From owner-chemistry@ccl.net Wed Jul 13 07:56:01 2016 From: "Norrby, Per-Ola Per-Ola.Norrby!^!astrazeneca.com" To: CCL Subject: CCL:G: Radical-to-cation calculation Gaussian Message-Id: <-52298-160713014830-12473-q/BwFVkurQSs99jkTYCSLg.@.server.ccl.net> X-Original-From: "Norrby, Per-Ola" Content-Language: en-US Content-Transfer-Encoding: 8bit Content-Type: text/plain; charset="us-ascii" Date: Wed, 13 Jul 2016 05:48:22 +0000 MIME-Version: 1.0 Sent to CCL by: "Norrby, Per-Ola" [Per-Ola.Norrby-#-astrazeneca.com] Dear Raphael, The electron will not be free in any realistic scenario. You have to have a hypothesis of what is your electron acceptor, and then calculate the energy of the bimolecular reaction: A. + B+ <=> A+ + B. Warning: if your electron acceptor is not a cation, so that you actually change overall charge in the reaction (going from two neutrals to a cation and an anion), you will get huge errors with most common theories; the solvation models are generally not good enough. /Per-Ola -----Original Message----- > From: owner-chemistry+per-ola.norrby==astrazeneca.com!=!ccl.net [mailto:owner-chemistry+per-ola.norrby==astrazeneca.com!=!ccl.net] On Behalf Of Raphael Martinez raphaelmartinez1983[*]gmail.com Sent: den 13 juli 2016 04:20 To: Norrby, Per-Ola Subject: CCL: Radical-to-cation calculation Gaussian Sent to CCL by: "Raphael Martinez" [raphaelmartinez1983^gmail.com] Dear all, Please forgive me in advance if my question is too simple. I have an organic molecule, it is a hydrocarbon which contains a radical. I have optimized the geometry of the structure and calculated its energy using DFT. Now, I am planning to calculate the exact same molecule, but in its cationic form, so minus 1 electron. I need to place this to molecules relative to each other in a reaction path. In order for me to be able to compared the energies between the two structures, do I have to add the energy of an electron to the cationic form?, or do I have to do something else is order to be able to compared them? Or I do not need to do anything at all? Thanks for the help.http://www.ccl.net/cgi-bin/ccl/send_ccl_messagehttp://www.ccl.net/chemistry/sub_unsub.shtmlhttp://www.ccl.net/spammers.txt________________________________ Confidentiality Notice: This message is private and may contain confidential and proprietary information. If you have received this message in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this message is not permitted and may be unlawful. From owner-chemistry@ccl.net Wed Jul 13 10:26:01 2016 From: "Brian Skinn bskinn{=}alum.mit.edu" To: CCL Subject: CCL:G: Radical-to-cation calculation Gaussian Message-Id: <-52299-160713101313-19840-FghTnz87uRThZEpb/aHNEA.@.server.ccl.net> X-Original-From: Brian Skinn Content-Type: multipart/alternative; boundary=94eb2c07c55ef5e748053784fb9d Date: Wed, 13 Jul 2016 10:12:46 -0400 MIME-Version: 1.0 Sent to CCL by: Brian Skinn [bskinn__alum.mit.edu] --94eb2c07c55ef5e748053784fb9d Content-Type: text/plain; charset=UTF-8 Per-Ola- Basis set selection will pose challenges in the A + B -> A+ + B- case too, will it not? The diffuse functions likely necessary for a good description of the anion will potentially cause problems in convergence of the cation? -Brian On Wed, Jul 13, 2016 at 1:48 AM, Norrby, Per-Ola Per-Ola.Norrby!^! astrazeneca.com wrote: > > Sent to CCL by: "Norrby, Per-Ola" [Per-Ola.Norrby-#-astrazeneca.com] > Dear Raphael, > > The electron will not be free in any realistic scenario. You have to have > a hypothesis of what is your electron acceptor, and then calculate the > energy of the bimolecular reaction: > > A. + B+ <=> A+ + B. > > Warning: if your electron acceptor is not a cation, so that you actually > change overall charge in the reaction (going from two neutrals to a cation > and an anion), you will get huge errors with most common theories; the > solvation models are generally not good enough. > > /Per-Ola > > -----Original Message----- > > From: owner-chemistry+per-ola.norrby==astrazeneca.com^ccl.net [mailto: > owner-chemistry+per-ola.norrby==astrazeneca.com^ccl.net] On Behalf Of > Raphael Martinez raphaelmartinez1983[*]gmail.com > Sent: den 13 juli 2016 04:20 > To: Norrby, Per-Ola > Subject: CCL: Radical-to-cation calculation Gaussian > > > Sent to CCL by: "Raphael Martinez" [raphaelmartinez1983^gmail.com] Dear > all, Please forgive me in advance if my question is too simple. I have an > organic molecule, it is a hydrocarbon which contains a radical. I have > optimized the geometry of the structure and calculated its energy using > DFT. Now, I am planning to calculate the exact same molecule, but in its > cationic form, so minus 1 electron. I need to place this to molecules > relative to each other in a reaction path. In order for me to be able to > compared the energies between the two structures, do I have to add the > energy of an electron to the cationic form?, or do I have to do something > else is order to be able to compared them? Or I do not need to do anything > at all? Thanks for the help.http://www.ccl.net/chemistry/sub_unsub.shtmlhttp://www.ccl.net/spammers.txt________________________________ > > > Confidentiality Notice: This message is private and may contain > confidential and proprietary information. If you have received this message > in error, please notify us and remove it from your system and note that you > must not copy, distribute or take any action in reliance on it. Any > unauthorized use or disclosure of the contents of this message is not > permitted and may be unlawful.> > > --94eb2c07c55ef5e748053784fb9d Content-Type: text/html; charset=UTF-8 Content-Transfer-Encoding: quoted-printable
Per-Ola-

Basis set selection will= pose challenges in the A + B -> A+ + B- case too, will it not?=C2=A0 Th= e diffuse functions likely necessary for a good description of the anion wi= ll potentially cause problems in convergence of the cation?=C2=A0

<= /div>
-Brian

On Wed, Jul 13, 2016 at 1:48 AM, Norrby, Per-Ola Per-Ola.Norrby!^!astrazeneca.com <owner-chemistry*o*ccl.net> wrote:

Sent to CCL by: "Norrby, Per-Ola" [Per-Ola.Norrby-#-astrazeneca.com<= /a>]
Dear Raphael,

The electron will not be free in any realistic scenario. You have to have a= hypothesis of what is your electron acceptor, and then calculate the energ= y of the bimolecular reaction:

A.=C2=A0 +=C2=A0 B+=C2=A0 <=3D>=C2=A0 A+=C2=A0 +=C2=A0 B.

Warning: if your electron acceptor is not a cation, so that you actually ch= ange overall charge in the reaction (going from two neutrals to a cation an= d an anion), you will get huge errors with most common theories; the solvat= ion models are generally not good enough.

