvBJuWOfpIZHtbUKtgq596piMIg3ApbRrRGPcM0rNcCRA6PzBcQX6RgAAU0CQi0tpA VlFBbT3wN66QAQygNxDpUa8kFPxdQdojsw/+hgg1uIFBNBexk8xBgtVb1ttcuJtX1CAHsTAI2f+a pJIy0a8gwvocD3cThBogwiAaG4CWVIKlBBRNIAfS1xJvw4oa8CBcZfLfSmbnvAEkQHhblE0OasAK g8ABhytRhYYwVJAMprE2h6iBEAzCCxhUAHstERH4BvKw9t0RNsjIgQ2AYZAh0GAGMDFGBQE5kBuO 6pCuIUQNCmEQYNjABq6IyQ2VSBBluA2TrmnFD4NhECHU4BAzKZ1BWIdK1vSgBokwSBd5gIyZCIsA V1wG2dJXy9QwogY9OIgO2FiTIc5wAAPYXTFNk8gavMIgitCjTbwWAOMNhFpEnCZpEFGDIxikmr24 SRJEFa5lkVCcnwnGJxlZkELUgBA4sZ4FDXL/Q7/BMzRHeGUnV5kTPrjnILc64j89EwxYthKXOzkQ MQmyPvgt1DTH5OVO1rfAglRsfxcVzTKvyZOKaVAgz4pmSEVDTnP2JHcqJAi1BrlSxtTAiQW56UGA UQRW+qQ9/sxhAChZU8XctAb0FIhOkaJPhQ7kfggsKmCOuseBLBUpWLJoQdAn1cXctAjMVGoNlnIg MQ5EY2fsamJuCowa6MCqY1UKjwIwRYKYVK2I0Wken7iMqyZFei0kCC+WM1G8DkanibQBK/2KFF8o wIEEmZdTOXNTvsIVdEvNpjkZCxWuguaoSe1rXA931VuqcrRRuaEVQ0NVglz1qEfd2lVVyQPO/0Ko gjv8zFfDKlrMojagtmWK9C75lGR8oQpPgAIVvkAMpLDVrZfFnF89GVylcLOGT8GFFJ7A3e5KARdH 0StOeytd1C6DnOZtCtkgC5UpPKEKtBAILazwBCmEd6yJXWx6DQuT9UlRKpJ4AhUKkgzkSsIomS0n efk7k0CZLipYeMIlDHKJJ2ABwaM1bXVp59OlHHAqUHgCQpKL4YHQdsOnU/BSfrGsC0qFuyMWMUG+ YIUJ3yQYQYyuQIC7X96tsRVLEVFgpRLiEUOhIBGu7xeGQRNE2OCLOl4GdXtMu0bUIAhy1RB2IfwE S1DYwhROMhS6AN6XMGKZNihEL8VaEPQSpP8R5qstI5JCRqpMQsDJIEgyqPCEAx9kGF0I8RO2kAmW vOKWeswxRMBqWdqpMgdrLoqwBhBMqCTDvfCVL32nkOeEEOMLUeDuFCjR6ZIg4wg2QCaQJ8KIVHNS eQF9dVGMiBXtdte7ZV5IMiZB3/pGorkjQcQyc5BLizQi1VWlHXUVLRRqWSsrn+azgJkbEVpkgbtQ 2EIlQNKIZZazwxZpxRqDEOnTtZQoD9tyWCyRa4XcggtQaIIALvDOi8SiiYnmCDDWyIPQgm6Zqw5K z4YslmFwdwu3aEgylnCA5UxAEPGLSC9Q7dY2egQYPKCBDvx9uIwKhUcBLMunQ21hSjTkGHH/KNOw 3IBGh6ygADLIQaM9gowm5oCkpwsCDIr9k1uZtSzJkIR76yuJUidEGXxYUgAI4AI6OqQPgQqAD8od ElfWAM6n82EOwL0TLEGg0mXBhJiX3JBUqKBSLPAmQri1nAj4ASX2rMGcbWJc5CqX2p/SJD57os/c rqUWW8A2F9qdEF64oILTc3FBjiGiYU3WJImobE1sfev6El5P8qxBKXqyzmfDBdCCxoKNF/ILNywr AAp4Q7HmgPgkgL0kiki1EWiC6fguY771VVUdahADnnBT7W8hRiRIzgQlGB0hx5jUchJwuVBMJwAo qGtLWmEDA1Cg5SEhBia+MImCBHjAejbw/6eOIYMK2GEnPTvpXDBhhQwEoAFvkOZCRoGCAZCCbCNS /EsAsRyCf4QWk7AFQ/cEVoBkEvZlF/Ypf4B6OoFW0mcXd2AB1KECTpcQx/ACGkIAb/B6LLEIFSQB 2EcRyUALkaAFVSBooqYFklALBVFkB0FiqnIgIXMT0zGDehEKLaAhAXACHrR4prccLfCAM5EKZaIA 3TMRkGAJXIBctwYFWPAFl8BkMTaFqqJAISgpqMeBdWEML4B46dI6B7KDhoQTvxAoCgB8C3EMgvAC J9BwTcBdUYAFkZAJl4cQLmgQMKgq6WcTLDZUgnEMcqByCfACeWJJPvELt0IALZMQqSAHLP+gctSx AFdACXXIEBHmZQVRYQmoKsZwMz04EG+gAgMyiqQ4ivonEMNlGKGAf7iSHL/AgD9RMQHgd13TBy8Q htSRACeQBIJwhQ1xZ1RgdHvWZ7UCVAhVOMhYIT+3LcvxiYOhCixQKQ9XJvLXEz0TAOmzC6EIiaiH Ai3AB2OIEZf2XraHe5z2K6dUEIFgB3PQju74jvAYj/I4j87YMyB1GLzwBmWSABVDiztBLbiCJUtn Ai7QB0JYEbQgCQk3EJR3a98FLFn1evYxkQJBkYpzkRZpkQcxCkunhYKBdHxwQ/fYE/4CfXKQChE3 EbhgCV3Qa0/wBQURbdy1XMAGLEuyjCv/ESg22BgaQ1w+IQhAMgFHGBG3MAldkAUkB4dPyIL8Ikcq 5RJckpKJoQwB0ClDMQoVpADOqBC2gAlekGS3RgVdQAkLeTBC5hIptIiPcSvq5hMwRUoJEQpykAIL 8ADdBQVW4AWWUAvHxzD6tJUmETOUISIPFhTBoGXhkgp94AISoIPLwQBbMAlMiTJvgHomEgqXmZmD gJmbqZmc+ZmeGZqdOQh8oCFo2Bj+on4+EQcBoDXk0QJRRx0DMAEvwAe6oDNUmYy6WTiq6RiDBQFE YUS3iHjLJwEqMAejIJUpozE7qAKi6JwsAJ3S+ZzUGZ3VOZ3WmZ3SaQIK0JaPsSxDyRNO/9N4ljIH 4Xg0ScMdZHOKPHEgfSAISRAKHrkzBuV50FGZONmAIxJVQaNP3ukb63NCPVExhck1dqQeEWKVPrE9 8xk0PNJR6oEAEPMTIpKfUXOT+EEGG/AJh6ghBxk16/N1+MEJHdAGP8UkcEMwDrILHVAGPrEs/8k0 o8SfvRECINATWCKgVyNJ3fQhaNABH0oTgUJUV3OgD5IHHcAJO9EqwGk2PDIAFYgfoNABarATZPN4 VrMkO4kfytABYaATg6U6YhOROgICHqATIrKlUdN3SDIGHXAKOKEMumM27WECNBocbNABeoAT7cFe V8NN5/kgn9ABaIATZXKaTLOHSWIMHf9AAjeBJb3JNADki/dBAh1QDDYxHWppNSAjJj/aCTWxPnB5 NV7XoOqxByVaE08iNsdAQGNyCiGwBjTBIwpwpzNTmT4ZNKGipkzze1CTUpQKNBUTTktTmSMJNakT pDpTJspqNDUYNQYVqUdzQyLKKKdQBh/wASSQBqjwMRO6NX1IpFbSCR1QrubaAQy2DCbkKWBAqFPU CWLAYIP1rYziAR1gqwt1V55iqXqArxSxCo/FEOuDpTojLAoQrDmyCeXqASSABkp6EP7KRwpwQnIw ARoCAS1gPBOgAEwzHQT7qmZgr+UKBsEUBtoqBmjABnvQCacQnsgXAWm1DMdwKxJCPe3/8bEuY1Am 8yu7oAntmgYGIQYgsLDnWq4hIAZlsAZ5oAl4EAjVuAwVozQiAgEQty1usD+tQlM0o0+buiq+0AEf gBC7AgqckAdrUAZiEAJFa67LoQDmISyXVEGBqhwJYDSh4n+00qVnGhG+cAqdsAdrMAIcALPYMR0k 5CpR8hSpcBwv4AYv0LiP67iQO7mSW7mRe7mUi7mS6wITUKBU0QcR4AKZO7qWS7qae7qTGyo9uipi oAlhowtl0AFgsBHzIaoFwYooIAetk5tPIYu7+bsVUrdY8XzAW7zVobWNsrbl6gkd0TNb+gaxmQBj aLtNwU0uMI/Ym73aC49xoCHjIxWT/yYH2zu+5PuOccCDtZILaxAGHuABIIAGueARhosQv9AHt3JC lUmsSkE2WpORFfm/GAnA/hvAF6layskU8zMQA7zAAtzABByxDaMhJ8O7AxEo9XYUv+SyJnErx+oU M7pQVPI/VTkQ1IvAAWChJjFpUeoUPNq1tVRBXyK6VZN8ywJZt+LCReE5B1wSdzsVZ3lRFeNBxFsd EzAjqQkhOhQTvAAkF6wUzDm3tWRQCpUKsLkcA3ACSkNBEbDDQYE8m4KzGUEKwFeZo8oU/VNTE2sQ pbKxT4sUmuOMIuKnHCEsQTUQU+O5SZFVGlxMBoWoA+ECELDCSLFeBvEsBODHF3EMgf9Ci/6yWk2x yOl6FVhCaUJ0wiNhsMF0IHJ8FAkTyVehk+qDeghrERhaEBwJpStmmp5cFZ5zELBTErtQlSv8w0mh r6ssFX24qZVpnyNBy4RUQewpFPPSrLeMFL4sEOISox2hDMuyqa2MFBKIwsWMFKSAmHUEfSlhUE1a ENOhRUThCAewAMIwzQxRPEPhczNUlXsMEgk1S0vXxj9xaU7wCOSsEI2nvz1hUI5sIJasEv6FRgeC zz8RYFpQzwjhBjr4AqbqMBX0eKLKxR8RKss4V028E8kQYpNp0CilcigAxTrhbPkziy2xxPRiEKko FFzwBF6g0QahH4vIK7DQEzRkELj/CsEZIT1aq0/fuxO3UF99qdFFw3gFYDElhc2Lp8ovUSZEekNa 5RMR1n0snRBysCwD4AYQ7RKT1sZxHBP+wssCgc4+YQkCFtUIIQjPZwLwTIP9TBAKtNAiIYOhTFc9 kQyhhglkHS52klu+QIE4Qa3xA8oyMcwt3Zo94QWDdtcHIQduwDHKgNA+cxN9+HhYsrMzISL4TNE7 YXBQUImIPRB8oHIvcNUoAVjttE804QsdZBCsWcc3EXiR0NkJMQjPdwIe7RJzpW7rJK0tYVA+ycwB AMYuUQtPMAU1Cdt2jH8QsIiroAJpvRKazEcaUtssoQwqWhBV5NYngVwmZ9wGIQED/xDaCuzYun0S 65MAbdwz0uwSIZrJa00TYg1+3P0/FdgHKocnMuGxBgFAoq0Sw5TOcl0TtDAFthffa0ez5iwToxQ/ sgSmQKLVO0jgQPEL16gAcfAlEi7IjlLdBIElt6MT0oPPvgApEN4TKeQzRRMHFYS8GDQ9pa3MMuGf ND0iI94TLXDgAuF8y2EC0g0S83qeRsoT9XkQZcKrI1F3yUWTM94QoRCGEeCPJ9Ezl12VzX0TCWzd qLffGNGQuJbkCfELsqiBX2IM9n0SBotGWhoUABRMobLJIlF7mpZ7XG5AiOcCRdMHyyLQIXErtIjJ 2NLeAkHSGP4R30dg4hfndrwsHf9NUVFnAsS8EZa0KdMhrjyRQkJYmSr+ERE2egOhiYZOEHxASYNw eiNiAhNgAqZ+6qie6qq+6qxu6lEHfHVaFJXpf8qQla2e6hhgAUiABbze677+61hg1wNxhwWRh51O EFxovMpeHcE0v0WxLOfJjYWjAZVX7ZW33QIBYy8oY8fu2YjHAqSwCqqwCuJO7uNe7uh+7upu7uye 7u2u7rcix2po0/21wuU9Cu6e76qgCqYwC7iAC8Pw7wEP8AJf8EZH7ARh7J1uDGE4AS4uEnO140lB ayZxiQjY7YWiAMGcEoJUFf1E7xABjMLIZ36G8byA3SDh25K+FL7z8Bsxjpl2e5v/9tMYDxOjhPIU StgpoeXc9ZA1T+XMEhXbE+giIZPTVtw/TxMKNOVGQTZEnvRjQchOcd1Qvxa+yhSKLNJVvxadzBRd v/VqodNLcV1gzxbavBRQXvZt4VlHwaBqzxYcCaFFAdZvvxY93C8jguV1rxUhTq9CwaZ7zxa7LOs7 CPKBXxVlstO+F92H3xZUHxRS3/hsUVZBUd6NLvlgEfFAUeWYzxa2zBPUavidTxXG0GIk7k6j7xbP vBPHnPpqUSaFdROag8iuPxYVNcpjdMKiX/tUEfk28fi8zxbzQvssUSZxEPxvcdI18fXIzxYp5I+8 IJqgOZrTX/2huZUPg8PNbxZe/3cQ0rPsg5Or37P9cAHYBFEeE5D+6r/+7N/+7u/+BJnfQHL55B8W /sX0J0H59f8WiQMTBnWwALFM4ECCBQ0eRJhQ4UKGDR0+hBhR4kSKFS1exJhR40aOHT125DUgQKqP ESEE6FNS5UqWLV2+hBlT5kyaNQUmCTDBpkA3ASQo2xlU6FCiRY0eRRr05BybqwgEGJVU6lSqVa1e xepxToAEx2qiCKAi61iyZc2eRftSQgC2bd2+hRtX7ty2u9LexZtX716yfOj+BRw4gAm+hQ0fRpz4 Iy+gjZc5hvxYcmTKky03/qVY82bOnT1/Bh1a9GjSpU2fRp1a9WrWrV2/hh1b9k1s2rVt38adW/du 3r19/wYeXPhw4sWNH0eeXPly5s2dP4ceXfp06tWtX8eeXft27t29fwcfXvx48uXNn0efXv169u3d v4cfX/58+sUDAgA7 --0015174734b60a79410499985054 Content-Type: image/gif; name="Figure_3.gif" Content-Disposition: