From owner-chemistry@ccl.net Mon Aug 21 09:42:00 2017 From: "Norrby, Per-Ola Per-Ola.Norrby__astrazeneca.com" To: CCL Subject: CCL: Vibrational sublevels along particular coordinate on PES Message-Id: <-52937-170821033703-6610-NjyXNhFisoZ4mj4bzaBm8w*_*server.ccl.net> X-Original-From: "Norrby, Per-Ola" Content-Language: en-US Content-Type: multipart/alternative; boundary="_000_HE1PR04MB2092C924C092E7F837B9FB73CA870HE1PR04MB2092eurp_" Date: Mon, 21 Aug 2017 07:36:52 +0000 MIME-Version: 1.0 Sent to CCL by: "Norrby, Per-Ola" [Per-Ola.Norrby=-=astrazeneca.com] --_000_HE1PR04MB2092C924C092E7F837B9FB73CA870HE1PR04MB2092eurp_ Content-Type: text/plain; charset="utf-8" Content-Transfer-Encoding: base64 RGVhciBJZ29ycywNCg0KT0ssIHNlZW1zIHdlIGhhdmUgdG8gZGl2ZSBkZWVwZXIgaW50byB0aGUg dGhlb3J5IGhlcmUuIEhvcGVmdWxseSBzb21lIHJlYWwgZXhwZXJ0IGluIHN0YXRpc3RpY2FsIHRo ZXJtb2R5bmFtaWNzIHdpbGwgYWxzbyBjb21tZW50LCBJ4oCZbSBvbmx5IGRhYmJsaW5nIGluIGl0 IG15c2VsZi4NCg0KRmlyc3QsIEkgZG9u4oCZdCByZWFsbHkgdW5kZXJzdGFuZCB0aGUgZXhwZXJp bWVudHMgeW91IGFyZSB0cnlpbmcgdG8gbW9kZWwuIEkgd2lsbCBhc3N1bWUgdGhpcyBpcyBhbiBl cXVpbGlicml1bSBiZXR3ZWVuIHR3byBjb25mb3JtYXRpb25zLCBhbmQgeW91IGNhbiBleHBlcmlt ZW50YWxseSBmaW5kIGJvdGggdGhlIGRpc3RyaWJ1dGlvbiBiZXR3ZWVuIHRoZW0sIGFuZCB0aGUg cmF0ZSBvZiBpbnRlcmNvbnZlcnNpb24sIGFuZCB0aGF0IHRoaXMgZGlmZmVycyBpbiBkaWZmZXJl bnQgc29sdmVudD8gVGhlbiB5b3VyIGZpcnN0IHByb2JsZW0gaXMgY29udmVydGluZyB5b3VyIFBF UyBkYXRhIHRvIGZyZWUgZW5lcmdpZXMsIHNpbmNlIHRoYXQgaXMgd2hhdCB5b3XigJlsbCBtZWFz dXJlIGluIGV4cGVyaW1lbnRzIChvYnZpb3VzbHkgeW91IGNhbiBhbHNvIGRvIHRoZSBleHBlcmlt ZW50IGF0IGRpZmZlcmVudCB0ZW1wZXJhdHVyZXMsIHRvIGdldCBhdCB0aGUgdW5kZXJseWluZyBl bnRoYWxweSwgYSBzaW1wbGVyIHByb2JsZW0gY29tcHV0YXRpb25hbGx5KS4gVGhlIGV4cGVyaW1l bnRzIHdpbGwgb25seSBnaXZlIGluZm9ybWF0aW9uIGFib3V0IGNvbmZvcm1lcnMsIHRoYXQgaXMs IHRoZSBzdW0gb2YgYWxsIGdlb21ldHJpZXMgc2hhcmluZyBhbiBlbmVyZ3kgd2VsbC4gSWYgeW91 IGhhdmUgd2VsbC1kZWZpbmVkIG1pbmltYSB3aXRoIHN0cm9uZyBjdXJ2YXR1cmUsIHlvdSBjYW4g ZXN0aW1hdGUgdGhlIGZyZWUgZW5lcmd5IGJ5IGNhbGN1bGF0aW5nIHNvbHZhdGlvbiBhbmQgdmli cmF0aW9uYWwgY29udHJpYnV0aW9ucyB0byB0aGUgZnJlZSBlbmVyZ3ksIGFuZCBhZGQgdGhhdCB0 byB0aGUgcG90ZW50aWFsIGVuZXJneS4gSG93ZXZlciwgdGhpcyBpcyB1c3VhbGx5IGRvbmUgdXNp bmcgYSBoYXJtb25pYyBhcHByb3hpbWF0aW9uLCB3aGljaCBmYWlscyBtaXNlcmFibHkgd2hlbiB5 b3UgaGF2ZSBmbGF0IG5vcm1hbCBtb2Rlcy4gQSBydWxlIG9mIHRodW1iIGlzIHRvIG5ldmVyIHRy dXN0IGhhcm1vbmljIGNvbnRyaWJ1dGlvbnMgKGVzcGVjaWFsbHkgZW50cm9waWVzKSBmb3IgYSBu b3JtYWwgbW9kZSB3aGVyZSB0aGUgdmlicmF0aW9uYWwgZnJlcXVlbmN5IGlzIGxvd2VyIHRoYW4g NTAgY21eLTEuIFRoZXJlIGFyZSB3YXlzIHRvIGdvIGJleW9uZCBoYXJtb25pY3MsIGluY2x1ZGlu ZyBhbmhhcm1vbmljIHRyZWF0bWVudHMgaW4gR2F1c3NpYW4sIGJ1dCB0aGUgb25seSB0aW1lIEni gJl2ZSBldmVyIG5lZWRlZCB0bywgd2UgZGlkIGEgbnVtZXJpYyBpbnRlZ3JhdGlvbiBhbG9uZyB0 aGUgc2luZ2xlIHRyb3VibGVzb21lIG5vcm1hbCBtb2RlOg0KDQrigKIiUXVhbnR1bSBNZWNoYW5p Y2FsIENvbmZvcm1hdGlvbmFsIEFuYWx5c2lzIG9mIM6yLUFsYW5pbmUgWndpdHRlcmlvbiBpbiBB cXVlb3VzIFNvbHV0aW9uIg0KIFBldGVyIEFhZGFsIE5pZWxzZW4sIFBlci1PbGEgTm9ycmJ5LCBU b21teSBMaWxqZWZvcnMsIE5hZGlhIFJlZ2EsIGFuZCBWaW5jZW56byBCYXJvbmUsIEouIEFtLiBD aGVtLiBTb2MuIDIwMDAsIDEyMiwgMzE1MS0zMTU1DQpodHRwOi8vZHguZG9pLm9yZy8xMC4xMDIx L2phOTkyOTAyKw0KDQpUaGUgaGVhdnkgbW9kZWxpbmcgd2FzIGRvbmUgaW4gdGhlIEJhcm9uZSBn cm91cCwgSSBkb27igJl0IGhhdmUgdGhlIGV4YWN0IHByb2NlZHVyZSwgYnV0IGl0IHNvdW5kcyBs aWtlIHRoaXMgaXMgc29tZXRoaW5nIHRoYXQgY291bGQgYmUgZG9uZSBpbiB5b3VyIGNhc2UuIEhv d2V2ZXIsIGlmIHlvdSBuZWVkIHRvIGRvIGl0IGFsc28gYXQgdGhlIFRTLCBpdOKAmXMgaGFyZGVy LiBBbmhhcm1vbmljIHRyZWF0bWVudCBpbiBHYXVzc2lhbiBtaWdodCBiZSB0aGUgYmVzdCBpZiB5 b3UgbmVlZCB0byBkbyBpdC4NCg0KVGhlIHJlc3VsdHMgeW91IHdpbGwgZ2V0IG91dCBpcyBzaW1w bHkgdGhhdCBhbnkgbWluaW1hIHdpdGggYSBmbGF0IG5vcm1hbCBtb2RlIGdldCBhIGxvd2VyaW5n IG9mIHRoZSBmcmVlIGVuZXJneSBjb21wYXJlZCB0byBtaW5pbWEgdGhhdCBoYXZlIG9ubHkgc2hh cnBseSBjdXJ2ZWQgbm9ybWFsIG1vZGVzLiBUbyBzaW1wbGlmeSwgeW91IGNhbiBFSVRIRVIgc2F5 IHRoYXQgaGFybW9uaWMgdHJlYXRtZW50IG9mIHRoZSBub3JtYWwgbW9kZSB3aWxsIGFjY3VyYXRl bHkgcmVwcmVzZW50IGFsbCBnZW9tZXRyaWVzIGNvbnRyaWJ1dGluZyB0byB0aGUgZnJlZSBlbmVy Z3ksIE9SIHlvdSBjYW4gZ2VuZXJhdGUgYWxsIHRoZSBnZW9tZXRyaWVzIGFuZCB0aGVpciBlbmVy Z2llcyBhbmQgZG8gYSBzdW1tYXRpb24gKHRoZSBsYXR0ZXIgaXMsIGluIHNpbXBsaWZpZWQgdGVy bXMsIHdoYXQgbW9sZWN1bGFyIGR5bmFtaWNzLCBNRCwgaXMgZG9pbmcpLg0KDQpIb3dldmVyLCBy ZWFkaW5nIHlvdXIgZW1haWwsIGl04oCZcyBub3QgZW50aXJlbHkgY2xlYXIgdGhpcyBpcyB0aGUg cHJvYmxlbS4gRG8geW91IGFjdHVhbGx5IHNlZSBhIGxvd2VyaW5nIG9mIHRoZSBiYXJyaWVyIGlu IHRoZSBQRVMsIGFuZCB3YW50IHRvIGV4cGxhaW4gd2h5PyBJZiBzbywgdmlicmF0aW9ucyBoYXZl IG5vdGhpbmcgdG8gZG8gd2l0aCBpdCAoc2luY2UgdGhlIFBFUyBkb2VzbuKAmXQgYWNjb3VudCBm b3IgdmlicmF0aW9ucykuIElmIHlvdSBzZWUgYSBsb3dlciBiYXJyaWVyIGluIGFjZXRvbml0cmls ZSBjb21wYXJlZCB0byBiZW56ZW5lLCB0aGUgYW5zd2VyIGlzIHNpbXBseSB0aGF0IHRoZSBUUyBo YXMgYSBzdHJvbmdlciBkaXBvbGUgKG9yIG90aGVyIGludGVyYWN0aW9uIHdpdGggc29sdmVudCkg Y29tcGFyZWQgdG8gdGhlIGdyb3VuZCBzdGF0ZS4NCg0KSG9wZSB0aGlzIGhlbHBzLA0KDQpQZXIt T2xhDQoNCg0KRnJvbTogb3duZXItY2hlbWlzdHJ5K3Blci1vbGEubm9ycmJ5PT1hc3RyYXplbmVj YS5jb21AY2NsLm5ldCBbbWFpbHRvOm93bmVyLWNoZW1pc3RyeStwZXItb2xhLm5vcnJieT09YXN0 cmF6ZW5lY2EuY29tQGNjbC5uZXRdIE9uIEJlaGFsZiBPZiBJZ29ycyBNaWhhaWxvdnMgaWdvcnNt KipjZmkubHUubHYNClNlbnQ6IGRlbiAxOSBhdWd1c3RpIDIwMTcgMTY6NDENClRvOiBOb3JyYnks IFBlci1PbGEgPFBlci1PbGEuTm9ycmJ5QGFzdHJhemVuZWNhLmNvbT4NClN1YmplY3Q6IENDTDpH OiBWaWJyYXRpb25hbCBzdWJsZXZlbHMgYWxvbmcgcGFydGljdWxhciBjb29yZGluYXRlIG9uIFBF Uw0KDQpEZWFyIERyLiBOb3JyYnksDQoNClRoYW5rIFlvdSBmb3IgWW91ciByZXBseSEgQnV0IGl0 IHNlZW1zIHRvIG1lIHRoYXQgSSBtaWdodCBoYXZlIGJlZW4gcmlnaHQgYWJvdXQgdGhhdCAnbm9u c2VuY2UnIGluIG15IHF1ZXN0aW9uLCBiZWNhdXNlIGVpdGhlciBJIGFtIG1pc2ludGVycHJldGlu ZyBZb3VyIGFuc3dlciBvciBZb3UgbWF5IGhhdmUgbWlzaW50ZXJwcmV0ZWQgbXkgcXVlc3Rpb24u IE9yIGJvdGggOikNCg0KU28gSSB3aWxsIGRlc2NyaWJlIG15IGFjdHVhbCBzaXR1YXRpb24gdGhl bi4gSSBoYXZlIGEgZGlzY3Vzc2lvbiB3aXRoIGEgc3ludGhldGljIGNoZW1pc3QgYWJvdXQgaW50 ZXJwcmV0aW5nIHRoZSByZXN1bHRzIG9mIHRoaXMgUEVTIHNjYW4uIFRoZXJlIGFyZSBhY3R1YWxs eSB0d28gZGlmZmVyZW50IHNjYW5zLCBvbmUgaW4gYmVuemVuZSBhbmQgYW5vdGhlciBvbmUgaW4g YWNldG9uaXRyaWxlLCB3aXRoIG5vdGFibHkgbG93ZXIgYmFycmllciBpbiBhY2V0b25pdHJpbGUu IE9uZSBvZiBoaXMgYXJndW1lbnRzIGlzIHRoYXQgaW4gYWNldG9uaXRyaWxlIHRoZXJlIGlzIGxh cmdlciBwb3B1bGF0aW9uIG9mIGNvbmZvcm1hdGlvbnMgd2l0aCBub24tZXF1aWxpYnJpdW0gZGlo ZWRyYWwgdmFsdWVzICh0aGVuIGl0IG1pZ2h0IGhlbHAgdG8gaW50ZXJwcmV0IHNvbWUgZXhwZXJp bWVudGFsIGZpbmRpbmdzIGFib3V0IGEgY2VydGFpbiBtb2xlY3VsYXIgZWxlY3Ryb25pYyBwcm9w ZXJ0eSkuIElmIGNhbGN1bGF0ZWQgYWNjb3JkaW5nIHRvIEJvbHR6bWFubiBkaXN0cmlidXRpb24s IHNvbWUgY29uZm9ybWF0aW9ucyB3aXRoIG1vZGVyYXRlIGRldmlhdGlvbnMgZnJvbSB0aGUgZXF1 aWxpYnJpdW0gdmFsdWUgb2YgZGloZWRyYWwgZG8gaGF2ZSBzaWduaWZpY2FudCBwb3B1bGF0aW9u IHdpdGggcmVzcGVjdCB0byB0aGUgZXF1aWxpYnJpdW0gb25lIChlLmcuLCAwLjI6MSksIGJlY2F1 c2UgUEVTIGlzIHJlbGF0aXZlbHkgZmxhdCBpbiB0aGF0IHJlZ2lvbi4gSWYgSSBkbyB1bmRlcnN0 YW5kIGNvcnJlY3RseSwgaW4gcmVhbGl0eSBvbmx5IHRob3NlIGNvbmZvcm1hdGlvbnMgYXJlIHJl YWxseSBwcmVzZW50IGluIHNvbHV0aW9uIHdoaWNoIGNvcnJlc3BvbmQgdG8gc29tZSB2aWJyYXRp b25hbCBzdWJsZXZlbHMgb24gUEVTIChvciBzaG91bGQgaXQgYmUgZnJlZS1lbmVyZ3kgc3VyZmFj ZSB0aGVuPykuIEkgdGhvdWdodCBJIGNvdWxkIGRldGVybWluZSBpZiBhIGNvbmZvcm1hdGlvbiBp cyBzb21ldGhpbmcgcmVhbCBpZiBJIHBsb3QgdmlicmF0aW9uYWwgc3VibGV2ZWxzIGluIHRoZSB3 ZWxsIGFuZCBjaGVjayB3aGV0aGVyIGEgY29uZm9ybWF0aW9uIGlzIGhpZ2hlciBvciBsb3dlciB0 aGFuIHRoZSBmaXJzdCBvZiBzdWJsZXZlbHMs4oCmIGFuZCBzbyBvbi4gSXMgdGhpcyB0aGUgcmln aHQgaWRlYSBhdCBhbGw/IElmIGl0IGlzLCBzaG91bGQgdGhlc2Ugc3VibGV2ZWxzIGJlIHRha2Vu IGZyb20gdGhlIGNhbGN1bGF0aW9ucyBvZiBzdGF0aW9uYXJ5IHBvaW50cyAod2VsbCBib3R0b21z