/Per-Ola

-----Original Message-----
> From: owner-chemistry+per-ola.norrby=3D=3D
astrazeneca.com^ccl.net [mailto:owner-c= hemistry+per-ola.norrby=3D=3Dastrazeneca.com^ccl.net] On Behalf Of Raphael Ma= rtinez raphaelmartinez1983[*]gmail.com
Sent: den 13 juli 2016 04:20
To: Norrby, Per-Ola <Per-Ola.Norrby^astrazeneca.com>
Subject: CCL: Radical-to-cation calculation Gaussian


Sent to CCL by: "Raphael=C2=A0 Martinez" [raphaelmartinez1983^gmail.com
] Dear all, Please forgive me in advance if my question is too simple. I h= ave an organic molecule, it is a hydrocarbon which contains a radical. I ha= ve optimized the geometry of the structure and calculated its energy using = DFT. Now, I am planning to calculate the exact same molecule, but in its ca= tionic form, so minus 1 electron. I need to place this to molecules relativ= e to each other in a reaction path. In order for me to be able to compared = the energies between the two structures, do I have to add the energy of an = electron to the cationic form?, or do I have to do something else is order = to be able to compared them? Or I do not need to do anything at all? Thanks= for the help.http://= www.ccl.net/cgi-bin/ccl/send_ccl_messagehttp://www.ccl.net/chemistry/sub_un= sub.shtmlhttp://www.ccl.net/spammers.txt________________________________


Confidentiality Notice: This message is private and may contain confidentia= l and proprietary information. If you have received this message in error, = please notify us and remove it from your system and note that you must not = copy, distribute or take any action in reliance on it. Any unauthorized use= or disclosure of the contents of this message is not permitted and may be = unlawful.



-=3D This is automatically added to each message by the mailing script =3D-=
E-mail to subscribers:
CHEMISTRY*o*ccl.net or use:
=C2=A0 =C2=A0 =C2=A0 http://www.ccl.net/cgi-bin/ccl/s= end_ccl_message

E-mail to administrators: CHEMISTRY-REQUEST*o*ccl.net or use
=C2=A0 =C2=A0 =C2=A0 http://www.ccl.net/cgi-bin/ccl/s= end_ccl_message

Subscribe/Unsubscribe:
=C2=A0 =C2=A0 =C2=A0 http://www.ccl.net/chemistry/sub_un= sub.shtml

Before posting, check wait time at: http://www.ccl.net

Job: http://www.ccl.net/jobs
Conferences: http://server.ccl.net/chemist= ry/announcements/conferences/

Search Messages: http://www.ccl.net/chemistry/sear= chccl/index.shtml
=C2=A0 =C2=A0 =C2=A0 http://www.ccl.net/spammers.txt

