From owner-chemistry@ccl.net Mon Oct 31 00:10:01 2011 From: "Sue L chsue2004^^yahoo.com" To: CCL Subject: CCL:G: Solvent-corrected Gibbs free energies Message-Id: <-45780-111031000854-10712-RuevA3fbAOXR1V3c5MO9Hg:_:server.ccl.net> X-Original-From: "Sue L" Date: Mon, 31 Oct 2011 00:08:51 -0400 Sent to CCL by: "Sue L" [chsue2004]_[yahoo.com] Dear CCL users, Could someone help me with the following question? If I want to calculate the solvent-corrected Gibbs free energies of the molecules based on the gas-phase optimized geometry usinf gaussian 03. Which of the following methods is more appropriate? > From the vibrational frequency calculation of the gas-phase optimized structure, I could obtain the thermal correction to Gibbs Free Energy > From the single-point PCM calculation, I could obtain the total free energy in solution: with all non electrostatic terms as well as solvent-phase electronic energies (The energy value associated with SCF(Done)) (1) The solvent-corrected Gibbs free energies = the total free energy in solution + thermal correction to Gibbs Free Energy Or (2) The solvent-corrected Gibbs free energies = gas-phase Gibbs free energies + (solvent-phase electronic energies - gas-phase electronic energies) Thank you very much for your kind help. Best regards, Sue From owner-chemistry@ccl.net Mon Oct 31 00:50:00 2011 From: "Arne Dieckmann adieckma**googlemail.com" To: CCL Subject: CCL:G: Solvent-corrected Gibbs free energies Message-Id: <-45781-111031004836-18985-kkED8Vpic2zePE35rY/hUw .. server.ccl.net> X-Original-From: Arne Dieckmann Content-Transfer-Encoding: 8bit Content-Type: text/plain; charset=us-ascii Date: Sun, 30 Oct 2011 21:48:24 -0700 Mime-Version: 1.0 (Apple Message framework v1251.1) Sent to CCL by: Arne Dieckmann [adieckma###googlemail.com] Hi Sue, the two methods you are describing are exactly the same, as you are only changing the order in which different quantities are added. Cheers, Arne On Oct 30, 2011, at 9:08 PM, Sue L chsue2004^^yahoo.com wrote: > > Sent to CCL by: "Sue L" [chsue2004]_[yahoo.com] > Dear CCL users, > > Could someone help me with the following question? > > If I want to calculate the solvent-corrected Gibbs free energies of the molecules based on the gas-phase optimized geometry usinf gaussian 03. Which of the following methods is more appropriate? > >> From the vibrational frequency calculation of the gas-phase optimized structure, I could obtain the thermal correction to Gibbs Free Energy > >> From the single-point PCM calculation, I could obtain the total free energy in solution: with all non electrostatic terms as well as solvent-phase electronic energies (The energy value associated with SCF(Done)) > > (1) The solvent-corrected Gibbs free energies = the total free energy in solution + thermal correction to Gibbs Free Energy > > Or > > (2) The solvent-corrected Gibbs free energies = gas-phase Gibbs free energies + (solvent-phase electronic energies - gas-phase electronic energies) > > Thank you very much for your kind help. > > Best regards, > Sue> > From owner-chemistry@ccl.net Mon Oct 31 01:24:00 2011 From: "Arne Dieckmann adieckma~~googlemail.com" To: CCL Subject: CCL: DFT and dispersion Message-Id: <-45782-111031005939-15889-8p3/62L4ZFLtKBdTWfs0pA]~[server.ccl.net> X-Original-From: Arne Dieckmann Content-Transfer-Encoding: 8bit Content-Type: text/plain; charset=us-ascii Date: Sun, 30 Oct 2011 21:53:35 -0700 Mime-Version: 1.0 (Apple Message framework v1251.1) Sent to CCL by: Arne Dieckmann [adieckma]=[googlemail.com] Thanks, this is a good point. I will examine if the geometries of my structures are significantly affected by including long-range dispersion in the optimization. Best, Arne - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Dr. Arne Dieckmann Houk Research Lab University of California, Los Angeles email: adieckma^googlemail.com On Oct 30, 2011, at 8:49 AM, Stefan Grimme grimme__thch.uni-bonn.de wrote: > > Sent to CCL by: "Stefan Grimme" [grimme\a/thch.uni-bonn.de] >> First, I would like to thank all of you for your comments and help. I >strongly believe in the principle of getting the right answers for the right >reasons, which is why I want to make sure I am using methods in the context >they were developed for. With regards to solution corrections: As the DFT-D3 >model is only geometry-dependent, I guess the following procedure would be >valid: >> 1. Optimize the geometry in the gas phase >> 2. Calculate energy in solution (e.g. using SMD) >> 3. Add DFT-D3 dispersion correction >> 4. Add thermal corrections >> Would you agree? > Basically yes but I would also use the dispersion correction for the geometry > optimization as well. Structures of 'normal' molecules are less affected by dispersion than energies but conformations are sometimes sensitive to details in the potential. > Cheers! > Stefan Grimme (grimme:+:thch.uni-bonn.de)> > From owner-chemistry@ccl.net Mon Oct 31 05:27:01 2011 From: "uekstrom_._gmail.com uekstrom_._gmail.com" To: CCL Subject: CCL: Looking for reasonable Ar2 potential energy curve for small R Message-Id: <-45783-111031052606-7387-dooTuAfihat7FlqG4NoVUg===server.ccl.net> X-Original-From: "uekstrom-.-gmail.com" Content-Type: text/plain; charset=ISO-8859-1 Date: Mon, 31 Oct 2011 10:25:58 +0100 MIME-Version: 1.0 Sent to CCL by: "uekstrom+*+gmail.com" [uekstrom+*+gmail.com] Dear all, do you know a reference to a reasonable accurate Ar2 potential energy curve that is valid for small bond lengths? I find only curves for equilibrium and dissociation. Of course I could calculate it myself but BSSE is non-trivial for small R. I will use the curve for teaching, so it does not have to be super accurate, but should rather have uniform quality over the whole curve. Sincerely, Ulf Ekstrom From owner-chemistry@ccl.net Mon Oct 31 08:22:00 2011 From: "veera pandian ponnuchamy veera.pandi33[#]gmail.com" To: CCL Subject: CCL:G: Hyperpolarizability doubt Message-Id: <-45784-111031082039-30393-Ub3JzeBAgFsxQFm5Y56opA-$-server.ccl.net> X-Original-From: "veera pandian ponnuchamy" Date: Mon, 31 Oct 2011 08:20:36 -0400 Sent to CCL by: "veera pandian ponnuchamy" [veera.pandi33%a%gmail.com] Dear CCLers, I have a small confusion. Can the theoretically predicted hyperpolarizability (0) values (using G03) compare with experimentally observed 0 HRS (hyper-Rayleigh scattering) method? Is that right? Any standard papers are available? Your help will be appreciated. By veera From owner-chemistry@ccl.net Mon Oct 31 08:56:01 2011 From: "=?ISO-8859-15?Q?Markus_Sch=FCtz?= schuhtib=-=physik.tu-berlin.de" To: CCL Subject: CCL:G: excited state TDDFT Message-Id: <-45785-111031044907-21929-Y7mOJSZRX1JK3T8lL2OLGA,server.ccl.net> X-Original-From: =?ISO-8859-15?Q?Markus_Sch=FCtz?= Content-Transfer-Encoding: 8bit Content-Type: text/plain; charset=ISO-8859-15; format=flowed Date: Mon, 31 Oct 2011 09:48:43 +0100 MIME-Version: 1.0 Sent to CCL by: =?ISO-8859-15?Q?Markus_Sch=FCtz?= [schuhtib * physik.tu-berlin.de] Am 27.10.2011 19:05, schrieb Markus Schütz schuhtib!A!physik.tu-berlin.de: > > Sent to CCL by: =?ISO-8859-15?Q?Markus_Sch=FCtz?= > [schuhtib::physik.tu-berlin.de] > Hello, > > I tried to calculate the second excited state of adamantane cation > (opt and freq) in TDDFT ( # TD(root=2,NStates=40) b3lyp/cc-pvtz opt > sym=loose). Unfortunately the calculation ended with > > 'You need to solve for more vectors in order to follow this state.' > > So I set the keyword for NStates first to 10 then to 25 and finally > also to 40, but the message is the same. > I tried another way: From a cis calculation I wanted to get the force > contants using them for the TDDFT calculation. But the cis calculation > also ended with the message above (NStates=25). Is it useful to set > NStates much higher or is there another way to do the TDDFT calculation? > > By the way, I also tried a cis calculation (# CIS=(Root=2, NStates=40) > hf/cc-pvtz opt(calcFC) freq sym=loose). This delivers the message > > 'Tx not orthogonal to T.' > > I couldn't find any solution for this problem. > > Regards, > Markus > Sorry, forgot to say I'm using Gaussian09. -- Markus Schütz Institut für Optik und Atomare Physik AG Dopfer Sekretariat EW 3-1 Technische Universität Berlin Hardenbergstraße 36 10623 Berlin Tel +49 (0)30 314 29808 Raum EW 337 From owner-chemistry@ccl.net Mon Oct 31 09:55:00 2011 From: "John McKelvey jmmckel!A!gmail.com" To: CCL Subject: CCL:G: excited state TDDFT Message-Id: <-45786-111031094343-5828-cR15Ew3vlUy1Ij69p0eJug|-|server.ccl.net> X-Original-From: John McKelvey Content-Type: multipart/alternative; boundary=f46d04478a6dea1e0f04b0986c0c Date: Mon, 31 Oct 2011 09:43:35 -0400 MIME-Version: 1.0 Sent to CCL by: John McKelvey [jmmckel[-]gmail.com] --f46d04478a6dea1e0f04b0986c0c Content-Type: text/plain; charset=ISO-8859-1 Content-Transfer-Encoding: quoted-printable Markus, I'm clearly not an expert on this... When you do the TDDFT or CIS without optimizing any particular state are S1 and S2 close in energy? of the same symmetry? It may be the case there could be a problem optimizing S2 when it is the same symmetry of S1. Is there a problem optimizing S1? My $0.02.. John McKelvey On Mon, Oct 31, 2011 at 4:48 AM, Markus Sch=FCtz schuhtib=3D-=3D physik.tu-berlin.de wrote: > > Sent to CCL by: =3D?ISO-8859-15?Q?Markus_Sch=3D**FCtz?=3D [schuhtib * > physik.tu-berlin.de] > Am 27.10.2011 19:05, schrieb Markus Sch=FCtz schuhtib!A!physik.tu-berlin.= de* > *: > >> >> Sent to CCL by: =3D?ISO-8859-15?Q?Markus_Sch=3D**FCtz?=3D [schuhtib:: >> physik.tu-berlin.de**] >> Hello, >> >> I tried to calculate the second excited state of adamantane cation (opt >> and freq) in TDDFT ( # TD(root=3D2,NStates=3D40) b3lyp/cc-pvtz opt sym= =3Dloose). >> Unfortunately the calculation ended with >> >> 'You need to solve for more vectors in order to follow this state.' >> >> So I set the keyword for NStates first to 10 then to 25 and finally also >> to 40, but the message is the same. >> I tried another way: From a cis calculation I wanted to get the force >> contants using them for the TDDFT calculation. But the cis calculation a= lso >> ended with the message above (NStates=3D25). Is it useful to set NStates= much >> higher or is there another way to do the TDDFT calculation? >> >> By the way, I also tried a cis calculation (# CIS=3D(Root=3D2, NStates= =3D40) >> hf/cc-pvtz opt(calcFC) freq sym=3Dloose). This delivers the message >> >> 'Tx not orthogonal to T.' >> >> I couldn't find any solution for this problem. >> >> Regards, >> Markus >> >> Sorry, > > forgot to say I'm using Gaussian09. > > -- > Markus Sch=FCtz > Institut f=FCr Optik und Atomare Physik > AG Dopfer > Sekretariat EW 3-1 > Technische Universit=E4t Berlin > Hardenbergstra=DFe 36 > 10623 Berlin > > Tel +49 (0)30 314 29808 > > Raum EW 337 > > > > -=3D This is automatically added to each message by the mailing script = =3D-> http://www.ccl.net/cgi-bin/**ccl/send_ccl_message http://www.ccl.net/cgi-bin/**ccl/send_ccl_message chemistry/announcements/**conferences/ > > Search Messages: http://www.ccl.net/chemistry/**searchccl/index.shtml http://www.ccl.net/spammers.**txt > > RTFI: http://www.ccl.net/chemistry/**aboutccl/instructions/ > > > --=20 John McKelvey 10819 Middleford Pl Ft Wayne, IN 46818 260-489-2160 jmmckel:_:gmail.com --f46d04478a6dea1e0f04b0986c0c Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: quoted-printable Markus,

