From owner-chemistry@ccl.net Fri Feb 10 09:04:01 2012 From: "Saman Mandegar mandegar_saman]~[yahoo.com" To: CCL Subject: CCL: differenence between energy gap in DFT and HF Message-Id: <-46278-120210090209-21817-AreCK9YjsV+Rt9KGX3AzSg(!)server.ccl.net> X-Original-From: "Saman Mandegar" Date: Fri, 10 Feb 2012 09:02:08 -0500 Sent to CCL by: "Saman Mandegar" [mandegar_saman ~~ yahoo.com] Dear ALl, I would like to generate the orbitals for using in a CASSCF calculation. I I have read following statement. but I am not pretty sure I understand it fully. and what is the difference between KS orbitals an HF and which one is better to use as initial orbitals for CASSCF calculations? "The orbital energy differences in Kohn Sham are more nearly like excitation energies which the equivalent quantities in Hartree Fock correspond to the electron detachment/attachment. This is why DFT is almost invariably better that Hartree Fock for generating the orbital for using in the active space in CASSCF." I would be very happy if any body could explain this in details. Many thanks for your comments in advance. Saman From owner-chemistry@ccl.net Fri Feb 10 09:55:00 2012 From: "Jens Spanget-Larsen spanget__ruc.dk" To: CCL Subject: CCL:G: Frequency in internal coordinate Message-Id: <-46279-120210042400-14180-SBgfL4AAwvdLnfLZmnNIzQ|,|server.ccl.net> X-Original-From: Jens Spanget-Larsen Content-Type: multipart/alternative; boundary="------------090205080100020505070108" Date: Fri, 10 Feb 2012 10:23:50 +0100 MIME-Version: 1.0 Sent to CCL by: Jens Spanget-Larsen [spanget[*]ruc.dk] This is a multi-part message in MIME format. --------------090205080100020505070108 Content-Type: text/plain; charset=ISO-8859-1; format=flowed Content-Transfer-Encoding: 7bit Dear Partha, I enclose an example of a G09 run on H2O with freq(internal). As you see in the part of the output listed below, you get an analysis of the three vibrational modes in terms of internal coordinates (nuclear distances and angle) and percentage contributions. Yours, Jens >--< ****************************************** Gaussian 09: IA32W-G09RevB.01 12-Aug-2010 10-Feb-2012 ****************************************** ------------------------------ #T B3LYP/6-31G* freq(internal) ------------------------------ ---------- Water, H2O ---------- O 0 0. 0. 0.08212 H 0 0. 0.76156 -0.51661 H 0 0. -0.76156 -0.51661 ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 0.9687 calculate D2E/DX2 analytically ! ! R2 R(1,3) 0.9687 calculate D2E/DX2 analytically ! ! A1 A(2,1,3) 103.6519 calculate D2E/DX2 analytically ! -------------------------------------------------------------------------------- Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 8 0 0.000000 0.000000 0.119746 2 1 0 0.000000 0.761558 -0.478983 3 1 0 0.000000 -0.761558 -0.478983 --------------------------------------------------------------------- Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering activities (A**4/AMU), depolarization ratios for plane and unpolarized incident light, reduced masses (AMU), force constants (mDyne/A), and normal coordinates: 1 2 3 A1 A1 B2 Frequencies -- 1713.0841 3727.4759 3849.5164 Red. masses -- 1.0825 1.0454 1.0810 Frc consts -- 1.8717 8.5574 9.4383 IR Inten -- 75.7872 1.6946 19.3828 Atom AN X Y Z X Y Z X Y Z 1 8 0.00 0.00 0.07 0.00 0.00 0.05 0.00 0.07 0.00 2 1 0.00 -0.43 -0.56 0.00 0.58 -0.40 0.00 -0.55 0.44 3 1 0.00 0.43 -0.56 0.00 -0.58 -0.40 0.00 -0.55 -0.44 ---------------------------- ! Normal Mode 1 ! -------------------------- -------------------------- ! Name Definition Value Relative Weight (%) ! -------------------------------------------------------------------------------- ! R1 R(1,2) 0.0527 5.6 ! ! R2 R(1,3) 0.0527 5.6 ! ! A1 A(2,1,3) -0.8311 88.7 ! -------------------------------------------------------------------------------- ---------------------------- ! Normal Mode 2 ! -------------------------- -------------------------- ! Name Definition Value Relative Weight (%) ! -------------------------------------------------------------------------------- ! R1 R(1,2) 0.7355 49.7 ! ! R2 R(1,3) 0.7355 49.7 ! -------------------------------------------------------------------------------- ---------------------------- ! Normal Mode 3 ! -------------------------- -------------------------- ! Name Definition Value Relative Weight (%) ! -------------------------------------------------------------------------------- ! R1 R(1,2) -0.7603 50.0 ! ! R2 R(1,3) 0.7603 50.0 ! -------------------------------------------------------------------------------- Job cpu time: 0 days 0 hours 0 minutes 4.0 seconds. Normal termination of Gaussian 09 at Fri Feb 10 10:20:44 2012. ------------------------------------------------------ JENS SPANGET-LARSEN Office: +45 4674 2710 Dept. of Science (18.1) Fax: +45 4674 3011 Roskilde University Mobile: +45 2320 6246 P.O.Box 260 E-Mail: spanget/./ruc.dk DK-4000 Roskilde, Denmark http://www.ruc.dk/~spanget ------------------------------------------------------ On 2/9/2012 18:42, partha kundu partha1kundu(a)gmail.com wrote: > Dear All, > I want to calculate the freqency in G09 in terms of internal > coordinates so that I can get the contribution of each motion in terms > of percentage.I know I have to use ModRedundant and IntModes keyword, > but after several trial I failed to do so. Can anybody help me in > doing so with an example of a small molecule. > My inputs are: > %chk=z.chk > # opt=ModRedundant hf/3-21g > Title Card Required > 0 1 > Mol. Spec. > & > %chk=z.chk > # freq=(IntModes,raman) hf/3-21g geom=check > Title Card Required > 0 1 > > Partha ======= Email scanned by PC Tools - No viruses or spyware found. (Email Guard: 9.0.0.888, Virus/Spyware Database: 6.19230) http://www.pctools.com/ ======= --------------090205080100020505070108 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit Dear Partha,
I enclose an example of a G09 run on H2O with freq(internal). As you see in the part of the output listed below, you get an analysis of the three vibrational modes in terms of internal coordinates (nuclear distances and angle) and percentage contributions.
Yours, Jens >--<
 
