From chemistry-request@ccl.net Tue Oct 15 03:38:39 1991 From: mark@crystal.uwa.oz.au (Mark C Favas) Date: Tue, 15 Oct 91 15:14:37 WST To: chemistry@ccl.net Subject: Comput. chemistry archive/data exchange file format Status: R The Application of the STAR File Concepts to the Electronic Archiving and Exchange of Quantum Chemistry Data _____ Syd Hall, Crystallography Centre, University of Western Australia, Nedlands, AUSTRALIA 6009. Fx: +61 9 380 1014 Em: syd@crystal.uwa.oz.au Mark Favas, Crystallography Centre, University of Western Australia, Nedlands, AUSTRALIA 6009. Fx: +61 9 380 1014 Em: mark@crystal.uwa.oz.au Graham Chandler, Dept. of Chemistry, University of Western Australia, Nedlands, AUSTRALIA 6009. Fx: +61 9 380 1005 Em: gsc@crystal.uwa.oz.au ----- In recent months there has been considerable interest in the development of a common format for the electronic exchange of quantum chemistry data. The communications about exchange formats included details of the Crystallographic Information File (CIF) which has been adopted by the International Union of Crystallography (IUCr) for data exchange and publication submission, and the recently published STAR File (Hall, JCICS, 31, 326-333) on which the CIF is based. The requests for reprints and CIF/STAR software have prompted us to prepare some examples of quantum chemistry data stored in STAR format, and to also construct a sample data dictionary similar to that used for the CIF. We present this material for discussion and comment. It is not intended to be a specific proposal that quantum chemistry data always be exchanged in this format, though, in the absence a superior approach, this may be worth considering. Certainly there are advantages to using an exchange format that is compatible with that of our crystallographic colleagues, as there are areas of definite overlap. Readers are reminded that information about the CIF Core dictionary 'cifdic.C91', the CIF access tool QUASAR and CIF validator tool CYCLOPS are available by mailing 'sendcif@crystal.uwa.oz.au' and including the commands 'inquire' and 'help'. Attached are a series of sample files. They are presented without discussion of the STAR File syntax. Most readers will find that file structures are sufficiently self-descriptive to make this unnecessary. Reprints of both the CIF and STAR papers are available from any of the above if the reader wants to obtain a more precise description of the syntax rules. The attached files are: (1) An example of basis set functions from the "Handbook of Gaussian Basis Sets" by Poirier, Kari and Csizmadia (1985) in STAR File format. This data file, and that in (2) and (3), contain the same basis sets. In this example the data is expressed in its simplest and most verbose format in which each basis set is stored in a separate data block. It is not sugg- ested that this, or those in (2) and (3), are the preferred method of storing basis sets; they are shown simply to illustrate the diversity of formats that the STAR syntax provides. The multiple data blocks (i.e. blocks of data preceded by 'data_*') used in this example provide enormous flexibility for the individual definition of basis sets, but are less efficient in terms of storage volume over (2) and (3) below. (2) This is the identical data to (1) but the basis sets are placed in data blocks for each atom type. The different basis sets for an atom type are looped within within these data blocks. This data structure is less flexible than (1) but more so than (3). (3) Again, this is identical data to (1) but now all the gaussian basis sets have been placed in a single data block. Basis sets are in nested loops according to atom type and to function type. This data structure is the most efficient in terms of storage volume but least in terms of data flexibility [the addition of a new data item to any basis set (e.g. the oxidation number) would require a change to all basis sets]. (4) The example files (1), (2) and (3) contain codes for source references and comments for the basis sets. This file contains the references and comments in STAR Format. The codes used here match those used in (1), (2) and (3). Note that the STAR construction would have permitted the full reference text and the comments to be included with the primary data [i.e. in files (1), (2) or (3)] but this would significantly increase the volume of these files. (5) This file is a sample 'data name' dictionary which defines the data items used in examples (1) to (4). Note that the format of the dictionary is also a STAR file, with its own set of specialized data names (these are defined at end of the file). The dictionary file serves a number of very important purposes. It defines each data item so that it may be used for global data exchange (there must be no ambiguity about the nature of the data used in an exchange file) and it specifies the attributes of the data (e.g. data type, numerical contraints, units, etc.). The latter is particularly useful for the computer validation of data names and attributes. The program CYCLOPS was used to validate the above files and the dictionary itself! (6) This file contains data from an SCF run for the water molecule using the program CADPAC. It is given here to illustrate how a wider diversity of quantum chemistry data is stored in a STAR File. Note how the data names are constructed in a hierarchical order according to their function. This assists in their grouping in the file and in the dictionary. If the STAR syntax was adopted for global data exchange by quantum chemists, data names would need to be defined for all commonly used quantities. An important spin-off of these definitions is that quantum chemistry would then have a common set of 'standard data' items. ============================================================================== (1) A sample of PKC basis sets as example 1 of a STAR format. --------------------------------------------------------- data_GLOBAL _basis_set_audit_history ; 91:10:05 Selected examples of the H, Li and Cu basis sets added from Appendix G of Poirier, Kari and Csizmadia. These are identified in each basis set by PKCn.n.n in the data block code preceded by the atom type. SRH. 91:10:06 Some refinements to the layout. SRH. 91:10:08 Some changes to data names. SRH. 91:10:10 Further changes to data names. SRH. ; data_atomic_list loop_ _basis_set_atomic_name _basis_set_atomic_symbol _basis_set_atomic_number _basis_set_atomic_mass hydrogen H 1 1.0079 Helium He 2 4.0026 Lithium Li 3 6.94 . . . . Copper Cu 29 63.546 data_H_PKC_1.1.1 _basis_set_type_orbital Gaussian _basis_set_contraction_scheme (2)->[2] _basis_set_funct_per_contraction {1:} _basis_set_source_exponent R44 _basis_set_atomic_energy -0.485813 loop_ _basis_set_function_exponent _basis_set_function_coefficient 1.3324838E+01 1.0000000E+01 2.0152720E-01 1.0000000E+01 data_H_PKC_1.2.1 _basis_set_contraction_scheme (2)->[2] _basis_set_funct_per_contraction {1:} _basis_set_source_exponent R33 _basis_set_atomic_energy -0.485813 loop_ _basis_set_function_exponent _basis_set_function_coefficient 1.3326990E+01 1.0000000E+01 2.0154600E-01 1.0000000E+01 data_H_PKC_1.14.1 _basis_set_contraction_scheme (2)->[1] _basis_set_funct_per_contraction {2} _basis_set_source_exponent