From owner-chemistry@ccl.net Thu May 24 02:10:00 2018 From: "Norrby, Per-Ola Per-Ola.Norrby-x-astrazeneca.com" To: CCL Subject: CCL: RateDetermining State Message-Id: <-53314-180524020911-12340-zWXnxciit+WExMXENSovUw[a]server.ccl.net> X-Original-From: "Norrby, Per-Ola" Content-Language: en-US Content-Type: multipart/alternative; boundary="_000_VI1PR04MB40642426165910D4FB8F5A7CCA6A0VI1PR04MB4064eurp_" Date: Thu, 24 May 2018 06:09:00 +0000 MIME-Version: 1.0 Sent to CCL by: "Norrby, Per-Ola" [Per-Ola.Norrby|astrazeneca.com] --_000_VI1PR04MB40642426165910D4FB8F5A7CCA6A0VI1PR04MB4064eurp_ Content-Type: text/plain; charset="utf-8" Content-Transfer-Encoding: base64 U28gdGhlIGNvbmNlcHQgb2YgcmF0ZSBkZXRlcm1pbmluZyBzdGF0ZSBoYXMgYmVlbiBhcm91bmQg Zm9yIGFib3V0IGEgZGVjYWRlIG5vdywgaXQgY2FtZSBvdXQgb2YgdGhlIHNhbWUgd29yayBhcyB0 aGUgZW5lcmdldGljIHNwYW4gbW9kZWwsIGZyb20gU2ViYXN0aWFuIEtvenVjaCBhbmQgU2Fpc29u IFNoYWlrLiBJdOKAmXMgdmFsaWQsIEnigJltIG5vdCBjb250ZXN0aW5nIHRoYXQsIGJ1dCB0aGVy ZSBpc27igJl0IHJlYWxseSBhIGNvbmZsaWN0LiBUaGUg4oCccmF0ZSBkZXRlcm1pbmluZyBzdGVw 4oCdIGlzIGFsc28gYSB2YWxpZCBjb25jZXB0LCB5b3UganVzdCBoYXZlIHRvIGRlZmluZSBhIOKA nHN0ZXDigJ0gYXMgZG9uZSBpbiBraW5ldGljcywgYW5kIGFwcGx5IHRoZSBDdXJ0aW4tSGFtbWV0 dCBwcmluY2lwbGUuIEluIHNob3J0LCBpZiBhIOKAnHN0ZXDigJ0gaXMgY29uc2lkZXJlZCB0byBn byB0byBhIHRyYW5zaXRpb24gc3RhdGUgZnJvbSB0aGUgbG93ZXN0IHByZWNlZGluZyBwb2ludCwg bm90IHRoZSBjbG9zZXN0IG1pbmltdW0sIHRoZW4gdGhlIG1vZGVscyB3b3JrIG91dCB0aGUgc2Ft ZS4gQSBzaW1wbGUgdHJpY2sgcmVhbGx5LCB5b3UgY2FsY3VsYXRlIHRoZSBiYXJyaWVyIGFzc29j aWF0ZWQgd2l0aCBlYWNoIHRyYW5zaXRpb24gc3RhdGUgYnkgbG9va2luZyBiYWNrIHRvIHRoZSBs b3dlc3QgcHJlY2VkaW5nIHBvaW50IHRoYXQgeW91IGNhbiByZWFjaCB3aXRob3V0IHBhc3Npbmcg YSBoaWdoZXIgYmFycmllci4gSW4gY2F0YWx5c2lzLCB0aGF0IGxvd2VzdCBwcmVjZWRpbmcgcG9p bnQgY291bGQgYmUgdGhlIHJlc3Rpbmcgc3RhdGUsIGFub3RoZXIgdmVyeSB1c2VmdWwgY29uY2Vw dCB0aGF0IGhhcyBhbHNvIGJlZW4gY29uc2lkZXJlZCBkZWFkLCBidXQgd2hpY2ggaXMgaGFuZHkg d2hlbiB0cnlpbmcgdG8gcHJlZGljdCB3aGF0IHdpbGwgYmUgb2JzZXJ2YWJsZS4NCg0KQWxzbyBu b3RlIHRoYXQgdGhlIGxvd2VzdCBwcmVjZWRpbmcgcG9pbnQgZG9lcyBub3QgaGF2ZSB0byBsaWUg b24gdGhlIHByb2R1Y3RpdmUgcmVhY3Rpb24gcGF0aCwgaXQgY2FuIGVhc2lseSBiZSBhIHNpZGUg cGF0aCwgYSB0aGVybW9keW5hbWljIGR1bXAgdGhhdCBqdXN0IHNsb3dzIHRoZSBvdmVyYWxsIGtp bmV0aWNzLg0KDQpJIGhhdmVu4oCZdCBmb3VuZCBhbiBhcnRpY2xlIHRoYXQgc3VtbWFyaXplcyB0 aGlzIHZpZXcuIEl0IHVuZGVybGllcyBob3cgbWFueSBvZiB1cyBoYW5kbGVkIHBvdGVudGlhbCBl bmVyZ3kgc3VyZmFjZXMgZGVjYWRlcyBiYWNrLCBidXQgSSBuZXZlciBzYXcgaXQgc3RhdGVkIGV4 cGxpY2l0bHksIGl0IHdhcyBqdXN0IGhhbmRlZCBkb3duIGFzIGVzc2VudGlhbCBrbm93bGVkZ2Ug aW4gY29tcHV0YXRpb25hbCBncm91cHMgd2l0aCBleHBlcnRpc2UgaW4ga2luZXRpY3MuIEkgZGlk IHdyaXRlIGEgc3VtbWFyeSBpbiBhIGJvb2sgY2hhcHRlciBhIHdoaWxlIGJhY2ssIGNhbiBiZSBm b3VuZCBoZXJlOiBodHRwOi8vZHguZG9pLm9yZy8xMC4xMDAyLzk3ODM1Mjc2NDY1ODYuY2g4DQoN Ci9QZXItT2xhDQoNClBlci1PbGEgTm9ycmJ5DQpQcmluY2lwYWwgU2NpZW50aXN0LCBDb21wdXRh dGlvbmFsIFBoYXJtYWNldXRpY3MNClBoYXJtYWNldXRpY2FsIFNjaWVuY2VzLCBBc3RyYVplbmVj YS1Hb3RoZW5idXJnDQoNCg0KDQpGcm9tOiBvd25lci1jaGVtaXN0cnkrcGVyLW9sYS5ub3JyYnk9 PWFzdHJhemVuZWNhLmNvbUBjY2wubmV0IFttYWlsdG86b3duZXItY2hlbWlzdHJ5K3Blci1vbGEu bm9ycmJ5PT1hc3RyYXplbmVjYS5jb21AY2NsLm5ldF0gT24gQmVoYWxmIE9mIEFuZHJldyBSb3Nl biByb3Nlbl9fdS5ub3J0aHdlc3Rlcm4uZWR1DQpTZW50OiBkZW4gMjQgbWFqIDIwMTggMDU6MzQN ClRvOiBOb3JyYnksIFBlci1PbGEgPFBlci1PbGEuTm9ycmJ5QGFzdHJhemVuZWNhLmNvbT4NClN1 YmplY3Q6IENDTDogUmF0ZURldGVybWluaW5nIFN0YXRlDQoNCkFueWFvLA0KDQpJIHJlZmVyIHlv dSB0byB0aGUgZm9sbG93aW5nIHR3byBwYXBlcnM6DQoxKSAiRGVncmVlIG9mIFJhdGUgQ29udHJv bDogSG93IE11Y2ggdGhlIEVuZXJnaWVzIG9mIEludGVybWVkaWF0ZXMgYW5kIFRyYW5zaXRpb24g U3RhdGVzIENvbnRyb2wgUmF0ZXMiIChodHRwczovL3B1YnMuYWNzLm9yZy9kb2kvYWJzLzEwLjEw MjEvamE5MDAwMDk3PGh0dHBzOi8vY2xpY2t0aW1lLnN5bWFudGVjLmNvbS9hLzEvbnpEdWF2VDU1 cG40SU82WEdmeHRlcE00Z2RsUl81ZEtzM2xjLVFJb3ozaz0/ZD13b0YzUGo4d3pMcVNkOVNFT0pH eVF2T3hBc2tGXy11anVoZnVBQnhnUnNESjFROHdMTFV3T05oMFowNm1hRmN0aXN5R2ZubWZWNXc5 eXlZTWJuU3Z6eElYSXVrX0gwZzhDTS1Hd2NlSWZPaGZQZkpmZHN0czB2Y0RldWIya2gzRHhmV19D RW14X1dMTWpBZnZvYWhJdkxLSlhockpxck9NVGFBWFcyZ1NhVzFoWG95emU5bTlPRUo2clVkRjdq ZzFBX0N6U013U0FMNjk3dXNlTkdmckM2QU55QXM5ZEotdTBpQ205N3N6Ull1QlVIN2NTOHhsRk1i SEVkV1BzaEF0QTJCSXVaUUlscHQzN0s0S3doT21XekE4aW9lampydURCb01fZVVmNDNmNjhDZVZi SDZXbmptOGpBYjIwVmNQbHVBc1l3YU0zdDVJbDNPYndtaVlDMFdzeW1KMnpPVXFGSWdZQXoyUzJw WEZfLWRJWExxNE9BeDFrZ1E1cTN5S0kzc3BNbmhVc2poQ3c1QmtNMFNvUWJmRkdlcGR1S2plSV9i aGFEWDc5aVZOaS1wdmdvUXZzdlI4JTNEJnU9aHR0cHMlM0ElMkYlMkZwdWJzLmFjcy5vcmclMkZk b2klMkZhYnMlMkYxMC4xMDIxJTJGamE5MDAwMDk3PikNCjIpICJUaGUgUmF0ZeKAkERldGVybWlu aW5nIFN0ZXAgaXMgRGVhZC4gTG9uZyBMaXZlIHRoZSBSYXRl4oCQRGV0ZXJtaW5pbmcgU3RhdGUh IiAoaHR0cHM6Ly9vbmxpbmVsaWJyYXJ5LndpbGV5LmNvbS9kb2kvZnVsbC8xMC4xMDAyL2NwaGMu MjAxMTAwMTM3PGh0dHBzOi8vY2xpY2t0aW1lLnN5bWFudGVjLmNvbS9hLzEvNUcyRHVJcHB4clhu QzRGQWRxSkFRbEEtT2RZTXhFYWRUWUZBMnU4WGM0ST0/ZD13b0YzUGo4d3pMcVNkOVNFT0pHeVF2 T3hBc2tGXy11anVoZnVBQnhnUnNESjFROHdMTFV3T05oMFowNm1hRmN0aXN5R2ZubWZWNXc5eXlZ TWJuU3Z6eElYSXVrX0gwZzhDTS1Hd2NlSWZPaGZQZkpmZHN0czB2Y0RldWIya2gzRHhmV19DRW14 X1dMTWpBZnZvYWhJdkxLSlhockpxck9NVGFBWFcyZ1NhVzFoWG95emU5bTlPRUo2clVkRjdqZzFB X0N6U013U0FMNjk3dXNlTkdmckM2QU55QXM5ZEotdTBpQ205N3N6Ull1QlVIN2NTOHhsRk1iSEVk V1BzaEF0QTJCSXVaUUlscHQzN0s0S3doT21XekE4aW9lampydURCb01fZVVmNDNmNjhDZVZiSDZX bmptOGpBYjIwVmNQbHVBc1l3YU0zdDVJbDNPYndtaVlDMFdzeW1KMnpPVXFGSWdZQXoyUzJwWEZf LWRJWExxNE9BeDFrZ1E1cTN5S0kzc3BNbmhVc2poQ3c1QmtNMFNvUWJmRkdlcGR1S2plSV9iaGFE WDc5aVZOaS1wdmdvUXZzdlI4JTNEJnU9aHR0cHMlM0ElMkYlMkZvbmxpbmVsaWJyYXJ5LndpbGV5 LmNvbSUyRmRvaSUyRmZ1bGwlMkYxMC4xMDAyJTJGY3BoYy4yMDExMDAxMzc+KQ0KDQpGcm9tIGEg ZGV0YWlsZWQgbWVjaGFuaXN0aWMgcG9pbnQgb2YgdmlldywgaXQgaXMgb2Z0ZW4gbXVjaCBtb3Jl IGluc2lnaHRmdWwgdG8gdGFsayBhYm91dCBhYm91dCBhIHJhdGUtZGV0ZXJtaW5pbmcgc3RhdGUg KGVpdGhlciB0cmFuc2l0aW9uIHN0YXRlIG9yIGludGVybWVkaWF0ZSkgdGhhbiBhIHJhdGUtZGV0 ZXJtaW5pbmcgc3RlcC4gVGhlIGZpcnN0IHBhcGVyIGRlc2NyaWJlcyB0aGUgd2lkZWx5IHVzZWQg ZGVmaW5pdGlvbiBvZiBhIHJhdGUtY29udHJvbGxpbmcgc3RhdGUgYW5kIGhvdyB0byBjb21wdXRl IGl0LiBUaGUgc2Vjb25kIHBhcGVyIGNvbnRhaW5zIGEgZmV3IHNob3J0IGV4YW1wbGVzIG9mIGhv dyB0aGUgcmF0ZS1kZXRlcm1pbmluZyBzdGF0ZSBkaWZmZXJzIGZyb20gdGhlIHJhdGUtZGV0ZXJt aW5pbmcgc3RlcC4NCg0KT24gV2VkLCBNYXkgMjMsIDIwMTggYXQgMTA6MTkgUE0gQW55YW8gSmlh byAxNDI1NjIzMTIxKF8pcXEuY29tPGh0dHBzOi8vY2xpY2t0aW1lLnN5bWFudGVjLmNvbS9hLzEv MzZwRlhLZ3F4VERkM2RlT3FKel9FejhqYkJ5NVlPUE1CTzBhVVlLeElPTT0/ZD13b0YzUGo4d3pM cVNkOVNFT0pHeVF2T3hBc2tGXy11anVoZnVBQnhnUnNESjFROHdMTFV3T05oMFowNm1hRmN0aXN5 R2ZubWZWNXc5eXlZTWJuU3Z6eElYSXVrX0gwZzhDTS1Hd2NlSWZPaGZQZkpmZHN0czB2Y0RldWIy a2gzRHhmV19DRW14X1dMTWpBZnZvYWhJdkxLSlhockpxck9NVGFBWFcyZ1NhVzFoWG95emU5bTlP RUo2clVkRjdqZzFBX0N6U013U0FMNjk3dXNlTkdmckM2QU55QXM5ZEotdTBpQ205N3N6Ull1QlVI N2NTOHhsRk1iSEVkV1BzaEF0QTJCSXVaUUlscHQzN0s0S3doT21XekE4aW9lampydURCb01fZVVm NDNmNjhDZVZiSDZXbmptOGpBYjIwVmNQbHVBc1l3YU0zdDVJbDNPYndtaVlDMFdzeW1KMnpPVXFG SWdZQXoyUzJwWEZfLWRJWExxNE9BeDFrZ1E1cTN5S0kzc3BNbmhVc2poQ3c1QmtNMFNvUWJmRkdl cGR1S2plSV9iaGFEWDc5aVZOaS1wdmdvUXZzdlI4JTNEJnU9aHR0cCUzQSUyRiUyRnFxLmNvbT4g PG93bmVyLWNoZW1pc3RyeSpjY2wubmV0PG1haWx0bzpvd25lci1jaGVtaXN0cnkqY2NsLm5ldD4+ IHdyb3RlOg0KDQpTZW50IHRvIENDTCBieTogIkFueWFvICBKaWFvIiBbMTQyNTYyMzEyMV5xcS5j b208aHR0cHM6Ly9jbGlja3RpbWUuc3ltYW50ZWMuY29tL2EvMS8zNnBGWEtncXhURGQzZGVPcUp6 X0V6OGpiQnk1WU9QTUJPMGFVWUt4SU9NPT9kPXdvRjNQajh3ekxxU2Q5U0VPSkd5UXZPeEFza0Zf LXVqdWhmdUFCeGdSc0RKMVE4d0xMVXdPTmgwWjA2bWFGY3Rpc3lHZm5tZlY1dzl5eVlNYm5Tdnp4 SVhJdWtfSDBnOENNLUd3Y2VJZk9oZlBmSmZkc3RzMHZjRGV1YjJraDNEeGZXX0NFbXhfV0xNakFm dm9haEl2TEtKWGhySnFyT01UYUFYVzJnU2FXMWhYb3l6ZTltOU9FSjZyVWRGN2pnMUFfQ3pTTXdT QUw2OTd1c2VOR2ZyQzZBTnlBczlkSi11MGlDbTk3c3pSWXVCVUg3Y1M4eGxGTWJIRWRXUHNoQXRB MkJJdVpRSWxwdDM3SzRLd2hPbVd6QThpb2VqanJ1REJvTV9lVWY0M2Y2OENlVmJINlduam04akFi MjBWY1BsdUFzWXdhTTN0NUlsM09id21pWUMwV3N5bUoyek9VcUZJZ1lBejJTMnBYRl8tZElYTHE0 T0F4MWtnUTVxM3lLSTNzcE1uaFVzamhDdzVCa00wU29RYmZGR2VwZHVLamVJX2JoYURYNzlpVk5p LXB2Z29RdnN2UjglM0QmdT1odHRwJTNBJTJGJTJGcXEuY29tPl0NCkRlYXIgQWxsLA0KICBJIGhh dmUgYSBzaW1wbGUgcXVlc3Rpb24gcmVnYXJkaW5nIFJhdGVEZXRlcm1pbmluZyBTdGF0ZS4gTXkg cmV2aWV3ZXJzDQpzdWdnZXN0IG1lIHRvIHVzZSBSYXRlRGV0ZXJtaW5pbmcgU3RhdGUgcmF0aGVy IHRoYW4gUmF0ZS1EZXRlcm1pbmluZyBTdGVwDQpvd25pbmcgdG8gaXRzIGluYWNjdXJhY3kuIElz IHRoYXQgcmlnaHQ/IElmIHdlIHVzZSB0aGUgQ2Fub25pY2FsIHZhcmlhdGlvbmFsDQp0cmFuc2l0 aW9uLXN0YXRlIHRoZW9yeSBtZXRob2QsIGhvdyBkbyB5b3UgY2FsY3VsYXRlIHRoZSByZWFjdGlv biByYXRlIG9mIHRoZQ0KUmF0ZURldGVybWluaW5nIFN0YXRlID8NCiAgIFNpbmNlcmVseQ0KDQog ICBBbnlhbyBKaWFvDQoNCg0KDQotPSBUaGlzIGlzIGF1dG9tYXRpY2FsbHkgYWRkZWQgdG8gZWFj aCBtZXNzYWdlIGJ5IHRoZSBtYWlsaW5nIHNjcmlwdCA9LTxicg0KDQoNCkUtbWFpbCB0byBzdWJz Y3JpYmVyczogQ0hFTUlTVFJZKmNjbC5uZXQ8bWFpbHRvOkNIRU1JU1RSWSpjY2wubmV0PiBvciB1 c2U6DQogICAgICBodHRwOi8vd3d3LmNjbC5uZXQvY2dpLWJpbi9jY2wvc2VuZF9jY2xfbWVzc2Fn ZTxodHRwczovL2NsaWNrdGltZS5zeW1hbnRlYy5jb20vYS8xL1NUajhXSFZIUTB3eXFDRDJPOUZt NFp1SEJuaUpUWWI4V2lveXdEVC1TZmc9P2Q9d29GM1BqOHd6THFTZDlTRU9KR3lRdk94QXNrRl8t