From owner-chemistry@ccl.net Sun Mar 31 00:36:00 2013 From: "Laura Orian laura.orian%gmail.com" To: CCL Subject: CCL:G: TDDFT calculations on Ferrocene Message-Id: <-48494-130330182134-22905-AQM8xQq2kzV6k2+NjhUjfw|server.ccl.net> X-Original-From: Laura Orian Content-Type: multipart/alternative; boundary=e89a8ff1c9f015059c04d92bcfac Date: Sat, 30 Mar 2013 23:21:27 +0100 MIME-Version: 1.0 Sent to CCL by: Laura Orian [laura.orian=-=gmail.com] --e89a8ff1c9f015059c04d92bcfac Content-Type: text/plain; charset=ISO-8859-1 Content-Transfer-Encoding: quoted-printable Hello, Bradley for this kind of calculations on ferrocene you can also read J Phys Chem A 2009, 113, 9286-9294. Laura 2013/3/29 Bradley Welch bwelch5[]slu.edu > > Sent to CCL by: "Bradley Welch" [bwelch5]|[slu.edu] > Dear All, > > I've tried doing TDDFT calculations on Ferrocene in the eclipsed state wi= th > M06/6-311++G**. The couple non-zero oscillator strengths I get coincide > with > wavelengths nowhere close to the real wavelengths. This is the spectra I = am > using for reference. > > http://omlc.ogi.edu/spectra/PhotochemCAD/html/062.html > > Is Ferrocene an example of a molecule whose electronic structure makes it > difficult to calculate absorption spectra? Or is this a case of just > needing > to use a better function/basis set. I am doing these calculations on > Gaussian > 09 RevA.02. > > > > here is the relevant output > > > Excitation energies and oscillator strengths: > > Excited State 1: Singlet-B2 1.9154 eV 647.30 nm f=3D0.0000 > =3D0.000 > 47 -> 54 -0.40323 > 47 -> 58 -0.28999 > 48 -> 53 0.40383 > 48 -> 59 0.29022 > This state for optimization and/or second-order correction. > Total Energy, E(TD-HF/TD-KS) =3D -1650.43361000 > Copying the excited state density for this state as the 1-particle RhoCI > density. > > Excited State 2: Singlet-A2 1.9157 eV 647.21 nm f=3D0.0000 > =3D0.000 > 47 -> 53 0.40348 > 47 -> 59 0.28996 > 48 -> 54 0.40359 > 48 -> 58 0.29024 > > Excited State 3: Singlet-A2 2.0547 eV 603.41 nm f=3D0.0000 > =3D0.000 > 46 -> 53 0.45501 > 46 -> 59 0.33273 > 47 -> 53 0.24989 > 47 -> 59 0.17811 > 48 -> 54 -0.24933 > 48 -> 58 -0.17783 > > Excited State 4: Singlet-B2 2.0548 eV 603.38 nm f=3D0.0000 > =3D0.000 > 46 -> 54 0.45482 > 46 -> 58 0.33281 > 47 -> 54 -0.24980 > 47 -> 58 -0.17817 > 48 -> 53 -0.24956 > 48 -> 59 -0.17787 > > Excited State 4: Singlet-B2 2.0548 eV 603.38 nm f=3D0.0000 > =3D0.000 > 46 -> 54 0.45482 > 46 -> 58 0.33281 > 47 -> 54 -0.24980 > 47 -> 58 -0.17817 > 48 -> 53 -0.24956 > 48 -> 59 -0.17787 > > Excited State 5: Singlet-A2 2.6804 eV 462.56 nm f=3D0.0000 > =3D0.000 > 46 -> 53 0.35332 > 46 -> 59 0.24691 > 47 -> 53 -0.33616 > 47 -> 59 -0.22572 > 48 -> 54 0.33620 > 48 -> 58 0.22590 > > Excited State 6: Singlet-B2 2.6808 eV 462.48 nm f=3D0.0000 > =3D0.000 > 46 -> 54 0.35335 > 46 -> 58 0.24709 > 47 -> 54 0.33628 > 47 -> 58 0.22595 > 48 -> 53 0.33597 > 48 -> 59 0.22558 > > Excited State 7: Singlet-B1 3.8594 eV 321.25 nm f=3D0.0000 > =3D0.000 > 48 -> 49 0.70211 > > Excited State 8: Singlet-A1 3.8596 eV 321.23 nm f=3D0.0000 > =3D0.000 > 47 -> 49 0.70211 > > Excited State 9: Singlet-A1 4.2318 eV 292.98 nm f=3D0.0006 > =3D0.000 > 47 -> 51 0.40260 > 48 -> 50 0.57842 > > Excited State 10: Singlet-B1 4.2319 eV 292.97 nm f=3D0.0006 > =3D0.000 > 47 -> 50 0.54945 > 48 -> 51 -0.44132 > > Excited State 11: Singlet-B1 4.2350 eV 292.76 nm f=3D0.0000 > =3D0.000 > 47 -> 50 0.44167 > 48 -> 51 0.54973 > > Excited State 12: Singlet-A1 4.2351 eV 292.75 nm f=3D0.0000 > =3D0.000 > 47 -> 51 0.57869 > 48 -> 50 -0.40298 > > Excited State 13: Singlet-A1 4.2514 eV 291.63 nm f=3D0.0000 > =3D0.000 > 46 -> 49 0.70204 > > Excited State 14: Singlet-A2 4.5019 eV 275.41 nm f=3D0.0000 > =3D0.000 > 48 -> 52 0.70570 > > Excited State 15: Singlet-B2 4.5022 eV 275.39 nm f=3D0.0000 > =3D0.000 > 47 -> 52 0.70567 > > Excited State 16: Singlet-B1 4.6174 eV 268.52 nm f=3D0.0071 > =3D0.000 > 46 -> 50 0.70484 > > Excited State 17: Singlet-A1 4.6183 eV 268.47 nm f=3D0.0071 > =3D0.000 > 46 -> 51 0.70484 > > Excited State 18: Singlet-B1 4.7507 eV 260.98 nm f=3D0.0000 > =3D0.000 > 47 -> 56 0.45211 > 48 -> 55 0.50362 > > Excited State 19: Singlet-A1 4.7654 eV 260.18 nm f=3D0.0000 > =3D0.000 > 47 -> 55 0.65915 > 48 -> 56 -0.24229 > > Excited State 20: Singlet-B1 4.7668 eV 260.10 nm f=3D0.0003 > =3D0.000 > 47 -> 56 0.52024 > 48 -> 55 -0.47053 > > > My input is the following > > %nproc=3D4 > %mem=3D12GB > #P M06/6-311++G** scf=3Dtight TD(Nstates=3D20) > > ferrocene uv > > 0 1 > 26 0.000000000 0.000000000 0.000000000 > 6 0.378581000 1.165151000 1.669713000 > 6 -0.991137000 0.720103000 1.669713000 > 6 -0.991137000 -0.720103000 1.669713000 > 6 0.378581000 -1.165151000 1.669713000 > 6 1.225113000 0.000000000 1.669713000 > 1 0.712432000 2.192641000 1.669713000 > 1 -1.865172000 1.355126000 1.669713000 > 1 -1.865172000 -1.355126000 1.669713000 > 1 0.712432000 -2.192641000 1.669713000 > 1 2.305479000 0.000000000 1.669713000 > 6 1.225113000 0.000000000 -1.669713000 > 6 0.378581000 -1.165151000 -1.669713000 > 6 -0.991137000 -0.720103000 -1.669713000 > 6 -0.991137000 0.720103000 -1.669713000 > 6 0.378581000 1.165151000 -1.669713000 > 1 2.305479000 0.000000000 -1.669713000 > 1 0.712432000 -2.192641000 -1.669713000 > 1 -1.865172000 -1.355126000 -1.669713000 > 1 -1.865172000 1.355126000 -1.669713000 > 1 0.712432000 2.192641000 -1.669713000 > > > > -=3D This is automatically added to each message by the mailing script = =3D-> > > --=20 Laura Orian, PhD Dip. Scienze Chimiche Universit=E0 degli Studi di Padova Via Marzolo 1, 35129 Padova Italia Tel +390498275140 FAX +390498275829 E-mail laura.orian!^!unipd.it skype laura.orian web http://www.chimica.unipd.it/laura.orian --e89a8ff1c9f015059c04d92bcfac Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: quoted-printable
Hello, Bradley
for this kind of calculation= s on ferrocene you can also read J Phys Chem A 2009, 113, 9286-9294.
<= div>=A0
Laura


2013/3/29 Bradley Welch bwelch5[]slu.edu <owner-chemistry!^!ccl.net>

Sent to CCL by: "Bradley =A0Welch" [bwelch5]|[slu.edu]
Dear All,

I've tried doing TDDFT calculations on Ferrocene in the eclipsed state = with
M06/6-311++G**. The couple non-zero oscillator strengths I get coincide wit= h
wavelengths nowhere close to the real wavelengths. This is the spectra I am=
using for reference.

http://omlc.ogi.edu/spectra/PhotochemCAD/html/062.html

Is Ferrocene an example of a molecule whose electronic structure makes it difficult to calculate absorption spectra? Or is this a case of just needin= g
to use a better function/basis set. I am doing these calculations on Gaussi= an
09 RevA.02.



here is the relevant output


Excitation energies and oscillator strengths:

=A0Excited State =A0 1: =A0 =A0 =A0Singlet-B2 =A0 =A0 1.9154 eV =A0647.30 n= m =A0f=3D0.0000
<S**2>=3D0.000
=A0 =A0 =A0 47 -> 54 =A0 =A0 =A0 =A0-0.40323
=A0 =A0 =A0 47 -> 58 =A0 =A0 =A0 =A0-0.28999
=A0 =A0 =A0 48 -> 53 =A0 =A0 =A0 =A0 0.40383
=A0 =A0 =A0 48 -> 59 =A0 =A0 =A0 =A0 0.29022
=A0This state for optimization and/or second-order correction.
=A0Total Energy, E(TD-HF/TD-KS) =3D =A0-1650.43361000
=A0Copying the excited state density for this state as the 1-particle RhoCI=
density.

=A0Excited State =A0 2: =A0 =A0 =A0Singlet-A2 =A0 =A0 1.9157 eV =A0647.21 n= m =A0f=3D0.0000
<S**2>=3D0.000
=A0 =A0 =A0 47 -> 53 =A0 =A0 =A0 =A0 0.40348
=A0 =A0 =A0 47 -> 59 =A0 =A0 =A0 =A0 0.28996
=A0 =A0 =A0 48 -> 54 =A0 =A0 =A0 =A0 0.40359
=A0 =A0 =A0 48 -> 58 =A0 =A0 =A0 =A0 0.29024

=A0Excited State =A0 3: =A0 =A0 =A0Singlet-A2 =A0 =A0 2.0547 eV =A0603.41 n= m =A0f=3D0.0000
<S**2>=3D0.000
=A0 =A0 =A0 46 -> 53 =A0 =A0 =A0 =A0 0.45501
=A0 =A0 =A0 46 -> 59 =A0 =A0 =A0 =A0 0.33273
=A0 =A0 =A0 47 -> 53 =A0 =A0 =A0 =A0 0.24989
=A0 =A0 =A0 47 -> 59 =A0 =A0 =A0 =A0 0.17811
=A0 =A0 =A0 48 -> 54 =A0 =A0 =A0 =A0-0.24933
=A0 =A0 =A0 48 -> 58 =A0 =A0 =A0 =A0-0.17783

=A0Excited State =A0 4: =A0 =A0 =A0Singlet-B2 =A0 =A0 2.0548 eV =A0603.38 n= m =A0f=3D0.0000
<S**2>=3D0.000
=A0 =A0 =A0 46 -> 54 =A0 =A0 =A0 =A0 0.45482
=A0 =A0 =A0 46 -> 58 =A0 =A0 =A0 =A0 0.33281
=A0 =A0 =A0 47 -> 54 =A0 =A0 =A0 =A0-0.24980
=A0 =A0 =A0 47 -> 58 =A0 =A0 =A0 =A0-0.17817
=A0 =A0 =A0 48 -> 53 =A0 =A0 =A0 =A0-0.24956
=A0 =A0 =A0 48 -> 59 =A0 =A0 =A0 =A0-0.17787

=A0Excited State =A0 4: =A0 =A0 =A0Singlet-B2 =A0 =A0 2.0548 eV =A0603.38 n= m =A0f=3D0.0000
<S**2>=3D0.000
=A0 =A0 =A0 46 -> 54 =A0 =A0 =A0 =A0 0.45482
=A0 =A0 =A0 46 -> 58 =A0 =A0 =A0 =A0 0.33281
=A0 =A0 =A0 47 -> 54 =A0 =A0 =A0 =A0-0.24980
=A0 =A0 =A0 47 -> 58 =A0 =A0 =A0 =A0-0.17817
=A0 =A0 =A0 48 -> 53 =A0 =A0 =A0 =A0-0.24956
=A0 =A0 =A0 48 -> 59 =A0 =A0 =A0 =A0-0.17787

=A0Excited State =A0 5: =A0 =A0 =A0Singlet-A2 =A0 =A0 2.6804 eV =A0462.56 n= m =A0f=3D0.0000
<S**2>=3D0.000
=A0 =A0 =A0 46 -> 53 =A0 =A0 =A0 =A0 0.35332
=A0 =A0 =A0 46 -> 59 =A0 =A0 =A0 =A0 0.24691
=A0 =A0 =A0 47 -> 53 =A0 =A0 =A0 =A0-0.33616
=A0 =A0 =A0 47 -> 59 =A0 =A0 =A0 =A0-0.22572
=A0 =A0 =A0 48 -> 54 =A0 =A0 =A0 =A0 0.33620
=A0 =A0 =A0 48 -> 58 =A0 =A0 =A0 =A0 0.22590