I'm clearly not an expert on this... When you do the TDD= FT or CIS without optimizing any particular state are S1 and S2 close in en= ergy?=A0 of the same symmetry?=A0 It may be the case there could be a probl= em optimizing S2 when it is the same symmetry of S1.=A0 Is there a problem = optimizing S1?

My $0.02..

John McKelvey


O= n Mon, Oct 31, 2011 at 4:48 AM, Markus Sch=FCtz schuhtib=3D-=3Dphysik.tu-berlin.de <owner-chemistry:_:ccl.net> wrote:

Sent to CCL by: =3D?ISO-8859-15?Q?Markus_Sch=3DFCtz?=3D [schuhtib * = physik.tu-berlin.d= e]
Am 27.10.2011 19:05, schrieb Markus Sch=FCtz schuhtib!A!physik.tu-berlin.de:

Sent to CCL by: =3D?ISO-8859-15?Q?Markus_Sch=3DFCtz?=3D [schuhtib::<= a href=3D"http://physik.tu-berlin.de" target=3D"_blank">physik.tu-berlin.de= ]
Hello,

I tried to calculate the second excited state of adamantane cation (opt and= freq) in TDDFT ( # TD(root=3D2,NStates=3D40) b3lyp/cc-pvtz opt sym=3Dloose= ). Unfortunately the calculation ended with

'You need to solve for more vectors in order to follow this state.'=

So I set the keyword for NStates first to 10 then to 25 and finally also to= 40, but the message is the same.
I tried another way: From a cis calculation I wanted to get the force conta= nts using them for the TDDFT calculation. But the cis calculation also ende= d with the message above (NStates=3D25). Is it useful to set NStates much h= igher or is there another way to do the TDDFT calculation?

By the way, I also tried a cis calculation (# CIS=3D(Root=3D2, NStates=3D40= ) hf/cc-pvtz opt(calcFC) freq sym=3Dloose). This delivers the message

'Tx not orthogonal to T.'

I couldn't find any solution for this problem.

Regards,
Markus

Sorry,

forgot to say I'm using Gaussian09.