dWp1aGZ1QUJ4Z1JzREoxUTh3TExVd09OaDBaMDZtYUZjdGlzeUdmbm1mVjV3OXl5WU1iblN2enhJ WEl1a19IMGc4Q00tR3djZUlmT2hmUGZKZmRzdHMwdmNEZXViMmtoM0R4ZldfQ0VteF9XTE1qQWZ2 b2FoSXZMS0pYaHJKcXJPTVRhQVhXMmdTYVcxaFhveXplOW05T0VKNnJVZEY3amcxQV9DelNNd1NB TDY5N3VzZU5HZnJDNkFOeUFzOWRKLXUwaUNtOTdzelJZdUJVSDdjUzh4bEZNYkhFZFdQc2hBdEEy Qkl1WlFJbHB0MzdLNEt3aE9tV3pBOGlvZWpqcnVEQm9NX2VVZjQzZjY4Q2VWYkg2V25qbThqQWIy MFZjUGx1QXNZd2FNM3Q1SWwzT2J3bWlZQzBXc3ltSjJ6T1VxRklnWUF6MlMycFhGXy1kSVhMcTRP QXgxa2dRNXEzeUtJM3NwTW5oVXNqaEN3NUJrTTBTb1FiZkZHZXBkdUtqZUlfYmhhRFg3OWlWTmkt cHZnb1F2c3ZSOCUzRCZ1PWh0dHAlM0ElMkYlMkZ3d3cuY2NsLm5ldCUyRmNnaS1iaW4lMkZjY2wl MkZzZW5kX2NjbF9tZXNzYWdlPg0KDQpFLW1haWwgdG8gYWRtaW5pc3RyYXRvcnM6IENIRU1JU1RS WS1SRVFVRVNUKmNjbC5uZXQ8bWFpbHRvOkNIRU1JU1RSWS1SRVFVRVNUKmNjbC5uZXQ+IG9yIHVz ZQ0KICAgICAgaHR0cDovL3d3dy5jY2wubmV0L2NnaS1iaW4vY2NsL3NlbmRfY2NsX21lc3NhZ2U8 aHR0cHM6Ly9jbGlja3RpbWUuc3ltYW50ZWMuY29tL2EvMS9TVGo4V0hWSFEwd3lxQ0QyTzlGbTRa dUhCbmlKVFliOFdpb3l3RFQtU2ZnPT9kPXdvRjNQajh3ekxxU2Q5U0VPSkd5UXZPeEFza0ZfLXVq dWhmdUFCeGdSc0RKMVE4d0xMVXdPTmgwWjA2bWFGY3Rpc3lHZm5tZlY1dzl5eVlNYm5Tdnp4SVhJ dWtfSDBnOENNLUd3Y2VJZk9oZlBmSmZkc3RzMHZjRGV1YjJraDNEeGZXX0NFbXhfV0xNakFmdm9h aEl2TEtKWGhySnFyT01UYUFYVzJnU2FXMWhYb3l6ZTltOU9FSjZyVWRGN2pnMUFfQ3pTTXdTQUw2 OTd1c2VOR2ZyQzZBTnlBczlkSi11MGlDbTk3c3pSWXVCVUg3Y1M4eGxGTWJIRWRXUHNoQXRBMkJJ dVpRSWxwdDM3SzRLd2hPbVd6QThpb2VqanJ1REJvTV9lVWY0M2Y2OENlVmJINlduam04akFiMjBW Y1BsdUFzWXdhTTN0NUlsM09id21pWUMwV3N5bUoyek9VcUZJZ1lBejJTMnBYRl8tZElYTHE0T0F4 MWtnUTVxM3lLSTNzcE1uaFVzamhDdzVCa00wU29RYmZGR2VwZHVLamVJX2JoYURYNzlpVk5pLXB2 Z29RdnN2UjglM0QmdT1odHRwJTNBJTJGJTJGd3d3LmNjbC5uZXQlMkZjZ2ktYmluJTJGY2NsJTJG c2VuZF9jY2xfbWVzc2FnZT4NCjxicg0KICAgICAgaHR0cDovL3d3dy5jY2wubmV0L2NoZW1pc3Ry eS9zdWJfdW5zdWIuc2h0bWw8aHR0cHM6Ly9jbGlja3RpbWUuc3ltYW50ZWMuY29tL2EvMS9mc3hT Mkx5X1VwNUVaOHZUTnVtZlRaendva3Q1QlNVRnczeTdVUm5PekY4PT9kPXdvRjNQajh3ekxxU2Q5 U0VPSkd5UXZPeEFza0ZfLXVqdWhmdUFCeGdSc0RKMVE4d0xMVXdPTmgwWjA2bWFGY3Rpc3lHZm5t ZlY1dzl5eVlNYm5Tdnp4SVhJdWtfSDBnOENNLUd3Y2VJZk9oZlBmSmZkc3RzMHZjRGV1YjJraDNE eGZXX0NFbXhfV0xNakFmdm9haEl2TEtKWGhySnFyT01UYUFYVzJnU2FXMWhYb3l6ZTltOU9FSjZy VWRGN2pnMUFfQ3pTTXdTQUw2OTd1c2VOR2ZyQzZBTnlBczlkSi11MGlDbTk3c3pSWXVCVUg3Y1M4 eGxGTWJIRWRXUHNoQXRBMkJJdVpRSWxwdDM3SzRLd2hPbVd6QThpb2VqanJ1REJvTV9lVWY0M2Y2 OENlVmJINlduam04akFiMjBWY1BsdUFzWXdhTTN0NUlsM09id21pWUMwV3N5bUoyek9VcUZJZ1lB ejJTMnBYRl8tZElYTHE0T0F4MWtnUTVxM3lLSTNzcE1uaFVzamhDdzVCa00wU29RYmZGR2VwZHVL amVJX2JoYURYNzlpVk5pLXB2Z29RdnN2UjglM0QmdT1odHRwJTNBJTJGJTJGd3d3LmNjbC5uZXQl MkZjaGVtaXN0cnklMkZzdWJfdW5zdWIuc2h0bWw+DQoNCkJlZm9yZSBwb3N0aW5nLCBjaGVjayB3 YWl0IHRpbWUgYXQ6IGh0dHA6Ly93d3cuY2NsLm5ldDxodHRwczovL2NsaWNrdGltZS5zeW1hbnRl Yy5jb20vYS8xL25WTHdlUldYbE1oVy1oZWNvTDBMa3VvZlBWRl9RdVBKRzdFVVR5Z2tkR0E9P2Q9 d29GM1BqOHd6THFTZDlTRU9KR3lRdk94QXNrRl8tdWp1aGZ1QUJ4Z1JzREoxUTh3TExVd09OaDBa MDZtYUZjdGlzeUdmbm1mVjV3OXl5WU1iblN2enhJWEl1a19IMGc4Q00tR3djZUlmT2hmUGZKZmRz dHMwdmNEZXViMmtoM0R4ZldfQ0VteF9XTE1qQWZ2b2FoSXZMS0pYaHJKcXJPTVRhQVhXMmdTYVcx aFhveXplOW05T0VKNnJVZEY3amcxQV9DelNNd1NBTDY5N3VzZU5HZnJDNkFOeUFzOWRKLXUwaUNt OTdzelJZdUJVSDdjUzh4bEZNYkhFZFdQc2hBdEEyQkl1WlFJbHB0MzdLNEt3aE9tV3pBOGlvZWpq cnVEQm9NX2VVZjQzZjY4Q2VWYkg2V25qbThqQWIyMFZjUGx1QXNZd2FNM3Q1SWwzT2J3bWlZQzBX c3ltSjJ6T1VxRklnWUF6MlMycFhGXy1kSVhMcTRPQXgxa2dRNXEzeUtJM3NwTW5oVXNqaEN3NUJr TTBTb1FiZkZHZXBkdUtqZUlfYmhhRFg3OWlWTmktcHZnb1F2c3ZSOCUzRCZ1PWh0dHAlM0ElMkYl MkZ3d3cuY2NsLm5ldD4NCg0KSm9iOiBodHRwOi8vd3d3LmNjbC5uZXQvam9iczxodHRwczovL2Ns aWNrdGltZS5zeW1hbnRlYy5jb20vYS8xL1JRRC1aUUh1Y1ZZb3Z6bjVWOFN1ZDhVMC1XaEFYRnlh MTl3Z1dZZjkzR2s9P2Q9d29GM1BqOHd6THFTZDlTRU9KR3lRdk94QXNrRl8tdWp1aGZ1QUJ4Z1Jz REoxUTh3TExVd09OaDBaMDZtYUZjdGlzeUdmbm1mVjV3OXl5WU1iblN2enhJWEl1a19IMGc4Q00t R3djZUlmT2hmUGZKZmRzdHMwdmNEZXViMmtoM0R4ZldfQ0VteF9XTE1qQWZ2b2FoSXZMS0pYaHJK cXJPTVRhQVhXMmdTYVcxaFhveXplOW05T0VKNnJVZEY3amcxQV9DelNNd1NBTDY5N3VzZU5HZnJD NkFOeUFzOWRKLXUwaUNtOTdzelJZdUJVSDdjUzh4bEZNYkhFZFdQc2hBdEEyQkl1WlFJbHB0MzdL NEt3aE9tV3pBOGlvZWpqcnVEQm9NX2VVZjQzZjY4Q2VWYkg2V25qbThqQWIyMFZjUGx1QXNZd2FN M3Q1SWwzT2J3bWlZQzBXc3ltSjJ6T1VxRklnWUF6MlMycFhGXy1kSVhMcTRPQXgxa2dRNXEzeUtJ M3NwTW5oVXNqaEN3NUJrTTBTb1FiZkZHZXBkdUtqZUlfYmhhRFg3OWlWTmktcHZnb1F2c3ZSOCUz RCZ1PWh0dHAlM0ElMkYlMkZ3d3cuY2NsLm5ldCUyRmpvYnM+DQpDb25mZXJlbmNlczogaHR0cDov L3NlcnZlci5jY2wubmV0L2NoZW1pc3RyeS9hbm5vdW5jZW1lbnRzL2NvbmZlcmVuY2VzLzxodHRw czovL2NsaWNrdGltZS5zeW1hbnRlYy5jb20vYS8xL1Fid09xMmEzdEFqV3YyQjJrMlFoSzlFbFVU b0ZjeTVVaUFfZ2ZvQTMyS0U9P2Q9d29GM1BqOHd6THFTZDlTRU9KR3lRdk94QXNrRl8tdWp1aGZ1 QUJ4Z1JzREoxUTh3TExVd09OaDBaMDZtYUZjdGlzeUdmbm1mVjV3OXl5WU1iblN2enhJWEl1a19I MGc4Q00tR3djZUlmT2hmUGZKZmRzdHMwdmNEZXViMmtoM0R4ZldfQ0VteF9XTE1qQWZ2b2FoSXZM S0pYaHJKcXJPTVRhQVhXMmdTYVcxaFhveXplOW05T0VKNnJVZEY3amcxQV9DelNNd1NBTDY5N3Vz ZU5HZnJDNkFOeUFzOWRKLXUwaUNtOTdzelJZdUJVSDdjUzh4bEZNYkhFZFdQc2hBdEEyQkl1WlFJ bHB0MzdLNEt3aE9tV3pBOGlvZWpqcnVEQm9NX2VVZjQzZjY4Q2VWYkg2V25qbThqQWIyMFZjUGx1 QXNZd2FNM3Q1SWwzT2J3bWlZQzBXc3ltSjJ6T1VxRklnWUF6MlMycFhGXy1kSVhMcTRPQXgxa2dR NXEzeUtJM3NwTW5oVXNqaEN3NUJrTTBTb1FiZkZHZXBkdUtqZUlfYmhhRFg3OWlWTmktcHZnb1F2 c3ZSOCUzRCZ1PWh0dHAlM0ElMkYlMkZzZXJ2ZXIuY2NsLm5ldCUyRmNoZW1pc3RyeSUyRmFubm91 bmNlbWVudHMlMkZjb25mZXJlbmNlcyUyRj4NCg0KU2VhcmNoIE1lc3NhZ2VzOiBodHRwOi8vd3d3 LmNjbC5uZXQvY2hlbWlzdHJ5L3NlYXJjaGNjbC9pbmRleC5zaHRtbDxodHRwczovL2NsaWNrdGlt ZS5zeW1hbnRlYy5jb20vYS8xL3k4T3hKR29HalhCRlJ5VjlTRFVuV3VtaldFMXRWYl9kOFJydkJQ QTJQS2c9P2Q9d29GM1BqOHd6THFTZDlTRU9KR3lRdk94QXNrRl8tdWp1aGZ1QUJ4Z1JzREoxUTh3 TExVd09OaDBaMDZtYUZjdGlzeUdmbm1mVjV3OXl5WU1iblN2enhJWEl1a19IMGc4Q00tR3djZUlm T2hmUGZKZmRzdHMwdmNEZXViMmtoM0R4ZldfQ0VteF9XTE1qQWZ2b2FoSXZMS0pYaHJKcXJPTVRh QVhXMmdTYVcxaFhveXplOW05T0VKNnJVZEY3amcxQV9DelNNd1NBTDY5N3VzZU5HZnJDNkFOeUFz OWRKLXUwaUNtOTdzelJZdUJVSDdjUzh4bEZNYkhFZFdQc2hBdEEyQkl1WlFJbHB0MzdLNEt3aE9t V3pBOGlvZWpqcnVEQm9NX2VVZjQzZjY4Q2VWYkg2V25qbThqQWIyMFZjUGx1QXNZd2FNM3Q1SWwz T2J3bWlZQzBXc3ltSjJ6T1VxRklnWUF6MlMycFhGXy1kSVhMcTRPQXgxa2dRNXEzeUtJM3NwTW5o VXNqaEN3NUJrTTBTb1FiZkZHZXBkdUtqZUlfYmhhRFg3OWlWTmktcHZnb1F2c3ZSOCUzRCZ1PWh0 dHAlM0ElMkYlMkZ3d3cuY2NsLm5ldCUyRmNoZW1pc3RyeSUyRnNlYXJjaGNjbCUyRmluZGV4LnNo dG1sPg0KPGJyDQogICAgICBodHRwOi8vd3d3LmNjbC5uZXQvc3BhbW1lcnMudHh0PGh0dHBzOi8v Y2xpY2t0aW1lLnN5bWFudGVjLmNvbS9hLzEvU3R3Y0ZCVTBUSXVsWlZvT1otdWR5UTVXejg3ekZq blhUems4aWgwRGo3UT0/ZD13b0YzUGo4d3pMcVNkOVNFT0pHeVF2T3hBc2tGXy11anVoZnVBQnhn UnNESjFROHdMTFV3T05oMFowNm1hRmN0aXN5R2ZubWZWNXc5eXlZTWJuU3Z6eElYSXVrX0gwZzhD TS1Hd2NlSWZPaGZQZkpmZHN0czB2Y0RldWIya2gzRHhmV19DRW14X1dMTWpBZnZvYWhJdkxLSlho ckpxck9NVGFBWFcyZ1NhVzFoWG95emU5bTlPRUo2clVkRjdqZzFBX0N6U013U0FMNjk3dXNlTkdm ckM2QU55QXM5ZEotdTBpQ205N3N6Ull1QlVIN2NTOHhsRk1iSEVkV1BzaEF0QTJCSXVaUUlscHQz N0s0S3doT21XekE4aW9lampydURCb01fZVVmNDNmNjhDZVZiSDZXbmptOGpBYjIwVmNQbHVBc1l3 YU0zdDVJbDNPYndtaVlDMFdzeW1KMnpPVXFGSWdZQXoyUzJwWEZfLWRJWExxNE9BeDFrZ1E1cTN5 S0kzc3BNbmhVc2poQ3c1QmtNMFNvUWJmRkdlcGR1S2plSV9iaGFEWDc5aVZOaS1wdmdvUXZzdlI4 JTNEJnU9aHR0cCUzQSUyRiUyRnd3dy5jY2wubmV0JTJGc3BhbW1lcnMudHh0Pg0KDQpSVEZJOiBo dHRwOi8vd3d3LmNjbC5uZXQvY2hlbWlzdHJ5L2Fib3V0Y2NsL2luc3RydWN0aW9ucy88aHR0cHM6 Ly9jbGlja3RpbWUuc3ltYW50ZWMuY29tL2EvMS85MFd3cXBRUEs1amVNeHJSU3o2VldFODhsTEt4 X05ZUW9MYVhkbXZlSmY4PT9kPXdvRjNQajh3ekxxU2Q5U0VPSkd5UXZPeEFza0ZfLXVqdWhmdUFC eGdSc0RKMVE4d0xMVXdPTmgwWjA2bWFGY3Rpc3lHZm5tZlY1dzl5eVlNYm5Tdnp4SVhJdWtfSDBn OENNLUd3Y2VJZk9oZlBmSmZkc3RzMHZjRGV1YjJraDNEeGZXX0NFbXhfV0xNakFmdm9haEl2TEtK WGhySnFyT01UYUFYVzJnU2FXMWhYb3l6ZTltOU9FSjZyVWRGN2pnMUFfQ3pTTXdTQUw2OTd1c2VO R2ZyQzZBTnlBczlkSi11MGlDbTk3c3pSWXVCVUg3Y1M4eGxGTWJIRWRXUHNoQXRBMkJJdVpRSWxw dDM3SzRLd2hPbVd6QThpb2VqanJ1REJvTV9lVWY0M2Y2OENlVmJINlduam04akFiMjBWY1BsdUFz WXdhTTN0NUlsM09id21pWUMwV3N5bUoyek9VcUZJZ1lBejJTMnBYRl8tZElYTHE0T0F4MWtnUTVx M3lLSTNzcE1uaFVzamhDdzVCa00wU29RYmZGR2VwZHVLamVJX2JoYURYNzlpVk5pLXB2Z29RdnN2 UjglM0QmdT1odHRwJTNBJTJGJTJGd3d3LmNjbC5uZXQlMkZjaGVtaXN0cnklMkZhYm91dGNjbCUy Rmluc3RydWN0aW9ucyUyRj4NCg0KX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18NCg0K Q29uZmlkZW50aWFsaXR5IE5vdGljZTogVGhpcyBtZXNzYWdlIGlzIHByaXZhdGUgYW5kIG1heSBj b250YWluIGNvbmZpZGVudGlhbCBhbmQgcHJvcHJpZXRhcnkgaW5mb3JtYXRpb24uIElmIHlvdSBo YXZlIHJlY2VpdmVkIHRoaXMgbWVzc2FnZSBpbiBlcnJvciwgcGxlYXNlIG5vdGlmeSB1cyBhbmQg cmVtb3ZlIGl0IGZyb20geW91ciBzeXN0ZW0gYW5kIG5vdGUgdGhhdCB5b3UgbXVzdCBub3QgY29w eSwgZGlzdHJpYnV0ZSBvciB0YWtlIGFueSBhY3Rpb24gaW4gcmVsaWFuY2Ugb24gaXQuIEFueSB1 bmF1dGhvcml6ZWQgdXNlIG9yIGRpc2Nsb3N1cmUgb2YgdGhlIGNvbnRlbnRzIG9mIHRoaXMgbWVz c2FnZSBpcyBub3QgcGVybWl0dGVkIGFuZCBtYXkgYmUgdW5sYXdmdWwuDQo= --_000_VI1PR04MB40642426165910D4FB8F5A7CCA6A0VI1PR04MB4064eurp_ Content-Type: text/html; charset="utf-8" Content-Transfer-Encoding: base64 PGh0bWwgeG1sbnM6dj0idXJuOnNjaGVtYXMtbWljcm9zb2Z0LWNvbTp2bWwiIHhtbG5zOm89InVy bjpzY2hlbWFzLW1pY3Jvc29mdC1jb206b2ZmaWNlOm9mZmljZSIgeG1sbnM6dz0idXJuOnNjaGVt YXMtbWljcm9zb2Z0LWNvbTpvZmZpY2U6d29yZCIgeG1sbnM6bT0iaHR0cDovL3NjaGVtYXMubWlj cm9zb2Z0LmNvbS9vZmZpY2UvMjAwNC8xMi9vbW1sIiB4bWxucz0iaHR0cDovL3d3dy53My5vcmcv VFIvUkVDLWh0bWw0MCI+DQo8aGVhZD4NCjxtZXRhIGh0dHAtZXF1aXY9IkNvbnRlbnQtVHlwZSIg