attachment; filename="Figure_3.gif" Content-Transfer-Encoding: base64 X-Attachment-Id: f_gita6jro2 R0lGODdh+wI9AvAAAAAA/wD//ywAAAAA+wI9AocEBAQJChUcHAAXFxcYHSQbJjIqBwc3NxkwMDAf H1EwMFkwMHwHVng7Sls1VHhdBwdaMTFoFBR8MDBaMVpaMX19MVp3MXtcXAxXVzx8WjFrawl7eylP T09DVGhFXXtRUWtLYn5hV1d7e1ltbGszM5QxWZsxXaUpcYwvdpA0eZMxfLgxfcBeMYRDQ5BPT6dI ZolSa4pXcpNNdahOebdVeapUfLZ6WZhzc4xgYK5oaLNme6lkf7l7fqp4eLpcfsBhf8AxhMZFhJxa m5tUjaNZhrdakqd6iplpgatjgr1mma1rm7N0g611hrd8lrhuoLN5p7h8trZOg8lah8dWjdNZlcxZ mdVaneRboN1ep+Zmh8JmlMlknNR0nMtvpM5rodZ6osp7otJ8vcBirOx8uOt/vfNywvWDMDCiAwOa WTGlXTG4fDGSTU2cWn2WaGikU1Oje3vcKSn/Cgr+KyvMWlr/UVH/bW2EMYScfJygXIK2fYGIiDi+ gTGWllKIiGa+lVumpl6pqW/GhDHFg1jLl1nTm1rVoF3VsX3jpl7rt3yOjo6IgqqDgLqCnLyUhbGY lrWDrr2KsL+9mJikjLCtka24mK60tImnp6erq7qxpba1tbWPj8aDpcuCqNaJscCNsdyRpseWuciR s96Ku+OVt+GYvfCgoM+lpdKjuMy1r862tsS5udyb1Lm367iExsaMxeiDxv2H2v2YzueWzfOb0+yV 1veN4P+R4f+jws6nxdCyxdi80turyemi1/W0zem02e+47NOn4u+o5fe47Oyx6PS68vfClp3Gm67K qanXp6/WqLH+jo7qu4DjtrX/oqL/tLTDv8nYrMDkv8jCwpjR0bPU6rju0pjrw7rs7LjHx8fFxdXB 1t7ZxMbYztDS0M3c3NzFxeLI2erY2OvJ+snO5+fN6PTG/v7T4e7Z5fHU9/7pxMXn19b+ycn928P+ 19fj3ufk5M3q69Tn+MP/58//69T+/sX589rs7Ozk7PXq8fj86Ojw7fT49+f+/v4AAAD///8AAAAI /wAFCRTooaDBgwgTKlzIsKHDhxAjSpxIsaLFixgzatzIsaPHjyBDihxJsqTJkyhTPrTnjqW9gSBm 9JpJs6bNmzhz6tzJs6fPn0CDCh1KtKjRo0iTKl3KtKnTp1CjSp1KtarVqzx31XhhD95LQS967RpF ahRZs2XPqk3LFq3btW/bwp0rt27cu3Tx2s3Ld69fvYD7Bv4ruDDhw4MTG1aMeLHjxpAZS348OTLl y5YzV96MmbPmzqA/i97MqbTp06g9ld2160VLsL3Myp5Nu7bt27hz697Nu7fv38CDCx9OvLjx48iT K1/OvLnz59CjS59OPTonLi+ya9++fQsn2ZxcC/+SOTvUlyRP0j96sn79EyVfQlWfT7++/fv48+vf z7+///8A0nfdC57s0gsvM+3ii4EI7uLJC1x8NwonNbjjQW3vQQLKLbhw6OEpoDzixCajyCdfiWad qGKKLKLo4oovtgjjjDLWGOONNOJoY4487uijjkD2GOSPQhZJ5JFDJmmkkkgu6WSTUDIp5ZNTRknl lVZmWeWWWHKpZZdgfqnlKGC8wAkpaJKFZppsYgdGiaGAUZCDLCrxCC7agKLEEKCA484442iDCyRJ wImiiYcmiuiiijbK6KOORgrppJJWSumllmaK6aaadsrpp56GCuqonupAgwynnipDDRJuGooiMkT/ IeqspNZK66225orrrrr2emgovgbL67CklknKLWaNNYoqZjE7yljhvVminBeO4gmwoTwBCi7ajvNE EE+Ag4895+T5xLXYpqvuuuy26+678MYr77z01mvvvfjmq+++/PZ77ydZEMPPwATzs88inIgiLw+1 8MOOrP5GLPHEFFds8cX5doAuxhx3DG94u4RSFqqzkWwWJzCAASyZBaV4rSfaBqELweA4IYQ9/Ngz zinneuzzz0AHLfTQRIeyAzoFE7wPrDTMoMV3nphaRShR00CFDrA43LQXoTRBw6lSQG2qFEzQUIMX n3wddomeeH2qFp6IUrUUS9BQhSeM6IBqDVJs/1z034AHTq8nADSwieCI2xuebDTcc48MZjX++Mlm Ykutg55kDjMoKNxSsD2gmMPPPePccu7LVKeO+uqqt876667HDvvsstdO++2254777rr3zvvvvgcP /PDCF/972mbbws88R9QQCz4D7/MME5zsUA4/yGhhPT/QBFPwPpIQIQr0/HDDRBdMDMNPOrzwk48j WyCtDvWeHDE+P/psk8UX6fMTTfvWOBvScrYNLSiMeAg0ngITyMAFOrCBCPQEJwAwAMNl7oEYhGAG jSfBF4RsFDJwh+NQdY9zTG5CMOAE1TxBLWtpDma4OIHnCgaKcfADH+Ew3Qt3yMMe+vCHQAyiEP+H SMQiGvGISEyiEpfIxCY68YmZW0LD5LGDHQRDH+Egx8CsIYUsXA8ZVNgeNHhBPpY0gRYD08fA5sGE HQjsewWzBhWYkDV+hAN67MiCGwmGD2tUAXruMAc+6vEDKBrykIhMpCIROUFvBKADm1ikJCc5xMWZ iAYmLOEIVxYeTmiuhSvM3J1OAIqkgcIdOSvd6SjJyla68pWwjKUsg8iw5f1gE0egARF2QAZ+1IMJ PvgiFX7wRRo0jB1fmwL0kiGDKyyzBgKrxxKwMLB0GJMfVFQmPyYhgyogbRLQNJgidGkFX/JABjLI gic9Oct2uvOdSdwEAMo3AEjC855GDA8p0iX/A02eQwbp6uQKL4eaJ+AiCNpI4zgIZUN8jINbEkSN RCdK0Ypa9KIYzahGN8rRjnr0oyANqUhHStKSnkaK2MwCE8ZAvugtIpjYC2Mxs8YOKTRBDAZrhBeQ IDBr+KCnRPgjPyhBhDIs7wg4TRr2wslFTmxCCgPUhzfgZ9KqWvWqWM0qVufJj24EwANf0KpYx4rR F0zINJh03D1mYBoJwiCinGhhWzlxJ57lgh+3SEIRcJGER+iMW3Ndp2AjStjSFHawhk0sYhd72MYq 1rGMfaxkI0tZyFp2spetLGY3q9nOZvaznAWtZ0NL2tEuFqXMu8LAuvEJWYizBsL0AdKQcc2H/900 p13YYwAFxoygQk8SRzAq85KajVwYNxeOkIL6mFGF0jSBCru4R/R0Ktrqlta6psWudq/L3ex2F7uc +AIA1MgPbHx1E2RNb3ol+CBSfEKCadXk49pqJtMQ9DQGFeQtoFCEUvJjCAw4QS5Mp94CG/jACE6w ghF8hCkiVZw0eIXBXtpTGpSTH8mgAU11qU1mOhPDUeCtb/kBXOHuQJuU+BoNutCEPTKDCk79Qi5j dT1jeGfBOM6xjjkKBgDsg2DYAAAIwrrjIlv0QbsAAyf6WcIZ9NOEMjANgezbsoLeYhw4OwcqB5YE BhRBGwQ2spjHTOYymxk1KKWiUNWxi+gpYv8HdXQH+ZJR1DSqYwdoxN/A6tGDcPbWCvgAX3CX1wMi 5Nkd4tpHI37KD2ZMgROM+KM9wHEOg0nCC2fOtKatKl59kJcfqQgADIi86Rw/aEJgkIEJZwCGVI8w rg+Cq1xP0wRQ6MIc9hiXrvGEAieAwgmlDrawh01si+JyijtYKfS8QQqDMaEJUvCFwVAhTCKob3lt dAX5usEELhBBxEKVRBGEuz8miGKA9ngGF3ywXCqA4Qta8EUZMbEFJRf73vgWrz0+zY9MAAAG6MW3 gV9ACiWDoQYyaLWS0anw8LCwNJczeFzthCdAWXwc4RgHI4JAqLh6XOIg/7jIQ07ykZu85Cj/P7nK U87ylbu85TB/ucxjTvOZ27zmOL+5znMO8lyyFQxNQCcRmCADVoMBl6vSwtfcvQm9Ff3dRBd6q5su Axgz4lReAMMSng71VPHtC1/Qm7tLI2NV1UAL9ub5zteu9raz/e1uj7vM4yped+yD35YQdasFPlYl h8KsCg+84Pc+5bjKde9gUIITOrGhWzj+FB26BSgg4QQuhBXxcM+83Dev+c5z/vOeDz3oR/9xg4Pc 9A3vguEFH17UG96+qB/83u0L8dbHPvCvZz3pdy/63vP+9y83OBcA0BKl5j0GX5C98pfP/OY7//nQ jz7iVWYmhXOBC2DA/vWznn3sxMngVW44/xi6gJ70sMf8T3ACeqTP/va7//3wj7/850//+tv//viP /uoxL/395/72srd6pbd/p5d/BniACJiACrh64uUN9rBv/IAAADCBABAAOpB8/5eB06eBpseBHriB INiBIfiBIliCBpc5L5AF17eC29dq15cFhadwc4J9skeDiJd8CpiDOriDPNiDPviD0EeAQKh8Quh+ JHiEI5iEJYiES6iETPiEThiFTTiFUEiF02d9AOCA3GAJ/JAIAwACMBCGR2CDQ1iGzqdC3MEdLaAd EiR4LWOGcBiHcjiHdFiHdph/NJiHLriH2ceHetiHgPiHguiHhBiIhTiIhpiIiLiIh9iIiv/oiIz4 iJKIiFjoDdgwAAEAD/gwAB6gBCuIg3coh9eyTyJzIi5CFizkhh6wC2T4h+/WajgIiqE4i7RYi7Z4 i8rXBfCni7HIfL0oeGSIi8I4jDY4fKkwAAhQADfADzdQAN0GdsM4h8F4fYAogyOATtiYjdq4jdzY jd74jeAYjuI4juRYjuZ4juiYjuq4juzYju74jvAYj/I4j/RYj/Z4j+9IQQXgAA4AAPawDwHgAPg4 kARpjk6WjSMwAjmDM0rVkA75kBAZkRI5kRRZkRZ5kRiZkRq5kRzZkR75kSAZkiI5kiRZkiZ5kiiZ kvYAACHwDLmGAcuIAH3AkClZkzZ5kQ//yA0JuZA32ZM++ZNAGZRCOZREWZRGeZRIKZT6cAPdwJD+ xgEDkAg0mZRUuZEP2A07+YB6tpXk1ZVp9JVcCZZeGZZkOZZmKZZoWZZpeZZq2ZZs+ZZrGZduKZdw OZd2WZd4SZd6eZd7mZd8+Zd+GZh9OZiASZiCWZiIeZiKaZiMmZiNGZj7gDM/hg+ZMAKJwA3QQz7k pZkDw5k3BJaeGZqgOZpbKZqlSZqbiZqdqZqf6Zj80BJYqZAPKJiL6Zq1eZuPmZu2qZu4uZu+2ZvA yZvC+ZvDmZdqdJxfiZxeqZzJqWfL6ZzNiZzQKZ3M+ZzUOZ3RGZbMiZ3WqZ3QyZ3Z2Z3i/xme5EmW 0HN3Dwg911md4Mme7tme8Pme8hmf9Olp+HOc+AmeV5mVOENedxc9W/mf0SOdP2YwAGqgCFqgCnqg C5qgDPqgDhqhDTqhEEqhElqhGHqhGmqhHJqhHbqhHhqiIDqiH1qiImqiJMqgBEqgJyqiDPmiA8OQ KFqiK0qW/zmWNwqWORqg12kwPbqj/vmjQmqjQ4qjRaqjR8qjRLqkRsqkSKqkQYqgavRjbEmlaWml xJmli/lpcImj+ymb/6gPOQqB+4APanQNErAAwkAPaUoMZeppcKpGuQanOWOm9jmnd2qncoqmC0AM fEoMeiqnelqndIqngqoPfxqoeVqog/9qqIS6qJB6qHeaqG+KqG0aaIoqqZr6qJvqqJ5KqZnKqaLq qY06qIkap5E6qqXKqKyaqqTaqp1aqnpWpmWqZxC4b/qAqXCqq3GqqneaM8CKM8Iaq7CqqrOKqbM6 pWaarAazrFOqrMj5n2/KrNP6rM0ardBKrc7qo9eqrdjardZardwqrtK6reX6reSareFqruo6ruza rXc3rf+JM+oppvAarvYppviKrz8mrfg6rv/qrwA7sAJbsAEbrj56sAbqr/rwpQuJnDiDpggwsQjQ p2zap3+KsLnGrWQqp/rAphRbsQJDq/hwDWaAsW1qsn0qr4RqoF2RBgjQS/u2DAhQAvH/0KbSGqwc a60dmzM8e6ZmELITu7JTWqf8kLHPerHEYJ85u7Hzaq0SK7R92qxNu6w/trFIO65G+7Qcy6flUKYq KzA9u29/2rTAyrVo67E7u7Zp67Nsq7ZtO7YeW61yerVyCq9ue7V5C7d1i6kkW6tje558u7duu290 K6ZmKq+Iu7g++qaK67hWu7iPm7iRC7nParmNS7mXq7mZy7jxyrmf67mSW7mgO7qbK7qYG7qTi7qg u6znuay5Fq8em62Gy7Tq6bPyCruzi7t3qq9z27t397vCy7vDW7vF67s+y7S9W7iFOqUO+4C02rD2 ELZ1a7gle7JumqtlOi4PS7K3CrY4/yunuHqmbVq31Bu9tZtrwloICLACwroHCHAFuPqm6ruQ+OC3 49K335u/OfO3R9um19qw+Qu2JysMD2upavqwdSqs1lum+/uxAPyPvKq++lq//1i2DSuoDIy4Dmy+ BUy+akqyfgvBaqrBmBq7J6y/Kty//CvB+/vCK+zCMdzBLDysf7tvfrtvt2rBuua9HDzAvIqqP4zC