=A0Excited State =A0 6: =A0 =A0 =A0Singlet-B2 =A0 =A0 2.6808 eV =A0462.48 n= m =A0f=3D0.0000
<S**2>=3D0.000
=A0 =A0 =A0 46 -> 54 =A0 =A0 =A0 =A0 0.35335
=A0 =A0 =A0 46 -> 58 =A0 =A0 =A0 =A0 0.24709
=A0 =A0 =A0 47 -> 54 =A0 =A0 =A0 =A0 0.33628
=A0 =A0 =A0 47 -> 58 =A0 =A0 =A0 =A0 0.22595
=A0 =A0 =A0 48 -> 53 =A0 =A0 =A0 =A0 0.33597
=A0 =A0 =A0 48 -> 59 =A0 =A0 =A0 =A0 0.22558

=A0Excited State =A0 7: =A0 =A0 =A0Singlet-B1 =A0 =A0 3.8594 eV =A0321.25 n= m =A0f=3D0.0000
<S**2>=3D0.000
=A0 =A0 =A0 48 -> 49 =A0 =A0 =A0 =A0 0.70211

=A0Excited State =A0 8: =A0 =A0 =A0Singlet-A1 =A0 =A0 3.8596 eV =A0321.23 n= m =A0f=3D0.0000
<S**2>=3D0.000
=A0 =A0 =A0 47 -> 49 =A0 =A0 =A0 =A0 0.70211

=A0Excited State =A0 9: =A0 =A0 =A0Singlet-A1 =A0 =A0 4.2318 eV =A0292.98 n= m =A0f=3D0.0006
<S**2>=3D0.000
=A0 =A0 =A0 47 -> 51 =A0 =A0 =A0 =A0 0.40260
=A0 =A0 =A0 48 -> 50 =A0 =A0 =A0 =A0 0.57842

Excited State =A010: =A0 =A0 =A0Singlet-B1 =A0 =A0 4.2319 eV =A0292.97 nm = =A0f=3D0.0006
<S**2>=3D0.000
=A0 =A0 =A0 47 -> 50 =A0 =A0 =A0 =A0 0.54945
=A0 =A0 =A0 48 -> 51 =A0 =A0 =A0 =A0-0.44132

=A0Excited State =A011: =A0 =A0 =A0Singlet-B1 =A0 =A0 4.2350 eV =A0292.76 n= m =A0f=3D0.0000
<S**2>=3D0.000
=A0 =A0 =A0 47 -> 50 =A0 =A0 =A0 =A0 0.44167
=A0 =A0 =A0 48 -> 51 =A0 =A0 =A0 =A0 0.54973

=A0Excited State =A012: =A0 =A0 =A0Singlet-A1 =A0 =A0 4.2351 eV =A0292.75 n= m =A0f=3D0.0000
<S**2>=3D0.000
=A0 =A0 =A0 47 -> 51 =A0 =A0 =A0 =A0 0.57869
=A0 =A0 =A0 48 -> 50 =A0 =A0 =A0 =A0-0.40298

=A0Excited State =A013: =A0 =A0 =A0Singlet-A1 =A0 =A0 4.2514 eV =A0291.63 n= m =A0f=3D0.0000
<S**2>=3D0.000
=A0 =A0 =A0 46 -> 49 =A0 =A0 =A0 =A0 0.70204

=A0Excited State =A014: =A0 =A0 =A0Singlet-A2 =A0 =A0 4.5019 eV =A0275.41 n= m =A0f=3D0.0000
<S**2>=3D0.000
=A0 =A0 =A0 48 -> 52 =A0 =A0 =A0 =A0 0.70570

=A0Excited State =A015: =A0 =A0 =A0Singlet-B2 =A0 =A0 4.5022 eV =A0275.39 n= m =A0f=3D0.0000
<S**2>=3D0.000
=A0 =A0 =A0 47 -> 52 =A0 =A0 =A0 =A0 0.70567

=A0Excited State =A016: =A0 =A0 =A0Singlet-B1 =A0 =A0 4.6174 eV =A0268.52 n= m =A0f=3D0.0071
<S**2>=3D0.000
=A0 =A0 =A0 46 -> 50 =A0 =A0 =A0 =A0 0.70484

=A0Excited State =A017: =A0 =A0 =A0Singlet-A1 =A0 =A0 4.6183 eV =A0268.47 n= m =A0f=3D0.0071
<S**2>=3D0.000
=A0 =A0 =A0 46 -> 51 =A0 =A0 =A0 =A0 0.70484

=A0Excited State =A018: =A0 =A0 =A0Singlet-B1 =A0 =A0 4.7507 eV =A0260.98 n= m =A0f=3D0.0000
<S**2>=3D0.000
=A0 =A0 =A0 47 -> 56 =A0 =A0 =A0 =A0 0.45211
=A0 =A0 =A0 48 -> 55 =A0 =A0 =A0 =A0 0.50362

=A0Excited State =A019: =A0 =A0 =A0Singlet-A1 =A0 =A0 4.7654 eV =A0260.18 n= m =A0f=3D0.0000
<S**2>=3D0.000
=A0 =A0 =A0 47 -> 55 =A0 =A0 =A0 =A0 0.65915
=A0 =A0 =A0 48 -> 56 =A0 =A0 =A0 =A0-0.24229

=A0Excited State =A020: =A0 =A0 =A0Singlet-B1 =A0 =A0 4.7668 eV =A0260.10 n= m =A0f=3D0.0003
<S**2>=3D0.000
=A0 =A0 =A0 47 -> 56 =A0 =A0 =A0 =A0 0.52024
=A0 =A0 =A0 48 -> 55 =A0 =A0 =A0 =A0-0.47053


My input is the following

%nproc=3D4
%mem=3D12GB
#P M06/6-311++G** scf=3Dtight TD(Nstates=3D20)

ferrocene uv

0 1
26 =A0 =A0 =A0 0.000000000 =A0 =A0 =A00.000000000 =A0 =A0 =A00.000000000 6 =A0 =A0 =A0 =A00.378581000 =A0 =A0 =A01.165151000 =A0 =A0 =A01.669713000<= br> 6 =A0 =A0 =A0 -0.991137000 =A0 =A0 =A00.720103000 =A0 =A0 =A01.669713000 6 =A0 =A0 =A0 -0.991137000 =A0 =A0 -0.720103000 =A0 =A0 =A01.669713000
6 =A0 =A0 =A0 =A00.378581000 =A0 =A0 -1.165151000 =A0 =A0 =A01.669713000 6 =A0 =A0 =A0 =A01.225113000 =A0 =A0 =A00.000000000 =A0 =A0 =A01.669713000<= br> 1 =A0 =A0 =A0 =A00.712432000 =A0 =A0 =A02.192641000 =A0 =A0 =A01.669713000<= br> 1 =A0 =A0 =A0 -1.865172000 =A0 =A0 =A01.355126000 =A0 =A0 =A01.669713000 1 =A0 =A0 =A0 -1.865172000 =A0 =A0 -1.355126000 =A0 =A0 =A01.669713000
1 =A0 =A0 =A0 =A00.712432000 =A0 =A0 -2.192641000 =A0 =A0 =A01.669713000 1 =A0 =A0 =A0 =A02.305479000 =A0 =A0 =A00.000000000 =A0 =A0 =A01.669713000<= br> 6 =A0 =A0 =A0 =A01.225113000 =A0 =A0 =A00.000000000 =A0 =A0 -1.669713000 6 =A0 =A0 =A0 =A00.378581000 =A0 =A0 -1.165151000 =A0 =A0 -1.669713000
6 =A0 =A0 =A0 -0.991137000 =A0 =A0 -0.720103000 =A0 =A0 -1.669713000
6 =A0 =A0 =A0 -0.991137000 =A0 =A0 =A00.720103000 =A0 =A0 -1.669713000
6 =A0 =A0 =A0 =A00.378581000 =A0 =A0 =A01.165151000 =A0 =A0 -1.669713000 1 =A0 =A0 =A0 =A02.305479000 =A0 =A0 =A00.000000000 =A0 =A0 -1.669713000 1 =A0 =A0 =A0 =A00.712432000 =A0 =A0 -2.192641000 =A0 =A0 -1.669713000
1 =A0 =A0 =A0 -1.865172000 =A0 =A0 -1.355126000 =A0 =A0 -1.669713000
1 =A0 =A0 =A0 -1.865172000 =A0 =A0 =A01.355126000 =A0 =A0 -1.669713000
1 =A0 =A0 =A0 =A00.712432000 =A0 =A0 =A02.192641000 =A0 =A0 -1.669713000


-=3D This is automatically added to each message by the mailing script =3D-=
E-mail to subscribers: CHEMISTRY!^!ccl.n= et or use:
=A0 =A0 =A0 http://www.ccl.net/cgi-bin/ccl/send_ccl_message

E-mail to administrators: CHEM= ISTRY-REQUEST!^!ccl.net or use
=A0 =A0 =A0 http://www.ccl.net/cgi-bin/ccl/send_ccl_message

Subscribe/Unsubscribe:
=A0 =A0 =A0 http://www.ccl.net/chemistry/sub_unsub.shtml

Before posting, check wait time at: http://www.ccl.net

Job: http://www.ccl.n= et/jobs
Conferences: http://server.ccl.net/chemistry/announcements/co= nferences/

Search Messages: http://www.ccl.net/chemistry/searchccl/index.shtml
=A0 =A0 =A0
h= ttp://www.ccl.net/spammers.txt

RTFI: http://www.ccl.net/chemistry/aboutccl/instructions/





--
Laura Orian, PhD
Dip= . Scienze Chimiche
Universit=E0 degli Studi di Padova
Via Marzolo 1, = 35129 Padova
Italia
Tel +390498275140
FAX +390498275829
E-mail = laura.orian!^!unipd= .it
skype laura.orian
web http://www.chimica.unipd.it/laura.orian
--e89a8ff1c9f015059c04d92bcfac-- From owner-chemistry@ccl.net Sun Mar 31 01:11:00 2013 From: "Prof. Dr. N. Sekar nethi.sekar++gmail.com" To: CCL Subject: CCL: MO's in Solvent Message-Id: <-48495-130330220608-2049-/ClgjQnSvqEoLb6EasxW2g(a)server.ccl.net> X-Original-From: "Prof. Dr. N. Sekar" Content-Type: multipart/alternative; boundary=047d7bd76ee219fdb004d92ef286 Date: Sun, 31 Mar 2013 07:36:00 +0530 MIME-Version: 1.0 Sent to CCL by: "Prof. Dr. N. Sekar" [nethi.sekar!^!gmail.com] --047d7bd76ee219fdb004d92ef286 Content-Type: text/plain; charset=ISO-8859-1 Yes. You will be able to see the distribution of electrons within the molecule in the HOMO and LUMO and see whether it is different in the solvent environment. On Sat, Mar 30, 2013 at 9:36 PM, Ramesh Kumar Chitumalla rameshchitumalla.. gmail.com wrote: > > Sent to CCL by: "Ramesh Kumar Chitumalla" [rameshchitumalla[#]gmail.com] > Dears CCL'Rs > > I would like to compare the behavior of a positively charged Ru(II) Dye in > Vacuum and in solvent (DMF) (using G09 package) and for the same, DFT and > TDDFT > calculations have been carried out and I generated the MOs in Vacuum and in > solvent (DMF). Kindly let me know does the generation of MOs in solvent > meaningful ? > > Any help is greatly appreciated. > > Thank you.> > > -- Thanks and regards Prof. Dr. N. Sekar CCol FSDC Head, Department of Dyestuff Technology Co-ordinator, UGC-CAS and Professor in Tinctorial Chemistry Institute of Chemical Technology (formerly UDCT) Matunga, Mumbai-400019 Mob +91-9867958452 n.sekar*_*ictmumbai.edu.in website: http://ictmumbai.edu.in/Fac_FacDetails.aspx?fidno=116 --047d7bd76ee219fdb004d92ef286 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: quoted-printable
Yes. =A0You will be able to see the distribution of electr= ons within the molecule in the HOMO and LUMO and see whether it is differen= t in the solvent environment.


On Sat, Mar 30, 2013 at 9:36 PM, Ramesh Kumar Chitumalla rameshchitumalla..= gmail.com <owner-chemistry*_*ccl.net<= /a>> wrote:

Sent to CCL by: "Ramesh Kumar Chitumalla" [rameshchitumalla[#]
gmail.com]
Dears CCL'Rs

I would like to compare the behavior of a positively charged Ru(II) Dye in<= br> Vacuum and in solvent (DMF) (using G09 package) and for the same, DFT and T= DDFT
calculations have been carried out and I generated the MOs in Vacuum and in=
solvent (DMF). Kindly let me know does the generation of MOs in solvent
meaningful ?

Any help is greatly appreciated.

Thank you.



