From owner-chemistry@ccl.net Sat Aug 19 01:26:00 2017 From: "Andrew Rosen rosen/a\u.northwestern.edu" To: CCL Subject: CCL:G: Base split valence in Gaussian Message-Id: <-52931-170819012448-29940-QDHOPfQqNbsLbmWP3h0Bvw]=[server.ccl.net> X-Original-From: Andrew Rosen Content-Type: multipart/alternative; boundary="001a113cd8786197bf05571476d3" Date: Sat, 19 Aug 2017 05:24:30 +0000 MIME-Version: 1.0 Sent to CCL by: Andrew Rosen [rosen\a/u.northwestern.edu] --001a113cd8786197bf05571476d3 Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable Leila, The SVP+SP basis set is not a default keyword in Gaussian. In this paper that you are referring to, they discuss how to construct the basis set, which you'd have to do yourself if you wish to reproduce their results. Note that this will likely require use of the `gen` keyword in Gaussian. Keep in mind that since this paper was published in 2002, if you wish to reproduce their results, you shouldn't use def2-SVP (although it is generally recommended to use the def2 family in practice). The Ahlrichs def2 family of basis sets did not come out until 2005/2006. Andrew > On Fri, Aug 18, 2017 at 12:56 PM Leila Carvalho < > leilacardoso.quim%x%gmail.com> wrote: > >> Hi! >> >> I am reproducing an article an basis set is SVP+sp and I'm not obtaining >> success. >> *(Article: Solvent Effects on Hydrogen Bonds- A Theoretical Study, of >> Ad=C3=A9lia Aquino*). >> >> Thanks, >> Leila. >> > On Thu, Aug 17, 2017 at 8:08 PM Leila Cardoso Carvalho leilacardoso.quim!^! gmail.com wrote: > > Sent to CCL by: "Leila Cardoso Carvalho" [leilacardoso.quim:gmail.com] > Dear! > > I'm working with Gaussian and I'm having difficulty with the input of the > base SVP + sp because it gives an error in the command. Can you suggest t= he > input command used to run the base SVP + sp in the Gaussian 03 to optimiz= e > the geometry of a molecule? > > Thankful, > Leila > leilacardoso.quim:_:gmail.com > Universidade Federal do Oeste da Bahia-UFOB > Rua Professor Jos Seabra de Lemos, 316. > Recanto dos Pssaros. > CEP: 47808-021 > Barreiras BA > > Fone: 77 3614-3196 > > > > -=3D This is automatically added to each message by the mailing script = =3D-> > > --001a113cd8786197bf05571476d3 Content-Type: text/html; charset="UTF-8" Content-Transfer-Encoding: quoted-printable
Leila,=C2=A0
The SVP+SP basis set is not a default keyword in Gaussian. In=C2=A0this paper<= /a>=C2=A0that you are referring to, they discuss how to construct the basis= set, which you'd have to do yourself if you wish to reproduce their re= sults. Note that this will likely require use of the `gen`=C2=A0keyword=C2=A0in Gaussian.

Keep in mind that since this paper was published in 2002, if you w= ish to reproduce their results, you shouldn't use def2-SVP (although it= is generally recommended to use the def2 family in practice). The Ahlrichs= def2 family of basis sets did not come out until 2005/2006.

Andr= ew

On Fri, Aug 18, 2017 at 12:56 PM Leila Carvalho &= lt;leilaca= rdoso.quim%x%gmail.com> wrote:
<= div class=3D"gmail_quote">
Hi!

I am reproducing an article an bas= is set is SVP+sp and I'm not obtaining success.
(Article: Solvent Effects on Hydr= ogen Bonds- A Theoretical Study, of Ad=C3=A9lia Aquino).

Tha= nks,=C2=A0
Leila.

On Thu, Aug 17, 2017 at 8:08 PM Leila Cardoso Carvalho leilac= ardoso.quim!^!gmail.com <owner-chemistry%x%ccl.net> wrote:

Sent to CCL by: "Leila Cardoso Carvalho" [leilacardoso.quim:gmail.com]=
Dear!

I'm working with Gaussian and I'm having difficulty with the input = of the
base SVP + sp because it gives an error in the command. Can you suggest the=
input command used to run the base SVP + sp in the Gaussian 03 to optimize<= br> the geometry of a molecule?