KSwgb3Igc2hvdWxkIEkgcHJvamVjdCB0aG9zZSBzdWJsZXZlbHMsIG9yIOKApj8gQmVjYXVzZSBJ IGNhbm5vdCBldmVuIGZvdW5kIG1lYW5pbmcgb2YgdGhvc2UgJ3Byb2plY3RlZCBjb250cmlidXRp b25zJyBpbiBteSBpbnRlcnByZXRhdGlvbiBvZiBob3cgUEVTIGlzIHJlbGF0ZWQgdG8gdmlicmF0 aW9uYWwgc3VibGV2ZWxzIChhYm92ZSkuIFNvIGlzIHRoaXMgaW50ZXJwcmV0YXRpb24gcmF0aGVy IHdyb25nP+KApg0KDQpUaGFuayBZb3UgKGFuZCBwb3NzaWJseSBvdGhlcnMpIGFnYWluIGluIGFk dmFuY2UuDQoNCllvdXJzIHNpbmNlcmVseSwNCklnb3JzIE1paGFpbG92cw0KUGhEIHN0dWRlbnQN CklTU1AgVW5pdmVyc2l0eSBvZiBMYXR2aWENCg0KT24gMTkvMDgvMTcgMTA6MTksIE5vcnJieSwg UGVyLU9sYSBQZXItT2xhLk5vcnJieV18W2FzdHJhemVuZWNhLmNvbSB3cm90ZToNCkRlYXIgSWdv cnMsDQoNCkFkZGluZyB2aWJyYXRpb25hbCBjb250cmlidXRpb25zIG1ha2VzIG1vc3Qgc2Vuc2Ug YXQgc3RhdGlvbmFyeSBwb2ludHMsIHlvdSBjYW4gdXNlIHRoZW0gd2hlbiBjb21wYXJpbmcgc3Rh dGlvbmFyeSBwb2ludHMsIGxpa2UgdGhlIChmdWxseSBjb252ZXJnZWQpIG1pbmltYSBhbmQgdHJh bnNpdGlvbiBzdGF0ZS4gSWYgeW91IG5lZWQgdG8sIHRoZXJlIGlzIGEgd2F5IHRvIGNhbGN1bGF0 ZSB0aGVzZSBjb250cmlidXRpb25zIGFsc28gYXQgbm9uLXN0YXRpb25hcnkgcG9pbnRzIHVzaW5n IEZyZXE9UHJvamVjdCBpbiBHYXVzc2lhbi4gTm90ZSB0aGF0IHlvdSBsb3NlIG9uZSBkZWdyZWUg b2YgZnJlZWRvbSwgdGhlIGRpcmVjdGlvbiBvZiB0aGUgZm9yY2UsIHdoaWNoIGlzIHByb2plY3Rl ZCBvdXQgdG9nZXRoZXIgd2l0aCB0aGUgdHJhbnNsYXRpb25zIGFuZCByb3RhdGlvbnMgKGdpdmlu ZyB5b3UgTi03IGRlZ3JlZXMgb2YgZnJlZWRvbSwgbm90IHRoZSB1c3VhbCBOLTYpLg0KDQpQZXIt T2xhDQoNClNlbnQgZnJvbSBteSBpUGhvbmUNCg0KT24gMTggQXVnIDIwMTcsIGF0IDE5OjA2LCBJ Z29ycyBNaWhhaWxvdnMgaWdvcnNtPS09Y2ZpLmx1Lmx2IDxvd25lci1jaGVtaXN0cnk6LTpjY2wu bmV0PG1haWx0bzpvd25lci1jaGVtaXN0cnk6LTpjY2wubmV0Pj4gd3JvdGU6DQpEZWFyIGNvbXB1 dGF0aW9uYWwgY2hlbWlzdHJ5IHNwZWNpYWxpc3RzLA0KDQpJIGhhdmUgYSBxdWVzdGlvbiBwb3Nz aWJseSBvZiBnZW5lcmFsIGtub3dsZWRnZSAod2hpY2ggSSBsYWNrKSwgY29uc2lkZXJpbmcgdHJh bnNmZXIgb2Ygd2hhdCBJIGhhdmUgbGVhcm5lZCBhYm91dCBsZXZlbHMgYW5kIHN1YmxldmVscyBv ZiBkaWF0b21pY3MgdG8gY2FsY3VsYXRpb25zIG9mICJiaWciIG1vbGVjdWxlcy4NCkkgYW0gdHJ5 aW5nIHRvIGFuYWx5emUgdGhlIHBvdGVudGlhbCBlbmVyZ3kgc3VyZmFjZSBvZiBhIHBhcnRpY3Vs YXIgY29tcG91bmQgYWxvbmcgb25lIHBhcnRpY3VsYXIgZGloZWRyYWwgKGJ5IGRvaW5nIHBhcnRp YWwgb3B0aW1pemF0aW9ucyBhdCB2YXJpb3VzIHZhbHVlcyBvZiB0aGlzIGRpaGVkcmFsKS4gVGhp cyBjdXQgb2YgUEVTIGhhcyBkb3VibGUgY29uY2F2ZSBzaGFwZSAobGlrZSB0aGUgc21hbGwgR3Jl ZWsgbGFtYmRhKSwgYXMgaWYgdGhlcmUgd2VyZSB0d28gcG90ZW50aWFsIHdlbGxzIHNlcGFyYXRl ZCBieSBhIGJhcnJpZXIgKGNhLiAxNSBrY2FsL21vbCksIGNvcnJlc3BvbmRpbmcgdG8gdHdvIGNv bmZvcm1lcnMuIElmIEkgd291bGQgYmUgc3VwcG9zZWQgdG8gZHJhdyB2aWJyYXRpb25hbCBzdWJs ZXZlbHMgaW4gYm90aCB3ZWxscywgd2hhdCB3b3VsZCBiZSB0aGVpciBlbmVyZ2llcz8gVGhlIGNv bXB1dGVkIHZpYnJhdGlvbmFsIGZyZXF1ZW5jaWVzIChmb3Igc3RhYmxlIHN0cnVjdHVyZXMgYXQg Ym90dG9tcyBvZiBib3RoIHdlbGxzKSB3aXRoIHJlc3BlY3QgdG8gc29tZSBsaW5lIG92ZXIgdGhl IGJvdHRvbT8NClRoZSBib3R0b20gc2hvdWxkIGJlIHRoZSB6ZXJvLXBvaW50IHZpYnJhdGlvbmFs IGVuZXJneSwgYnV0IHRoZW4gdGhlIG9uZSBjb21wdXRlZCBieSBHYXVzc2lhbiBpcyBhYm91dCA3 MCB0aW1lcyBsYXJnZXIgdGhhbiB0aGUgYmFycmllciBiZXR3ZWVuIHR3byBjb25mb3JtZXJzIChj YS4gMTAxNSBrY2FsL21vbCkuIEkgc3VwcG9zZSBJIHNob3VsZCB0YWtlIG9ubHkgY29udHJpYnV0 aW9uIHRvIFpQRSBmcm9tIHRoZSBkaWhlZHJhbCBpbiBpbnRlcmVzdCB0byBkZXRlcm1pbmUgdGhl IGZpcnN0IGxldmVsIGluIGEgd2VsbCAoc2luY2UgYWxsIHRoZSBtb2RlcyBhcmUgY29tcGxleCwg ZG8gSSBuZWVkIHNvbWUgZGlhZ29uYWxpemF0aW9uIG9mIHNvbWV0aGluZywgbGlrZSB0byBnZXQg Im5hdHVyYWwgZnJlcXVlbmN5IG1vZGVzIj8pLiBJcyB0aGlzIHNvPyBJZiBub3QsIGRvZXMgdGhp cyByZXN1bHQgbWVhbiB0aGVyZSBpcyBjb25zdGFudCBpbnRlcmNvbnZlcnNpb24gb2YgYm90aCBj b25mb3JtZXJzIChzb3VuZHMgYSBiaXQgcmlkaWN1bG91cyB0byBtZSk/IE9yIGlzIHRoaXMgd2hv bGUgaWRlYSBvZiBkcmF3aW5nIHZpYnJhdGlvbiBsZXZlbHMgb3ZlciBzdWNoIGEgY3V0IGluIFBF UyBqdXN0IGEgbm9uc2VuY2U/DQoNClNvcnJ5IGZvciBteSBpbGxpdGVyYWN5LiBBbmQgdGhhbmtz IGluIGFkdmFuY2UhDQoNCldpdGggYmVzdCByZWdhcmRzLA0KSWdvcnMgTWloYWlsb3ZzDQpQaEQg c3R1ZGVudA0KSVNTUCBVbml2ZXJzaXR5IG9mIExhdHZpYQ0KX19fX19fX19fX19fX19fX19fX19f X19fX19fX19fX18NCkNvbmZpZGVudGlhbGl0eSBOb3RpY2U6IFRoaXMgbWVzc2FnZSBpcyBwcml2 YXRlIGFuZCBtYXkgY29udGFpbiBjb25maWRlbnRpYWwgYW5kIHByb3ByaWV0YXJ5IGluZm9ybWF0 aW9uLiBJZiB5b3UgaGF2ZSByZWNlaXZlZCB0aGlzIG1lc3NhZ2UgaW4gZXJyb3IsIHBsZWFzZSBu b3RpZnkgdXMgYW5kIHJlbW92ZSBpdCBmcm9tIHlvdXIgc3lzdGVtIGFuZCBub3RlIHRoYXQgeW91 IG11c3Qgbm90IGNvcHksIGRpc3RyaWJ1dGUgb3IgdGFrZSBhbnkgYWN0aW9uIGluIHJlbGlhbmNl IG9uIGl0LiBBbnkgdW5hdXRob3JpemVkIHVzZSBvciBkaXNjbG9zdXJlIG9mIHRoZSBjb250ZW50 cyBvZiB0aGlzIG1lc3NhZ2UgaXMgbm90IHBlcm1pdHRlZCBhbmQgbWF5IGJlIHVubGF3ZnVsLg0K DQpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXw0KDQpDb25maWRlbnRpYWxpdHkgTm90 aWNlOiBUaGlzIG1lc3NhZ2UgaXMgcHJpdmF0ZSBhbmQgbWF5IGNvbnRhaW4gY29uZmlkZW50aWFs IGFuZCBwcm9wcmlldGFyeSBpbmZvcm1hdGlvbi4gSWYgeW91IGhhdmUgcmVjZWl2ZWQgdGhpcyBt ZXNzYWdlIGluIGVycm9yLCBwbGVhc2Ugbm90aWZ5IHVzIGFuZCByZW1vdmUgaXQgZnJvbSB5b3Vy IHN5c3RlbSBhbmQgbm90ZSB0aGF0IHlvdSBtdXN0IG5vdCBjb3B5LCBkaXN0cmlidXRlIG9yIHRh a2UgYW55IGFjdGlvbiBpbiByZWxpYW5jZSBvbiBpdC4gQW55IHVuYXV0aG9yaXplZCB1c2Ugb3Ig ZGlzY2xvc3VyZSBvZiB0aGUgY29udGVudHMgb2YgdGhpcyBtZXNzYWdlIGlzIG5vdCBwZXJtaXR0 ZWQgYW5kIG1heSBiZSB1bmxhd2Z1bC4NCg== --_000_HE1PR04MB2092C924C092E7F837B9FB73CA870HE1PR04MB2092eurp_ Content-Type: text/html; charset="utf-8" Content-Transfer-Encoding: base64 PGh0bWwgeG1sbnM6dj0idXJuOnNjaGVtYXMtbWljcm9zb2Z0LWNvbTp2bWwiIHhtbG5zOm89InVy bjpzY2hlbWFzLW1pY3Jvc29mdC1jb206b2ZmaWNlOm9mZmljZSIgeG1sbnM6dz0idXJuOnNjaGVt YXMtbWljcm9zb2Z0LWNvbTpvZmZpY2U6d29yZCIgeG1sbnM6bT0iaHR0cDovL3NjaGVtYXMubWlj cm9zb2Z0LmNvbS9vZmZpY2UvMjAwNC8xMi9vbW1sIiB4bWxucz0iaHR0cDovL3d3dy53My5vcmcv VFIvUkVDLWh0bWw0MCI+DQo8aGVhZD4NCjxtZXRhIGh0dHAtZXF1aXY9IkNvbnRlbnQtVHlwZSIg Y29udGVudD0idGV4dC9odG1sOyBjaGFyc2V0PXV0Zi04Ij4NCjxtZXRhIG5hbWU9IkdlbmVyYXRv ciIgY29udGVudD0iTWljcm9zb2Z0IFdvcmQgMTUgKGZpbHRlcmVkIG1lZGl1bSkiPg0KPCEtLVtp ZiAhbXNvXT48c3R5bGU+dlw6KiB7YmVoYXZpb3I6dXJsKCNkZWZhdWx0I1ZNTCk7fQ0Kb1w6KiB7 YmVoYXZpb3I6dXJsKCNkZWZhdWx0I1ZNTCk7fQ0Kd1w6KiB7YmVoYXZpb3I6dXJsKCNkZWZhdWx0 I1ZNTCk7fQ0KLnNoYXBlIHtiZWhhdmlvcjp1cmwoI2RlZmF1bHQjVk1MKTt9DQo8L3N0eWxlPjwh W2VuZGlmXS0tPjxzdHlsZT48IS0tDQovKiBGb250IERlZmluaXRpb25zICovDQpAZm9udC1mYWNl DQoJe2ZvbnQtZmFtaWx5OiJDYW1icmlhIE1hdGgiOw0KCXBhbm9zZS0xOjIgNCA1IDMgNSA0IDYg MyAyIDQ7fQ0KQGZvbnQtZmFjZQ0KCXtmb250LWZhbWlseTpDYWxpYnJpOw0KCXBhbm9zZS0xOjIg MTUgNSAyIDIgMiA0IDMgMiA0O30NCkBmb250LWZhY2UNCgl7Zm9udC1mYW1pbHk6IkxpYmVyYXRp b24gU2FucyI7DQoJcGFub3NlLTE6MCAwIDAgMCAwIDAgMCAwIDAgMDt9DQovKiBTdHlsZSBEZWZp bml0aW9ucyAqLw0KcC5Nc29Ob3JtYWwsIGxpLk1zb05vcm1hbCwgZGl2Lk1zb05vcm1hbA0KCXtt YXJnaW46MGNtOw0KCW1hcmdpbi1ib3R0b206LjAwMDFwdDsNCglmb250LXNpemU6MTIuMHB0Ow0K CWZvbnQtZmFtaWx5OiJUaW1lcyBOZXcgUm9tYW4iLHNlcmlmOw0KCWNvbG9yOmJsYWNrO30NCmE6 bGluaywgc3Bhbi5Nc29IeXBlcmxpbmsNCgl7bXNvLXN0eWxlLXByaW9yaXR5Ojk5Ow0KCWNvbG9y OmJsdWU7DQoJdGV4dC1kZWNvcmF0aW9uOnVuZGVybGluZTt9DQphOnZpc2l0ZWQsIHNwYW4uTXNv SHlwZXJsaW5rRm9sbG93ZWQNCgl7bXNvLXN0eWxlLXByaW9yaXR5Ojk5Ow0KCWNvbG9yOnB1cnBs ZTsNCgl0ZXh0LWRlY29yYXRpb246dW5kZXJsaW5lO30NCnNwYW4uRW1haWxTdHlsZTE4DQoJe21z by1zdHlsZS10eXBlOnBlcnNvbmFsLXJlcGx5Ow0KCWZvbnQtZmFtaWx5OiJDYWxpYnJpIixzYW5z LXNlcmlmOw0KCWNvbG9yOiMxRjQ5N0Q7fQ0KLk1zb0NocERlZmF1bHQNCgl7bXNvLXN0eWxlLXR5 cGU6ZXhwb3J0LW9ubHk7DQoJZm9udC1zaXplOjEwLjBwdDt9DQpAcGFnZSBXb3JkU2VjdGlvbjEN Cgl7c2l6ZTo2MTIuMHB0IDc5Mi4wcHQ7DQoJbWFyZ2luOjcyLjBwdCA3Mi4wcHQgNzIuMHB0IDcy LjBwdDt9DQpkaXYuV29yZFNlY3Rpb24xDQoJe3BhZ2U6V29yZFNlY3Rpb24xO30NCi0tPjwvc3R5 bGU+PCEtLVtpZiBndGUgbXNvIDldPjx4bWw+DQo8bzpzaGFwZWRlZmF1bHRzIHY6ZXh0PSJlZGl0 IiBzcGlkbWF4PSIxMDI2IiAvPg0KPC94bWw+PCFbZW5kaWZdLS0+PCEtLVtpZiBndGUgbXNvIDld Pjx4bWw+DQo8bzpzaGFwZWxheW91dCB2OmV4dD0iZWRpdCI+DQo8bzppZG1hcCB2OmV4dD0iZWRp dCIgZGF0YT0iMSIgLz4NCjwvbzpzaGFwZWxheW91dD48L3htbD48IVtlbmRpZl0tLT4NCjwvaGVh