-=3D This is automatically added to each message by the mailing script =3D-=
E-mail to subscribers: CHEMISTRY*_*ccl.n= et or use:
=A0 =A0 =A0 http://www.ccl.net/cgi-bin/ccl/send_ccl_message

E-mail to administrators: CHEM= ISTRY-REQUEST*_*ccl.net or use
=A0 =A0 =A0 http://www.ccl.net/cgi-bin/ccl/send_ccl_message

Subscribe/Unsubscribe:
=A0 =A0 =A0 http://www.ccl.net/chemistry/sub_unsub.shtml

Before posting, check wait time at: http://www.ccl.net

Job: http://www.ccl.n= et/jobs
Conferences: http://server.ccl.net/chemistry/announcements/co= nferences/

Search Messages: http://www.ccl.net/chemistry/searchccl/index.shtml
=A0 =A0 =A0
h= ttp://www.ccl.net/spammers.txt

RTFI: http://www.ccl.net/chemistry/aboutccl/instructions/





--
Thanks = and regards

Prof. Dr. N. Sekar=A0=A0 CCol FSDC
Head, Department o= f Dyestuff Technology
Co-ordinator, UGC-CAS and Professor in Tinc= torial Chemistry
Institute of Chemical Technology (formerly UDCT)
Matunga, Mumbai-400019<= br>
Mob +91-9867958452
n.sekar*_*ictmumbai.edu.in
=A0
--047d7bd76ee219fdb004d92ef286-- From owner-chemistry@ccl.net Sun Mar 31 10:27:00 2013 From: "Andreas Klamt klamt,,cosmologic.de" To: CCL Subject: CCL: MO's in Solvent Message-Id: <-48496-130331101726-13647-wbIfHPeLgoddGzQlubMNvQ[]server.ccl.net> X-Original-From: Andreas Klamt Content-Transfer-Encoding: 7bit Content-Type: text/plain; charset=ISO-8859-15; format=flowed Date: Sun, 31 Mar 2013 16:17:25 +0200 MIME-Version: 1.0 Sent to CCL by: Andreas Klamt [klamt{=}cosmologic.de] Since my first two attempts were not posted yet, here again my comment: Dear Ramesh, this is a good question. In the way as most continuum models are implemented nowadays, the orbitals do not make much sense, because the polarization charges are completely treated as external field, and the energy for generatig the field is added to the total energy of the molecule after the SCF has achieved. In my original COSMO implementation in MOPAC I followed a different concept, considering the continuum contribution as an indirect charge-charge interaction. In that way you have additional nuclei-nuclei-interactions, additional nuclei-electron-interactions (added to the one electron Hamiltonian, and additional electron-electron interactions, added to the two-electron-interactions. Thus the continuum interactions enter the orbitals in a perfectly analogous way to the Coulomb interactions. A post-correction for the self energy of the polarization field is not required, since all energy contributions already take it into account by the factor 1/2. While the total energy, and all expectation values will be exactly the same in both implementations, the orbital energies produced in that way are considerably different from thse in the standard way, but I am convinced they make more sense. (Without understand it in detail, Zerner and coworker had earlier called the models as model A and B, see Szafran, et al. J. Comp. Chem 1993 ....) Please note the difference of the models for the orbitals: In the standard implementation, the electrons in the LUMO "see" the polarization charge polarization charges produced by the ground state electron density, i.e. the change of the polarization charges due to the excitation to the LUMO is missing. But I am afraid, currently no implementation of PCM or COSMO following the Coulomb energy analogy is available. While writing this I realize that I may be wrong: The GAMESS COSMO implementation may still have it. Kim Baldridge should know about this best. Best regards Andreas From owner-chemistry@ccl.net Sun Mar 31 11:01:00 2013 From: "Andreas Klamt klamt/a\cosmologic.de" To: CCL Subject: CCL: MO's in Solvent Message-Id: <-48497-130330135156-11848-hx4LfQuH6hy8o2OB5JKhww-*-server.ccl.net> X-Original-From: Andreas Klamt Content-Transfer-Encoding: 8bit Content-Type: text/plain; charset=ISO-8859-15; format=flowed Date: Sat, 30 Mar 2013 18:51:50 +0100 MIME-Version: 1.0 Sent to CCL by: Andreas Klamt [klamt . cosmologic.de] Dear Ramesh, this is a good question. In the way as most continuum models are implemented nowadays, the orbitals do not make much sense, because the polarization charge are completely treated as external field, and the energy for generatig the field is added to the total energy of the molecule. In my original COSMO implementation in MOPAC I followed a different concept, considering the the continuum contribution as an idirect charge-charge interaction. In that way you have additional nuclei-nuclei-interactions, additional nuclei-electron-interactions (added to the one electron Hamiltonian, and additional electron-electron interactions, added to the two-electron-interactions. In tat way the continuum interactions enter the orbitals in a perfectly analogous way to the Coulomb interactions. A post-correction for the self energy of the polarization field is not required, since all energy contributions already take it into account by the factor 1/2. While the total energy, and all expectation values will be exactly the same in both implementations, the orbital energies produced in that way are considerably different from thse in the standard way, but I am convinced they make more sense. (Without understand it in detail, Zerner had earlier called the models as model A and B.) But I am afraid, currently no implementation of PCM or COSMO following the Coulombenergy analogy is available. Best regards Andreas Am 30.03.2013 17:06, schrieb Ramesh Kumar Chitumalla rameshchitumalla..gmail.com: > Sent to CCL by: "Ramesh Kumar Chitumalla" [rameshchitumalla[#]gmail.com] > Dears CCL'Rs > > I would like to compare the behavior of a positively charged Ru(II) Dye in > Vacuum and in solvent (DMF) (using G09 package) and for the same, DFT and TDDFT > calculations have been carried out and I generated the MOs in Vacuum and in > solvent (DMF). Kindly let me know does the generation of MOs in solvent > meaningful ? > > Any help is greatly appreciated. > > Thank you.> > > -- Prof. Dr. Andreas Klamt CEO / Geschäftsführer COSMOlogic GmbH & Co. KG Imbacher Weg 46 D-51379 Leverkusen, Germany phone +49-2171-731681 fax +49-2171-731689 e-mail klamt()cosmologic.de web www.cosmologic.de [University address: Inst. of Physical and Theoretical Chemistry, University of Regensburg] HRA 20653 Amtsgericht Koeln, GF: Prof. Dr. Andreas Klamt Komplementaer: COSMOlogic Verwaltungs GmbH HRB 49501 Amtsgericht Koeln, GF: Prof. Dr. Andreas Klamt From owner-chemistry@ccl.net Sun Mar 31 11:36:00 2013 From: "Andreas Klamt klamt(a)cosmologic.de" To: CCL Subject: CCL: MO's in Solvent Message-Id: <-48498-130331095520-12835-SAsFFDOgJIc8n708ZniT8Q+/-server.ccl.net> X-Original-From: Andreas Klamt Content-Type: multipart/alternative; boundary="------------000107080208050701020303" Date: Sun, 31 Mar 2013 15:55:15 +0200 MIME-Version: 1.0 Sent to CCL by: Andreas Klamt [klamt]_[cosmologic.de] This is a multi-part message in MIME format. --------------000107080208050701020303 Content-Type: text/plain; charset=ISO-8859-15; format=flowed Content-Transfer-Encoding: 8bit Since my first attempt was not posted yet, here again my comment: Dear Ramesh, this is a good question. In the way as most continuum models are implemented nowadays, the orbitals do not make much sense, because the polarization charges are completely treated as external field, and the energy for generatig the field is added to the total energy of the molecule after the SCF has achieved. In my original COSMO implementation in MOPAC I followed a different concept, considering the continuum contribution as an indirect charge-charge interaction. In that way you have additional nuclei-nuclei-interactions, additional nuclei-electron-interactions (added to the one electron Hamiltonian, and additional electron-electron interactions, added to the two-electron-interactions. Thus the continuum interactions enter the orbitals in a perfectly analogous way to the Coulomb interactions. A post-correction for the self energy of the polarization field is not required, since all energy contributions already take it into account by the factor 1/2. While the total energy, and all expectation values will be exactly the same in both implementations, the orbital energies produced in that way are considerably different from thse in the standard way, but I am convinced they make more sense. (Without understand it in detail, Zerner and coworker had earlier called the models as model A and B, see Szafran, et al. J. Comp. Chem 1993 ....) Please note the difference of the models for the orbitals: In the standard implementation, the electrons in the LUMO "see" the polarization charge polarization charges produced by the ground state electron density, i.e. the change of the polarization charges due to the excitation to the LUMO is missing. But I am afraid, currently no implementation of PCM or COSMO following the Coulomb energy analogy is available. While writing this I realize that I may be wrong: The GAMESS COSMO implementation may still have it. Kim Baldridge should know about this best. Best regards Andreas Am 31.03.2013 04:06, schrieb Prof. Dr. N. Sekar nethi.sekar++gmail.com: > Yes. You will be able to see the distribution of electrons within the > molecule in the HOMO and LUMO and see whether it is different in the > solvent environment. > > > On Sat, Mar 30, 2013 at 9:36 PM, Ramesh Kumar Chitumalla > rameshchitumalla..gmail.com > > wrote: > > > Sent to CCL by: "Ramesh Kumar Chitumalla" > [rameshchitumalla[#]gmail.com ] > Dears CCL'Rs > > I would like to compare the behavior of a positively charged > Ru(II) Dye in > Vacuum and in solvent (DMF) (using G09 package) and for the same, > DFT and TDDFT > calculations have been carried out and I generated the MOs in > Vacuum and in > solvent (DMF). Kindly let me know does the generation of MOs in > solvent > meaningful ? > > Any help is greatly appreciated. > > Thank you. > > > > -= This is automatically added to each message by the mailing > script =- > E-mail to subscribers: CHEMISTRY]|[ccl.net > or use:> > E-mail to administrators: CHEMISTRY-REQUEST]|[ccl.net > or use> Conferences: > http://server.ccl.net/chemistry/announcements/conferences/> > > > > > -- > Thanks and regards > > Prof. Dr. N. Sekar CCol FSDC > Head, Department of Dyestuff Technology > Co-ordinator, UGC-CAS and Professor in Tinctorial Chemistry > Institute of Chemical Technology (formerly UDCT) > Matunga, Mumbai-400019 > > Mob +91-9867958452 > n.sekar]|[ictmumbai.edu.in > website: http://ictmumbai.edu.in/Fac_FacDetails.aspx?fidno=116 -- Prof. Dr. Andreas Klamt CEO / Geschäftsführer COSMOlogic GmbH & Co. KG Imbacher Weg 46 D-51379 Leverkusen, Germany phone +49-2171-731681 fax +49-2171-731689 e-mail klamt . cosmologic.de web www.cosmologic.de [University address: Inst. of Physical and Theoretical Chemistry, University of Regensburg] HRA 20653 Amtsgericht Koeln, GF: Prof. Dr. Andreas Klamt Komplementaer: COSMOlogic Verwaltungs GmbH HRB 49501 Amtsgericht Koeln, GF: Prof. Dr. Andreas Klamt --------------000107080208050701020303 Content-Type: text/html; charset=ISO-8859-15 Content-Transfer-Encoding: 8bit
Since my first attempt was not posted yet, here again my comment:

Dear Ramesh,

this is a good question. In the way as most continuum models are implemented nowadays, the orbitals do not make much sense, because the polarization charges are completely treated as external field, and the energy for generatig the field is added to the total energy of the molecule after the SCF has achieved. In my original COSMO implementation in MOPAC I followed a different concept, considering the continuum contribution as an indirect charge-charge interaction. In that way you have additional nuclei-nuclei-interactions, additional nuclei-electron-interactions (added to the one electron Hamiltonian, and additional electron-electron interactions, added to the two-electron-interactions. Thus the continuum interactions enter the orbitals in a perfectly analogous way to the Coulomb interactions. A post-correction for the self energy of the polarization field is not required, since all energy contributions already take it into account by the factor 1/2. While the total energy, and all expectation values will be exactly the same in both implementations, the orbital energies produced in that way are considerably different from thse in the standard way, but I am convinced they make more sense.  (Without understand it in detail, Zerner and coworker had earlier called the models as model A and B, see  Szafran, et al. J. Comp. Chem 1993 ....)

Please note the difference of the models for the orbitals: In the standard implementation, the electrons in the LUMO "see" the polarization charge polarization charges produced by the ground state electron density, i.e. the change of the polarization charges due to the excitation to the LUMO is missing.

But I am afraid, currently no implementation of PCM or COSMO following the Coulomb energy analogy is available. While writing this I realize that I may be wrong: The GAMESS COSMO implementation may still have it. Kim Baldridge should know about this best.

Best regards

Andreas



Am 31.03.2013 04:06, schrieb Prof. Dr. N. Sekar nethi.sekar++gmail.com:
Yes.  You will be able to see the distribution of electrons within the molecule in the HOMO and LUMO and see whether it is different in the solvent environment.


On Sat, Mar 30, 2013 at 9:36 PM, Ramesh Kumar Chitumalla rameshchitumalla..gmail.com <owner-chemistry]|[ccl.net> wrote:

Sent to CCL by: "Ramesh Kumar Chitumalla" [rameshchitumalla[#]gmail.com]
Dears CCL'Rs

I would like to compare the behavior of a positively charged Ru(II) Dye in
Vacuum and in solvent (DMF) (using G09 package) and for the same, DFT and TDDFT
calculations have been carried out and I generated the MOs in Vacuum and in
solvent (DMF). Kindly let me know does the generation of MOs in solvent
meaningful ?

Any help is greatly appreciated.

Thank you.