R24 _basis_set_source_coefficient R24 _basis_set_comments_index C19 _basis_set_atomic_energy -0.485813 loop_ _basis_set_function_exponent _basis_set_function_coefficient 1.3324800E-01 2.7440850E-01 2.0152870E-01 8.2122540E-01 data_H_PKC_1.23.1 _basis_set_contraction_scheme (3)->[2] _basis_set_funct_per_contraction {2:1} _basis_set_source_exponent R75 _basis_set_source_coefficient R75 _basis_set_comments_index C13,C19 _basis_set_atomic_energy -.0496979 loop_ _basis_set_function_exponent _basis_set_function_coefficient 4.5018000E+00 1.5628500E-01 6.8144400E-01 9.0469100E-01 1.5139800E-01 1.0000000E+01 data_Li_PKC_3.1.1 _basis_set_contraction_scheme (4)->[4] _basis_set_funct_per_contraction {1:} _basis_set_source_exponent R44 _basis_set_atomic_energy -7.376895 loop_ _basis_set_function_exponent _basis_set_function_coefficient 3.4856175E+01 1.0 5.1764114E+00 1.0 1.0514394E+00 1.0 4.7192775E-02 1.0 data_Li_PKC_3.9.1 # Note that this basis set contains repeated primitives. _basis_set_contraction_scheme (9,4)->[3,2] _basis_set_funct_per_contraction {7:2:1,3:1} _basis_set_source_exponent R2 _basis_set_source_coefficient R98 _basis_set_comments_index C77 _basis_set_atomic_energy -7.431735 loop_ _basis_set_function_exponent _basis_set_function_coefficient 921.271 0.001367 138.730 0.010425 31.9415 0.049859 9.35329 0.160701 3.15789 0.344604 1.15685 0.425197 0.44462 0.169468 0.44462 -0.222311 0.076663 1.116477 0.028643 1.0 1.488 0.038770 0.2667 0.236257 0.07201 0.830448 0.02370 1.0 data_Li_PKC_3.30.1 # Note that the p functions in this basis set have the same exponents # as a sub-set of the s functions. The s and p functions have been # listed separately. Note the repetition of the last three coefficients. _basis_set_contraction_scheme (4,3)->[3,2] _basis_set_funct_per_contraction {4:2:1,2:1} _basis_set_source_exponent R77 _basis_set_source_coefficient R77 _basis_set_comments_index C91,C50 _basis_set_atomic_energy -7.419509 loop_ _basis_set_function_exponent _basis_set_function_coefficient 1.09353D+02 1.90277D-02 1.64228D+01 1.30276D-01 3.59415D+00 4.39082D-01 9.05297D-01 5.57314D-01 5.40205D-01 -2.63127D-01 1.02255D-01 1.14339D+00 2.85645D-02 1.00000D+00 5.40205D-01 1.61546D-01 1.02255D-01 9.15663D-01 2.85645D-02 1.00000D+00 data_Cu_PKC_29.1.1 _basis_set_contraction_scheme (14,9,5)->[14,9,5] _basis_set_funct_per_contraction {1:} _basis_set_source_exponent R46 _basis_set_comments_index C4,C28,79 _basis_set_atomic_energy -1638.8759 loop_ _basis_set_function_exponent _basis_set_function_coefficient 0.31025293E+06 1.0 0.46637712E+05 1.0 0.10652747E+05 1.0 0.30459213E+04 1.0 0.10115187E+04 1.0 0.37452120E+03 1.0 0.15089684E+03 1.0 0.64633174E+02 1.0 0.22117173E+02 1.0 0.93453475E+01 1.0 0.25692979E+01 1.0 0.10124632E+01 1.0 0.13828203E+00 1.0 0.48874680E-01 1.0 0.20336501E+04 1.0 0.48471107E+03 1.0 0.15802207E+03 1.0 0.60562742E+02 1.0 0.25387743E+02 1.0 0.11172029E+02 1.0 0.45361622E+01 1.0 0.18931355E+01 1.0 0.72779079E+00 1.0 0.53555631E+02 1.0 0.15101581E+02 1.0 0.50892342E+01 1.0 0.17406786E+01 1.0 0.51338127E+00 1.0 data_Cu_PKC_29.2.1 _basis_set_contraction_scheme (9,5,3)->[3,2,2] _basis_set_funct_per_contraction {5:2:2,3:2,2:1} _basis_set_source_exponent R29 _basis_set_source_coefficient R29 _basis_set_comments_index C2,C32 _basis_set_atomic_energy ? loop_ _basis_set_function_exponent _basis_set_function_coefficient 34677.9 0.00465 5275.88 0.03435 1217.27 0.15491 348.010 0.42041 111.982 0.47491 26.9098 0.30688 11.3757 0.76255 2.86660 0.50864 1.12305 0.73043 291.007 0.06501 67.1702 0.34925 19.7789 0.62468 5.25234 0.34606 1.54758 0.77927 17.0869 0.16185 4.26917 0.50524 1.02366 1.0 ============================================================================== (2) A sample of PKC basis sets as example 2 of a STAR format. --------------------------------------------------------- data_GLOBAL _basis_set_type_orbital Gaussian _basis_set_audit_history ; 91:10:05 Selected examples of the H, Li and Cu basis sets added from Appendix G of Poirier, Kari and Csizmadia. These are identified in each basis set by PKCn.n.n in the data item _basis_set_primary_reference. SRH. 91:10:06 Some refinements to the layout. SRH. 91:10:08 Some changes to data names. SRH. 91:10:10 Further changes to data names. SRH. ; data_hydrogen _basis_set_atomic_name hydrogen _basis_set_atomic_symbol H _basis_set_atomic_number 1 _basis_set_atomic_mass 1.0079 loop_ _basis_set_contraction_scheme _basis_set_funct_per_contraction _basis_set_primary_reference _basis_set_source_exponent _basis_set_source_coefficient _basis_set_comments_index _basis_set_atomic_energy loop_ _basis_set_function_exponent _basis_set_function_coefficient (2)->[2] {1:} PKC1.1.1 R44 . . -0.485813 1.3324838E+01 1.0000000E+01 2.0152720E-01 1.0000000E+01 stop_ (2)->[2] {1:} PKC1.2.1 R33 . . -0.485813 1.3326990E+01 1.0000000E+01 2.0154600E-01 1.0000000E+01 stop_ (2)->[1] {2} PKC1.14.1 R24 R24 C19 -0.485813 1.3324800E-01 2.7440850E-01 2.0152870E-01 8.2122540E-01 stop_ (3)->[2] {2:1} PKC1.23.1 R75 R75 C13,C19 -.0496979 4.5018000E+00 1.5628500E-01 6.8144400E-01 9.0469100E-01 1.5139800E-01 1.0000000E+01 stop_ data_lithium _basis_set_atomic_name lithium _basis_set_atomic_symbol Li _basis_set_atomic_number 3 _basis_set_atomic_mass 6.94 loop_ _basis_set_contraction_scheme _basis_set_funct_per_contraction _basis_set_primary_reference _basis_set_source_exponent _basis_set_source_coefficient _basis_set_comments_index _basis_set_atomic_energy loop_ _basis_set_function_exponent _basis_set_function_coefficient (4)->[4] {1:} PKC3.1.1 R44 . . -7.376895 3.4856175E+01 1.0 5.1764114E+00 1.0 1.0514394E+00 1.0 4.7192775E-02 1.0 stop_ # Note that the next basis set contains repeated primitives. (9,4)->[3,2] {7:2:1,3:1} PKC3.9.1 R2 R98 C77 -7.431735 921.271 0.001367 138.730 0.010425 31.9415 0.049859 9.35329 0.160701 3.15789 0.344604 1.15685 0.425197 0.44462 0.169468 0.44462 -0.222311 0.076663 1.116477 0.028643 1.0 1.488 0.038770 0.2667 0.236257 0.07201 0.830448 0.02370 1.0 stop_ # Note that the p functions in this basis set have the same exponents # as a sub-set of the s functions. The s and p functions have been # listed separately. Note the repetition of the last three coefficients. (4,3)->[3,2] {4:2:1,2:1} PKC3.30.1 R77 R77 C91,C50 -7.419509 1.09353D+02 1.90277D-02 1.64228D+01 1.30276D-01 3.59415D+00 4.39082D-01 9.05297D-01 5.57314D-01 5.40205D-01 -2.63127D-01 1.02255D-01 1.14339D+00 2.85645D-02 1.00000D+00 5.40205D-01 1.61546D-01 1.02255D-01 9.15663D-01 2.85645D-02 1.00000D+00 stop_ data_copper _basis_set_atomic_name copper _basis_set_atomic_symbol Cu _basis_set_atomic_number 29 _basis_set_atomic_mass 63.546 loop_ _basis_set_contraction_scheme _basis_set_funct_per_contraction _basis_set_primary_reference _basis_set_source_exponent _basis_set_source_coefficient _basis_set_comments_index _basis_set_atomic_energy loop_ _basis_set_function_exponent _basis_set_function_coefficient (14,9,5)->[14,9,5] {1:} PKC29.1.1 R46 . C4,C28,C79 -1638.8759 0.31025293E+06 1.0 0.46637712E+05 1.0 0.10652747E+05 1.0 0.30459213E+04 1.0 0.10115187E+04 1.0 0.37452120E+03 1.0 0.15089684E+03 1.0 0.64633174E+02 1.0 0.22117173E+02 1.0 0.93453475E+01 1.0 0.25692979E+01 1.0 0.10124632E+01 1.0 0.13828203E+00 1.0 0.48874680E-01 1.0 0.20336501E+04 1.0 0.48471107E+03 1.0 0.15802207E+03 1.0 0.60562742E+02 1.0 0.25387743E+02 1.0 0.11172029E+02 1.0 0.45361622E+01 1.0 0.18931355E+01 1.0 0.72779079E+00 1.0 0.53555631E+02 1.0 0.15101581E+02 1.0 0.50892342E+01 1.0 0.17406786E+01 1.0 0.51338127E+00 1.0 stop_ (9,5,3)->[3,2,2] {5:2:2,3:2,2:1} PKC29.2.1 R29 R29 C2,C32 ? 