Thankful,
Leila
leilacardoso.quim:_:gmail.com
Universidade Federal do Oeste da Bahia-UFOB
Rua Professor Jos Seabra de Lemos, 316.
Recanto dos Pssaros.
CEP: 47808-021
Barreiras=C2=A0 BA

Fone: 77 3614-3196



-=3D This is automatically added to each message by the mailing script =3D-=
E-mail to subscribers: CHEMISTRY%x%ccl.net or use:
=C2=A0 =C2=A0 =C2=A0 http://www.ccl.net/cgi-bin/ccl/s= end_ccl_message

E-mail to administrators: CHEMISTRY-REQUEST%x%ccl.net or use
=C2=A0 =C2=A0 =C2=A0 http://www.ccl.net/cgi-bin/ccl/s= end_ccl_message

Subscribe/Unsubscribe:
=C2=A0 =C2=A0 =C2=A0 http://www.ccl.net/chemistry/sub_un= sub.shtml

Before posting, check wait time at: http://www.ccl.net

Job: http://www.ccl.net/jobs
Conferences: http://server.ccl.net/chemist= ry/announcements/conferences/

Search Messages: http://www.ccl.net/chemistry/sear= chccl/index.shtml
=C2=A0 =C2=A0 =C2=A0 http://www.ccl.net/spammers.txt