E-mail to subscribers: CHEMISTRY]|[ccl.net or use:
      http://www.ccl.net/cgi-bin/ccl/send_ccl_message

E-mail to administrators: CHEMISTRY-REQUEST]|[ccl.net or use
      http://www.ccl.net/cgi-bin/ccl/send_ccl_message

Subscribe/Unsubscribe:
      http://www.ccl.net/chemistry/sub_unsub.shtml

Before posting, check wait time at: http://www.ccl.net

Job: http://www.ccl.net/jobs
Conferences: http://server.ccl.net/chemistry/announcements/conferences/

Search Messages: http://www.ccl.net/chemistry/searchccl/index.shtml
      http://www.ccl.net/spammers.txt

RTFI: http://www.ccl.net/chemistry/aboutccl/instructions/





--
Thanks and regards

Prof. Dr. N. Sekar   CCol FSDC
Head, Department of Dyestuff Technology
Co-ordinator, UGC-CAS and Professor in Tinctorial Chemistry
Institute of Chemical Technology (formerly UDCT)
Matunga, Mumbai-400019

Mob +91-9867958452
n.sekar]|[ictmumbai.edu.in
 


-- 
Prof. Dr. Andreas Klamt
CEO / Geschäftsführer
COSMOlogic GmbH & Co. KG
Imbacher Weg 46
D-51379 Leverkusen, Germany

phone  	+49-2171-731681
fax    	+49-2171-731689
e-mail 	klamt . cosmologic.de
web    	www.cosmologic.de

[University address:      Inst. of Physical and
Theoretical Chemistry, University of Regensburg]

HRA 20653 Amtsgericht Koeln, GF: Prof. Dr. Andreas Klamt
Komplementaer: COSMOlogic Verwaltungs GmbH
HRB 49501 Amtsgericht Koeln, GF: Prof. Dr. Andreas Klamt