Y29udGVudD0idGV4dC9odG1sOyBjaGFyc2V0PXV0Zi04Ij4NCjxtZXRhIG5hbWU9IkdlbmVyYXRv ciIgY29udGVudD0iTWljcm9zb2Z0IFdvcmQgMTUgKGZpbHRlcmVkIG1lZGl1bSkiPg0KPHN0eWxl PjwhLS0NCi8qIEZvbnQgRGVmaW5pdGlvbnMgKi8NCkBmb250LWZhY2UNCgl7Zm9udC1mYW1pbHk6 IkNhbWJyaWEgTWF0aCI7DQoJcGFub3NlLTE6MiA0IDUgMyA1IDQgNiAzIDIgNDt9DQpAZm9udC1m YWNlDQoJe2ZvbnQtZmFtaWx5OkNhbGlicmk7DQoJcGFub3NlLTE6MiAxNSA1IDIgMiAyIDQgMyAy IDQ7fQ0KLyogU3R5bGUgRGVmaW5pdGlvbnMgKi8NCnAuTXNvTm9ybWFsLCBsaS5Nc29Ob3JtYWws IGRpdi5Nc29Ob3JtYWwNCgl7bWFyZ2luOjBjbTsNCgltYXJnaW4tYm90dG9tOi4wMDAxcHQ7DQoJ Zm9udC1zaXplOjExLjBwdDsNCglmb250LWZhbWlseToiQ2FsaWJyaSIsc2Fucy1zZXJpZjt9DQph OmxpbmssIHNwYW4uTXNvSHlwZXJsaW5rDQoJe21zby1zdHlsZS1wcmlvcml0eTo5OTsNCgljb2xv cjpibHVlOw0KCXRleHQtZGVjb3JhdGlvbjp1bmRlcmxpbmU7fQ0KYTp2aXNpdGVkLCBzcGFuLk1z b0h5cGVybGlua0ZvbGxvd2VkDQoJe21zby1zdHlsZS1wcmlvcml0eTo5OTsNCgljb2xvcjpwdXJw bGU7DQoJdGV4dC1kZWNvcmF0aW9uOnVuZGVybGluZTt9DQpwLm1zb25vcm1hbDAsIGxpLm1zb25v cm1hbDAsIGRpdi5tc29ub3JtYWwwDQoJe21zby1zdHlsZS1uYW1lOm1zb25vcm1hbDsNCgltc28t bWFyZ2luLXRvcC1hbHQ6YXV0bzsNCgltYXJnaW4tcmlnaHQ6MGNtOw0KCW1zby1tYXJnaW4tYm90 dG9tLWFsdDphdXRvOw0KCW1hcmdpbi1sZWZ0OjBjbTsNCglmb250LXNpemU6MTEuMHB0Ow0KCWZv bnQtZmFtaWx5OiJDYWxpYnJpIixzYW5zLXNlcmlmO30NCnNwYW4uRW1haWxTdHlsZTE4DQoJe21z by1zdHlsZS10eXBlOnBlcnNvbmFsLXJlcGx5Ow0KCWZvbnQtZmFtaWx5OiJDYWxpYnJpIixzYW5z LXNlcmlmOw0KCWNvbG9yOndpbmRvd3RleHQ7fQ0KLk1zb0NocERlZmF1bHQNCgl7bXNvLXN0eWxl LXR5cGU6ZXhwb3J0LW9ubHk7fQ0KQHBhZ2UgV29yZFNlY3Rpb24xDQoJe3NpemU6NjEyLjBwdCA3 OTIuMHB0Ow0KCW1hcmdpbjo3MC44NXB0IDcwLjg1cHQgNzAuODVwdCA3MC44NXB0O30NCmRpdi5X b3JkU2VjdGlvbjENCgl7cGFnZTpXb3JkU2VjdGlvbjE7fQ0KLS0+PC9zdHlsZT48IS0tW2lmIGd0 ZSBtc28gOV0+PHhtbD4NCjxvOnNoYXBlZGVmYXVsdHMgdjpleHQ9ImVkaXQiIHNwaWRtYXg9IjEw MjYiIC8+DQo8L3htbD48IVtlbmRpZl0tLT48IS0tW2lmIGd0ZSBtc28gOV0+PHhtbD4NCjxvOnNo YXBlbGF5b3V0IHY6ZXh0PSJlZGl0Ij4NCjxvOmlkbWFwIHY6ZXh0PSJlZGl0IiBkYXRhPSIxIiAv Pg0KPC9vOnNoYXBlbGF5b3V0PjwveG1sPjwhW2VuZGlmXS0tPg0KPC9oZWFkPg0KPGJvZHkgbGFu Zz0iRU4tVVMiIGxpbms9ImJsdWUiIHZsaW5rPSJwdXJwbGUiPg0KPGRpdiBjbGFzcz0iV29yZFNl Y3Rpb24xIj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPlNvIHRoZSBjb25jZXB0IG9mIHJhdGUgZGV0 ZXJtaW5pbmcgc3RhdGUgaGFzIGJlZW4gYXJvdW5kIGZvciBhYm91dCBhIGRlY2FkZSBub3csIGl0 IGNhbWUgb3V0IG9mIHRoZSBzYW1lIHdvcmsgYXMgdGhlIGVuZXJnZXRpYyBzcGFuIG1vZGVsLCBm cm9tIFNlYmFzdGlhbiBLb3p1Y2ggYW5kIFNhaXNvbiBTaGFpay4gSXTigJlzIHZhbGlkLCBJ4oCZ bSBub3QgY29udGVzdGluZyB0aGF0LCBidXQgdGhlcmUgaXNu4oCZdCByZWFsbHkNCiBhIGNvbmZs aWN0LiBUaGUg4oCccmF0ZSBkZXRlcm1pbmluZyBzdGVw4oCdIGlzIGFsc28gYSB2YWxpZCBjb25j ZXB0LCB5b3UganVzdCBoYXZlIHRvIGRlZmluZSBhIOKAnHN0ZXDigJ0gYXMgZG9uZSBpbiBraW5l dGljcywgYW5kIGFwcGx5IHRoZSBDdXJ0aW4tSGFtbWV0dCBwcmluY2lwbGUuIEluIHNob3J0LCBp ZiBhIOKAnHN0ZXDigJ0gaXMgY29uc2lkZXJlZCB0byBnbyB0byBhIHRyYW5zaXRpb24gc3RhdGUg ZnJvbSB0aGUgbG93ZXN0IHByZWNlZGluZyBwb2ludCwNCiBub3QgdGhlIGNsb3Nlc3QgbWluaW11 bSwgdGhlbiB0aGUgbW9kZWxzIHdvcmsgb3V0IHRoZSBzYW1lLiBBIHNpbXBsZSB0cmljayByZWFs bHksIHlvdSBjYWxjdWxhdGUgdGhlIGJhcnJpZXIgYXNzb2NpYXRlZCB3aXRoIGVhY2ggdHJhbnNp dGlvbiBzdGF0ZSBieSBsb29raW5nIGJhY2sgdG8gdGhlIGxvd2VzdCBwcmVjZWRpbmcgcG9pbnQg dGhhdCB5b3UgY2FuIHJlYWNoIHdpdGhvdXQgcGFzc2luZyBhIGhpZ2hlciBiYXJyaWVyLiBJbiBj YXRhbHlzaXMsDQogdGhhdCBsb3dlc3QgcHJlY2VkaW5nIHBvaW50IGNvdWxkIGJlIHRoZSByZXN0 aW5nIHN0YXRlLCBhbm90aGVyIHZlcnkgdXNlZnVsIGNvbmNlcHQgdGhhdCBoYXMgYWxzbyBiZWVu IGNvbnNpZGVyZWQgZGVhZCwgYnV0IHdoaWNoIGlzIGhhbmR5IHdoZW4gdHJ5aW5nIHRvIHByZWRp Y3Qgd2hhdCB3aWxsIGJlIG9ic2VydmFibGUuPG86cD48L286cD48L3A+DQo8cCBjbGFzcz0iTXNv Tm9ybWFsIj48bzpwPiZuYnNwOzwvbzpwPjwvcD4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPkFsc28g bm90ZSB0aGF0IHRoZSBsb3dlc3QgcHJlY2VkaW5nIHBvaW50IGRvZXMgbm90IGhhdmUgdG8gbGll IG9uIHRoZSBwcm9kdWN0aXZlIHJlYWN0aW9uIHBhdGgsIGl0IGNhbiBlYXNpbHkgYmUgYSBzaWRl IHBhdGgsIGEgdGhlcm1vZHluYW1pYyBkdW1wIHRoYXQganVzdCBzbG93cyB0aGUgb3ZlcmFsbCBr aW5ldGljcy48bzpwPjwvbzpwPjwvcD4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxvOnA+Jm5ic3A7 PC9vOnA+PC9wPg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+SSBoYXZlbuKAmXQgZm91bmQgYW4gYXJ0 aWNsZSB0aGF0IHN1bW1hcml6ZXMgdGhpcyB2aWV3LiBJdCB1bmRlcmxpZXMgaG93IG1hbnkgb2Yg dXMgaGFuZGxlZCBwb3RlbnRpYWwgZW5lcmd5IHN1cmZhY2VzIGRlY2FkZXMgYmFjaywgYnV0IEkg bmV2ZXIgc2F3IGl0IHN0YXRlZCBleHBsaWNpdGx5LCBpdCB3YXMganVzdCBoYW5kZWQgZG93biBh cyBlc3NlbnRpYWwga25vd2xlZGdlIGluIGNvbXB1dGF0aW9uYWwgZ3JvdXBzDQogd2l0aCBleHBl cnRpc2UgaW4ga2luZXRpY3MuIEkgZGlkIHdyaXRlIGEgc3VtbWFyeSBpbiBhIGJvb2sgY2hhcHRl ciBhIHdoaWxlIGJhY2ssIGNhbiBiZSBmb3VuZCBoZXJlOg0KPGEgaHJlZj0iaHR0cDovL2R4LmRv aS5vcmcvMTAuMTAwMi85NzgzNTI3NjQ2NTg2LmNoOCI+aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAw Mi85NzgzNTI3NjQ2NTg2LmNoODwvYT4NCjxvOnA+PC9vOnA+PC9wPg0KPHAgY2xhc3M9Ik1zb05v cm1hbCI+PG86cD4mbmJzcDs8L286cD48L3A+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj4vUGVyLU9s YTxvOnA+PC9vOnA+PC9wPg0KPGRpdiBzdHlsZT0ibXNvLWVsZW1lbnQ6cGFyYS1ib3JkZXItZGl2 O2JvcmRlcjpub25lO2JvcmRlci1ib3R0b206c29saWQgd2luZG93dGV4dCAxLjBwdDtwYWRkaW5n OjBjbSAwY20gMS4wcHQgMGNtIj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiIHN0eWxlPSJib3JkZXI6 bm9uZTtwYWRkaW5nOjBjbSI+PHNwYW4gbGFuZz0iU1YiPjxvOnA+Jm5ic3A7PC9vOnA+PC9zcGFu PjwvcD4NCjwvZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+UGVyLU9sYSBOb3JyYnk8bzpwPjwv bzpwPjwvcD4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPlByaW5jaXBhbCBTY2llbnRpc3QsIENvbXB1 dGF0aW9uYWwgUGhhcm1hY2V1dGljczxvOnA+PC9vOnA+PC9wPg0KPHAgY2xhc3M9Ik1zb05vcm1h bCI+PHNwYW4gbGFuZz0iU1YiPlBoYXJtYWNldXRpY2FsIFNjaWVuY2VzLCBBc3RyYVplbmVjYS1H b3RoZW5idXJnPG86cD48L286cD48L3NwYW4+PC9wPg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+PG86 cD4mbmJzcDs8L286cD48L3A+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj48bzpwPiZuYnNwOzwvbzpw PjwvcD4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxvOnA+Jm5ic3A7PC9vOnA+PC9wPg0KPHAgY2xh c3M9Ik1zb05vcm1hbCI+PGI+RnJvbTo8L2I+IG93bmVyLWNoZW1pc3RyeSYjNDM7cGVyLW9sYS5u b3JyYnk9PWFzdHJhemVuZWNhLmNvbUBjY2wubmV0IFttYWlsdG86b3duZXItY2hlbWlzdHJ5JiM0 MztwZXItb2xhLm5vcnJieT09YXN0cmF6ZW5lY2EuY29tQGNjbC5uZXRdDQo8Yj5PbiBCZWhhbGYg T2YgPC9iPkFuZHJldyBSb3NlbiByb3Nlbl9fdS5ub3J0aHdlc3Rlcm4uZWR1PGJyPg0KPGI+U2Vu dDo8L2I+IGRlbiAyNCBtYWogMjAxOCAwNTozNDxicj4NCjxiPlRvOjwvYj4gTm9ycmJ5LCBQZXIt T2xhICZsdDtQZXItT2xhLk5vcnJieUBhc3RyYXplbmVjYS5jb20mZ3Q7PGJyPg0KPGI+U3ViamVj dDo8L2I+IENDTDogUmF0ZURldGVybWluaW5nIFN0YXRlPG86cD48L286cD48L3A+DQo8cCBjbGFz cz0iTXNvTm9ybWFsIj48bzpwPiZuYnNwOzwvbzpwPjwvcD4NCjxkaXY+DQo8cCBjbGFzcz0iTXNv Tm9ybWFsIj5Bbnlhbyw8bzpwPjwvbzpwPjwvcD4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFs Ij48bzpwPiZuYnNwOzwvbzpwPjwvcD4NCjwvZGl2Pg0KPGRpdj4NCjxwIGNsYXNzPSJNc29Ob3Jt YWwiPkkgcmVmZXIgeW91IHRvIHRoZSBmb2xsb3dpbmcgdHdvIHBhcGVyczo8bzpwPjwvbzpwPjwv cD4NCjwvZGl2Pg0KPGRpdj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjEpICZxdW90O0RlZ3JlZSBv ZiBSYXRlIENvbnRyb2w6IEhvdyBNdWNoIHRoZSBFbmVyZ2llcyBvZiBJbnRlcm1lZGlhdGVzIGFu ZCBUcmFuc2l0aW9uIFN0YXRlcyBDb250cm9sIFJhdGVzJnF1b3Q7ICg8YSBocmVmPSJodHRwczov L2NsaWNrdGltZS5zeW1hbnRlYy5jb20vYS8xL256RHVhdlQ1NXBuNElPNlhHZnh0ZXBNNGdkbFJf NWRLczNsYy1RSW96M2s9P2Q9d29GM1BqOHd6THFTZDlTRU9KR3lRdk94QXNrRl8tdWp1aGZ1QUJ4 Z1JzREoxUTh3TExVd09OaDBaMDZtYUZjdGlzeUdmbm1mVjV3OXl5WU1iblN2enhJWEl1a19IMGc4 Q00tR3djZUlmT2hmUGZKZmRzdHMwdmNEZXViMmtoM0R4ZldfQ0VteF9XTE1qQWZ2b2FoSXZMS0pY aHJKcXJPTVRhQVhXMmdTYVcxaFhveXplOW05T0VKNnJVZEY3amcxQV9DelNNd1NBTDY5N3VzZU5H ZnJDNkFOeUFzOWRKLXUwaUNtOTdzelJZdUJVSDdjUzh4bEZNYkhFZFdQc2hBdEEyQkl1WlFJbHB0 MzdLNEt3aE9tV3pBOGlvZWpqcnVEQm9NX2VVZjQzZjY4Q2VWYkg2V25qbThqQWIyMFZjUGx1QXNZ d2FNM3Q1SWwzT2J3bWlZQzBXc3ltSjJ6T1VxRklnWUF6MlMycFhGXy1kSVhMcTRPQXgxa2dRNXEz eUtJM3NwTW5oVXNqaEN3NUJrTTBTb1FiZkZHZXBkdUtqZUlfYmhhRFg3OWlWTmktcHZnb1F2c3ZS OCUzRCZhbXA7dT1odHRwcyUzQSUyRiUyRnB1YnMuYWNzLm9yZyUyRmRvaSUyRmFicyUyRjEwLjEw MjElMkZqYTkwMDAwOTciPmh0dHBzOi8vcHVicy5hY3Mub3JnL2RvaS9hYnMvMTAuMTAyMS9qYTkw MDAwOTc8L2E+KTxvOnA+PC9vOnA+PC9wPg0KPC9kaXY+DQo8ZGl2Pg0KPHAgY2xhc3M9Ik1zb05v cm1hbCI+MikgJnF1b3Q7VGhlIFJhdGXigJBEZXRlcm1pbmluZyBTdGVwIGlzIERlYWQuIExvbmcg TGl2ZSB0aGUgUmF0ZeKAkERldGVybWluaW5nIFN0YXRlISZxdW90OyAoPGEgaHJlZj0iaHR0cHM6 Ly9jbGlja3RpbWUuc3ltYW50ZWMuY29tL2EvMS81RzJEdUlwcHhyWG5DNEZBZHFKQVFsQS1PZFlN eEVhZFRZRkEydThYYzRJPT9kPXdvRjNQajh3ekxxU2Q5U0VPSkd5UXZPeEFza0ZfLXVqdWhmdUFC eGdSc0RKMVE4d0xMVXdPTmgwWjA2bWFGY3Rpc3lHZm5tZlY1dzl5eVlNYm5Tdnp4SVhJdWtfSDBn OENNLUd3Y2VJZk9oZlBmSmZkc3RzMHZjRGV1YjJraDNEeGZXX0NFbXhfV0xNakFmdm9haEl2TEtK WGhySnFyT01UYUFYVzJnU2FXMWhYb3l6ZTltOU9FSjZyVWRGN2pnMUFfQ3pTTXdTQUw2OTd1c2VO R2ZyQzZBTnlBczlkSi11MGlDbTk3c3pSWXVCVUg3Y1M4eGxGTWJIRWRXUHNoQXRBMkJJdVpRSWxw dDM3SzRLd2hPbVd6QThpb2VqanJ1REJvTV9lVWY0M2Y2OENlVmJINlduam04akFiMjBWY1BsdUFz WXdhTTN0NUlsM09id21pWUMwV3N5bUoyek9VcUZJZ1lBejJTMnBYRl8tZElYTHE0T0F4MWtnUTVx M3lLSTNzcE1uaFVzamhDdzVCa00wU29RYmZGR2VwZHVLamVJX2JoYURYNzlpVk5pLXB2Z29RdnN2 UjglM0QmYW1wO3U9aHR0cHMlM0ElMkYlMkZvbmxpbmVsaWJyYXJ5LndpbGV5LmNvbSUyRmRvaSUy