RTFI: http://www.ccl.net/chemistry/aboutccl/ins= tructions/


--001a113cd8786197bf05571476d3-- From owner-chemistry@ccl.net Sat Aug 19 03:21:00 2017 From: "Norrby, Per-Ola Per-Ola.Norrby]|[astrazeneca.com" To: CCL Subject: CCL: Vibrational sublevels along particular coordinate on PES Message-Id: <-52932-170819032007-635-aoybm8YKoraG/1IlD8zxMA(a)server.ccl.net> X-Original-From: "Norrby, Per-Ola" Content-Language: en-US Content-Type: multipart/alternative; boundary="_000_0D1AB13C4E3B4927BA0CF30F76D8951Eastrazenecacom_" Date: Sat, 19 Aug 2017 07:19:56 +0000 MIME-Version: 1.0 Sent to CCL by: "Norrby, Per-Ola" [Per-Ola.Norrby*o*astrazeneca.com] --_000_0D1AB13C4E3B4927BA0CF30F76D8951Eastrazenecacom_ Content-Type: text/plain; charset="utf-8" Content-Transfer-Encoding: base64 RGVhciBJZ29ycywNCg0KQWRkaW5nIHZpYnJhdGlvbmFsIGNvbnRyaWJ1dGlvbnMgbWFrZXMgbW9z dCBzZW5zZSBhdCBzdGF0aW9uYXJ5IHBvaW50cywgeW91IGNhbiB1c2UgdGhlbSB3aGVuIGNvbXBh cmluZyBzdGF0aW9uYXJ5IHBvaW50cywgbGlrZSB0aGUgKGZ1bGx5IGNvbnZlcmdlZCkgbWluaW1h IGFuZCB0cmFuc2l0aW9uIHN0YXRlLiBJZiB5b3UgbmVlZCB0bywgdGhlcmUgaXMgYSB3YXkgdG8g Y2FsY3VsYXRlIHRoZXNlIGNvbnRyaWJ1dGlvbnMgYWxzbyBhdCBub24tc3RhdGlvbmFyeSBwb2lu dHMgdXNpbmcgRnJlcT1Qcm9qZWN0IGluIEdhdXNzaWFuLiBOb3RlIHRoYXQgeW91IGxvc2Ugb25l IGRlZ3JlZSBvZiBmcmVlZG9tLCB0aGUgZGlyZWN0aW9uIG9mIHRoZSBmb3JjZSwgd2hpY2ggaXMg cHJvamVjdGVkIG91dCB0b2dldGhlciB3aXRoIHRoZSB0cmFuc2xhdGlvbnMgYW5kIHJvdGF0aW9u cyAoZ2l2aW5nIHlvdSBOLTcgZGVncmVlcyBvZiBmcmVlZG9tLCBub3QgdGhlIHVzdWFsIE4tNiku DQoNClBlci1PbGENCg0KU2VudCBmcm9tIG15IGlQaG9uZQ0KDQpPbiAxOCBBdWcgMjAxNywgYXQg MTk6MDYsIElnb3JzIE1paGFpbG92cyBpZ29yc209LT1jZmkubHUubHYgPG93bmVyLWNoZW1pc3Ry eUBjY2wubmV0PG1haWx0bzpvd25lci1jaGVtaXN0cnlAY2NsLm5ldD4+IHdyb3RlOg0KDQpEZWFy IGNvbXB1dGF0aW9uYWwgY2hlbWlzdHJ5IHNwZWNpYWxpc3RzLA0KDQpJIGhhdmUgYSBxdWVzdGlv biBwb3NzaWJseSBvZiBnZW5lcmFsIGtub3dsZWRnZSAod2hpY2ggSSBsYWNrKSwgY29uc2lkZXJp bmcgdHJhbnNmZXIgb2Ygd2hhdCBJIGhhdmUgbGVhcm5lZCBhYm91dCBsZXZlbHMgYW5kIHN1Ymxl dmVscyBvZiBkaWF0b21pY3MgdG8gY2FsY3VsYXRpb25zIG9mICJiaWciIG1vbGVjdWxlcy4NCkkg YW0gdHJ5aW5nIHRvIGFuYWx5emUgdGhlIHBvdGVudGlhbCBlbmVyZ3kgc3VyZmFjZSBvZiBhIHBh cnRpY3VsYXIgY29tcG91bmQgYWxvbmcgb25lIHBhcnRpY3VsYXIgZGloZWRyYWwgKGJ5IGRvaW5n IHBhcnRpYWwgb3B0aW1pemF0aW9ucyBhdCB2YXJpb3VzIHZhbHVlcyBvZiB0aGlzIGRpaGVkcmFs KS4gVGhpcyBjdXQgb2YgUEVTIGhhcyBkb3VibGUgY29uY2F2ZSBzaGFwZSAobGlrZSB0aGUgc21h bGwgR3JlZWsgbGFtYmRhKSwgYXMgaWYgdGhlcmUgd2VyZSB0d28gcG90ZW50aWFsIHdlbGxzIHNl cGFyYXRlZCBieSBhIGJhcnJpZXIgKGNhLiAxNSBrY2FsL21vbCksIGNvcnJlc3BvbmRpbmcgdG8g dHdvIGNvbmZvcm1lcnMuIElmIEkgd291bGQgYmUgc3VwcG9zZWQgdG8gZHJhdyB2aWJyYXRpb25h bCBzdWJsZXZlbHMgaW4gYm90aCB3ZWxscywgd2hhdCB3b3VsZCBiZSB0aGVpciBlbmVyZ2llcz8g VGhlIGNvbXB1dGVkIHZpYnJhdGlvbmFsIGZyZXF1ZW5jaWVzIChmb3Igc3RhYmxlIHN0cnVjdHVy ZXMgYXQgYm90dG9tcyBvZiBib3RoIHdlbGxzKSB3aXRoIHJlc3BlY3QgdG8gc29tZSBsaW5lIG92 ZXIgdGhlIGJvdHRvbT8NClRoZSBib3R0b20gc2hvdWxkIGJlIHRoZSB6ZXJvLXBvaW50IHZpYnJh dGlvbmFsIGVuZXJneSwgYnV0IHRoZW4gdGhlIG9uZSBjb21wdXRlZCBieSBHYXVzc2lhbiBpcyBh Ym91dCA3MCB0aW1lcyBsYXJnZXIgdGhhbiB0aGUgYmFycmllciBiZXR3ZWVuIHR3byBjb25mb3Jt ZXJzIChjYS4gMTAxNSBrY2FsL21vbCkuIEkgc3VwcG9zZSBJIHNob3VsZCB0YWtlIG9ubHkgY29u dHJpYnV0aW9uIHRvIFpQRSBmcm9tIHRoZSBkaWhlZHJhbCBpbiBpbnRlcmVzdCB0byBkZXRlcm1p bmUgdGhlIGZpcnN0IGxldmVsIGluIGEgd2VsbCAoc2luY2UgYWxsIHRoZSBtb2RlcyBhcmUgY29t cGxleCwgZG8gSSBuZWVkIHNvbWUgZGlhZ29uYWxpemF0aW9uIG9mIHNvbWV0aGluZywgbGlrZSB0 byBnZXQgIm5hdHVyYWwgZnJlcXVlbmN5IG1vZGVzIj8pLiBJcyB0aGlzIHNvPyBJZiBub3QsIGRv ZXMgdGhpcyByZXN1bHQgbWVhbiB0aGVyZSBpcyBjb25zdGFudCBpbnRlcmNvbnZlcnNpb24gb2Yg Ym90aCBjb25mb3JtZXJzIChzb3VuZHMgYSBiaXQgcmlkaWN1bG91cyB0byBtZSk/IE9yIGlzIHRo aXMgd2hvbGUgaWRlYSBvZiBkcmF3aW5nIHZpYnJhdGlvbiBsZXZlbHMgb3ZlciBzdWNoIGEgY3V0 IGluIFBFUyBqdXN0IGEgbm9uc2VuY2U/DQoNClNvcnJ5IGZvciBteSBpbGxpdGVyYWN5LiBBbmQg dGhhbmtzIGluIGFkdmFuY2UhDQoNCldpdGggYmVzdCByZWdhcmRzLA0KSWdvcnMgTWloYWlsb3Zz DQpQaEQgc3R1ZGVudA0KSVNTUCBVbml2ZXJzaXR5IG9mIExhdHZpYQ0KX19fX19fX19fX19fX19f X19fX19fX19fX19fX19fX18NCg0KQ29uZmlkZW50aWFsaXR5IE5vdGljZTogVGhpcyBtZXNzYWdl IGlzIHByaXZhdGUgYW5kIG1heSBjb250YWluIGNvbmZpZGVudGlhbCBhbmQgcHJvcHJpZXRhcnkg aW5mb3JtYXRpb24uIElmIHlvdSBoYXZlIHJlY2VpdmVkIHRoaXMgbWVzc2FnZSBpbiBlcnJvciwg cGxlYXNlIG5vdGlmeSB1cyBhbmQgcmVtb3ZlIGl0IGZyb20geW91ciBzeXN0ZW0gYW5kIG5vdGUg dGhhdCB5b3UgbXVzdCBub3QgY29weSwgZGlzdHJpYnV0ZSBvciB0YWtlIGFueSBhY3Rpb24gaW4g