34677.9 0.00465 5275.88 0.03435 1217.27 0.15491 348.010 0.42041 111.982 0.47491 26.9098 0.30688 11.3757 0.76255 2.86660 0.50864 1.12305 0.73043 291.007 0.06501 67.1702 0.34925 19.7789 0.62468 5.25234 0.34606 1.54758 0.77927 17.0869 0.16185 4.26917 0.50524 1.02366 1.0 stop_ ============================================================================== (3) A sample of PKC basis sets as example 3 of a STAR format. --------------------------------------------------------- data_GLOBAL _basis_set_audit_history ; 91:10:05 Selected examples of the H, Li and Cu basis sets added from Appendix G of Poirier, Kari and Csizmadia. These are identified in each basis set by PKCn.n.n in the data item _basis_set_primary_reference. SRH. 91:10:06 A different looping structure to example 2. More concise but less flexible to addition or deletion of data items. SRH. 91:10:08 Keep data names identical to other examples. SRH. 91:10:10 Further changes to data names. SRH. ; data_Gaussian loop_ _basis_set_atomic_name _basis_set_atomic_symbol _basis_set_atomic_number _basis_set_atomic_mass loop_ _basis_set_contraction_scheme _basis_set_funct_per_contraction _basis_set_primary_reference _basis_set_source_exponent _basis_set_source_coefficient _basis_set_comments_index _basis_set_atomic_energy loop_ _basis_set_function_exponent _basis_set_function_coefficient hydrogen H 1 1.0079 # -------- (2)->[2] {1:} PKC1.1.1 R44 . . -0.485813 1.3324838E+01 1.0 2.0152720E-01 1.0 stop_ (2)->[2] {1:} PKC1.2.1 R33 . . -0.485813 1.3326990E+01 1.0 2.0154600E-01 1.0 stop_ (2)->[1] {2} PKC1.14.1 R24 R24 C19 -0.485813 1.3324800E-01 2.7440850E-01 2.0152870E-01 8.2122540E-01 stop_ (3)->[2] {2:1} PKC1.23.1 R75 R75 C13,C19 -.0496979 4.5018000E+00 1.5628500E-01 6.8144400E-01 9.0469100E-01 1.5139800E-01 1.0000000E+01 stop_ stop_ lithium Li 3 6.94 # ------- (4)->[4] {1:} PKC3.1.1 R44 . . -7.376895 3.4856175E+01 1.0 5.1764114E+00 1.0 1.0514394E+00 1.0 4.7192775E-02 1.0 stop_ # Note that the next basis set contains repeated primitives. (9,4)->[3,2] {7:2:1,3:1} PKC3.9.1 R2 R98 C77 -7.431735 921.271 0.001367 138.730 0.010425 31.9415 0.049859 9.35329 0.160701 3.15789 0.344604 1.15685 0.425197 0.44462 0.169468 0.44462 -0.222311 0.076663 1.116477 0.028643 1.0 1.488 0.038770 0.2667 0.236257 0.07201 0.830448 0.02370 1.0 stop_ # Note that the p functions in this basis set have the same exponents # as a sub-set of the s functions. The s and p functions have been # listed separately. Note the repetition of the last three coefficients. (4,3)->[3,2] {4:2:1,2:1} PKC3.30.1 R77 R77 C91,C50 -7.419509 1.09353D+02 1.90277D-02 1.64228D+01 1.30276D-01 3.59415D+00 4.39082D-01 9.05297D-01 5.57314D-01 5.40205D-01 -2.63127D-01 1.02255D-01 1.14339D+00 2.85645D-02 1.00000D+00 5.40205D-01 1.61546D-01 1.02255D-01 9.15663D-01 2.85645D-02 1.00000D+00 stop_ stop_ copper Cu 29 63.546 # ------ (14,9,5)->[14,9,5] {1:} PKC29.1.1 R46 . C4,C28,C79 -1638.8759 0.31025293E+06 1.0 0.46637712E+05 1.0 0.10652747E+05 1.0 0.30459213E+04 1.0 0.10115187E+04 1.0 0.37452120E+03 1.0 0.15089684E+03 1.0 0.64633174E+02 1.0 0.22117173E+02 1.0 0.93453475E+01 1.0 0.25692979E+01 1.0 0.10124632E+01 1.0 0.13828203E+00 1.0 0.48874680E-01 1.0 0.20336501E+04 1.0 0.48471107E+03 1.0 0.15802207E+03 1.0 0.60562742E+02 1.0 0.25387743E+02 1.0 0.11172029E+02 1.0 0.45361622E+01 1.0 0.18931355E+01 1.0 0.72779079E+00 1.0 0.53555631E+02 1.0 0.15101581E+02 1.0 0.50892342E+01 1.0 0.17406786E+01 1.0 0.51338127E+00 1.0 stop_ (9,5,3)->[3,2,2] {5:2:2,3:2,2:1} PKC29.2.1 R29 R29 C2,C32 ? 34677.9 0.00465 5275.88 0.03435 1217.27 0.15491 348.010 0.42041 111.982 0.47491 26.9098 0.30688 11.3757 0.76255 2.86660 0.50864 1.12305 0.73043 291.007 0.06501 67.1702 0.34925 19.7789 0.62468 5.25234 0.34606 1.54758 0.77927 17.0869 0.16185 4.26917 0.50524 1.02366 1.0 stop_ stop_ ============================================================================== (4) The Source References and Comments data in STAR format. ------------------------------------------------------- data_GLOBAL _basis_set_audit_history ; 91:10:10 Initial references keyed in from the reference list in Appendix A pages 70 - 74 of Poirier, Kari and Csizmadia (Elsevier, 1985). 91:10:14 Some corrections to references. ; data_basis_set_list_source loop_ _basis_set_list_source_code _basis_set_list_source_text R1 ; REEVES, C.M., J. Chem. Phys., 39, 1 (1983). ; R2 ; HUZINAGA, S., J. Chem. Phys., 42, 1293 (1965). ; R3 ; CLEMENTI, E., IBM, J. Res. Develop. Suppl., 9, 2 (1965). ; R4 ; CLEMENTI, E., DAVIS, D.R., J. Comput. Phys., 1, 223 (1966). ; R5 ; WHITTEN, J.L., J. Chem. Phys., 44, 359 (1966). ; R6 ; FINK, W.H., ALLEN, L.C., J. Chem. Phys., 46, 2261 (1967). ; R7 ; SCHULMAN, J.M., MOSKOWITZ, J.W., HOLLISTER, C., J. Chem. Phys., 46, 2759 (1967). ; R8 ; CLEMENTI, E., CLEMENTI, H., DAVIS, D.R., J. Chem. Phys., 46, 4725 (1967). ; R9 ; CLEMENTI, E., J. Chem. Phys., 46, 4731 (1967). ; R10 ; RITCHIE, C.D., KING, H.F., J. Chem. Phys., 47, 564 (1967). ; R11 ; BASCH, H., ROBIN, M.B., KUEBLER, N.A., J. Chem. Phys., 47, 1201 (1967). ; R12 ; HOYLAND, J.R., J. Chem. Phys., 49, 1908 (1968). ; R13 ; SALEZ, C., VEILLARD, A., Theoret. Chim. Acta (Berl.), 11, 441 (1968). ; R14 ; VEILLARD, A., Theoret. Chim. Acta (Berl.), 12, 405 (1968). ; R15 ; HUZINAGA, S., SAKAI, Y., J. Chem. Phys., 50, 1371 (1969). ; R16 ; STEWART, R.F., J. Chem. Phys., 50, 2485 (1969). ; R17 ; WHITMAN, D.R., HORNBACK, C.J., J. Chem. Phys., 51, 398 (1969). ; R18 ; BASCH, H., HORNBACK, C.J., MOSKOWITZ, J.W., J. Chem. Phys., 51, 1311 (1969). ; R19 ; HEHRE, W.J., STEWART, R.F., POPLE, J.A., J. Chem. Phys., 51, 2657 (1969). ; R20 ; STEWART, R.F., J. Chem.Phys., 52, 431 (1970). ; R21 ; WACHTERS, A.J.H., J. Chem. Phys., 52, 1033 (1970). ; R22 ; HUZINAGA, S., ARNAU, C., J. Chem. Phys., 52, 2224 (1970). ; R23 ; HEHRE, W.J., DITCHFIELD, R., STEWART, R.F., POPLE, J.A., J. Chem. Phys. 52, 2769 (1970). ; R24 ; DITCHFIELD, R., HEHRE, W.J., POPLE, J.A., J. Chem. Phys., 52, 5001 (1970). ; R25 ; HUZINAGA, S., ARNAU, C., J. Chem. Phys., 53, 348 (1970). ; R26 ; DUNNING, T.H., JR., J. Chem. Phys., 53, 2823 (1970). ; R27 ; DUNNING, T.H., JR., Chem. Phys. Letters, 7, 423 (1970). ; R28 ; ROOS, B., SEIGBAHN, B., Theoret. Chim. Acta (Berl.), 17, 209 (1970); Erratum, 50, 365 (1979). ; R29 ; ROOS, B., VEILLARD, A., VINOT, G., Theoret. Chem. Acta (Berl.), 20, 1 (1971). ; R30 ; CLAXTON, T.A., SMITH, N.A., Theoret. Chim. Acta (Berl.), 22, 378 (1971). ; R31 ; DITCHFIELD, R., HEHRE, W.J., POPLE, J.A., J. Chem. Phys., 54, 724 (1971). ; R32 ; DUNNING, T.H., JR., J. Chem. Phys., 55, 716 (1971). ; R33 ; VAN DUIJNEVELDT, F.B., IBM, Res. J., 945 (#16437) (1971). ; R34 ; SCHULMAN, J.M., HORNBACK, C.J., MOSKOWITZ, J.W., Chem. Phys. Letters, 8, 361 (1971). ; R35 ; HEHRE, W.J., DITCHFIELD, R., POPLE, J.A., J. Chem. Phys., 56, 2257 (1972). ; R36 ; HEHRE, W.J., POPLE, J.A., J. Chem. Phys., 56, 4233 (1972). ; R37 ; HEHRE, W.J., LATHAN, W.A., J. Chem. Phys., 56, 5255 (1972). ; R38 ; ROBERT, J.