RmZ1bGwlMkYxMC4xMDAyJTJGY3BoYy4yMDExMDAxMzciPmh0dHBzOi8vb25saW5lbGlicmFyeS53 aWxleS5jb20vZG9pL2Z1bGwvMTAuMTAwMi9jcGhjLjIwMTEwMDEzNzwvYT4pPG86cD48L286cD48 L3A+DQo8L2Rpdj4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj48bzpwPiZuYnNwOzwvbzpw PjwvcD4NCjwvZGl2Pg0KPGRpdj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPkZyb20gYSBkZXRhaWxl ZCBtZWNoYW5pc3RpYyBwb2ludCBvZiB2aWV3LCBpdCBpcyBvZnRlbiBtdWNoIG1vcmUgaW5zaWdo dGZ1bCB0byB0YWxrIGFib3V0IGFib3V0IGEgcmF0ZS1kZXRlcm1pbmluZyBzdGF0ZSAoZWl0aGVy IHRyYW5zaXRpb24gc3RhdGUgb3IgaW50ZXJtZWRpYXRlKSB0aGFuIGEgcmF0ZS1kZXRlcm1pbmlu ZyBzdGVwLiBUaGUgZmlyc3QgcGFwZXIgZGVzY3JpYmVzIHRoZSB3aWRlbHkgdXNlZCBkZWZpbml0 aW9uDQogb2YgYSByYXRlLWNvbnRyb2xsaW5nIHN0YXRlIGFuZCBob3cgdG8gY29tcHV0ZSBpdC4g VGhlIHNlY29uZCBwYXBlciBjb250YWlucyBhIGZldyBzaG9ydCBleGFtcGxlcyBvZiBob3cgdGhl IHJhdGUtZGV0ZXJtaW5pbmcgc3RhdGUgZGlmZmVycyBmcm9tIHRoZSByYXRlLWRldGVybWluaW5n IHN0ZXAuPG86cD48L286cD48L3A+DQo8L2Rpdj4NCjwvZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1h bCI+PG86cD4mbmJzcDs8L286cD48L3A+DQo8ZGl2Pg0KPGRpdj4NCjxwIGNsYXNzPSJNc29Ob3Jt YWwiPk9uIFdlZCwgTWF5IDIzLCAyMDE4IGF0IDEwOjE5IFBNIEFueWFvIEppYW8gMTQyNTYyMzEy MShfKTxhIGhyZWY9Imh0dHBzOi8vY2xpY2t0aW1lLnN5bWFudGVjLmNvbS9hLzEvMzZwRlhLZ3F4 VERkM2RlT3FKel9FejhqYkJ5NVlPUE1CTzBhVVlLeElPTT0/ZD13b0YzUGo4d3pMcVNkOVNFT0pH eVF2T3hBc2tGXy11anVoZnVBQnhnUnNESjFROHdMTFV3T05oMFowNm1hRmN0aXN5R2ZubWZWNXc5 eXlZTWJuU3Z6eElYSXVrX0gwZzhDTS1Hd2NlSWZPaGZQZkpmZHN0czB2Y0RldWIya2gzRHhmV19D RW14X1dMTWpBZnZvYWhJdkxLSlhockpxck9NVGFBWFcyZ1NhVzFoWG95emU5bTlPRUo2clVkRjdq ZzFBX0N6U013U0FMNjk3dXNlTkdmckM2QU55QXM5ZEotdTBpQ205N3N6Ull1QlVIN2NTOHhsRk1i SEVkV1BzaEF0QTJCSXVaUUlscHQzN0s0S3doT21XekE4aW9lampydURCb01fZVVmNDNmNjhDZVZi SDZXbmptOGpBYjIwVmNQbHVBc1l3YU0zdDVJbDNPYndtaVlDMFdzeW1KMnpPVXFGSWdZQXoyUzJw WEZfLWRJWExxNE9BeDFrZ1E1cTN5S0kzc3BNbmhVc2poQ3c1QmtNMFNvUWJmRkdlcGR1S2plSV9i aGFEWDc5aVZOaS1wdmdvUXZzdlI4JTNEJmFtcDt1PWh0dHAlM0ElMkYlMkZxcS5jb20iPnFxLmNv bTwvYT4NCiAmbHQ7PGEgaHJlZj0ibWFpbHRvOm93bmVyLWNoZW1pc3RyeSpjY2wubmV0Ij5vd25l ci1jaGVtaXN0cnkqY2NsLm5ldDwvYT4mZ3Q7IHdyb3RlOjxvOnA+PC9vOnA+PC9wPg0KPC9kaXY+ DQo8YmxvY2txdW90ZSBzdHlsZT0iYm9yZGVyOm5vbmU7Ym9yZGVyLWxlZnQ6c29saWQgI0NDQ0ND QyAxLjBwdDtwYWRkaW5nOjBjbSAwY20gMGNtIDYuMHB0O21hcmdpbi1sZWZ0OjQuOHB0O21hcmdp bi1yaWdodDowY20iPg0KPHAgY2xhc3M9Ik1zb05vcm1hbCIgc3R5bGU9Im1hcmdpbi1ib3R0b206 MTIuMHB0Ij48YnI+DQpTZW50IHRvIENDTCBieTogJnF1b3Q7QW55YW8mbmJzcDsgSmlhbyZxdW90 OyBbMTQyNTYyMzEyMV48YSBocmVmPSJodHRwczovL2NsaWNrdGltZS5zeW1hbnRlYy5jb20vYS8x LzM2cEZYS2dxeFREZDNkZU9xSnpfRXo4amJCeTVZT1BNQk8wYVVZS3hJT009P2Q9d29GM1BqOHd6 THFTZDlTRU9KR3lRdk94QXNrRl8tdWp1aGZ1QUJ4Z1JzREoxUTh3TExVd09OaDBaMDZtYUZjdGlz eUdmbm1mVjV3OXl5WU1iblN2enhJWEl1a19IMGc4Q00tR3djZUlmT2hmUGZKZmRzdHMwdmNEZXVi MmtoM0R4ZldfQ0VteF9XTE1qQWZ2b2FoSXZMS0pYaHJKcXJPTVRhQVhXMmdTYVcxaFhveXplOW05 T0VKNnJVZEY3amcxQV9DelNNd1NBTDY5N3VzZU5HZnJDNkFOeUFzOWRKLXUwaUNtOTdzelJZdUJV SDdjUzh4bEZNYkhFZFdQc2hBdEEyQkl1WlFJbHB0MzdLNEt3aE9tV3pBOGlvZWpqcnVEQm9NX2VV ZjQzZjY4Q2VWYkg2V25qbThqQWIyMFZjUGx1QXNZd2FNM3Q1SWwzT2J3bWlZQzBXc3ltSjJ6T1Vx RklnWUF6MlMycFhGXy1kSVhMcTRPQXgxa2dRNXEzeUtJM3NwTW5oVXNqaEN3NUJrTTBTb1FiZkZH ZXBkdUtqZUlfYmhhRFg3OWlWTmktcHZnb1F2c3ZSOCUzRCZhbXA7dT1odHRwJTNBJTJGJTJGcXEu Y29tIiB0YXJnZXQ9Il9ibGFuayI+cXEuY29tPC9hPl08YnI+DQpEZWFyIEFsbCw8YnI+DQombmJz cDsgSSBoYXZlIGEgc2ltcGxlIHF1ZXN0aW9uIHJlZ2FyZGluZyBSYXRlRGV0ZXJtaW5pbmcgU3Rh dGUuIE15IHJldmlld2VycyA8YnI+DQpzdWdnZXN0IG1lIHRvIHVzZSBSYXRlRGV0ZXJtaW5pbmcg U3RhdGUgcmF0aGVyIHRoYW4gUmF0ZS1EZXRlcm1pbmluZyBTdGVwIDxicj4NCm93bmluZyB0byBp dHMgaW5hY2N1cmFjeS4gSXMgdGhhdCByaWdodD8gSWYgd2UgdXNlIHRoZSBDYW5vbmljYWwgdmFy aWF0aW9uYWwgPGJyPg0KdHJhbnNpdGlvbi1zdGF0ZSB0aGVvcnkgbWV0aG9kLCBob3cgZG8geW91 IGNhbGN1bGF0ZSB0aGUgcmVhY3Rpb24gcmF0ZSBvZiB0aGUgPGJyPg0KUmF0ZURldGVybWluaW5n IFN0YXRlID8mbmJzcDsgJm5ic3A7ICZuYnNwOzxicj4NCiZuYnNwOyAmbmJzcDtTaW5jZXJlbHk8 YnI+DQo8YnI+DQombmJzcDsgJm5ic3A7QW55YW8gSmlhbzxicj4NCjxicj4NCjxicj4NCjxicj4N Ci09IFRoaXMgaXMgYXV0b21hdGljYWxseSBhZGRlZCB0byBlYWNoIG1lc3NhZ2UgYnkgdGhlIG1h aWxpbmcgc2NyaXB0ID0tJmx0O2JyPGJyPg0KPGJyPg0KPGJyPg0KRS1tYWlsIHRvIHN1YnNjcmli ZXJzOiA8YSBocmVmPSJtYWlsdG86Q0hFTUlTVFJZKmNjbC5uZXQiIHRhcmdldD0iX2JsYW5rIj5D SEVNSVNUUlkqY2NsLm5ldDwvYT4gb3IgdXNlOjxicj4NCiZuYnNwOyAmbmJzcDsgJm5ic3A7IDxh IGhyZWY9Imh0dHBzOi8vY2xpY2t0aW1lLnN5bWFudGVjLmNvbS9hLzEvU1RqOFdIVkhRMHd5cUNE Mk85Rm00WnVIQm5pSlRZYjhXaW95d0RULVNmZz0/ZD13b0YzUGo4d3pMcVNkOVNFT0pHeVF2T3hB c2tGXy11anVoZnVBQnhnUnNESjFROHdMTFV3T05oMFowNm1hRmN0aXN5R2ZubWZWNXc5eXlZTWJu U3Z6eElYSXVrX0gwZzhDTS1Hd2NlSWZPaGZQZkpmZHN0czB2Y0RldWIya2gzRHhmV19DRW14X1dM TWpBZnZvYWhJdkxLSlhockpxck9NVGFBWFcyZ1NhVzFoWG95emU5bTlPRUo2clVkRjdqZzFBX0N6 U013U0FMNjk3dXNlTkdmckM2QU55QXM5ZEotdTBpQ205N3N6Ull1QlVIN2NTOHhsRk1iSEVkV1Bz aEF0QTJCSXVaUUlscHQzN0s0S3doT21XekE4aW9lampydURCb01fZVVmNDNmNjhDZVZiSDZXbmpt OGpBYjIwVmNQbHVBc1l3YU0zdDVJbDNPYndtaVlDMFdzeW1KMnpPVXFGSWdZQXoyUzJwWEZfLWRJ WExxNE9BeDFrZ1E1cTN5S0kzc3BNbmhVc2poQ3c1QmtNMFNvUWJmRkdlcGR1S2plSV9iaGFEWDc5 aVZOaS1wdmdvUXZzdlI4JTNEJmFtcDt1PWh0dHAlM0ElMkYlMkZ3d3cuY2NsLm5ldCUyRmNnaS1i aW4lMkZjY2wlMkZzZW5kX2NjbF9tZXNzYWdlIiB0YXJnZXQ9Il9ibGFuayI+DQpodHRwOi8vd3d3 LmNjbC5uZXQvY2dpLWJpbi9jY2wvc2VuZF9jY2xfbWVzc2FnZTwvYT48YnI+DQo8YnI+DQpFLW1h aWwgdG8gYWRtaW5pc3RyYXRvcnM6IDxhIGhyZWY9Im1haWx0bzpDSEVNSVNUUlktUkVRVUVTVCpj Y2wubmV0IiB0YXJnZXQ9Il9ibGFuayI+DQpDSEVNSVNUUlktUkVRVUVTVCpjY2wubmV0PC9hPiBv ciB1c2U8YnI+DQombmJzcDsgJm5ic3A7ICZuYnNwOyA8YSBocmVmPSJodHRwczovL2NsaWNrdGlt ZS5zeW1hbnRlYy5jb20vYS8xL1NUajhXSFZIUTB3eXFDRDJPOUZtNFp1SEJuaUpUWWI4V2lveXdE VC1TZmc9P2Q9d29GM1BqOHd6THFTZDlTRU9KR3lRdk94QXNrRl8tdWp1aGZ1QUJ4Z1JzREoxUTh3 TExVd09OaDBaMDZtYUZjdGlzeUdmbm1mVjV3OXl5WU1iblN2enhJWEl1a19IMGc4Q00tR3djZUlm T2hmUGZKZmRzdHMwdmNEZXViMmtoM0R4ZldfQ0VteF9XTE1qQWZ2b2FoSXZMS0pYaHJKcXJPTVRh QVhXMmdTYVcxaFhveXplOW05T0VKNnJVZEY3amcxQV9DelNNd1NBTDY5N3VzZU5HZnJDNkFOeUFz OWRKLXUwaUNtOTdzelJZdUJVSDdjUzh4bEZNYkhFZFdQc2hBdEEyQkl1WlFJbHB0MzdLNEt3aE9t V3pBOGlvZWpqcnVEQm9NX2VVZjQzZjY4Q2VWYkg2V25qbThqQWIyMFZjUGx1QXNZd2FNM3Q1SWwz T2J3bWlZQzBXc3ltSjJ6T1VxRklnWUF6MlMycFhGXy1kSVhMcTRPQXgxa2dRNXEzeUtJM3NwTW5o VXNqaEN3NUJrTTBTb1FiZkZHZXBkdUtqZUlfYmhhRFg3OWlWTmktcHZnb1F2c3ZSOCUzRCZhbXA7 dT1odHRwJTNBJTJGJTJGd3d3LmNjbC5uZXQlMkZjZ2ktYmluJTJGY2NsJTJGc2VuZF9jY2xfbWVz c2FnZSIgdGFyZ2V0PSJfYmxhbmsiPg0KaHR0cDovL3d3dy5jY2wubmV0L2NnaS1iaW4vY2NsL3Nl bmRfY2NsX21lc3NhZ2U8L2E+PGJyPg0KJmx0O2JyPGJyPg0KJm5ic3A7ICZuYnNwOyAmbmJzcDsg PGEgaHJlZj0iaHR0cHM6Ly9jbGlja3RpbWUuc3ltYW50ZWMuY29tL2EvMS9mc3hTMkx5X1VwNUVa OHZUTnVtZlRaendva3Q1QlNVRnczeTdVUm5PekY4PT9kPXdvRjNQajh3ekxxU2Q5U0VPSkd5UXZP eEFza0ZfLXVqdWhmdUFCeGdSc0RKMVE4d0xMVXdPTmgwWjA2bWFGY3Rpc3lHZm5tZlY1dzl5eVlN Ym5Tdnp4SVhJdWtfSDBnOENNLUd3Y2VJZk9oZlBmSmZkc3RzMHZjRGV1YjJraDNEeGZXX0NFbXhf V0xNakFmdm9haEl2TEtKWGhySnFyT01UYUFYVzJnU2FXMWhYb3l6ZTltOU9FSjZyVWRGN2pnMUFf Q3pTTXdTQUw2OTd1c2VOR2ZyQzZBTnlBczlkSi11MGlDbTk3c3pSWXVCVUg3Y1M4eGxGTWJIRWRX UHNoQXRBMkJJdVpRSWxwdDM3SzRLd2hPbVd6QThpb2VqanJ1REJvTV9lVWY0M2Y2OENlVmJINldu am04akFiMjBWY1BsdUFzWXdhTTN0NUlsM09id21pWUMwV3N5bUoyek9VcUZJZ1lBejJTMnBYRl8t ZElYTHE0T0F4MWtnUTVxM3lLSTNzcE1uaFVzamhDdzVCa00wU29RYmZGR2VwZHVLamVJX2JoYURY NzlpVk5pLXB2Z29RdnN2UjglM0QmYW1wO3U9aHR0cCUzQSUyRiUyRnd3dy5jY2wubmV0JTJGY2hl bWlzdHJ5JTJGc3ViX3Vuc3ViLnNodG1sIiB0YXJnZXQ9Il9ibGFuayI+DQpodHRwOi8vd3d3LmNj bC5uZXQvY2hlbWlzdHJ5L3N1Yl91bnN1Yi5zaHRtbDwvYT48YnI+DQo8YnI+DQpCZWZvcmUgcG9z dGluZywgY2hlY2sgd2FpdCB0aW1lIGF0OiA8YSBocmVmPSJodHRwczovL2NsaWNrdGltZS5zeW1h bnRlYy5jb20vYS8xL25WTHdlUldYbE1oVy1oZWNvTDBMa3VvZlBWRl9RdVBKRzdFVVR5Z2tkR0E9 P2Q9d29GM1BqOHd6THFTZDlTRU9KR3lRdk94QXNrRl8tdWp1aGZ1QUJ4Z1JzREoxUTh3TExVd09O aDBaMDZtYUZjdGlzeUdmbm1mVjV3OXl5WU1iblN2enhJWEl1a19IMGc4Q00tR3djZUlmT2hmUGZK ZmRzdHMwdmNEZXViMmtoM0R4ZldfQ0VteF9XTE1qQWZ2b2FoSXZMS0pYaHJKcXJPTVRhQVhXMmdT YVcxaFhveXplOW05T0VKNnJVZEY3amcxQV9DelNNd1NBTDY5N3VzZU5HZnJDNkFOeUFzOWRKLXUw aUNtOTdzelJZdUJVSDdjUzh4bEZNYkhFZFdQc2hBdEEyQkl1WlFJbHB0MzdLNEt3aE9tV3pBOGlv ZWpqcnVEQm9NX2VVZjQzZjY4Q2VWYkg2V25qbThqQWIyMFZjUGx1QXNZd2FNM3Q1SWwzT2J3bWlZ QzBXc3ltSjJ6T1VxRklnWUF6MlMycFhGXy1kSVhMcTRPQXgxa2dRNXEzeUtJM3NwTW5oVXNqaEN3 NUJrTTBTb1FiZkZHZXBkdUtqZUlfYmhhRFg3OWlWTmktcHZnb1F2c3ZSOCUzRCZhbXA7dT1odHRw JTNBJTJGJTJGd3d3LmNjbC5uZXQiIHRhcmdldD0iX2JsYW5rIj4NCmh0dHA6Ly93d3cuY2NsLm5l dDwvYT48YnI+DQo8YnI+DQpKb2I6IDxhIGhyZWY9Imh0dHBzOi8vY2xpY2t0aW1lLnN5bWFudGVj LmNvbS9hLzEvUlFELVpRSHVjVllvdnpuNVY4U3VkOFUwLVdoQVhGeWExOXdnV1lmOTNHaz0/ZD13 b0YzUGo4d3pMcVNkOVNFT0pHeVF2T3hBc2tGXy11anVoZnVBQnhnUnNESjFROHdMTFV3T05oMFow Nm1hRmN0aXN5R2ZubWZWNXc5eXlZTWJuU3Z6eElYSXVrX0gwZzhDTS1Hd2NlSWZPaGZQZkpmZHN0 czB2Y0RldWIya2gzRHhmV19DRW14X1dMTWpBZnZvYWhJdkxLSlhockpxck9NVGFBWFcyZ1NhVzFo WG95emU5bTlPRUo2clVkRjdqZzFBX0N6U013U0FMNjk3dXNlTkdmckM2QU55QXM5ZEotdTBpQ205 N3N6Ull1QlVIN2NTOHhsRk1iSEVkV1BzaEF0QTJCSXVaUUlscHQzN0s0S3doT21XekE4aW9lampy dURCb01fZVVmNDNmNjhDZVZiSDZXbmptOGpBYjIwVmNQbHVBc1l3YU0zdDVJbDNPYndtaVlDMFdz eW1KMnpPVXFGSWdZQXoyUzJwWEZfLWRJWExxNE9BeDFrZ1E1cTN5S0kzc3BNbmhVc2poQ3c1QmtN MFNvUWJmRkdlcGR1S2plSV9iaGFEWDc5aVZOaS1wdmdvUXZzdlI4JTNEJmFtcDt1PWh0dHAlM0El