cmVsaWFuY2Ugb24gaXQuIEFueSB1bmF1dGhvcml6ZWQgdXNlIG9yIGRpc2Nsb3N1cmUgb2YgdGhl IGNvbnRlbnRzIG9mIHRoaXMgbWVzc2FnZSBpcyBub3QgcGVybWl0dGVkIGFuZCBtYXkgYmUgdW5s YXdmdWwuDQo= --_000_0D1AB13C4E3B4927BA0CF30F76D8951Eastrazenecacom_ Content-Type: text/html; charset="utf-8" Content-Transfer-Encoding: base64 PGh0bWw+DQo8aGVhZD4NCjxtZXRhIGh0dHAtZXF1aXY9IkNvbnRlbnQtVHlwZSIgY29udGVudD0i dGV4dC9odG1sOyBjaGFyc2V0PXV0Zi04Ij4NCjwvaGVhZD4NCjxib2R5IGRpcj0iYXV0byI+DQo8 ZGl2PkRlYXIgSWdvcnMsPC9kaXY+DQo8ZGl2IGlkPSJBcHBsZU1haWxTaWduYXR1cmUiPjxicj4N CjwvZGl2Pg0KPGRpdiBpZD0iQXBwbGVNYWlsU2lnbmF0dXJlIj5BZGRpbmcgdmlicmF0aW9uYWwg Y29udHJpYnV0aW9ucyBtYWtlcyBtb3N0IHNlbnNlIGF0IHN0YXRpb25hcnkgcG9pbnRzLCB5b3Ug Y2FuIHVzZSB0aGVtIHdoZW4gY29tcGFyaW5nIHN0YXRpb25hcnkgcG9pbnRzLCBsaWtlIHRoZSAo ZnVsbHkgY29udmVyZ2VkKSBtaW5pbWEgYW5kIHRyYW5zaXRpb24gc3RhdGUuIElmIHlvdSBuZWVk IHRvLCB0aGVyZSBpcyBhIHdheSB0byBjYWxjdWxhdGUgdGhlc2UNCiBjb250cmlidXRpb25zIGFs c28gYXQgbm9uLXN0YXRpb25hcnkgcG9pbnRzIHVzaW5nIEZyZXE9UHJvamVjdCBpbiBHYXVzc2lh bi4gTm90ZSB0aGF0IHlvdSBsb3NlIG9uZSBkZWdyZWUgb2YgZnJlZWRvbSwgdGhlIGRpcmVjdGlv biBvZiB0aGUgZm9yY2UsIHdoaWNoIGlzIHByb2plY3RlZCBvdXQgdG9nZXRoZXIgd2l0aCB0aGUg dHJhbnNsYXRpb25zIGFuZCByb3RhdGlvbnMgKGdpdmluZyB5b3UgTi03IGRlZ3JlZXMgb2YgZnJl ZWRvbSwgbm90IHRoZQ0KIHVzdWFsIE4tNikuPC9kaXY+DQo8ZGl2IGlkPSJBcHBsZU1haWxTaWdu YXR1cmUiPjxicj4NCjwvZGl2Pg0KPGRpdiBpZD0iQXBwbGVNYWlsU2lnbmF0dXJlIj5QZXItT2xh PGJyPg0KPGJyPg0KU2VudCBmcm9tIG15IGlQaG9uZTwvZGl2Pg0KPGRpdj48YnI+DQpPbiAxOCBB dWcgMjAxNywgYXQgMTk6MDYsIElnb3JzIE1paGFpbG92cyBpZ29yc209LT1jZmkubHUubHYgJmx0 OzxhIGhyZWY9Im1haWx0bzpvd25lci1jaGVtaXN0cnlAY2NsLm5ldCI+b3duZXItY2hlbWlzdHJ5 QGNjbC5uZXQ8L2E+Jmd0OyB3cm90ZTo8YnI+DQo8YnI+DQo8L2Rpdj4NCjxibG9ja3F1b3RlIHR5 cGU9ImNpdGUiPg0KPGRpdj48Zm9udCBmYWNlPSJMaWJlcmF0aW9uIFNhbnMiPkRlYXIgY29tcHV0 YXRpb25hbCBjaGVtaXN0cnkgc3BlY2lhbGlzdHMsPGJyPg0KPGJyPg0KSSBoYXZlIGEgcXVlc3Rp b24gcG9zc2libHkgb2YgZ2VuZXJhbCBrbm93bGVkZ2UgKHdoaWNoIEkgbGFjayksIGNvbnNpZGVy aW5nIHRyYW5zZmVyIG9mIHdoYXQgSSBoYXZlIGxlYXJuZWQgYWJvdXQgbGV2ZWxzIGFuZCBzdWJs ZXZlbHMgb2YgZGlhdG9taWNzIHRvIGNhbGN1bGF0aW9ucyBvZiAmcXVvdDtiaWcmcXVvdDsgbW9s ZWN1bGVzLjxicj4NCkkgYW0gdHJ5aW5nIHRvIGFuYWx5emUgdGhlIHBvdGVudGlhbCBlbmVyZ3kg c3VyZmFjZSBvZiBhIHBhcnRpY3VsYXIgY29tcG91bmQgYWxvbmcgb25lIHBhcnRpY3VsYXIgZGlo ZWRyYWwgKGJ5IGRvaW5nIHBhcnRpYWwgb3B0aW1pemF0aW9ucyBhdCB2YXJpb3VzIHZhbHVlcyBv ZiB0aGlzIGRpaGVkcmFsKS4gVGhpcyBjdXQgb2YgUEVTIGhhcyBkb3VibGUgY29uY2F2ZSBzaGFw ZSAobGlrZSB0aGUgc21hbGwgR3JlZWsgbGFtYmRhKSwgYXMgaWYgdGhlcmUNCiB3ZXJlIHR3byBw b3RlbnRpYWwgd2VsbHMgc2VwYXJhdGVkIGJ5IGEgYmFycmllciAoY2EuIDE1IGtjYWwvbW9sKSwg Y29ycmVzcG9uZGluZyB0byB0d28gY29uZm9ybWVycy4gSWYgSSB3b3VsZCBiZSBzdXBwb3NlZCB0 byBkcmF3IHZpYnJhdGlvbmFsIHN1YmxldmVscyBpbiBib3RoIHdlbGxzLCB3aGF0IHdvdWxkIGJl IHRoZWlyIGVuZXJnaWVzPyBUaGUgY29tcHV0ZWQgdmlicmF0aW9uYWwgZnJlcXVlbmNpZXMgKGZv ciBzdGFibGUgc3RydWN0dXJlcw0KIGF0IGJvdHRvbXMgb2YgYm90aCB3ZWxscykgd2l0aCByZXNw ZWN0IHRvIHNvbWUgbGluZSBvdmVyIHRoZSBib3R0b20/PGJyPg0KVGhlIGJvdHRvbSBzaG91bGQg YmUgdGhlIHplcm8tcG9pbnQgdmlicmF0aW9uYWwgZW5lcmd5LCBidXQgdGhlbiB0aGUgb25lIGNv bXB1dGVkIGJ5IEdhdXNzaWFuIGlzIGFib3V0IDcwIHRpbWVzIGxhcmdlciB0aGFuIHRoZSBiYXJy aWVyIGJldHdlZW4gdHdvIGNvbmZvcm1lcnMgKGNhLiAxMDE1IGtjYWwvbW9sKS4gSSBzdXBwb3Nl IEkgc2hvdWxkIHRha2Ugb25seSBjb250cmlidXRpb24gdG8gWlBFIGZyb20gdGhlIGRpaGVkcmFs IGluIGludGVyZXN0DQogdG8gZGV0ZXJtaW5lIHRoZSBmaXJzdCBsZXZlbCBpbiBhIHdlbGwgKHNp bmNlIGFsbCB0aGUgbW9kZXMgYXJlIGNvbXBsZXgsIGRvIEkgbmVlZCBzb21lIGRpYWdvbmFsaXph dGlvbiBvZiBzb21ldGhpbmcsIGxpa2UgdG8gZ2V0ICZxdW90O25hdHVyYWwgZnJlcXVlbmN5IG1v ZGVzJnF1b3Q7PykuIElzIHRoaXMgc28/IElmIG5vdCwgZG9lcyB0aGlzIHJlc3VsdCBtZWFuIHRo ZXJlIGlzIGNvbnN0YW50IGludGVyY29udmVyc2lvbiBvZiBib3RoIGNvbmZvcm1lcnMgKHNvdW5k cw0KIGEgYml0IHJpZGljdWxvdXMgdG8gbWUpPyBPciBpcyB0aGlzIHdob2xlIGlkZWEgb2YgZHJh d2luZyB2aWJyYXRpb24gbGV2ZWxzIG92ZXIgc3VjaCBhIGN1dCBpbiBQRVMganVzdCBhIG5vbnNl bmNlPzxicj4NCjxicj4NClNvcnJ5IGZvciBteSBpbGxpdGVyYWN5LiBBbmQgdGhhbmtzIGluIGFk dmFuY2UhPGJyPg0KPGJyPg0KV2l0aCBiZXN0IHJlZ2FyZHMsPGJyPg0KSWdvcnMgTWloYWlsb3Zz PGJyPg0KUGhEIHN0dWRlbnQ8YnI+DQpJU1NQIFVuaXZlcnNpdHkgb2YgTGF0dmlhPC9mb250PiA8 L2Rpdj4NCjwvYmxvY2txdW90ZT4NCjxocj4NCjxwIGNsYXNzPSJ7SW1wcmludC5VbmlxdWVJRH0i IHN0eWxlPSJGT05ULVNJWkU6IDhwdCI+PGZvbnQgZmFjZT0iQXJpYWwiIHNpemU9IjEiPjwvZm9u dD48L3A+DQo8cCBjbGFzcz0ie0ltcHJpbnQuVW5pcXVlSUR9IiBzdHlsZT0iRk9OVC1TSVpFOiA4 