-B., MARSMANN, H., SCHAAD, L.J., VAN WAZER, J.R., Phosphorus, 2, 11 (1972). ; R39 ; MORTOLA, A.P., BASCH, H., MOSKOWITZ, J.W., Intern. J. Quantum. Chem., 7, 725 (1973). ; R40 ; MEZEY, P.G., CSIZMADIA, I.G., STRAUSZ, O.P., Can. J. Phys., 53, 2512 (1975). ; R41 ; DILL, J.D., POPLE, J.A., J. Chem. Phys., 62, 2921 (1975). ; R42 ; KARI, R.E., MEZEY, P.G., CSIZMADIA, I.G., J. Chem. Phys., 64, 632 (1976). ; R43 ; BINKLEY, J.S., POPLE, J.A., J. Chem. Phys., 66, 879 (1977). ; R44 ; MEZEY, P.G., KARI, R.E., CSIZMADIA, I.G., J. Chem. Phys., 66, 964 (1977). ; R45 ; DUNNING, T.H., JR., J. Chem. Phys., 66, 1382 (1977). ; R46 ; HUZINAGA, S., J. Chem. Phys., 66, 4245 (1977). ; R47 ; HAY, P.J., J. Chem. Phys., 66, 4377 (1977). ; R48 ; VON NIESSEN, W., CEDERBAUM, L.S., DOMCKE, W., DIERCKSEN, G.H.F., J. Chem. Phys., 66, 4893 (1977). ; R49 ; MEZEY, P.G., CSIZMADIA, I.G., KARI, R.E., J. Chem. Phys., 67, 2927 (1977). ; R50 ; MEZEY, P.G., YATES, K., THEODORAKOPOULOS, G., CSIZMADIA, I.G., Intern. J. Quantum Chem., 12, 247 (1977). ; R51 ; MEZEY, P.G., CSIZMADIA, I.G., Can. J. Chem., 55, 1181 (1977). ; R52 ; MCLEAN, A.D., LOEW, G.H., BERKOWITZ, D.S., J. Mol. Spectrosc., 64, 184 (1977). ; R53 ; SNYDER, L.C., WASSERMAN, Z., Chem. Phys. Lett., 51, 349 (1977). ; R54 ; GUILLERMO DEL CONDE, P., BAGUS, P.S., BAUSCHLICHER, C.W., JR., Theoret. Chim. Acta (Berl.), 45, 121 (1977); From DUNNING, T.H., (Unpublished). ; R55 ; CARSKY, P., KOZAK, I., KELLO, V., URBAN, M., Collection Czechoslav. Chem. Commun., 42, 1460 (1977). ; R56 ; GIANOLO, L., PAVANI, R., CLEMENTI, E., Gazz. Chim. Ital., 108(5-6), 181 (1978). ; R57 ; MEZEY, P.G., BERNARDI, F., CSIZMADIA, I.G., STRAUSZ, O.P., Chem. Phys. Letters, 59, 117 (1978). ; R58 ; PACANSKY, J., DUPUIS, M., J. Chem. Phys., 68, 4277 (1978). ; R59 ; SANO, M., YAMATERA, H., HATANO, Y., Chem. Phys. Lett., 60, 257 (1979). ; R60 ; MEHLER, E.L., PAUL, C.H., Chem. Phys. Lett., 63, 145 (1979). ; R61 ; OBBERHAMMER, H., BOGGS, J.E., J. Mol. Struct., 55, 283 (1979). ; R62 ; OBBERHAMMER, H., BOGGS, J.E., J. Mol. Struct., 57, 175 (1979). ; R63 ; HUZINAGA, S., J. Chem. Phys., 71, 1980 (1979). ; R64 ; TATEWAKI, H., HUZINAGA, S., J. Chem. Phys., 71, 4339 (1979). ; R65 ; PULAY, P., FOGARASI, G., PANG, F., BOGGS, J.E., J. Am. Chem. Soc., 101, 2550 (1979). ; R66 ; PITZER, M.R., SCHAEFER III, H.F., J. Am. Chem. Soc., 101, 7176 (1979). ; R67 ; KRISHNAN, R., BINKLEY, J.S., SEEGER, R., POPLE, J.A., J. Chem. Phys., 72, 650 (1980). ; R68 ; TAVOUKTSOGLOU, A.N., HUZINAGA, S., J. Chem. Phys., 72, 1385 (1980). ; R69 ; VAN PIGGELEN, H.U., NIEUWPOORT, W.C., VAN DER VELDE, G.A., J. Chem. Phys., 72, 3727 (1980). ; R70 ; MCLEAN, A.D., CHANDLER, G.S., J. Chem. Phys., 72, 5639 (1980). ; R71 ; OHTA, K., NAKATSUJI, HIRAO, K., YONEZAWA, T., J. Chem. Phys., 73, 1770 (1980). ; R72 ; WERNER, H.-J., ROSMUS, P., J. Chem. Phys., 73, 2319 (1980). ; R73 ; TATEWAKI, H., HUZINAGA, S., J. Comput. Chem., 1, 205 (1980). ; R74 ; MEZEY, P.G., LIEN, M.H., YATES, K., CSIZMADIA, I.G., Theoret. Chim. Acta (Berl.), 40, 75 (1980). ; R75 ; BINKLEY, J.S., POPLE, J.A., HEHRE, W.J., J. Am. Chem. Soc., 102, 939 (1980). ; R76 ; OLBRICH, G., Chem. Phys. Lett., 73, 110 (1980). ; R77 ; GAUSSIAN 80: BINKLEY, J.S., WHITESIDE, R.A., KRISHNAN, R., SEEGER, R., DEFREES, D.J., SCHLEGEL, H.B., TOPIOL, KAHN, L.R., POPLE, J.A., QCPE, 13, 406 (1981). ; R78 ; GORDON, M.S., Chem. Phys. Letters, 76, 167 (1980). ; R79 ; PIETRO, W.J., LEVI, B.A., HEHRE, W.J., STEWART, R.F., Inorg. Chem., 19, 2225 (1980). ; R80 ; GIANOLIO, L., CLEMENTI, E., Gazz. Chim. Ital., 110, 179 (1980). ; R81 ; SKANCKE, P.N., FOGARASI, G., BOGGS, J.E., J. Mol. Struct., 62, 259 (1980). ; R82 ; SAKAI, Y., TATEWAKI, H., HUZUNAGA, S., J. Comput. Chem., 2, 100 (1981). ; R83 ; KIRSCHENBUAM, L.J., HOWELL, J.M., ROSSI, A., J. Phys. Chem. 85, 17 (1981). ; R84 ; RAPPE, A.K., SMEDLEY, T.A., GODDARD, III, W.A., J. Phys. Chem. 85, 2607 (1981). ; R85 ; POIRIER, R.A, DAUDEL, R., CSIZMADIA, I.G., Intern. J. Quantum Chem., 19, 693 (1981). ; R86 ; SPANGLER, D., WENDOLOSKI, J.J., DUPUIS, M., CHEN, M.M.L., SCHAFFER III, H.F., J. Am. Chem. Soc., 103, 3985 (1981). ; R87 ; GORDON, M.S., BINKLEY, J.S., POPLE, J.A., PIETRO, W.J., HEHRE, W.J., J. Am. Chem. Soc., 104, 2797 (1982). ; R88 ; POIRIER, R.A., DAUDEL, R., MEZEY, P.G., CSIZMADIA, I.G., Int. J. Quantum Chem., 21, 799 (1982). ; R89 ; TATEWAKI, H., SAKAI, Y., HUZINAGA, S., J. Comput. Chem., 2, 278 (1982). ; R90 ; POIRIER, R.A., CSIZMADIA, I.G., (Unpublished) 4-31G. ; R91 ; SAKAI, Y., TATEWAKI, H., HUZINAGA, S., J. Comput. Chem., 3, 6 (1982). ; R92 ; LIE, G.L., CLEMENTI, E., J. Chem. Phys. , 60, 1275 (1974). ; R93 ; LEHN, J.-M., WIPFF, G., DEMUYNCK, J., Helv. Chim. Acta, 60, 1239 (1977). ; R94 ; PIETRO, W.J., BLUROCK, E.S., HOUT, JR., R.F., HEHRE, W.J., DEFREES, D.J., STEWART, R.F., Inorg. Chem. 20, 3650 (1981). ; R95 ; FRANCL, M.M., PIETRO, W.J., HEHRE, W.J., BINKLEY, J.S., GORDON, M.S., DEFREES, D.J., POPLE, J.A., Chem. Phys., 77, 3654 (1982). ; R96 ; STROMBERG, A., GROPEN, O., WAHLGREN, U., J. Comput. Chem., 4, 181 (1983). ; R97 ; ANDZELM, J., KLOBUKOWSKI, M., RADZIO-ANDZELM, E., J. Comput. Chem., 5, 146 (1984). ; R98 ; DUNNING, JR., T.H., HAY, P.J. in Modern Theoretical Chemistry, edited by SCHAEFER II, H.F., Plenum, New York, Vol. 3, Chapter 1, (1977). ; data_GLOBAL _basis_set_audit_history ; 91:10:10 Initial comments keyed in from the comments list in Appendix A pages 75 - 78 of Poirier, Kari and Csizmadia (Elsevier, 1985). ; data_basis_set_list_comments loop_ _basis_set_list_comments_code _basis_set_list_comments_text C1 ; Gaussian expansion of Slater-type orbitals. ; C2 ; Contraction coefficients taken from atomic SCF calculations. ; C3 ; Contraction coefficients taken from molecular SCF calculation. ; C4 ; Optimised for the lowest 4s^2^3d^N^ neutral atom configuration. ; C5 ; Contraction scheme chosen on the basis of molecular calculations. ; C6 ; Gaussian expansion of Hartree-Fock orbitals. ; C7 ; Of the contraction schemes studied in this paper this contraction scheme gave the lowest energy. ; C8 ; Other contraction schemes were also considered. ; C9 ; Gaussian expansion of STO SCF AO of Reference R3, 1s=2s=2p expansions are also reported. ; C10 ; Unpublished results. ; C11 ; This basis set has been checked carefully but the energy does not agree with the literature value, the basis appears suspicious and there is most likely an error in the literature (12.12.1, Reference R70). ; C12 ; Modification of basis set from reference R18. ; C13 ; Exponents same as reference R33. ; C14 ; The exponents are those of reference R21 or R29, where the d-orbitals were augmented with an extra exponent. The exponent was optimised using a Reffenetti type general contraction scheme for the s and p exponents. Here the new set of d's is arbitrarily reported with previously reported contraction schemes for the s and p exponents. ; C15 ; The core (the contracted function) was optimised on the two electron ion and the other exponents were optimised on the four electron ion fixing the core part. ; C16 ; This basis set is a modification of one in reference R29. ; C17 ; The exponents are those of reference R14 augmented by an extra p exponent whose value is based on calculations on the Na ^2^P state and on NaH, where values of 0.0351 and 0.05 were obtained respectively. ; C18 ; The s and p exponents are those of reference R21. The new