kQnDNay/uDvCyYuecBq8TOxpTpzBUDzF4xvFVUzFTYzFU1zBWczFW/zEvgvGVtzFYqzFYSzFZ3zF XpzGZIzGY/zFUkyr8xvEJBvGgXanhivBb/y3+Ou4t7qQwQvIeBzI0DvIhiy+hBymiP88yH18x9EL udE7LvYQmwupw5jKp8IQmYGGySorDIFGCBRbBS58xy4cu5gsvbSqBiGrpnzKChJAsX1KwQ38gPZQ DRCgptNrBgowC0r7j+w7sfK7D7ZcAuPQyfCABrtMyyecnrP5gJgMvfjwyzU7DogatBS7AuCLy/sA ysBMyw6cw+kZmc+sw9wcvyQrzVSQa52MD7Y8sckMzUSszH/qzG36j+UsaZz8ytccprErveEsySis zA78zwIN0Msc0ASd0Agdu7ScwWEaaLJcyXKsxwIcmRXdsN+sx3pMyhDt0OK70AcN0c2M0ajcyCLM x9uL0ver0ia90o3c0jDN0jL90jP/zccxTdM4bdM1jb83jb7LPMQcfXf5S8vCer8j3ccknb6IK9IN /dNOPdDaK8lRPZtPLdVVTdXoOcC5isNM7MDoWcSU7M2oPM+z+aeYvA+DYM6gHMzNLMnoOb1pasDM vNbbXLHCYNbYG5l6vcx+e8wIoG00S8zPvNb2wL6ifMx9iggTSwZoSsyVzM8bnc3CIMDycAc2RLPY LLFXUNfyu86Ezb5bEM7+XNE6fNafrNYIIMr2QNd0zcm6PAtdwQaZ3MM6TMSm3cn7YNj6wL6bnc+o Lcod7cJvPdCQzdCQTdxvbdzDDdDJLdLLzc85DNAYXdzjktVEndXEXd0VzNXSW906/+y9143Rwe3V FQ3RPdzdtT3UFj3SRK3DDt3Q7k3UHi3f8Q3f783e/hzf+T3f9l3b+E3f963fAO7fAt7f+13f/23g A97Myc3PSc3P4K3XDp3cAmzJzJzU4Ozcbs3UE63R0FzEHh7iHS7H3p3cTMzMwYurz9veZKvPQ3vX cY3Jx7zLlkrM+c3icL3KwjDjsG3LrFzA43zjLI4PmG0P8KttMo7MsN3Y47AParDLe+AAGaACtuy+ RA3QOD7O7Z3PyTzMxRzXPA7XxIzjWR7XDxjmXl4PSl7LECDYMW7mzEzmRB21Oh7mTM7lPd7mWCbn fN7eWN7ncQ7oyizocn7j693eQv/uzYS+6Ize6M3s6JAe6ZI+6ZRe6ZZO6Dee6Diu6Zfe6Z1+4O19 6O0d1mWOy7Scz6zs4i8O6FoO17iM6jBu6oLeymbu2zpuD4oNBRJwBYOwAJWAAGPA6FrezrAc68Lg 6sZO56s+63D+zLCO7IMdsmRA6ONs68X+7K3u6dq+7Y7eEg/o7dwe7uI+7uRe7uau7eB+7uou5+mO 4+1Oy6TeEvKO7HP+5mr6Dmgg69++77QM7q2O7woQC2ye6gR/7C4x7wfvEvagyhOrAiyByfiu7/Qc AgGPCAogAhKf7vPeEtUuAQEP7R4v8F4O8flu8Czu7Si/78/sDgAv8nre8mzu5vr/TrO4vPEJz/HN HtcRb/L0nOof7+UJr/Apz+9EjfBDr/D9LvRE3+5Gv+9D//RBf/NSb/PgXvVOL/VRX/RTr/RcD/VK 3/RLn/RhP/ZIb/Vkb/ZlL/Zpf/Zqj/Zu3/Zwz/Zyv/Zr7/Vdv/U2z+5yD/Z1P/Ze//f8DvhZb/dX 7+2k3t7egMnzTg1xzfhq6g5pnc7ucA0W8AsI74De7oCOLwwO6ID2EPmfb9eO/wub7/nn4BUKj/r2 4ICKPbHBDg+jH/rpPL2Vr2WqnOoIoALw0BIO6BW8z+KJH9eaH/Khj/vpDPrPDPq0b/kK7/mZ3/Oc /4CRD/kIMPvTD/qbfw02gGVe/676ZB78j0/voD/5lc+nwCCxx1/97e31mP+A7e/5q8/v7R//3u77 8t/8qc/196//tDz/8U/mAOHOnj14AwUatHfwIMGBDRfa8wZR4sOEDQdGrCgxI8aDGDEy3JhRoUaO JBF6RNgx5cWVGgWqrAhTYMmJLCuivGnzpc6QMXnK7DkTYU2XJkUO3VnUIsWBBXdGFBpSIDyYP3kW HXlUa1auSIcSBQq14cduI0bwu+jOG1V71CQs+OWOKrxrb3/VhSsQEQK+C4AJhVowcF2+fePaU1MY AVy8wtwNMvxyJrxz7tQmhOd28a/KeP/a22s4nF4EKiImHiPUssSI3lonxHvYW/81CIrhai6sQm1s 0oYrs5bIFqI7t3klJuZLJeHpwsq98abNV0Gs1d7UUnU9kTdxu5ZDL3Zc/K4Exbqxy3V3bq5qwZhV vn7NNiL2nK+BA0+/Hr58gujpwzcpOwEnAgy41iiz7MD01nqqv9bgA5BB1vhjS7i1KiuQP/vEmq8+ hgqMTygNgaMQxABZknC9+zj80MDgRDRxPhhdRKnGCtFb0cMI+zPwP4geTEi9GCG6MSf8RgSQRiV3 ZHJJIofc8EmQyjrLnnx4VMs664JUq0vXqgNMQwTRO0fLmrxkzTIvcbTusgsvky/BhNy0Drs4Z4Lw OjchEtJABttEb08EtwSxzQH/AfURqkPbTDMmAAHrMsE94/sNvQe7FLLNPi/V0p1puptISCEXxG9S b8pEMsjWzmGtzCf3y29PyzJVlUBWY41QwR7dpApVEC3jD8cFg3Wx19diDZWqBF3NjtfLZmVQvyeV nXS5JYeVc0dZmfyPWEKFTJTaao8lV8ltaexWteGClFbB9d5VM0Jam2wyVlKBLFdCCNEd10l6J3yJ 2SWPLfMgKtEaTq0yFVNsuC1dwzfB1hJUlkGGC3vV0iclZk3RhF27uLBAB730PPgyda3iByMKGYF5 u8ROwFPxjZjOHzNNV+aU6dyZ5cJONfm8LD1eq2W+tIxwLs++TLlg/4Y+5x2F/6XOT9EHY7ZTzz+X i/pZpn9UsMxoh4an5x9/jHm5ledkUM8s0Z5J4S+zLNthsWnWOua3IdZ46zrV9LVtNd0cPHCwf8zb WVzh/rNrmeHOVuK0IabWcIWzVtA1sbFz/NWrp1accLr33hla+gZHXWKUEccV789PlbrtiGL/D2Ig Sce8cZqx1vpP33lvlvLeORcQ+IEOTmutED0H/vcF/ZZ7V821LFNsyYde2Wx65X7cULBLJxffhEU1 efqKD9d+9tEhPpvpgk1un0+/7RlHS3iRdnjRuTcFOGbb4xWPmZBWMWcBbYBDg9zMCEe9njUudugL 2oLQBC0vpa1+YNucxCJSv//n8YlqWcLZ3vZWNwfKLVC5SpOARke2ZfluZg1U2dpkVzAVMq2G9gjH n3g2MfbFjodik98KbRez6sUudODzXtOQpjWo+dBuAqKh7Gw3RYipx3EZVN7lkBa4iOSQeCCMXRSB 48MXDop+PJzcDBm4QIe1kXtAi9wGG9hGoB3PLAib3v/4xrQ1LVFLRqRi2aaYJRa+g3LTk5v/8kdF RioPaY2ED/YgOUnh7dF235OkN+q3RUFOsZOPnGQm96iWTcIOgVTEJCO9ZDgyQjKGo5wi4h7ppQZW 0ZB+FOXKhpZLiJHxblQUIiWFCcoX2pCYguTlMDX4S0uqR4d51BnYJOk/333/T4+otJ0zNdlIakKT h/YzpiW9CcwhvlFznexmN4v5oExZ0ZED7BQxDylP7OnNk5IEYzgHSUxSpsyfwwxkMi2pzuzYA3k/ uiVAFUpOgO7SNQlt5UKvKVGKqrKiFRXoRTUK0Igqc6MfBSlBewnSjSY0lCSlokld+I4cprSRKkXp JFlaUZhetKMWfSgkMzrSlIYDotvEaEyF2khaNtJxH02mHatkD0s01RKZeGpToRpVqk51qk7F6lWt 6tStVpWqUsXqV7MK1qhC1axlRatXz3rWsJJ1rWjd6lvdmlav0pWtcVUrXPWKV7vOdax11ape2xrW qwr2r4FlK2C5Ole+Ivar/4V1LFj5KtjESnavl33rXeva165mFrOHFetf2xrYwWr2sYv1rFwhi1rO 5pWsedWsY027WMu+trWNJexoN2vZ2H4WtqxlrGJlu9vL5la1ny3sXpWKsH3oAx/7sEh0pWuRfeDD Hs+17nS1u13tZve6A/Eud8U7XumGl7znRW9Dmpte9ra3Ic91r0WsO9/vhne93ZUudOO7X+1W173m xa90LcFfAvPXv+UF73ffe90D26PB9AVwgafrXf1K2MIITvCFoxte6953whoGMYgbjF4jlNjEJ0ax ESxyUIvoQ8LZze6Iz2tf6sL3whWe7oErLOP44njGIQZyjiOs3oHo18dDZv9wjRWMXh6Pt8kLVjKU e6zdARc5yOJFMnez7GAuU3fD+e2ylou8Ze5W2MUSfrKB0WteMov3zP298n49nF4kt3m6RuBHnvW8 5z3bA2EGvSN13+xgCse4wzDWr40TLV/w+pfHRqavPQaN3SjX2MjRTfOIYUxeR+d301F2NJmR3BhO 4wMvrDDDAoThYoRhN9QDwQsxCD1rLDN61j5uyKBpvV0dH/rLmPb1ksvLYyTLWNPVXbSkd11lL5/3 1QPRR4MP7F07A/vXNv40reusbGpP28rVtjab50zpFodbvv4l9a4BvI9Tv0XWDh60iztNalw3Gdkx fjN8s+vibGv42IZW8pv/ey1k6OL61vxOc3TxTN6FD2QbgYY2o+UdaWGfW8o4Rran7y1sD5t34++V 8XyR7WLCFGYBxBhxp2H9FmG8+sFjrjjMpdyQkqs61NAtOV/IYI9005zlu263zbdL6p57GuaOzvkC hrEPeKCBLyVAx6wLwZcr7KMaE5jFhp8d80aP+dH6tsifrRzx6E48umJXNo5tvOvqVtm/Ind13L2t 3rW/ncvQVXTejx5sS3P5zB6eM94PnHPwZJzICaZ3sAdubF2TXb05VwAvhE34MfD8595tzMZN/RZW XD7Xs27M5k+uYLNHPNoUby5kVE14V6iXEFS3OtbJTXC5K3720o4wwPf+/3mEz57Xvn51w3/dEOGz OMH1lnmjO6zscu97wnNW75lpfN/GR1vrY5fuNVKNcgw3Wh+x7n6R/073Y4s/19XV/ugzbPmT72MP CLgC3UHP8m4XGfz9Df2DNZ18zLv7vokhg2UoDZqrgFmoBgr4BTTYue/aP+xjsOVbP++rOMOTOUrb OLwrO4urrwzksIGoMgh0Ninjt8OzrklbML6buREzQSjrN0JDv+3LQNLjstCztggUNAlMO5iDO9pQ Na+LtX1IjPjrOppLNWHoLnpjwP7rQWlLQY+LOAFcDFlbLx58t2sowANMwAX0urjjOimjMF3rNoED w/ATs/t6OVsTvhyEt/+BKD6IC7O/c7EzG7+1Yz4GG7RpWy86lD5MW7A4RLD7wjfTI7sOCz3Im4XG qAsFqI2+EIaaa0TyCJn4c8Sa67wetIh0M7PQo40SKA5heL2+gMTF6Ly+qMRRlI5DdDe8WERRZLlJ NAPFqILMk7Ske8TVK0IHs0IDpAA+WIEcwz7nw7ERxEDoiz4yDLD1krdhK8ZmS0amCjPzE7M1hL4S nK5mfMYUrDhqGzs6NMPGyzxDRMS3WMXVg0RybBlJLMdHJMW3WDrs48GWU0Ij3MRO/MTFCMUFMEV8 TDVTRAAFQEVyVESTq0R1BA/Cu4LGeDMrXIWfA69NHIfrysUD/AMVWEb/MPNCI9O1PTTD4WPASSu4 DKM+SQs5PkwyLlu455JD5rOuNlyqOrTBcgsw+XNAmCSyPWRA6ZK3lKxIXtOH72NIkawLTmxFzoPB pou8eZSAyEtEXogNNPBHpIw89hMGcsu8nrzEImQ3ztNK9fvBRJwF0eu8o4QAoSRHfWy/pnzKsXQL fww6IwQ5fRBAsqzFqRyITxSCChABqltDP7TGPKzGz7vBN5M+jNzJLltBaFzD4/NDshuwlMy3NUTJ Lhsy6NtIlQTM9Rq5YrS+msQwwcwwkmO5EfRJuTw1rDRKXoDKQzQDpbQLp0RNtUxKyUs3P4RCIXyv QtzKSuQ+8FtK9kM1/7EkTaI8y9YEzrVkyq10S4JAgzH4xnS0MbvES71UsE1LSQwETMRMTLKDw508 MD+0zuTLwwqLzMe8LjzzMQAAACJjSbTLSRYcN8gkzA5csnEjxhiMTJf0wnMbQZ8bvX2oR1EswrbM yrIcyHDEx1BkxR5cN9GjS+8DP6RUtffjCxUgOpYb0AJFzrb0zQDdSmLIvE2DLtCECzQgxxIYh5Dc g7tETQpIzmurQ8DbThycuetczPG0SN/zTMcTsJjMSPykTvPTRgoju/rMxr1csG7Msb9Lt/80y1pE NVUzNQ490LJ0UgSdUiOMzPCqzUTTr8yDUGGQUARYgebswbY0U+Fctf8zvdIPjTjCU7oOe0fxey41 uEtdTM5Lu0HsXL/7tMGOG745yzcindHDY0N+WEz0RE9l04f1XEaBc8C169E8xczFLMmIi8zA6y+E wzRrTEwGZT9i4MGBDNWidEoDhM2y9FDi5AXsIjqs9MOi408jDEJSi9Ir/VTfjM0vHdUyJU5TJc19 tFDHi8txeL8AFNM5WwZOvEIWnU6SzM8ctU9o9FPyojQ6XDIx1E8G+0DAQ0yPG79n9EjNFNclC0Qb