MkYlMkZ3d3cuY2NsLm5ldCUyRmpvYnMiIHRhcmdldD0iX2JsYW5rIj4NCmh0dHA6Ly93d3cuY2Ns Lm5ldC9qb2JzPC9hPiA8YnI+DQpDb25mZXJlbmNlczogPGEgaHJlZj0iaHR0cHM6Ly9jbGlja3Rp bWUuc3ltYW50ZWMuY29tL2EvMS9RYndPcTJhM3RBald2MkIyazJRaEs5RWxVVG9GY3k1VWlBX2dm b0EzMktFPT9kPXdvRjNQajh3ekxxU2Q5U0VPSkd5UXZPeEFza0ZfLXVqdWhmdUFCeGdSc0RKMVE4 d0xMVXdPTmgwWjA2bWFGY3Rpc3lHZm5tZlY1dzl5eVlNYm5Tdnp4SVhJdWtfSDBnOENNLUd3Y2VJ Zk9oZlBmSmZkc3RzMHZjRGV1YjJraDNEeGZXX0NFbXhfV0xNakFmdm9haEl2TEtKWGhySnFyT01U YUFYVzJnU2FXMWhYb3l6ZTltOU9FSjZyVWRGN2pnMUFfQ3pTTXdTQUw2OTd1c2VOR2ZyQzZBTnlB czlkSi11MGlDbTk3c3pSWXVCVUg3Y1M4eGxGTWJIRWRXUHNoQXRBMkJJdVpRSWxwdDM3SzRLd2hP bVd6QThpb2VqanJ1REJvTV9lVWY0M2Y2OENlVmJINlduam04akFiMjBWY1BsdUFzWXdhTTN0NUls M09id21pWUMwV3N5bUoyek9VcUZJZ1lBejJTMnBYRl8tZElYTHE0T0F4MWtnUTVxM3lLSTNzcE1u aFVzamhDdzVCa00wU29RYmZGR2VwZHVLamVJX2JoYURYNzlpVk5pLXB2Z29RdnN2UjglM0QmYW1w O3U9aHR0cCUzQSUyRiUyRnNlcnZlci5jY2wubmV0JTJGY2hlbWlzdHJ5JTJGYW5ub3VuY2VtZW50 cyUyRmNvbmZlcmVuY2VzJTJGIiB0YXJnZXQ9Il9ibGFuayI+DQpodHRwOi8vc2VydmVyLmNjbC5u ZXQvY2hlbWlzdHJ5L2Fubm91bmNlbWVudHMvY29uZmVyZW5jZXMvPC9hPjxicj4NCjxicj4NClNl YXJjaCBNZXNzYWdlczogPGEgaHJlZj0iaHR0cHM6Ly9jbGlja3RpbWUuc3ltYW50ZWMuY29tL2Ev MS95OE94SkdvR2pYQkZSeVY5U0RVbld1bWpXRTF0VmJfZDhScnZCUEEyUEtnPT9kPXdvRjNQajh3 ekxxU2Q5U0VPSkd5UXZPeEFza0ZfLXVqdWhmdUFCeGdSc0RKMVE4d0xMVXdPTmgwWjA2bWFGY3Rp c3lHZm5tZlY1dzl5eVlNYm5Tdnp4SVhJdWtfSDBnOENNLUd3Y2VJZk9oZlBmSmZkc3RzMHZjRGV1 YjJraDNEeGZXX0NFbXhfV0xNakFmdm9haEl2TEtKWGhySnFyT01UYUFYVzJnU2FXMWhYb3l6ZTlt OU9FSjZyVWRGN2pnMUFfQ3pTTXdTQUw2OTd1c2VOR2ZyQzZBTnlBczlkSi11MGlDbTk3c3pSWXVC VUg3Y1M4eGxGTWJIRWRXUHNoQXRBMkJJdVpRSWxwdDM3SzRLd2hPbVd6QThpb2VqanJ1REJvTV9l VWY0M2Y2OENlVmJINlduam04akFiMjBWY1BsdUFzWXdhTTN0NUlsM09id21pWUMwV3N5bUoyek9V cUZJZ1lBejJTMnBYRl8tZElYTHE0T0F4MWtnUTVxM3lLSTNzcE1uaFVzamhDdzVCa00wU29RYmZG R2VwZHVLamVJX2JoYURYNzlpVk5pLXB2Z29RdnN2UjglM0QmYW1wO3U9aHR0cCUzQSUyRiUyRnd3 dy5jY2wubmV0JTJGY2hlbWlzdHJ5JTJGc2VhcmNoY2NsJTJGaW5kZXguc2h0bWwiIHRhcmdldD0i X2JsYW5rIj4NCmh0dHA6Ly93d3cuY2NsLm5ldC9jaGVtaXN0cnkvc2VhcmNoY2NsL2luZGV4LnNo dG1sPC9hPjxicj4NCiZsdDticjxicj4NCiZuYnNwOyAmbmJzcDsgJm5ic3A7IDxhIGhyZWY9Imh0 dHBzOi8vY2xpY2t0aW1lLnN5bWFudGVjLmNvbS9hLzEvU3R3Y0ZCVTBUSXVsWlZvT1otdWR5UTVX ejg3ekZqblhUems4aWgwRGo3UT0/ZD13b0YzUGo4d3pMcVNkOVNFT0pHeVF2T3hBc2tGXy11anVo ZnVBQnhnUnNESjFROHdMTFV3T05oMFowNm1hRmN0aXN5R2ZubWZWNXc5eXlZTWJuU3Z6eElYSXVr X0gwZzhDTS1Hd2NlSWZPaGZQZkpmZHN0czB2Y0RldWIya2gzRHhmV19DRW14X1dMTWpBZnZvYWhJ dkxLSlhockpxck9NVGFBWFcyZ1NhVzFoWG95emU5bTlPRUo2clVkRjdqZzFBX0N6U013U0FMNjk3 dXNlTkdmckM2QU55QXM5ZEotdTBpQ205N3N6Ull1QlVIN2NTOHhsRk1iSEVkV1BzaEF0QTJCSXVa UUlscHQzN0s0S3doT21XekE4aW9lampydURCb01fZVVmNDNmNjhDZVZiSDZXbmptOGpBYjIwVmNQ bHVBc1l3YU0zdDVJbDNPYndtaVlDMFdzeW1KMnpPVXFGSWdZQXoyUzJwWEZfLWRJWExxNE9BeDFr Z1E1cTN5S0kzc3BNbmhVc2poQ3c1QmtNMFNvUWJmRkdlcGR1S2plSV9iaGFEWDc5aVZOaS1wdmdv UXZzdlI4JTNEJmFtcDt1PWh0dHAlM0ElMkYlMkZ3d3cuY2NsLm5ldCUyRnNwYW1tZXJzLnR4dCIg dGFyZ2V0PSJfYmxhbmsiPg0KaHR0cDovL3d3dy5jY2wubmV0L3NwYW1tZXJzLnR4dDwvYT48YnI+ DQo8YnI+DQpSVEZJOiA8YSBocmVmPSJodHRwczovL2NsaWNrdGltZS5zeW1hbnRlYy5jb20vYS8x LzkwV3dxcFFQSzVqZU14clJTejZWV0U4OGxMS3hfTllRb0xhWGRtdmVKZjg9P2Q9d29GM1BqOHd6 THFTZDlTRU9KR3lRdk94QXNrRl8tdWp1aGZ1QUJ4Z1JzREoxUTh3TExVd09OaDBaMDZtYUZjdGlz eUdmbm1mVjV3OXl5WU1iblN2enhJWEl1a19IMGc4Q00tR3djZUlmT2hmUGZKZmRzdHMwdmNEZXVi MmtoM0R4ZldfQ0VteF9XTE1qQWZ2b2FoSXZMS0pYaHJKcXJPTVRhQVhXMmdTYVcxaFhveXplOW05 T0VKNnJVZEY3amcxQV9DelNNd1NBTDY5N3VzZU5HZnJDNkFOeUFzOWRKLXUwaUNtOTdzelJZdUJV SDdjUzh4bEZNYkhFZFdQc2hBdEEyQkl1WlFJbHB0MzdLNEt3aE9tV3pBOGlvZWpqcnVEQm9NX2VV ZjQzZjY4Q2VWYkg2V25qbThqQWIyMFZjUGx1QXNZd2FNM3Q1SWwzT2J3bWlZQzBXc3ltSjJ6T1Vx RklnWUF6MlMycFhGXy1kSVhMcTRPQXgxa2dRNXEzeUtJM3NwTW5oVXNqaEN3NUJrTTBTb1FiZkZH ZXBkdUtqZUlfYmhhRFg3OWlWTmktcHZnb1F2c3ZSOCUzRCZhbXA7dT1odHRwJTNBJTJGJTJGd3d3 LmNjbC5uZXQlMkZjaGVtaXN0cnklMkZhYm91dGNjbCUyRmluc3RydWN0aW9ucyUyRiIgdGFyZ2V0 PSJfYmxhbmsiPg0KaHR0cDovL3d3dy5jY2wubmV0L2NoZW1pc3RyeS9hYm91dGNjbC9pbnN0cnVj dGlvbnMvPC9hPjxicj4NCjxicj4NCjxvOnA+PC9vOnA+PC9wPg0KPC9ibG9ja3F1b3RlPg0KPC9k aXY+DQo8L2Rpdj4NCjxocj4NCjxwIGNsYXNzPSJ7SW1wcmludC5VbmlxdWVJRH0iIHN0eWxlPSJG T05ULVNJWkU6IDhwdCI+PGZvbnQgZmFjZT0iQXJpYWwiIHNpemU9IjEiPjwvZm9udD48L3A+DQo8 cCBjbGFzcz0ie0ltcHJpbnQuVW5pcXVlSUR9IiBzdHlsZT0iRk9OVC1TSVpFOiA4cHQiPjxmb250 IGZhY2U9IkFyaWFsIj48c3Ryb25nPkNvbmZpZGVudGlhbGl0eSBOb3RpY2U6DQo8L3N0cm9uZz5U aGlzIG1lc3NhZ2UgaXMgcHJpdmF0ZSBhbmQgbWF5IGNvbnRhaW4gY29uZmlkZW50aWFsIGFuZCBw cm9wcmlldGFyeSBpbmZvcm1hdGlvbi4gSWYgeW91IGhhdmUgcmVjZWl2ZWQgdGhpcyBtZXNzYWdl IGluIGVycm9yLCBwbGVhc2Ugbm90aWZ5IHVzIGFuZCByZW1vdmUgaXQgZnJvbSB5b3VyIHN5c3Rl bSBhbmQgbm90ZSB0aGF0IHlvdSBtdXN0IG5vdCBjb3B5LCBkaXN0cmlidXRlIG9yIHRha2UgYW55 IGFjdGlvbiBpbiByZWxpYW5jZQ0KIG9uIGl0LiBBbnkgdW5hdXRob3JpemVkIHVzZSBvciBkaXNj bG9zdXJlIG9mIHRoZSBjb250ZW50cyBvZiB0aGlzIG1lc3NhZ2UgaXMgbm90IHBlcm1pdHRlZCBh bmQgbWF5IGJlIHVubGF3ZnVsLjwvZm9udD48L3A+DQo8cCBjbGFzcz0ie0ltcHJpbnQuVW5pcXVl SUR9IiBzdHlsZT0iRk9OVC1TSVpFOiA4cHQiPjxmb250IGZhY2U9IkFyaWFsIj48L2ZvbnQ+PC9w Pg0KPHAgY2xhc3M9IntJbXByaW50LlVuaXF1ZUlEfSIgc3R5bGU9IkZPTlQtU0laRTogOHB0Ij48 Zm9udCBmYWNlPSJBcmlhbCI+PC9mb250PjwvcD4NCjxwIGNsYXNzPSJ7SW1wcmludC5VbmlxdWVJ RH0iIHN0eWxlPSJGT05ULVNJWkU6IDhwdCI+PGZvbnQgZmFjZT0iQXJpYWwiPjwvZm9udD48L3A+ DQo8cCBjbGFzcz0ie0ltcHJpbnQuVW5pcXVlSUR9IiBzdHlsZT0iRk9OVC1TSVpFOiA4cHQiPjxm b250IGZhY2U9IkFyaWFsIj48L2ZvbnQ+PC9wPg0KPHAgY2xhc3M9IntJbXByaW50LlVuaXF1ZUlE fSIgc3R5bGU9IkZPTlQtU0laRTogOHB0Ij48Zm9udCBmYWNlPSJBcmlhbCI+PC9mb250PjwvcD4N CjxwIGNsYXNzPSJ7SW1wcmludC5VbmlxdWVJRH0iIHN0eWxlPSJGT05ULVNJWkU6IDhwdCI+PGZv bnQgZmFjZT0iQXJpYWwiPjwvZm9udD48Zm9udCBzaXplPSImIzQzOzAiPjwvZm9udD48L3A+DQo8 cCBjbGFzcz0ie0ltcHJpbnQuVW5pcXVlSUR9IiBzdHlsZT0iRk9OVC1TSVpFOiA4cHQiPjxmb250 IGZhY2U9IkFyaWFsIj48L2ZvbnQ+PC9wPg0KPHAgY2xhc3M9IntJbXByaW50LlVuaXF1ZUlEfSIg c3R5bGU9IkZPTlQtU0laRTogOHB0Ij48L3A+DQo8cCBjbGFzcz0ie0ltcHJpbnQuVW5pcXVlSUR9 IiBzdHlsZT0iRk9OVC1TSVpFOiA4cHQiPjwvcD4NCjwvYm9keT4NCjwvaHRtbD4NCg== --_000_VI1PR04MB40642426165910D4FB8F5A7CCA6A0VI1PR04MB4064eurp_-- From owner-chemistry@ccl.net Thu May 24 04:01:00 2018 From: "John Keller jwkeller]_[alaska.edu" To: CCL Subject: CCL: RateDetermining State Message-Id: <-53315-180524024352-32539-Y4sdxCil1+cgq6e7NzKvqw^server.ccl.net> X-Original-From: John Keller Content-Type: multipart/alternative; boundary="_3AC69BCB-AFDB-4C0F-B2B6-D5397CA0C402_" Date: Wed, 23 May 2018 22:43:42 -0800 MIME-Version: 1.0 Sent to CCL by: John Keller [jwkeller[]alaska.edu] --_3AC69BCB-AFDB-4C0F-B2B6-D5397CA0C402_ Content-Transfer-Encoding: quoted-printable Content-Type: text/plain; charset="utf-8" Dear Andrew and Anyao, =E2=80=9CRate limiting step=E2=80=9D or =E2=80=9Crate determining step=E2= =80=9D or =E2=80=9Crate controlling step=E2=80=9D are still widely used in = authoritative sources. Cramer=E2=80=99s Essentials=E2=80=A6 uses the first = term on p.483. March=E2=80=99s Advanced Organic Chem 7th Ed discusses rate= -determining steps (p.279). Searching the titles of papers in JOC and J Phy= s. Chem 2012-1018, I found 11 that use =E2=80=9Crate limiting=E2=80=9D or = =E2=80=9Crate limiting step=E2=80=9D, but no mention of =E2=80=9Crate deter= mining state=E2=80=9D. Of course the latter phrase could be buried in journ= al texts. John Keller Sent from Mail for Windows 10 > From: Andrew Rosen rosen__u.northwestern.edu Sent: Wednesday, May 23, 2018 9:06 PM To: Keller, John W Subject: CCL: RateDetermining State Anyao, I refer you to the following two papers: 1) "Degree of Rate Control: How Much the Energies of Intermediates and Tran= sition States Control Rates" (https://pubs.acs.org/doi/abs/10.1021/ja900009= 7) 2) "The Rate=E2=80=90Determining Step is Dead. Long Live the Rate=E2=80=90D= etermining State!" (https://onlinelibrary.wiley.com/doi/full/10.1002/cphc.2= 01100137) > From a detailed mechanistic point of view, it is often much more insightful= to talk about about a rate-determining state (either transition state or i= ntermediate) than a rate-determining step. The first paper describes the wi= dely used definition of a rate-controlling state and how to compute it. The= second paper contains a few short examples of how the rate-determining sta= te differs from the rate-determining step. On Wed, May 23, 2018 at 10:19 PM Anyao Jiao 1425623121(_)qq.com wrote: Sent to CCL by: "Anyao=C2=A0 Jiao" [1425623121^qq.com] Dear All, =C2=A0 I have a simple question regarding RateDetermining State. My reviewe= rs=20 suggest me to use RateDetermining State rather than Rate-Determining Step=20 owning to its inaccuracy. Is that right? If we use the Canonical variationa= l=20 transition-state theory method, how do you calculate the reaction rate of t= he=20 RateDetermining State ?=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A0Sincerely =C2=A0 =C2=A0Anyao Jiao -=3D This is automatically added to each message by the mailing script =3D-=