ZD4NCjxib2R5IGJnY29sb3I9IndoaXRlIiBsYW5nPSJFTi1VUyIgbGluaz0iYmx1ZSIgdmxpbms9 InB1cnBsZSI+DQo8ZGl2IGNsYXNzPSJXb3JkU2VjdGlvbjEiPg0KPHAgY2xhc3M9Ik1zb05vcm1h bCI+PHNwYW4gc3R5bGU9ImZvbnQtc2l6ZToxMS4wcHQ7Zm9udC1mYW1pbHk6JnF1b3Q7Q2FsaWJy aSZxdW90OyxzYW5zLXNlcmlmO2NvbG9yOiMxRjQ5N0QiPkRlYXIgSWdvcnMsPG86cD48L286cD48 L3NwYW4+PC9wPg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+PHNwYW4gc3R5bGU9ImZvbnQtc2l6ZTox MS4wcHQ7Zm9udC1mYW1pbHk6JnF1b3Q7Q2FsaWJyaSZxdW90OyxzYW5zLXNlcmlmO2NvbG9yOiMx RjQ5N0QiPjxvOnA+Jm5ic3A7PC9vOnA+PC9zcGFuPjwvcD4NCjxwIGNsYXNzPSJNc29Ob3JtYWwi PjxzcGFuIHN0eWxlPSJmb250LXNpemU6MTEuMHB0O2ZvbnQtZmFtaWx5OiZxdW90O0NhbGlicmkm cXVvdDssc2Fucy1zZXJpZjtjb2xvcjojMUY0OTdEIj5PSywgc2VlbXMgd2UgaGF2ZSB0byBkaXZl IGRlZXBlciBpbnRvIHRoZSB0aGVvcnkgaGVyZS4gSG9wZWZ1bGx5IHNvbWUgcmVhbCBleHBlcnQg aW4gc3RhdGlzdGljYWwgdGhlcm1vZHluYW1pY3Mgd2lsbCBhbHNvIGNvbW1lbnQsIEnigJltIG9u bHkgZGFiYmxpbmcgaW4gaXQgbXlzZWxmLjxvOnA+PC9vOnA+PC9zcGFuPjwvcD4NCjxwIGNsYXNz PSJNc29Ob3JtYWwiPjxzcGFuIHN0eWxlPSJmb250LXNpemU6MTEuMHB0O2ZvbnQtZmFtaWx5OiZx dW90O0NhbGlicmkmcXVvdDssc2Fucy1zZXJpZjtjb2xvcjojMUY0OTdEIj48bzpwPiZuYnNwOzwv bzpwPjwvc3Bhbj48L3A+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj48c3BhbiBzdHlsZT0iZm9udC1z aXplOjExLjBwdDtmb250LWZhbWlseTomcXVvdDtDYWxpYnJpJnF1b3Q7LHNhbnMtc2VyaWY7Y29s b3I6IzFGNDk3RCI+Rmlyc3QsIEkgZG9u4oCZdCByZWFsbHkgdW5kZXJzdGFuZCB0aGUgZXhwZXJp bWVudHMgeW91IGFyZSB0cnlpbmcgdG8gbW9kZWwuIEkgd2lsbCBhc3N1bWUgdGhpcyBpcyBhbiBl cXVpbGlicml1bSBiZXR3ZWVuIHR3byBjb25mb3JtYXRpb25zLCBhbmQgeW91IGNhbiBleHBlcmlt ZW50YWxseQ0KIGZpbmQgYm90aCB0aGUgZGlzdHJpYnV0aW9uIGJldHdlZW4gdGhlbSwgYW5kIHRo ZSByYXRlIG9mIGludGVyY29udmVyc2lvbiwgYW5kIHRoYXQgdGhpcyBkaWZmZXJzIGluIGRpZmZl cmVudCBzb2x2ZW50PyBUaGVuIHlvdXIgZmlyc3QgcHJvYmxlbSBpcyBjb252ZXJ0aW5nIHlvdXIg UEVTIGRhdGEgdG8gZnJlZSBlbmVyZ2llcywgc2luY2UgdGhhdCBpcyB3aGF0IHlvdeKAmWxsIG1l YXN1cmUgaW4gZXhwZXJpbWVudHMgKG9idmlvdXNseSB5b3UgY2FuDQogYWxzbyBkbyB0aGUgZXhw ZXJpbWVudCBhdCBkaWZmZXJlbnQgdGVtcGVyYXR1cmVzLCB0byBnZXQgYXQgdGhlIHVuZGVybHlp bmcgZW50aGFscHksIGEgc2ltcGxlciBwcm9ibGVtIGNvbXB1dGF0aW9uYWxseSkuIFRoZSBleHBl cmltZW50cyB3aWxsIG9ubHkgZ2l2ZSBpbmZvcm1hdGlvbiBhYm91dCBjb25mb3JtZXJzLCB0aGF0 IGlzLCB0aGUgc3VtIG9mIGFsbCBnZW9tZXRyaWVzIHNoYXJpbmcgYW4gZW5lcmd5IHdlbGwuIElm IHlvdSBoYXZlIHdlbGwtZGVmaW5lZA0KIG1pbmltYSB3aXRoIHN0cm9uZyBjdXJ2YXR1cmUsIHlv dSBjYW4gZXN0aW1hdGUgdGhlIGZyZWUgZW5lcmd5IGJ5IGNhbGN1bGF0aW5nIHNvbHZhdGlvbiBh bmQgdmlicmF0aW9uYWwgY29udHJpYnV0aW9ucyB0byB0aGUgZnJlZSBlbmVyZ3ksIGFuZCBhZGQg dGhhdCB0byB0aGUgcG90ZW50aWFsIGVuZXJneS4gSG93ZXZlciwgdGhpcyBpcyB1c3VhbGx5IGRv bmUgdXNpbmcgYSBoYXJtb25pYyBhcHByb3hpbWF0aW9uLCB3aGljaCBmYWlscyBtaXNlcmFibHkN CiB3aGVuIHlvdSBoYXZlIGZsYXQgbm9ybWFsIG1vZGVzLiBBIHJ1bGUgb2YgdGh1bWIgaXMgdG8g bmV2ZXIgdHJ1c3QgaGFybW9uaWMgY29udHJpYnV0aW9ucyAoZXNwZWNpYWxseSBlbnRyb3BpZXMp IGZvciBhIG5vcm1hbCBtb2RlIHdoZXJlIHRoZSB2aWJyYXRpb25hbCBmcmVxdWVuY3kgaXMgbG93 ZXIgdGhhbiA1MCBjbV4tMS4gVGhlcmUgYXJlIHdheXMgdG8gZ28gYmV5b25kIGhhcm1vbmljcywg aW5jbHVkaW5nIGFuaGFybW9uaWMgdHJlYXRtZW50cw0KIGluIEdhdXNzaWFuLCBidXQgdGhlIG9u bHkgdGltZSBJ4oCZdmUgZXZlciBuZWVkZWQgdG8sIHdlIGRpZCBhIG51bWVyaWMgaW50ZWdyYXRp b24gYWxvbmcgdGhlIHNpbmdsZSB0cm91Ymxlc29tZSBub3JtYWwgbW9kZTo8bzpwPjwvbzpwPjwv c3Bhbj48L3A+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj48c3BhbiBzdHlsZT0iZm9udC1zaXplOjEx LjBwdDtmb250LWZhbWlseTomcXVvdDtDYWxpYnJpJnF1b3Q7LHNhbnMtc2VyaWY7Y29sb3I6IzFG NDk3RCI+PG86cD4mbmJzcDs8L286cD48L3NwYW4+PC9wPg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+ PHNwYW4gc3R5bGU9ImZvbnQtc2l6ZToxMS4wcHQ7Zm9udC1mYW1pbHk6JnF1b3Q7Q2FsaWJyaSZx dW90OyxzYW5zLXNlcmlmO2NvbG9yOiMxRjQ5N0QiPuKAoiZxdW90O1F1YW50dW0gTWVjaGFuaWNh bCBDb25mb3JtYXRpb25hbCBBbmFseXNpcyBvZiDOsi1BbGFuaW5lIFp3aXR0ZXJpb24gaW4gQXF1 ZW91cyBTb2x1dGlvbiZxdW90Ow0KPG86cD48L286cD48L3NwYW4+PC9wPg0KPHAgY2xhc3M9Ik1z b05vcm1hbCI+PHNwYW4gc3R5bGU9ImZvbnQtc2l6ZToxMS4wcHQ7Zm9udC1mYW1pbHk6JnF1b3Q7 Q2FsaWJyaSZxdW90OyxzYW5zLXNlcmlmO2NvbG9yOiMxRjQ5N0QiPiZuYnNwO1BldGVyIEFhZGFs IE5pZWxzZW4sIFBlci1PbGEgTm9ycmJ5LCBUb21teSBMaWxqZWZvcnMsIE5hZGlhIFJlZ2EsIGFu ZCBWaW5jZW56byBCYXJvbmUsIEouIEFtLiBDaGVtLiBTb2MuIDIwMDAsIDEyMiwgMzE1MS0zMTU1 PG86cD48L286cD48L3NwYW4+PC9wPg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+PHNwYW4gc3R5bGU9 ImZvbnQtc2l6ZToxMS4wcHQ7Zm9udC1mYW1pbHk6JnF1b3Q7Q2FsaWJyaSZxdW90OyxzYW5zLXNl cmlmO2NvbG9yOiMxRjQ5N0QiPjxhIGhyZWY9Imh0dHA6Ly9keC5kb2kub3JnLzEwLjEwMjEvamE5 OTI5MDIiPmh0dHA6Ly9keC5kb2kub3JnLzEwLjEwMjEvamE5OTI5MDI8L2E+JiM0MzsNCjxvOnA+ PC9vOnA+PC9zcGFuPjwvcD4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxzcGFuIHN0eWxlPSJmb250 LXNpemU6MTEuMHB0O2ZvbnQtZmFtaWx5OiZxdW90O0NhbGlicmkmcXVvdDssc2Fucy1zZXJpZjtj b2xvcjojMUY0OTdEIj48bzpwPiZuYnNwOzwvbzpwPjwvc3Bhbj48L3A+DQo8cCBjbGFzcz0iTXNv Tm9ybWFsIj48c3BhbiBzdHlsZT0iZm9udC1zaXplOjExLjBwdDtmb250LWZhbWlseTomcXVvdDtD YWxpYnJpJnF1b3Q7LHNhbnMtc2VyaWY7Y29sb3I6IzFGNDk3RCI+VGhlIGhlYXZ5IG1vZGVsaW5n IHdhcyBkb25lIGluIHRoZSBCYXJvbmUgZ3JvdXAsIEkgZG9u4oCZdCBoYXZlIHRoZSBleGFjdCBw cm9jZWR1cmUsIGJ1dCBpdCBzb3VuZHMgbGlrZSB0aGlzIGlzIHNvbWV0aGluZyB0aGF0IGNvdWxk IGJlIGRvbmUgaW4geW91ciBjYXNlLiBIb3dldmVyLA0KIGlmIHlvdSBuZWVkIHRvIGRvIGl0IGFs c28gYXQgdGhlIFRTLCBpdOKAmXMgaGFyZGVyLiBBbmhhcm1vbmljIHRyZWF0bWVudCBpbiBHYXVz c2lhbiBtaWdodCBiZSB0aGUgYmVzdCBpZiB5b3UgbmVlZCB0byBkbyBpdC48bzpwPjwvbzpwPjwv c3Bhbj48L3A+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj48c3BhbiBzdHlsZT0iZm9udC1zaXplOjEx LjBwdDtmb250LWZhbWlseTomcXVvdDtDYWxpYnJpJnF1b3Q7LHNhbnMtc2VyaWY7Y29sb3I6IzFG NDk3RCI+PG86cD4mbmJzcDs8L286cD48L3NwYW4+PC9wPg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+ PHNwYW4gc3R5bGU9ImZvbnQtc2l6ZToxMS4wcHQ7Zm9udC1mYW1pbHk6JnF1b3Q7Q2FsaWJyaSZx dW90OyxzYW5zLXNlcmlmO2NvbG9yOiMxRjQ5N0QiPlRoZSByZXN1bHRzIHlvdSB3aWxsIGdldCBv dXQgaXMgc2ltcGx5IHRoYXQgYW55IG1pbmltYSB3aXRoIGEgZmxhdCBub3JtYWwgbW9kZSBnZXQg YSBsb3dlcmluZyBvZiB0aGUgZnJlZSBlbmVyZ3kgY29tcGFyZWQgdG8gbWluaW1hIHRoYXQgaGF2 ZSBvbmx5IHNoYXJwbHkgY3VydmVkDQogbm9ybWFsIG1vZGVzLiBUbyBzaW1wbGlmeSwgeW91IGNh biBFSVRIRVIgc2F5IHRoYXQgaGFybW9uaWMgdHJlYXRtZW50IG9mIHRoZSBub3JtYWwgbW9kZSB3 aWxsIGFjY3VyYXRlbHkgcmVwcmVzZW50IGFsbCBnZW9tZXRyaWVzIGNvbnRyaWJ1dGluZyB0byB0 aGUgZnJlZSBlbmVyZ3ksIE9SIHlvdSBjYW4gZ2VuZXJhdGUgYWxsIHRoZSBnZW9tZXRyaWVzIGFu ZCB0aGVpciBlbmVyZ2llcyBhbmQgZG8gYSBzdW1tYXRpb24gKHRoZSBsYXR0ZXIgaXMsDQogaW4g c2ltcGxpZmllZCB0ZXJtcywgd2hhdCBtb2xlY3VsYXIgZHluYW1pY3MsIE1ELCBpcyBkb2luZyku PG86cD48L286cD48L3NwYW4+PC9wPg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+PHNwYW4gc3R5bGU9 ImZvbnQtc2l6ZToxMS4wcHQ7Zm9udC1mYW1pbHk6JnF1b3Q7Q2FsaWJyaSZxdW90OyxzYW5zLXNl cmlmO2NvbG9yOiMxRjQ5N0QiPjxvOnA+Jm5ic3A7PC9vOnA+PC9zcGFuPjwvcD4NCjxwIGNsYXNz PSJNc29Ob3JtYWwiPjxzcGFuIHN0eWxlPSJmb250LXNpemU6MTEuMHB0O2ZvbnQtZmFtaWx5OiZx dW90O0NhbGlicmkmcXVvdDssc2Fucy1zZXJpZjtjb2xvcjojMUY0OTdEIj5Ib3dldmVyLCByZWFk aW5nIHlvdXIgZW1haWwsIGl04oCZcyBub3QgZW50aXJlbHkgY2xlYXIgdGhpcyBpcyB0aGUgcHJv YmxlbS4gRG8geW91IGFjdHVhbGx5IHNlZSBhIGxvd2VyaW5nIG9mIHRoZSBiYXJyaWVyIGluIHRo ZSBQRVMsIGFuZCB3YW50IHRvIGV4cGxhaW4gd2h5PyBJZg0KIHNvLCB2aWJyYXRpb25zIGhhdmUg bm90aGluZyB0byBkbyB3aXRoIGl0IChzaW5jZSB0aGUgUEVTIGRvZXNu4oCZdCBhY2NvdW50IGZv ciB2aWJyYXRpb25zKS4gSWYgeW91IHNlZSBhIGxvd2VyIGJhcnJpZXIgaW4gYWNldG9uaXRyaWxl IGNvbXBhcmVkIHRvIGJlbnplbmUsIHRoZSBhbnN3ZXIgaXMgc2ltcGx5IHRoYXQgdGhlIFRTIGhh cyBhIHN0cm9uZ2VyIGRpcG9sZSAob3Igb3RoZXIgaW50ZXJhY3Rpb24gd2l0aCBzb2x2ZW50KSBj b21wYXJlZCB0bw0KIHRoZSBncm91bmQgc3RhdGUuPG86cD48L286cD48L3NwYW4+PC9wPg0KPHAg Y2xhc3M9Ik1zb05vcm1hbCI+PHNwYW4gc3R5bGU9ImZvbnQtc2l6ZToxMS4wcHQ7Zm9udC1mYW1p