RTFI: http://www.ccl.net/chemistry/aboutccl/ins= tructions/



--94eb2c07c55ef5e748053784fb9d-- From owner-chemistry@ccl.net Wed Jul 13 12:14:00 2016 From: "Norrby, Per-Ola Per-Ola.Norrby[-]astrazeneca.com" To: CCL Subject: CCL: Radical-to-cation calculation Gaussian Message-Id: <-52300-160713120531-23787-+kLRHPYrfJDI8PzOibj/hg(~)server.ccl.net> X-Original-From: "Norrby, Per-Ola" Content-Language: en-US Content-Type: multipart/alternative; boundary="_000_HE1PR04MB20926E3BFD6F831C8ECC8C81CA310HE1PR04MB2092eurp_" Date: Wed, 13 Jul 2016 16:05:21 +0000 MIME-Version: 1.0 Sent to CCL by: "Norrby, Per-Ola" [Per-Ola.Norrby^^^astrazeneca.com] --_000_HE1PR04MB20926E3BFD6F831C8ECC8C81CA310HE1PR04MB2092eurp_ Content-Type: text/plain; charset="utf-8" Content-Transfer-Encoding: base64 U3VyZSwgcGxlbnR5IG9mIHByb2JsZW1zIHdoZW4geW91IGRvIHN1Y2ggYSBzaGlmdCBpbiBjaGFy Z2UgZGVuc2l0eS4gSSBndWVzcyBteSBwb2ludCBpcywgdHJ5IHRvIGF2b2lkIGl0LCBvciBhdCB0 aGUgdmVyeSBsZWFzdCwgdmFsaWRhdGUgeW91ciBhcHByb2FjaCBieSBhIHJlbGV2YW50LCBhY2N1 cmF0ZSBleHBlcmltZW50Lg0KDQovUGVyLU9sYQ0KDQpGcm9tOiBvd25lci1jaGVtaXN0cnkrcGVy LW9sYS5ub3JyYnk9PWFzdHJhemVuZWNhLmNvbUBjY2wubmV0IFttYWlsdG86b3duZXItY2hlbWlz dHJ5K3Blci1vbGEubm9ycmJ5PT1hc3RyYXplbmVjYS5jb21AY2NsLm5ldF0gT24gQmVoYWxmIE9m IEJyaWFuIFNraW5uIGJza2lubns9fWFsdW0ubWl0LmVkdQ0KU2VudDogZGVuIDEzIGp1bGkgMjAx NiAxNjoxMw0KVG86IE5vcnJieSwgUGVyLU9sYSA8UGVyLU9sYS5Ob3JyYnlAYXN0cmF6ZW5lY2Eu Y29tPg0KU3ViamVjdDogQ0NMOkc6IFJhZGljYWwtdG8tY2F0aW9uIGNhbGN1bGF0aW9uIEdhdXNz aWFuDQoNClBlci1PbGEtDQoNCkJhc2lzIHNldCBzZWxlY3Rpb24gd2lsbCBwb3NlIGNoYWxsZW5n ZXMgaW4gdGhlIEEgKyBCIC0+IEErICsgQi0gY2FzZSB0b28sIHdpbGwgaXQgbm90PyAgVGhlIGRp ZmZ1c2UgZnVuY3Rpb25zIGxpa2VseSBuZWNlc3NhcnkgZm9yIGEgZ29vZCBkZXNjcmlwdGlvbiBv ZiB0aGUgYW5pb24gd2lsbCBwb3RlbnRpYWxseSBjYXVzZSBwcm9ibGVtcyBpbiBjb252ZXJnZW5j ZSBvZiB0aGUgY2F0aW9uPw0KDQotQnJpYW4NCg0KT24gV2VkLCBKdWwgMTMsIDIwMTYgYXQgMTo0 OCBBTSwgTm9ycmJ5LCBQZXItT2xhIFBlci1PbGEuTm9ycmJ5IV4hYXN0cmF6ZW5lY2EuY29tPGh0 dHA6Ly9hc3RyYXplbmVjYS5jb20+IDxvd25lci1jaGVtaXN0cnlbYV1jY2wubmV0PG1haWx0bzpv d25lci1jaGVtaXN0cnlbYV1jY2wubmV0Pj4gd3JvdGU6DQoNClNlbnQgdG8gQ0NMIGJ5OiAiTm9y cmJ5LCBQZXItT2xhIiBbUGVyLU9sYS5Ob3JyYnktIy1hc3RyYXplbmVjYS5jb208aHR0cDovL2Fz dHJhemVuZWNhLmNvbT5dDQpEZWFyIFJhcGhhZWwsDQoNClRoZSBlbGVjdHJvbiB3aWxsIG5vdCBi ZSBmcmVlIGluIGFueSByZWFsaXN0aWMgc2NlbmFyaW8uIFlvdSBoYXZlIHRvIGhhdmUgYSBoeXBv dGhlc2lzIG9mIHdoYXQgaXMgeW91ciBlbGVjdHJvbiBhY2NlcHRvciwgYW5kIHRoZW4gY2FsY3Vs YXRlIHRoZSBlbmVyZ3kgb2YgdGhlIGJpbW9sZWN1bGFyIHJlYWN0aW9uOg0KDQpBLiAgKyAgQisg IDw9PiAgQSsgICsgIEIuDQoNCldhcm5pbmc6IGlmIHlvdXIgZWxlY3Ryb24gYWNjZXB0b3IgaXMg bm90IGEgY2F0aW9uLCBzbyB0aGF0IHlvdSBhY3R1YWxseSBjaGFuZ2Ugb3ZlcmFsbCBjaGFyZ2Ug aW4gdGhlIHJlYWN0aW9uIChnb2luZyBmcm9tIHR3byBuZXV0cmFscyB0byBhIGNhdGlvbiBhbmQg YW4gYW5pb24pLCB5b3Ugd2lsbCBnZXQgaHVnZSBlcnJvcnMgd2l0aCBtb3N0IGNvbW1vbiB0aGVv cmllczsgdGhlIHNvbHZhdGlvbiBtb2RlbHMgYXJlIGdlbmVyYWxseSBub3QgZ29vZCBlbm91Z2gu DQoNCi9QZXItT2xhDQoNCi0tLS0tT3JpZ2luYWwgTWVzc2FnZS0tLS0tDQo+IEZyb206IG93bmVy LWNoZW1pc3RyeStwZXItb2xhLm5vcnJieT09YXN0cmF6ZW5lY2EuY29tPGh0dHA6Ly9hc3RyYXpl bmVjYS5jb20+XmNjbC5uZXQ8aHR0cDovL2NjbC5uZXQ+IFttYWlsdG86b3duZXItY2hlbWlzdHJ5 K3Blci1vbGEubm9ycmJ5PG1haWx0bzpvd25lci1jaGVtaXN0cnklMkJwZXItb2xhLm5vcnJieT49 PWFzdHJhemVuZWNhLmNvbTxodHRwOi8vYXN0cmF6ZW5lY2EuY29tPl5jY2wubmV0PGh0dHA6Ly9j Y2wubmV0Pl0gT24gQmVoYWxmIE9mIFJhcGhhZWwgTWFydGluZXogcmFwaGFlbG1hcnRpbmV6MTk4 M1sqXWdtYWlsLmNvbTxodHRwOi8vZ21haWwuY29tPg0KU2VudDogZGVuIDEzIGp1bGkgMjAxNiAw NDoyMA0KVG86IE5vcnJieSwgUGVyLU9sYSA8UGVyLU9sYS5Ob3JyYnleYXN0cmF6ZW5lY2EuY29t PGh0dHA6Ly9hc3RyYXplbmVjYS5jb20+Pg0KU3ViamVjdDogQ0NMOiBSYWRpY2FsLXRvLWNhdGlv