azxAfcs6FNGpTD9hCFWWe1ebM0pfLY5UPTm0lDzrIlMjXK9P9IL1I7ki1IdZ/TmfvFIGNdiwpFd4 hYAplTW0XFgC/bn/zEw/7pO0d6RGe0hWaljWqURGlfQwE8RUmJzUezg+ReUy+eRMGVWwZCM96EpD REVU4vsz4+tMlNXR7MTOxhM2nhXM5qrRj83WBNPJWLUuJiWGqTM5YpBQc4xCRJRSYagHpyNFrLw/ y7ONlpM+wtu5diuMnWvagcTVwohKpWXEsB3KvrDXKlW1M8u5EjDZpnu6caC2q8u62jQ/wQvaZns+ XdMvm7zJTgVEg2M+g+MwXGM23qtDCORT5zvXSH1JaeXZI4XWmVwyWURaswWPpiXIe23FqJXbdRw9 UgPNrPUwyhtbnUMM0W05r5UOydPck0Nbp6XS9BNb+QrHpY0uu9VY/+n0xaJtxu2k1Bhc2etsWcDN RsLczpA8SXuQWZkt1IHIB+PrsBjdLtFMV/xcv7+1OPJcM45ktJAMUUnryb+trmgTxjjUMUvV08G1 Svm8N0A0zMzcwh2DO/h0rpCLXzt8wP2twAZE37fETBL8Tuab3EFMVxDsSO1lM+7SyBVsT7+jyeb6 QJ31ssYbsiylSZDcT/MaQyR1yeqtUSD9WOzSB+aSO/59wEqLXwvk05hzteHly8I9NMPDPQVDi49T vgBWtIl7u4+DVA5WzED00waWQe2iVJ51vvDF4GUMvMV0WZ/VroYj3OhdrsMD3PCKYLUzs+xNWfx8 3E7FQURDTO4NWf/u3NO/PD4hLeDvGj+edVntRd7kjbADRkHtxUmQtC/rzWMDxs82hrIthjaMo9T6 rMxAHUxHXdwd28N460NntGC/xNZvLdpMtTJiHN/m414G7mKSPGAHTtLm2zVqBdI3DF+ZTLNC41s9 LszFVORlvM9O3mTtBMlixFMEFtRPQ1JzxWUaZV/iPWMd1UbztGN7YNScJeRuBbmc/TK/jdH99MVV dskR7r49XL5A1FNGozg1jFz/2k5t5NaTleZRJteC+8IvE1oai7EIfEz65cmWzUDl9WVoZmeWXV5p ztixc2VldMDGHFpw7WMQNlJtzFH6/OQM864mZmAcVDvJhEwN5OL/SF1nGA3hLj7n7FXZh2bhSv6w /ZzcJXbjPF3ljJ3hPabckpzUQf3d7xXoDZ7fQtVJm9yHY+azmrbpm8bpnNbpnebpnvbpnwbqoBbq oSbqojbqo0bqpFZqS1Dqpnbqp4bqqJbqqabqqrbqn05Dvl3UmoW4q/bqrwbrsBbrsSbrqmbqskbr tFbrtWbrtj7q5k07q4Q3mnbrurbru8brvJ7qs9brvvbrvwZsv0aCLECCwi7sLPABIsiCHUDsHZAC rl6qwJbsyabsyr5qvrbszNbszebsnEaCXgBtbQDt0SbtXtgByEaYzlbt1Wbtycbs1obt2Jbtsv7s U7Dt2z6FVACF/9zebSRA7YGY7eAW7uHea+I27uNG7qCubdxm7tv27YY4qOSW7umm7jx77erG7uxu 7c9OhV64bV24be+27ee+Yj/T7vNGb86+7vRm7/bWayTQhlMABSS4bR9w7vH+bfN27/3m77pe7/4G 8AD/6iwQ71Mo8ALHb+juagFn8Aa36v928AiXcKLeAQSn7/HGbfIGtMie8A73cKGG8A8X8RHPMwI3 8NvOhfB27vwm8RZ3cet+8RgX8eXegfvG8FPQ8OiW8R2X8BDn8R9n7+U+hRS3bQTHcRYH8iTvbx9X 8iafbiHHcRtP8PJ28ipHbya38iwP7toG7yJH8RVXcA7X8jFHbv8sJ/Mz7+zlvvAov/EcX3A0h3PZ NvM4p3PJFvIDZ243F/M65/PNnvM+B/S75u7dZvNCP/IwT+1AV3TXXvRGB2z4PnHb7vIhB3Mqd/RL z+s/x/RN92oTP4Uat21QZ3M9T3RON3W11vRTV/WnrnAV9/IMR/JVl3WwTvVZt3Wi9vRQl/JDt/Rb 93WprvVfF/adrm0ij/RjJ3XgHvZlT+pgZ/Zn1zM1l/ILT3b9hvZr/2lnx/Zlv3NXv+3TRnRl3/Zb TwUEAAACOGsA4DN1v2ltH3c6L/dzT/d1x2koX3NR5/UNL/V3X/VuGABs4Ad3OAt+YHc9K/iadnd+ P3N/B3iBz7P/gyf4eu+F7v7yV893HVd4VeeA64Z4iN+zhM94Ld/4mu74eo/v+ZZyUAf3Xg95IEcA DjCLEQiBmJ95s6h5maf5EUiEPQsAmy75dm95JX/5nLd5osf5ot95Pet5kqf3m851PMdtIoj1oN/x VAAADsD6rNf6ref6EEj6h/f55/V4PQN5qt9vq+f6tFd7r9+zsRf7sc+zVp923F55fRd3s49xBAgB pQ6AfWD6tsfpssd79tZ7vvf7pjd4nDZxqKd0286CqR98Ek+EAPAGpR55xAd7oI98F5/8yk/qywf8 0LdpGv92G/cByN98D9+HAeiDpmb4gB/4n7eEABgAvhb81K/u/9VvfaV+fYeP+NCf/dqP9gI3diOv dtwf8REgAHxw6kwwd3TP/MTnh7PohqXnh9tHfulWfuZvaueX9+jPfOq3fnvf9ePP/g7nBgDAfqHm BgQg+/NHf/VP6/Yf/lOYdOKvdLu3dvhvcA5wf7QGCAABMvEraKkgwoQKFzJs6PAhxIgSJ1KsaPEi xowaN3LsKJEDAo8cBRIsiKTXqVNIUqpkuVIlP3syu40YEdOeyJw6d/Ls6fMn0KALMwHgJlRiNwII Dx5t6vQp1KhSeRI1OjVhUoQnWaJMqYtlSiQ37dG0KfMq2rRq17IVScBm2kT8sA1Y2vYu3rx60b5V K5eu1l6pQP+FdQlWrEyyNW/ubez4MeSMiQLgjAtgAFN+mSNz7uy58eTKaBNdzoxE26mup3JxdTm2 LOPPsmfTjuougFy9m2vz7u2b4+3cebe2LGwc8czFZ38zb+784Qile3c/r26dd/TGxFO3Pvxauejr 4sdz7gagpG7y6tfvNY9+uOri8mEmhr2cPf78VxFwcExdP4AB+sSfY1t9lZJqqiGnmFnhCfgghB1Z EoA3/kV4IYYYTVihdl3twNKHKYW4oH0OZngiignp05eFKbro4opwddjdamDRl1yDL+p4Yh8D6PPY fzsKmV+PPxYY30vzkQjekE0CeFuQd0XpJJXPQQnZSamoxhr/gq7Vx2SVYYoXAgJGtigmms6RaaZ2 qJ1ChGHHfZdjmnX6hg0Az0Q2pZ19PoannpBlkSCNYc0Zm5+Jdkbgnoo6GhmjkO2AZJyGfknno5nm ZQkAHELGp6ahQsWpp48Nyl2Xqd7IIKKiujqVPQPc0Bmor9raU6yzckZciPKNeOh9tworVHT70Dos skEV29l2qh3oJY6tJjutSN4EUGtb2FK7bUTWarvWdqf02qu4wJrIraZsigTSZ9+ii6a6HrHrWbg2 pkTYkpi+q6k7APgbwL8BCyQwwAMbXLC/7zW6b6j9EvzwwRAjfN5n9Z5CmI07mMtwqCNglkkmloAs csgjm1wy/8okizyhjJy5y3GTHqt88swp02wyyxUjsfMOPO/wsw9I7JCFxpdKC3Of7lEFQDeevYy0 jkrvRFTTnRnRSy+6YK011tpg/fXGUCca6U7zuiz22P31ZHZkV+eTGNz6wG1E2GjXOaFVPEm9sN1p 4u3T3pAZoU1i+8hteOH20G10sH1XGWNCluSNETebeXys42JCvtTkF1We0OWcXS0TPonJbbridWdO ZSIDGFuQNwA8vVSnCMUqHJCrh9n66/zEPrtBtRd0u+i92LMP3KjLtHi0jeu+Y7+4s50RAiEkRJo7 fD8vZPQJTY9R9dcDkL3g2sgtd+mIHy8386w6v72LZCaUCv8A2HT0TJ4Jhf8p/EPKjxD97McR/AWq IPt7zOiSd7rSLU91/UvRJQJQQH4ckCNsI4oAz/RACEpQf9aTV0gQgkHBGU8m6lNg+0q0wRe1oAXX o1C1ZOe9EGpwhRlq4QtLtZHfzZCEiDudPfBxwhSCyYYZUgUJwmG7AfRBJzcYgGi8lTsjHjGJS2xi Tp4YxWshsISJYWDh9EFEfVHxQfhwgSZAJ52c7IOJoPNRDcsYoDOmESHZ0UkbsVgQj8XrLgk0oQnP 10DGnUuO+dGEC/CBkGdwcSekQog+3NgY4BnyN4hUZEEYScmGPLIgkdSjXga3PnsIEm74GOPRKsme e5BAFQn/acECBqS24JEvPaoEECtdiRBYyjJy42vM6IBoysSg8n23JE8PcJCQb5AgG4CjGELIhpdN HlM2yVxmM5/5Hmn60YtBlMnhTFjMQq6FBAoxZzU3wkwlIsQFiwDK/woCqOk0Bp0IsWc6MbLOhLgT njScS/5CaTz1qQ99qSNkPc+ZT424oAcJMQUJMOkTe+Cmh7bUCz75kdGFUqShD40oUCgqvX/6kXBA FCYxHXiXjG6UoxExhQvuAUkSmEIooUFIv6jZE536hKUutQhMZepJmtqUMjiVYV7+mDzEGW6cCU1I S3/aEDomZBEuOMrmCqLFTT31nlKdCFURYlWsskirUExq/wnTZ9BvHrR55FQLCeIq16h+VSH6eCdC wkGCbzSFagjZR1mzVc+5xrWuEblrQvTK16P4tSCAbRlbroY8cCYvpQjdi08NW5Ec5OApbOukYDGr UM1ShLOe/SdoI+tFgp6uqSptS2ZJGxEkCrUpgeNmWnjak9jK9iG0fcptZ6naUZLui4N0a1cLQtef kqCzXoWkLp8SuoIETi265QlvNdtcqKoouk6ZLj+qmxZRng6IYGyr+96aluwatrnRXW5TiGfHNa7l ujthb13d+1y0yHeP9FWLUhM3Sqf21jMkuMdVlbuWyXjKHQPAXW4LbGAE73c0MCyIgyGMlgQyUJBA JLCEI/9jTk3UVKNsqSBpdHgV+4b4JyMuMXydgmLhAbgXkz2hcUHcYseYUx+JNPFaMgHHgnADAJBd 8Y4h0+Mfx7ivQ+ZHkY88lQSilKA6xst2K6zdgpSiFEDOy/eQjFnnKri36Ozyl/ES5il7M4g4FuNr 2aLfMsvWni7QR5OjEsDQYjQH7y2wnfGslz1HlnBMJWVxj5tehDhDDnGQgzPKSWE6k9aequhBnqFS Qesy2tGQlnSC07zlglw600/Z9HiNV96lsi9s64jDOvixDjnEer38IDGlR12QHJi6KZOBh5QK8upY z7rWaHlxrtubEF7n5dfdrGyHLYtcftChGQhpBh3gyg//Hyuy10mO74OnWZBqXzvbtua2qL+9lv4O F3EMVF/pCBwHFc3b1vxAs7c5KtG18FHc/Ki3JwF+lTN7Od8L3bda+l1SRAcSbsiTt0IEPpVAGzyd eK5tWrjRyGD/O+LaLsidK17Ni7NF4yzuSICFeTp5s0ng+YhDHdoRlG/8mdSYVrdp17LmCP+75Ql5 ecxnXnN+lBrnZE7LzjfsRWGC8ZRhI3dBsK2iZjiaDsbWyTl4Xcc0M3vbO1asWqpiS6jzQ+qQpHoc rN6TrJNg6/jseh9JC/a0iB2tOD5ewwk8bFnHQeYLcQYdHu2MuF8EH5po7jkiEtYQjzUtgeX43l/t d4UA/17whLeI4RGveDTuuPF8kfJa/uhuyipahQVptOAfso46PFoZ+eAITF3gXYgg0aEhxgdRr3LT i6L+0w5Zfetfv5HYz963JLC9hHFf4qnsHq3ErWzpi2iRfLA+DmtIhz5xQIJSIDwi4XBBDrqvWZhe HijBmWRGqB8H62P/It/QPvct8v3wh5j8Uzn/XkRJ+tG79rIOabQyOEQzGAAAcEAGeR+m9YD4ScT3 4cAC1lU/ScUd0dNDAKAAEqABUkQ4JOADQkQDdqBURWBUTKBAMRxbEdeVLUQ7VJ/rNUQmcAAAIACf 6MMIBIALsJNG+NidSRgSJR5UiBfHOcQKrl8LMsQLxv/gDNbgDXKEDpafS/VgVABhWwRYQUnboh2W MlTd5CkEN4zAZSRCH1nCAMiKSOBDDiyhUPRepCFNzp2acF3UQ+hDFqbdFiZEF35hGI6hrnSEGaJh UKghQkicxAlLG8rYG9odZaFUvMUZQ+gD6tHBGi6EPTxRAIyAp3QDAgDADfSOSPAaOARF5NHav63f ICbLOZCAIzzF38SRQzhi1UWiQkziAFTiJWbiJu6EJ4IirMmaKHZcQpSirZxiKjrFKgJTCeFY+kQf GUnEOgSeHLhBH+2DJWRiIrhDCBSgiomEJiTAHvYE2UmdEw4LLIWjR2QV+llEMz4aNDKENFKjNWKj T2z/YzfyxDeamyBuyzg2hTnmXwkJ02StHCNCRDvMwWXcQCFZQg0iQCoExQcAgIblhMDpAzByi4OB ElAUCf9gxEAW5EEm5EICRUM+pEhEZL3FQcuR46NUZFNgJAIRzjCpXApWhD20DgCEgA5FR7gdBaeA XkfcI9RMRi39xJVkZEbM5ADU5E0SQE4KxU76hE+SIlRyC1AKxVB2EcNNlvLE5EVMYwGiRwxyolBk