cHQiPjxmb250IGZhY2U9IkFyaWFsIj48c3Ryb25nPkNvbmZpZGVudGlhbGl0eSBOb3RpY2U6DQo8 L3N0cm9uZz5UaGlzIG1lc3NhZ2UgaXMgcHJpdmF0ZSBhbmQgbWF5IGNvbnRhaW4gY29uZmlkZW50 aWFsIGFuZCBwcm9wcmlldGFyeSBpbmZvcm1hdGlvbi4gSWYgeW91IGhhdmUgcmVjZWl2ZWQgdGhp cyBtZXNzYWdlIGluIGVycm9yLCBwbGVhc2Ugbm90aWZ5IHVzIGFuZCByZW1vdmUgaXQgZnJvbSB5 b3VyIHN5c3RlbSBhbmQgbm90ZSB0aGF0IHlvdSBtdXN0IG5vdCBjb3B5LCBkaXN0cmlidXRlIG9y IHRha2UgYW55IGFjdGlvbiBpbiByZWxpYW5jZQ0KIG9uIGl0LiBBbnkgdW5hdXRob3JpemVkIHVz ZSBvciBkaXNjbG9zdXJlIG9mIHRoZSBjb250ZW50cyBvZiB0aGlzIG1lc3NhZ2UgaXMgbm90IHBl cm1pdHRlZCBhbmQgbWF5IGJlIHVubGF3ZnVsLjwvZm9udD48L3A+DQo8cCBjbGFzcz0ie0ltcHJp bnQuVW5pcXVlSUR9IiBzdHlsZT0iRk9OVC1TSVpFOiA4cHQiPjxmb250IGZhY2U9IkFyaWFsIj48 L2ZvbnQ+PC9wPg0KPHAgY2xhc3M9IntJbXByaW50LlVuaXF1ZUlEfSIgc3R5bGU9IkZPTlQtU0la RTogOHB0Ij48Zm9udCBmYWNlPSJBcmlhbCI+PC9mb250PjwvcD4NCjxwIGNsYXNzPSJ7SW1wcmlu dC5VbmlxdWVJRH0iIHN0eWxlPSJGT05ULVNJWkU6IDhwdCI+PGZvbnQgZmFjZT0iQXJpYWwiPjwv Zm9udD48L3A+DQo8cCBjbGFzcz0ie0ltcHJpbnQuVW5pcXVlSUR9IiBzdHlsZT0iRk9OVC1TSVpF OiA4cHQiPjxmb250IGZhY2U9IkFyaWFsIj48L2ZvbnQ+PC9wPg0KPHAgY2xhc3M9IntJbXByaW50 LlVuaXF1ZUlEfSIgc3R5bGU9IkZPTlQtU0laRTogOHB0Ij48Zm9udCBmYWNlPSJBcmlhbCI+PC9m b250PjwvcD4NCjxwIGNsYXNzPSJ7SW1wcmludC5VbmlxdWVJRH0iIHN0eWxlPSJGT05ULVNJWkU6 IDhwdCI+PGZvbnQgZmFjZT0iQXJpYWwiPjwvZm9udD48Zm9udCBzaXplPSImIzQzOzAiPjwvZm9u dD48L3A+DQo8cCBjbGFzcz0ie0ltcHJpbnQuVW5pcXVlSUR9IiBzdHlsZT0iRk9OVC1TSVpFOiA4 cHQiPjxmb250IGZhY2U9IkFyaWFsIj48L2ZvbnQ+PC9wPg0KPHAgY2xhc3M9IntJbXByaW50LlVu aXF1ZUlEfSIgc3R5bGU9IkZPTlQtU0laRTogOHB0Ij48L3A+DQo8cCBjbGFzcz0ie0ltcHJpbnQu VW5pcXVlSUR9IiBzdHlsZT0iRk9OVC1TSVpFOiA4cHQiPjwvcD4NCjwvYm9keT4NCjwvaHRtbD4N Cg== --_000_0D1AB13C4E3B4927BA0CF30F76D8951Eastrazenecacom_-- From owner-chemistry@ccl.net Sat Aug 19 15:19:01 2017 From: "Tibor Gyori tiborgyri]_[gmail.com" To: CCL Subject: CCL: Performance of AMD Ryzen CPUs ? Message-Id: <-52933-170819081501-11756-HykwbbQ+XhTiGWu2jrMXlw- -server.ccl.net> X-Original-From: "Tibor Gyori" Date: Sat, 19 Aug 2017 08:15:00 -0400 Sent to CCL by: "Tibor Gyori" [tiborgyri(-)gmail.com] Dear CCL Subscribers, Recently AMD has released a number of new CPUs, with greatly improved performance and power efficiency compared to their previous products, and they are priced very competitively. (only 300 USD for the cheapest 8-core CPU, 1000 USD for a 16 core CPU) The deal is further sweetened by the fact that all of these ordinary desktop parts support ECC memory.(unbuffered only, so 64/128 GB max.) While there is little relevant data available online, it seems clear that highly parallel tasks (with little or no communication between threads) run very well. (NAMD seems to perform particularly well on Ryzen) My question is that does anyone here have any experience regarding the performance of Ryzen/Threadripper/Epyc CPUs in computational chemistry workloads? Information on quantum chemistry performance (PSI4, Molpro, MRCC, Orca, etc.) would be especially useful for our research group. Thanks, Tibor Gyori MSc. student University of Szeged From owner-chemistry@ccl.net Sat Aug 19 15:54:01 2017 From: "Igors Mihailovs igorsm**cfi.lu.lv" To: CCL Subject: CCL:G: Vibrational sublevels along particular coordinate on PES Message-Id: <-52934-170819103840-17428-nvsGz15FNA/ho9APjf5sUw%a%server.ccl.net> X-Original-From: Igors Mihailovs Content-Language: en-US Content-Type: multipart/alternative; boundary="------------2FA02B23388C8B4816DA181D" Date: Sat, 19 Aug 2017 17:40:48 +0300 MIME-Version: 1.0 Sent to CCL by: Igors Mihailovs [igorsm(~)cfi.lu.lv] This is a multi-part message in MIME format. --------------2FA02B23388C8B4816DA181D Content-Type: text/plain; charset=utf-8; format=flowed Content-Transfer-Encoding: 8bit Dear Dr. Norrby, Thank You for Your reply! But it seems to me that I might have been right about that 'nonsence' in my question, because either I am misinterpreting Your answer or You may have misinterpreted my question. Or both :) So I will describe my actual situation then. I have a discussion with a synthetic chemist about interpreting the results of this PES scan. There are actually two different scans, one in benzene and another one in acetonitrile, with notably lower barrier in acetonitrile. One of his arguments is that in acetonitrile there is larger population of conformations with non-equilibrium dihedral