biBjYWxjdWxhdGlvbiBHYXVzc2lhbg0KDQoNClNlbnQgdG8gQ0NMIGJ5OiAiUmFwaGFlbCAgTWFy dGluZXoiIFtyYXBoYWVsbWFydGluZXoxOTgzXmdtYWlsLmNvbTxodHRwOi8vZ21haWwuY29tPl0g RGVhciBhbGwsIFBsZWFzZSBmb3JnaXZlIG1lIGluIGFkdmFuY2UgaWYgbXkgcXVlc3Rpb24gaXMg dG9vIHNpbXBsZS4gSSBoYXZlIGFuIG9yZ2FuaWMgbW9sZWN1bGUsIGl0IGlzIGEgaHlkcm9jYXJi b24gd2hpY2ggY29udGFpbnMgYSByYWRpY2FsLiBJIGhhdmUgb3B0aW1pemVkIHRoZSBnZW9tZXRy eSBvZiB0aGUgc3RydWN0dXJlIGFuZCBjYWxjdWxhdGVkIGl0cyBlbmVyZ3kgdXNpbmcgREZULiBO b3csIEkgYW0gcGxhbm5pbmcgdG8gY2FsY3VsYXRlIHRoZSBleGFjdCBzYW1lIG1vbGVjdWxlLCBi dXQgaW4gaXRzIGNhdGlvbmljIGZvcm0sIHNvIG1pbnVzIDEgZWxlY3Ryb24uIEkgbmVlZCB0byBw bGFjZSB0aGlzIHRvIG1vbGVjdWxlcyByZWxhdGl2ZSB0byBlYWNoIG90aGVyIGluIGEgcmVhY3Rp b24gcGF0aC4gSW4gb3JkZXIgZm9yIG1lIHRvIGJlIGFibGUgdG8gY29tcGFyZWQgdGhlIGVuZXJn aWVzIGJldHdlZW4gdGhlIHR3byBzdHJ1Y3R1cmVzLCBkbyBJIGhhdmUgdG8gYWRkIHRoZSBlbmVy Z3kgb2YgYW4gZWxlY3Ryb24gdG8gdGhlIGNhdGlvbmljIGZvcm0/LCBvciBkbyBJIGhhdmUgdG8g ZG8gc29tZXRoaW5nIGVsc2UgaXMgb3JkZXIgdG8gYmUgYWJsZSB0byBjb21wYXJlZCB0aGVtPyBP ciBJIGRvIG5vdCBuZWVkIHRvIGRvIGFueXRoaW5nIGF0IGFsbD8gVGhhbmtzIGZvciB0aGUgaGVs cC5odHRwOi8vd3d3LmNjbC5uZXQvY2dpLWJpbi9jY2wvc2VuZF9jY2xfbWVzc2FnZWh0dHA6Ly93 d3cuY2NsLm5ldC9jaGVtaXN0cnkvc3ViX3Vuc3ViLnNodG1saHR0cDovL3d3dy5jY2wubmV0L3Nw YW1tZXJzLnR4dF9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fPGh0dHA6Ly93d3cuY2Ns Lm5ldC9jZ2ktYmluL2NjbC9zZW5kX2NjbF9tZXNzYWdlaHR0cDovd3d3LmNjbC5uZXQvY2hlbWlz dHJ5L3N1Yl91bnN1Yi5zaHRtbGh0dHA6L3d3dy5jY2wubmV0L3NwYW1tZXJzLnR4dF9fX19fX19f X19fX19fX19fX19fX19fX19fX19fX19fPg0KDQoNCkNvbmZpZGVudGlhbGl0eSBOb3RpY2U6IFRo aXMgbWVzc2FnZSBpcyBwcml2YXRlIGFuZCBtYXkgY29udGFpbiBjb25maWRlbnRpYWwgYW5kIHBy b3ByaWV0YXJ5IGluZm9ybWF0aW9uLiBJZiB5b3UgaGF2ZSByZWNlaXZlZCB0aGlzIG1lc3NhZ2Ug aW4gZXJyb3IsIHBsZWFzZSBub3RpZnkgdXMgYW5kIHJlbW92ZSBpdCBmcm9tIHlvdXIgc3lzdGVt IGFuZCBub3RlIHRoYXQgeW91IG11c3Qgbm90IGNvcHksIGRpc3RyaWJ1dGUgb3IgdGFrZSBhbnkg YWN0aW9uIGluIHJlbGlhbmNlIG9uIGl0LiBBbnkgdW5hdXRob3JpemVkIHVzZSBvciBkaXNjbG9z dXJlIG9mIHRoZSBjb250ZW50cyBvZiB0aGlzIG1lc3NhZ2UgaXMgbm90IHBlcm1pdHRlZCBhbmQg bWF5IGJlIHVubGF3ZnVsLg0KDQoNCg0KLT0gVGhpcyBpcyBhdXRvbWF0aWNhbGx5IGFkZGVkIHRv IGVhY2ggbWVzc2FnZSBieSB0aGUgbWFpbGluZyBzY3JpcHQgPS08YnINCg0KDQpFLW1haWwgdG8g c3Vic2NyaWJlcnM6IENIRU1JU1RSWVthXWNjbC5uZXQ8bWFpbHRvOkNIRU1JU1RSWVthXWNjbC5u ZXQ+IG9yIHVzZToNCiAgICAgIGh0dHA6Ly93d3cuY2NsLm5ldC9jZ2ktYmluL2NjbC9zZW5kX2Nj bF9tZXNzYWdlDQoNCkUtbWFpbCB0byBhZG1pbmlzdHJhdG9yczogQ0hFTUlTVFJZLVJFUVVFU1Rb YV1jY2wubmV0PG1haWx0bzpDSEVNSVNUUlktUkVRVUVTVFthXWNjbC5uZXQ+IG9yIHVzZQ0KICAg ICAgaHR0cDovL3d3dy5jY2wubmV0L2NnaS1iaW4vY2NsL3NlbmRfY2NsX21lc3NhZ2UNCg0KU3Vi c2NyaWJlL1Vuc3Vic2NyaWJlOg0KICAgICAgaHR0cDovL3d3dy5jY2wubmV0L2NoZW1pc3RyeS9z dWJfdW5zdWIuc2h0bWwNCg0KQmVmb3JlIHBvc3RpbmcsIGNoZWNrIHdhaXQgdGltZSBhdDogaHR0 cDovL3d3dy5jY2wubmV0DQoNCkpvYjogaHR0cDovL3d3dy5jY2wubmV0L2pvYnMNCkNvbmZlcmVu Y2VzOiBodHRwOi8vc2VydmVyLmNjbC5uZXQvY2hlbWlzdHJ5L2Fubm91bmNlbWVudHMvY29uZmVy ZW5jZXMvDQoNClNlYXJjaCBNZXNzYWdlczogaHR0cDovL3d3dy5jY2wubmV0L2NoZW1pc3RyeS9z ZWFyY2hjY2wvaW5kZXguc2h0bWwNCjxicg0KICAgICAgaHR0cDovL3d3dy5jY2wubmV0L3NwYW1t ZXJzLnR4dA0KDQpSVEZJOiBodHRwOi8vd3d3LmNjbC5uZXQvY2hlbWlzdHJ5L2Fib3V0Y2NsL2lu c3RydWN0aW9ucy8NCg0KDQpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXw0KDQpDb25m aWRlbnRpYWxpdHkgTm90aWNlOiBUaGlzIG1lc3NhZ2UgaXMgcHJpdmF0ZSBhbmQgbWF5IGNvbnRh aW4gY29uZmlkZW50aWFsIGFuZCBwcm9wcmlldGFyeSBpbmZvcm1hdGlvbi4gSWYgeW91IGhhdmUg cmVjZWl2ZWQgdGhpcyBtZXNzYWdlIGluIGVycm9yLCBwbGVhc2Ugbm90aWZ5IHVzIGFuZCByZW1v dmUgaXQgZnJvbSB5b3VyIHN5c3RlbSBhbmQgbm90ZSB0aGF0IHlvdSBtdXN0IG5vdCBjb3B5LCBk aXN0cmlidXRlIG9yIHRha2UgYW55IGFjdGlvbiBpbiByZWxpYW5jZSBvbiBpdC4gQW55IHVuYXV0 