 ******************************************
 Gaussian 09:  IA32W-G09RevB.01 12-Aug-2010
                10-Feb-2012
 ******************************************
 ------------------------------
 #T B3LYP/6-31G* freq(internal)
 ------------------------------
 ----------
 Water, H2O
 ----------
 O                    0     0.        0.        0.08212
 H                    0     0.        0.76156  -0.51661
 H                    0     0.       -0.76156  -0.51661

                           ----------------------------
                           !    Initial Parameters    !
                           ! (Angstroms and Degrees)  !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Derivative Info.                !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  0.9687         calculate D2E/DX2 analytically  !
 ! R2    R(1,3)                  0.9687         calculate D2E/DX2 analytically  !
 ! A1    A(2,1,3)              103.6519         calculate D2E/DX2 analytically  !
 --------------------------------------------------------------------------------

                         Standard orientation:                        
 ---------------------------------------------------------------------
 Center     Atomic      Atomic             Coordinates (Angstroms)
 Number     Number       Type             X           Y           Z
 ---------------------------------------------------------------------
      1          8           0        0.000000    0.000000    0.119746
      2          1           0        0.000000    0.761558   -0.478983
      3          1           0        0.000000   -0.761558   -0.478983
 ---------------------------------------------------------------------

 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering
 activities (A**4/AMU), depolarization ratios for plane and unpolarized
 incident light, reduced masses (AMU), force constants (mDyne/A),
 and normal coordinates:
                     1                      2                      3
                    A1                     A1                     B2
 Frequencies --  1713.0841              3727.4759              3849.5164
 Red. masses --     1.0825                 1.0454                 1.0810
 Frc consts  --     1.8717                 8.5574                 9.4383
 IR Inten    --    75.7872                 1.6946                19.3828
  Atom  AN      X      Y      Z        X      Y      Z        X      Y      Z
     1   8     0.00   0.00   0.07     0.00   0.00   0.05     0.00   0.07   0.00
     2   1     0.00  -0.43  -0.56     0.00   0.58  -0.40     0.00  -0.55   0.44
     3   1     0.00   0.43  -0.56     0.00  -0.58  -0.40     0.00  -0.55  -0.44
 