--
Markus Sch=FCtz
Institut f=FCr Optik und Atomare Physik
AG Dopfer
Sekretariat EW 3-1
Technische Universit=E4t Berlin
Hardenbergstra=DFe 36
10623 Berlin

Tel +49 (0)30 314 29808

Raum EW 337



-=3D This is automatically added to each message by the mailing script =3D-=
E-mail to subscribers: CHEMISTRY:_:ccl.net or use:
=A0 =A0 http://www.ccl.net/cgi-bin/ccl/send_ccl_message

E-mail to administrators: CHEMISTRY-REQUEST:_:ccl.net or use
=A0 =A0 http://www.ccl.net/cgi-bin/ccl/send_ccl_message
http://www.ccl.net/chemistry/sub_u= nsub.shtml

Before posting, check wait time at: http://www.ccl.net

Job: http://www.ccl.n= et/jobs Conferences: http://server.ccl.net/chemist= ry/announcements/conferences/

Search Messages: http://www.ccl.net/chemistry/searchccl/index.= shtml
=A0 =A0 http= ://www.ccl.net/spammers.txt

RTFI: http://www.ccl.net/chemistry/aboutccl/instructions/=





--
John McKelvey
10819 = Middleford Pl
Ft Wayne, IN 46818
260-489-2160
jmmckel:_:gmail.com
--f46d04478a6dea1e0f04b0986c0c-- From owner-chemistry@ccl.net Mon Oct 31 10:30:00 2011 From: "Sue Lam chsue2004^^^yahoo.com" To: CCL Subject: CCL:G: Solvent-corrected Gibbs free energies Message-Id: <-45787-111031101256-15987-trcawsLwzVETGXHz1jDzIQ%x%server.ccl.net> X-Original-From: Sue Lam Content-Type: multipart/alternative; boundary="130478739-893504848-1320070366=:1570" Date: Mon, 31 Oct 2011 07:12:46 -0700 (PDT) MIME-Version: 1.0 Sent to CCL by: Sue Lam [chsue2004]^[yahoo.com] --130478739-893504848-1320070366=:1570 Content-Type: text/plain; charset=iso-8859-1 Content-Transfer-Encoding: quoted-printable Dear Arne, Thanks for your reply. Sorry for the confusion. Below is an example from the Gaussian manual. For the output file in Gaussi= an 03, we could obtain (1) Total free energy in solution: with all non electrostatic terms=A0=A0 (2) Solvent-phase electronic energies, which is the value associated with S= CF(Done) I am not sure which value I should use if I include the thermal correction = to Gibbs free energy from the vibrational frequency calculation. SCF Done:=A0 E(RHF) =3D=A0 -98.569083211=A0=A0=A0=A0 A.U. after=A0=A0=A0 5 = cycles=20 =A0=A0=A0=A0=A0=A0=A0=A0=A0 Convg=A0 =3D=A0=A0=A0 0.4249D-05=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0 -V/T =3D=A0 2.0033=20 =A0=A0=A0=A0=A0=A0=A0=A0=A0 S**2=A0=A0 =3D=A0=A0 0.0000=20 --------------------------------------------------------------------=20 Variational PCM results =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=20 =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0 (a.u.) =3D=A0=A0=A0=A0 -98.568013=20 =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 (a.u.= ) =3D=A0=A0=A0=A0 -98.569083 Total free energy in solution:=20 =A0with all non electrostatic terms=A0=A0=A0=A0=A0=A0 (a.u.) =3D=A0=A0=A0= =A0 -98.573228 --------------------------------------------------------------------=20 (Polarized solute)-Solvent=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 (kcal/= mol) =3D=A0=A0=A0=A0=A0 -3.27=20 --------------------------------------------------------------------=20 Cavitation energy=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0 (kcal/mol) =3D=A0=A0=A0=A0=A0=A0 5.34=20 Dispersion energy=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =A0=A0=A0=A0= =A0=A0=A0=A0(kcal/mol) =3D=A0=A0=A0=A0=A0 -3.08=20 Repulsion energy=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0 (kcal/mol) =3D=A0=A0=A0=A0=A0=A0 0.34=20 Total non electrostatic=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 = (kcal/mol) =3D=A0=A0=A0=A0=A0=A0 2.60 =A0 --------------------------------------------------------------------=20 =A0 Best regards, Sue =A0 --- On Mon, 10/31/11, Arne Dieckmann adieckma**googlemail.com wrote: > From: Arne Dieckmann adieckma**googlemail.com Subject: CCL:G: Solvent-corrected Gibbs free energies To: "L, Sue " Date: Monday, October 31, 2011, 12:48 PM Sent to CCL by: Arne Dieckmann [adieckma###googlemail.com] Hi Sue,=20 the two methods you are describing are exactly the same, as you are only ch= anging the order in which different quantities are added.=20 Cheers,=20 Arne On Oct 30, 2011, at 9:08 PM, Sue L chsue2004^^yahoo.com wrote: >=20 > Sent to CCL by: "Sue=A0 L" [chsue2004]_[yahoo.com] > Dear CCL users, >=20 > Could someone help me with the following question? >=20 > If I want to calculate the solvent-corrected Gibbs free energies of the m= olecules based on the gas-phase optimized geometry usinf gaussian 03. Which= of the following methods is more appropriate? >=20 >> From the vibrational frequency calculation of the gas-phase optimized st= ructure, I could obtain the thermal correction to Gibbs Free Energy >=20 >> From the single-point PCM calculation, I could obtain the total free ene= rgy in solution: with all non electrostatic terms as well as solvent-phase = electronic energies (The energy value associated with SCF(Done)) >=20 > (1) The solvent-corrected Gibbs free energies =3D the total free energy i= n solution + thermal correction to Gibbs Free Energy >=20 > Or >=20 > (2) The solvent-corrected Gibbs free energies =3D gas-phase Gibbs free en= ergies + (solvent-phase electronic energies=A0 - gas-phase electronic energ= ies) >=20 > Thank you very much for your kind help. >=20 > Best regards, > Sue>=20 > -=3D This is automatically added to each message by the mailing script =3D-=A0 =A0 =A0=A0 =A0 =A0Subscribe/Unsubscribe:=20 =A0 =A0 =A0Job: http://www.ccl.net/jobs=20=A0 =A0 =A0--130478739-893504848-1320070366=:1570 Content-Type: text/html; charset=iso-8859-1 Content-Transfer-Encoding: quoted-printable

Dear Arne,

Thanks for your re= ply. Sorry for the confusion.

Below is an example from the Gaussian manual. = For the output file in Gaussian 03, we could obtain

(1) Total free ene= rgy in solution: with all non electrostatic terms  

(2) Solvent-phase electroni= c energies, which is the val= ue associated with SCF(Done)

I am not sure which valu= e I should use if I include the thermal correction= to Gibbs free energy from t= he vibrational frequency calculation.

SCF Done:=   E(RHF) =3D  -98= .569083211     A.U. after    5 cycles

  &= nbsp;       Convg  =3D  = ;  0.4249D-05  &nbs= p;          -V/T =3D  2.0033

  &= nbsp;       S**2   =3D =   0.0000

-----------------------------------------------= ---------------------

Variational PCM results

=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D

<psi(f)|&n= bsp;  H   |p= si(f)>     &n= bsp;           (a.= u.) =3D     -9= 8.568013

<psi(f)|H+V(f)/2|psi(f)>         &nbs= p;      (a.u.) =3D     -98.569083

Total free energy in solution:

 <= /SPAN>with all non electrostatic terms&nb= sp;      (a.u.) =3D     -98.573228

-----------------------------------------------= ---------------------

(Polarized solute)-Solvent          &n= bsp;    (kcal/mol) =3D      -3.27

-----------------------------------------------= ---------------------

Cavitation energy            = ;            = (kcal/mol) =3D    &nb= sp;  5.34

Dispersion energy            = ;      &n= bsp;     (kcal/mol) =3D      -3.08

Repulsion energy            =              (kcal/mol) =3D   &nbs= p;   0.34

Total non electrostatic        &nb= sp;         (kcal/mol) =3D       2.60  

-----------------------------------------------= ---------------------

 

Best regards,

Sue

 =

--- On Mon, 10/31/11, Arne Dieckmann adieckma**goog= lemail.com <owner-chemistry*o*ccl.net> wrote:


From: Arne Dieckmann adieckma**googlemail.com <= ;owner-chemistry*o*ccl.net>
Subject: CCL:G: Solvent-corrected Gibbs fre= e energies
To: "L, Sue " <chsue2004*o*yahoo.com>
Date: Mo= nday, October 31, 2011, 12:48 PM


Sent to CCL by: Arne Dieckmann [adieckma###googl= email.com]
Hi Sue,

the two methods you are describing are exactl= y the same, as you are only changing the order in which different quantitie= s are added.