aG9yaXplZCB1c2Ugb3IgZGlzY2xvc3VyZSBvZiB0aGUgY29udGVudHMgb2YgdGhpcyBtZXNzYWdl IGlzIG5vdCBwZXJtaXR0ZWQgYW5kIG1heSBiZSB1bmxhd2Z1bC4NCg== --_000_HE1PR04MB20926E3BFD6F831C8ECC8C81CA310HE1PR04MB2092eurp_ Content-Type: text/html; charset="utf-8" Content-Transfer-Encoding: base64 PGh0bWwgeG1sbnM6dj0idXJuOnNjaGVtYXMtbWljcm9zb2Z0LWNvbTp2bWwiIHhtbG5zOm89InVy bjpzY2hlbWFzLW1pY3Jvc29mdC1jb206b2ZmaWNlOm9mZmljZSIgeG1sbnM6dz0idXJuOnNjaGVt YXMtbWljcm9zb2Z0LWNvbTpvZmZpY2U6d29yZCIgeG1sbnM6bT0iaHR0cDovL3NjaGVtYXMubWlj cm9zb2Z0LmNvbS9vZmZpY2UvMjAwNC8xMi9vbW1sIiB4bWxucz0iaHR0cDovL3d3dy53My5vcmcv VFIvUkVDLWh0bWw0MCI+DQo8aGVhZD4NCjxtZXRhIGh0dHAtZXF1aXY9IkNvbnRlbnQtVHlwZSIg Y29udGVudD0idGV4dC9odG1sOyBjaGFyc2V0PXV0Zi04Ij4NCjxtZXRhIG5hbWU9IkdlbmVyYXRv ciIgY29udGVudD0iTWljcm9zb2Z0IFdvcmQgMTUgKGZpbHRlcmVkIG1lZGl1bSkiPg0KPHN0eWxl PjwhLS0NCi8qIEZvbnQgRGVmaW5pdGlvbnMgKi8NCkBmb250LWZhY2UNCgl7Zm9udC1mYW1pbHk6 IkNhbWJyaWEgTWF0aCI7DQoJcGFub3NlLTE6MiA0IDUgMyA1IDQgNiAzIDIgNDt9DQpAZm9udC1m YWNlDQoJe2ZvbnQtZmFtaWx5OkNhbGlicmk7DQoJcGFub3NlLTE6MiAxNSA1IDIgMiAyIDQgMyAy IDQ7fQ0KLyogU3R5bGUgRGVmaW5pdGlvbnMgKi8NCnAuTXNvTm9ybWFsLCBsaS5Nc29Ob3JtYWws IGRpdi5Nc29Ob3JtYWwNCgl7bWFyZ2luOjBjbTsNCgltYXJnaW4tYm90dG9tOi4wMDAxcHQ7DQoJ Zm9udC1zaXplOjEyLjBwdDsNCglmb250LWZhbWlseToiVGltZXMgTmV3IFJvbWFuIixzZXJpZjt9 DQphOmxpbmssIHNwYW4uTXNvSHlwZXJsaW5rDQoJe21zby1zdHlsZS1wcmlvcml0eTo5OTsNCglj b2xvcjpibHVlOw0KCXRleHQtZGVjb3JhdGlvbjp1bmRlcmxpbmU7fQ0KYTp2aXNpdGVkLCBzcGFu Lk1zb0h5cGVybGlua0ZvbGxvd2VkDQoJe21zby1zdHlsZS1wcmlvcml0eTo5OTsNCgljb2xvcjpw dXJwbGU7DQoJdGV4dC1kZWNvcmF0aW9uOnVuZGVybGluZTt9DQpzcGFuLkVtYWlsU3R5bGUxNw0K CXttc28tc3R5bGUtdHlwZTpwZXJzb25hbC1yZXBseTsNCglmb250LWZhbWlseToiQ2FsaWJyaSIs c2Fucy1zZXJpZjsNCgljb2xvcjojMUY0OTdEO30NCi5Nc29DaHBEZWZhdWx0DQoJe21zby1zdHls ZS10eXBlOmV4cG9ydC1vbmx5Ow0KCWZvbnQtZmFtaWx5OiJDYWxpYnJpIixzYW5zLXNlcmlmO30N CkBwYWdlIFdvcmRTZWN0aW9uMQ0KCXtzaXplOjYxMi4wcHQgNzkyLjBwdDsNCgltYXJnaW46NzAu ODVwdCA3MC44NXB0IDcwLjg1cHQgNzAuODVwdDt9DQpkaXYuV29yZFNlY3Rpb24xDQoJe3BhZ2U6 V29yZFNlY3Rpb24xO30NCi0tPjwvc3R5bGU+PCEtLVtpZiBndGUgbXNvIDldPjx4bWw+DQo8bzpz aGFwZWRlZmF1bHRzIHY6ZXh0PSJlZGl0IiBzcGlkbWF4PSIxMDI2IiAvPg0KPC94bWw+PCFbZW5k aWZdLS0+PCEtLVtpZiBndGUgbXNvIDldPjx4bWw+DQo8bzpzaGFwZWxheW91dCB2OmV4dD0iZWRp dCI+DQo8bzppZG1hcCB2OmV4dD0iZWRpdCIgZGF0YT0iMSIgLz4NCjwvbzpzaGFwZWxheW91dD48 L3htbD48IVtlbmRpZl0tLT4NCjwvaGVhZD4NCjxib2R5IGxhbmc9IkVOLVVTIiBsaW5rPSJibHVl IiB2bGluaz0icHVycGxlIj4NCjxkaXYgY2xhc3M9IldvcmRTZWN0aW9uMSI+DQo8cCBjbGFzcz0i TXNvTm9ybWFsIj48c3BhbiBzdHlsZT0iZm9udC1zaXplOjExLjBwdDtmb250LWZhbWlseTomcXVv dDtDYWxpYnJpJnF1b3Q7LHNhbnMtc2VyaWY7Y29sb3I6IzFGNDk3RCI+U3VyZSwgcGxlbnR5IG9m IHByb2JsZW1zIHdoZW4geW91IGRvIHN1Y2ggYSBzaGlmdCBpbiBjaGFyZ2UgZGVuc2l0eS4gSSBn dWVzcyBteSBwb2ludCBpcywgdHJ5IHRvIGF2b2lkIGl0LCBvciBhdCB0aGUgdmVyeSBsZWFzdCwg dmFsaWRhdGUgeW91ciBhcHByb2FjaCBieSBhIHJlbGV2YW50LA0KIGFjY3VyYXRlIGV4cGVyaW1l bnQuPG86cD48L286cD48L3NwYW4+PC9wPg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+PHNwYW4gc3R5 bGU9ImZvbnQtc2l6ZToxMS4wcHQ7Zm9udC1mYW1pbHk6JnF1b3Q7Q2FsaWJyaSZxdW90OyxzYW5z LXNlcmlmO2NvbG9yOiMxRjQ5N0QiPjxvOnA+Jm5ic3A7PC9vOnA+PC9zcGFuPjwvcD4NCjxwIGNs YXNzPSJNc29Ob3JtYWwiPjxzcGFuIHN0eWxlPSJmb250LXNpemU6MTEuMHB0O2ZvbnQtZmFtaWx5 OiZxdW90O0NhbGlicmkmcXVvdDssc2Fucy1zZXJpZjtjb2xvcjojMUY0OTdEIj4vUGVyLU9sYTxv OnA+PC9vOnA+PC9zcGFuPjwvcD4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxvOnA+Jm5ic3A7PC9v OnA+PC9wPg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+PGI+PHNwYW4gc3R5bGU9ImZvbnQtc2l6ZTox MS4wcHQ7Zm9udC1mYW1pbHk6JnF1b3Q7Q2FsaWJyaSZxdW90OyxzYW5zLXNlcmlmIj5Gcm9tOjwv c3Bhbj48L2I+PHNwYW4gc3R5bGU9ImZvbnQtc2l6ZToxMS4wcHQ7Zm9udC1mYW1pbHk6JnF1b3Q7 