bHk6JnF1b3Q7Q2FsaWJyaSZxdW90OyxzYW5zLXNlcmlmO2NvbG9yOiMxRjQ5N0QiPjxvOnA+Jm5i c3A7PC9vOnA+PC9zcGFuPjwvcD4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxzcGFuIHN0eWxlPSJm b250LXNpemU6MTEuMHB0O2ZvbnQtZmFtaWx5OiZxdW90O0NhbGlicmkmcXVvdDssc2Fucy1zZXJp Zjtjb2xvcjojMUY0OTdEIj5Ib3BlIHRoaXMgaGVscHMsPG86cD48L286cD48L3NwYW4+PC9wPg0K PHAgY2xhc3M9Ik1zb05vcm1hbCI+PHNwYW4gc3R5bGU9ImZvbnQtc2l6ZToxMS4wcHQ7Zm9udC1m YW1pbHk6JnF1b3Q7Q2FsaWJyaSZxdW90OyxzYW5zLXNlcmlmO2NvbG9yOiMxRjQ5N0QiPjxvOnA+ Jm5ic3A7PC9vOnA+PC9zcGFuPjwvcD4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxzcGFuIHN0eWxl PSJmb250LXNpemU6MTEuMHB0O2ZvbnQtZmFtaWx5OiZxdW90O0NhbGlicmkmcXVvdDssc2Fucy1z ZXJpZjtjb2xvcjojMUY0OTdEIj5QZXItT2xhPG86cD48L286cD48L3NwYW4+PC9wPg0KPHAgY2xh c3M9Ik1zb05vcm1hbCI+PHNwYW4gc3R5bGU9ImZvbnQtc2l6ZToxMS4wcHQ7Zm9udC1mYW1pbHk6 JnF1b3Q7Q2FsaWJyaSZxdW90OyxzYW5zLXNlcmlmO2NvbG9yOiMxRjQ5N0QiPjxvOnA+Jm5ic3A7 PC9vOnA+PC9zcGFuPjwvcD4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxvOnA+Jm5ic3A7PC9vOnA+ PC9wPg0KPGRpdj4NCjxkaXYgc3R5bGU9ImJvcmRlcjpub25lO2JvcmRlci10b3A6c29saWQgI0Ux RTFFMSAxLjBwdDtwYWRkaW5nOjMuMHB0IDBjbSAwY20gMGNtIj4NCjxwIGNsYXNzPSJNc29Ob3Jt YWwiPjxiPjxzcGFuIHN0eWxlPSJmb250LXNpemU6MTEuMHB0O2ZvbnQtZmFtaWx5OiZxdW90O0Nh bGlicmkmcXVvdDssc2Fucy1zZXJpZjtjb2xvcjp3aW5kb3d0ZXh0Ij5Gcm9tOjwvc3Bhbj48L2I+ PHNwYW4gc3R5bGU9ImZvbnQtc2l6ZToxMS4wcHQ7Zm9udC1mYW1pbHk6JnF1b3Q7Q2FsaWJyaSZx dW90OyxzYW5zLXNlcmlmO2NvbG9yOndpbmRvd3RleHQiPiBvd25lci1jaGVtaXN0cnkmIzQzO3Bl ci1vbGEubm9ycmJ5PT1hc3RyYXplbmVjYS5jb21AY2NsLm5ldA0KIFttYWlsdG86b3duZXItY2hl bWlzdHJ5JiM0MztwZXItb2xhLm5vcnJieT09YXN0cmF6ZW5lY2EuY29tQGNjbC5uZXRdIDxiPk9u IEJlaGFsZiBPZg0KPC9iPklnb3JzIE1paGFpbG92cyBpZ29yc20qKmNmaS5sdS5sdjxicj4NCjxi PlNlbnQ6PC9iPiBkZW4gMTkgYXVndXN0aSAyMDE3IDE2OjQxPGJyPg0KPGI+VG86PC9iPiBOb3Jy YnksIFBlci1PbGEgJmx0O1Blci1PbGEuTm9ycmJ5QGFzdHJhemVuZWNhLmNvbSZndDs8YnI+DQo8 Yj5TdWJqZWN0OjwvYj4gQ0NMOkc6IFZpYnJhdGlvbmFsIHN1YmxldmVscyBhbG9uZyBwYXJ0aWN1 bGFyIGNvb3JkaW5hdGUgb24gUEVTPG86cD48L286cD48L3NwYW4+PC9wPg0KPC9kaXY+DQo8L2Rp dj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxvOnA+Jm5ic3A7PC9vOnA+PC9wPg0KPHAgY2xhc3M9 Ik1zb05vcm1hbCIgc3R5bGU9Im1hcmdpbi1ib3R0b206MTIuMHB0Ij5EZWFyIERyLiBOb3JyYnks PGJyPg0KPGJyPg0KVGhhbmsgWW91IGZvciBZb3VyIHJlcGx5ISBCdXQgaXQgc2VlbXMgdG8gbWUg dGhhdCBJIG1pZ2h0IGhhdmUgYmVlbiByaWdodCBhYm91dCB0aGF0ICdub25zZW5jZScgaW4gbXkg cXVlc3Rpb24sIGJlY2F1c2UgZWl0aGVyIEkgYW0gbWlzaW50ZXJwcmV0aW5nIFlvdXIgYW5zd2Vy IG9yIFlvdSBtYXkgaGF2ZSBtaXNpbnRlcnByZXRlZCBteSBxdWVzdGlvbi4gT3IgYm90aCA6KTxi cj4NCjxicj4NClNvIEkgd2lsbCBkZXNjcmliZSBteSBhY3R1YWwgc2l0dWF0aW9uIHRoZW4uIEkg aGF2ZSBhIGRpc2N1c3Npb24gd2l0aCBhIHN5bnRoZXRpYyBjaGVtaXN0IGFib3V0IGludGVycHJl dGluZyB0aGUgcmVzdWx0cyBvZiB0aGlzIFBFUyBzY2FuLiBUaGVyZSBhcmUgYWN0dWFsbHkgdHdv IGRpZmZlcmVudCBzY2Fucywgb25lIGluIGJlbnplbmUgYW5kIGFub3RoZXIgb25lIGluIGFjZXRv bml0cmlsZSwgd2l0aCBub3RhYmx5IGxvd2VyIGJhcnJpZXIgaW4NCiBhY2V0b25pdHJpbGUuIE9u ZSBvZiBoaXMgYXJndW1lbnRzIGlzIHRoYXQgaW4gYWNldG9uaXRyaWxlIHRoZXJlIGlzIGxhcmdl ciBwb3B1bGF0aW9uIG9mIGNvbmZvcm1hdGlvbnMgd2l0aCBub24tZXF1aWxpYnJpdW0gZGloZWRy YWwgdmFsdWVzICh0aGVuIGl0IG1pZ2h0IGhlbHAgdG8gaW50ZXJwcmV0IHNvbWUgZXhwZXJpbWVu dGFsIGZpbmRpbmdzIGFib3V0IGEgY2VydGFpbiBtb2xlY3VsYXIgZWxlY3Ryb25pYyBwcm9wZXJ0 eSkuIElmIGNhbGN1bGF0ZWQNCiBhY2NvcmRpbmcgdG8gQm9sdHptYW5uIGRpc3RyaWJ1dGlvbiwg c29tZSBjb25mb3JtYXRpb25zIHdpdGggbW9kZXJhdGUgZGV2aWF0aW9ucyBmcm9tIHRoZSBlcXVp bGlicml1bSB2YWx1ZSBvZiBkaWhlZHJhbCBkbyBoYXZlIHNpZ25pZmljYW50IHBvcHVsYXRpb24g d2l0aCByZXNwZWN0IHRvIHRoZSBlcXVpbGlicml1bSBvbmUgKGUuZy4sIDAuMjoxKSwgYmVjYXVz ZSBQRVMgaXMgcmVsYXRpdmVseSBmbGF0IGluIHRoYXQgcmVnaW9uLiBJZiBJIGRvDQogdW5kZXJz dGFuZCBjb3JyZWN0bHksIGluIHJlYWxpdHkgb25seSB0aG9zZSBjb25mb3JtYXRpb25zIGFyZSBy ZWFsbHkgcHJlc2VudCBpbiBzb2x1dGlvbiB3aGljaCBjb3JyZXNwb25kIHRvIHNvbWUgdmlicmF0 aW9uYWwgc3VibGV2ZWxzIG9uIFBFUyAob3Igc2hvdWxkIGl0IGJlIGZyZWUtZW5lcmd5IHN1cmZh Y2UgdGhlbj8pLiBJIHRob3VnaHQgSSBjb3VsZCBkZXRlcm1pbmUgaWYgYSBjb25mb3JtYXRpb24g aXMgc29tZXRoaW5nIHJlYWwgaWYgSQ0KIHBsb3QgdmlicmF0aW9uYWwgc3VibGV2ZWxzIGluIHRo ZSB3ZWxsIGFuZCBjaGVjayB3aGV0aGVyIGEgY29uZm9ybWF0aW9uIGlzIGhpZ2hlciBvciBsb3dl ciB0aGFuIHRoZSBmaXJzdCBvZiBzdWJsZXZlbHMs4oCmIGFuZCBzbyBvbi4gSXMgdGhpcyB0aGUg cmlnaHQgaWRlYSBhdCBhbGw/IElmIGl0IGlzLCBzaG91bGQgdGhlc2Ugc3VibGV2ZWxzIGJlIHRh a2VuIGZyb20gdGhlIGNhbGN1bGF0aW9ucyBvZiBzdGF0aW9uYXJ5IHBvaW50cyAod2VsbCBib3R0 b21zKSwNCiBvciBzaG91bGQgSSBwcm9qZWN0IHRob3NlIHN1YmxldmVscywgb3Ig4oCmPyBCZWNh dXNlIEkgY2Fubm90IGV2ZW4gZm91bmQgbWVhbmluZyBvZiB0aG9zZSAncHJvamVjdGVkIGNvbnRy aWJ1dGlvbnMnIGluIG15IGludGVycHJldGF0aW9uIG9mIGhvdyBQRVMgaXMgcmVsYXRlZCB0byB2 aWJyYXRpb25hbCBzdWJsZXZlbHMgKGFib3ZlKS4gU28gaXMgdGhpcyBpbnRlcnByZXRhdGlvbiBy YXRoZXIgd3Jvbmc/4oCmPGJyPg0KPGJyPg0KVGhhbmsgWW91IChhbmQgcG9zc2libHkgb3RoZXJz KSBhZ2FpbiBpbiBhZHZhbmNlLjxicj4NCjxicj4NCjxzcGFuIHN0eWxlPSJmb250LWZhbWlseTom cXVvdDtMaWJlcmF0aW9uIFNhbnMmcXVvdDssc2VyaWYiPllvdXJzIHNpbmNlcmVseSw8YnI+DQpJ Z29ycyBNaWhhaWxvdnM8YnI+DQpQaEQgc3R1ZGVudDxicj4NCklTU1AgVW5pdmVyc2l0eSBvZiBM YXR2aWE8L3NwYW4+PGJyPg0KPGJyPg0KPG86cD48L286cD48L3A+DQo8ZGl2Pg0KPHAgY2xhc3M9 Ik1zb05vcm1hbCI+T24gMTkvMDgvMTcgMTA6MTksIE5vcnJieSwgUGVyLU9sYSBQZXItT2xhLk5v cnJieV18W2FzdHJhemVuZWNhLmNvbSB3cm90ZTo8bzpwPjwvbzpwPjwvcD4NCjwvZGl2Pg0KPGJs b2NrcXVvdGUgc3R5bGU9Im1hcmdpbi10b3A6NS4wcHQ7bWFyZ2luLWJvdHRvbTo1LjBwdCI+DQo8 ZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+RGVhciBJZ29ycyw8bzpwPjwvbzpwPjwvcD4NCjwv ZGl2Pg0KPGRpdiBpZD0iQXBwbGVNYWlsU2lnbmF0dXJlIj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwi PjxvOnA+Jm5ic3A7PC9vOnA+PC9wPg0KPC9kaXY+DQo8ZGl2IGlkPSJBcHBsZU1haWxTaWduYXR1 cmUiPg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+QWRkaW5nIHZpYnJhdGlvbmFsIGNvbnRyaWJ1dGlv bnMgbWFrZXMgbW9zdCBzZW5zZSBhdCBzdGF0aW9uYXJ5IHBvaW50cywgeW91IGNhbiB1c2UgdGhl bSB3aGVuIGNvbXBhcmluZyBzdGF0aW9uYXJ5IHBvaW50cywgbGlrZSB0aGUgKGZ1bGx5IGNvbnZl cmdlZCkgbWluaW1hIGFuZCB0cmFuc2l0aW9uIHN0YXRlLiBJZiB5b3UgbmVlZCB0bywgdGhlcmUg aXMgYSB3YXkgdG8gY2FsY3VsYXRlIHRoZXNlIGNvbnRyaWJ1dGlvbnMNCiBhbHNvIGF0IG5vbi1z dGF0aW9uYXJ5IHBvaW50cyB1c2luZyBGcmVxPVByb2plY3QgaW4gR2F1c3NpYW4uIE5vdGUgdGhh dCB5b3UgbG9zZSBvbmUgZGVncmVlIG9mIGZyZWVkb20sIHRoZSBkaXJlY3Rpb24gb2YgdGhlIGZv cmNlLCB3aGljaCBpcyBwcm9qZWN0ZWQgb3V0IHRvZ2V0aGVyIHdpdGggdGhlIHRyYW5zbGF0aW9u cyBhbmQgcm90YXRpb25zIChnaXZpbmcgeW91IE4tNyBkZWdyZWVzIG9mIGZyZWVkb20sIG5vdCB0 aGUgdXN1YWwgTi02KS48bzpwPjwvbzpwPjwvcD4NCjwvZGl2Pg0KPGRpdiBpZD0iQXBwbGVNYWls U2lnbmF0dXJlIj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxvOnA+Jm5ic3A7PC9vOnA+PC9wPg0K PC9kaXY+DQo8ZGl2IGlkPSJBcHBsZU1haWxTaWduYXR1cmUiPg0KPHAgY2xhc3M9Ik1zb05vcm1h bCI+UGVyLU9sYTxicj4NCjxicj4NClNlbnQgZnJvbSBteSBpUGhvbmU8bzpwPjwvbzpwPjwvcD4N CjwvZGl2Pg0KPGRpdj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiIHN0eWxlPSJtYXJnaW4tYm90dG9t OjEyLjBwdCI+PGJyPg0KT24gMTggQXVnIDIwMTcsIGF0IDE5OjA2LCBJZ29ycyBNaWhhaWxvdnMg aWdvcnNtPS09Y2ZpLmx1Lmx2ICZsdDs8YSBocmVmPSJtYWlsdG86b3duZXItY2hlbWlzdHJ5Oi06 Y2NsLm5ldCI+b3duZXItY2hlbWlzdHJ5Oi06Y2NsLm5ldDwvYT4mZ3Q7IHdyb3RlOjxvOnA+PC9v OnA+PC9wPg0KPC9kaXY+DQo8YmxvY2txdW90ZSBzdHlsZT0ibWFyZ2luLXRvcDo1LjBwdDttYXJn aW4tYm90dG9tOjUuMHB0Ij4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj48c3BhbiBzdHls ZT0iZm9udC1mYW1pbHk6JnF1b3Q7TGliZXJhdGlvbiBTYW5zJnF1b3Q7LHNlcmlmIj5EZWFyIGNv bXB1dGF0aW9uYWwgY2hlbWlzdHJ5IHNwZWNpYWxpc3RzLDxicj4NCjxicj4NCkkgaGF2ZSBhIHF1 ZXN0aW9uIHBvc3NpYmx5IG9mIGdlbmVyYWwga25vd2xlZGdlICh3aGljaCBJIGxhY2spLCBjb25z aWRlcmluZyB0cmFuc2ZlciBvZiB3aGF0IEkgaGF2ZSBsZWFybmVkIGFib3V0IGxldmVscyBhbmQg