--------------000107080208050701020303-- From owner-chemistry@ccl.net Sun Mar 31 16:33:00 2013 From: "Bradley Welch bwelch5---slu.edu" To: CCL Subject: CCL: Odd Gaussian Error with coordinates Message-Id: <-48499-130331162737-27347-okJGgc35xE55dQ2nGRzyRg|*|server.ccl.net> X-Original-From: "Bradley Welch" Date: Sun, 31 Mar 2013 16:27:36 -0400 Sent to CCL by: "Bradley Welch" [bwelch5|slu.edu] Dear All, I'm doing a optimization on Ni(CN)4 2- and I've had no problems with a z- matrix optimization. I've been attempting to do a cartesian optimization and I get the following error. Problem with coordinate system. Error termination via Lnk1e in /usr/local/g09/l103.exe at Sun Mar 31 15:15:13 2013. Job cpu time: 0 days 0 hours 2 minutes 55.0 seconds. File lengths (MBytes): RWF= 26 Int= 0 D2E= 0 Chk= 2 Scr= 1 My input geometry is the following: -2 1 6 0.000000000 1.906633000 0.000000000 28 0.000000000 0.000000000 0.000000000 6 1.906633000 0.000000000 0.000000000 6 -1.906633000 0.000000000 0.000000000 6 0.000000000 -1.906633000 0.000000000 7 -3.073424000 0.000000000 0.000000000 7 0.000000000 3.073424000 0.000000000 7 3.073424000 0.000000000 0.000000000 7 0.000000000 -3.073424000 0.000000000 I noticed that somehow it results in a geometry that results in everything being crushed together: 6 0.000000000 -0.000022807 0.000000000 28 0.000000000 0.000000000 0.000000000 6 -0.000022807 0.000000000 0.000000000 6 0.000022807 0.000000000 0.000000000 6 0.000000000 0.000022807 0.000000000 7 -0.000031382 0.000000000 0.000000000 7 0.000000000 0.000031382 0.000000000 7 0.000031382 0.000000000 0.000000000 7 0.000000000 -0.000031382 0.000000000 As I mentioned I have had success with optimizing the geometry via z-matrix, but I would like to do it with cartesian as well. Is my issue related to anyway with my CN ligands being far away from the Nickel center? I'm using a 6-311+G* basis set for this optimization with B3LYP. Any help with this issue would be greatly appreciated. From owner-chemistry@ccl.net Sun Mar 31 23:26:00 2013 From: "Jorge Seminario seminario~!~tamu.edu" To: CCL Subject: CCL:G: Odd Gaussian Error with coordinates Message-Id: <-48500-130331212733-11288-VhNmGboHLN930wKmeW9Pfg!A!server.ccl.net> X-Original-From: "Jorge Seminario" Content-Language: en-us Content-Type: multipart/mixed; boundary="----=_NextPart_000_003B_01CE2E4E.2A475DD0" Date: Sun, 31 Mar 2013 20:27:29 -0500 MIME-Version: 1.0 Sent to CCL by: "Jorge Seminario" [seminario::tamu.edu] This is a multipart message in MIME format. ------=_NextPart_000_003B_01CE2E4E.2A475DD0 Content-Type: text/plain; charset="us-ascii" Content-Transfer-Encoding: 7bit It worked pretty well in my laptop (see attach) Jorge Seminario, http://research.che.tamu.edu/groups/Seminario/index-1.html -----Original Message----- > From: owner-chemistry+seminario==tamu.edu(~)ccl.net [mailto:owner-chemistry+seminario==tamu.edu(~)ccl.net] On Behalf Of Bradley Welch bwelch5---slu.edu Sent: Sunday, March 31, 2013 3:28 PM To: Seminario, Jorge M Subject: CCL: Odd Gaussian Error with coordinates Sent to CCL by: "Bradley Welch" [bwelch5|slu.edu] Dear All, I'm doing a optimization on Ni(CN)4 2- and I've had no problems with a z- matrix optimization. I've been attempting to do a cartesian optimization and I get the following error. Problem with coordinate system. Error termination via Lnk1e in /usr/local/g09/l103.exe at Sun Mar 31 15:15:13 2013. Job cpu time: 0 days 0 hours 2 minutes 55.0 seconds. File lengths (MBytes): RWF= 26 Int= 0 D2E= 0 Chk= 2 Scr= 1 My input geometry is the following: -2 1 6 0.000000000 1.906633000 0.000000000 28 0.000000000 0.000000000 0.000000000 6 1.906633000 0.000000000 0.000000000 6 -1.906633000 0.000000000 0.000000000 6 0.000000000 -1.906633000 0.000000000 7 -3.073424000 0.000000000 0.000000000 7 0.000000000 3.073424000 0.000000000 7 3.073424000 0.000000000 0.000000000 7 0.000000000 -3.073424000 0.000000000 I noticed that somehow it results in a geometry that results in everything being crushed together: 6 0.000000000 -0.000022807 0.000000000 28 0.000000000 0.000000000 0.000000000 6 -0.000022807 0.000000000 0.000000000 6 0.000022807 0.000000000 0.000000000 6 0.000000000 0.000022807 0.000000000 7 -0.000031382 0.000000000 0.000000000 7 0.000000000 0.000031382 0.000000000 7 0.000031382 0.000000000 0.000000000 7 0.000000000 -0.000031382 0.000000000 As I mentioned I have had success with optimizing the geometry via z-matrix, but I would like to do it with cartesian as well. Is my issue related to anyway with my CN ligands being far away from the Nickel center? I'm using a 6-311+G* basis set for this optimization with B3LYP. Any help with this issue would be greatly appreciated.http://www.ccl.net/cgi-bin/ccl/send_ccl_messagehttp://www.ccl.net/chemistry/sub_unsub.shtmlhttp://www.ccl.net/spammers.txt------=_NextPart_000_003B_01CE2E4E.2A475DD0 Content-Type: application/octet-stream; name="testingCCL.out" Content-Transfer-Encoding: quoted-printable Content-Disposition: attachment; filename="testingCCL.out" Entering Link 1 =3D c:\g09w\l1.exe PID=3D 8684. =20 Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009, Gaussian, Inc. All Rights Reserved. =20 This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. =20 This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. =20 This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. =20 The following legend is applicable only to US Government contracts under FAR: =20 RESTRICTED RIGHTS LEGEND =20 Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. =20 Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 =20 =20 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- =20 Cite this work as: Gaussian 09, Revision A.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,=20 M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,=20 G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,=20 A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,=20 M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,=20 Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,=20 J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers,=20 K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand,=20 K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,=20 M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,=20 V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,=20 O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski,=20 R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth,=20 P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels,=20 O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski,=20 and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009. =20 ****************************************** Gaussian 09: IA32W-G09RevA.02 11-Jun-2009 31-Mar-2013=20 ****************************************** %chk=3DtestCCL.chk %mem=3D1500MB %nprocshared=3D4 Will use up to 4 processors via shared memory. ------------------------------- #p b3lyp/6-311+g* opt=3Dcartesian ------------------------------- 1/10=3D7,14=3D-1,18=3D10,26=3D3,38=3D1/1,3; 2/12=3D2,17=3D6,18=3D5,29=3D2,40=3D1/2; 3/5=3D4,6=3D6,7=3D11,11=3D2,16=3D1,25=3D1,30=3D1,71=3D1,74=3D-5/1,2,3; 4//1; 5/5=3D2,38=3D5/2; 6/7=3D2,8=3D2,9=3D2,10=3D2,28=3D1/1; 7/7=3D1,29=3D1/1,2,3,16; 1/10=3D7,14=3D-1,18=3D10/3(2); 2/29=3D1/2; 99/12=3D1/99; 2/29=3D1/2; 3/5=3D4,6=3D6,7=3D11,11=3D2,16=3D1,25=3D1,30=3D1,71=3D1,74=3D-5/1,2,3; 4/5=3D5,16=3D3/1; 5/5=3D2,38=3D5/2; 7/7=3D1/1,2,3,16; 1/14=3D-1,18=3D10/3(-5); 2/29=3D1/2; 6/7=3D2,8=3D2,9=3D2,10=3D2,19=3D2,28=3D1/1; 99/9=3D1,12=3D1/99; Leave Link 1 at Sun Mar 31 18:50:01 2013, MaxMem=3D 196608000 cpu: = 0.0 (Enter c:\g09w\l101.exe) ----------- testing ccl ----------- Symbolic Z-matrix: Charge =3D -2 Multiplicity =3D 1 6 0. 1.90663 0.=20 28 0. 0. 0.=20 6 1.90663 0. 0.=20 6 -1.90663 0. 0.=20 6 0. -1.90663 0.=20 7 -3.07342 0. 0.=20 7 0. 3.07342 0.=20 7 3.07342 0. 0.=20 7 0. -3.07342 0.=20 =20 NAtoms=3D 9 NQM=3D 9 NQMF=3D 0 NMic=3D 0 NMicF=3D = 0 NTot=3D 9. Isotopes and Nuclear Properties: (Nuclear quadrupole moments (NQMom) in fm**2, nuclear magnetic moments = (NMagM) in nuclear magnetons) Atom 1 2 3 4 5 = 6 7 8 9 IAtWgt=3D 12 58 12 12 12 = 14 14 14 14 AtmWgt=3D 12.0000000 57.9353471 12.0000000 12.0000000 12.0000000 = 14.0030740 14.0030740 14.0030740 14.0030740 NucSpn=3D 0 0 0 0 0 = 2 2 2 2 AtZEff=3D 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 = 0.0000000 0.0000000 0.0000000 0.0000000 NQMom=3D 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 = 2.0440000 2.0440000 2.0440000 2.0440000 NMagM=3D 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 = 0.4037610 0.4037610 0.4037610 0.4037610 Leave Link 101 at Sun Mar 31 18:50:02 2013, MaxMem=3D 196608000 cpu: = 0.0 (Enter c:\g09w\l103.exe) = GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. No Z-matrix variables, so optimization will use Cartesian coordinates. Trust Radius=3D3.00D-01 FncErr=3D1.00D-07 GrdErr=3D1.00D-06 Number of steps in this run=3D 37 maximum allowed number of steps=3D = 100. = GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Leave Link 103 at Sun Mar 31 18:50:02 2013, MaxMem=3D 196608000 cpu: = 0.0 (Enter c:\g09w\l202.exe) = -------------------------------------------------------------------------= -------------------------- Z-MATRIX (ANGSTROMS AND DEGREES) CD Cent Atom N1 Length/X N2 Alpha/Y = N3 Beta/Z J = -------------------------------------------------------------------------= -------------------------- 1 1 C 0 0.000000 1.906633 = 0.000000 2 2 Ni 0 0.000000 0.000000 = 0.000000 3 3 C 0 1.906633 0.000000 = 0.000000 4 4 C 0 -1.906633 0.000000 = 0.000000 5 5 C 0 0.000000 -1.906633 = 0.000000 6 6 N 0 -3.073424 0.000000 = 0.000000 7 7 N 0 0.000000 3.073424 = 0.000000 8 8 N 0 3.073424 0.000000 = 0.000000 9 9 N 0 0.000000 -3.073424 = 0.000000 = -------------------------------------------------------------------------= -------------------------- Z-Matrix orientation: =20 --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.906633 0.000000 2 28 0 0.000000 0.000000 0.000000 3 6 0 1.906633 0.000000 0.000000 4 6 0 -1.906633 0.000000 0.000000 5 6 0 0.000000 -1.906633 0.000000 6 7 0 -3.073424 0.000000 0.000000 7 7 0 0.000000 3.073424 0.000000 8 7 0 3.073424 0.000000 0.000000 9 7 0 0.000000 -3.073424 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 Ni 1.906633 0.000000 3 C 2.696386 1.906633 0.000000 4 C 2.696386 1.906633 3.813266 0.000000 5 C 3.813266 1.906633 2.696386 2.696386 0.000000 6 N 3.616792 3.073424 4.980057 1.166791 3.616792 7 N 1.166791 3.073424 3.616792 3.616792 4.980057 8 N 3.616792 3.073424 1.166791 4.980057 3.616792 9 N 4.980057 3.073424 3.616792 3.616792 1.166791 6 7 8 9 6 N 0.000000 7 N 4.346478 0.000000 8 N 6.146848 4.346478 0.000000 9 N 4.346478 6.146848 4.346478 0.000000 Stoichiometry C4N4Ni(2-) Framework group D4H[O(Ni),2C2'(NC.CN)] Deg. of freedom 2 Full point group D4H NOp 16 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: =20 --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.906633 0.000000 2 28 0 0.000000 0.000000 0.000000 3 6 0 1.906633 0.000000 0.000000 4 6 0 -1.906633 0.000000 0.000000 5 6 0 0.000000 -1.906633 0.000000 6 7 0 -3.073424 0.000000 0.000000 7 7 0 0.000000 3.073424 0.000000 8 7 0 3.073424 0.000000 0.000000 9 7 0 0.000000 -3.073424 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 1.4365919 1.4365919 = 0.7182959 Leave Link 202 at Sun Mar 31 18:50:02 2013, MaxMem=3D 196608000 cpu: = 0.0 (Enter c:\g09w\l301.exe) Standard basis: 6-311+G(d) (5D, 7F) Ernie: Thresh=3D 0.10000D-02 Tol=3D 0.10000D-05 Strict=3DF. There are 62 symmetry adapted basis functions of AG symmetry. There are 24 symmetry adapted basis functions of B1G symmetry. There are 16 symmetry adapted basis functions of B2G symmetry. There are 16 symmetry adapted basis functions of B3G symmetry. There are 5 symmetry adapted basis functions of AU symmetry. There are 29 symmetry adapted basis functions of B1U symmetry. There are 41 symmetry adapted basis functions of B2U symmetry. There are 41 symmetry adapted basis functions of B3U symmetry. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 234 basis functions, 382 primitive gaussians, 249 cartesian basis = functions 41 alpha electrons 41 beta electrons nuclear repulsion energy 535.2555796992 Hartrees. IExCor=3D 402 DFT=3DT Ex+Corr=3DB3LYP ExCW=3D0 ScaHFX=3D 0.200000 ScaDFX=3D 0.800000 0.720000 1.000000 0.810000 ScalE2=3D 1.000000 = 1.000000 IRadAn=3D 0 IRanWt=3D -1 IRanGd=3D 0 ICorTp=3D0 NAtoms=3D 9 NActive=3D 9 NUniq=3D 3 SFac=3D 3.00D+00 NAtFMM=3D = 80 NAOKFM=3DF Big=3DF Leave Link 301 at Sun Mar 31 18:50:02 2013, MaxMem=3D 196608000 cpu: = 0.0 (Enter c:\g09w\l302.exe) NPDir=3D0 NMtPBC=3D 1 NCelOv=3D 1 NCel=3D 1 NClECP=3D = 1 NCelD=3D 1 NCelK=3D 1 NCelE2=3D 1 NClLst=3D 1 CellRange=3D = 0.0. One-electron integrals computed using PRISM. One-electron integral symmetry used in STVInt NBasis=3D 234 RedAO=3D T NBF=3D 62 24 16 16 5 29 = 41 41 NBsUse=3D 234 1.00D-06 NBFU=3D 62 24 16 16 5 29 = 41 41 Precomputing XC quadrature grid using IXCGrd=3D 2 IRadAn=3D 0 IRanWt=3D -1 IRanGd=3D = 0 AccXCQ=3D 1.00D-10. NRdTot=3D 584 NPtTot=3D 78484 NUsed=3D 81215 NTot=3D = 81231 NSgBfM=3D 244 244 244 244 244 NAtAll=3D 9 9. Leave Link 302 at Sun Mar 31 18:50:02 2013, MaxMem=3D 196608000 cpu: = 0.0 (Enter c:\g09w\l303.exe) DipDrv: MaxL=3D1. Leave Link 303 at Sun Mar 31 18:50:02 2013, MaxMem=3D 196608000 cpu: = 0.0 (Enter c:\g09w\l401.exe) Harris functional with IExCor=3D 402 diagonalized for initial guess. ExpMin=3D 1.39D-02 ExpMax=3D 2.85D+05 ExpMxC=3D 9.63D+03 IAcc=3D3 = IRadAn=3D 0 AccDes=3D 0.00D+00 HarFok: IExCor=3D 402 AccDes=3D 0.00D+00 IRadAn=3D 0 IDoV=3D = 1 ScaDFX=3D 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=3DF IPFlag=3D 0 FMFlag=3D 100000 FMFlg1=3D = 0 NFxFlg=3D 0 DoJE=3DT BraDBF=3DF KetDBF=3DT FulRan=3DT Omega=3D 0.000000 0.000000 1.000000 0.000000 0.000000 = ICntrl=3D 500 IOpCl=3D 0 NMat0=3D 1 NMatS0=3D 1 NMatT0=3D 0 NMatD0=3D 1 = NMtDS0=3D 0 NMtDT0=3D 0 I1Cent=3D 4 NGrid=3D 0. Petite list used in FoFCou. Harris En=3D -1880.55227775781 =20 Initial guess orbital symmetries: Occupied (A1G) (A1G) (EU) (EU) (A2U) (B1G) (EU) (EU) (A1G) (B1G) (EU) (EU) (A1G) (A1G) (EU) (EU) (A2U) (A1G) (EU) (EU) (B1G) (A1G) (EU) (EU) (B1G) (B2G) (A1G) (EU) (EU) (A2U) (EG) (EG) (B1G) (B2U) (A2G) (EU) (EU) (B2G) (EG) (EG) (A1G) Virtual (A2U) (B1G) (B2G) (EU) (EU) (B2U) (EG) (EG) (A2G) (A1G) (EU) (EU) (A2U) (A1G) (B1G) (EG) (EG) (B2G) (A1G) (EU) (EU) (A1G) (A2U) (EU) (EU) (B2U) (A2G) (B1G) (A1G) (A2U) (EG) (EG) (EU) (EU) (EU) (EU) (B1G) (B2G) (EU) (EU) (B2U) (EU) (EU) (A1G) (A2U) (B1G) (A1G) (A2G) (EU) (EU) (EG) (EG) (B2G) (A1G) (B1G) (A2U) (EU) (EU) (B2G) (B2U) (B1G) (EG) (EG) (EU) (EU) (A1G) (A2G) (EU) (EU) (A1G) (B1G) (A2U) (A1G) (B2G) (EG) (EG) (EU) (EU) (B2U) (B1G) (EU) (EU) (A1G) (A2G) (EU) (EU) (B1U) (EG) (EG) (A1U) (A1G) (B1G) (B2U) (EU) (EU) (EU) (EU) (A2U) (A1G) (A2G) (EU) (EU) (EG) (EG) (B1G) (B1G) (B2G) (EG) (EG) (B1G) (A1G) (B2G) (A2U) (EU) (EU) (B1U) (A1U) (EG) (EG) (A1G) (EU) (EU) (B1G) (B2U) (A2U) (EU) (EU) (A2G) (EU) (EU) (EG) (EG) (A1G) (B2G) (EG) (EG) (B2U) (A2U) (A2G) (EU) (EU) (B1G) (B2G) (A1G) (EU) (EU) (B1G) (EU) (EU) (A1G) (B1G) (B1U) (EU) (EU) (A2U) (B2U) (A2U) (EG) (EG) (B2U) (B2G) (EU) (EU) (A2G) (EU) (EU) (A1G) (B1G) (EU) (EU) (A1G) (EG) (EG) (B2G) (A1G) (B1G) (A2U) (EU) (EU) (A1G) (EU) (EU) (B1G) (A1G) (A1G) (EU) (EU) (B1G) (A2U) (EU) (EU) (A1G) (A1G) The electronic state of the initial guess is 1-A1G. Leave Link 401 at Sun Mar 31 18:50:03 2013, MaxMem=3D 196608000 cpu: = 1.0 (Enter c:\g09w\l502.exe) Closed shell SCF: Requested convergence on RMS density matrix=3D1.00D-08 within 128 = cycles. Requested convergence on MAX density matrix=3D1.00D-06. Requested convergence on energy=3D1.00D-06. No special actions if energy rises. Using DIIS extrapolation, IDIIS=3D 1040. Integral symmetry usage will be decided dynamically. 81130 words used for storage of precomputed grid. IEnd=3D 289169 IEndB=3D 289169 NGot=3D 196608000 MDV=3D = 196397722 LenX=3D 196397722 LenY=3D 196335280 Fock matrices will be formed incrementally for 20 cycles. Cycle 1 Pass 1 IDiag 1: FoFCou: FMM=3DF IPFlag=3D 0 FMFlag=3D 100000 FMFlg1=3D = 0 NFxFlg=3D 0 DoJE=3DF BraDBF=3DF KetDBF=3DF FulRan=3DT Omega=3D 0.000000 0.000000 1.000000 0.000000 0.000000 = ICntrl=3D 0 IOpCl=3D 0 NMat0=3D 1 NMatS0=3D 1 NMatT0=3D 0 NMatD0=3D 1 = NMtDS0=3D 0 NMtDT0=3D 0 I1Cent=3D 0 NGrid=3D 0. Petite list used in FoFCou. E=3D -1878.44736233886 =20 DIIS: error=3D 2.97D-01 at cycle 1 NSaved=3D 1. NSaved=3D 1 IEnMin=3D 1 EnMin=3D -1878.44736233886 IErMin=3D 1 = ErrMin=3D 2.97D-01 ErrMax=3D 2.97D-01 EMaxC=3D 1.00D-01 BMatC=3D 3.95D+00 BMatP=3D = 3.95D+00 IDIUse=3D3 WtCom=3D 0.00D+00 WtEn=3D 1.00D+00 Coeff-Com: 0.100D+01 Coeff-En: 0.100D+01 Coeff: 0.100D+01 Gap=3D -0.771 Goal=3D None Shift=3D 0.000 GapD=3D -0.771 DampG=3D0.250 DampE=3D0.125 DampFc=3D0.1250 = IDamp=3D-1. Damping current iteration by 1.25D-01 RMSDP=3D6.91D-02 MaxDP=3D3.45D+00 OVMax=3D 9.80D-01 Cycle 2 Pass 1 IDiag 1: RMSU=3D 3.62D-03 CP: 1.14D+00 E=3D -1878.95992232975 Delta-E=3D -0.512559990889 Rises=3DF = Damp=3DT DIIS: error=3D 1.48D-01 at cycle 2 NSaved=3D 2. NSaved=3D 2 IEnMin=3D 2 EnMin=3D -1878.95992232975 IErMin=3D 2 = ErrMin=3D 1.48D-01 ErrMax=3D 1.48D-01 EMaxC=3D 1.00D-01 BMatC=3D 1.22D+00 BMatP=3D = 3.95D+00 IDIUse=3D3 WtCom=3D 0.00D+00 WtEn=3D 1.00D+00 Coeff-Com: -0.104D+01 0.204D+01 Coeff-En: 0.000D+00 0.100D+01 Coeff: 0.000D+00 0.100D+01 Gap=3D 0.005 Goal=3D None Shift=3D 0.000 RMSDP=3D1.25D-02 MaxDP=3D4.93D-01 DE=3D-5.13D-01 OVMax=3D 3.76D-01 Cycle 3 Pass 1 IDiag 1: RMSU=3D 4.24D-03 CP: 1.27D+00 2.71D+00 E=3D -1875.99265130369 Delta-E=3D 2.967271026057 Rises=3DF = Damp=3DF DIIS: error=3D 3.54D-01 at cycle 3 NSaved=3D 3. NSaved=3D 3 IEnMin=3D 2 EnMin=3D -1878.95992232975 IErMin=3D 2 = ErrMin=3D 1.48D-01 ErrMax=3D 3.54D-01 EMaxC=3D 1.00D-01 BMatC=3D 1.05D+01 BMatP=3D = 1.22D+00 IDIUse=3D2 WtCom=3D 0.00D+00 WtEn=3D 1.00D+00 EnCoef did 100 forward-backward iterations Coeff-En: 0.630D+00 0.317D-01 0.338D+00 Coeff: 0.630D+00 0.317D-01 0.338D+00 Gap=3D 0.130 Goal=3D None Shift=3D 0.000 RMSDP=3D2.46D-02 MaxDP=3D1.25D+00 DE=3D 2.97D+00 OVMax=3D 3.99D-01 Cycle 4 Pass 1 IDiag 1: RMSU=3D 1.95D-03 CP: 8.56D-01 2.22D-01 7.75D-01 E=3D -1879.72850463731 Delta-E=3D -3.735853333617 Rises=3DF = Damp=3DF DIIS: error=3D 7.87D-02 at cycle 4 NSaved=3D 4. NSaved=3D 4 IEnMin=3D 4 EnMin=3D -1879.72850463731 IErMin=3D 4 = ErrMin=3D 7.87D-02 ErrMax=3D 7.87D-02 EMaxC=3D 1.00D-01 BMatC=3D 3.10D-01 BMatP=3D = 1.22D+00 IDIUse=3D3 WtCom=3D 2.13D-01 WtEn=3D 7.87D-01 EnCoef did 100 forward-backward iterations Coeff-Com: 0.143D+00 0.496D-01-0.384D-01 0.846D+00 Coeff-En: 0.186D+00 0.242D-02 0.000D+00 0.811D+00 Coeff: 0.177D+00 0.125D-01-0.819D-02 0.819D+00 Gap=3D 0.176 Goal=3D None Shift=3D 0.000 RMSDP=3D7.90D-03 MaxDP=3D3.99D-01 DE=3D-3.74D+00 OVMax=3D 2.46D-01 Cycle 5 Pass 1 IDiag 1: RMSU=3D 1.31D-03 CP: 7.28D-01 -5.33D-01 5.25D-01 1.27D+00 E=3D -1879.66411028982 Delta-E=3D 0.064394347490 Rises=3DF = Damp=3DF DIIS: error=3D 1.20D-01 at cycle 5 NSaved=3D 5. NSaved=3D 5 IEnMin=3D 4 EnMin=3D -1879.72850463731 IErMin=3D 4 = ErrMin=3D 7.87D-02 ErrMax=3D 1.20D-01 EMaxC=3D 1.00D-01 BMatC=3D 5.29D-01 BMatP=3D = 3.10D-01 IDIUse=3D2 WtCom=3D 0.00D+00 WtEn=3D 1.00D+00 Coeff-En: 0.000D+00 0.000D+00 0.000D+00 0.549D+00 0.451D+00 Coeff: 0.000D+00 0.000D+00 0.000D+00 0.549D+00 0.451D+00 Gap=3D 0.192 Goal=3D None Shift=3D 0.000 RMSDP=3D6.37D-03 MaxDP=3D3.27D-01 DE=3D 6.44D-02 OVMax=3D 1.28D-01 Cycle 6 Pass 1 IDiag 1: RMSU=3D 6.66D-04 CP: 8.40D-01 -1.39D-01 5.08D-01 8.73D-01 = 1.17D-01 E=3D -1879.89748035866 Delta-E=3D -0.233370068838 Rises=3DF = Damp=3DF DIIS: error=3D 1.33D-02 at cycle 6 NSaved=3D 6. NSaved=3D 6 IEnMin=3D 6 EnMin=3D -1879.89748035866 IErMin=3D 6 = ErrMin=3D 1.33D-02 ErrMax=3D 1.33D-02 EMaxC=3D 1.00D-01 BMatC=3D 2.04D-02 BMatP=3D = 3.10D-01 IDIUse=3D3 WtCom=3D 8.67D-01 WtEn=3D 1.33D-01 Coeff-Com: -0.225D+00 0.279D+00-0.160D-01 0.246D+00 0.381D+00 0.334D+00 Coeff-En: 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.692D-01 0.931D+00 Coeff: -0.195D+00 0.242D+00-0.139D-01 0.213D+00 0.340D+00 0.413D+00 Gap=3D 0.178 Goal=3D None Shift=3D 0.000 RMSDP=3D1.79D-03 MaxDP=3D9.07D-02 DE=3D-2.33D-01 OVMax=3D 2.83D-02 Cycle 7 Pass 1 IDiag 1: RMSU=3D 2.17D-04 CP: 8.11D-01 -1.78D-01 6.05D-01 1.00D+00 = 3.17D-01 CP: 4.68D-01 E=3D -1879.90504539463 Delta-E=3D -0.007565035974 Rises=3DF = Damp=3DF DIIS: error=3D 1.32D-02 at cycle 7 NSaved=3D 7. NSaved=3D 7 IEnMin=3D 7 EnMin=3D -1879.90504539463 IErMin=3D 7 = ErrMin=3D 1.32D-02 ErrMax=3D 1.32D-02 EMaxC=3D 1.00D-01 BMatC=3D 1.37D-02 BMatP=3D = 2.04D-02 IDIUse=3D3 WtCom=3D 8.68D-01 WtEn=3D 1.32D-01 EnCoef did 2 forward-backward iterations Coeff-Com: -0.139D+00 0.175D+00-0.164D-01 0.184D+00 0.271D+00 0.307D+00 Coeff-Com: 0.218D+00 Coeff-En: 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.489D-02 0.260D+00 Coeff-En: 0.735D+00 Coeff: -0.121D+00 0.152D+00-0.142D-01 0.160D+00 0.236D+00 0.301D+00 Coeff: 0.286D+00 Gap=3D 0.171 Goal=3D None Shift=3D 0.000 RMSDP=3D4.47D-04 MaxDP=3D2.16D-02 DE=3D-7.57D-03 OVMax=3D 1.56D-02 Cycle 8 Pass 1 IDiag 1: RMSU=3D 7.56D-05 CP: 8.04D-01 -2.04D-01 5.82D-01 1.06D+00 = 3.08D-01 CP: 5.47D-01 4.74D-01 E=3D -1879.91142404413 Delta-E=3D -0.006378649502 Rises=3DF = Damp=3DF DIIS: error=3D 2.08D-03 at cycle 8 NSaved=3D 8. NSaved=3D 8 IEnMin=3D 8 EnMin=3D -1879.91142404413 IErMin=3D 8 = ErrMin=3D 2.08D-03 ErrMax=3D 2.08D-03 EMaxC=3D 1.00D-01 BMatC=3D 2.63D-04 BMatP=3D = 1.37D-02 IDIUse=3D3 WtCom=3D 9.79D-01 WtEn=3D 2.08D-02 Coeff-Com: -0.262D-01 0.285D-01 0.810D-05-0.172D-01 0.401D-01 0.673D-02 Coeff-Com: 0.391D-01 0.929D+00 Coeff-En: 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 Coeff-En: 0.000D+00 0.100D+01 Coeff: -0.257D-01 0.279D-01 0.793D-05-0.169D-01 0.392D-01 0.659D-02 Coeff: 0.383D-01 0.931D+00 Gap=3D 0.172 Goal=3D None Shift=3D 0.000 RMSDP=3D1.53D-04 MaxDP=3D4.76D-03 DE=3D-6.38D-03 OVMax=3D 3.84D-03 Cycle 9 Pass 1 IDiag 1: RMSU=3D 5.08D-05 CP: 8.06D-01 -2.08D-01 5.71D-01 1.04D+00 = 2.98D-01 CP: 6.06D-01 5.93D-01 1.01D+00 E=3D -1879.91156758138 Delta-E=3D -0.000143537243 Rises=3DF = Damp=3DF DIIS: error=3D 1.41D-03 at cycle 9 NSaved=3D 9. NSaved=3D 9 IEnMin=3D 9 EnMin=3D -1879.91156758138 IErMin=3D 9 = ErrMin=3D 1.41D-03 ErrMax=3D 1.41D-03 EMaxC=3D 1.00D-01 BMatC=3D 1.02D-04 BMatP=3D = 2.63D-04 IDIUse=3D3 WtCom=3D 9.86D-01 WtEn=3D 1.41D-02 Coeff-Com: -0.831D-03 0.237D-04 0.748D-03-0.129D-01 0.211D-02-0.267D-01 Coeff-Com: -0.405D-01 0.107D+00 0.971D+00 Coeff-En: 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 Coeff-En: 0.000D+00 0.000D+00 0.100D+01 Coeff: -0.819D-03 0.233D-04 0.738D-03-0.127D-01 0.208D-02-0.263D-01 Coeff: -0.400D-01 0.105D+00 0.972D+00 Gap=3D 0.169 Goal=3D None Shift=3D 0.000 RMSDP=3D1.86D-04 MaxDP=3D9.75D-03 DE=3D-1.44D-04 OVMax=3D 2.95D-03 Cycle 10 Pass 1 IDiag 1: RMSU=3D 6.56D-06 CP: 8.03D-01 -2.20D-01 5.70D-01 1.05D+00 = 3.15D-01 CP: 6.00D-01 5.91D-01 1.13D+00 1.00D+00 E=3D -1879.91161186560 Delta-E=3D -0.000044284219 Rises=3DF = Damp=3DF DIIS: error=3D 5.61D-04 at cycle 10 NSaved=3D 10. NSaved=3D10 IEnMin=3D10 EnMin=3D -1879.91161186560 IErMin=3D10 = ErrMin=3D 5.61D-04 ErrMax=3D 5.61D-04 EMaxC=3D 1.00D-01 BMatC=3D 1.19D-05 BMatP=3D = 1.02D-04 IDIUse=3D3 WtCom=3D 9.94D-01 WtEn=3D 5.61D-03 Coeff-Com: 0.694D-03-0.758D-03 0.701D-04 0.251D-04-0.272D-02 0.787D-03 Coeff-Com: 0.476D-02-0.347D-01 0.138D+00 0.894D+00 Coeff-En: 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00 Coeff-En: 0.000D+00 0.000D+00 0.164D+00 0.836D+00 Coeff: 0.690D-03-0.754D-03 