Cheers,
Arne


On Oct 30, 2011, at 9:= 08 PM, Sue L chsue2004^^yahoo.com wrote:

>
> Sent to CCL b= y: "Sue  L" [chsue2004]_[yahoo.com]
> Dear CCL users,
> > Could someone help me with the following question?
>
> = If I want to calculate the solvent-corrected Gibbs free energies of the mol= ecules based on the gas-phase optimized geometry usinf gaussian 03. Which o= f the following methods is more appropriate?
>
>> From the = vibrational frequency calculation of the gas-phase optimized structure, I c= ould obtain the thermal correction to Gibbs Free Energy
>
>>= ; From the single-point PCM calculation, I could obtain the total free energy in solution: with all non electrostatic terms as well as solvent-ph= ase electronic energies (The energy value associated with SCF(Done))
>= ;
> (1) The solvent-corrected Gibbs free energies =3D the total free= energy in solution + thermal correction to Gibbs Free Energy
>
&= gt; Or
>
> (2) The solvent-corrected Gibbs free energies =3D g= as-phase Gibbs free energies + (solvent-phase electronic energies  - g= as-phase electronic energies)
>
> Thank you very much for your= kind help.
>
> Best regards,
> Sue>
>

=

-=3D This is automatically added to each message by the mailing scr= ipt =3D-
To recover the email address of the author of the message, plea= se change
the strange characters on the top line to the *o* sign. You can = also
E-mail= to subscribers: CHEMISTRY*o*ccl.net or use:
&nbs= p;     http://www.ccl.net/cgi-bin/ccl/send_ccl_message
E-mail to administrators: CHEMISTRY-REQUEST*o*ccl.net or use
      http= ://www.ccl.net/cgi-bin/ccl/send_ccl_message

Subscribe/Unsubscrib= e:
      http://www.ccl.net/chemistry/sub_unsub.shtml<= BR>
Before posting, check wait time at: http://www.ccl.net

Job: http://www.ccl.net/jobs
Conferences: h= ttp://server.ccl.net/chemistry/announcements/conferences/

Search= Messages: http://www.ccl.net/chemistry/searchccl/index.shtml
    &= nbsp; http://ww= w.ccl.net/spammers.txt

RTFI: http://www.ccl.net/chemistry/a= boutccl/instructions/


--130478739-893504848-1320070366=:1570-- From owner-chemistry@ccl.net Mon Oct 31 11:16:01 2011 From: "Soren Eustis soreneustis#gmail.com" To: CCL Subject: CCL:G: excited state TDDFT Message-Id: <-45788-111031104823-18876-g8iCIXxTg7Rsgm+9z/6hTg++server.ccl.net> X-Original-From: Soren Eustis Content-Transfer-Encoding: 8bit Content-type: text/plain; charset="ISO-8859-1" Date: Mon, 31 Oct 2011 15:48:09 +0200 Mime-version: 1.0 Sent to CCL by: Soren Eustis [soreneustis{:}gmail.com] Marcus, I have seen this before. Unfortunately, it is generally not a good sign. Often this means that your excited state is not stable (i.e. bond dissociation), or your molecule is crossing to a lower potential energy surface. Two questions: 1) what are the few lowest excited state energies output by gaussian before it fails? 2) did you fully optimize this in the S0 state with the same functional and basis set? If not, that could be your issue. Soren Soren N. Eustis, Ph.D. ETH ­ Zürich Institute for Biogeochemistry and Pollutant Dynamics CHN F33 Universitätstrasse 16 8092 Zürich Switzerland +41 44 632 9348 (Office) +41 44 632 1438(Fax) soren-,-env.ethz.ch On 10/31/11 10:48 , "Markus Schütz schuhtib=-=physik.tu-berlin.de" wrote: > >Sent to CCL by: =?ISO-8859-15?Q?Markus_Sch=FCtz?= [schuhtib * >physik.tu-berlin.de] >Am 27.10.2011 19:05, schrieb Markus Schütz schuhtib!A!physik.tu-berlin.de: >> >> Sent to CCL by: =?ISO-8859-15?Q?Markus_Sch=FCtz?= >> [schuhtib::physik.tu-berlin.de] >> Hello, >> >> I tried to calculate the second excited state of adamantane cation >> (opt and freq) in TDDFT ( # TD(root=2,NStates=40) b3lyp/cc-pvtz opt >> sym=loose). Unfortunately the calculation ended with >> >> 'You need to solve for more vectors in order to follow this state.' >> >> So I set the keyword for NStates first to 10 then to 25 and finally >> also to 40, but the message is the same. >> I tried another way: From a cis calculation I wanted to get the force >> contants using them for the TDDFT calculation. But the cis calculation >> also ended with the message above (NStates=25). Is it useful to set >> NStates much higher or is there another way to do the TDDFT calculation? >> >> By the way, I also tried a cis calculation (# CIS=(Root=2, NStates=40) >> hf/cc-pvtz opt(calcFC) freq sym=loose). This delivers the message >> >> 'Tx not orthogonal to T.' >> >> I couldn't find any solution for this problem. >> >> Regards, >> Markus >> >Sorry, > >forgot to say I'm using Gaussian09. > >-- >Markus Schütz >Institut für Optik und Atomare Physik >AG Dopfer >Sekretariat EW 3-1 >Technische Universität Berlin >Hardenbergstraße 36 >10623 Berlin > >Tel +49 (0)30 314 29808 > >Raum EW 337> > From owner-chemistry@ccl.net Mon Oct 31 14:26:00 2011 From: "Arne Dieckmann adieckma(_)googlemail.com" To: CCL Subject: CCL:G: Solvent-corrected Gibbs free energies Message-Id: <-45789-111031142446-15736-zAf661SsH3X55gS09N0HhQ{}server.ccl.net> X-Original-From: Arne Dieckmann Content-Transfer-Encoding: 8bit Content-Type: text/plain; charset=iso-8859-1 Date: Mon, 31 Oct 2011 11:24:33 -0700 Mime-Version: 1.0 (Apple Message framework v1251.1) Sent to CCL by: Arne Dieckmann [adieckma]=[googlemail.com] Dear Sue, here is a link to the Gaussian 03 User Reference Guide answering your question: http://www.inc.bme.hu/common/g03_man/g_ur/k_scrf.htm You have to use the total free energy in solution with all non-electrostatic terms. Cheers, Arne - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Dr. Arne Dieckmann Houk Research Lab University of California, Los Angeles email: adieckma()googlemail.com On Oct 31, 2011, at 7:12 AM, Sue Lam chsue2004^^^yahoo.com wrote: > Dear Arne, > Thanks for your reply. Sorry for the confusion. > Below is an example from the Gaussian manual. For the output file in Gaussian 03, we could obtain > (1) Total free energy in solution: with all non electrostatic terms > (2) Solvent-phase electronic energies, which is the value associated with SCF(Done) > I am not sure which value I should use if I include the thermal correction to Gibbs free energy from the vibrational frequency calculation. > SCF Done: E(RHF) = -98.569083211 A.U. after 5 cycles > Convg = 0.4249D-05 -V/T = 2.0033 > S**2 = 0.0000 > -------------------------------------------------------------------- > Variational PCM results > ======================= > (a.u.) = -98.568013 > (a.u.) = -98.569083 > Total free energy in solution: > with all non electrostatic terms (a.u.) = -98.573228 > -------------------------------------------------------------------- > (Polarized solute)-Solvent (kcal/mol) = -3.27 > -------------------------------------------------------------------- > Cavitation energy (kcal/mol) = 5.34 > Dispersion energy (kcal/mol) = -3.08 > Repulsion energy (kcal/mol) = 0.34 > Total non electrostatic (kcal/mol) = 2.60 > -------------------------------------------------------------------- > > Best regards, > Sue > > > --- On Mon, 10/31/11, Arne Dieckmann adieckma**googlemail.com wrote: > > >> From: Arne Dieckmann adieckma**googlemail.com > Subject: CCL:G: Solvent-corrected Gibbs free energies > To: "L, Sue " > Date: Monday, October 31, 2011, 12:48 PM > > > > Sent to CCL by: Arne Dieckmann [adieckma###googlemail.com] > Hi Sue, > > the two methods you are describing are exactly the same, as you are only changing the order in which different quantities are added. > > > Cheers, > Arne > > > On Oct 30, 2011, at 9:08 PM, Sue L chsue2004^^yahoo.com wrote: > >> >> Sent to CCL by: "Sue L" [chsue2004]_[yahoo.com] >> Dear CCL users, >> >> Could someone help me with the following question? >> >> If I want to calculate the solvent-corrected Gibbs free energies of the molecules based on the gas-phase optimized geometry usinf gaussian 03. Which of the following methods is more appropriate? >> >>> From the vibrational frequency calculation of the gas-phase optimized structure, I could obtain the thermal correction to Gibbs Free Energy >> >>> From the single-point PCM calculation, I could obtain the total free energy in solution: with all non electrostatic terms as well as solvent-phase electronic energies (The energy value associated with SCF(Done)) >> >> (1) The solvent-corrected Gibbs free energies = the total free energy in solution + thermal correction to Gibbs Free Energy >> >> Or >> >> (2) The solvent-corrected Gibbs free energies = gas-phase Gibbs free energies + (solvent-phase electronic energies - gas-phase electronic energies) >> >> Thank you very much for your kind help. >> >> Best regards, >> Sue--130478739-893504848-1320070366=:1570 > Content-Type: text/html; charset=iso-8859-1 > Content-Transfer-Encoding: quoted-printable > >