c3VibGV2ZWxzIG9mIGRpYXRvbWljcyB0byBjYWxjdWxhdGlvbnMgb2YgJnF1b3Q7YmlnJnF1b3Q7 IG1vbGVjdWxlcy48YnI+DQpJIGFtIHRyeWluZyB0byBhbmFseXplIHRoZSBwb3RlbnRpYWwgZW5l cmd5IHN1cmZhY2Ugb2YgYSBwYXJ0aWN1bGFyIGNvbXBvdW5kIGFsb25nIG9uZSBwYXJ0aWN1bGFy IGRpaGVkcmFsIChieSBkb2luZyBwYXJ0aWFsIG9wdGltaXphdGlvbnMgYXQgdmFyaW91cyB2YWx1 ZXMgb2YgdGhpcyBkaWhlZHJhbCkuIFRoaXMgY3V0IG9mIFBFUyBoYXMgZG91YmxlIGNvbmNhdmUg c2hhcGUgKGxpa2UgdGhlIHNtYWxsIEdyZWVrIGxhbWJkYSksIGFzIGlmIHRoZXJlDQogd2VyZSB0 d28gcG90ZW50aWFsIHdlbGxzIHNlcGFyYXRlZCBieSBhIGJhcnJpZXIgKGNhLiAxNSBrY2FsL21v bCksIGNvcnJlc3BvbmRpbmcgdG8gdHdvIGNvbmZvcm1lcnMuIElmIEkgd291bGQgYmUgc3VwcG9z ZWQgdG8gZHJhdyB2aWJyYXRpb25hbCBzdWJsZXZlbHMgaW4gYm90aCB3ZWxscywgd2hhdCB3b3Vs ZCBiZSB0aGVpciBlbmVyZ2llcz8gVGhlIGNvbXB1dGVkIHZpYnJhdGlvbmFsIGZyZXF1ZW5jaWVz IChmb3Igc3RhYmxlIHN0cnVjdHVyZXMNCiBhdCBib3R0b21zIG9mIGJvdGggd2VsbHMpIHdpdGgg cmVzcGVjdCB0byBzb21lIGxpbmUgb3ZlciB0aGUgYm90dG9tPzxicj4NClRoZSBib3R0b20gc2hv dWxkIGJlIHRoZSB6ZXJvLXBvaW50IHZpYnJhdGlvbmFsIGVuZXJneSwgYnV0IHRoZW4gdGhlIG9u ZSBjb21wdXRlZCBieSBHYXVzc2lhbiBpcyBhYm91dCA3MCB0aW1lcyBsYXJnZXIgdGhhbiB0aGUg YmFycmllciBiZXR3ZWVuIHR3byBjb25mb3JtZXJzIChjYS4gMTAxNSBrY2FsL21vbCkuIEkgc3Vw cG9zZSBJIHNob3VsZCB0YWtlIG9ubHkgY29udHJpYnV0aW9uIHRvIFpQRSBmcm9tIHRoZSBkaWhl ZHJhbCBpbiBpbnRlcmVzdA0KIHRvIGRldGVybWluZSB0aGUgZmlyc3QgbGV2ZWwgaW4gYSB3ZWxs IChzaW5jZSBhbGwgdGhlIG1vZGVzIGFyZSBjb21wbGV4LCBkbyBJIG5lZWQgc29tZSBkaWFnb25h bGl6YXRpb24gb2Ygc29tZXRoaW5nLCBsaWtlIHRvIGdldCAmcXVvdDtuYXR1cmFsIGZyZXF1ZW5j eSBtb2RlcyZxdW90Oz8pLiBJcyB0aGlzIHNvPyBJZiBub3QsIGRvZXMgdGhpcyByZXN1bHQgbWVh biB0aGVyZSBpcyBjb25zdGFudCBpbnRlcmNvbnZlcnNpb24gb2YgYm90aCBjb25mb3JtZXJzIChz b3VuZHMNCiBhIGJpdCByaWRpY3Vsb3VzIHRvIG1lKT8gT3IgaXMgdGhpcyB3aG9sZSBpZGVhIG9m IGRyYXdpbmcgdmlicmF0aW9uIGxldmVscyBvdmVyIHN1Y2ggYSBjdXQgaW4gUEVTIGp1c3QgYSBu b25zZW5jZT88YnI+DQo8YnI+DQpTb3JyeSBmb3IgbXkgaWxsaXRlcmFjeS4gQW5kIHRoYW5rcyBp biBhZHZhbmNlITxicj4NCjxicj4NCldpdGggYmVzdCByZWdhcmRzLDxicj4NCklnb3JzIE1paGFp bG92czxicj4NClBoRCBzdHVkZW50PGJyPg0KSVNTUCBVbml2ZXJzaXR5IG9mIExhdHZpYTwvc3Bh bj4gPG86cD48L286cD48L3A+DQo8L2Rpdj4NCjwvYmxvY2txdW90ZT4NCjxkaXYgY2xhc3M9Ik1z b05vcm1hbCIgYWxpZ249ImNlbnRlciIgc3R5bGU9InRleHQtYWxpZ246Y2VudGVyIj4NCjxociBz aXplPSIyIiB3aWR0aD0iMTAwJSIgYWxpZ249ImNlbnRlciI+DQo8L2Rpdj4NCjxwIGNsYXNzPSJN c29Ob3JtYWwiIHN0eWxlPSJtc28tbWFyZ2luLXRvcC1hbHQ6YXV0bzttc28tbWFyZ2luLWJvdHRv bS1hbHQ6YXV0byI+PHN0cm9uZz48c3BhbiBzdHlsZT0iZm9udC1zaXplOjguMHB0O2ZvbnQtZmFt aWx5OiZxdW90O0FyaWFsJnF1b3Q7LHNhbnMtc2VyaWYiPkNvbmZpZGVudGlhbGl0eSBOb3RpY2U6 DQo8L3NwYW4+PC9zdHJvbmc+PHNwYW4gc3R5bGU9ImZvbnQtc2l6ZTo4LjBwdDtmb250LWZhbWls eTomcXVvdDtBcmlhbCZxdW90OyxzYW5zLXNlcmlmIj5UaGlzIG1lc3NhZ2UgaXMgcHJpdmF0ZSBh bmQgbWF5IGNvbnRhaW4gY29uZmlkZW50aWFsIGFuZCBwcm9wcmlldGFyeSBpbmZvcm1hdGlvbi4g SWYgeW91IGhhdmUgcmVjZWl2ZWQgdGhpcyBtZXNzYWdlIGluIGVycm9yLCBwbGVhc2Ugbm90aWZ5 IHVzIGFuZCByZW1vdmUgaXQgZnJvbSB5b3VyIHN5c3RlbSBhbmQgbm90ZQ0KIHRoYXQgeW91IG11 c3Qgbm90IGNvcHksIGRpc3RyaWJ1dGUgb3IgdGFrZSBhbnkgYWN0aW9uIGluIHJlbGlhbmNlIG9u IGl0LiBBbnkgdW5hdXRob3JpemVkIHVzZSBvciBkaXNjbG9zdXJlIG9mIHRoZSBjb250ZW50cyBv ZiB0aGlzIG1lc3NhZ2UgaXMgbm90IHBlcm1pdHRlZCBhbmQgbWF5IGJlIHVubGF3ZnVsLjwvc3Bh bj48c3BhbiBzdHlsZT0iZm9udC1zaXplOjguMHB0Ij48bzpwPjwvbzpwPjwvc3Bhbj48L3A+DQo8 L2Jsb2NrcXVvdGU+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj48bzpwPiZuYnNwOzwvbzpwPjwvcD4N CjwvZGl2Pg0KPGhyPg0KPHAgY2xhc3M9IntJbXByaW50LlVuaXF1ZUlEfSIgc3R5bGU9IkZPTlQt U0laRTogOHB0Ij48Zm9udCBmYWNlPSJBcmlhbCIgc2l6ZT0iMSI+PC9mb250PjwvcD4NCjxwIGNs YXNzPSJ7SW1wcmludC5VbmlxdWVJRH0iIHN0eWxlPSJGT05ULVNJWkU6IDhwdCI+PGZvbnQgZmFj ZT0iQXJpYWwiPjxzdHJvbmc+Q29uZmlkZW50aWFsaXR5IE5vdGljZToNCjwvc3Ryb25nPlRoaXMg bWVzc2FnZSBpcyBwcml2YXRlIGFuZCBtYXkgY29udGFpbiBjb25maWRlbnRpYWwgYW5kIHByb3By aWV0YXJ5IGluZm9ybWF0aW9uLiBJZiB5b3UgaGF2ZSByZWNlaXZlZCB0aGlzIG1lc3NhZ2UgaW4g ZXJyb3IsIHBsZWFzZSBub3RpZnkgdXMgYW5kIHJlbW92ZSBpdCBmcm9tIHlvdXIgc3lzdGVtIGFu ZCBub3RlIHRoYXQgeW91IG11c3Qgbm90IGNvcHksIGRpc3RyaWJ1dGUgb3IgdGFrZSBhbnkgYWN0 aW9uIGluIHJlbGlhbmNlDQogb24gaXQuIEFueSB1bmF1dGhvcml6ZWQgdXNlIG9yIGRpc2Nsb3N1 cmUgb2YgdGhlIGNvbnRlbnRzIG9mIHRoaXMgbWVzc2FnZSBpcyBub3QgcGVybWl0dGVkIGFuZCBt YXkgYmUgdW5sYXdmdWwuPC9mb250PjwvcD4NCjxwIGNsYXNzPSJ7SW1wcmludC5VbmlxdWVJRH0i IHN0eWxlPSJGT05ULVNJWkU6IDhwdCI+PGZvbnQgZmFjZT0iQXJpYWwiPjwvZm9udD48L3A+DQo8 cCBjbGFzcz0ie0ltcHJpbnQuVW5pcXVlSUR9IiBzdHlsZT0iRk9OVC1TSVpFOiA4cHQiPjxmb250 IGZhY2U9IkFyaWFsIj48L2ZvbnQ+PC9wPg0KPHAgY2xhc3M9IntJbXByaW50LlVuaXF1ZUlEfSIg c3R5bGU9IkZPTlQtU0laRTogOHB0Ij48Zm9udCBmYWNlPSJBcmlhbCI+PC9mb250PjwvcD4NCjxw IGNsYXNzPSJ7SW1wcmludC5VbmlxdWVJRH0iIHN0eWxlPSJGT05ULVNJWkU6IDhwdCI+PGZvbnQg ZmFjZT0iQXJpYWwiPjwvZm9udD48L3A+DQo8cCBjbGFzcz0ie0ltcHJpbnQuVW5pcXVlSUR9IiBz dHlsZT0iRk9OVC1TSVpFOiA4cHQiPjxmb250IGZhY2U9IkFyaWFsIj48L2ZvbnQ+PC9wPg0KPHAg Y2xhc3M9IntJbXByaW50LlVuaXF1ZUlEfSIgc3R5bGU9IkZPTlQtU0laRTogOHB0Ij48Zm9udCBm YWNlPSJBcmlhbCI+PC9mb250Pjxmb250IHNpemU9IiYjNDM7MCI+PC9mb250PjwvcD4NCjxwIGNs YXNzPSJ7SW1wcmludC5VbmlxdWVJRH0iIHN0eWxlPSJGT05ULVNJWkU6IDhwdCI+PGZvbnQgZmFj ZT0iQXJpYWwiPjwvZm9udD48L3A+DQo8cCBjbGFzcz0ie0ltcHJpbnQuVW5pcXVlSUR9IiBzdHls ZT0iRk9OVC1TSVpFOiA4cHQiPjwvcD4NCjxwIGNsYXNzPSJ7SW1wcmludC5VbmlxdWVJRH0iIHN0 eWxlPSJGT05ULVNJWkU6IDhwdCI+PC9wPg0KPC9ib2R5Pg0KPC9odG1sPg0K --_000_HE1PR04MB2092C924C092E7F837B9FB73CA870HE1PR04MB2092eurp_-- From owner-chemistry@ccl.net Mon Aug 21 10:56:00 2017 From: "Heribert Reis hreis]|[eie.gr" To: CCL Subject: CCL:G: Vibrational sublevels along particular coordinate on PES Message-Id: <-52938-170821102440-11714-xkVA6ofBuWUWpHOMcPt+fg++server.ccl.net> X-Original-From: Heribert Reis Content-Type: multipart/alternative; boundary="001a11467444cd07bc0557443cef" Date: Mon, 21 Aug 2017 17:24:32 +0300 MIME-Version: 1.0 Sent to CCL by: Heribert Reis [hreis^-^eie.gr] --001a11467444cd07bc0557443cef Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable Dear Igors, If I understand your question correctly, there are two aspects involved: a) how to determine the vibrational levels of your torsional PES and b) how to determine the probability of the occurrence of a specific torsional angle (I think this is what you mean by 'conformation', at least in some parts of your question). For b) the answer would be given by the square of the vibrational wave function of the lowest level (for simplicity) around that dihedral value. (This is not strictly limited by the PES curve, due to tunnelling effects). So you need the wave function for your torsional coordinate, meaning you would need to solve the vibrational Schroedinger equation (SE) in the basis of your coordinate(s), which may not be easy. As a first approximation, you could solve the one-dimensional SE, with your PES as the potential and the torsional coordinate as variable. This assumes that the torsional vibration is not strongly coupled to other vibrational motions, otherwise those strong couplings should also be considered. Such a solution would also give the zero-point energy contribution of the torsion. The ZPE you get from Gaussian is the contribution of all vibrations, which are considered to be harmonic(!), so does not tell you anything about the contribution of the one (and non harmonic) torsion to the ZPE. In addition you may have tunnelling between the two wells, if the potential barrier is not very high, and the two bottoms of the wells are similar, meaning that in fact you may have a interconversion between the two conformations described by the two wells. Of course, you can mix in