Q2FsaWJyaSZxdW90OyxzYW5zLXNlcmlmIj4gb3duZXItY2hlbWlzdHJ5JiM0MztwZXItb2xhLm5v cnJieT09YXN0cmF6ZW5lY2EuY29tQGNjbC5uZXQgW21haWx0bzpvd25lci1jaGVtaXN0cnkmIzQz O3Blci1vbGEubm9ycmJ5PT1hc3RyYXplbmVjYS5jb21AY2NsLm5ldF0NCjxiPk9uIEJlaGFsZiBP ZiA8L2I+QnJpYW4gU2tpbm4gYnNraW5uez19YWx1bS5taXQuZWR1PGJyPg0KPGI+U2VudDo8L2I+ IGRlbiAxMyBqdWxpIDIwMTYgMTY6MTM8YnI+DQo8Yj5Ubzo8L2I+IE5vcnJieSwgUGVyLU9sYSAm bHQ7UGVyLU9sYS5Ob3JyYnlAYXN0cmF6ZW5lY2EuY29tJmd0Ozxicj4NCjxiPlN1YmplY3Q6PC9i PiBDQ0w6RzogUmFkaWNhbC10by1jYXRpb24gY2FsY3VsYXRpb24gR2F1c3NpYW48bzpwPjwvbzpw Pjwvc3Bhbj48L3A+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj48bzpwPiZuYnNwOzwvbzpwPjwvcD4N CjxkaXY+DQo8ZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+UGVyLU9sYS08bzpwPjwvbzpwPjwv cD4NCjwvZGl2Pg0KPGRpdj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxvOnA+Jm5ic3A7PC9vOnA+ PC9wPg0KPC9kaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj5CYXNpcyBzZXQgc2VsZWN0aW9uIHdp bGwgcG9zZSBjaGFsbGVuZ2VzIGluIHRoZSBBICYjNDM7IEIgLSZndDsgQSYjNDM7ICYjNDM7IEIt IGNhc2UgdG9vLCB3aWxsIGl0IG5vdD8mbmJzcDsgVGhlIGRpZmZ1c2UgZnVuY3Rpb25zIGxpa2Vs eSBuZWNlc3NhcnkgZm9yIGEgZ29vZCBkZXNjcmlwdGlvbiBvZiB0aGUgYW5pb24gd2lsbCBwb3Rl bnRpYWxseSBjYXVzZSBwcm9ibGVtcyBpbiBjb252ZXJnZW5jZSBvZiB0aGUgY2F0aW9uPyZuYnNw OzxvOnA+PC9vOnA+PC9wPg0KPGRpdj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxvOnA+Jm5ic3A7 PC9vOnA+PC9wPg0KPC9kaXY+DQo8ZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+LUJyaWFuPG86 cD48L286cD48L3A+DQo8L2Rpdj4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj48bzpwPiZu YnNwOzwvbzpwPjwvcD4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj5PbiBXZWQsIEp1bCAx MywgMjAxNiBhdCAxOjQ4IEFNLCBOb3JyYnksIFBlci1PbGEgUGVyLU9sYS5Ob3JyYnkhXiE8YSBo cmVmPSJodHRwOi8vYXN0cmF6ZW5lY2EuY29tIiB0YXJnZXQ9Il9ibGFuayI+YXN0cmF6ZW5lY2Eu Y29tPC9hPiAmbHQ7PGEgaHJlZj0ibWFpbHRvOm93bmVyLWNoZW1pc3RyeVthXWNjbC5uZXQiIHRh cmdldD0iX2JsYW5rIj5vd25lci1jaGVtaXN0cnlbYV1jY2wubmV0PC9hPiZndDsgd3JvdGU6PG86 cD48L286cD48L3A+DQo8YmxvY2txdW90ZSBzdHlsZT0iYm9yZGVyOm5vbmU7Ym9yZGVyLWxlZnQ6 c29saWQgI0NDQ0NDQyAxLjBwdDtwYWRkaW5nOjBjbSAwY20gMGNtIDYuMHB0O21hcmdpbi1sZWZ0 OjQuOHB0O21hcmdpbi1yaWdodDowY20iPg0KPHAgY2xhc3M9Ik1zb05vcm1hbCIgc3R5bGU9Im1h cmdpbi1ib3R0b206MTIuMHB0Ij48YnI+DQpTZW50IHRvIENDTCBieTogJnF1b3Q7Tm9ycmJ5LCBQ ZXItT2xhJnF1b3Q7IFtQZXItT2xhLk5vcnJieS0jLTxhIGhyZWY9Imh0dHA6Ly9hc3RyYXplbmVj YS5jb20iIHRhcmdldD0iX2JsYW5rIj5hc3RyYXplbmVjYS5jb208L2E+XTxicj4NCkRlYXIgUmFw aGFlbCw8YnI+DQo8YnI+DQpUaGUgZWxlY3Ryb24gd2lsbCBub3QgYmUgZnJlZSBpbiBhbnkgcmVh bGlzdGljIHNjZW5hcmlvLiBZb3UgaGF2ZSB0byBoYXZlIGEgaHlwb3RoZXNpcyBvZiB3aGF0IGlz IHlvdXIgZWxlY3Ryb24gYWNjZXB0b3IsIGFuZCB0aGVuIGNhbGN1bGF0ZSB0aGUgZW5lcmd5IG9m IHRoZSBiaW1vbGVjdWxhciByZWFjdGlvbjo8YnI+DQo8YnI+DQpBLiZuYnNwOyAmIzQzOyZuYnNw OyBCJiM0MzsmbmJzcDsgJmx0Oz0mZ3Q7Jm5ic3A7IEEmIzQzOyZuYnNwOyAmIzQzOyZuYnNwOyBC Ljxicj4NCjxicj4NCldhcm5pbmc6IGlmIHlvdXIgZWxlY3Ryb24gYWNjZXB0b3IgaXMgbm90IGEg Y2F0aW9uLCBzbyB0aGF0IHlvdSBhY3R1YWxseSBjaGFuZ2Ugb3ZlcmFsbCBjaGFyZ2UgaW4gdGhl IHJlYWN0aW9uIChnb2luZyBmcm9tIHR3byBuZXV0cmFscyB0byBhIGNhdGlvbiBhbmQgYW4gYW5p b24pLCB5b3Ugd2lsbCBnZXQgaHVnZSBlcnJvcnMgd2l0aCBtb3N0IGNvbW1vbiB0aGVvcmllczsg dGhlIHNvbHZhdGlvbiBtb2RlbHMgYXJlIGdlbmVyYWxseSBub3QgZ29vZA0KIGVub3VnaC48YnI+ DQo8YnI+DQovUGVyLU9sYTxicj4NCjxicj4NCi0tLS0tT3JpZ2luYWwgTWVzc2FnZS0tLS0tPGJy Pg0KJmd0OyBGcm9tOiBvd25lci1jaGVtaXN0cnkmIzQzO3Blci1vbGEubm9ycmJ5PT08YSBocmVm PSJodHRwOi8vYXN0cmF6ZW5lY2EuY29tIiB0YXJnZXQ9Il9ibGFuayI+YXN0cmF6ZW5lY2EuY29t PC9hPl48YSBocmVmPSJodHRwOi8vY2NsLm5ldCIgdGFyZ2V0PSJfYmxhbmsiPmNjbC5uZXQ8L2E+ IFttYWlsdG86PGEgaHJlZj0ibWFpbHRvOm93bmVyLWNoZW1pc3RyeSUyQnBlci1vbGEubm9ycmJ5 