Dear Arne, >

Thanks for your reply. Sorry for the confusion. >

Below is an example from the Gaussian manual. For the output file in Gaussian 03, we could obtain >

(1) Total free energy in solution: with all non electrostatic terms   >

(2) Solvent-phase electronic energies, which is the value associated with SCF(Done) >

I am not sure which value I should use if I include the thermal correction to Gibbs free energy from the vibrational frequency calculation. >

SCF Done:  E(RHF) =  -98.569083211     A.U. after    5 cycles >

          Convg  =    0.4249D-05             -V/T =  2.0033 >

          S**2   =   0.0000 >

-------------------------------------------------------------------- >

Variational PCM results >

======================= >

<psi(f)|   H   |psi(f)>                 (a.u.) =     -98.568013 >

<psi(f)|H+V(f)/2|psi(f)>                (a.u.) =     -98.569083 >

Total free energy in solution: >

 with all non electrostatic terms       (a.u.) =     -98.573228 >

-------------------------------------------------------------------- >

(Polarized solute)-Solvent               (kcal/mol) =      -3.27 >

-------------------------------------------------------------------- >

Cavitation energy                        (kcal/mol) =       5.34 >

Dispersion energy                        (kcal/mol) =      -3.08 >

Repulsion energy                         (kcal/mol) =       0.34 >

Total non electrostatic                  (kcal/mol) =       2.60   >

-------------------------------------------------------------------- >

  >

Best regards, >

Sue >

 

--- On Mon, 10/31/11, Arne Dieckmann adieckma**googlemail.com <owner-chemistry::ccl.net> wrote:
>


From: Arne Dieckmann adieckma**googlemail.com <owner-chemistry::ccl.net>
Subject: CCL:G: Solvent-corrected Gibbs free energies
To: "L, Sue " <chsue2004::yahoo.com>
Date: Monday, October 31, 2011, 12:48 PM

>

Sent to CCL by: Arne Dieckmann [adieckma###googlemail.com]
Hi Sue,

the two methods you are describing are exactly the same, as you are only changing the order in which different quantities are added.


Cheers,
Arne


On Oct 30, 2011, at 9:08 PM, Sue L chsue2004^^yahoo.com wrote:

>
> Sent to CCL by: "Sue  L" [chsue2004]_[yahoo.com]
> Dear CCL users,
>
> Could someone help me with the following question?
>
> If I want to calculate the solvent-corrected Gibbs free energies of the molecules based on the gas-phase optimized geometry usinf gaussian 03. Which of the following methods is more appropriate?
>
>> From the vibrational frequency calculation of the gas-phase optimized structure, I could obtain the thermal correction to Gibbs Free Energy
>
>> From the single-point PCM calculation, I could obtain the total free > energy in solution: with all non electrostatic terms as well as solvent-phase electronic energies (The energy value associated with SCF(Done))
>
> (1) The solvent-corrected Gibbs free energies = the total free energy in solution + thermal correction to Gibbs Free Energy
>
> Or
>
> (2) The solvent-corrected Gibbs free energies = gas-phase Gibbs free energies + (solvent-phase electronic energies  - gas-phase electronic energies)
>
> Thank you very much for your kind help.
>
> Best regards,
> Sue>
>


the strange characters on the top line to the :: sign. You can also
E-mail to subscribers: href="http://us.mc1205.mail.yahoo.com/mc/compose?to=CHEMISTRY::ccl.net" ymailto="mailto:CHEMISTRY::ccl.net">CHEMISTRY::ccl.net or use:
      http://www.ccl.net/cgi-bin/ccl/send_ccl_message

E-mail to administrators: CHEMISTRY-REQUEST::ccl.net or use
      http://www.ccl.net/cgi-bin/ccl/send_ccl_message
      http://www.ccl.net/chemistry/sub_unsub.shtml

Before posting, check wait time at: http://www.ccl.net

Job: target=_blank>http://www.ccl.net/jobs
Conferences: http://server.ccl.net/chemistry/announcements/conferences/

Search Messages: http://www.ccl.net/chemistry/searchccl/index.shtml
      http://www.ccl.net/spammers.txt

RTFI: http://www.ccl.net/chemistry/aboutccl/instructions/


From owner-chemistry@ccl.net Mon Oct 31 16:57:00 2011 From: "Muhammed Buyuktemiz mbtemiz3#,#gmail.com" To: CCL Subject: CCL:G: Exchange and coulomb energies in CASSCF Message-Id: <-45790-111031161550-16214-9P5A8PsTgh2xd7Zn/liw3Q__server.ccl.net> X-Original-From: "Muhammed Buyuktemiz" Date: Mon, 31 Oct 2011 16:15:46 -0400 Sent to CCL by: "Muhammed Buyuktemiz" [mbtemiz3:gmail.com] Hello, I am trying to print out exchange and coulomb energies for a casscf calculation. In Gaussian, this can be done for DFT calculations by supplying iop(5/33=1) option, however this has no effect in cas. Is there anyway to print these in gaussian? or in any software? Thank you. From owner-chemistry@ccl.net Mon Oct 31 17:31:00 2011 From: "Andreas Klamt klamt[#]cosmologic.de" To: CCL Subject: CCL:G: Solvent-corrected Gibbs free energies Message-Id: <-45791-111031165653-17095-YSQxUxpm3s55GYyHw/saDg#server.ccl.net> X-Original-From: Andreas Klamt Content-Transfer-Encoding: 7bit Content-Type: text/html; charset=iso-8859-1 Date: Mon, 31 Oct 2011 21:56:41 +0100 MIME-Version: 1.0 Sent to CCL by: Andreas Klamt [klamt[-]cosmologic.de] Sear Sue,

perhaps have a look at
Ho J., Klamt A., Coote M.L. Comment on the correct use of continuum solvent models. J. Phys. Chem. A (2010), 114(51), 13442–13444

This exactly handles your questions.