                           ----------------------------
                           ! Normal Mode     1        !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Relative Weight (%)             !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  0.0527                  5.6                    !
 ! R2    R(1,3)                  0.0527                  5.6                    !
 ! A1    A(2,1,3)               -0.8311                 88.7                    !
 --------------------------------------------------------------------------------
                           ----------------------------
                           ! Normal Mode     2        !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Relative Weight (%)             !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                  0.7355                 49.7                    !
 ! R2    R(1,3)                  0.7355                 49.7                    !
 --------------------------------------------------------------------------------
                           ----------------------------
                           ! Normal Mode     3        !
 --------------------------                            --------------------------
 ! Name  Definition              Value          Relative Weight (%)             !
 --------------------------------------------------------------------------------
 ! R1    R(1,2)                 -0.7603                 50.0                    !
 ! R2    R(1,3)                  0.7603                 50.0                    !
 --------------------------------------------------------------------------------

 Job cpu time:  0 days  0 hours  0 minutes  4.0 seconds.
 Normal termination of Gaussian 09 at Fri Feb 10 10:20:44 2012.

  ------------------------------------------------------
  JENS SPANGET-LARSEN         Office:      +45 4674 2710
  Dept. of Science (18.1)     Fax:         +45 4674 3011
  Roskilde University         Mobile:      +45 2320 6246
  P.O.Box 260                 E-Mail:     spanget/./ruc.dk
  DK-4000 Roskilde, Denmark   http://www.ruc.dk/~spanget
  ------------------------------------------------------

On 2/9/2012 18:42, partha kundu partha1kundu(a)gmail.com wrote:
Dear All,
I want to calculate the freqency in G09 in terms of  internal coordinates so that I can get the contribution of each motion in terms of percentage.I know I have to use ModRedundant and IntModes keyword, but after several trial I failed to do so. Can anybody help me in doing so with an example of a small molecule.
My inputs are:
%chk=z.chk
# opt=ModRedundant  hf/3-21g
 
Title Card Required
 
0 1
 
Mol. Spec.
 
 
&
 
%chk=z.chk
# freq=(IntModes,raman) hf/3-21g geom=check
Title Card Required
0 1

Partha





=======
Email scanned by PC Tools - No viruses or spyware found.
(Email Guard: 9.0.0.888, Virus/Spyware Database: 6.19230)
http://www.pctools.com
=======
--------------090205080100020505070108-- From owner-chemistry@ccl.net Fri Feb 10 10:30:00 2012 From: "Jens Spanget-Larsen spanget%x%ruc.dk" To: CCL Subject: CCL:G: Freq=Anharmonic Message-Id: <-46280-120210053539-6449-rwbWIatBll1nH9WbQnS8bA * server.ccl.net> X-Original-From: Jens Spanget-Larsen Content-Type: multipart/alternative; boundary="------------010305080806010503000505" Date: Fri, 10 Feb 2012 11:35:31 +0100 MIME-Version: 1.0 Sent to CCL by: Jens Spanget-Larsen [spanget,+,ruc.dk] This is a multi-part message in MIME format. --------------010305080806010503000505 Content-Type: text/plain; charset=ISO-8859-1; format=flowed Content-Transfer-Encoding: 7bit Hello CCL, I wonder why a Gaussian calculation with freq=anharmonic treats degenerate vibrational modes incorrectly. Below is listed part of the output from a run on C3v symmetrical NH3. The degeneracies of the two modes of E symmetry obtained with the harmonic analysis, i.e., (3567.914,3567.914)and (1727.008,1727.008),are broken in the anharmonic treatment. The discrepancy seems to be a general phenomenon. Does this indicate a bug in the anharmonic procedure, which may indicate a problem also for the results obtained for low-symmetry species? Yours, Jens >--< ****************************************** Gaussian 09: IA32W-G09RevB.01 12-Aug-2010 10-Feb-2012 ****************************************** ---------------------------- #T B3LYP/6-31G* freq(anharm) ---------------------------- ------- Ammonia ------- N 0 -0.45594 0.58611 0.10226 H 0 -0.42482 1.60364 0.15616 H 0 0.51377 0.27628 0.15616 H 0 -0.89411 0.27628 0.96901 Vibrational Energies and Rotational Constants (cm-1) Mode(Quanta) E(harm) E(anharm) Aa(y) Ba(x) Ca(z) Equilibrium Geometry 0.000000 0.000000 0.000000 Ground State 7579.164 7398.419 -0.088602 -0.088937 -0.126746 Fundamental Bands (DE w.r.t. Ground State) 1(1) 3436.311 3070.132 -0.250259 -0.250504 -0.167753 2(1) 1132.173 1004.391 -0.184928 -0.185683 -0.187920 3(1) 3567.914 3389.102 -0.262906 -0.269158 -0.136573 4(1) 3567.914 3385.799 -0.269005 -0.263365 -0.136541 5(1) 1727.008 1574.241 0.272028 -0.014242 -0.192598 6(1) 1727.008 1591.826 -0.013745 0.271453 -0.192584 ------------------------------------------------------ JENS SPANGET-LARSEN Office: +45 4674 2710 Dept. of Science (18.1) Fax: +45 4674 3011 Roskilde University Mobile: +45 2320 6246 P.O.Box 260 E-Mail: spanget-*-ruc.dk DK-4000 Roskilde, Denmark http://www.ruc.dk/~spanget ------------------------------------------------------ ======= Email scanned by PC Tools - No viruses or spyware found. (Email Guard: 9.0.0.888, Virus/Spyware Database: 6.19230) http://www.pctools.com/ ======= --------------010305080806010503000505 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit
Hello CCL,