QgB8UPo5gzLQQR38os+JzaZ1Aza8JVzGpVzOJVxWDUKEQAGcjYRkIgd4JQKAZVCIJVliRD6YJVqq 5S8WhEl6ki9uS1vSJWRGpl0WBF4WzygtkJUFpEVg/wMMIoBccMBgNgU2BAAHoKSsnaWjPVodwGI9 og2hGZC/xKZsziZtyuY/4ckBsmJGcGYMfmZoHsVolmZFrANqrp8crGZCtGZjKia6vCYF1SZ0Rudt 1o9lQl+OaeZFeEMNDsAIkFRTeMMAIMBbecMbuEFqygEdKMPgMUQoXh3SsI0+xKd8zid91ud8KgRu UWBOaGcAcKd3HgV4iudDkKd5Gmd6rudCRF7fMSdicgt82ieERih+HiIwuWS0sZZWcsQ+JAJRqNdE IQABlIo9ZMINYEDBRMBq5oMTAqLd8NBO0RhR4hGHAoCH4gqIiiiJmqi/oKgzqGhEsGjPJSa6uChP pP+WVTYcwzFQhnaEPkBTVNgDBzxYInAAAfgLAoyA5ORTHxCAaU5ErjjNTzSpwjgFlEoplVoplnaO Km1pl0rEl1rNQKFU8ixpRyDAPD5FGwEAAYRAIuRmPkXSnXaExwCmboqEnV5Fnu5pn0oVoPLEoHrG H2Fma8GZ//XECFCoT+gDAngKPnAnaZEGf3CAqI4qqZaqqZ4qUmGOT1yqU2gqp3qqZoHqqc4qrZZq qoqOSQlYotEpR3CKU7SOL9XoMZFGCNSEsR4rsiarsl7qf06RT/iqr9UF7QjrLRHrsl4rtjKrbChV 6cgpr26EeWRjTxBAN14paYkUhpwcQoRrU5Cr/vD/5EKh64WMzt0JEUBWak9sHFBwCrAVBFGIK0eR IISoK0Lo60/wqwjB6FcJ7IMo1d0F0bduBAJgwFGYK0KIKmlJIYAQrAFRrFBYbEFgrGZprH6QV5IS 1z5ErEZgwAEIhXnYZZF9pGHlZ4BwLD+wrMsyDULELGnRLIBwq/K0Gr7yxDRogFCI7B41K0dNyGRG iM0W7dEKV3eSFtOeCL22FvSpbEbsgwa8g/k5qT3cKqM+ntMGBdd6rVCCrdj+1D5GSMoVF+JobUZo gDQAxdQixBN9quugiM3yA93a7T/lbazurdXmqsORntxiBB/8QZhWFEIs5Vd1D98KxeI2Lu5ArlRJ /67VLl1xCVPiXkQlbMBPACtCtA61VlI8nUjfhu7oSmtBmK5mpW6GXC0gDdPnWgQ1aAChegQZRhO8 phOeyKzqCkXu7m5H9K4B/W41Ba+LAO3hhNPtVoQ+aMA0vKho/Ktm+eyD9O30Vm+R0mjCAmw+aa+A mCxWnhR6mV5QbEAl9ATI8gPSfpWRZkjf8gP7um/LxK9UzS+GRGrygFH0VsQf8AFP4IldmoefclSj vkj9DnAB6yx1UWddLXDzxinp3F0AU4Q0iG7ZCJfs/tSyMPBRbDBPxO8Hu1QIV7B1oiB2esQ78IHx YkTsoAdF1S/SSJGO1O8Lx3B2gq3BuhQOv4jJnv/sBWfwVdytWWlW0l2IDTtq4LruVy2x265WOJmg EUuFPjhuQQiASOaTc7pIE+tEFuMOFxvWF6cI7ZLegLVws0HxZPDwMaFaioRxTpDu6wYAHN+SHKMI lf3v3LCxhvKBBmiAHnjvRkhS8hqWswlJ/e6DIBOyIWsEIlOQ8lZrAPTrjuhfov2jMqYST+hB+/LD C/dqANQS9n4Vu+XwUYByQYzyRkyIKSssR6WyEKtaw8EkIG+E0eaEPryH/qLwk+1I/e6ySPSy92Bq PimckCRQvcZtLmuEHgACJutEkSVwPhXZmIqwUETzNOdENdcVNjuJZK2am/3x0PbEPgDCBmgADCv/ hDRMwzvk8UKc8EJJMf0eRTqvczsnxDvHM0bQcz7Zc/+2WdxYofriMyDoQULswzprwAVowAboAR8A QiVMQyV0Q9zVcF3VXZOEcTor9F819ENH9ERX9EVn9A8vFEcPyR9F2xel7DN7BDEnhD28g0VXwgA3 tAAIBH+EwA1wKE1AsV7ogzessFEfdVDuBTec11E3tUzAqpPQsd8yRE3fdE4P8k4HQE//dCYE9WMQ tVOHdWIktV4stViHNVQ3if7dGGZ2sjHtBB+gLetShD14QypYQiKMAJlkopU+BgxGJ2AH9n9tSmAX dnSebtlSrlxzsJfaNV7rNQLwdQz6tWFXtmwO//Y0WbZmgy+VBBOiySmlTltQTIMeDDIfdLNGWCMe N8ZtjIBbRiZsQyanCG9eIEADxDZu06VU80b9krZpo3ZGqLY8S0Vrv3Zu5/ZsO4ZtHzdzY8Nu10aA hZFBS99spDVeAPRGCLRU8O+0PHdOWPddYLdGaHdUcHeySFaidas5izZtmDdakGxqO+RQTzK6eLdI uPdVwHdwy3defBLHiB7evXRoXyFvkK9UGLhknBVePFGbhop9GyoyowWCYwTsLngwowvtlhJWXnHG OSlbgBYNNnjp2mUbVfJTEOm+PLhHhLOU0FiIb0QikDh4pwWKv8sQv6RbI/ZeMCxaRFLL8HhFfP/W hbEFeduKinsEkE+Fj6uRBaHWkOuc0lKLUmHtF3F4WsjrWggu7KytRbC4AUU4VJxxff8GlquFlvsO l1eEl1MQmD+FmHMLhxnXrsb0XpCGjvcEihd5Q4CXfjfFHnPLkXuEna9Fnkc5RfC5h0v4b9q4jUn3 VaYvdRf4okfFBUEwR7Bbkj9FG3A2zAS6R/z5aSVEY1065Ga6U2z6nbuK/wqY0LJ3b4z6VOCmB9Xx kGdYWuTDA6yB2Hh6R8C6VMh6NE06hdc65kYFrus61KTx+ngunTeGnu8E2TTfpw/moF9FHchBqrsK r3fEs+tEtBtVTsxYtnvEtY97qNz4eSlpsyv/dUr7WinbjhaLxAghBNk6RTvEgbXtunOYnO69+/DE u0fMe0HUe1Pce74nuzedbyBZOVuYephOcgrnRKU3rVPQgRzYzbYLKmZjFcQTwHBTxMRPhcXbTR+X EmUx/Lohr3QRgET1eXbqa7dzhDPsItpkPKkHKrGw/LomerXAvKH7xMy7J8ygN/R92LqDhgCIL57f asxHhDIXmVSjZ9/YPEckQtJDRaH/xNOnOVBIPcmn1SgJ0XoTuHOA+tqgVlE8fDc6/E4oQxwIX81b h9mXMNqrKS+rPNvrhNvDvdhMuSk58zn7xpv3BKzPuE6AVh45xcsF4NRbx+AvzWQafk4gPn0D/8Xi O44o4RiOoXxbNL1FBFaFAwWK+btQXLuICwvVc/vP5wToK7joUzvpB4XpY74tI2lxcT5bBDFQNJ/m AgXzBvtRvBosxr116P7ogjs/9P5P/L4BCbtOCH/miJ4+3IMaw3Tg/0YfBMDpe2m8i7dOpO7ji0Q+ KMP230rqd0T2l39ElLn35wT4S7Dlk3/0W3BlnQ/us0WnWqSj0heeZLNP9D5AcEDAj2BBgwcRJlS4 kGFDhw8hRpQ4kWJFgpYsZtRIEd+APhsdjiBgEBuATCAjugOQyKBAlC9hxpQ5E6YRbfb02cOpM6dO nUb4+ew2YkRQezSRVrQEIFzSbiYNIuCQVP9hogFHCXoLgJFqV69fwTLkGpYsv6VNkT49WVBqWatY +WkdW5ZuXbsUjfTyudfePnz7cgIVStToXbBtkSK+CMBb2X0DihbsE0CfTGdy4shxZphz54hzPc9U LHpqwaWNyT6OTHBy5ZiXM28OPZs2wbw68fG0l3uvYJ1Di+qsPfNpKpqWAnQr+PgjXeSo+ekbcCPm ujjr+K2Tg31497ugvWssfjz5co91nxeUTh2mdezauYeXDzbvPp2A+/rs6dse8MLzQQphoJkgM+iG AVyja7TTYKKjmYKaoQPACakCj0KJBKSpwIIOTLCsBRlr8EGCIrzQxJhu20m3vfThzz/hTqT/SCUO EqnRxhtxzFHHRBC4qiBvALAQLG6gYmuAHWtcQ5klmWxSmXwMisMgfaSM0cqMhLxSoRmR7LLLHuEC MkuviFyLoB67VNJJJ6EsqEqCqNRSTolS5Gs3/OxxkTAY53SIgwAQICBQBAYVtFBCBTU0UUQDBWAA gywZ8C7CCuIAgEUVDdQAOOTo1NNP4+PnTYJG7dNUhMY8lZ8/D211UVcHLdRRSCW1i1KCLMWUUQI2 /dTX7aI8qFRVVbWpr5z+6qk3o/rbEy5ivyIyVcOkhSkOD4eFts9ptX2pWu++RenaYLstVi9l90o2 T2ZffLbcpEQKzyURIZTwXVO5vVejeL2b//clB+vVt886j92NLz2Dc1fgmJjrLhMAlGvvuuyAXVjL fC2eqOHhHo74JfcoDjVjE2/DT1n7DEb4v5FjSiQAd4YjYDWYYNOMZSsxvvkhl2GuTeaZapZN5wuN RXennvZRmc+hQUIghNpcVpjpoXOeeiGnoQ5AaqtZJpg3vlpk11muN0oFAGxmsycAlsieuuq2DTIb 7dDUZhtunVPkDU88ld76bj9r5Uykff7W+e3C/e1s8MJvrs9Og33qm/GJ5PJMrclZPvzvyju7HPOM 68TvrxUl/xyiERDsbDTT9dX8b9Q9tGt11t8t2Wikwx4sYdod0oeA5r4LgBveBXb9bt+Bt/8LueGJ v7foFX3irfTmFVqqZ7t+pv5d4++23rDste+WYN3wXFf3lcM/aPawXCY8fW25v3t9sNp/X9u8C1ax r+ntJ6gk4+iiErv171Txg9v/6iJAAhLLcdCLnvl+M7YFEiRDdKngBPGFQX5ckCwc1KCWQtcTdf1E bLvDoALJgsAPzsmAcENhWFS4QhDqpXx8AQz/FvgWssxPhhdqIdx0GBYe9nBCz1MRb6RXQvQt0Hcz 6wqDiHilH7atiWGBYhRjNL77HEyJS5vgFamyHixKcYVgTIoYx5hFvUAuJz3Rxw276Df7JS4pNxBA 7NI4oSnCjY5IsSMe8zifBtaQb3GUoef/CGIPSyySkY105CMbCZ24BCmQJ9pj2xAZFEhukpOWkKSY KkmyNaIrN8rCIQb5RZBuBGAArHRlK2H5SlnGcoB9DKV8Ltm2VPJjlbH05SyB2cpaBu6W8hnf6B54 ygnWLSlyKyaFckk2ZiLFmc8EkLHwgzKjKXOCiQCAHDWCNWsCKJpk8yY4MyLOcRrzXA5UFzcnqM6W BQAe65xPOckmT5i4rJ72DM/4kLas83nxgx2TyWMG6M/h4JNrBmXYkRT6TxqS8ojwjCegCJVRjW6U ox3tUQDcF9GFYhEBGPXoSVHaypCKlDZGzA3KBBpBExLREjTqgxFq1Iec7jQROu0pT33a/1MjhCAR +GDpSKNYU6EClak/dWpQb0pUox61pWu8Txt5AseBolODsZsqP74K1oJMNaxURWoevTpWg3yVrGaV qH4eFxhDupWu5KzrXSVaw5eacq549etsGPpXwULEa3CNXF8Hm1jnKJaxZbFdfiCbxK02lrJfCWxl G2ssuGL1WBbF7GexBFrR1mSUj9uJZ0ebWodcVrV41SISDzvZ1s5WIqylrVvrk5NsbpGEsr3tbxdi W+CytE5uPNr+EDtc5Zpluc3lx2MflxvUOle0wqXuOI0IuZf2VqZLvO5srfvdYo7PPtrkbrNmKl7w qve2dSql/nAyXfYyNrzzzWNuIftA+//I176DrW9/sVhc3LAIguj1LoAr+18E97Bke0FZIX27YMwq WMIfdOlxY9tdglZYsRTm8AS1SOACt+vDCS4xZfGXTWXlTsNcPbFZPfzi9zXQsHcasQRl7N8cJ1bA D8ywgTe8Y7rGWMjNe+zeBszfItuTyEumnRFF6GAlO9maTaby50KcVblG+MpUtXKXGefeq7JoymCu 5JfNfDf82kdZXytzmtOIZjiTrceQ62xy58zkPIu0wQ4mHZ73XOVAK/TCO4FwiwftTzknunFWHbOK WAxkFzOappTGbmnh+2MSW/qZi+b0wgbZ5phK+tPF9HSpnYdpn9gnWW9Gtf1O/WrxTRT/NzW8cXpl jcVY55qBNzHaivDhal5Tb9fDNlVh9bffvh5iAeUoCLPLQQ8zEKrZBAkEtcUxbQQ0W9rUdrax3fbs ahME2t3e9revve1se9vc4wb30PCXP8iVrhoQIMG3631vetjh2+Q2wVT33e+Av5trXMk3vu0dbX4b 5BD/JsjAH75wgk+NxjbkieT2oYZWLDzjG4+2tpu9DzcEoyDt/ri3J244fnSc4xrnt8lFTvKHg/zk 5055o1eNLMDwdbKHWMHADwEEiPs7Hnb4A6FewXCH+7usN28dP3wOdKFLnOhGR7rSv9rwpju9drSO 7q2NYm51a9vmEc82FvhxDRYInOpD/+d668S+gHWj3OxmQLva2Z73t4Pa1ys6Gdj5NHS3L+PffiB5 NdZeEMJ/dfF7L17J2051fize8PxAfL8bT5DMO77rpjXYlhEd8bybuwXONvcrSF/z0nP+6aKHvOpN r23Ua7v0qWd9qgcsOpgCftK3L1yxfe8dGv9auoAOPuuAf/zahPDRyOWy8pEPfSN7/YgXj2MnsZ99 7W+f+933/vfBH37xj5/85Tf/+dGffkgqUv3td//74R9/+c+f/vV/f4p+DdO+eZ7//ff//wEwAAVw