set of d's were optimised with an uncontracted basis set. Here the new set of d's is arbitrarily reported with previously reported contraction schemes for the s and p exponents. ; C19 ; Both the contraction coefficients and the exponents were optimised. ; C20 ; We noticed the exponent given as 1.25946E-1 should be 1.25946E+O. ; C21 ; Optimised for the ^2^S state. ; C22 ; Optimised for the ^2^P state. ; C23 ; Optimised for the 4s^1^3d^10^ atom configuration. ; C24 ; Contraction coefficients were obtained for the 3d^N^ state as opposed to the 4s^2^3d^N-2^ state. ; C25 ; Contraction coefficients were obtained for the 4s^1^3d^N-1^ state. ; C26 ; Optimised for the ^7^S state. ; C27 ; Optimised for the ^5^D state. ; C28 ; Optimised for the ^2^D state. ; C29 ; Optimised on the -2 ion. ; C30 ; Optimised on the -1 ion. ; C31 ; Optimised on +1 ion. ; C32 ; Optimised on +2 ion. ; C33 ; Optimised on +3 ion. ; C34 ; Optimised on +4 ion. ; C35 ; Optimised on +5 ion. ; C36 ; Optimised for the trivalent ions. ; C37 ; Calculations were also performed with different numbers of s-type functons for a given number of p-type functions. Only the corresponding s and p sets are reported together. ; C38 ; Authors suggest a Raffenetti general contraction scheme. ; C39 ; Optimised for the 4s^2^4p^N^ atom configuration. ; C40 ; Optimised for the 5s^2^4d^N^ atom configuration. ; C41 ; Optimised for the 5s^1^4d^N+1^ atom configuration. ; C42 ; Optimised for the 5s^2^5p^N^ atom configuration. ; C43 ; Optimised for the 4f^N^ atom configuration. ; C44 ; Optimised for the 4f^N-1^5d^1^ atom configuration. ; C45 ; The contraction coefficients were optimised using a method developed in reference R56. ; C46 ; The atomic expansion coefficients were given but no details of the contraction scheme is given. ; C47 ; The core part is a truncated set from reference R37. ; C48 ; Contraction scheme given but no contraction coefficients are reported. ; C49 ; Originally from S. HUZINAGA, "Approximate Atomic Functions I", Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada, 1971. ; C50 ; The 21G valence was obtained from the 6-21G basis set and the core representation was optimised keeping the 21G part fixed. ; C51 ; Optimised at the UHF second order Moeller-Plesset perturbation level (UMP2). ; C52 ; The p functions were optimisd for the excited P state, fixing the s functions. ; C53 ; Optimised on the excited P state (^3^P). ; C54 ; The authors suggest that a split valence basis set can be generated by simply splitting the outer valence shell into two parts, one consisting of N-1 and the other of one primitive GTO, leaving exponents and contraction coefficients as given. ; C55 ; The basis sets were optimised for the 4s^0^3d^N+2^ configuration, including copper which was optimised for the d^11^ state although not allowed by the Pauli principle. It was found by the authors that d bases for transition metals should be optimised for the d^N+2^ configuration rather than for the ground-state configuration. ; C56 ; Possible contraction schemes are discussed in reference R56. Similar contracted sets exist in reference R22. ; C57 ; Uses core functions of the 6-21G basis set of reference R77 and R87, only the 31G part is new. ; C58 ; The coefficients for the 6th and 7th s functions (repeated function) were determined using the ratio as reported for chlorine in reference R27. ; C59 ; The basis set reported in reference R25, contained a printing error, the S coefficient should be 0.19825... not 0.09825... ; C60 ; The energy does not agree with the literature value. There is a possible error in the literature. ; C61 ; These basis sets (exponents and contraction coefficients) were optimised for total atomic energies by a procedure to give good valence shell orbital energies (prevent collapse to the core). ; C62 ; See PKC Table ATOM.2.1 for a possible contraction scheme. ; C63 ; The energy reported is for the uncontracted basis set. ; C64 ; The original basis set is from T.H. DUNNING, unpublished results. ; C65 ; This basis set is a modification of one in reference R21. ; C66 ; This basis set is one of two similar basis sets. Both basis sets are found to be critical points. ; C67 ; The exponents are originally from S. HUZINAGA (see C49). The contraction coefficients have been optimised to minimise the atomic energy. ; C68 ; Same as C67 but all the p exponents and the last four s exponents were optimised on the negative ion. ; C69 ; Same as C67 but extra p functions were added. ; C70 ; The energy is for the ^3^D state. ; C71 ; To preserve the valence shell, the two smallest s exponents and the smallest p exponent are taken from the 7s3p basis of reference R2 and the remaining exponents are energy optimised. ; C72 ; To preserve the valence shell, the four smallest s exponents and the two smallest p exponents are taken from the 10s6p basis of reference R2 and the remaining exponents are energy optimised. ; C73 ; The basis set is misprinted in the paper, the contraction scheme for the s functions is (6:2:2:1:1) to give a 5s4p2d basis set. ; C74 ; This basis set is a scaled phosphorus 4-31G basis set, using Slater exponent ratios. ; C75 ; The coefficients were optimised. ; C76 ; This basis set is a least squares fit to the 12s9p basis set of reference R14. ; C77 ; The p exponents are from reference R98 and were optimised on the ^2^P state. ; C78 ; The p exponents are from reference R98 and were optimised on the ^3^P state. ; C79 ; The Si basis set reported in reference R80, contains a printing error. The contraction coefficient for the 9th s-function should read 0.694463 instead of 0.650911 and the 1st p-function coefficient should read 0.033008 instead of 0.037336. ; ============================================================================== (5) The Dictionary of Data Items used in Examples (1)-(4). ----------------------------------------------------- ############################################################################## # # # DICTIONARY of Quantum Chemistry STAR Data Names # # ----------------------------------------------- # # # # The latest copy of this dictionary is available from the automatic email # # facility 'sendcif@crystal.uwa.oz.au'. Some example STAR files using these # # data items are also available. Other communications should be sent to Syd # # Hall 'syd@crystal.uwa.oz.au' or Mark Favas 'mark@crystal.uwa.oz.au'. # # # # The program CYCLOPS may used with this dictionary to validate data names # # in any text file, including program source code. # # # # This dictionary is constructed using a STAR Dictionary Definition Language # # proposed by Tony Cook, Orac Ltd. (March 8 1991). A description of the DDL # # data names used in this dictionary is given at the end of this file. # # # ############################################################################## data_GLOBAL _compliance 'Qchem Dictionary (test 1991)' _update_history ; 91-10-09 Created for data names in example file 'qchem.ex1'. S.R. Hall 91:10:10 Refinements to data names and to definitions. G.S. Chandler 91:10:14 Further updates applied. MF, GSC & SRH. ; _list no _enumeration unknown _enumeration_default unknown _esd no data_basis_set_type_orbital _name '_basis_set_type_orbital' _type char loop_ _example Gaussian Slater _definition ; Description of the type of functions used to construct the basis sets contained in this file. ; data_basis_set_audit_history _name '_basis_set_audit_history' _type char _definition ; History of the changes made to this file. ; data_basis_set_atomic_name _name '_basis_set_atomic_name' _type char loop_ _example oxygen tungsten tin _definition ; The IUPAC name of the atom specie in the English form. ; data_basis_set_atomic_symbol _name '_basis_set_atomic_symbol' _type char loop_ _example O W Sn Cu Hg _definition ; The IUPAC symbol of the atom specie. ; data_basis_set_atomic_number _name '_basis_set_atomic_number' _type numb _enumeration_range 0: _definition ; The number of protons in the atomic nucleus. ; data_basis_set_atomic_mass _name '_basis_set_atomic_mass' _type numb _enumeration_range 0.0: _definition ; The mass of the atom specie in atomic mass units. ; data_basis_set_atomic_energy _name '_basis_set_atomic_energy' _type numb _list yes _list_identifier '_basis_set_funct_per_contraction' _enumeration_range :0.0 loop_ _units_extension _units_description _units_conversion ' ' 'hartrees' *1.0 'eV' 'electron volts' /27.221 'kJ' 'kilojoule' /4.3598E-21 _definition ; The atomic energy calculated from this basis set. ; data_basis_set_contraction_scheme _name '_basis_set_contraction_scheme' _type char _list yes _list_identifier '_basis_set_funct_per_contraction' loop_ _example _example_detail (3,2)->[3,2] 'no contraction of the 5 functions in the basis set' (7,4)->[4,2] 'contraction of 7 s and 4 p functions to 4 and 2, resp.' _definition ; Code that specifies the contraction of functions for this basis set. The format of the code is: () ->[]. The number of functions in each s,p,d and f set is separated by a comma. Note that the total number of unique primitive functions will be less than the sum of the functions in _basis_set_funct_per_contraction if there are repeated functions in the basis set. ; data_basis_set_funct_per_contraction _name '_basis_set_funct_per_contraction' _type char _list yes loop_ _example _example_detail {1:} 'no contractions' {2:1} 'two contractions contain 2 and 1 primitive functions resp.' {4:1,2:1} 'two contracted s and p functions of 4,1,2,1 functions' {3:2,,1:} 'contracted s function, no p and an uncontracted d' _definition ; Code that specifies the number of primitive functions per contraction. The format is {::<...>, :<...>,...}. The code '1:' signals there are no contractions. ; data_basis_set_primary_reference _name '_basis_set_primary_reference' _type char _list yes _list_identifier '_basis_set_funct_per_contraction' _enumeration_default '.' loop_ _example PKC23.4.1 GSC_23/5 _definition ; The primary reference index to the source of the basis set. The index should be self-descriptive or be a code that has been pre- defined (for example, in the _audit section). ; data_basis_set_source_ loop_ _name '_basis_set_source_exponent' '_basis_set_source_coefficient' _type char _list yes _list_identifier '_basis_set_funct_per_contraction' _enumeration_default '.' loop_ _example R71 R23,A44 gauss90.2 _definition ; Code which identifies the source reference material for the exponent of a basis set function. If the basis set is contracted a reference code may also be given for the exponent. Multiple reference codes are concatenated with a ',' separator. These codes must match a _basis_set_list_source_code contained in the data_basis_set_list_source. ; data_basis_set_comments_index _name '_basis_set_comments_index' _type char _list yes _list_identifier '_basis_set_funct_per_contraction' _enumeration_default '.' loop_ _example C43 C2,X26 _definition ; Codes which identify descriptive material about the basis set. Multiple reference codes are concatenated with a ',' separator. These codes must match a _basis_set_list_comments_code string in the data_basis_set_list_comments. ; data_basis_set_function_ loop_ _name '_basis_set_function_exponent' '_basis_set_function_coefficient' _type numb _list yes _list_identifier '_basis_set_funct_per_contraction' _definition ; The exponential and coefficient components of the basis set function. The coefficient is normalised within a contraction. ; data_basis_set_list_source_ loop_ _name '_basis_set_list_source_code' '_basis_set_list_source_text' _type char _list yes _definition ; The *_code identifies the *_text item for external referencing. The codes will match with data items in other loops, such as, _basis_set_source_exponent and *_coefficient. ; data_basis_set_list_comments_ loop_ _name '_basis_set_list_comments_code' '_basis_set_list_comments_text' _type char _list yes _definition ; The *_code identifies the *_text item for external referencing. The codes will match with data items in other loops, such as, _basis_set_comments_index. ; ############################################################################## # # DDL Data Name Descriptions # -------------------------- # # _compliance The dictionary version in which the item is defined. # # _definition The description of the item. # # _enumeration A permissible value for an item. The value 'unknown' # signals that the item can have any value. # # _enumeration_default The default value for an item if it is not specified # explicitly. 'unknown' means default is not known. # # _enumeration_detail The description of a permissible value for an item. # Note that that the code '.' normally signals a null # or 'not applicable' condition. # # _enumeration_range The range of values for a numerical item. The # construction is 'min:max'. If 'max' is omitted then the # item can have any value greater than or equal to 'min'. # # _esd Signals if an estimated standard deviation is # expected to be appended (enclosed within brackets) # to a numerical item. May be 'yes' or 'no'. # # _esd_default The default value for the esd of a numerical item # if a value is not appended. # # _example An example of the item. # # _example_detail A description of the example. # # _list Signals if an item is expected to occur in a looped # list. Possible values 'yes','no' or 'both'. # # _list_identifier Identifies a data item that MUST appear in the list # containing the currently defined data item. # # _name The data name of the item defined. # # _type The data type 'numb' or 'char' (latter includes 'text'). # # _units_extension The data name extension code used to specify the units # of a numerical item. # # _units_description A description of the units. # # _units_conversion The method of converting the item into a value based # on the default units. Each conversion number is # preceded by an operator code *, /, +, or - which # indicates how the conversion number is applied. # # _update_history A record of the changes to this file. # #-eof-eof-eof-eof-eof-eof-eof-eof-eof-eof-eof-eof-eof-eof-eof-eof-eof-eof-eof ============================================================================== (6) CADPAC Output Data expressed as a STAR Format. --------------------------------------------- data_GLOBAL _qchem_audit_history ; 91:10:06 An example of a STAR File based on the data items output from program CADPAC Issue 4.0L Nov 87 run for the water molecule. SRH. 91:10:08 Some refinements to the data names SRH. 91:10:09 Note that the data names used herein do not correspond to the