I wonder why a Gaussian calculation with freq=anharmonic treats degenerate vibrational modes incorrectly. Below is listed part of the output from a run on C3v symmetrical NH3. The degeneracies of the two modes of E symmetry obtained with the harmonic analysis, i.e.,
(3567.914,3567.914) and (1727.008,1727.008), are broken in the anharmonic treatment. The discrepancy seems to be a general phenomenon. Does this indicate a bug in the anharmonic procedure, which may indicate a problem also for the results obtained for low-symmetry species?

Yours, Jens >--<


 ******************************************
 Gaussian 09:  IA32W-G09RevB.01 12-Aug-2010
                10-Feb-2012
 ******************************************
 ----------------------------
 #T B3LYP/6-31G* freq(anharm)
 ----------------------------
 -------
 Ammonia
 -------
 N                    0    -0.45594   0.58611   0.10226
 H                    0    -0.42482   1.60364   0.15616
 H                    0     0.51377   0.27628   0.15616
 H                    0    -0.89411   0.27628   0.96901

 Vibrational Energies and Rotational Constants (cm-1)
 Mode(Quanta)     E(harm)     E(anharm)    Aa(y)       Ba(x)       Ca(z)
 Equilibrium Geometry                     0.000000    0.000000    0.000000
 Ground State    7579.164     7398.419   -0.088602   -0.088937   -0.126746
 Fundamental Bands (DE w.r.t. Ground State)
  1(1)           3436.311     3070.132   -0.250259   -0.250504   -0.167753
  2(1)           1132.173     1004.391   -0.184928   -0.185683   -0.187920
  3(1)           3567.914     3389.102   -0.262906   -0.269158   -0.136573
  4(1)           3567.914     3385.799   -0.269005   -0.263365   -0.136541
  5(1)           1727.008     1574.241    0.272028   -0.014242   -0.192598
  6(1)           1727.008     1591.826   -0.013745    0.271453   -0.192584

  ------------------------------------------------------
  JENS SPANGET-LARSEN         Office:      +45 4674 2710
  Dept. of Science (18.1)     Fax:         +45 4674 3011
  Roskilde University         Mobile:      +45 2320 6246
  P.O.Box 260                 E-Mail:     spanget-*-ruc.dk
  DK-4000 Roskilde, Denmark   http://www.ruc.dk/~spanget
  ------------------------------------------------------






=======
Email scanned by PC Tools - No viruses or spyware found.
(Email Guard: 9.0.0.888, Virus/Spyware Database: 6.19230)
http://www.pctools.com
=======
--------------010305080806010503000505--