IiB0YXJnZXQ9Il9ibGFuayI+b3duZXItY2hlbWlzdHJ5JiM0MztwZXItb2xhLm5vcnJieTwvYT49 PTxhIGhyZWY9Imh0dHA6Ly9hc3RyYXplbmVjYS5jb20iIHRhcmdldD0iX2JsYW5rIj5hc3RyYXpl bmVjYS5jb208L2E+XjxhIGhyZWY9Imh0dHA6Ly9jY2wubmV0IiB0YXJnZXQ9Il9ibGFuayI+Y2Ns Lm5ldDwvYT5dDQogT24gQmVoYWxmIE9mIFJhcGhhZWwgTWFydGluZXogcmFwaGFlbG1hcnRpbmV6 MTk4M1sqXTxhIGhyZWY9Imh0dHA6Ly9nbWFpbC5jb20iIHRhcmdldD0iX2JsYW5rIj5nbWFpbC5j b208L2E+PGJyPg0KU2VudDogZGVuIDEzIGp1bGkgMjAxNiAwNDoyMDxicj4NClRvOiBOb3JyYnks IFBlci1PbGEgJmx0O1Blci1PbGEuTm9ycmJ5XjxhIGhyZWY9Imh0dHA6Ly9hc3RyYXplbmVjYS5j b20iIHRhcmdldD0iX2JsYW5rIj5hc3RyYXplbmVjYS5jb208L2E+Jmd0Ozxicj4NClN1YmplY3Q6 IENDTDogUmFkaWNhbC10by1jYXRpb24gY2FsY3VsYXRpb24gR2F1c3NpYW48YnI+DQo8YnI+DQo8 YnI+DQpTZW50IHRvIENDTCBieTogJnF1b3Q7UmFwaGFlbCZuYnNwOyBNYXJ0aW5leiZxdW90OyBb cmFwaGFlbG1hcnRpbmV6MTk4M148YSBocmVmPSJodHRwOi8vZ21haWwuY29tIiB0YXJnZXQ9Il9i bGFuayI+Z21haWwuY29tPC9hPl0gRGVhciBhbGwsIFBsZWFzZSBmb3JnaXZlIG1lIGluIGFkdmFu Y2UgaWYgbXkgcXVlc3Rpb24gaXMgdG9vIHNpbXBsZS4gSSBoYXZlIGFuIG9yZ2FuaWMgbW9sZWN1 bGUsIGl0IGlzIGEgaHlkcm9jYXJib24gd2hpY2ggY29udGFpbnMgYSByYWRpY2FsLg0KIEkgaGF2 ZSBvcHRpbWl6ZWQgdGhlIGdlb21ldHJ5IG9mIHRoZSBzdHJ1Y3R1cmUgYW5kIGNhbGN1bGF0ZWQg aXRzIGVuZXJneSB1c2luZyBERlQuIE5vdywgSSBhbSBwbGFubmluZyB0byBjYWxjdWxhdGUgdGhl IGV4YWN0IHNhbWUgbW9sZWN1bGUsIGJ1dCBpbiBpdHMgY2F0aW9uaWMgZm9ybSwgc28gbWludXMg MSBlbGVjdHJvbi4gSSBuZWVkIHRvIHBsYWNlIHRoaXMgdG8gbW9sZWN1bGVzIHJlbGF0aXZlIHRv IGVhY2ggb3RoZXIgaW4gYSByZWFjdGlvbg0KIHBhdGguIEluIG9yZGVyIGZvciBtZSB0byBiZSBh YmxlIHRvIGNvbXBhcmVkIHRoZSBlbmVyZ2llcyBiZXR3ZWVuIHRoZSB0d28gc3RydWN0dXJlcywg ZG8gSSBoYXZlIHRvIGFkZCB0aGUgZW5lcmd5IG9mIGFuIGVsZWN0cm9uIHRvIHRoZSBjYXRpb25p YyBmb3JtPywgb3IgZG8gSSBoYXZlIHRvIGRvIHNvbWV0aGluZyBlbHNlIGlzIG9yZGVyIHRvIGJl IGFibGUgdG8gY29tcGFyZWQgdGhlbT8gT3IgSSBkbyBub3QgbmVlZCB0byBkbyBhbnl0aGluZw0K IGF0IGFsbD8gVGhhbmtzIGZvciB0aGUgaGVscC48YSBocmVmPSJodHRwOi8vd3d3LmNjbC5uZXQv Y2dpLWJpbi9jY2wvc2VuZF9jY2xfbWVzc2FnZWh0dHA6L3d3dy5jY2wubmV0L2NoZW1pc3RyeS9z dWJfdW5zdWIuc2h0bWxodHRwOi93d3cuY2NsLm5ldC9zcGFtbWVycy50eHRfX19fX19fX19fX19f X19fX19fX19fX19fX19fX19fXyIgdGFyZ2V0PSJfYmxhbmsiPmh0dHA6Ly93d3cuY2NsLm5ldC9j Z2ktYmluL2NjbC9zZW5kX2NjbF9tZXNzYWdlaHR0cDovL3d3dy5jY2wubmV0L2NoZW1pc3RyeS9z dWJfdW5zdWIuc2h0bWxodHRwOi8vd3d3LmNjbC5uZXQvc3BhbW1lcnMudHh0X19fX19fX19fX19f X19fX19fX19fX19fX19fX19fX188L2E+PGJyPg0KPGJyPg0KPGJyPg0KQ29uZmlkZW50aWFsaXR5 IE5vdGljZTogVGhpcyBtZXNzYWdlIGlzIHByaXZhdGUgYW5kIG1heSBjb250YWluIGNvbmZpZGVu dGlhbCBhbmQgcHJvcHJpZXRhcnkgaW5mb3JtYXRpb24uIElmIHlvdSBoYXZlIHJlY2VpdmVkIHRo aXMgbWVzc2FnZSBpbiBlcnJvciwgcGxlYXNlIG5vdGlmeSB1cyBhbmQgcmVtb3ZlIGl0IGZyb20g eW91ciBzeXN0ZW0gYW5kIG5vdGUgdGhhdCB5b3UgbXVzdCBub3QgY29weSwgZGlzdHJpYnV0ZSBv ciB0YWtlIGFueSBhY3Rpb24NCiBpbiByZWxpYW5jZSBvbiBpdC4gQW55IHVuYXV0aG9yaXplZCB1 c2Ugb3IgZGlzY2xvc3VyZSBvZiB0aGUgY29udGVudHMgb2YgdGhpcyBtZXNzYWdlIGlzIG5vdCBw ZXJtaXR0ZWQgYW5kIG1heSBiZSB1bmxhd2Z1bC48YnI+DQo8YnI+DQo8YnI+DQo8YnI+DQotPSBU aGlzIGlzIGF1dG9tYXRpY2FsbHkgYWRkZWQgdG8gZWFjaCBtZXNzYWdlIGJ5IHRoZSBtYWlsaW5n IHNjcmlwdCA9LSZsdDticjxicj4NCjxicj4NCjxicj4NCkUtbWFpbCB0byBzdWJzY3JpYmVyczog PGEgaHJlZj0ibWFpbHRvOkNIRU1JU1RSWVthXWNjbC5uZXQiIHRhcmdldD0iX2JsYW5rIj5DSEVN SVNUUllbYV1jY2wubmV0PC9hPiBvciB1c2U6PGJyPg0KJm5ic3A7ICZuYnNwOyAmbmJzcDsgPGEg aHJlZj0iaHR0cDovL3d3dy5jY2wubmV0L2NnaS1iaW4vY2NsL3NlbmRfY2NsX21lc3NhZ2UiIHRh cmdldD0iX2JsYW5rIj5odHRwOi8vd3d3LmNjbC5uZXQvY2dpLWJpbi9jY2wvc2VuZF9jY2xfbWVz c2FnZTwvYT48YnI+DQo8YnI+DQpFLW1haWwgdG8gYWRtaW5pc3RyYXRvcnM6IDxhIGhyZWY9Im1h aWx0bzpDSEVNSVNUUlktUkVRVUVTVFthXWNjbC5uZXQiIHRhcmdldD0iX2JsYW5rIj4NCkNIRU1J U1RSWS1SRVFVRVNUW2FdY2NsLm5ldDwvYT4gb3IgdXNlPGJyPg0KJm5ic3A7ICZuYnNwOyAmbmJz