values (then it might help to interpret some experimental findings about a certain molecular electronic property). If calculated according to Boltzmann distribution, some conformations with moderate deviations from the equilibrium value of dihedral do have significant population with respect to the equilibrium one (e.g., 0.2:1), because PES is relatively flat in that region. If I do understand correctly, in reality only those conformations are really present in solution which correspond to some vibrational sublevels on PES (or should it be free-energy surface then?). I thought I could determine if a conformation is something real if I plot vibrational sublevels in the well and check whether a conformation is higher or lower than the first of sublevels,… and so on. Is this the right idea at all? If it is, should these sublevels be taken > from the calculations of stationary points (well bottoms), or should I project those sublevels, or …? Because I cannot even found meaning of those 'projected contributions' in my interpretation of how PES is related to vibrational sublevels (above). So is this interpretation rather wrong?… Thank You (and possibly others) again in advance. Yours sincerely, Igors Mihailovs PhD student ISSP University of Latvia On 19/08/17 10:19, Norrby, Per-Ola Per-Ola.Norrby]|[astrazeneca.com wrote: > Dear Igors, > > Adding vibrational contributions makes most sense at stationary > points, you can use them when comparing stationary points, like the > (fully converged) minima and transition state. If you need to, there > is a way to calculate these contributions also at non-stationary > points using Freq=Project in Gaussian. Note that you lose one degree > of freedom, the direction of the force, which is projected out > together with the translations and rotations (giving you N-7 degrees > of freedom, not the usual N-6). > > Per-Ola > > Sent from my iPhone > > On 18 Aug 2017, at 19:06, Igors Mihailovs igorsm=-=cfi.lu.lv > > wrote: > >> Dear computational chemistry specialists, >> >> I have a question possibly of general knowledge (which I lack), >> considering transfer of what I have learned about levels and >> sublevels of diatomics to calculations of "big" molecules. >> I am trying to analyze the potential energy surface of a particular >> compound along one particular dihedral (by doing partial >> optimizations at various values of this dihedral). This cut of PES >> has double concave shape (like the small Greek lambda), as if there >> were two potential wells separated by a barrier (ca. 15 kcal/mol), >> corresponding to two conformers. If I would be supposed to draw >> vibrational sublevels in both wells, what would be their energies? >> The computed vibrational frequencies (for stable structures at >> bottoms of both wells) with respect to some line over the bottom? >> The bottom should be the zero-point vibrational energy, but then the >> one computed by Gaussian is about 70 times larger than the barrier >> between two conformers (ca. 1015 kcal/mol). I suppose I should take >> only contribution to ZPE from the dihedral in interest to determine >> the first level in a well (since all the modes are complex, do I need >> some diagonalization of something, like to get "natural frequency >> modes"?). Is this so? If not, does this result mean there is constant >> interconversion of both conformers (sounds a bit ridiculous to me)? >> Or is this whole idea of drawing vibration levels over such a cut in >> PES just a nonsence? >> >> Sorry for my illiteracy. And thanks in advance! >> >> With best regards, >> Igors Mihailovs >> PhD student >> ISSP University of Latvia > ------------------------------------------------------------------------ > > *Confidentiality Notice: *This message is private and may contain > confidential and proprietary information. If you have received this > message in error, please notify us and remove it from your system and > note that you must not copy, distribute or take any action in reliance > on it. Any unauthorized use or disclosure of the contents of this > message is not permitted and may be unlawful. > --------------2FA02B23388C8B4816DA181D Content-Type: text/html; charset=utf-8 Content-Transfer-Encoding: 8bit Dear Dr. Norrby,