definitions in the 'trial' quantum chemistry dictionary. SRH. 91:10:14 Final adjustments to data names. GSC, MF & SRH. ; data_water _qchem_chemical_name_common water _qchem_chemical_name_IUPAC 'oxygen dihydride' _qchem_chemical_formula 'H2 O' loop_ _qchem_molecular_site_number _qchem_molecular_site_label _qchem_molecular_site_symbol _qchem_molecular_site_x _qchem_molecular_site_y _qchem_molecular_site_z _qchem_molecular_site_x_au _qchem_molecular_site_y_au _qchem_molecular_site_z_au _qchem_molecular_site_mass 1 O1 O 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 15.994915 2 H1 H 0.00000 0.75753 0.58707 0.00000 1.43153 1.10941 1.007825 3 H2 H 0.00000 -0.75753 0.58707 0.00000 -1.43153 1.10941 1.007825 _qchem_molecular_mass_centre_x 0.0000000 _qchem_molecular_mass_centre_y 0.0000000 _qchem_molecular_mass_centre_z 0.0657023 loop_ _qchem_basis_set_atom_name _qchem_basis_set_atom_symbol _qchem_basis_set_contraction_scheme _qchem_basis_set_funct_per_contraction loop_ _qchem_basis_set_function_code _qchem_basis_set_function_count _qchem_basis_set_function_exponent _qchem_basis_set_function_coefficient oxygen O (9,5,1)->[4,2,1] {6:1:1:1,4:1,1} s 1 7816.540000 0.002031 s 1 1175.820000 0.015436 s 1 273.188000 0.073771 s 1 81.169600 0.247606 s 1 27.183600 0.611832 s 1 3.413600 0.241205 s 2 9.532200 1.000000 s 3 0.939800 1.000000 s 4 0.284600 1.000000 p 5 35.183200 0.019580 p 5 7.904000 0.124189 p 5 2.305100 0.394727 p 5 0.717100 0.627375 p 6 0.213700 1.000000 d 7 0.900000 1.000000 stop_ hydrogen H (4,1)->[2,1] {3:1,1} s 1 19.240600 0.032828 s 1 2.899200 0.231208 s 1 0.653400 0.817238 s 2 0.177600 1.000000 p 3 1.000000 1.000000 stop_ loop_ _qchem_bond_site_label_1 _qchem_bond_site_label_2 _qchem_bond_distance_au _qchem_bond_distance O1 H1 1.811095991 0.958390452 O1 H2 1.811095991 0.958390452 loop_ _qchem_angle_site_label_1 _qchem_angle_site_label_2 _qchem_angle_site_label_3 _qchem_angle H1 O1 H2 104.44991917 loop_ _qchem_dihedral_site_label_1 _qchem_dihedral_site_label_2 _qchem_dihedral_site_label_3 _qchem_dihedral_site_label_4 _qchem_dihedral_angle ? ? ? ? ? _qchem_molecule_number_atoms 3 _qchem_molecule_number_electrons 10 _qchem_molecule_number_contractions 13 _qchem_molecule_charge 0 _qchem_molecule_state_multiplicity 1 _qchem_molecule_occup_orb_doub 5 _qchem_molecule_occup_orb_sing_alpha 0 _qchem_molecule_occup_orb_sing_beta 0 _qchem_option_converge_criterion 1.0E-05 _qchem_option_variable_level_shift yes _qchem_calc_energy_electronic -85.230179266 _qchem_calc_energy_nuclear 9.183706230 _qchem_calc_energy_total -76.046473036 loop_ _qchem_calc_eigen_value -20.55751812 -1.34559554 -0.71029318 -0.57559159 -0.50266877 0.22269580 0.31708381 0.86343137 0.86805040 0.89903882 1.12637037 1.14407496 1.26896403 1.80329557 1.81320430 loop_ _qchem_calc_parameter_count _qchem_calc_site_label _qchem_calc_function_code _qchem_calc_function_number _qchem_calc_parameter_type loop_ _qchem_calc_eigen_vector 1 O1 s 1 . -0.58103688 0.13062993 0.00000000 0.04418735 0.00000000 0.05043983 0.00000000 -0.02282240 0.00000000 0.00000000 -0.05879424 0.00000000 -0.07842181 0.00000000 -0.00702980 2 O1 s 2 . -0.46149988 0.18035580 0.00000000 0.06286095 0.00000000 0.07754916 0.00000000 -0.02451302 0.00000000 0.00000000 -0.07871809 0.00000000 -0.07962300 0.00000000 -0.00407509 3 O1 s 3 . 0.00027440 -0.51213738 0.00000000 -0.18123159 0.00000000 -0.03235997 0.00000000 0.17740948 0.00000000 0.00000000 0.63465197 0.00000000 1.66768290 0.00000000 0.30617389 4 O1 s 4 . -0.00009339 -0.40698168 0.00000000 -0.29748817 0.00000000 -1.61107506 0.00000000 0.17662405 0.00000000 0.00000000 -1.20575198 0.00000000 -3.98898130 0.00000000 -0.84924912 5 O1 p 5 x 0.00000000 0.00000000 0.00000000 0.00000000 0.72359849 0.00000000 0.00000000 0.00000000 0.89864890 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 6 O1 p 5 y 0.00000000 0.00000000 0.57087782 0.00000000 0.00000000 0.00000000 0.39360740 0.00000000 0.00000000 -0.49287568 0.00000000 0.66963935 0.00000000 0.00000000 0.00000000 7 O1 p 5 z -0.00150084 -0.09434932 0.00000000 0.62886217 0.00000000 -0.24492623 0.00000000 -0.81239175 0.00000000 0.00000000 0.19746154 0.00000000 0.13473806 0.00000000 -0.08324502 8 O1 p 6 x 0.00000000 0.00000000 0.00000000 0.00000000 0.39908281 0.00000000 0.00000000 0.00000000 -1.09685788 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 9 O1 p 6 y 0.00000000 0.00000000 0.18953650 0.00000000 0.00000000 0.00000000 1.04748705 0.00000000 0.00000000 1.61836905 0.00000000 -1.21920597 0.00000000 0.00000000 0.00000000 10 O1 p 6 z 0.00040127 -0.01241708 0.00000000 0.31014787 0.00000000 -0.60202315 0.00000000 1.28376525 0.00000000 0.00000000 -0.07267292 0.00000000 -0.86238605 0.00000000 -0.46352202 11 O1 d 7 xx -0.00078472 0.00458593 0.00000000 -0.01087581 0.00000000 0.09323407 0.00000000 0.04241066 0.00000000 0.00000000 0.28808930 0.00000000 0.43744066 0.00000000 -0.13057647 12 O1 d 7 yy -0.00091492 -0.00331993 0.00000000 0.00107109 0.00000000 0.07613909 0.00000000 0.11827703 0.00000000 0.00000000 -0.09175672 0.00000000 0.65329174 0.00000000 -0.14811496 13 O1 d 7 zz -0.00092670 -0.00375641 0.00000000 0.03321321 0.00000000 0.06564436 0.00000000 0.09383749 0.00000000 0.00000000 0.10444043 0.00000000 0.51490205 0.00000000 0.61683884 14 O1 d 7 xy 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.48103892 0.00000000 15 O1 d 7 xz 0.00000000 0.00000000 0.00000000 0.00000000 0.02451771 0.00000000 0.00000000 0.00000000 -0.00156135 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000 16 O1 d 7 yz 0.00000000 0.00000000 0.03656871 0.00000000 0.00000000 0.00000000 0.01879481 0.00000000 0.00000000 -0.04950191 0.00000000 -0.27139053 0.00000000 0.00000000 0.00000000 17 H1 s 1 . 0.00012108 -0.14058704 0.23342480 0.14115023 0.00000000 0.05244765 -0.04338451 -0.11481291 0.00000000 -0.53271475 -0.75688307 -0.61736215 0.33790628 0.00000000 0.27000465 18 H1 s 2 . -0.00003984 -0.02771403 0.13443253 0.07340526 0.00000000 1.14149540 -1.59206080 -0.29436363 0.00000000 -0.40385810 0.77883483 1.45832991 0.81363735 0.00000000 0.11175587 19 H1 p 3 x 0.00000000 0.00000000 0.00000000 0.00000000 0.02272941 0.00000000 0.00000000 0.00000000 0.02534581 0.00000000 0.00000000 0.00000000 0.00000000 0.49490526 0.00000000 20 H1 p 3 y -0.00028565 0.02156212 -0.00858608 -0.01523685 0.00000000 -0.00473538 0.01011111 0.10024023 0.00000000 0.05535408 -0.19618341 -0.13425833 0.05841102 0.00000000 -0.24342636 21 H1 p 3 z -0.00015847 0.01306863 -0.01676984 0.00802709 0.00000000 -0.00240035 0.00198185 0.05329596 0.00000000 0.01625659 -0.03941796 -0.17031752 -0.06948357 0.00000000 0.39767037 22 H2 s 1 . 