0.697D-04 0.250D-04-0.271D-02 0.782D-03 Coeff: 0.474D-02-0.345D-01 0.138D+00 0.894D+00 Gap=3D 0.170 Goal=3D None Shift=3D 0.000 RMSDP=3D4.56D-05 MaxDP=3D2.41D-03 DE=3D-4.43D-05 OVMax=3D 5.40D-04 Cycle 11 Pass 1 IDiag 1: RMSU=3D 1.35D-06 CP: 8.03D-01 -2.18D-01 5.70D-01 1.05D+00 = 3.11D-01 CP: 6.05D-01 6.01D-01 1.12D+00 1.05D+00 = 8.97D-01 E=3D -1879.91161677231 Delta-E=3D -0.000004906713 Rises=3DF = Damp=3DF DIIS: error=3D 5.50D-05 at cycle 11 NSaved=3D 11. NSaved=3D11 IEnMin=3D11 EnMin=3D -1879.91161677231 IErMin=3D11 = ErrMin=3D 5.50D-05 ErrMax=3D 5.50D-05 EMaxC=3D 1.00D-01 BMatC=3D 1.10D-07 BMatP=3D = 1.19D-05 IDIUse=3D1 WtCom=3D 1.00D+00 WtEn=3D 0.00D+00 Coeff-Com: 0.191D-04-0.452D-04-0.505D-05-0.341D-04 0.850D-04-0.188D-03 Coeff-Com: 0.131D-02 0.503D-02-0.279D-01-0.168D+00 0.119D+01 Coeff: 0.191D-04-0.452D-04-0.505D-05-0.341D-04 0.850D-04-0.188D-03 Coeff: 0.131D-02 0.503D-02-0.279D-01-0.168D+00 0.119D+01 Gap=3D 0.170 Goal=3D None Shift=3D 0.000 RMSDP=3D4.33D-06 MaxDP=3D2.34D-04 DE=3D-4.91D-06 OVMax=3D 6.88D-05 Cycle 12 Pass 1 IDiag 1: RMSU=3D 1.51D-07 CP: 8.03D-01 -2.18D-01 5.70D-01 1.05D+00 = 3.11D-01 CP: 6.05D-01 6.03D-01 1.12D+00 1.05D+00 = 8.95D-01 CP: 1.21D+00 E=3D -1879.91161682063 Delta-E=3D -0.000000048317 Rises=3DF = Damp=3DF DIIS: error=3D 8.19D-07 at cycle 12 NSaved=3D 12. NSaved=3D12 IEnMin=3D12 EnMin=3D -1879.91161682063 IErMin=3D12 = ErrMin=3D 8.19D-07 ErrMax=3D 8.19D-07 EMaxC=3D 1.00D-01 BMatC=3D 2.29D-11 BMatP=3D = 1.10D-07 IDIUse=3D1 WtCom=3D 1.00D+00 WtEn=3D 0.00D+00 Coeff-Com: -0.537D-06 0.431D-07 0.875D-06-0.163D-04 0.945D-05-0.429D-04 Coeff-Com: -0.770D-04 0.366D-03-0.822D-03-0.729D-02 0.640D-02 0.100D+01 Coeff: -0.537D-06 0.431D-07 0.875D-06-0.163D-04 0.945D-05-0.429D-04 Coeff: -0.770D-04 0.366D-03-0.822D-03-0.729D-02 0.640D-02 0.100D+01 Gap=3D 0.170 Goal=3D None Shift=3D 0.000 RMSDP=3D5.35D-08 MaxDP=3D2.13D-06 DE=3D-4.83D-08 OVMax=3D 3.75D-06 Cycle 13 Pass 1 IDiag 1: RMSU=3D 1.37D-08 CP: 8.03D-01 -2.18D-01 5.70D-01 1.05D+00 = 3.11D-01 CP: 6.05D-01 6.03D-01 1.12D+00 1.05D+00 = 8.93D-01 CP: 1.21D+00 1.06D+00 E=3D -1879.91161682058 Delta-E=3D 0.000000000042 Rises=3DF = Damp=3DF DIIS: error=3D 9.47D-07 at cycle 13 NSaved=3D 13. NSaved=3D13 IEnMin=3D12 EnMin=3D -1879.91161682063 IErMin=3D12 = ErrMin=3D 8.19D-07 ErrMax=3D 9.47D-07 EMaxC=3D 1.00D-01 BMatC=3D 3.49D-11 BMatP=3D = 2.29D-11 IDIUse=3D1 WtCom=3D 1.00D+00 WtEn=3D 0.00D+00 Coeff-Com: 0.227D-06-0.145D-06 0.108D-06 0.499D-06-0.121D-05 0.887D-06 Coeff-Com: -0.638D-05 0.763D-05 0.449D-04-0.534D-03-0.649D-02 0.900D-01 Coeff-Com: 0.917D+00 Coeff: 0.227D-06-0.145D-06 0.108D-06 0.499D-06-0.121D-05 0.887D-06 Coeff: -0.638D-05 0.763D-05 0.449D-04-0.534D-03-0.649D-02 0.900D-01 Coeff: 0.917D+00 Gap=3D 0.170 Goal=3D None Shift=3D 0.000 RMSDP=3D4.30D-08 MaxDP=3D2.13D-06 DE=3D 4.18D-11 OVMax=3D 8.11D-07 Cycle 14 Pass 1 IDiag 1: RMSU=3D 2.91D-09 CP: 8.03D-01 -2.18D-01 5.70D-01 1.05D+00 = 3.11D-01 CP: 6.05D-01 6.03D-01 1.12D+00 1.05D+00 = 8.92D-01 CP: 1.21D+00 1.07D+00 1.06D+00 E=3D -1879.91161682064 Delta-E=3D -0.000000000055 Rises=3DF = Damp=3DF DIIS: error=3D 1.13D-07 at cycle 14 NSaved=3D 14. NSaved=3D14 IEnMin=3D14 EnMin=3D -1879.91161682064 IErMin=3D14 = ErrMin=3D 1.13D-07 ErrMax=3D 1.13D-07 EMaxC=3D 1.00D-01 BMatC=3D 5.46D-13 BMatP=3D = 2.29D-11 IDIUse=3D1 WtCom=3D 1.00D+00 WtEn=3D 0.00D+00 Coeff-Com: 0.497D-07-0.610D-07-0.809D-09 0.291D-06-0.316D-06 0.975D-06 Coeff-Com: 0.394D-05-0.454D-05 0.131D-04-0.225D-04 0.432D-03-0.191D-01 Coeff-Com: 0.105D-02 0.102D+01 Coeff: 0.497D-07-0.610D-07-0.809D-09 0.291D-06-0.316D-06 0.975D-06 Coeff: 0.394D-05-0.454D-05 0.131D-04-0.225D-04 0.432D-03-0.191D-01 Coeff: 0.105D-02 0.102D+01 Gap=3D 0.170 Goal=3D None Shift=3D 0.000 RMSDP=3D2.41D-09 MaxDP=3D8.24D-08 DE=3D-5.55D-11 OVMax=3D 1.11D-07 SCF Done: E(RB3LYP) =3D -1879.91161682 A.U. after 14 cycles Convg =3D 0.2409D-08 -V/T =3D 2.0014 KE=3D 1.877280778578D+03 PE=3D-5.566919675786D+03 EE=3D = 1.274471700688D+03 Leave Link 502 at Sun Mar 31 18:50:48 2013, MaxMem=3D 196608000 cpu: = 45.0 (Enter c:\g09w\l601.exe) Copying SCF densities to generalized density rwf, IOpCl=3D 0 IROHF=3D0. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1G) (A1G) (EU) (EU) (A2U) (B1G) (EU) (EU) (A1G) (B1G) (EU) (EU) (A1G) (A1G) (EU) (EU) (A2U) (A1G) (EU) (EU) (B1G) (A1G) (B1G) (EU) (EU) (B2G) (A1G) (B1G) (EU) (EU) (EG) (EG) (A2U) (B2U) (A2G) (EU) (EU) (B2G) (EG) (EG) (A1G) Virtual (A1G) (A2U) (B1G) (EU) (EU) (B1G) (A1G) (A2U) (B2G) (EG) (EG) (A1G) (EU) (EU) (EG) (EG) (EU) (EU) (B2U) (B2G) (A2G) (EU) (EU) (B2U) (A1G) (A2U) (A2G) (B1G) (A2U) (A1G) (EG) (EG) (EU) (EU) (B1G) (B2G) (EU) (EU) (B2U) (EU) (EU) (B1G) (EU) (EU) (A1G) (A2G) (A1G) (A2U) (EG) (EG) (EU) (EU) (B2G) (B1G) (A1G) (A2U) (EU) (EU) (B2G) (B2U) (EG) (EG) (A1G) (EU) (EU) (B1G) (A2G) (EU) (EU) (A1G) (B1G) (A1G) (A2U) (EU) (EU) (EG) (EG) (B2G) (B2U) (B1G) (EU) (EU) (A2G) (A1G) (EU) (EU) (B1U) (EG) (EG) (A1U) (A1G) (B1G) (EU) (EU) (B2U) (EU) (EU) (A1G) (A2U) (EG) (EG) (A2G) (EU) (EU) (B1G) (B1G) (B2G) (EG) (EG) (A1G) (B1G) (B2G) (A2U) (EU) (EU) (B1U) (A1U) (EG) (EG) (A1G) (EU) (EU) (B1G) (B2U) (A2U) (EU) (EU) (A2G) (EU) (EU) (EG) (EG) (A1G) (B2G) (EG) (EG) (A2U) (B2U) (B1G) (A2G) (EU) (EU) (B2G) (A1G) (EU) (EU) (B1G) (EU) (EU) (A1G) (B1G) (B1U) (EU) (EU) (A2U) (B2U) (A2U) (EG) (EG) (B2U) (B2G) (EU) (EU) (EU) (EU) (A2G) (A1G) (B1G) (A1G) (EU) (EU) (EG) (EG) (B2G) (A1G) (B1G) (A2U) (EU) (EU) (A1G) (EU) (EU) (B1G) (A1G) (A1G) (EU) (EU) (B1G) (A2U) (EU) (EU) (A1G) (A1G) The electronic state is 1-A1G. Alpha occ. eigenvalues -- -299.55657 -35.48740 -30.94052 -30.94052 = -30.91098 Alpha occ. eigenvalues -- -14.01097 -14.01096 -14.01096 -14.01096 = -9.90086 Alpha occ. eigenvalues -- -9.90083 -9.90083 -9.90082 -3.74404 = -2.34924 Alpha occ. eigenvalues -- -2.34924 -2.30076 -0.60532 -0.60318 = -0.60318 Alpha occ. eigenvalues -- -0.60164 -0.22680 -0.15493 -0.15259 = -0.15259 Alpha occ. eigenvalues -- -0.09725 -0.08182 -0.07648 -0.06673 = -0.06673 Alpha occ. eigenvalues -- -0.06428 -0.06428 -0.06128 -0.04440 = -0.03111 Alpha occ. eigenvalues -- -0.02615 -0.02615 -0.01281 0.00909 = 0.00909 Alpha occ. eigenvalues -- 0.02105 Alpha virt. eigenvalues -- 0.19088 0.22922 0.23507 0.24301 = 0.24301 Alpha virt. eigenvalues -- 0.26698 0.27050 0.28837 0.29939 = 0.31615 Alpha virt. eigenvalues -- 0.31615 0.32123 0.32387 0.32387 = 0.33125 Alpha virt. eigenvalues -- 0.33125 0.33164 0.33164 0.33568 = 0.33729 Alpha virt. eigenvalues -- 0.34998 0.35957 0.35957 0.36742 = 0.38782 Alpha virt. eigenvalues -- 0.41078 0.41219 0.41818 0.44161 = 0.45367 Alpha virt. eigenvalues -- 0.45711 0.45711 0.45727 0.45727 = 0.47816 Alpha virt. eigenvalues -- 0.48133 0.49316 0.49316 0.50089 = 0.50202 Alpha virt. eigenvalues -- 0.50202 0.53858 0.54040 0.54040 = 0.54346 Alpha virt. eigenvalues -- 0.56704 0.58400 0.60110 0.74992 = 0.74992 Alpha virt. eigenvalues -- 0.75655 0.75655 0.80864 0.82976 = 0.84947 Alpha virt. eigenvalues -- 0.85332 0.89930 0.89930 0.90019 = 0.90453 Alpha virt. eigenvalues -- 0.91631 0.91631 0.95482 0.98443 = 0.98443 Alpha virt. eigenvalues -- 0.98689 1.02920 1.03777 1.03777 = 1.09964 Alpha virt. eigenvalues -- 1.14571 1.15027 1.15916 1.18335 = 1.18335 Alpha virt. eigenvalues -- 1.18348 1.18348 1.18614 1.20985 = 1.22541 Alpha virt. eigenvalues -- 1.24188 1.24188 1.33349 1.34000 = 1.44968 Alpha virt. eigenvalues -- 1.44968 1.55824 1.58997 1.58997 = 1.59385 Alpha virt. eigenvalues -- 1.59633 1.61606 1.65138 1.65138 = 1.66402 Alpha virt. eigenvalues -- 1.69189 1.69189 1.70912 1.75391 = 1.77467 Alpha virt. eigenvalues -- 1.77467 1.78836 1.79117 1.79117 = 1.79746 Alpha virt. eigenvalues -- 1.85104 1.87811 2.04749 2.04749 = 2.04794 Alpha virt. eigenvalues -- 2.07365 2.11758 2.15267 2.22860 = 2.22860 Alpha virt. eigenvalues -- 2.36553 2.37198 2.37692 2.37692 = 2.37910 Alpha virt. eigenvalues -- 2.38388 2.38388 2.40259 2.79090 = 2.80385 Alpha virt. eigenvalues -- 2.80892 2.80892 2.87976 2.89753 = 2.89753 Alpha virt. eigenvalues -- 2.90883 2.90883 2.91209 3.02895 = 3.16783 Alpha virt. eigenvalues -- 3.16783 3.17153 3.17254 3.17982 = 3.19275 Alpha virt. eigenvalues -- 3.20007 3.20007 3.21466 3.30125 = 3.35238 Alpha virt. eigenvalues -- 3.35238 3.42159 3.47018 3.47018 = 3.61988 Alpha virt. eigenvalues -- 3.67924 3.83245 3.89485 3.89485 = 3.90723 Alpha virt. eigenvalues -- 3.91599 4.25223 4.26604 4.26604 = 4.27064 Alpha virt. eigenvalues -- 4.27993 4.28579 4.28579 4.30049 = 4.30049 Alpha virt. eigenvalues -- 4.36245 4.66292 4.83524 4.85369 = 4.88457 Alpha virt. eigenvalues -- 4.88457 7.11128 7.11128 7.17205 = 7.31374 Alpha virt. eigenvalues -- 7.67791 9.04135 9.41320 9.41320 = 24.25356 Alpha virt. eigenvalues -- 24.33561 24.33561 24.53255 30.55419 = 36.11836 Alpha virt. eigenvalues -- 36.12929 36.12929 36.18024 36.56618 = 36.84166 Alpha virt. eigenvalues -- 36.84166 162.88483 845.60206 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 11.688479 -1.817703 -0.007022 -0.007022 -3.178131 = -0.028329 2 Ni -1.817703 31.772409 -1.817703 -1.817703 -1.817703 = 0.328846 3 C -0.007022 -1.817703 11.688479 -3.178131 -0.007022 = 0.155411 4 C -0.007022 -1.817703 -3.178131 11.688479 -0.007022 = -0.069583 5 C -3.178131 -1.817703 -0.007022 -0.007022 11.688479 = -0.028329 6 N -0.028329 0.328846 0.155411 -0.069583 -0.028329 = 6.974375 7 N -0.069583 0.328846 -0.028329 -0.028329 0.155411 = 0.004251 8 N -0.028329 0.328846 -0.069583 0.155411 -0.028329 = -0.002910 9 N 0.155411 0.328846 -0.028329 -0.028329 -0.069583 = 0.004251 7 8 9 1 C -0.069583 -0.028329 0.155411 2 Ni 0.328846 0.328846 0.328846 3 C -0.028329 -0.069583 -0.028329 4 C -0.028329 0.155411 -0.028329 5 C 0.155411 -0.028329 -0.069583 6 N 0.004251 -0.002910 0.004251 7 N 6.974375 0.004251 -0.002910 8 N 0.004251 6.974375 0.004251 9 N -0.002910 0.004251 6.974375 Mulliken atomic charges: 1 1 C -0.707771 2 Ni 2.183018 3 C -0.707771 4 C -0.707771 5 C -0.707771 6 N -0.337983 7 N -0.337983 8 N -0.337983 9 N -0.337983 Sum of Mulliken atomic charges =3D -2.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.707771 2 Ni 2.183018 3 C -0.707771 4 C -0.707771 5 C -0.707771 6 N -0.337983 7 N -0.337983 8 N -0.337983 9 N -0.337983 Sum of Mulliken charges with hydrogens summed into heavy atoms =3D = -2.00000 Electronic spatial extent (au): =3D 1479.9828 Charge=3D -2.0000 electrons Dipole moment (field-independent basis, Debye): X=3D 0.0000 Y=3D 0.0000 Z=3D = 0.0000 Tot=3D 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX=3D -118.3835 YY=3D -118.3835 ZZ=3D = -64.4191 XY=3D 0.0000 XZ=3D 0.0000 YZ=3D = 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX=3D -17.9881 YY=3D -17.9881 ZZ=3D = 35.9762 XY=3D 0.0000 XZ=3D 0.0000 YZ=3D = 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX=3D 0.0000 YYY=3D 0.0000 ZZZ=3D = 0.0000 XYY=3D 0.0000 XXY=3D 0.0000 XXZ=3D 0.0000 XZZ=3D = 0.0000 YZZ=3D 0.0000 YYZ=3D 0.0000 XYZ=3D 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX=3D -1739.5192 YYYY=3D -1739.5192 ZZZZ=3D = -82.6714 XXXY=3D 0.0000 XXXZ=3D 0.0000 YYYX=3D 0.0000 YYYZ=3D = 0.0000 ZZZX=3D 0.0000 ZZZY=3D 0.0000 XXYY=3D -377.9420 XXZZ=3D = -203.5478 YYZZ=3D -203.5478 XXYZ=3D 0.0000 YYXZ=3D 0.0000 ZZXY=3D = 0.0000 N-N=3D 5.352555796992D+02 E-N=3D-5.566919691611D+03 KE=3D = 1.877280778578D+03 Symmetry AG KE=3D 1.126023289687D+03 Symmetry B1G KE=3D 2.223012296531D+01 Symmetry B2G KE=3D 1.940209930440D+01 Symmetry B3G KE=3D 1.940209930440D+01 Symmetry AU KE=3D 2.611932632831D-33 Symmetry B1U KE=3D 1.730690199172D+02 Symmetry B2U KE=3D 2.585770737000D+02 Symmetry B3U KE=3D 2.585770737000D+02 No NMR shielding tensors so no spin-rotation constants. Leave Link 601 at Sun Mar 31 18:50:49 2013, MaxMem=3D 196608000 cpu: = 1.0 (Enter c:\g09w\l701.exe) Compute integral first derivatives. ... and contract with generalized density number 0. Leave Link 701 at Sun