Thank You for Your reply! But it seems to me that I might have been right about that 'nonsence' in my question, because either I am misinterpreting Your answer or You may have misinterpreted my question. Or both :)

So I will describe my actual situation then. I have a discussion with a synthetic chemist about interpreting the results of this PES scan. There are actually two different scans, one in benzene and another one in acetonitrile, with notably lower barrier in acetonitrile. One of his arguments is that in acetonitrile there is larger population of conformations with non-equilibrium dihedral values (then it might help to interpret some experimental findings about a certain molecular electronic property). If calculated according to Boltzmann distribution, some conformations with moderate deviations from the equilibrium value of dihedral do have significant population with respect to the equilibrium one (e.g., 0.2:1), because PES is relatively flat in that region. If I do understand correctly, in reality only those conformations are really present in solution which correspond to some vibrational sublevels on PES (or should it be free-energy surface then?). I thought I could determine if a conformation is something real if I plot vibrational sublevels in the well and check whether a conformation is higher or lower than the first of sublevels,… and so on. Is this the right idea at all? If it is, should these sublevels be taken from the calculations of stationary points (well bottoms), or should I project those sublevels, or …? Because I cannot even found meaning of those 'projected contributions' in my interpretation of how PES is related to vibrational sublevels (above). So is this interpretation rather wrong?…