AAmwAA3wABEwARVwARmwARnQEhwwAiVwAimwAi3wAjEwAzXwYBwNtrBq/zYwBEVwBP9JsARN8AQb EAJRcAVZsAVd8AVhcACxCXdsaP9UDCdu8I10q41ysAd3EAd/UAcLRghNxgeH0AiLMAiRkAeVsAmP 0AmT8AmlMAqpkAevQQIWQBiIkAmH8BrMYAFY4Qu1cAlxwguzcAuBcAq5sArTkA3R8A3JEA6hcA3p sA3rUA6PRQVFp2D2ymD28A+RhQ8FERD9MBAJsQ8RcRANcRELsRET8RAV0REj8REZkRIlERCv8Awn sWAykRWwUAs3ET8yERQhsRQrMRRP0RQvMRVZcRVd0RJhsbPaaUXwJNJeJB9qDNLARsRuhxd30bB6 ERh/0e+GURd94go1ShOF8Rg/kRj/RcwZc9G4mFGjxgC+kDGjxkAfRrEWRzHZOrEZpZEZs3AfutGB wnFFrhEBFGAWdIMQCKUK7KEaJmAWghEazdGB4Osc8xEf0UUf+5EffRECT2Ygc64gm698EJIgD1Ih 5S0hDbIhGTIdt00YFnLVypEGKzIjIXLV3DELaVEiycAetlFZuhFP8MEMw9Ajv6Z8unEkH9IhdSId 1xFp3BEBqmAf5JEdaZEhYXIjNbIngZInhfIl98PRnpH3+GKEjlIpc5Ep3cnW4MspoxIqSYkqcSMT iSFd8guusNK0qvLXvtJOokwf6s0j/bAr98AmP48vynEtc6MrxTImsTAr9VEqKWrn/8oyK0WyAnih GijgF9AgG32s1sAyXawyeg6TMOMSMQuTMRdTMfdCBe1sH6PxKP+xMjHzHjOTMu8RMODyMnVDGz8x MTmzNP8REahNGMpHNBcgK9VALQNRRUbRaERxLvPjH0dRXXiDs0yTD8uSIveyL/8yMH+wGEGzNzfz OJXTMpkzF/OE1pgS9CSt1uxEKaHSOomvJx2z+bZT3rrzOhFSJEdTJnlhFK9QASAgo7LwGtdTAjzq CsQzNdnTE8cxoOIRAkpgHN6IJ7qx3kqAGj6xJrctPanNEwsUC8Mwo9bRPLGQQLeNPoWBPSPUPTPq CmZT3n4zJitgFvySD1bAz3bLMP8Z8juzc0Qh0ztPFDxN1MYk09aWMzmbUzNlFDlnFDfHk0LVcRYY FD3Vc0LlE0c3Ch4ldD4/kSQrYBVsky2b0T8BNAsFdAEcFAwpVEqlVEF19BPPM0ohdEiBtAraEmky 9CQ3tENVIBy/pkZjlEbV9EXRFK6k6yZMC5ls0Bh37730SyvvEk+1sk6jcivtNPf09E4fKCcutI2u 8D+xFAvFwTbhAQ0UoC/xE0Af1QsnFQsBcx2ZVALW8SSTdDfYkxhMRi6zkFOplD6zkhy/EFTPcxbI EUE1FVIRtT3BUAxbdQEuFVYltTxdtT71YxnesWBqUggqQAQIBT45i7P4NE8HdU//AxVQl1VQB0xZ o5VZcwICz7QPB2wwJ/NatVJbudVbuzVbxXVbw9XOCrUMJSBWJ3RWW9MeGvVRM7VSK9VWHRVXX1U8 zdJdA7Mc1WUbv5FKVVMkU1U8HxVfPRFeIzVR2TUrM/FSOTRh59VUwQY11RJlgnVYf9UgkelMyRVc PXZcvxVkyzVkOzY/bkMaRW3/iC/ZWMS87DOrQpO3YBbDdm8/abZlY3YrbRZZj1EMdUJAH3Qu/5Ui zXBdt1RhE1Q9UzJgI4tFMnQv+jNhszAtCUUFZrMrh/ZfiQElB7YTxTBrR5M37cFXEQA+uXUPhFU4 gfPr/k4/XFZmcTBna/ZtdZZu/+dWbnFWfyRTf9DFvPyWfADX0AJXtwYXsghXcBH3cBXXcA33wVgT OIGWSrd2V7WQQQHWcg1UaZsRiWozGfVSHLMyU6c2o1agaGuVaClXa712HMH2cjtVf8j2CnZON/BB DdLWLynyTNnMIMvLPhf3bxOXcYH3dwt3eIUXrpgPslAGBHOPokRod5PyRKP3Tn4tW6XSeqESe6tX u/BVGEhVGMoSQsN3NN/1YdXVcm+1MrqXNYfBcXUiLwlzNtPSS8FxaLvXYM0AU6UWfCEAYPHVYUXX aJsRN2oSPlFGXZbhP8eUAoATtvz0iKC3W69Xu7KXgreXcy9YegcMAvfGeZm1T//NS1CVdYQ/mIRF 2McI1TaxcnyzkIWzsnxFd3Jl9VbvpCV9Nn4Hliub8TXp1yNZE0Ifl1QP1nyblH8l938dlYiRNmx1 ohB+9dcSmBoWmCJNcmT1ZyWNZrtA2J0Y94S92FnvsigjODfstG92l5D6FoSrF1t3T79edk/f2I3h Vo638nTtI3KJIXKFgWpb81Ox0nKFoVE11yMvND5T004kcgyEGEfJIOMO9Ay/UUF5wR6cuEf5+Gip TYYFWCUN+ZB9IifHtlgLcnffOIIbsTrzp42bd45XeSvpWJVPWZH41s/gKoQLt5Y7M5f30ZaDF5en Ukk9ch/wGI9fcyL9WGFlmBj/BPmRGXZztakc8QQkBbZKCcUV7OGSb3RWJZmSPReb2zOTMbdI5TIZ c7cvQJls4ZFjVQR6YUpvOEsp/5GXF9eX41mX61l/kA1smJfAsLhPbSjKavG4OjhmizOgsWqgj6ug jetY2Yh69WE/AcMvAnrVRsgv+kJddAuZtvNM3eihDQ2g9UFdtEmiMfqjCQww/kJ3UxqmhFA3LbrW dHPVripUK/ghezHKyvXRsBWrFJqgU3mhTTp/ePqnHWxv+VmnRRRkq3ijk3pblxoyr/WpbcywRui9 3mh0TGZnHdcuH828yPggoWeEaPChQ3WlAxGnd3MnUjqkwealExoIlTKlURQH/5OFIClKLCd6WrnT TkxSqqu6qaMap6EasO3EiNwXP0AwrYsRcty3bT3va9R5MCNbXCfbzipbOy/aGG1sp8d1eu9Eix8y I7/mrmvasg+4Ot1ag/m6evdQsyE7m2JaZMOTZYdQpvkPsh9bWz27snGbdmWZemk5sjU6KWF5qlE7 Tot7uA0TuR2IkAxSbFcs02D6tLNVonlL1LY3px37Jed491i6ujFSumtWg6P7uIM600Bb3gS7spc7 upL7vZnbvQPDqhRbRZgXs/tZbO30nefagmm5+rIXg/8bpMu1phvzv+3MfX3sq8nnrvXGs8v7ef0s O6NXr4jR1hzYlW37OOfalv//1KqjF6hjWYKdG9j6W8Bt206MGrjDMoRFGthC9Hnn+cUheMZjXDFt OTb1+oK/e3qHm3CB/CjnOKZDlCn3u2MZmqGRqcelmzB1HLVPxoHTu6/brMfFVqY3VqdvHLhdfMtp XMa7mMZ/QhvWeNQ2TfpoJ/nQvDNS5AYjS9jWfGTUPM7v4mQ1M2mMj87hZs71nC40C46t7/n6fM8H fXJuA7ZMGc4LfXsWvXDafGV5r9H/hs8lvSscZ6yvStErnVgofdORAqB2UdM9PYNG3Woe3bNFvdTl pNNVvSb6bpWXN89b/fFmHW+sKsLjS9ZrndF3vWuo73FSvdd9SNhHhrzAPNj/id2ukp3vnnX3kH3Z w4PVoZ1OZvFZg03Xp31bsh33FJyLBH3bCwjcywX/kg1pnl3cQ0Pa0X0h/jxci+/b1/1i4p2Bqj3I z+vM513b8/3Y1mg1c+7c9x09An5geqF8NFqyQm/g5V3hZ2gwtwnbGT7aI/5KCAaNI33iY0TdFV6z LHw/IB7ja0PjB97OaTF6AB7kKwTlRanGEP3kVV4hUgEBLoUrAOAgar56Xp5CKk7DXT7nDaIbBgBt 3CEybr4gih5VfP6a1miv3AixPz7pM4IDwOPo+YHqIQXq2UnIPR7ec14qiGIEQuDrw54oxh7sxX4E BigAEoLqrd40sP6fbkKv/8qn54ndbDjg7vE+7/V+74nKINoeAAA/8Nv+It6+K2J+5gmC7ROC5OOU 7oVdnzQCpBBC8XG+8NMi6Plh6BPf5hff0YoT4Umt8F1GkjZC6ief8yvf8mfC9FHf6Ds/f3T33nEM 6jfmJYBe6Ike9ZFjAMZC5PeOG+zBHXRC+IN/+I2/+IN/pfhB7U/f7xf/1WFf02Y/6UVi6zQiE2Se AGge9Ytildxe9f1H8MV//Me/NFx/8sf/9bXVZBx/1sPlLrhBUnyf66TCG9zBG/D//vMf/+2f//X/ egCCH78A+wQa5AfgIEKFAo30smcPH0SI+/RNtGeE38RuI0ZotMcwpMiRJP9LmjyJMqXKlSxbunwJ M6bMmQI5IKAJE0CATAYt4fwJNKjQoUSLGj0qMFMAdzQ5+FSY8GBUhQ73UYRoMSvEjBs7fkQKNqzY sWTLCs0EgJtZhd0I9FwLN67cuXSHDuiDs9sAbPzceVwoVaClAAN8Opxo8eJFrhA5eoRYN7LkyZTh EvgLNxE/bAPeVv4MOrTomYkG4PuZCQEAAk+nCozqsVsAfocnVoyIGONHe46/jv4NPHjoRAFAxk0E oLBn4cybO4/rLsDTtdxuGtFl73Ziq/is6u762Pjz8eTLz4yumfJ08+zbu0cZ4iZcnTwPJ8Z6sTtj 3l4hv/8PIHsjuFXZegH/Hohgc90A0I1cbdH20EQS5bbVbr35l2CGGk62IE8FbghiiJIhgJlZmnFG G3a3ebedRftdKJ6IMs5oFAIcgGYgjTruCNRgTGWWnGEPJXbfbRWC5xuPSi650mDe4MhklFKmpM8A 6dVVm2IT4vZifzFOCWaU+lwWWo5hnhnlDQfoI5kR2kiY3X0UdRkemnby2McAbEJ5Z588egOAh5Ed ZuRFRNKZpJ+KJhidmZI5umikAXJw42T2wVnod415KWmn/8W3J5+ejvoeNmlR5uZFLOaGKIakvsqc qc+MBimstv5GYmW1SSTnYhZyemuwotn4W63CHhtZaV9i+ZB3EmqnKX91/yJLbV2WAPAkrdVuK1mV V1oaoUWZzvnrtNyeO5Y9A9wAnLHovlvUCPLp+iaFEHXnYrmJwsuvUAMWVGy/Ah8FaCqgXZqfs/i0 uuzADrvkjXTBuftwxSpRGhqhRBp65KbmWkxtqDjZJBzFIJ8sElrZfpYlRRIVyjDKyLoDQM0B2Iyz TjnfrHPPPNcsaMAyD40SAexmXC++9kYLI9HBjlBYJplYIjXVU1eN9dVaW031YCVq63TYIZUG8MER KpZwzGKT2mFQaDXY7tpyaySxaBrbY9GE3XUs7b5zK0qsUCTH/betAxA2QOKKL85444zX/FvLFMmp j9qFKzqYWkK1LfTlo/+mAkAiUmetdelWmy71CKfa/WZiW8bJd9Oe9zlmiZZo7hI360FN+Oyd5voT xnaf7Wymlvt+JtkGAWqySNeurO63oiKvqPI/ARq0rs3q4zp+Eh1PvZQ0fzs4TAiEcBByP5YZvqL7 WCmUmqeZjTba+4Df/pLxHQQ6XzE9A4BZGeR8YMufneSVvuYxJBHTeZ/0LNW6exlpQpXTl6sMyKNL BECAAiHgTMrHD7T4b3oYnBI3AGAwgWDvJcrqSXHoVz/vWAV/JZxRC1qQvgCsLCbMOwgIP1RDMAmv JpV6CfA6+LU2be9e+MkKDYMIIlWQIBwGURdecHKDAYgnYgosSxehmKD/S2DLIKDDnUtAtzJTwQ1V Z5vQuJ4IxgThwwWaOMiAgPK+KwoEaiKbzBfjGKAFwOAgR4TJEPmxP3rhLTtomxAcARkgTbhgfvx4 Rt1+8jyDVEmP6oEkj0zRglBZj4eBquIllcgx3DjrkZ50zz1IoIqDtGABQwmcYACwPj+2kkb6gKUm 4UcT+RmkNNqD3VUW+T0LNmyX7+kBDg7yDRJkYyic62ARdclMES0iB3ac10wcqEkCcJJZ+VmkqlgJ FxIoRJ3ZVEk0qWgQFyyiKIkUiKyA2E4NhWOKBonmJXq0FBfmki6p2k4qK4ikC0aGnQZhaD5N4oIe HMQUJKCkUOwRAPJ5/zMyf3woc3IgUYPkgJtBKeQhCdpG/BgTnWtxKD9c6tGQmMIF99AkCUxxFOKI h2YdNUpPYzoaKVIymjUNihoNsqARotSYk/NVQpc5F5fCFKgGmWMdDbIIFyCldgfJIlTX8lOqgsYF pTgIHYlST34gcFBng133mAYsypBgrnSdqlj1EVKB7PMbYHmbQfZBpkeJ9T+SpORMLQoUjE5HsYOq lzkVUxGWmkWqgzXJSMUCwkxytLLtmWMsBdLLzxKFmMPUIjnvozcjSbYslI2jXVcixaKCpZr8sCVd wsrZyMBTINs8ypg4KU5yruiYi1wtWVoLRuQKhJ0kIOlyD6IP0YaFd/9ILaW1cvuffe62KD4yCFoG upYsaUUrsYvrZJRbwroytLXNFe1rwxI9OxLotth9jyrmCZZDnjS8jq3fvYxb35+gl7n30Opz5UKc lbkDmHPBbYDF0tyDvNcoSTXICbNnFoQpDTfZAfCDZzLg52oCpy+liwcFgpwdwsXBH0ZKexsKl7Xu caMZjtC4rJKvp7Y4neplLj/0MckSzyUTerIwAJJoFhbvuCgkKDCM18JY0DI4vL0YF68m4uGwRPjJ u2SvQEpR1gmv5YcrXnJo1DniA6+lhSgOwBprXE5n/VeZn3mxmlvpZYG4oJeU6d91zbPlOwNSnUA+ jZiPcoOy9eGFcGn/GbQiMkM6C8QZcoiDHJwRVScLGpJ55ocqenBospy4weyxs5A9yU4wn3ouNMMw WVL1WNtgWdLriMM6+LEOOdw6LmgmcagN2Gl+5ODXYSEOPDYLaE2vetDx5HNd9luWu5nzynCdFh2a YZBm0EEuhA4ysc08lPgi+yWUtjSmW8qPNC/btQb59LeLUsa5SI64eFNbHKB7b15/OcwPRmxc+CjY lMRh4Pmu9a1zvWvW/tjbXT7IsOtSyEZH6GXkTYy9FZLvdDb73a10RwtkGxdunJK+KhHZtbO97cnu e93gxgmb5QJrlaoKoR7zTRxElnF+5CMOdWiHUb7h3naD+sE4cG5c/8hM6pfkXB85HwtD98xxA/I1 LuBcaqaUluOa++fkAtE2dJtRaTok/CfnGPZVV/3wH2N3r3JBixn/7JKmN90oIGeou2NK1n/TWOIJ q5/aDI7rOPicIc6gg7n7+BJ8aKK55zCJVbGbVbkEFptxxzlY8FEKX9457Q+dKcjHcsIUEjSCOJZ5 tZNU7kuTZB11sLQy8hGTmbpAuiWRYl4Hi4+bZobRlG8J1/nhdYHkA/ZCUYULXDB1ktyjB4j3JA7w WxZo8930EqR53xSKkny0Pg5rSEdLvoEDEpTC3yUJhwtyQH6PzrT5SEHPZ34K+FoPnh+tp8P8ZxKO 8JPYJPrAwZ7bqf9dZaEyqFQoFDdrOkYSlKYMI9EMBgAAHKBU5QdqPZB+JmF+OFCB+SRPZnFH7xcT qXduBrEOhqd6MYFXJLAIGcgQ+NADLrBdrdQDRhcWRgMuqfRYCyNpI9EO2/d6KcMBAIAAxqIPIxAA LmiCx8d++SRFjTcWtNV7QrGDltYMSUgS+pB5OWAODBEOZzcSoPaCkJR7tJdTA1A2WBJBtiEn95OD VagMYXd/B8ENqmMlzWcJiXM0MoEPOWCERwGCRHNZY2FbnXQU+aAMA6cMb1gSdagAYniCKWgSi5d8 RNGHA1MKQQYWUYZKaFhOp4d9IqEP5UYHIagQ9pBFATACK9MNqpH/aEAxbOBgFPGna/xAcHPXL+dA Ao4gFpnDPmHRDHAAACHwdiHBDT84Av52hV84EhQlhj8Bi7c2i/CSd2AhYwRYcU3lYSNoaW7QfPtg CaqRCO4QAg+oYjihCQlwh0Lxe15Hhf0yS+uIE1y1i2IRCT/IAa6mEarDAeBlfLPHElJUVkORjtvm jsciRcG4OQAQgeTkX1uSZfzQDnOQHDewTJZAhAggekPxAaFDFEtHixWzYONEFHkykHGhZCvBDSEQ AAggPaWBAAmZCjekCSo4Et+QAA0wFBz5MAvwAUgxam1yhqnlVFr3VSZhD6Xxiyo2IFPGXUd2kxjn NMQBXkHRKAVU/xakaIf2kBqF0Uf2oDoKMJIjoUEc8JUC55QOc0IJCVBDOX1NlRtqiIAx0Y0PKChA WIZHoRTo8xL54AzKQAd1cBA395dh05PdgA2FaZiHiZiJaZhvhkgF0DkrdgA1MwLLwpJo2RLegAAI MJYh0Q7EJxCAaRAd+S7TGBRj8kBsxVRMhBUNGRLY8IMqyQ8cgJdigQ0BIJYqsQ58WWmWVgeiGJBh 42cDVDPDSZzFaZzE6U2mYplPCBcIYJMKkQoIoJU/YQ+ZGZUkoZd8aYgH8ZsPg4n8cAMYkJk2YSPj aZ7liZ428S2kxTIpBWnWuIYz4Q1EOACkCRbeMAAI8FXe8AZusP+bckAHyuAMzdeMYgNC3IOgCaqg C6qgChGIJLRinbE8xKiWLaEPHEAA46gQ+pCbdPCfvemZAlGgFfNymZAIJ4qiKaqiK3qiI9RqSGNO cnYfrEkS+yA6AFChQVGdGXoQWBmePBMBIOqOkxg2PSQUmkWVIYejA8QBGvoTKDkNDOENFKkaZyAH ddAM7FASRFoxwRUUaVVMFCInOPiWpWldZGEPHGAliYChNUMit+NJfUAAm3kS6nKOolGSMrETVSSN O+EOmdAHDXAzAxACiXAMORo23wUUpuKkqHljMxqfQIEAdyoW77MahbqcYFQllCoTUFOX8TgXHACS SIEcOsEBI5D/CYj6N9JnREhWg89CXh0WqT8xAtdkFPqAACuDD/UJVMhhI5QCrMEqrMNKrD+Yp0dx rDBRq0jBlQdxLYwZRCfUACPQBzcwAjdQrdV6rdlqrdjqrdvqrT+oqvwVa+VkfbIzFNdSbBJ6S+Na Q8gRAh0hr/NKr/Vqr7W6d6DadrOBaN4UcVBkD8lRrANLsD3ZnppYJOX1MUGxII0KFDQ4QK66Sxh1 mjKSrC9BMw5LE8phT0sKSWAKItIGJxY3qz8xcukKAMeWFGMUUx2oJBf7Ehw7Wuwam7MZRwsCrRtS G+QlZ2QqlDWCATxZIqzaSk6oIzDrEhiAATJpPnoEKDlbQwYb/7L9pZocRqMngQEHcBQ4a2QXmU8P erSSIQJBSxRoESr2GUSD4a7toWHe8TIK6zdAMQ0acBSHhLbMNBhQOyNI2xLUQLdEcapVNAD2iEGm uSNZsiqsUrI4sQ8a8A5F8aICEbB8GzbwyCSUuxL64LjUtDr8kAjzFUd9UACfGiJVsUhFsh1XexIa IA3x4k1Z1KtkKCWYuxIb0LpCEQLXpJRBRDOYwCPzxmHFtbg4wQd/QBT6kFEHsbvMND5TQrsq8Qd8 cFEB1BNFBkhEq7NL9LaKobomUQkbMLPpY1oeBbIvOxnSAL5BcQP+KrEGdFS/e4ZNBDvdWxJ+S7oz sS6E1L6QZP8qXrskz5sS76AB9/sSVTIdprK2hfOvM+JoqHWAP3urGhClQXEt4jGAHgW25jsZEgwU 7FmzkKS2S7Ir5TpnZUoUG1AJQmFStppNSDq7lKEHKfwTsKlCCAlI4qYkpqslpeeWEGwU0WtUDFJd mQpIm3omAJwSgCC9OIEW4nG3GPTEMoK4vfLA15fAK4G+QXFI5btL/3LElPEOt9sUmIFRhJs/BRMl 0iYueQO3nQgU78AHBHyZZ/qd2cRFaILEZbEguPO5kIS9IlJQm8hI52pewTGNsOtRSBcleUwWuau8 FWtAaCQl4qUYkGrCv4G83yIAkAxJwfnFCEIzHFSHdKrA+yv/xW2Vmsl0yaPhwcQhx4AktS88GfvA BxqgAXowwS6xvoQ0qhg0SkxSFW+1SN5BvyVBy7aMyzJxF/rrUcZ2J4xsEjEsEHBcwDJrKshoQOpi CUxbusQjcyS7ykEhzfxAzTDRXSursWCEw3hMGX87E0Ejm4AkL6ScIBqDurZRzCThzjOhD/DMwl1s vXYCzSWhB4CgsjjxtHF0lmESc1WLG4S8sENR0Af9EwudTxfmJwNdo4CwARoQxwexD5UgDdMAD2MZ xe3TAP8swuGiiYzEiVesEvvA0R5dlyP9Dq8sElzsSYoMJhptEjKtBwfxDnqgB7ZsyxugB3xQCSJg CdgwjmUc/0fXQtGTjMpbcmX5/NOAENR/1dEacAEagNR8AAiVMA2V0A3sV8e75HaYIxr7DNLvMA1l rcQXEJk1k5+nmggIALocxUCW4Nd/DdiBLdiBfaKVwQ03MNiJrdiAvcxnEszvWa5YvbohYQ9wXQmV EL1dLQA6YSMhcAOiwxE0Sxn64A3+ZdqnPRHXGRnc8Dqo7doQwatsPRl88Lj88L2Zaw/Y4NcjkLvJ URmHQwAEcADBTQDSGdzGXdwDcNzKndzLTRCU8YPBPdzLTd3Nbd3ITQCHw80MjMoz18YwnRK0LRC3 nRL24A2pYAmJwNuZOZz5+mzHCd/xfZx77Ufybd/2Dd4h4v/TIjENRe3RUw0xKORHARCiMQFYnBoX gELEx6LGxqQfw4sT/W3LfADgLgGOz10Z0TEChKmYHe7hhnkt/hsZzvnhJe7h+z0xIHLSaLq8MHHB z6bS29LQqmnJPuwcsU0ZOm1I7i0XLvwwKA4WVUcXK94SfywWLw4vO0tvqwnheMqykmG056GRk7FJ KAPkYPFyCU7H9CwQ63NCHCR5vcwtLUNBEvTS5ZHBcZHmMpHldJFFXC4sVw4WCxx91xQCNrsSfeBN RE6qAc0vjy1ng3zm5IHRHPXkQwjnibBG72PKY2GkJyPnSGEqBjkWktyxemsSUym5LS4Waf0ulDxe VYyu4+H/snNRJSVS6kXuTU4SGTw9MJGOFEZeIyVC5ylRGqIkuzHG42O+RC0dEZJdlcnr5jT76Llz prUV42ThyZAuI5FrIrnODyEcE16KRHBxDDbsMIHs0KJeyM+BHPktnwCwHq6eEtQlEFFeFrH84zNy A/QNX4UxP+v8EooqEJZeFmYQARUjORMUJ8BuFuqOWd7kVzKxzqluFm3gsTID60gh5GMxzwbB5yeh X8leFM4QBwXeL1nS2qrV5MAx8GuhnISE5zCRYAaxYJyMFPnwAGvgNAuPFBVMFhbNDxFjxiZJvTVc 80KhD1dqMYA+bUFpxe5B7kdhWzo1wzb77XBRB3IA7nGu/yO1ThQp7UMUzxLTKKdkUYggQ8nEpco2 Xh4iN9BQaUoozxIidBCTRxbtEAfY1vI6UmFhIdVk9OQ0gcO7SvY/sXOimO3NYq743PGG7O5b1dh7 RAA4zRIg9PFj4aFi4/JgoeNBQQDfAvUsFNDSjhSLr/U/6d0QHbfjYadlMSCUhO48dEpDLxQWP3ZD 0/jMerJDMUq/PMO03ugzIX8ns++m5++ZIQDpDBTFbvouAXACcUJ5DKBrs/p9DucowVOCe/dn9OTv axQ8b/sTZ3qO9PfCAfCCs+qdW5r5C/GBTxSFiPEKzyO4iuBPuue7LhNbrP4y0QwXjzI6bCTiwu0R bR7Lbv8UiY/jKLsyeRQWOwcQyvgNJFjQ4EGECRUuZNjQ4UOIESNakljR4kWM/CwB8JaxYTcA3Qhy A/DMY0NvADIRdBeA4smFygTCpFnT5k2FRnrZs6ePJ899Pn3aM8LvZ7cRI4zaw9nUIgcEThESUEow 0QCmUgciCFEwUQB3WgvWkaNP7Fm0aQ++VNs2IoeuUhFUHciBA9o+BbwOcNvX79+GOn/yxDeYp76i R5MuBSzWm0u0X7PycwcgEVpsAFIV5Ip2XRxnjUWPbsiWNGCQJptaCjCZdcez+gZcHqiPQJ/TuXXb NKLNXtDfhwnvI7rUHlKlPHfb7BPArFZ7AWgPDBE1bfX/gqkAYDubT9nz5eH7mhafdoT1m7Kn87ut lrVrsDWdyYkjJ3R5/E4FDx1qGLFx5BjLDyN8BsBNqxEIKCizldKqbD2oBpRwQoXIoxCn6Cw86YYD wLsKn7bmKsgumj5bh5915DjxQhYlEswwfID7KTGeAlSuRYg2CkcqkBrc6q62rprsMQ1xNJK0Io/M SEibUvKxpSSdykykgUDi7iQ6miGoGTqU9PIgwYArbLChaDxusRu/VAgBIJtis6CNYFNrnwHo4qc5 8Giar7771PQToSj/hIgrb7zhptBDDUV0UUUbTfTQNwnCrq9JB0rQ0UW3SacdTjv1tKA4CtInVEGV 7K2n/5+IsyfGw8y0cbJSCQJpM5xYo5IfOg906zWCZLvBJhNRVDHWUgMldqFEAFB2WWabdfZZZaez JyS/WroVJGiVfSAObrvtVg5QDSL1WBZf/Kk/VItTLDlYj63UpjoLumGAPENsUyOOaspyyy7JVdNY fxHyRrh0+SPY4ILtebfdtmCFyicZx8xnYoorzifPODAO+EJz++svKFfRZDjWyjhI5GSUU1Z5ZZYT QQArglIC2CmSfOTn5ZZPXkMmnnuWKZ9wex13YyNnJrqpDHfLjBuY9h2Iy6Ml1ElGqoVSt0aRieYg AAQI6BqBr70OG2yvxS6b7K4B4IsgS9D7azGCOADgbP+zuzYADjny1nvvFQcamp+/o6bQaMFtuqpe 0USEKdgU+y48PHPTHXNGALN+HCaSCHcr85oyDvryCTUH3aP2TntPPvrsGx3ynWQEKt2rz2R3dY8S LC9CfbV8ul/a8RO994oyASCs0eyZDfiNT4VxsBhDnh35inINT/hbF4/jxMahF+937R8icbTzuif3 RZ9YJTj2V8WP6CvidaMKpz1VV1837udXiCTVAHvMZvvVNFdViAHlP+sSUP8Y0hndSMaAG6vfAg0S vsZ8z4FfmprVhGM15xVwggfRzpVIE531bLBYIswICAGjHTmREEeRW5VheJLBNKkwbm4TTYL2IcMR 4rD/Iof7i+J0WK7WfWwoY4LhyEhIJNL06Id/aqAKfRikAdxwiRzzzU8mF5wXVu55SxwBvUYTqSl+ qYkkRKFbjBfCMOaHfGRCVfO0qEEd2kZXf2EN09LopTGSUILmoeEd8RM51w2miGncSPv88j4/KimP InSSWkjiwUT+sRcyGkrVBplGMPblK1KMJI4WKcK8qGWPnRQPC1tImCwSMIZLzAyt3PIgUhYtlgpR D1p4NctSBnFVqrriJdP4LrUAE5cS+qQITyeW0g1zOcpjY3B84sswwrItrVTmhYopwic25UPVXOZO