Best regards

Andreas

Am 31.10.2011 19:24, schrieb Arne Dieckmann adieckma(_)googlemail.com:
Sent to CCL by: Arne Dieckmann [adieckma]=[googlemail.com]
Dear Sue, 

here is a link to the Gaussian 03 User Reference Guide answering your question: 

http://www.inc.bme.hu/common/g03_man/g_ur/k_scrf.htm

You have to use the total free energy in solution with all non-electrostatic terms. 


Cheers,
Arne


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
Dr. Arne Dieckmann
Houk Research Lab
University of California, Los Angeles 
email: adieckma[A]googlemail.com


On Oct 31, 2011, at 7:12 AM, Sue Lam chsue2004^^^yahoo.com wrote:

Dear Arne,
Thanks for your reply. Sorry for the confusion.
Below is an example from the Gaussian manual. For the output file in Gaussian 03, we could obtain
(1) Total free energy in solution: with all non electrostatic terms  
(2) Solvent-phase electronic energies, which is the value associated with SCF(Done)
I am not sure which value I should use if I include the thermal correction to Gibbs free energy from the vibrational frequency calculation.
SCF Done:  E(RHF) =  -98.569083211     A.U. after    5 cycles 
          Convg  =    0.4249D-05             -V/T =  2.0033 
          S**2   =   0.0000 
-------------------------------------------------------------------- 
Variational PCM results
======================= 
<psi(f)|   H   |psi(f)>                 (a.u.) =     -98.568013 
<psi(f)|H+V(f)/2|psi(f)>                (a.u.) =     -98.569083
Total free energy in solution: 
 with all non electrostatic terms       (a.u.) =     -98.573228
-------------------------------------------------------------------- 
(Polarized solute)-Solvent               (kcal/mol) =      -3.27 
-------------------------------------------------------------------- 
Cavitation energy                        (kcal/mol) =       5.34 
Dispersion energy                        (kcal/mol) =      -3.08 
Repulsion energy                         (kcal/mol) =       0.34 
Total non electrostatic                  (kcal/mol) =       2.60  
-------------------------------------------------------------------- 
 
Best regards,
Sue
 

--- On Mon, 10/31/11, Arne Dieckmann adieckma**googlemail.com <owner-chemistry::ccl.net> wrote:


From: Arne Dieckmann adieckma**googlemail.com <owner-chemistry::ccl.net>
Subject: CCL:G: Solvent-corrected Gibbs free energies
To: "L, Sue " <chsue2004::yahoo.com>
Date: Monday, October 31, 2011, 12:48 PM



Sent to CCL by: Arne Dieckmann [adieckma###googlemail.com]
Hi Sue, 

the two methods you are describing are exactly the same, as you are only changing the order in which different quantities are added. 


Cheers, 
Arne


On Oct 30, 2011, at 9:08 PM, Sue L chsue2004^^yahoo.com wrote:

Sent to CCL by: "Sue  L" [chsue2004]_[yahoo.com]
Dear CCL users,

Could someone help me with the following question?

If I want to calculate the solvent-corrected Gibbs free energies of the molecules based on the gas-phase optimized geometry usinf gaussian 03. Which of the following methods is more appropriate?

From the vibrational frequency calculation of the gas-phase optimized structure, I could obtain the thermal correction to Gibbs Free Energy

          
From the single-point PCM calculation, I could obtain the total free energy in solution: with all non electrostatic terms as well as solvent-phase electronic energies (The energy value associated with SCF(Done))
(1) The solvent-corrected Gibbs free energies = the total free energy in solution + thermal correction to Gibbs Free Energy

Or

(2) The solvent-corrected Gibbs free energies = gas-phase Gibbs free energies + (solvent-phase electronic energies  - gas-phase electronic energies)

Thank you very much for your kind help.

Best regards,
Sue--130478739-893504848-1320070366=:1570
Content-Type: text/html; charset=iso-8859-1
Content-Transfer-Encoding: quoted-printable

