From owner-chemistry@ccl.net Mon May 4 03:00:00 2020 From: "Norrby, Per-Ola Per-Ola.Norrby=astrazeneca.com" To: CCL Subject: CCL: Explanation on specific metal reactivity Message-Id: <-54056-200504025615-16486-6V33WQRkYFZ+97NsxI9hBw-x-server.ccl.net> X-Original-From: "Norrby, Per-Ola" Content-Language: en-US Content-Type: multipart/alternative; boundary="_000_DB7PR04MB5339BD8224E48BF9CF072601CAA60DB7PR04MB5339eurp_" Date: Mon, 4 May 2020 06:55:55 +0000 MIME-Version: 1.0 Sent to CCL by: "Norrby, Per-Ola" [Per-Ola.Norrby#,#astrazeneca.com] --_000_DB7PR04MB5339BD8224E48BF9CF072601CAA60DB7PR04MB5339eurp_ Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: base64 SGkgU2ViYXN0aWFuLA0KDQpJIGd1ZXNzIG1vc3Qgb2YgeW91ciBhbnN3ZXJzIGhlcmUgd2lsbCBw b2ludCBvdXQgdGhhdCB0aGUgcXVlc3Rpb24gaXMgd3JvbmcuIFRoZXJlIGFyZSBwbGVudHkgb2Yg bWV0YWxzIHRoYXQgZG8gZWFjaCBvZiB0aGUgdGFza3MgeW91IGhhdmUgcG9pbnRlZCBvdXQuIEni gJlkIHNheSB0aGUgbGVhc3Qgc3BlY2lmaWMgb25lIGlzIGh5ZHJvZ2VuYXRpb24sIHRoZSB3b3Js ZHMgbGFyZ2VzdCBhc3ltbWV0cmljIGNhdGFseXRpYyBwcm9jZXNzIHVzZXMgUmgsIG5vdCBJci4g QnV0IEkgZ3Vlc3MgeW91IHdhbnQgdG8gZmluZCBvdXQgd2h5IHNvbWUgbWV0YWxzIHNlZW0gaWRl YWxseSBiYWxhbmNlZCBhbmQgdGh1cyBoYXZlIGdhaW5lZCBoaWdoIHBvcHVsYXJpdHkuIEnigJls bCBqdXN0IGFkZHJlc3MgY3Jvc3MgY291cGxpbmcgaGVyZS4gSXTigJlzIGFsbCBhIHF1ZXN0aW9u IG9mIGJhbGFuY2UuIEFzIHlvdSB5b3Vyc2VsZiBoYXZlIHB1c2hlZCBlYXJsaWVyLCBlYWNoIG9m IHRoZXNlIGNhc2VzIGFyZSBjYXRhbHl0aWMgY3ljbGVzLCBhbmQgZm9yIGFuIGVmZmljaWVudCBj YXRhbHl0aWMgY291cGxpbmcgY3ljbGUgeW91IG5lZWQgdG8gaGF2ZSB0d28gc3RhdGVzIHRoYXQg YXJlIGVhc2lseSBhY2Nlc3NpYmxlLCB3aXRoIHNpbWlsYXIgZW5lcmdpZXMuIEFkZGl0aW9uYWxs eSwgZm9yIHJvYnVzdG5lc3MsIHlvdSBvbmx5IHdhbnQgdGhlc2Ugc3RhdGVzLCBub3QgYW55IG90 aGVycywgdG8gYmUgYWNjZXNzaWJsZS4gRnVydGhlcm1vcmUsIG9yZ2FuaWMgcmVhY3Rpb25zIGNh biBkaXZlcmdlIGlmIHlvdSBzdGFydCBmb3JtaW5nIHJhZGljYWxzIChldmVuIHRob3VnaCB0aGF0 