any number of complications in the picture above by e.g. taking temperature effects into account, which may lead to population also of higher levels, etc. On a more practical level, assuming that the two PES you calculated in the two solvents differ considerably (e.g. in the width of the wells and/or the height of the barrier) it may be possible to draw qualitative conclusions without solving the SE. Hope this helps a little. Heribert On Sat, Aug 19, 2017 at 5:40 PM, Igors Mihailovs igorsm**cfi.lu.lv < owner-chemistry]^[ccl.net> wrote: > Dear Dr. Norrby, > > Thank You for Your reply! But it seems to me that I might have been right > about that 'nonsence' in my question, because either I am misinterpreting > Your answer or You may have misinterpreted my question. Or both :) > > So I will describe my actual situation then. I have a discussion with a > synthetic chemist about interpreting the results of this PES scan. There > are actually two different scans, one in benzene and another one in > acetonitrile, with notably lower barrier in acetonitrile. One of his > arguments is that in acetonitrile there is larger population of > conformations with non-equilibrium dihedral values (then it might help to > interpret some experimental findings about a certain molecular electronic > property). If calculated according to Boltzmann distribution, some > conformations with moderate deviations from the equilibrium value of > dihedral do have significant population with respect to the equilibrium o= ne > (e.g., 0.2:1), because PES is relatively flat in that region. If I do > understand correctly, in reality only those conformations are really > present in solution which correspond to some vibrational sublevels on PES > (or should it be free-energy surface then?). I thought I could determine = if > a conformation is something real if I plot vibrational sublevels in the > well and check whether a conformation is higher or lower than the first o= f > sublevels,=E2=80=A6 and so on. Is this the right idea at all? If it is, s= hould > these sublevels be taken from the calculations of stationary points (well > bottoms), or should I project those sublevels, or =E2=80=A6? Because I ca= nnot even > found meaning of those 'projected contributions' in my interpretation of > how PES is related to vibrational sublevels (above). So is this > interpretation rather wrong?=E2=80=A6 > > Thank You (and possibly others) again in advance. > > Yours sincerely, > Igors Mihailovs > PhD student > ISSP University of Latvia > > > On 19/08/17 10:19, Norrby, Per-Ola Per-Ola.Norrby]|[astrazeneca.com wrote= : > > Dear Igors, > > Adding vibrational contributions makes most sense at stationary points, > you can use them when comparing stationary points, like the (fully > converged) minima and transition state. If you need to, there is a way to > calculate these contributions also at non-stationary points using > Freq=3DProject in Gaussian. Note that you lose one degree of freedom, the > direction of the force, which is projected out together with the > translations and rotations (giving you N-7 degrees of freedom, not the > usual N-6). > > Per-Ola > > Sent from my iPhone > > On 18 Aug 2017, at 19:06, Igors Mihailovs igorsm=3D-=3Dcfi.lu.lv < > owner-chemistry:-:ccl.net> wrote: > > Dear computational chemistry specialists, > > I have a question possibly of general knowledge (which I lack), > considering transfer of what I have learned about levels and sublevels of > diatomics to calculations of "big" molecules. > I am trying to analyze the potential energy surface of a particular > compound along one particular dihedral (by doing partial optimizations at > various values of this dihedral). This cut of PES has double concave shap= e > (like the small Greek lambda), as if there were two potential wells > separated by a barrier (ca. 15 kcal/mol), corresponding to two conformers= . > If I would be supposed to draw vibrational sublevels in both wells, what > would be their energies? The computed vibrational frequencies (for stable > structures at bottoms of both wells) with respect to some line over the > bottom? > The bottom should be the zero-point vibrational energy, but then the one > computed by Gaussian is about 70 times larger than the barrier between tw= o > conformers (ca. 1015 kcal/mol). I suppose I should take only contribution > to ZPE from the dihedral in interest to determine the first level in a we= ll > (since all the modes are complex, do I need some diagonalization of > something, like to get "natural frequency modes"?). Is this so? If not, > does this result mean there is constant interconversion of both conformer= s > (sounds a bit ridiculous to me)? Or is this whole idea of drawing vibrati= on > levels over such a cut in PES just a nonsence? > > Sorry for my illiteracy. And thanks in advance! > > With best regards, > Igors Mihailovs > PhD student > ISSP University of Latvia > > ------------------------------ > > *Confidentiality Notice: *This message is private and may contain > confidential and proprietary information. If you have received this messa= ge > in error, please notify us and remove it from your system and note that y= ou > must not copy, distribute or take any action in reliance on it. Any > unauthorized use or disclosure of the contents of this message is not > permitted and may be unlawful. > > > --001a11467444cd07bc0557443cef Content-Type: text/html; charset="UTF-8" Content-Transfer-Encoding: quoted-printable
Dear Igors,
If I understand your question correctly, t= here are two aspects involved: a) how to determine the vibrational levels o= f your torsional PES and b) how to determine the probability of the occurre= nce of a specific torsional angle (I think this is what you mean by 'co= nformation', at least in some parts of your question). For b) the answe= r would be given by the square of the vibrational wave function of the lowe= st level (for simplicity) around that dihedral value. (This is not strictly= limited by the PES curve, due to tunnelling effects). So you need the wave= function for your torsional coordinate, meaning you would need to solve th= e vibrational Schroedinger equation (SE) in the basis of your coordinate(s)= , which may not be easy. As a first approximation, you could solve the one-= dimensional SE, with your PES as the potential and the torsional coordinate= as variable. This assumes that the torsional vibration is not strongly cou= pled to other vibrational motions, otherwise those strong couplings should = also be considered.
Such a solution would also give the zero-poin= t energy contribution of the torsion. The ZPE you get from Gaussian is the = contribution of all vibrations, which are considered to be =C2=A0harmonic(!= ), so does not tell you anything about the contribution of the one (and non= harmonic) torsion to the ZPE.
In addition you may have tunnellin= g between the two wells, if the potential barrier is not very high, and the= two bottoms of the wells are similar, meaning that in fact you may have a = interconversion between the two conformations described by the two wells. O= f course, you can mix in any number of complications in the picture above b= y e.g. taking temperature effects into account, which may lead to populatio= n also of higher levels, etc.