0.00012108 -0.14058704 -0.23342480 0.14115023 0.00000000 0.05244765 0.04338451 -0.11481291 0.00000000 0.53271475 -0.75688307 0.61736215 0.33790628 0.00000000 0.27000465 23 H2 s 2 . -0.00003984 -0.02771403 -0.13443253 0.07340526 0.00000000 1.14149540 1.59206080 -0.29436363 0.00000000 0.40385810 0.77883483 -1.45832991 0.81363735 0.00000000 0.11175587 24 H2 p 3 x 0.00000000 0.00000000 0.00000000 0.00000000 0.02272941 0.00000000 0.00000000 0.00000000 0.02534581 0.00000000 0.00000000 0.00000000 0.00000000 -0.49490526 0.00000000 25 H2 p 3 y 0.00028565 -0.02156212 -0.00858608 0.01523685 0.00000000 0.00473538 0.01011111 -0.10024023 0.00000000 0.05535408 0.19618341 -0.13425833 -0.05841102 0.00000000 0.24342636 26 H2 p 3 z -0.00015847 0.01306863 0.01676984 0.00802709 0.00000000 -0.00240035 -0.00198185 0.05329596 0.00000000 -0.01625659 -0.03941796 0.17031752 -0.06948357 0.00000000 0.39767037 loop_ _qchem_basis_function_count _qchem_basis_function_site_label _qchem_basis_function_code _qchem_basis_function_number _qchem_basis_function_type _qchem_basis_function_population 1 O1 s 1 s 1.13223 2 O1 s 2 s 0.86322 3 O1 s 3 s 0.91668 4 O1 s 4 s 0.85706 5 O1 p 5 x 1.35184 6 O1 p 5 y 0.97238 7 O1 p 5 z 1.13170 8 O1 p 6 x 0.62109 9 O1 p 6 y 0.30497 10 O1 p 6 z 0.48913 11 O1 d 7 xx -0.00137 12 O1 d 7 yy 0.00452 13 O1 d 7 zz -0.00277 14 O1 d 7 xy 0.00000 15 O1 d 7 xz 0.00172 16 O1 d 7 yz 0.01453 17 H1 s 1 s 0.47059 18 H1 s 2 s 0.15583 19 H1 p 3 x 0.01267 20 H1 p 3 y 0.01848 21 H1 p 3 z 0.01396 22 H2 s 1 s 0.47059 23 H2 s 2 s 0.15583 24 H2 p 3 x 0.01267 25 H2 p 3 y 0.01848 26 H2 p 3 z 0.01396 loop_ _qchem_property_site_number _qchem_property_site_label _qchem_property_site_atom_name _qchem_property_site_population 1 O1 oxygen 8.65694 2 H1 hydrogen 0.67153 3 H2 hydrogen 0.67153 _qchem_property_evaluation_origin_x 0.000000 _qchem_property_evaluation_origin_y 0.000000 _qchem_property_evaluation_origin_z 0.000000 loop_ _qchem_2pole_moment_type _qchem_2pole_moment_x _qchem_2pole_moment_y _qchem_2pole_moment_z electronic 0.0000000 0.0000000 -1.33751651 nuclear 0.0000000 0.0000000 2.21882000 total 0.0000000 0.0000000 0.88130349 loop_ _qchem_2pole_moment_2_type _qchem_2pole_moment_2_xx _qchem_2pole_moment_2_yy _qchem_2pole_moment_2_zz _qchem_2pole_moment_2_xy _qchem_2pole_moment_2_xz _qchem_2pole_moment_2_yz electronic -5.449438 -7.176228 -6.580516 0.000000 0.000000 0.000000 nuclear 0.000000 4.098556 2.461581 0.000000 0.000000 0.000000 total -5.449438 -3.077672 -4.118935 0.000000 0.000000 0.000000 loop_ _qchem_4pole_moment_type _qchem_4pole_moment_xx _qchem_4pole_moment_yy _qchem_4pole_moment_zz _qchem_4pole_moment_xy _qchem_4pole_moment_xz _qchem_4pole_moment_yz electronic 1.428934 -1.161251 -0.267683 0.000000 0.000000 0.000000 nuclear -3.280069 2.867766 0.412303 0.000000 0.000000 0.000000 total -1.851134 1.706515 0.144620 0.000000 0.000000 0.000000 loop_ _qchem_electric_field_site_number _qchem_electric_field_site_label _qchem_electric_field_x _qchem_electric_field_y _qchem_electric_field_z 1 O1 0.0000000 0.0000000 -0.0993128 2 H1 0.0000000 0.0035473 -0.0045735 3 H2 0.0000000 -0.0035473 -0.0045735 ============================================================================== -end-of-transmission-end-of-transmission-end-of-transmission-end-of-transmission From chemistry-request@ccl.net Tue Oct 15 12:16:57 1991 Date: Tue, 15 Oct 91 11:53:25 -0400 From: Shi Yi Yue To: chemistry@ccl.net Subject: data base and software for organic compounds Status: R Dear Netters, I am interested in the information about the availability of the data base of Aldrich and/or other chemical structure (3D) data base. Are there any differences between this (these) data base(s) and Cambridge data base? Is there any data base software available, which can be used to handle a small data base (less than 200 structures of small organic compounds), in both academic or commercial levels? Is there any review article recently published about these subjects? For those who want to discuss about price, comparison of the performance between different commercial softwares, please directly forward the message to me. Thank you very much for your help and/or cooperations! Shi-Yi Yue (514) 496-6338 shiyi@bri.nrc.ca From jkl@ccl.net Tue Oct 15 13:41:22 1991 Date: Tue, 15 Oct 91 13:41:19 -0400 From: jkl@ccl.net To: chemistry@ccl.net Subject: Re: 10th ICCCRE Status: R I am forwarding to the list: ---------- Begin Forwarded Message ---------- >From srheller@asrr.arsusda.gov Tue Oct 15 13:25:01 1991 Date: 15 Oct 91 13:25:00 EDT From: "STEPHEN R. HELLER" Subject: 10th ICCCRE To: "chemistry-request" 15 October, 1991 INTERNATIONAL CONFERENCE ON COMPUTERS IN CHEMICAL RESEARCH AND EDUCATION Jerusalem, Israel, July 12-17, 1992 The 10th International Conference on Computers in Chemical Research and Education (ICCCRE) will take place in Jerusalem, Israel, during the week of July 12-17, 1992. The conference will be devoted to the various aspects of computer applications in chemistry with emphasis on education, drug design, receptor modeling, chemometrics, new approaches to mechanistic studies, chemical databases (especially 3D searching), software integration, and the use of expert systems in chemistry. The scientific program will include invited lectures, oral presentations, posters, round table discussions, and software demonstrations. The second circular and call for papers and software will come out in November 1991. The final date for submission of abstracts will be April 1, 1992. Those interested in more information should contact: The Secretariat 10th ICCCRE PO Box 50432 Tel-Aviv 61500 Israel Phone: 972-3-664-825 or 972-2-584-501 FAX: 972-3-660-952 or 972-2-660-346 or 972-2-666-804 ----------- End Forwarded Message ----------- From chemistry-request@ccl.net Tue Oct 15 15:22:35 1991 Date: Tue, 15 Oct 91 14:54:35 EDT From: kpc23%CAS.BITNET@OHSTVMA.ACS.OHIO-STATE.EDU (Kevin P. Cross Ext. 3192 Room 2209B) Subject: Re: data base and software for organic compounds To: Shi Yi Yue Status: R This is not meant as an advertizement, just a response to your question. Chemical Abstracts Service currently has 3D CONCORD-generated coordinates for over 5 million (and growing) organic structures available on the STN REGISTRY file for downloading. Although 3D substructure searching of these coordinates is not available (this is a current area of research), 2D exact, substructure, and family searches can be used to find structures of interest. Those structures that are flagged as having 3D coordinates, can be downloaded in either SYBYL or ALCHEMY format. There are costs in both searching and downloading structures, however, academic discounts are available. Local 3D database searching software is available from MDL, Tripos (forthcoming), Chemical Design Ltd., and presumably, other PC-based systems. I assume you are already familiar with Cambridge's 3D search software and database. Kevin P. Cross Research Chemical Abstracts Service kpc23@cas P.S. I am NOT a marketing person. From chemistry-request@ccl.net Tue Oct 15 16:21:29 1991 Date: Tue, 15 Oct 91 16:06:05 -0400 From: markm@iris.polymer.uakron.edu (Mark Alan Matties) To: CHEMISTRY@ccl.net Subject: QCPE NMR coupling const Status: R Dear Netters, I was wondering if anyone has used the QCPE program #591 - 3JHH2 : NMR Vicinal Proton-Proton Coupling Constants Package. Please respond directly to me and let me know what you think in regards to ease of use and accuracy. Thanks, Mark Matties markm@iris.polymer.uakron.edu From chemistry-request@ccl.net Tue Oct 15 22:03:36 1991 Date: Tue, 15 Oct 91 20:47:49 EST From: Thomas Quinn Subject: Help in finding software. To: chemistry@ccl.net Status: R The problem: I am doing my research on different organic chemistry molecules. I need to be able to draw them. A computer would aide me vastly. I have an IBM PC and am in desparate need of a molecular modeling program. I would prefer one from the FTP but any help would be much appreciated.