IHJlYWN0aXZpdHkgY2FuIGJlIHRhbWVkLCB3aXRoIGVmZm9ydCkuIElmIHlvdSB3YW50IHRvIGF2 b2lkIHJhZGljYWxzLCBnbyBmb3Igc29tZXRoaW5nIHRoYXQgaGFzIG9ubHkgY2xvc2VkIHNoZWxs IHN0YXRlcy4gVGhpcyB3b3VsZCBleGNsdWRlIGZpcnN0IHJvdyB0cmFuc2l0aW9uIG1ldGFscywg ZWFjaCBvZiB3aGljaCBoYXZlIGVhc2lseSBhY2Nlc3NpYmxlIG9wZW4gc2hlbGwgc3RhdGVzLiBC dXQgdG8gcmVpdGVyYXRlLCBzb21ldGltZXMgd2Ugd2FudCB0byBwYXkgdGhlIGVmZm9ydCB0byBm aW5lLXR1bmUgdGhlIHJlYWN0aXZpdHkgb2YgdGhlc2UgbWV0YWxzIGFuZCBsaW1pdCB0aGUgc2lk ZSBwYXRocy4gWW91IGNhbiBkbyBtdWNoIG1vcmUgZWZmaWNpZW50IGNvdXBsaW5nIHdpdGggRmUs IE5pLCBvciBldmVuIEN1IHRoYW4gd2l0aCBQZCwgYnV0IGR1ZSB0byB0aGUgcHJlc2VuY2Ugb2Yg YWRkaXRpb25hbCBveGlkYXRpb25zIHN0YXRlcywgZWFjaCBzeXN0ZW0gbXVzdCBiZSBvcHRpbWl6 ZWQsIHlvdSBkb27igJl0IGhhdmUg4oCcb2ZmLXRoZS1zaGVsZuKAnSBzb2x1dGlvbnMgdGF0IGFs d2F5cyB3b3JrLg0KDQpTdGF5aW5nIGluIHRoZSBzZWNvbmQgb3IgdGhpcmQgcm93LCB0aGUgc2Vj b25kIHJvdyBpcyBnZW5lcmFsbHkgZmF2b3JlZCBieSBwcmljZS4gVGhlbiwgd2h5IFBkPyBPYnZp b3VzbHkgaXQgaGFzIHR3byBlYXNpbHkgYWNjZXNzaWJsZSBveGlkYXRpb24gc3RhdGVzLCAwIGFu ZCArMi4gT3RoZXIgc3RhdGVzIGNhbiBiZSByZWFjaGVkLCBidXQgb25seSB1bmRlciBmb3JjaW5n IG9yIGJpbWV0YWxsaWMgY29uZGl0aW9ucy4gVGhlIGVuZXJnaWVzIG9mIHRoZXNlIHR3byBzdGF0 ZXMgaGFwcGVuIHRvIGJlIGluIGEgcmFuZ2Ugc3VpdGFibGUgZm9yIHRoZSBuZWVkZWQgcmVhY3Rp b25zLCBtb3N0bHkgYmVjYXVzZSBhcnlsIGhhbGlkZXMgYXJlIHZlcnkgY29tbW9uLiBJZiB3ZSBo YWQgZm9jdXNlZCBvbiBkaWF6b25pdW0gc2FsdHMgaW5zdGVhZCwgeW914oCZZCBmaW5kIHRoYXQg b3RoZXIgbWV0YWxzIHdvdWxkIGJlY29tZSBvcHRpbWFsLCBidXQgZm9yIHNhZmV0eSByZWFzb25z LCB3ZSB3aWxsIG5vdC4gV2hhdCBhbHRlcm5hdGl2ZXMgYXJlIHRoZXJlPyBSaCBpcyB1c2VkLCBi dXQgaWYgeW91IGdvIHRvIGNsb3NlZCBzaGVsbCwgaXQgaGFzIHRvIHV0aWxpemUgdGhlICsxLCsz IGN5Y2xlLiBUaGUgY29zdCBvZiByZWFjaGluZyArMyBzZWVtcyB0byBiZSBoaWdoIGZvciBzaW1w bGUgYXJ5bCBoYWxpZGVzLCBhbmQgdGhlIGhpZ2ggY2hhcmdlIG9mICszIHdvdWxkIG1ha2UgaXQg