cDsgPGEgaHJlZj0iaHR0cDovL3d3dy5jY2wubmV0L2NnaS1iaW4vY2NsL3NlbmRfY2NsX21lc3Nh Z2UiIHRhcmdldD0iX2JsYW5rIj5odHRwOi8vd3d3LmNjbC5uZXQvY2dpLWJpbi9jY2wvc2VuZF9j Y2xfbWVzc2FnZTwvYT48YnI+DQo8YnI+DQpTdWJzY3JpYmUvVW5zdWJzY3JpYmU6PGJyPg0KJm5i c3A7ICZuYnNwOyAmbmJzcDsgPGEgaHJlZj0iaHR0cDovL3d3dy5jY2wubmV0L2NoZW1pc3RyeS9z dWJfdW5zdWIuc2h0bWwiIHRhcmdldD0iX2JsYW5rIj5odHRwOi8vd3d3LmNjbC5uZXQvY2hlbWlz dHJ5L3N1Yl91bnN1Yi5zaHRtbDwvYT48YnI+DQo8YnI+DQpCZWZvcmUgcG9zdGluZywgY2hlY2sg d2FpdCB0aW1lIGF0OiA8YSBocmVmPSJodHRwOi8vd3d3LmNjbC5uZXQiIHRhcmdldD0iX2JsYW5r Ij4NCmh0dHA6Ly93d3cuY2NsLm5ldDwvYT48YnI+DQo8YnI+DQpKb2I6IDxhIGhyZWY9Imh0dHA6 Ly93d3cuY2NsLm5ldC9qb2JzIiB0YXJnZXQ9Il9ibGFuayI+aHR0cDovL3d3dy5jY2wubmV0L2pv YnM8L2E+PGJyPg0KQ29uZmVyZW5jZXM6IDxhIGhyZWY9Imh0dHA6Ly9zZXJ2ZXIuY2NsLm5ldC9j aGVtaXN0cnkvYW5ub3VuY2VtZW50cy9jb25mZXJlbmNlcy8iIHRhcmdldD0iX2JsYW5rIj4NCmh0 dHA6Ly9zZXJ2ZXIuY2NsLm5ldC9jaGVtaXN0cnkvYW5ub3VuY2VtZW50cy9jb25mZXJlbmNlcy88 L2E+PGJyPg0KPGJyPg0KU2VhcmNoIE1lc3NhZ2VzOiA8YSBocmVmPSJodHRwOi8vd3d3LmNjbC5u ZXQvY2hlbWlzdHJ5L3NlYXJjaGNjbC9pbmRleC5zaHRtbCIgdGFyZ2V0PSJfYmxhbmsiPg0KaHR0 cDovL3d3dy5jY2wubmV0L2NoZW1pc3RyeS9zZWFyY2hjY2wvaW5kZXguc2h0bWw8L2E+PGJyPg0K Jmx0O2JyPGJyPg0KJm5ic3A7ICZuYnNwOyAmbmJzcDsgPGEgaHJlZj0iaHR0cDovL3d3dy5jY2wu bmV0L3NwYW1tZXJzLnR4dCIgdGFyZ2V0PSJfYmxhbmsiPmh0dHA6Ly93d3cuY2NsLm5ldC9zcGFt bWVycy50eHQ8L2E+PGJyPg0KPGJyPg0KUlRGSTogPGEgaHJlZj0iaHR0cDovL3d3dy5jY2wubmV0 L2NoZW1pc3RyeS9hYm91dGNjbC9pbnN0cnVjdGlvbnMvIiB0YXJnZXQ9Il9ibGFuayI+DQpodHRw Oi8vd3d3LmNjbC5uZXQvY2hlbWlzdHJ5L2Fib3V0Y2NsL2luc3RydWN0aW9ucy88L2E+PGJyPg0K PGJyPg0KPG86cD48L286cD48L3A+DQo8L2Jsb2NrcXVvdGU+DQo8L2Rpdj4NCjxwIGNsYXNzPSJN c29Ob3JtYWwiPjxvOnA+Jm5ic3A7PC9vOnA+PC9wPg0KPC9kaXY+DQo8L2Rpdj4NCjwvZGl2Pg0K PGhyPg0KPHAgY2xhc3M9IntJbXByaW50LlVuaXF1ZUlEfSIgc3R5bGU9IkZPTlQtU0laRTogOHB0 Ij48Zm9udCBmYWNlPSJBcmlhbCIgc2l6ZT0iMSI+PC9mb250PjwvcD4NCjxwIGNsYXNzPSJ7SW1w cmludC5VbmlxdWVJRH0iIHN0eWxlPSJGT05ULVNJWkU6IDhwdCI+PGZvbnQgZmFjZT0iQXJpYWwi PjxzdHJvbmc+Q29uZmlkZW50aWFsaXR5IE5vdGljZToNCjwvc3Ryb25nPlRoaXMgbWVzc2FnZSBp cyBwcml2YXRlIGFuZCBtYXkgY29udGFpbiBjb25maWRlbnRpYWwgYW5kIHByb3ByaWV0YXJ5IGlu Zm9ybWF0aW9uLiBJZiB5b3UgaGF2ZSByZWNlaXZlZCB0aGlzIG1lc3NhZ2UgaW4gZXJyb3IsIHBs ZWFzZSBub3RpZnkgdXMgYW5kIHJlbW92ZSBpdCBmcm9tIHlvdXIgc3lzdGVtIGFuZCBub3RlIHRo YXQgeW91IG11c3Qgbm90IGNvcHksIGRpc3RyaWJ1dGUgb3IgdGFrZSBhbnkgYWN0aW9uIGluIHJl bGlhbmNlDQogb24gaXQuIEFueSB1bmF1dGhvcml6ZWQgdXNlIG9yIGRpc2Nsb3N1cmUgb2YgdGhl IGNvbnRlbnRzIG9mIHRoaXMgbWVzc2FnZSBpcyBub3QgcGVybWl0dGVkIGFuZCBtYXkgYmUgdW5s YXdmdWwuPC9mb250PjwvcD4NCjxwIGNsYXNzPSJ7SW1wcmludC5VbmlxdWVJRH0iIHN0eWxlPSJG T05ULVNJWkU6IDhwdCI+PGZvbnQgZmFjZT0iQXJpYWwiPjwvZm9udD48L3A+DQo8cCBjbGFzcz0i e0ltcHJpbnQuVW5pcXVlSUR9IiBzdHlsZT0iRk9OVC1TSVpFOiA4cHQiPjxmb250IGZhY2U9IkFy aWFsIj48L2ZvbnQ+PC9wPg0KPHAgY2xhc3M9IntJbXByaW50LlVuaXF1ZUlEfSIgc3R5bGU9IkZP TlQtU0laRTogOHB0Ij48Zm9udCBmYWNlPSJBcmlhbCI+PC9mb250PjwvcD4NCjxwIGNsYXNzPSJ7 SW1wcmludC5VbmlxdWVJRH0iIHN0eWxlPSJGT05ULVNJWkU6IDhwdCI+PGZvbnQgZmFjZT0iQXJp YWwiPjwvZm9udD48L3A+DQo8cCBjbGFzcz0ie0ltcHJpbnQuVW5pcXVlSUR9IiBzdHlsZT0iRk9O VC1TSVpFOiA4cHQiPjxmb250IGZhY2U9IkFyaWFsIj48L2ZvbnQ+PC9wPg0KPHAgY2xhc3M9IntJ bXByaW50LlVuaXF1ZUlEfSIgc3R5bGU9IkZPTlQtU0laRTogOHB0Ij48Zm9udCBmYWNlPSJBcmlh bCI+PC9mb250Pjxmb250IHNpemU9IiYjNDM7MCI+PC9mb250PjwvcD4NCjxwIGNsYXNzPSJ7SW1w cmludC5VbmlxdWVJRH0iIHN0eWxlPSJGT05ULVNJWkU6IDhwdCI+PGZvbnQgZmFjZT0iQXJpYWwi PjwvZm9udD48L3A+DQo8cCBjbGFzcz0ie0ltcHJpbnQuVW5pcXVlSUR9IiBzdHlsZT0iRk9OVC1T SVpFOiA4cHQiPjwvcD4NCjxwIGNsYXNzPSJ7SW1wcmludC5VbmlxdWVJRH0iIHN0eWxlPSJGT05U LVNJWkU6IDhwdCI+PC9wPg0KPC9ib2R5Pg0KPC9odG1sPg0K --_000_HE1PR04MB20926E3BFD6F831C8ECC8C81CA310HE1PR04MB2092eurp_--