Dear Andrew and Anyao,

=E2=80=9CRate limiting step=E2=80=9D or =E2=80=9Crate determin= ing step=E2=80=9D or =E2=80=9Crate controlling step=E2=80=9D are still wide= ly used in authoritative sources. Cramer=E2=80=99s Essentials=E2=80=A6 uses= the first =C2=A0term on p.483. March=E2=80=99s Advanced Organic Chem 7th Ed discusses rate-determining steps (p.279). Searching the titles= of papers in JOC and J Phys. Chem 2012-1018, I found 11 that use =E2=80=9C= rate limiting=E2=80=9D or =E2=80=9Crate limiting step=E2=80=9D, but no ment= ion of =E2=80=9Crate determining state=E2=80=9D. Of course the latter phras= e could be buried in journal texts.

John Keller

=

 

 <= /o:p>

Sent from Mail for Windows 10

<= o:p> 

From: Andrew Rosen rosen__u.northwestern.edu
Sent: Wednesday, May 23, 2018 9:06 PM
To: Keller, John W
Subject: CCL: RateDetermi= ning State

 

Anyao,

 

I refer you to the following two papers:

1) "Degree of Rate Control: How Much the E= nergies of Intermediates and Transition States Control Rates" (https://pubs.acs.org/do= i/abs/10.1021/ja9000097)

2) "Th= e Rate=E2=80=90Determining Step is Dead. Long Live the Rate=E2=80=90Determi= ning State!" (https://onlinelibrary.wiley.com/doi/full/10.1002/cphc.2= 01100137)

 

From a detailed mechanistic point of view, it is= often much more insightful to talk about about a rate-determining state (e= ither transition state or intermediate) than a rate-determining step. The f= irst paper describes the widely used definition of a rate-controlling state= and how to compute it. The second paper contains a few short examples of h= ow the rate-determining state differs from the rate-determining step.

 

On Wed, May 23, 2018 at 10:19 PM Anyao Jiao 1425623121(_)qq.com <o= wner-chemistry*ccl.net> wrote:


Sent to CCL by: "Anyao  Jiao" [1425623121^<= a href=3D"http://qq.com" target=3D"_blank">qq.com]
Dear All,
&nbs= p; I have a simple question regarding RateDetermining State. My reviewers <= br>suggest me to use RateDetermining State rather than Rate-Determining Ste= p
owning to its inaccuracy. Is that right? If we use the Canonical vari= ational
transition-state theory method, how do you calculate the reacti= on rate of the
RateDetermining State ?     
  &n= bsp;Sincerely

   Anyao Jiao



-=3D This is au= tomatically added to each message by the mailing script =3D-<br

<= br>E-mail to subscribers: CHEMISTRY*ccl.net or use:
      http://www.c= cl.net/cgi-bin/ccl/send_ccl_message

E-mail to administrators: CHEMISTRY-REQU= EST*ccl.net or use
      http://www.ccl.net/cgi-bi= n/ccl/send_ccl_message
<br
      http://www.ccl= .net/chemistry/sub_unsub.shtml

Before posting, check wait time a= t: http://www.ccl.net<= br>
Job: http://ww= w.ccl.net/jobs
Conferences: http://server.ccl.net/che= mistry/announcements/conferences/

Search Messages: http://= www.ccl.net/chemistry/searchccl/index.shtml
<br
    =   http:/= /www.ccl.net/spammers.txt

RTFI: http://www.ccl.net/chemis= try/aboutccl/instructions/

 <= /o:p>

= --_3AC69BCB-AFDB-4C0F-B2B6-D5397CA0C402_-- From owner-chemistry@ccl.net Thu May 24 04:35:01 2018 From: "Anyao Jiao 1425623121_._qq.com" To: CCL Subject: CCL: the rate of rate-determining state Message-Id: <-53316-180524035442-24650-aJeq1lbrZLMLtbyzuefOHA|-|server.ccl.net> X-Original-From: "Anyao Jiao" <1425623121]^[qq.com> Date: Thu, 24 May 2018 03:54:40 -0400 Sent to CCL by: "Anyao Jiao" [1425623121%x%qq.com] Dear Sir or Madam, Thank you very much for solving the doubts of rate-determining state. One question is how to phrase the rate of rate-determining state? Is the same with rate-determining step? Can I say " The theoretical rate coefficients for the rate-determining state calculated by the CVT and TST formalisms?" Sincerely Anyao Jiao School of Mechanical Engineering, Shanghai Jiao Tong University From owner-chemistry@ccl.net Thu May 24 08:09:00 2018 From: "Sebastian seb.kozuch]^[gmail.com" To: CCL Subject: CCL: the rate of rate-determining state Message-Id: <-53317-180524080544-15953-CX0q7wr/JbizyUv8f644pw:_:server.ccl.net> X-Original-From: Sebastian Content-Language: en-US Content-Transfer-Encoding: 8bit Content-Type: text/html; charset=utf-8 Date: Thu, 24 May 2018 15:06:00 +0300 MIME-Version: 1.0 Sent to CCL by: Sebastian [seb.kozuch]_[gmail.com] Dear Anyao,
You cannot freely say "rate determining state" instead of "rate determining step".  When you speak about states you mean one determining intermediate and one determining transition state, which may be in the same elementary step, but usually they don't. (Or you can consider all that section from the intermediate to the TS as one step as Per-Ola says. This was called the "rate determining zone"). You should check the literature about Campbell's degree of rate control and about the energy span model.

Regarding what John said:
"Rate limiting step... are still widely used in authoritative sources. Cramer’s Essentials… March’s Advanced Organic Chem... . Searching the titles of papers in JOC and J Phys. Chem 2012-1018, I found 11 that use “rate limiting” or “rate limiting step”, but no mention of “rate determining state”. Of course the latter phrase could be buried in journal texts."
The concept of rate determining states is rather new, and therefore it takes time to digest. I am very biased, but I believe that the concept of RDStates is correct, while RDSteps is not.

Best,
Sebastian


On 24/05/2018 10:54, Anyao Jiao 1425623121_._qq.com wrote:
Sent to CCL by: "Anyao  Jiao" [1425623121%x%qq.com]
Dear Sir or Madam,
      Thank you very much for solving the doubts of rate-determining state. One 
question is how to phrase the rate of rate-determining state? Is the same with 
rate-determining step? Can I say " The theoretical rate coefficients for the 
rate-determining state calculated by the CVT and TST formalisms?"
    Sincerely

   Anyao Jiao
School of Mechanical Engineering, Shanghai Jiao Tong UniversityE-mail to subscribers: CHEMISTRY###ccl.net or use:
      http://www.ccl.net/cgi-bin/ccl/send_ccl_message

E-mail to administrators: CHEMISTRY-REQUEST###ccl.net or use
      http://www.ccl.net/cgi-bin/ccl/send_ccl_messagehttp://www.ccl.net/chemistry/sub_unsub.shtml

Before posting, check wait time at: http://www.ccl.net

Job: http://www.ccl.net/jobs 
Conferences: http://server.ccl.net/chemistry/announcements/conferences/

Search Messages: http://www.ccl.net/chemistry/searchccl/index.shtmlhttp://www.ccl.net/spammers.txt