On a more practical = level, assuming that the two PES you calculated in the two solvents differ = considerably (e.g. in the width of the wells and/or the height of the barri= er) it may be possible to draw qualitative conclusions without solving the = SE.

Hope this helps a little.

=
Heribert


On Sat, Aug 19, 2017 at 5:40 PM, Igors Mihailovs igo= rsm**cfi.lu.lv <owner-chemistry]^[ccl= .net> wrote:
=20 =20 =20
Dear Dr. Norrby,

Thank You for Your reply! But it seems to me that I might have been right about that 'nonsence' in my question, because either I am misinterpreting Your answer or You may have misinterpreted my question. Or both :)

So I will describe my actual situation then. I have a discussion with a synthetic chemist about interpreting the results of this PES scan. There are actually two different scans, one in benzene and another one in acetonitrile, with notably lower barrier in acetonitrile. One of his arguments is that in acetonitrile there is larger population of conformations with non-equilibrium dihedral values (then it might help to interpret some experimental findings about a certain molecular electronic property). If calculated according to Boltzmann distribution, some conformations with moderate deviations from the equilibrium value of dihedral do have significant population with respect to the equilibrium one (e.g., 0.2:1), because PES is relatively flat in that region. If I do understand correctly, in reality only those conformations are really present in solution which correspond to some vibrational sublevels on PES (or should it be free-energy surface then?). I thought I could determine if a conformation is something real if I plot vibrational sublevels in the well and check whether a conformation is higher or lower than the first of sublevels,=E2=80=A6 and so on. Is = this the right idea at all? If it is, should these sublevels be taken from the calculations of stationary points (well bottoms), or should I project those sublevels, or =E2=80=A6? Because I cannot even found me= aning of those 'projected contributions' in my interpretation of how = PES is related to vibrational sublevels (above). So is this interpretation rather wrong?=E2=80=A6

Thank You (and possibly others) again in advance.

Yours sincerely,
Igors Mihailovs
PhD student
ISSP University of Latvia



On 19/08/17 10:19, = Norrby, Per-Ola Per-Ola.Norrby]|[astrazeneca.com wrote:
=20
Dear Igors,

Adding vibrationa= l contributions makes most sense at stationary points, you can use them when comparing stationary points, like the (fully converged) minima and transition state. If you need to, there is a way to calculate these contributions also at non-stationary points using Freq=3DProject in Gaussian. Note that you lose one degree of freedom, the direction of the force, which is projected out together with the translations and rotations (giving you N-7 degrees of freedom, not the usual N-6).