hihAQb5xlVNkkloyyc38XHODUyqIO7rxTnjGU57z/3xnCqGEzt38z4UQg2YYbWMnscQJn8QcqKTc NoJsJZRZ9xJmQQEzNVQhrIX9DKNAYzOAXznUdxptCf9oApLqafShOzEM1VKJtS36EXdiuYEAECfS 3KgTlAR4qUeyCVO/hKl8kkMVRcOoRILYwxJDJWpRjXrUoqZQZjjdnkjxQQA0euSYTP3LqdDlQvRZ LpK2k1UABuBVsH5VrGEl61gh1EeqIgmmhaxJLdNaVZKC8zdD9GkYTeiUDr51NzIlIQGUFYC/KjRb gAVAADip17a8qDASJU5dw5gsI54EgYg1HU5TkQlsYDaz2OBsKjiLDc929rOhBS1nM8FXyi4Eolhd bP9WUxrJyRouAPBIbWVre9sB/a98qqKcKiMbRurdhE5Rxe2uintc1s3VP1Z0LCa5BjboRle606Xu ywyLXMCgFrvbjYhVz3eYxorztxU1WR+McLI+oFe9iUgve9fbXvYaIQSJABF3jWtf/PbFlBDrT3Mj Wa/68iPAAiZIfQec3/siWMFiUaxyeerfBUc4I9qVMIJXC7vB7APCFeZwjjr8YY/oFpUR3TCITbyW E6cYIjrNsGFKrOITUxjGt/VuG4UDMvHOWMeA2nGPCWLKVJUpxz7usYyJnNYGK3dMhXnxkRdsZCfj dLWBDKdvozxjKF9Zo2tMl+uarGX7ZhnMAwXy5J7/OeQxg1jMaebmqcTE20p+mc3HXfOch7mfZipX zna+bZ35HEtAVpI/e/4zZf1c6EiyGGFCtjKin+zoBdcYqyeVHRwhzd1DXzqMkVvyiAmtaZxmGtQ/ TLKqvIzmUWNX1KmW4YUTNtdPs7qgq5a1CEW83FjXGp201rUDWTwcdOW618rk9bD7V+Or9halljb2 W4vdbPUB+ZRubDS0Eftsa2uvwcAx9Zmrne20YhvcwLuwwfqL6nGHOt1IjiuVCSPsdRMy3kz99SlP Ce95L1Hc+X4cssGpKnzzG4f7FnjUgIywgBechARXePJI2mkXJrzhE2T4xMdHFCNkXOMb1zi6LY7L /4p/PFZFcYjERW6/kJ/8T2aaNKXTp3KQwxyXReE2fyPqWmbL/I4p17mp+LHoVLlcqz1PJM+JvkLj uLC1Jj9674zedI4ZZckmFfoWD7GAchDk6uWghxnAhvWBBOLr4vA6ArDe9a9nHepRY8vWtX72soOd H2I3O9nTjnazq33tRKPRPqBVdQFVAwIkULvgCU8PO+idH4cwQX0Rr/fH771wLzF84QfP9cQXhPGO z/xAIi95g+NqKM5SdqWVsw81tCLzqFc91+Nejn24IRgEwTvc0w56BuIq9avfvevTHvvZe/71tVc8 7olVFHQx61yDPMQKIn8IIHx+IIyPhx3+ALZXaP++8VrfvvGPRZHmPz/6nZ++Cap/fQRkn/sB3rz3 j2Wm0QPAxeLFe93Lnnfa24HsWODHNVgAefKTPvcTFEuovwWwu9vzPP0zA/7zPwB8wAEcuaRzIeDw JekTwGVoPD+YvWr4P4LIwAADwQjMIX64QPLjBxDcQH7oQL0TwYFwwRH0k8T4JrnCuTQxQd9DgBbI Orx7BbzbwR8svhjEo/x7wCAswbLzwbIDwiUUwiE8kr6zOYNhuicklqerQtGgOY/BKirEQgL0QgMy AozjODLsQjD8lzO0n/EyCN9KCjd8QziMQzmcQzqsQzu8QzzMQz3cQz7sQz/8Q0AMREEcREIsREP/ PERETERFXERGbERHfERIjMQ8HBjTsweASkNMzLaOWDaeUIp7+ERQDEVRHEVSLEVTPEVUTEVVXEVW bEVXfEVYjEVZnEVarEVbvEVczEVd3EVe7EVf/EVgDEZhHEZTxAd2eRWlwAdlXEZmbEZnfEZojEZp nEZqrEZrvEZszEZt3EZu7EZv/EZwDEdxHEdyLEdzPEd0TEd1XEd2bEd3lMZjFJlkFDAQUUZ6vEd7 zMd63Ed85Ed97EeA/EeB9EeCDMiCHEiDTEiEXMiDbEiFdEiGfEiJjEiKhEiLnMiLrEiM3EiN7MiM /EiOBEmPDEmSHEmTFEmULMmUPEmVbEmWfMmV//zIeGSXqqhHAnsOmwQRnCQwnRyInPw5n+RJoBTK niTKofzJnbTJpLzJoFTKpmRKo1zKokTKp5xKoZTKo7zKqsxKp4zKrcRKsPxKsfRKsqTKstTKs+xK s1xLtGRLtWxLuHxLuYRKt6TLuLTLubTKvORKvOxLvfRLvvxLwQxMwgzLtARMw6zLwUzMu1zMsVTM wnzMxozMs+SHmVyKSyyIAyuwhNjMoEQIzyQw0OxM0hxN0zyI0EzN0kTN1TQI1TxN12xNzZRNzoTN 2bTN2mRN3PxM3ezN2NxN0fTN2xTO3PxN4uRN40zO4VTO4lxO52xO6ETO55TO6AxO5qRO7LTO6f/U zup8zePkzuz0zusET/IUz+00z+4sTWNcCmTMxP7pOrlzTwO6zE7cygD7Sc60yfy0Tvzcyv0csP40 yv+cTf30TwMV0AMNUAUVygFt0ARl0ActUASd0AWV0ArlTwil0Ay9UADdUA+10A2thzSALrAL0Hgw gwUghuBc0BNNUQfVUBCNUQyV0Q6lUQKdURyt0Ry9UR3tUR790RflUCCN0B0N0g8tUiL1USO10SVF UoKgT0v0T7P4yWU0SnyYUqLE0pzUUp7k0nr0UgED0yu1UjEtUzI9Uyo10zRF0yxl0y110y6F0y+V 0zCl0zFdUzxt0zx90z2N0z6d0zXlhz1QAFr/wBU8IAYqtcdrQFEV9UeezMcSlAAXhdR9pNI6/dNL 1VNN5dNN9dNOBdRPzVROHVVPJVVQNVVRLVVVPdVVTVVWfVVXjdU7DdVZRdVabdVbhdVcvdT15MQo rdIr1YdmFNUpLVZ8NNZ8RFZAndJlPVZevVRmhVZnvdNmTdZnvdNoxdZpzVZllVZrpVZvrVZxDVdy 1dZv5dZr7VZzHdd1LVd1fdd0jVdwbdd1vQZJRdR/JATo8gJlpId7VcZD2NcvXQboCgMJIFFEBcox RdZiZVd4ndeHRVeIlVeJrdhtvdhzxViHpViNdVeOzViQ3diJHVmLDVmPJdmOpdeIpUdxNQso/01G YX1HmZ1Zmq1Zm71ZnJXGeDhYs8NXZdTXK8CHQkAALMAHeyUBRNVXKxBaBFhapgUCYc0DVvhXZryH nL1arM1ard1arn1ZeryHmG1GsLVaUNSHT8SHs01btUXbUGRbtgVFtxXFuG1btYXbul1bub1bst1b u+VbvKVbv93bt/3bvh1cwc3bwJ3bwkVcw1Vcwn3cwwXcxtVbx43cxZVcxs1czN3cy+3ceyDY6LqC e4AHNFAAXriHd5CAEiCH1F2AYSBdQr0HezUBcoBdXkBbfWjdYUDbuH3buVVGsq1c4aVc4k3c4p1c 401e5F1ezfVcy4Xc4VXe5oXe453e573e6P9lXs6lXundXuz9298lW68VxXO4h/ItX1BE31BE3/Nd 309U3/eNX/c1X/KV3/S1X/mFX/rd3/vl3/ytX//dX/1lXwAeYPwV4AJO4Pk14AAm4AVW4P5lYAmG 4P99YAuOYApG4AuuYAzeYFAEXdelBp4l0WEQ4RAe4a8rYUkdBlA04WBQRQJuXwfuYBrmYBvW4BrG 4Rue4R0+YB7WYSD+YSH2YSJu4CKeYA8eYiNeYiTOYSVu4h5mYvq1B/dt33vw2vI1B3I4Xy4+By82 Xy8OYzAG4zDmYjL+YjQu4zEuYzNm4zVW4zQW4zhO4zNuYzjuYjp24zm2YznGYz7O4zuu4zf/7mNB 3uNBBmRC1mM/PuQ/bmRGfmRDjuRFluRCnmQzNgf6RQcTHgZvQAPXFcVN7uQFeOFPJId76GRCPQdT 3uQ6/mJMxuREdmRKVuRKrmVavuVAxuVY3mVE7mVZtmRbzmVh5uVfDmZihmRg1mVfRmZjXuZZvodx AONohub4JQcsNocwxuZz0OZsZuNxYGM21mZu9mJxDmdyNudtRudxTmd27uZ2Pud3Zud1Lucypmd3 nmd4vmd13ud6zmd4xud4tud/5md97ueA9md5JuiBNmiAbmiFTmiGfuhy/mZqsIBgwGbBWwFVHgQE qAJyMIeKBgYXHgc/QIAr8OKKDoZx4GgV//DiYpjaUV7nbcZmmnbnMI5mc3DoiN7pgu7phfZpiAZq gQ7qny5qoj7qoU5qhFbqg25qnRbqpY5qp5ZoqX5qo2bqbwbnetbma07nmqbpb85psc7mnPZqs6bp sk7rmUZrr07rr3brtmZrtJbrtZ7puLbrucbrulbrseZruM5rv6brvn5rwf7rvSZsvR7suw7sxDZs xQZsxGZsyY5syl7syoZsy85sbp4GFDYBXyhrQyBRlebsBQCGLQ7tr7toL0btjjaHkja7i67psybs rHbrvw5rucZtvNbttOZtsMbr375t4N5m3ybu4TaH4kbu405u5l5u5xZu6M7t55bu6N7t6f+27uru 7evW7uwObur+buxm66AGh3MWa68Va/RO77VOb/Zub/d+b/iOb/meb/qub/u+b/zOb/3eb/7ub//+ 7/1W5Y9e73MYBy1WZfQmB3LQbdzOafIe8AQPcPpeb/Sm8MFmbwu3bfV27wyf6w1v7w4PcQ4fcRAn cQw38Q8/8RJfcRVv8RR/8QpH8RhncRi/8BrX8PYmb/I+Bx33aq8FB3MAciEPcuQeciIn8iEH8nEY 8iUncgNXciePciWH8ilHbikvciuv8ifPcizf8ib3cien8i6/8i8Pcy73cjEv8zRf8zM3czRvcy13 czJnczCPczs/czqfczyH8zG/8zf/cz3/B/Q8F3MhBwcgD/JDN/QkP3JFF+skL3QkN/Qgb3JJX/Qq R3JM73NMr/JFp3RM93Qmt3Qs73RRB3UzJ/VNH/VPL3VWT3VT5/RVd/VWR3Vaj/VaD3VZz/VbP3Vb 73Vc33VY//VUF3IeV3QeR/Qg/3FIr/RCZ3ZmR/ZnV3Rnl3ZEX/Zod3Zov/Zmz3Zr33Zs/3Zt5/Zq F3dw73ZyD/dyP/dxb3RwX3d09/Z3d3dzT/d2Z/d4t/d5h/d8l/Zm9/Zqj3Z5z3Z153d9p3dqt/eA P/hpl/eCZ3iHx/eGh/iHX3iJr3iKv/h+n/iMt/iNx/h/1/iP5/iQ93iF73iTH/mOX3KC/y92ez8H ZSd4mI95mZ95mq95m795nM95nd95nu95n/95oA96oR96nv93or95oy/6o196pm96p396qI96qYf6 l596q796rM96rd96rmd6X/D5r+96sR97si97sz97qmdPeeQHcPAFbWj7t3d7t4d7up97u497vLf7 ut97u/+Gvp/7Xqh7vxd8wCd8wo97v0f8r/97xVf8w2/7xAeHwP/6yW98yP/7x/eFyJ98yc/8yNf8 xbd80H97zq/8yxf9wWf80+98yvd8zFf90Wd91kf916d90m/72V/92Ad914/7un/7xA984b98uh9+ zSd+uUd+bQh93E9+vb/73z983od+6v/3feqPfua/fu3H++bn/uf3fuzHfusH/+0P//L/fvMnf/VP f75f//Mf//Znf/Sff/eHf/qP//nH//B/WW+QRP//f4AYIXAgwYIGDyJMqHAhw4YOH0KMKHEixYoW L2LMqHEjx44eP4IMKXKkQH727HUredIbv5YuX8KMKXMmzZo2b+LMqXMnz54+fwINKnQo0aJGjyJN qnQp06ZOn0KNivNkyhEmT2LNqnUr165ev4INK3Ys2bJmz6JNq3Yt27Zu38KNK3cu3bp27+LNq3fv 2apX+QIOLHgw4cKGDyNOrHgx48aOxfrtJnky5cqWL2POrHkz586eP4MOLXo06dKmT6MnTq16NevW rl/Dji17Nu3atkeTzK17N+/evn8DDy58OPHixo8jhxgQADs= --0015174734b60a79410499985054-- From owner-chemistry@ccl.net Tue Jan 11 22:59:01 2011 From: "neeraj misra neerajmisra:hotmail.com" To: CCL Subject: CCL: Theory Message-Id: <-43605-110111225809-28531-7/BvtmUMduWwQW4IAfxbQg||server.ccl.net> X-Original-From: "neeraj misra" Date: Tue, 11 Jan 2011 22:58:07 -0500 Sent to CCL by: "neeraj misra" [neerajmisra()hotmail.com] Dear CCL'ers, Although we do have a lot of very good literature on "electronic structure theory" available but i am looking for a sigle source of the best possible treatment on this topic..Any help in this regard would be gratefully acknowledged.