<table cellspacing="0" cellpadding="0" border="0" ><tr><td valign="top" style="font: inherit;"><P style="MARGIN: 0in 0in 10pt" class=MsoNormal><SPAN style="mso-fareast-language: ZH-HK"><FONT size=3><FONT face=Calibri>Dear Arne,<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" /><o:p></o:p></FONT></FONT></SPAN></DIV>
<P style="MARGIN: 0in 0in 10pt" class=MsoNormal><SPAN style="mso-fareast-language: ZH-HK"><FONT size=3><FONT face=Calibri>Thanks for your reply. Sorry for the confusion.<o:p></o:p></FONT></FONT></SPAN></DIV>
<P style="MARGIN: 0in 0in 10pt" class=MsoNormal><SPAN style="LINE-HEIGHT: 115%; FONT-FAMILY: 'Arial','sans-serif'; FONT-SIZE: 10pt; mso-fareast-language: ZH-HK">Below is an example from the Gaussian manual. </SPAN><SPAN style="mso-fareast-language: ZH-HK"><FONT size=3><FONT face=Calibri>For the output file in Gaussian 03, we could obtain<o:p></o:p></FONT></FONT></SPAN></DIV>
<P style="MARGIN: 0in 0in 10pt" class=MsoNormal><SPAN style="mso-fareast-language: ZH-HK"><FONT size=3><FONT face=Calibri>(1) Total free energy in solution: with all non electrostatic terms&nbsp;<SPAN style="mso-spacerun: yes">&nbsp;</SPAN></FONT></FONT></SPAN></DIV>
<P style="MARGIN: 0in 0in 10pt" class=MsoNormal><SPAN style="mso-fareast-language: ZH-HK"><FONT size=3 face=Calibri>(2) </FONT></SPAN><SPAN style="LINE-HEIGHT: 115%; FONT-FAMILY: 'Arial','sans-serif'; FONT-SIZE: 10pt; mso-fareast-language: ZH-HK">S</SPAN><SPAN style="LINE-HEIGHT: 115%; FONT-FAMILY: 'Arial','sans-serif'; FONT-SIZE: 10pt">olvent-phase electronic energies</SPAN><SPAN style="LINE-HEIGHT: 115%; FONT-FAMILY: 'Arial','sans-serif'; FONT-SIZE: 10pt; mso-fareast-language: ZH-HK">, which is the value </SPAN><SPAN style="LINE-HEIGHT: 115%; FONT-FAMILY: 'Arial','sans-serif'; FONT-SIZE: 10pt">associated with SCF(Done</SPAN><SPAN style="LINE-HEIGHT: 115%; FONT-FAMILY: 'Arial','sans-serif'; FONT-SIZE: 10pt; mso-fareast-language: ZH-HK">)<o:p></o:p></SPAN></DIV>
<P style="MARGIN: 0in 0in 10pt" class=MsoNormal><SPAN style="mso-fareast-language: ZH-HK"><FONT size=3 face=Calibri>I am not sure which value I should use if I include the </FONT></SPAN><SPAN style="LINE-HEIGHT: 115%; FONT-FAMILY: 'Arial','sans-serif'; FONT-SIZE: 10pt">thermal correction to Gibbs free energy</SPAN><SPAN style="LINE-HEIGHT: 115%; FONT-FAMILY: 'Arial','sans-serif'; FONT-SIZE: 10pt; mso-fareast-language: ZH-HK"> from the </SPAN><SPAN style="LINE-HEIGHT: 115%; FONT-FAMILY: 'Arial','sans-serif'; FONT-SIZE: 10pt">vibrational frequency calculation</SPAN><SPAN style="LINE-HEIGHT: 115%; FONT-FAMILY: 'Arial','sans-serif'; FONT-SIZE: 10pt; mso-fareast-language: ZH-HK">.<o:p></o:p></SPAN></DIV>
<P style="LINE-HEIGHT: normal; MARGIN: 0in 0in 0pt; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt" class=MsoNormal><B><SPAN style="FONT-FAMILY: 'Courier New'; COLOR: black; FONT-SIZE: 10pt; mso-fareast-font-family: 'Times New Roman'">SCF Done:<SPAN style="mso-spacerun: yes">&nbsp; </SPAN>E(RHF) =<SPAN style="mso-spacerun: yes">&nbsp; </SPAN>-98.569083211</SPAN></B><SPAN style="FONT-FAMILY: 'Courier New'; COLOR: black; FONT-SIZE: 10pt; mso-fareast-font-family: 'Times New Roman'"><SPAN style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>A.U. after<SPAN style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp; </SPAN>5 cycles <o:p></o:p></SPAN></DIV>
<P style="LINE-HEIGHT: normal; MARGIN: 0in 0in 0pt; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt" class=MsoNormal><SPAN style="FONT-FAMILY: 'Courier New'; COLOR: black; FONT-SIZE: 10pt; mso-fareast-font-family: 'Times New Roman'"><SPAN style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>Convg<SPAN style="mso-spacerun: yes">&nbsp; </SPAN>=<SPAN style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp; </SPAN>0.4249D-05<SPAN style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>-V/T =<SPAN style="mso-spacerun: yes">&nbsp; </SPAN>2.0033 <o:p></o:p></SPAN></DIV>
<P style="LINE-HEIGHT: normal; MARGIN: 0in 0in 0pt; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt" class=MsoNormal><SPAN style="FONT-FAMILY: 'Courier New'; COLOR: black; FONT-SIZE: 10pt; mso-fareast-font-family: 'Times New Roman'"><SPAN style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>S**2<SPAN style="mso-spacerun: yes">&nbsp;&nbsp; </SPAN>=<SPAN style="mso-spacerun: yes">&nbsp;&nbsp; </SPAN>0.0000 <o:p></o:p></SPAN></DIV>
<P style="LINE-HEIGHT: normal; MARGIN: 0in 0in 0pt; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt" class=MsoNormal><SPAN style="FONT-FAMILY: 'Courier New'; COLOR: black; FONT-SIZE: 10pt; mso-fareast-font-family: 'Times New Roman'">-------------------------------------------------------------------- <o:p></o:p></SPAN></DIV>
<P style="LINE-HEIGHT: normal; MARGIN: 0in 0in 0pt; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt" class=MsoNormal><SPAN style="FONT-FAMILY: 'Courier New'; COLOR: black; FONT-SIZE: 10pt; mso-fareast-font-family: 'Times New Roman'">Variational PCM results<o:p></o:p></SPAN></DIV>
<P style="LINE-HEIGHT: normal; MARGIN: 0in 0in 0pt; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt" class=MsoNormal><SPAN style="FONT-FAMILY: 'Courier New'; COLOR: black; FONT-SIZE: 10pt; mso-fareast-font-family: 'Times New Roman'">======================= <o:p></o:p></SPAN></DIV>
<P style="LINE-HEIGHT: normal; MARGIN: 0in 0in 0pt; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt" class=MsoNormal><SPAN style="FONT-FAMILY: 'Courier New'; COLOR: black; FONT-SIZE: 10pt; mso-fareast-font-family: 'Times New Roman'">&lt;psi(f)|<SPAN style="mso-spacerun: yes">&nbsp;&nbsp; </SPAN>H<SPAN style="mso-spacerun: yes">&nbsp;&nbsp; </SPAN>|psi(f)&gt;<SPAN style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>(a.u.) =<SPAN style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>-98.568013 <o:p></o:p></SPAN></DIV>
<P style="LINE-HEIGHT: normal; MARGIN: 0in 0in 0pt; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt" class=MsoNormal><SPAN style="FONT-FAMILY: 'Courier New'; COLOR: black; FONT-SIZE: 10pt; mso-fareast-font-family: 'Times New Roman'">&lt;psi(f)|H+V(f)/2|psi(f)&gt;<SPAN style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>(a.u.) =<SPAN style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>-98.569083<B><o:p></o:p></B></SPAN></DIV>
<P style="LINE-HEIGHT: normal; MARGIN: 0in 0in 0pt; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt" class=MsoNormal><B><SPAN style="FONT-FAMILY: 'Courier New'; COLOR: #003399; FONT-SIZE: 10pt; mso-fareast-font-family: 'Times New Roman'">Total free energy in solution: <o:p></o:p></SPAN></B></DIV>
<P style="LINE-HEIGHT: normal; MARGIN: 0in 0in 0pt; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt" class=MsoNormal><B><SPAN style="FONT-FAMILY: 'Courier New'; COLOR: #003399; FONT-SIZE: 10pt; mso-fareast-font-family: 'Times New Roman'"><SPAN style="mso-spacerun: yes">&nbsp;</SPAN>with all non electrostatic terms<SPAN style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>(a.u.) =<SPAN style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>-98.573228</SPAN></B><B style="mso-bidi-font-weight: normal"><SPAN style="FONT-FAMILY: 'Courier New'; COLOR: black; FONT-SIZE: 10pt; mso-fareast-font-family: 'Times New Roman'"><o:p></o:p></SPAN></B></DIV>
<P style="LINE-HEIGHT: normal; MARGIN: 0in 0in 0pt; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt" class=MsoNormal><SPAN style="FONT-FAMILY: 'Courier New'; COLOR: black; FONT-SIZE: 10pt; mso-fareast-font-family: 'Times New Roman'">-------------------------------------------------------------------- <o:p></o:p></SPAN></DIV>
<P style="LINE-HEIGHT: normal; MARGIN: 0in 0in 0pt; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt" class=MsoNormal><SPAN style="FONT-FAMILY: 'Courier New'; COLOR: black; FONT-SIZE: 10pt; mso-fareast-font-family: 'Times New Roman'">(Polarized solute)-Solvent<SPAN style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>(kcal/mol) =<SPAN style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>-3.27 <o:p></o:p></SPAN></DIV>