Per-Ola

Sent from my iPhone

On 18 Aug 2017, at 19:06, Igors Mihailovs igorsm=3D-=3Dcfi.lu.lv <= owner-chemistry:-:ccl.net> wrote:

Dear computational chemistry specialists,

I have a question possibly of general knowledge (which I lack), considering transfer of what I have learned about levels and sublevels of diatomics to calculations of "big&= quot; molecules.
I am trying to analyze the potential energy surface of a particular compound along one particular dihedral (by doing partial optimizations at various values of this dihedral). This cut of PES has double concave shape (like the small Greek lambda), as if there were two potential wells separated by a barrier (ca. 15 kcal/mol), corresponding to two conformers. If I would be supposed to draw vibrational sublevels in both wells, what would be their energies? The computed vibrational frequencies (for stable structures at bottoms of both wells) with respect to some line over the bottom?
The bottom should be the zero-point vibrational energy, but then the one computed by Gaussian is about 70 times larger than the barrier between two conformers (ca. 1015 kcal/mol). I suppose I should take only contribution to ZPE from the dihedral in interest to determine the first level in a well (since all the modes are complex, do I need some diagonalization of something, like to get "natural frequen= cy modes"?). Is this so? If not, does this result mean there = is constant interconversion of both conformers (sounds a bit ridiculous to me)? Or is this whole idea of drawing vibration levels over such a cut in PES just a nonsence?

Sorry for my illiteracy. And thanks in advance!

With best regards,
Igors Mihailovs
PhD student
ISSP University of Latvia

Confidentiality Notice: This message is private and may contain confidential and proprietary information. If you have received this message in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this message is not permitted and may be unlawful.



--001a11467444cd07bc0557443cef-- From owner-chemistry@ccl.net Mon Aug 21 15:16:00 2017 From: "Eric Hermes erichermes+/-gmail.com" To: CCL Subject: CCL:G: Vibrational sublevels along particular coordinate on PES Message-Id: <-52939-170821131014-5181-awHiMKLvLoVDXS5HZNHwzA()server.ccl.net> X-Original-From: Eric Hermes Content-Transfer-Encoding: 8bit Content-Type: text/plain; charset="UTF-8" Date: Mon, 21 Aug 2017 12:10:07 -0500 Mime-Version: 1.0 Sent to CCL by: Eric Hermes [erichermes**gmail.com] On Sat, 2017-08-19 at 17:40 +0300, Igors Mihailovs igorsm**cfi.lu.lv wrote: > Dear Dr. Norrby, > > Thank You for Your reply! But it seems to me that I might have been > right about that 'nonsence' in my question, because either I am > misinterpreting Your answer or You may have misinterpreted my > question. Or both :) > > So I will describe my actual situation then. I have a discussion with > a synthetic chemist about interpreting the results of this PES scan. > There are actually two different scans, one in benzene and another > one in acetonitrile, with notably lower barrier in acetonitrile. One > of his arguments is that in acetonitrile there is larger population > of conformations with non-equilibrium dihedral     values (then it > might help to interpret some experimental findings about a certain > molecular electronic property). If calculated according to Boltzmann > distribution, some conformations with moderate deviations from the > equilibrium value of dihedral do have significant population with > respect to the equilibrium one (e.g., 0.2:1), because PES is > relatively flat in that region. If I do     understand correctly, in > reality only those conformations are really present in solution which > correspond to some vibrational sublevels on PES (or should it be > free-energy surface then?). I thought I could determine if a > conformation is something real if I plot vibrational sublevels in the > well and check whether a conformation is higher or lower than the > first of sublevels,… and so on. Is this the right idea at all? If it > is, should these sublevels be taken from the calculations of > stationary points (well bottoms), or should I project those > sublevels, or …? Because I cannot even found meaning of those > 'projected contributions' in my interpretation of how PES is related > to vibrational sublevels (above). So is this interpretation rather > wrong?… I am going to approach this problem from a statistical mechanical perspective. There is a correct way to do what you are doing, and I'll describe what that is, but it is important that you understand *why* that is the correct way. In order to discuss the population distribution of a system, we typically assume that the system's phase space can be broken up into individual "conformations" or "states", each of which occupies a well- defined region of the phase space. If we make this assumption, we can then assign a unique partition function (and corresponding free energy) to each of these regions (henceforth: states), which can then be used to investigate equilibrium properties of the system. The partition function of a system involves the configuration integral, which spans all of phase space (all possible atomic configurations). The partition function for a particular state is calculated by evaluating the configuration integral only over the region of phase space belonging to that state. Then, the relative probability of being in one of two states is given by the ratio of their partition functions. Practically speaking, these partition functions calculated through the use of several approximations (ideal gas, rigid rotor, harmonic oscillator...), rather than through explicit sampling of phase space. This is the approach that is typically used to calculate theoretical equilibrium constants. Note that carving up phase space into states in this way does not reduce the dimensionality of the configuration integral, it merely changes the limits of integration. Now, you are interested in the relative population of two points on a pre-defined 1-dimensional slice of the potential energy surface (PES), rather than the relative population of two regions of phase space. This means you can't calculate their relative population by taking the ratio of two 3N dimensional partition functions, because then the two regions of phase space that you are trying to compare will overlap. Instead, you must sample over a 3N-1 dimensional slice of phase space in which the coordinate along your 1 dimensional potential energy slice is held fixed. The approach is more or less the same as the approach I discussed previously, except you omit the direction corresponding to your reaction coordinate from the vibrational frequency analysis. As Per-Ola said, this can be done with Gaussian's freq=projected keyword. There are a few caveats: First, this approach may not be necessary at all! If the two points along your potential energy slice are sufficiently close to one another, then the remaining 3N-1 modes of the system may not differ much between the two points, meaning that the potential energy difference between those states will be a good approximation for the free energy difference. Second, this approach is only valid if your reaction coordinate is sufficiently flat that it can be treated classically. Otherwise, as Heribert mentions, the correct approach is to construct the vibrational wave function and evaluate its magnitude at each of the points you are interested in along the reaction coordinate. As an aside, I would also like to make clear that this is related to (but distinct from) the elision of a degree of freedom when evaluating the free energy of a transition state within transition state theory. If the full 3Nx3N Hessian matrix of a transition state is diagonalized, one of the frequencies will be imaginary. The activation free energy is calculated by only considering the non-imaginary modes for the transition state, which reduces its dimensionality by 1. This is because rather than occupying a 3N dimensional region of phase space, the transition state is a 3N-1 dimensional dividing surface, which by definition has one fewer degree of freedom than the minima it connects. The transition state theory rate is k_B T/h * Q_TS/Q_R, where Q_TS is the partition function for the transition state and Q_R is the partition function for the reactants, and Q_TS has *one fewer dimension* than Q_R. However, since you want the relative population of two configurations on a 1-dimensional slice of the PES, BOTH of your partition functions will be 3N-1 dimensional. Eric Hermes > > Thank You (and possibly others) again in advance. > > Yours sincerely, > Igors Mihailovs > PhD student > ISSP University of Latvia > > > On 19/08/17 10:19, Norrby, Per-Ola Per-Ola.Norrby]|[astrazeneca.com > wrote: > > Dear Igors, > > > > Adding vibrational contributions makes most sense at stationary > > points, you can use them when comparing stationary points, like the > > (fully converged) minima and transition state. If you need to, > > there is a way to calculate these contributions also at non- > > stationary points using Freq=Project in Gaussian. Note that you > > lose one degree of freedom, the direction of the force, which is > > projected out together with the translations and rotations (giving > > you N-7 degrees of freedom, not the usual N-6). > > > > Per-Ola > > > > Sent from my iPhone > > > > On 18 Aug 2017, at 19:06, Igors Mihailovs igorsm=-=cfi.lu.lv > > wrote: > > > > > Dear computational chemistry specialists, > > > > > > I have a question possibly of general knowledge (which I lack), > > > considering transfer of what I have learned about levels and > > > sublevels of diatomics to calculations of "big" molecules. > > > I am trying to analyze the potential energy surface of a > > > particular compound along one particular dihedral (by doing > > > partial optimizations at various values of this dihedral). This > > > cut of PES has double concave shape (like the small Greek > > > lambda), as if there were two potential wells separated by a > > > barrier (ca. 15 kcal/mol), corresponding to two conformers. If I > > > would be supposed to draw vibrational sublevels in both wells, > > > what would be their energies? The computed vibrational > > > frequencies (for stable structures at bottoms of both wells) with > > > respect to some line over the bottom? > > > The bottom should be the zero-point vibrational energy, but then > > > the one computed by Gaussian is about 70 times larger than the > > > barrier between two conformers (ca. 1015 kcal/mol). I suppose I > > > should take only contribution to ZPE from the dihedral in > > > interest to determine the first level in a well (since all the > > > modes are complex, do I need some diagonalization of something, > > > like to get "natural frequency modes"?). Is this so? If not, does > > > this result mean there is constant interconversion of both > > > conformers (sounds a bit ridiculous to me)? Or is this whole idea > > > of drawing vibration levels over such a cut in PES just a > > > nonsence? > > > > > > Sorry for my illiteracy. And thanks in advance! > > > > > > With best regards, > > > Igors Mihailovs > > > PhD student > > > ISSP University of Latvia > > > > Confidentiality Notice: This message is private and may contain > > confidential and proprietary information. If you have received this > > message in error, please notify us and remove it from your system > > and note that you must not copy, distribute or take any action in > > reliance on it. Any unauthorized use or disclosure of the contents > > of this message is not permitted and may be unlawful. >   From owner-chemistry@ccl.net Mon Aug 21 17:11:00 2017 From: "Zachary B Smithline zachary.smithline^^^yale.edu" To: CCL Subject: CCL:G: l103.exe error and reading in external AM1 parameters Message-Id: <-52940-170821162940-7987-K60LMPSn8lFDUXg2n9RhDA-$-server.ccl.net> X-Original-From: "Zachary B Smithline" Date: Mon, 21 Aug 2017 16:29:38 -0400 Sent to CCL by: "Zachary B Smithline" [zachary.smithline_._yale.edu] Hi All, (I'm so sorry this is so long! Thank you so much, in advance!) I have been having serious issues optimizing and trying to run a 2D scan along two bond lengths for a ~200 atom protein active site, containing multiple Mg(II) atoms that have octahedral coordination in Gaussian 16. After relaxing the Hs at the AM1 level (holding everything else fixed), I relaxed all atoms in my system, holding only the backbone fixed. I noticed at this point that the octahedral coordination geometries of all Mg(II) atoms were distorted. Next, I started my relaxed scan along two bonds. However, every time I try the scan, Gaussian crashes and throws an error with the l103.exe. Using opt=calcfc or calcall does not help. Using smaller step sizes (like 0.01 or 0.05 A as opposed to 0.1) simply delays the inevitable crash. I have also tried repeating every step listed above using ONIOM B3LYP 6-31G(d)/AM1 where the Mg(II) and neighboring atoms are treated with DFT and everything else is treated with AM1. I still got the same error. This method is also too expensive and will not let me get the whole scan! *** MY QUESTIONS: 1. As a last ditch effort, I am trying to read in external AM1 parameters for Mg(II) (from this paper: J. Chem. Theory Comput. 2006, 2, 1050-1056) that were designed to reproduce octahedral coordination. Am1=MOPACExternal didn't work, so I want to use am1=input and read them in in Gaussian syntax. I have listed the external parameters from the paper below (in MOPAC syntax) and have also listed how I converted these parameters to Gaussian syntax. I have listed everything in Gaussian syntax except the HSP and GSP parameters because I don't understand the directions for how to write these in Gaussian syntax on the Gaussian info site. Does anybody know how to list HSP and GSP in Gaussian syntax? Here is what my parameter file that I link to in my Gaussian input has (HSP and GSP I haven't added yet): Method=8 CoreType=1 **** Mg U=12.83615,9.51125 Beta=1.26808,0.93230 ZetaOverlap=1.57114,1.25833 DCore=1.80310,1.99069,3.80477,0.66033,-0.00626,3.06817,1.53666,-0.00581,2.33455,2.42691 Here are all the parameters I want to read in, in MOPAC format (reading it in this way didn't work): USS Mg 12.83615 UPP Mg 9.51125 BETAS Mg 1.26808 BETAP Mg 0.93230 ZS Mg 1.57114 ZP Mg 1.25833 ALP Mg 1.80310 FN11 Mg 1.99069 FN21 Mg 3.80477 FN31 Mg 0.66033 FN12 Mg 0.00626 FN22 Mg 3.06817 FN32 Mg 1.53666 FN13 Mg 0.00581 FN23 Mg 2.33455 FN33 Mg 2.42691 GSP Mg 8.29115 HSP Mg 0.53547 2. Do you have any other advice for my issue with the l103.exe error? Basically, I am trying to get a large 2D PE surface for my system at the AM1 level. Once I have this, I will refine the geometries/energies at each point on my surface in parallel at the DFT level at some national supercomputer. *** If anybody knows how to help, please contact me at zachary.smithline^yale.edu Many thanks, Zachary Smithline Lab of Thomas Steitz Depts. of MB&B and Chemistry Yale University