RTFI: http://www.ccl.net/chemistry/aboutccl/instructions/



-- 
═════════════════════════════════════
          Sebastian Kozuch
═════════════════════════════════════
       Department of Chemistry
 Ben-Gurion University of the Negev 
          Beer Sheva, Israel
           kozuch###bgu.ac.il
    http://www.bgu.ac.il/~kozuch
═════════════════════════════════════
From owner-chemistry@ccl.net Thu May 24 10:28:00 2018 From: "Thomas Exner thomas.exner]-[uni-konstanz.de" To: CCL Subject: CCL: eChemInfo workshop on drug design in Milano Message-Id: <-53318-180524074554-13616-7rtQ2Gr4JTnCcVrw8RVEAg- -server.ccl.net> X-Original-From: Thomas Exner Content-Transfer-Encoding: 8bit Content-Type: text/plain; charset=UTF-8; format=flowed Date: Thu, 24 May 2018 13:45:34 +0200 MIME-Version: 1.0 Sent to CCL by: Thomas Exner [thomas.exner##uni-konstanz.de] Dear all: Just a quick note that you can still profit from the early bird rates until the extended deadline May 31. Best. Thomas   Thomas Exner thomas.exner##douglasconnect.com schrieb: > Sent to CCL by: "Thomas Exner" [thomas.exner]_[douglasconnect.com] > Continuation of our workshop to resolve your problems in drug design > > Training and Innovation Course in Drug Design > 17-21 July 2018 > Department of Pharmaceutical Sciences, University of Milan > > Bring your own problems in rational drug design to this hands-on workshop co-organized by the University of Milans Department of Pharmaceutical Sciences and eChemInfo. > > Over one week, top modeling experts will teach you state-of-the-art/emerging approaches and tools and help you apply new knowledge to your own research. > > Real-world examples from academia and industry, as well as experimental techniques, will be strongly integrated into the workshop. Get personalized advice from Stefano Moro, University of Padova, working on G protein-coupled receptor ligand recognition pathways; Anthony Bradley from the Diamond Light Source's XChem project providing services for complex structure determination using medium- to high-throughput X-ray; and other industry experts soon to be announced. > > Participants - chemists, life scientists and modellers working in rational drug design - will return to their labs with new ideas, best practices and software experiences to maximise productivity in their own drug discovery research activities. > > http://www.echeminfo.com/events/echeminfo-euro-2018 > > The workshop will provide a set of stimulating lectures and group work sessions on: > - virtual screening, > - ligand-based and structure-based drug design, > - bio- and cheminformatics, > - molecular dynamics simulation, > - drug delivery modelling, > - off-target predictions and > - quantum mechanics in the hit-to-lead phase > > The functionalities of tools developed in academic groups and from the main software providers will be explored based on tutorials and, even more important, on case studies taken from ongoing research. > > Posters are welcome to give the other attendees an overview of your work and foster discussion within the groups. > > Bursary Awards are available; deadline extended until 30 April at http://www.echeminfo.com/bursary-awards > > Early-bird reduced rates are also available until 30 April. > > For further information and questions on this (updated program, exact location, suggestions for accommodation,...) and other eChemInfo workshops, please visit http://www.echeminfo.com/events or contact us. > Alessandro Contini, University of Milano (alessandro.contini%%unimi.it) > Thomas Exner, Douglas Connect (thomas.exner%%douglasconnect.com) > > P.S.: Please spread the word by showcasing the attached poster on your notice boards.> > -- ___________________________________________________________________________________ Dr. Thomas E. Exner Chief Scientific Officer Douglas Connect GmbH. www: www.douglasconnect.com e-mail: thomas.exner(-)douglasconnect.com phone: +49 (0)171 3807485 From owner-chemistry@ccl.net Thu May 24 12:01:00 2018 From: "Giuseppina Gini 10000654*polimi.it" To: CCL Subject: CCL: CFP special issue "Application of machine learning theories in QSAR/QSPR" - Int J of Quantitative Structure-Property Relationships (IJQSPR) Message-Id: <-53319-180524115234-31506-AvDr9vTG4KwALzPWWa6tVg++server.ccl.net> X-Original-From: Giuseppina Gini <10000654-.-polimi.it> Content-Type: multipart/alternative; boundary="Apple-Mail=_8B7F5388-05B9-4A34-AA07-6A8C32CE96AB" Date: Thu, 24 May 2018 17:52:06 +0200 Mime-Version: 1.0 (Mac OS X Mail 7.3 \(1878.6\)) Sent to CCL by: Giuseppina Gini [10000654() polimi.it] --Apple-Mail=_8B7F5388-05B9-4A34-AA07-6A8C32CE96AB Content-Transfer-Encoding: quoted-printable Content-Type: text/plain; charset=utf-8 This CfP can be of interest for people in the list. Apologies for = possible cross posting -=20 ********************* CALL FOR PAPERS ********************* SUBMISSION DUE DATE: October 1, 2018=20 SPECIAL ISSUE ON Application of machine learning theories in QSAR/QSPR International Journal of Quantitative Structure-Property Relationships = (IJQSPR) Guest Editor: Giuseppina Gini, DEIB, Politecnico di Milano, Italy INTRODUCTION: Many forces drive modern QSAR/QSPR models: - first of all the requirements of creating new chemicals with = wanted properties in fields as large as drugs, cosmetics, biocides, and = industrial products; - second, the growing concern about the risks of chemicals that = has produces advanced norms to regulate their use; - third, the availability of more data in the public domain that = opened the door to more advanced models; - finally, the tremendous improving of hardware and software that = allows more complex modeling, as represented in particular by the = development of Artificial Intelligence methods. About 20 years ago the Artificial Intelligence (AI) and the Toxicology = Communities joined together in the so-called =E2=80=9CPredictive = Challenge=E2=80=9D, where a few tens of molecules were given to = researchers to produce a QSAR model of cancerogenicity. The results then = showed that it is possible to build a QSAR model only using the chemical = structure. In the following years QSAR methods started to embrace new = learning methods, to incorporate more kinds of descriptors, and to move = > from linear to non-linear models. More recently, a new challenge promoted by the pharm industry was = launched in 2012 with thousands of chemical structures; among the many = models developed a deep neural net was found to be at the core of the = winning model. OBJECTIVE OF THE SPECIAL ISSUE: Even though Artificial Intelligence methods are commonly used in = modeling physical and biological properties of chemicals, there is a = lack of clearly assessing their advantages or disadvantages in building = QSAR/QSPR. Moreover, AI models may incorporate both symbolic and = implicit knowledge representations, and extracting and organizing = knowledge from such models is still challenging. This special issue will try to give answer to questions such as: =C2=B7 How AI based methods work in making accurate and predictive = QSAR/QSPR models? =C2=B7 What kind of knowledge is represented or hidden in AI-based = models? =C2=B7 Which kind of chemical and biological knowledge should and = could be given to AI based models? =C2=B7 How and why users can accept AI-based models? =C2=B7 What are the next challenges for QSAR/QSPR methods? =20 RECOMMENDED TOPICS: Topics to be discussed in this special issue include (but are not = limited to) the following:=20 Application of AI tools, including Support Vector Machines and Neural = Networks, to QSAR/QSPR Use of ensemble methods, as Random Forests, to build QSAR/QSPR Learning methods for modeling: pros and cons Deep Neural Nets and deep learning for building QSAR/QSPR Learning from chemical structures AI methods to define and choose descriptors AI methods to automatically extract relevant functional subgroups to = build SAR models AI methods to integrate SAR and QSAR Extracting knowledge from AI models of chemical/biological properties Interpreting AI models in terms of chemical and biological knowledge AI methods to integrate statistical results and expert knowledge AI tools to integrate in vivo and in vitro data Acceptance of AI methods in various user contexts Hardware and software to develop AI-based QSAR/QSPR models Theoretical developments of new QSARs using machine learning principles=20= SUBMISSION PROCEDURE: Researchers and practitioners are invited to submit papers for this = special theme issue on Application of machine learning theories in = QSAR/QSPR on or before October 1 2018.=20 All submissions must be original and may not be under review by another = publication. All submitted papers will be reviewed on a double-blind, = peer review basis. Papers must follow APA style for reference citations. = NO submission and publication FEES=E2=80=A8are asked for this journal.=20= All inquires should be directed to the attention of: Giuseppina Gini - Guest Editor - International Journal of Quantitative = Structure-Property Relationships (IJQSPR) E-mail: giuseppina.gini-*-polimi.it Giuseppina Gini DEIB, Politecnico di Milano piazza L. da Vinci 32 20133 Milano Italy --Apple-Mail=_8B7F5388-05B9-4A34-AA07-6A8C32CE96AB Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset=utf-8

This CfP can be of interest for  people in = the list. Apologies for possible cross posting - 


********************* CALL FOR = PAPERS *********************

 SUBMISSION DUE DATE: October 1, = 2018 

SPECIAL ISSUE ON Application of machine learning theories = in QSAR/QSPR

International Journal of Quantitative Structure-Property = Relationships (IJQSPR)

 Guest = Editor: Giuseppina Gini, = DEIB, Politecnico di Milano, Italy


INTRODUCTION:

Many forces drive modern QSAR/QSPR = models:

-        first of all the = requirements of creating new chemicals with wanted properties in fields = as large as drugs, cosmetics, biocides, and industrial = products;

-        second, the growing = concern about the risks of chemicals that has produces advanced norms to = regulate their use;

-        third, the = availability of more data in the public domain that opened the door to = more advanced models;

-        finally, the = tremendous improving of hardware and software that allows more complex = modeling, as represented in particular by the development of Artificial = Intelligence methods.

About 20 years ago the Artificial Intelligence (AI) = and the Toxicology Communities joined together in the so-called = =E2=80=9CPredictive Challenge=E2=80=9D, where a few tens of molecules = were given to researchers to produce a QSAR model of cancerogenicity. = The results then showed that it is possible to build a QSAR model only = using the chemical structure. In the following years QSAR methods = started to embrace new learning methods, to incorporate more kinds of = descriptors, and to move from linear to non-linear = models.

More recently, a new = challenge promoted by the pharm industry was launched in 2012 with = thousands of chemical structures; among the many models developed a deep = neural net was found to be at the core of the winning = model.

 OBJECTIVE = OF THE SPECIAL ISSUE:

Even = though Artificial Intelligence methods are commonly used in modeling = physical and biological properties of chemicals, there is a lack of = clearly assessing their advantages or disadvantages in building = QSAR/QSPR. Moreover, AI models may incorporate both symbolic and = implicit knowledge representations, and extracting and organizing = knowledge from such models is still challenging.

This special issue will try to give answer to = questions such as:

=C2=B7       How AI based methods work = in making accurate and predictive QSAR/QSPR = models?

=C2=B7       What kind of knowledge is = represented or hidden in AI-based models?

=C2=B7       Which kind of chemical = and biological knowledge should and could be given to AI based = models?

=C2=B7       How and why users can = accept AI-based models?

=C2=B7       What are the next = challenges for QSAR/QSPR methods?

 

RECOMMENDED TOPICS:

Topics to be discussed in this special = issue include (but are not limited to) the following: 

  • Application of AI = tools, including Support Vector Machines and Neural Networks, to = QSAR/QSPR
  • Use of = ensemble methods, as Random Forests, to build = QSAR/QSPR
  • Learning = methods for modeling: pros and cons
  • Deep Neural Nets and deep learning for = building QSAR/QSPR
  • Learning from chemical = structures
  • AI = methods to define and choose descriptors
  • AI methods to automatically extract relevant = functional subgroups to build SAR models
  • AI methods to integrate SAR and = QSAR
  • Extracting knowledge from AI models of chemical/biological = properties
  • Interpreting AI models in terms of chemical and biological = knowledge
  • AI = methods to integrate statistical results and expert = knowledge
  • AI tools = to integrate in vivo and in vitro data
  • Acceptance of AI methods in various user = contexts
  • Hardware = and software to develop AI-based QSAR/QSPR = models
  • Theoretical developments of new QSARs using machine learning = principles 

SUBMISSION PROCEDURE:

Researchers and = practitioners are invited to submit papers for this special theme issue = on Application of machine learning theories in = QSAR/QSPR on or before October 1 = 2018

All submissions must be = original and may not be under review by another = publication. All submitted papers will be reviewed on a double-blind, peer = review basis. Papers must follow APA style for reference = citations. NO submission and publication FEES=E2=80=A8are asked for this = journal. 

 All inquires should be directed to the attention = of:

 Giuseppina Gini - Guest Editor - International Journal of Quantitative = Structure-Property Relationships (IJQSPR)

E-mail: giuseppina.gini-*-polimi.it

Giuseppina Gini
DEIB,  Politecnico di = Milano
piazza L. da Vinci 32
20133 Milano = Italy




= --Apple-Mail=_8B7F5388-05B9-4A34-AA07-6A8C32CE96AB-- From owner-chemistry@ccl.net Thu May 24 13:50:01 2018 From: "Vladimir Chupakhin chupvl]|[gmail.com" To: CCL Subject: CCL: CFP special issue "Application of machine learning theories in QSAR/QSPR" - Int J of Quantitative Structure-Property Relationships (IJQSPR) Message-Id: <-53320-180524132450-8384-hn6Mm5GcMEgzcs3TqPSQBQ*server.ccl.net> X-Original-From: Vladimir Chupakhin Content-Type: multipart/alternative; boundary="0000000000006aceab056cf6ede5" Date: Thu, 24 May 2018 13:24:04 -0400 MIME-Version: 1.0 Sent to CCL by: Vladimir Chupakhin [chupvl- -gmail.com] --0000000000006aceab056cf6ede5 Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable Seriously, adv for predatory publishers? Best regards, Vladimir Chupakhin On Thu, May 24, 2018 at 11:52 AM, Giuseppina Gini 10000654*polimi.it < owner-chemistry-x-ccl.net> wrote: > This CfP can be of interest for people in the list. Apologies for > possible cross posting - > > > ********************* *CALL FOR PAPERS* ********************* > > SUBMISSION DUE DATE: *October 1, 2018* > > SPECIAL ISSUE ON *Application of machine learning theories in QSAR/QSPR* > > *International Journal of Quantitative Structure-Property Relationships > (IJQSPR)* > > Guest Editor: *Giuseppina Gini, DEIB, Politecnico di Milano, Italy* > > > INTRODUCTION: > > Many forces drive modern QSAR/QSPR models: > > - first of all the requirements of creating new chemicals with > wanted properties in fields as large as drugs, cosmetics, biocides, and > industrial products; > > - second, the growing concern about the risks of chemicals that > has produces advanced norms to regulate their use; > > - third, the availability of more data in the public domain that > opened the door to more advanced models; > > - finally, the tremendous improving of hardware and software that > allows more complex modeling, as represented in particular by the > development of Artificial Intelligence methods. > > About 20 years ago the Artificial Intelligence (AI) and the Toxicology > Communities joined together in the so-called =E2=80=9CPredictive Challeng= e=E2=80=9D, where > a few tens of molecules were given to researchers to produce a QSAR model > of cancerogenicity. The results then showed that it is possible to build = a > QSAR model only using the chemical structure. In the following years QSAR > methods started to embrace new learning methods, to incorporate more kind= s > of descriptors, and to move from linear to non-linear models. > > More recently, a new challenge promoted by the pharm industry was launche= d > in 2012 with thousands of chemical structures; among the many models > developed a deep neural net was found to be at the core of the winning > model. > > OBJECTIVE OF THE SPECIAL ISSUE: > > Even though Artificial Intelligence methods are commonly used in modeling > physical and biological properties of chemicals, there is a lack of clear= ly > assessing their advantages or disadvantages in building QSAR/QSPR. > Moreover, AI models may incorporate both symbolic and implicit knowledge > representations, and extracting and organizing knowledge from such models > is still challenging. > > This special issue will try to give answer to questions such as: > > =C2=B7 How AI based methods work in making accurate and predictive > QSAR/QSPR models? > > =C2=B7 What kind of knowledge is represented or hidden in AI-based > models? > > =C2=B7 Which kind of chemical and biological knowledge should and c= ould > be given to AI based models? > > =C2=B7 How and why users can accept AI-based models? > > =C2=B7 What are the next challenges for QSAR/QSPR methods? > > > > RECOMMENDED TOPICS: > > Topics to be discussed in this special issue include (but are not limited > to) the following: > > - *Application of AI tools, including Support Vector Machines and > Neural Networks, to QSAR/QSPR* > - *Use of ensemble methods, as Random Forests, to build QSAR/QSPR* > - *Learning methods for modeling: pros and cons* > - *Deep Neural Nets and deep learning for building QSAR/QSPR* > - *Learning from chemical structures* > - *AI methods to define and choose descriptors* > - *AI methods to automatically extract relevant functional subgroups > to build SAR models* > - *AI methods to integrate SAR and QSAR* > - *Extracting knowledge from AI models of chemical/biological > properties* > - *Interpreting AI models in terms of chemical and biological > knowledge* > - *AI methods to integrate statistical results and expert knowledge* > - *AI tools to integrate in vivo and in vitro data* > - *Acceptance of AI methods in various user contexts* > - *Hardware and software to develop AI-based QSAR/QSPR models* > - *Theoretical developments of new QSARs using machine learning > principles* > > SUBMISSION PROCEDURE: > > Researchers and practitioners are invited to submit papers for this > special theme issue on *Application of machine learning theories in > QSAR/QSPR* *on or before* *October 1 2018*. > > All submissions must be original and may not be under review by another > publication. All submitted papers will be reviewed on a double-blind, > peer review basis. Papers must follow APA style for reference citations. = NO > submission and publication FEES are asked for this journal. > All inquires should be directed to the attention of: > > *Giuseppina Gini - *Guest Editor - *International Journal of > Quantitative Structure-Property Relationships (IJQSPR)* > > E-mail: *giuseppina.gini~!~polimi.it * > Giuseppina Gini > DEIB, Politecnico di Milano > piazza L. da Vinci 32 > 20133 Milano Italy > > > > > --0000000000006aceab056cf6ede5 Content-Type: text/html; charset="UTF-8" Content-Transfer-Encoding: quoted-printable
Seriously, adv for predatory publishers?

Best regards,
Vladimir Chupakhin

On Thu, May 24, 2018 at 11:52 AM, Gi= useppina Gini 10000654*polimi.it <o= wner-chemistry-x-ccl.net> wrote:

Th= is CfP can be of interest for =C2=A0people in the list. Apologies for possi= ble cross posting -=C2=A0


*********************=C2=A0C= ALL FOR PAPERS=C2=A0*********************

=C2=A0SUBMISSION DUE DATE:=C2=A0October 1, 20= 18=C2=A0

SPECIAL ISSUE ON=C2=A0Application of machine learning = theories in QSAR/QSPR

International Journal of Quantitative = Structure-Property Relationships (IJQSPR)

=C2=A0Guest Editor:= =C2=A0Giuseppina Gini, DEIB, Polite= cnico di Milano, Italy


INTRODUCTION:

Many = forces drive modern QSAR/QSPR models:

-=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0= =C2=A0=C2=A0=C2=A0first of all the requirements of creating new chemicals with wanted= properties in fields as large as drugs, cosmetics, biocides, and industria= l products;

-=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0second, the g= rowing concern about the risks of chemicals that has produces advanced norm= s to regulate their use;

-=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0= =C2=A0=C2=A0third, the availability of more data in the public domain that opened the= door to more advanced models;

-=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0= =C2=A0=C2=A0=C2=A0finally, the tremendous improving of hardware and software that all= ows more complex modeling, as represented in particular by the development = of Artificial Intelligence methods.