Thank You (and possibly others) again in advance.

Yours sincerely,
Igors Mihailovs
PhD student
ISSP University of Latvia



On 19/08/17 10:19, Norrby, Per-Ola Per-Ola.Norrby]|[astrazeneca.com wrote:
Dear Igors,

Adding vibrational contributions makes most sense at stationary points, you can use them when comparing stationary points, like the (fully converged) minima and transition state. If you need to, there is a way to calculate these contributions also at non-stationary points using Freq=Project in Gaussian. Note that you lose one degree of freedom, the direction of the force, which is projected out together with the translations and rotations (giving you N-7 degrees of freedom, not the usual N-6).

Per-Ola

Sent from my iPhone

On 18 Aug 2017, at 19:06, Igors Mihailovs igorsm=-=cfi.lu.lv <owner-chemistry^ccl.net> wrote:

Dear computational chemistry specialists,

I have a question possibly of general knowledge (which I lack), considering transfer of what I have learned about levels and sublevels of diatomics to calculations of "big" molecules.
I am trying to analyze the potential energy surface of a particular compound along one particular dihedral (by doing partial optimizations at various values of this dihedral). This cut of PES has double concave shape (like the small Greek lambda), as if there were two potential wells separated by a barrier (ca. 15 kcal/mol), corresponding to two conformers. If I would be supposed to draw vibrational sublevels in both wells, what would be their energies? The computed vibrational frequencies (for stable structures at bottoms of both wells) with respect to some line over the bottom?
The bottom should be the zero-point vibrational energy, but then the one computed by Gaussian is about 70 times larger than the barrier between two conformers (ca. 1015 kcal/mol). I suppose I should take only contribution to ZPE from the dihedral in interest to determine the first level in a well (since all the modes are complex, do I need some diagonalization of something, like to get "natural frequency modes"?). Is this so? If not, does this result mean there is constant interconversion of both conformers (sounds a bit ridiculous to me)? Or is this whole idea of drawing vibration levels over such a cut in PES just a nonsence?

Sorry for my illiteracy. And thanks in advance!

With best regards,
Igors Mihailovs
PhD student
ISSP University of Latvia

Confidentiality Notice: This message is private and may contain confidential and proprietary information. If you have received this message in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this message is not permitted and may be unlawful.


--------------2FA02B23388C8B4816DA181D--