Mar 31 18:50:50 2013, MaxMem=3D 196608000 cpu: = 1.0 (Enter c:\g09w\l702.exe) L702 exits ... SP integral derivatives will be done elsewhere. Leave Link 702 at Sun Mar 31 18:50:50 2013, MaxMem=3D 196608000 cpu: = 0.0 (Enter c:\g09w\l703.exe) Compute integral first derivatives, UseDBF=3DF ICtDFT=3D 0. Integral derivatives from FoFDir, PRISM(SPDF). Calling FoFJK, ICntrl=3D 2127 FMM=3DF ISym2X=3D1 I1Cent=3D 0 = IOpClX=3D 0 NMat=3D1 NMatS=3D1 NMatT=3D0. FoFCou: FMM=3DF IPFlag=3D 0 FMFlag=3D 100000 FMFlg1=3D = 800 NFxFlg=3D 0 DoJE=3DF BraDBF=3DF KetDBF=3DF FulRan=3DT Omega=3D 0.000000 0.000000 1.000000 0.000000 0.000000 = ICntrl=3D 2127 IOpCl=3D 0 NMat0=3D 1 NMatS0=3D 1 NMatT0=3D 0 NMatD0=3D 1 = NMtDS0=3D 0 NMtDT0=3D 0 I1Cent=3D 0 NGrid=3D 0. Petite list used in FoFCou. Leave Link 703 at Sun Mar 31 18:51:01 2013, MaxMem=3D 196608000 cpu: = 11.0 (Enter c:\g09w\l716.exe) Dipole =3D-1.20841266D-14 0.00000000D+00 1.13490861D-32 ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000000000 -0.000022807 0.000000000 2 28 0.000000000 0.000000000 0.000000000 3 6 -0.000022807 0.000000000 0.000000000 4 6 0.000022807 0.000000000 0.000000000 5 6 0.000000000 0.000022807 0.000000000 6 7 -0.000031382 0.000000000 0.000000000 7 7 0.000000000 0.000031382 0.000000000 8 7 0.000031382 0.000000000 0.000000000 9 7 0.000000000 -0.000031382 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000031382 RMS 0.000014932 Force constants in Cartesian coordinates:=20 1 2 3 4 = 5=20 1 0.191392D+00 2 0.000000D+00 0.141381D+01 3 0.000000D+00 0.000000D+00 0.152876D+00 4 -0.127758D+00 0.000000D+00 0.000000D+00 0.551191D+00 5 0.000000D+00 -0.179306D+00 0.000000D+00 0.000000D+00 = 0.551191D+00 6 0.000000D+00 0.000000D+00 -0.892425D-01 0.000000D+00 = 0.000000D+00 7 0.000000D+00 0.000000D+00 0.000000D+00 -0.179306D+00 = 0.000000D+00 8 0.192579D-01 0.000000D+00 0.000000D+00 0.000000D+00 = -0.127758D+00 9 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 10 0.000000D+00 0.000000D+00 0.000000D+00 -0.179306D+00 = 0.000000D+00 11 -0.192579D-01 0.000000D+00 0.000000D+00 0.000000D+00 = -0.127758D+00 12 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 13 0.192579D-01 0.000000D+00 0.000000D+00 -0.127758D+00 = 0.000000D+00 14 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = -0.179306D+00 15 0.000000D+00 0.000000D+00 0.192579D-01 0.000000D+00 = 0.000000D+00 16 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 17 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.314689D-01 18 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 19 -0.828918D-01 0.000000D+00 0.000000D+00 0.314689D-01 = 0.000000D+00 20 0.000000D+00 -0.123451D+01 0.000000D+00 0.000000D+00 = 0.000000D+00 21 0.000000D+00 0.000000D+00 -0.828918D-01 0.000000D+00 = 0.000000D+00 22 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 23 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.314689D-01 24 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 25 0.000000D+00 0.000000D+00 0.000000D+00 0.314689D-01 = 0.000000D+00 26 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 27 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 6 7 8 9 = 10=20 6 0.231094D+00 7 0.000000D+00 0.141381D+01 8 0.000000D+00 0.000000D+00 0.191392D+00 9 -0.892425D-01 0.000000D+00 0.000000D+00 0.152876D+00 10 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.141381D+01 11 0.000000D+00 0.000000D+00 0.192579D-01 0.000000D+00 = 0.000000D+00 12 -0.892425D-01 0.000000D+00 0.000000D+00 0.192579D-01 = 0.000000D+00 13 0.000000D+00 0.000000D+00 -0.192579D-01 0.000000D+00 = 0.000000D+00 14 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 15 -0.892425D-01 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 16 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = -0.123451D+01 17 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 18 0.314689D-01 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 19 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 20 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 21 0.314689D-01 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 22 0.000000D+00 -0.123451D+01 0.000000D+00 0.000000D+00 = 0.000000D+00 23 0.000000D+00 0.000000D+00 -0.828918D-01 0.000000D+00 = 0.000000D+00 24 0.314689D-01 0.000000D+00 0.000000D+00 -0.828918D-01 = 0.000000D+00 25 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 26 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 27 0.314689D-01 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 11 12 13 14 = 15=20 11 0.191392D+00 12 0.000000D+00 0.152876D+00 13 0.192579D-01 0.000000D+00 0.191392D+00 14 0.000000D+00 0.000000D+00 0.000000D+00 0.141381D+01 15 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.152876D+00 16 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 17 -0.828918D-01 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 18 0.000000D+00 -0.828918D-01 0.000000D+00 0.000000D+00 = 0.000000D+00 19 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 20 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 21 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 22 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 23 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 24 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 25 0.000000D+00 0.000000D+00 -0.828918D-01 0.000000D+00 = 0.000000D+00 26 0.000000D+00 0.000000D+00 0.000000D+00 -0.123451D+01 = 0.000000D+00 27 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = -0.828918D-01 16 17 18 19 = 20=20 16 0.123451D+01 17 0.000000D+00 0.514228D-01 18 0.000000D+00 0.000000D+00 0.514228D-01 19 0.000000D+00 0.000000D+00 0.000000D+00 0.514228D-01 20 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.123451D+01 21 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 22 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 23 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 24 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 25 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 26 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 27 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 21 22 23 24 = 25=20 21 0.514228D-01 22 0.000000D+00 0.123451D+01 23 0.000000D+00 0.000000D+00 0.514228D-01 24 0.000000D+00 0.000000D+00 0.000000D+00 0.514228D-01 25 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.514228D-01 26 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 27 0.000000D+00 0.000000D+00 0.000000D+00 0.000000D+00 = 0.000000D+00 26 27=20 26 0.123451D+01 27 0.000000D+00 0.514228D-01 Leave Link 716 at Sun Mar 31 18:51:01 2013, MaxMem=3D 196608000 cpu: = 0.0 (Enter c:\g09w\l103.exe) = GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Search for a local minimum. Step number 1 out of a maximum of 37 All quantities printed in internal units (Hartrees-Bohrs-Radians) Second derivative matrix not updated -- first step. Eigenvalues --- 0.00924 0.01610 0.02379 0.02379 0.04213 Eigenvalues --- 0.08640 0.08640 0.18483 0.18483 0.18483 Eigenvalues --- 0.19171 0.19171 0.21432 0.24597 0.38734 Eigenvalues --- 0.61553 0.61553 2.56192 2.56192 2.57279 Eigenvalues --- 2.57279 RFO step: Lambda=3D 0.00000000D+00 EMin=3D 9.24145139D-03 ClnCor: largest displacement from symmetrization is 1.45D-12 for atom = 8. Linear search not attempted -- first point. ClnCor: largest displacement from symmetrization is 1.26D-29 for atom = 6. TrRot=3D 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) X1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Y1 3.60301 -0.00002 0.00000 0.00005 0.00005 3.60306 Z1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 X2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Y2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Z2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 X3 3.60301 -0.00002 0.00000 0.00005 0.00005 3.60306 Y3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Z3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 X4 -3.60301 0.00002 0.00000 -0.00005 -0.00005 -3.60306 Y4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Z4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 X5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Y5 -3.60301 0.00002 0.00000 -0.00005 -0.00005 -3.60306 Z5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 X6 -5.80793 -0.00003 0.00000 -0.00007 -0.00007 -5.80800 Y6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Z6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 X7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Y7 5.80793 0.00003 0.00000 0.00007 0.00007 5.80800 Z7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 X8 5.80793 0.00003 0.00000 0.00007 0.00007 5.80800 Y8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Z8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 X9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Y9 -5.80793 -0.00003 0.00000 -0.00007 -0.00007 -5.80800 Z9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Item Value Threshold Converged? Maximum Force 0.000031 0.000450 YES RMS Force 0.000015 0.000300 YES Maximum Displacement 0.000073 0.001800 YES RMS Displacement 0.000034 0.001200 YES Predicted change in Energy=3D-2.415785D-09 Optimization completed. -- Stationary point found. = GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Largest change from initial coordinates is atom 0 0.000 = Angstoms. Leave Link 103 at Sun Mar 31 18:51:01 2013, MaxMem=3D 196608000 cpu: = 0.0 (Enter c:\g09w\l202.exe) Input orientation: =20 --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.906633 0.000000 2 28 0 0.000000 0.000000 0.000000 3 6 0 1.906633 0.000000 0.000000 4 6 0 -1.906633 0.000000 0.000000 5 6 0 0.000000 -1.906633 0.000000 6 7 0 -3.073424 0.000000 0.000000 7 7 0 0.000000 3.073424 0.000000 8 7 0 3.073424 0.000000 0.000000 9 7 0 0.000000 -3.073424 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 Ni 1.906633 0.000000 3 C 2.696386 1.906633 0.000000 4 C 2.696386 1.906633 3.813266 0.000000 5 C 3.813266 1.906633 2.696386 2.696386 0.000000 6 N 3.616792 3.073424 4.980057 1.166791 3.616792 7 N 1.166791 3.073424 3.616792 3.616792 4.980057 8 N 3.616792 3.073424 1.166791 4.980057 3.616792 9 N 4.980057 3.073424 3.616792 3.616792 1.166791 6 7 8 9 6 N 0.000000 7 N 4.346478 0.000000 8 N 6.146848 4.346478 0.000000 9 N 4.346478 6.146848 4.346478 0.000000 Stoichiometry C4N4Ni(2-) Framework group D4H[O(Ni),2C2'(NC.CN)] Deg. of freedom 2 Full point group D4H NOp 16 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: =20 --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.906633 0.000000 2 28 0 0.000000 0.000000 0.000000 3 6 0 1.906633 0.000000 0.000000 4 6 0 -1.906633 0.000000 0.000000 5 6 0 0.000000 -1.906633 0.000000 6 7 0 -3.073424 0.000000 0.000000 7 7 0 0.000000 3.073424 0.000000 8 7 0 3.073424 0.000000 0.000000 9 7 0 0.000000 -3.073424 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 1.4365919 1.4365919 = 0.7182959 Leave Link 202 at Sun Mar 31 18:51:01 2013, MaxMem=3D 196608000 cpu: = 0.0 (Enter c:\g09w\l9999.exe) 1|1|UNPC-JORGE-VAIO|FOpt|RB3LYP|6-311+G(d)|C4N4Ni1(2-)|JORGE|31-Mar-20 13|0||#p b3lyp/6-311+g* opt=3Dcartesian||testing = ccl||-2,1|C,0.,1.906633 ,0.|Ni,0.,0.,0.|C,1.906633,0.,0.|C,-1.906633,0.,0.|C,0.,-1.906633,0.|N ,-3.073424,0.,0.|N,0.,3.073424,0.|N,3.073424,0.,0.|N,0.,-3.073424,0.|| = Version=3DIA32W-G09RevA.02|State=3D1-A1G|HF=3D-1879.9116168|RMSD=3D2.409e= -009| = RMSF=3D1.493e-005|Dipole=3D0.,0.,0.|Quadrupole=3D-13.3737162,-13.3737162,= 26. 7474323,0.,0.,0.|PG=3DD04H [O(Ni1),2C2'(N1C1.C1N1)]||(~) YOU CAN LEAD A BOY TO COLLEGE.... BUT YOU CANNOT MAKE HIM THINK.... ELBERT HUBBARD Job cpu time: 0 days 0 hours 1 minutes 0.0 seconds. File lengths (MBytes): RWF=3D 34 Int=3D 0 D2E=3D 0 = Chk=3D 4 Scr=3D 1 Normal termination of Gaussian 09 at Sun Mar 31 18:51:01 2013. ------=_NextPart_000_003B_01CE2E4E.2A475DD0--