About 20 years ago the Artificial Intelligence (AI= ) and the Toxicology Communities joined together in the so-called =E2=80=9C= Predictive Challenge=E2=80=9D, where a few tens of molecules were given to = researchers to produce a QSAR model of cancerogenicity. The results then sh= owed that it is possible to build a QSAR model only using the chemical stru= cture. In the following years QSAR methods started to embrace new learning = methods, to incorporate more kinds of descriptors, and to move from linear = to non-linear models.

More recently, a new challenge promoted by the pharm industry was launc= hed in 2012 with thousands of chemical structures; among the many models de= veloped a deep neural net was found to be at the core of the winning model.=

= =C2=A0OBJECTIVE OF THE SPECIAL I= SSUE:

Even though Artific= ial Intelligence methods are commonly used in modeling physical and biologi= cal properties of chemicals, there is a lack of clearly assessing their adv= antages or disadvantages in building QSAR/QSPR. Moreover, AI models may inc= orporate both symbolic and implicit knowledge representations, and extracti= ng and organizing knowledge from such models is still challenging.

This special issue will tr= y to give answer to questions such as:

=C2=B7=C2=A0=C2=A0=C2=A0=C2=A0=C2= =A0=C2=A0=C2=A0How AI based methods work in making accurate and predictive QSAR/QSPR = models?

=C2=B7=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0<= /span>What kind of knowl= edge is represented or hidden in AI-based models?

= =C2=B7=C2=A0=C2= =A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0Which kind of chemical and biological knowledge sh= ould and could be given to AI based models?

=

= =C2=B7=C2=A0=C2=A0=C2= =A0=C2=A0=C2=A0=C2=A0=C2=A0How and why users can accept AI-based models?

=C2=B7=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0What are the next challenges for QSAR/Q= SPR methods?

=C2=A0

REC= OMMENDED TOPICS:

Topi= cs to be discussed in this special issue include (but are not limited to) t= he following:=C2=A0

  • = Applicati= on of AI tools, including Support Vector Machines and Neural Networks, to Q= SAR/QSPR
  • Use of ensemble met= hods, as Random Forests, to build QSAR/QSPR
  • Learning methods for modeling: pros and cons<= /span>
  • Deep Neural Nets and deep learning for bui= lding QSAR/QSPR
  • Learning fro= m chemical structures
  • = AI met= hods to define and choose descriptors
  • AI methods to automatically extract relevant functional subgroups= to build SAR models
  • <= b>AI meth= ods to integrate SAR and QSAR
  • Extracting knowledge from AI models of chemical/biological properties<= /u>
  • Interpreting AI models in terms= of chemical and biological knowledge
  • AI methods to integrate statistical results and expert knowledge<= u>
  • AI tools to integrate in viv= o and in vitro data
  • Acceptan= ce of AI methods in various user contexts
  • Hardware and software to develop AI-based QSAR/QSPR models=
  • Theoretical de= velopments of new QSARs using machine learning principles=C2=A0

SUBMISSION PROCEDURE:

Rese= archers and practitioners are invited to submit papers for this special the= me issue on=C2=A0Application of machine learning theories in QSAR/QSPR=C2=A0on or before= =C2=A0October 1 2018.=C2=A0

All submis= sions must be original and may not be under review by another publication.= =C2=A0All submitt= ed papers will be reviewed on a double-blind, peer review basis. Papers mus= t follow APA style for reference citations.=C2=A0NO submission and publication FEES=E2=80=A8are asked for thi= s journal.=C2=A0<= u>

=C2=A0All inquires should be directed to = the attention of:

=C2=A0Giuseppina Gini -=C2=A0G= uest Editor -=C2=A0International Jour= nal of Quantitative Structure-Property Relationships (IJQSPR)

E-mail:=C2=A0giuseppina.gini~!~polimi.it

=
Giuseppina Gini
DEIB, =C2=A0Po= litecnico di Milano
piazza L. da Vinci 32
20133 Milano Italy





--0000000000006aceab056cf6ede5-- From owner-chemistry@ccl.net Thu May 24 21:03:01 2018 From: "Kunal Roy kunalroy_in###yahoo.com" To: CCL Subject: CCL: CFP special issue "Application of machine learning theories in QSAR/QSPR" - Int J of Quantitative Structure-Property Relationships (IJQSPR) Message-Id: <-53321-180524204630-24631-EOhzIwaPbd+YgeBPd5zwhQ:server.ccl.net> X-Original-From: Kunal Roy Content-Type: multipart/alternative; boundary="----=_Part_5316733_945083801.1527209169577" Date: Fri, 25 May 2018 00:46:09 +0000 (UTC) MIME-Version: 1.0 Sent to CCL by: Kunal Roy [kunalroy_in+/-yahoo.com] ------=_Part_5316733_945083801.1527209169577 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: quoted-printable There is no submission or processing fee for this journal (https://www.igi-= global.com/journal/international-journal-quantitative-structure-property/12= 6552=C2=A0) ! [And this Publisher has never been in the list of predatory publishers as a= ll their journals are subscription based] Prof. Kunal Roy, Ph.D.=20 Professor, Drug Theoretics and Cheminformatics Lab, Department of Pharmaceu= tical Technology,=20 JADAVPUR UNIVERSITY, Kolkata 700 032 (INDIA)Email : kroy(_)pharma.jdvu.ac.in = , kunalroy_in(_)yahoo.com=C2=A0=C2=A0; Phone: +91 33 2457 2051 (Off)URL :=C2= =A0=C2=A0 http://sites.google.com/site/kunalroyindia/,=C2=A0http://www.jadu= niv.edu.in/profile.php?uid=3D550Publication list:=C2=A0http://www.researche= rid.com/rid/B-1673-2009=C2=A0=C2=A0ORCID:=C2=A0http://orcid.org/0000-0003-4= 486-8074Formerly, Marie Curie International Incoming Fellow and Commonwealt= h Academic Staff Fellow, University of Manchester, UK =20 On Friday, 25 May, 2018, 12:37:55 AM IST, Vladimir Chupakhin chupvl]|[g= mail.com wrote: =20 =20 Seriously, adv for predatory publishers? Best regards,Vladimir Chupakhin On Thu, May 24, 2018 at 11:52 AM, Giuseppina Gini 10000654*polimi.it wrote: This CfP can be of interest for =C2=A0people in the list. Apologies for pos= sible cross posting -=C2=A0 *********************=C2=A0CALL FOR PAPERS=C2=A0********************* =C2=A0SUBMISSION DUE DATE:=C2=A0October 1, 2018=C2=A0 SPECIAL ISSUE ON=C2=A0Application of machine learning theories in QSAR/QSPR International Journal of Quantitative Structure-Property Relationships (IJQ= SPR) =C2=A0Guest Editor:=C2=A0Giuseppina Gini, DEIB, Politecnico di Milano, Ital= y INTRODUCTION: Many forces drive modern QSAR/QSPR models: -=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0first of all the requireme= nts of creating new chemicals with wanted properties in fields as large as = drugs, cosmetics, biocides, and industrial products; -=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0second, the growing concer= n about the risks of chemicals that has produces advanced norms to regulate= their use; -=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0third, the availability of= more data in the public domain that opened the door to more advanced model= s; -=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0finally, the tremendous im= proving of hardware and software that allows more complex modeling, as repr= esented in particular by the development of Artificial Intelligence methods= . About 20 years ago the Artificial Intelligence (AI) and the Toxicology Comm= unities joined together in the so-called =E2=80=9CPredictive Challenge=E2= =80=9D, where a few tens of molecules were given to researchers to produce = a QSAR model of cancerogenicity. The results then showed that it is possibl= e to build a QSAR model only using the chemical structure. In the following= years QSAR methods started to embrace new learning methods, to incorporate= more kinds of descriptors, and to move from linear to non-linear models. More recently, a new challenge promoted by the pharm industry was launched = in 2012 with thousands of chemical structures; among the many models develo= ped a deep neural net was found to be at the core of the winning model. =C2=A0OBJECTIVE OF THE SPECIAL ISSUE: Even though Artificial Intelligence methods are commonly used in modeling p= hysical and biological properties of chemicals, there is a lack of clearly = assessing their advantages or disadvantages in building QSAR/QSPR. Moreover= , AI models may incorporate both symbolic and implicit knowledge representa= tions, and extracting and organizing knowledge from such models is still ch= allenging. This special issue will try to give answer to questions such as: =C2=B7=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0How AI based methods work i= n making accurate and predictive QSAR/QSPR models? =C2=B7=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0What kind of knowledge is r= epresented or hidden in AI-based models? =C2=B7=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0Which kind of chemical and = biological knowledge should and could be given to AI based models? =C2=B7=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0How and why users can accep= t AI-based models? =C2=B7=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0What are the next challenge= s for QSAR/QSPR methods? =C2=A0 RECOMMENDED TOPICS: Topics to be discussed in this special issue include (but are not limited t= o) the following:=C2=A0 =20 - Application of AI tools, including Support Vector Machines and Neural = Networks, to QSAR/QSPR - Use of ensemble methods, as Random Forests, to build QSAR/QSPR - Learning methods for modeling: pros and cons - Deep Neural Nets and deep learning for building QSAR/QSPR - Learning from chemical structures - AI methods to define and choose descriptors - AI methods to automatically extract relevant functional subgroups to b= uild SAR models - AI methods to integrate SAR and QSAR - Extracting knowledge from AI models of chemical/biological properties - Interpreting AI models in terms of chemical and biological knowledge - AI methods to integrate statistical results and expert knowledge - AI tools to integrate in vivo and in vitro data - Acceptance of AI methods in various user contexts - Hardware and software to develop AI-based QSAR/QSPR models - Theoretical developments of new QSARs using machine learning principle= s=C2=A0 SUBMISSION PROCEDURE: Researchers and practitioners are invited to submit papers for this special= theme issue on=C2=A0Application of machine learning theories in QSAR/QSPR= =C2=A0on or before=C2=A0October 1 2018.=C2=A0 All submissions must be original and may not be under review by another pub= lication.=C2=A0All submitted papers will be reviewed on a double-blind, pee= r review basis. Papers must follow APA style for reference citations.=C2=A0= NO submission and publication FEES=E2=80=A8are asked for this journal.=C2= =A0 =C2=A0All inquires should be directed to the attention of: =C2=A0Giuseppina Gini -=C2=A0Guest Editor -=C2=A0International Journal of Q= uantitative Structure-Property Relationships (IJQSPR) E-mail:=C2=A0giuseppina.gini~!~ polimi.it Giuseppina Gini DEIB, =C2=A0Politecnico di Milanopiazza L. da Vinci 32 20133 Milano Italy =20 ------=_Part_5316733_945083801.1527209169577 Content-Type: text/html; charset=UTF-8 Content-Transfer-Encoding: quoted-printable
There is no submission or processing fee for = this journal (https://www.igi-global.com/journal/international-journal-quantitativ= e-structure-property/126552 ) !

[And this= Publisher has never been in the list of predatory publishers as all their = journals are subscription based]


Prof. Kunal= Roy, Ph.D.
Pro= fessor, Drug Theoretics and Cheminformatics Lab, Department of Pharmaceutic= al Technology,
JADAVPUR UNIVERSITY, Kolkata 700 032 (INDI= A)
Publication list: http://www= .researcherid.com/rid/B-1673-2009  
<= b style=3D"text-align:justify;line-height:21px;background-color:rgb(255, 25= 5, 255);">ORCID: http://orcid.org/000= 0-0003-4486-8074
Formerly, Marie Curie International Incoming Fellow and C= ommonwealth Academic Staff Fellow, University of Manchester, UK




=20
=20
On Friday, 25 May, 2018, 12:37:55 AM IST, Vladimir = Chupakhin chupvl]|[gmail.com <owner-chemistry(_)ccl.net> wrote:


Serious= ly, adv for predatory publishers?

Best regards,
Vladimir Chupakhin
On Thu, May 24, 2018 at 11:52 AM, = Giuseppina Gini 10000654*polimi.it <owner-chemistry[]ccl.net> wrote:

This CfP can be of inte= rest for  people in the list. Apologies for possible cross posting -&n= bsp;


<= /p>

*********************&nbs= p;CALL FOR PAPERS *********************

 SUBMISSION DUE DATE:=  October 1, 2018&nb= sp;

SPECIAL I= SSUE ON Application of machine learning theories in QSAR/QSPR<= span lang=3D"EN-US" style=3D"font-family:Candara;">

International Journal of Quantitative Structure-Property R= elationships (IJQSPR)

 Guest Editor: = Giuseppina Gini, DEIB, Politecnico= di Milano, Italy


=

INTRODUCTION:

Many forces drive modern QSAR/QSPR models:<= u>

-  &nb= sp;     first of all the requirements of creating new che= micals with wanted properties in fields as large as drugs, cosmetics, bioci= des, and industrial products;

-        second, the gro= wing concern about the risks of chemicals that has produces advanced norms = to regulate their use;

-<= span style=3D"">        third, the availabil= ity of more data in the public domain that opened the door to more advanced= models;

-=         finally, the tremendous improving of= hardware and software that allows more complex modeling, as represented in= particular by the development of Artificial Intelligence methods.

About= 20 years ago the Artificial Intelligence (AI) and the Toxicology Communiti= es joined together in the so-called =E2=80=9CPredictive Challenge=E2=80=9D,= where a few tens of molecules were given to researchers to produce a QSAR = model of cancerogenicity. The results then showed that it is possible to bu= ild a QSAR model only using the chemical structure. In the following years = QSAR methods started to embrace new learning methods, to incorporate more k= inds of descriptors, and to move from linear to non-linear models.

More recentl= y, a new challenge promoted by the pharm industry was launched in 2012 with= thousands of chemical structures; among the many models developed a deep n= eural net was found to be at the core of the winning model.

&n= bsp;OBJECTIVE OF THE SPECIAL IS= SUE:

Even t= hough Artificial Intelligence methods are commonly used in modeling physica= l and biological properties of chemicals, there is a lack of clearly assess= ing their advantages or disadvantages in building QSAR/QSPR. Moreover, AI m= odels may incorporate both symbolic and implicit knowledge representations,= and extracting and organizing knowledge from such models is still challeng= ing.

This special issue will try to give answer to questions such as:=

=C2=B7   &nb= sp;   How AI based methods work in making accurate and predictive QSA= R/QSPR models?

=C2=B7       What kind of knowledge is repres= ented or hidden in AI-based models?

= =C2=B7       Which kind = of chemical and biological knowledge should and could be given to AI based = models?

=C2=B7       How and why users can accept AI-based m= odels?

=C2=B7       What are the next challenges for QSAR/QS= PR methods?

 

RECOMMENDED TOPICS:

Topics to be discussed in this speci= al issue include (but are not limited to) the following: 

  • Application of AI tool= s, including Support Vector Machines and Neural Networks, to QSAR/QSPR
  • Use of ensemble me= thods, as Random Forests, to build QSAR/QSPR
  • <= li class=3D"yiv6145120237MsoNormal">Learning methods for modeling: pros and cons=
  • Deep Neural N= ets and deep learning for building QSAR/QSPR
  • <= li class=3D"yiv6145120237MsoNormal">Learning from chemical structures<= /u>
  • AI methods to define and= choose descriptors
  • AI methods to automatically extract relevant functional subgroups to = build SAR models
  • AI methods to integrate SAR and QSAR
  • Extracting knowledge from AI models of chemical/b= iological properties
  • Interpreting AI models in terms of chemical and biological knowledge=
  • AI methods to= integrate statistical results and expert knowledge
  • AI tools to integrate in vivo and in = vitro data
  • Acc= eptance of AI methods in various user contexts
  • Hardware and software to develop AI-based = QSAR/QSPR models
  • Theoretical developments of new QSARs using machine lea= rning principles 

<= span lang=3D"EN-US" style=3D"font-family:Candara;font-size:11px;">SUBMISSIO= N PROCEDURE:

Researchers and = practitioners are invited to submit papers for this special theme issue on&= nbsp;Applicat= ion of machine learning theories in QSAR/QSPR on or before <= /i>October 1 2018

Al= l submissions must be original and may not be under review by another publi= cation. All= submitted papers will be reviewed on a double-blind, peer review basis. Pa= pers must follow APA style for reference citations. NO submission and publication FEE= S=E2=80=A8are as= ked for this journal. 

 All inquires should b= e directed to the attention of:

 Giuseppina Gini - Guest Editor - International Journal of Quantitative Structure-Property = Relationships (IJQSPR)

E-mail: giuseppina.gini~!= ~ polimi.it

Giusep= pina Gini
DEIB,  Politecnico di Milano
piazza L. da Vinci 3220133 Milano Italy




------=_Part_5316733_945083801.1527209169577--