<P style="LINE-HEIGHT: normal; MARGIN: 0in 0in 0pt; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt" class=MsoNormal><SPAN style="FONT-FAMILY: 'Courier New'; COLOR: black; FONT-SIZE: 10pt; mso-fareast-font-family: 'Times New Roman'">-------------------------------------------------------------------- <o:p></o:p></SPAN></DIV>
<P style="LINE-HEIGHT: normal; MARGIN: 0in 0in 0pt; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt" class=MsoNormal><SPAN style="FONT-FAMILY: 'Courier New'; COLOR: black; FONT-SIZE: 10pt; mso-fareast-font-family: 'Times New Roman'">Cavitation energy<SPAN style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>(kcal/mol) =<SPAN style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>5.34 <o:p></o:p></SPAN></DIV>
<P style="LINE-HEIGHT: normal; MARGIN: 0in 0in 0pt; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt" class=MsoNormal><SPAN style="FONT-FAMILY: 'Courier New'; COLOR: black; FONT-SIZE: 10pt; mso-fareast-font-family: 'Times New Roman'">Dispersion energy<SPAN style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN><SPAN style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</SPAN>(kcal/mol) =<SPAN style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>-3.08 <o:p></o:p></SPAN></DIV>
<P style="LINE-HEIGHT: normal; MARGIN: 0in 0in 0pt; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt" class=MsoNormal><SPAN style="FONT-FAMILY: 'Courier New'; COLOR: black; FONT-SIZE: 10pt; mso-fareast-font-family: 'Times New Roman'">Repulsion energy<SPAN style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>(kcal/mol) =<SPAN style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>0.34 <B><o:p></o:p></B></SPAN></DIV>
<P style="LINE-HEIGHT: normal; MARGIN: 0in 0in 0pt; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt" class=MsoNormal><SPAN style="FONT-FAMILY: 'Courier New'; FONT-SIZE: 10pt; mso-fareast-font-family: 'Times New Roman'; mso-bidi-font-weight: bold">Total non electrostatic<SPAN style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>(kcal/mol) =<SPAN style="mso-spacerun: yes">&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; </SPAN>2.60 </SPAN><SPAN style="FONT-FAMILY: 'Courier New'; FONT-SIZE: 10pt; mso-fareast-font-family: 'Times New Roman'"><SPAN style="mso-spacerun: yes">&nbsp;</SPAN><o:p></o:p></SPAN></DIV>
<P style="LINE-HEIGHT: normal; MARGIN: 0in 0in 0pt; tab-stops: 45.8pt 91.6pt 137.4pt 183.2pt 229.0pt 274.8pt 320.6pt 366.4pt 412.2pt 458.0pt 503.8pt 549.6pt 595.4pt 641.2pt 687.0pt 732.8pt" class=MsoNormal><SPAN style="FONT-FAMILY: 'Courier New'; COLOR: black; FONT-SIZE: 10pt; mso-fareast-font-family: 'Times New Roman'">-------------------------------------------------------------------- <o:p></o:p></SPAN></DIV>
<P style="MARGIN: 0in 0in 10pt" class=MsoNormal><SPAN style="LINE-HEIGHT: 115%; FONT-FAMILY: 'Arial','sans-serif'; FONT-SIZE: 10pt; mso-fareast-language: ZH-HK"><o:p>&nbsp;</o:p></SPAN></DIV>
<P style="MARGIN: 0in 0in 10pt" class=MsoNormal><SPAN style="LINE-HEIGHT: 115%; FONT-FAMILY: 'Arial','sans-serif'; FONT-SIZE: 10pt; mso-fareast-language: ZH-HK">Best regards,<o:p></o:p></SPAN></DIV>
<P style="MARGIN: 0in 0in 10pt" class=MsoNormal><SPAN style="LINE-HEIGHT: 115%; FONT-FAMILY: 'Arial','sans-serif'; FONT-SIZE: 10pt; mso-fareast-language: ZH-HK">Sue<o:p></o:p></SPAN></DIV>
<P style="MARGIN: 0in 0in 10pt" class=MsoNormal><SPAN style="mso-fareast-language: ZH-HK"><o:p><FONT size=3 face=Calibri>&nbsp;</FONT></o:p></SPAN></DIV><BR><BR>--- On <B>Mon, 10/31/11, Arne Dieckmann adieckma**googlemail.com <I>&lt;owner-chemistry::ccl.net&gt;</I></B> wrote:<BR>
<BLOCKQUOTE style="BORDER-LEFT: rgb(16,16,255) 2px solid; PADDING-LEFT: 5px; MARGIN-LEFT: 5px"><BR>From: Arne Dieckmann adieckma**googlemail.com &lt;owner-chemistry::ccl.net&gt;<BR>Subject: CCL:G: Solvent-corrected Gibbs free energies<BR>To: "L, Sue " &lt;chsue2004::yahoo.com&gt;<BR>Date: Monday, October 31, 2011, 12:48 PM<BR><BR>
<DIV class=plainMail><BR>Sent to CCL by: Arne Dieckmann [adieckma###googlemail.com]<BR>Hi Sue, <BR><BR>the two methods you are describing are exactly the same, as you are only changing the order in which different quantities are added. <BR><BR><BR>Cheers, <BR>Arne<BR><BR><BR>On Oct 30, 2011, at 9:08 PM, Sue L chsue2004^^yahoo.com wrote:<BR><BR>&gt; <BR>&gt; Sent to CCL by: "Sue&nbsp; L" [chsue2004]_[yahoo.com]<BR>&gt; Dear CCL users,<BR>&gt; <BR>&gt; Could someone help me with the following question?<BR>&gt; <BR>&gt; If I want to calculate the solvent-corrected Gibbs free energies of the molecules based on the gas-phase optimized geometry usinf gaussian 03. Which of the following methods is more appropriate?<BR>&gt; <BR>&gt;&gt; From the vibrational frequency calculation of the gas-phase optimized stru
cture, I could obtain the thermal correction to Gibbs Free Energy<BR>&gt; <BR>&gt;&gt; From the single-point PCM calculation, I could obtain the total free
energy in solution: with all non electrostatic terms as well as solvent-phase electronic energies (The energy value associated with SCF(Done))<BR>&gt; <BR>&gt; (1) The solvent-corrected Gibbs free energies = the total free energy in solution + thermal correction to Gibbs Free Energy<BR>&gt; <BR>&gt; Or<BR>&gt; <BR>&gt; (2) The solvent-corrected Gibbs free energies = gas-phase Gibbs free energies + (solvent-phase electronic energies&nbsp; - gas-phase electronic energies)<BR>&gt; <BR>&gt; Thank you very much for your kind help.<BR>&gt; <BR>&gt; Best regards,<BR>&gt; Sue&gt; <BR>&gt;<BR><BR><BR><BR<BR<BR>the strange characters on the top line to the :: sign. You can also<BR<BR><BR>E-mail to subscribers: <A
href="http://us.mc1205.mail.yahoo.com/mc/compose?to=CHEMISTRY::ccl.net" ymailto="mailto:CHEMISTRY::ccl.net">CHEMISTRY::ccl.net</A> or use:<BR>&nbsp; &nbsp; &nbsp; <A href="http://www.ccl.net/cgi-bin/ccl/send_ccl_message" target=_blank>http://www.ccl.net/cgi-bin/ccl/send_ccl_message</A><BR><BR>E-mail to administrators: <A href="http://us.mc1205.mail.yahoo.com/mc/compose?to=CHEMISTRY-REQUEST::ccl.net" ymailto="mailto:CHEMISTRY-REQUEST::ccl.net">CHEMISTRY-REQUEST::ccl.net</A> or use<BR>&nbsp; &nbsp; &nbsp; <A href="http://www.ccl.net/cgi-bin/ccl/send_ccl_message" target=_blank>http://www.ccl.net/cgi-bin/ccl/send_ccl_message</A><BR><BR<BR>&nbsp; &nbsp; &nbsp; <A href="http://www.ccl.net/chemistry/sub_unsub.shtml" target=_blank>http://www.ccl.net/chemistry/sub_unsub.shtml</A><BR><BR>Before posting, check wait time at: <A href="http://www.ccl.net
/" target=_blank>http://www.ccl.net</A><BR><BR>Job: <A href="http://www.ccl.net/jobs"
target=_blank>http://www.ccl.net/jobs</A> <BR>Conferences: <A href="http://server.ccl.net/chemistry/announcements/conferences/" target=_blank>http://server.ccl.net/chemistry/announcements/conferences/</A><BR><BR>Search Messages: <A href="http://www.ccl.net/chemistry/searchccl/index.shtml" target=_blank>http://www.ccl.net/chemistry/searchccl/index.shtml</A><BR><BR<BR>&nbsp; &nbsp; &nbsp; <A href="http://www.ccl.net/spammers.txt" target=_blank>http://www.ccl.net/spammers.txt</A><BR><BR>RTFI: <A href="http://www.ccl.net/chemistry/aboutccl/instructions/" target=_blank>http://www.ccl.net/chemistry/aboutccl/instructions/</A><BR><BR><BR></DIV></BLOCKQUOTE></td></tr></table>


-- 
PD. Dr. Andreas Klamt
CEO / Geschäftsführer
COSMOlogic GmbH & Co. KG
Burscheider Strasse 515
D-51381 Leverkusen, Germany

phone  	+49-2171-731681
fax    	+49-2171-731689
e-mail 	klamt#cosmologic.de
web    	www.cosmologic.de

HRA 20653 Amtsgericht Koeln, GF: Dr. Andreas Klamt
Komplementaer: COSMOlogic Verwaltungs GmbH
HRB 49501 Amtsgericht Koeln, GF: Dr. Andreas Klamt