c2Vuc2l0aXZlLCByZWR1Y2luZyByb2J1c3RuZXNzLiBIb3cgYWJvdXQgUnU/IEJvdGggMCBhbmQg KzQgc2VlbXMgdG8gcmVxdWlyZSB0b28gbXVjaCBlbmVyZ3ksIGFuZCB0aGUgb2RkIG51bWJlcnMg d291bGQgYmUgb3BlbiBzaGVsbC4gQSBiaW1ldGFsbGljICsyLCszIHNob3VsZCBiZSBwb3NzaWJs ZSwgYnV0IHN0YWJpbGl6aW5nIGEgbXVsdGltZXRhbGxpYyBjYXRhbHlzdCBpbiBvbmx5IHRoZSBi aW1ldGFsbGljIHN0YXRlIHNlZW1zIGhhcmQgYW5kIG5vdCBvdmVybHkgcm9idXN0ICh0aGVyZSBh cmUgc29sdXRpb25zLCBmb3Igc3BlY2lmaWMgcHJvYmxlbXMpLiBJIGNvdWxkIGNvbnRpbnVlIGxp a2UgdGhpcywgYnV0IGl0IHdvdWxkIGJlIHZlcnkgbG9uZywgeW914oCZZCBoYXZlIHRvIGV4cGxh aW4gZm9yIGV2ZXJ5IG1ldGFsIGV4YWN0bHkgd2h5IGl0IGhhcyB0aGUgd3JvbmcgYmFsYW5jZSwg YW5kIGZvciBldmVyeSBtZXRhbCwgeW91IGNvdWxkIHByb2JhYmx5IHVzZSB0aG9zZSBhcmd1bWVu dHMgdG8gY29tZSB1cCB3aXRoIHRoZSBleGNlcHRpb24sIHdoZXJlIHRoYXQgbWV0YWwgdG9vIHdv dWxkIGJlIGEgY291cGxpbmcgY2F0YWx5c3QuIEV2ZW4gbW9yZSBzbyBmb3IgaHlkcm9nZW5hdGlv bjsgSSBkb27igJl0IHRoaW5rIHRoZXJlIGlzIGEgc2luZ2xlIG1ldGFsIHRoYXQgaGFzbuKAmXQg YmVlbiB1c2VkIHRvIGh5ZHJvZ2VuYXRlIHNvbWV0aGluZy4NCg0KTWV0YXRoZXNpcyBpcyBoYXJk ZXIgdG8gZWx1Y2lkYXRlLCB0aGVyZSB5b3UgbmVlZCB0aGUgcGVyZmVjdCBiYWxhbmNlIGJldHdl ZW4gc2luZ2xlIGFuZCBkb3VibGUgYm9uZHMgdG8gbWV0YWwgYXQgYSBzaW5nbGUgb3hpZGF0aW9u IHN0YXRlLiBJIGRvbuKAmXQga25vdyBlbm91Z2ggb2YgdGhlIGRldGFpbHMsIGJ1dCBSdSwgTW8s IGFuZCBPcyBzZWVtIHRvIGRvIGl0IHdlbGwsIGFuZCB0aGVyZSBoYXZlIGJlZW4gcmVwb3J0cyBv ZiBmaXJzdCByb3cgYWxzbywgSSBiZWxpZXZlLiBJdOKAmXMgdmVyeSBtdWNoIGluIHRoZSBzZW5z aXRpdml0eSB0byBzaWRlIHJlYWN0aW9ucywgYWlyLCB3YXRlciwgZXRj4oCmDQoNCkNoZWVycywN Cg0KUGVyLU9sYQ0KDQpGcm9tOiBvd25lci1jaGVtaXN0cnkrcGVyLW9sYS5ub3JyYnk9PWFzdHJh emVuZWNhLmNvbUBjY2wubmV0IDxvd25lci1jaGVtaXN0cnkrcGVyLW9sYS5ub3JyYnk9PWFzdHJh emVuZWNhLmNvbUBjY2wubmV0PiBPbiBCZWhhbGYgT2YgU2ViYXN0aWFuIEtvenVjaCBzZWIua296 dWNoXV5bZ21haWwuY29tDQpTZW50OiBkZW4gMiBtYWogMjAyMCAxNjoxOQ0KVG86IE5vcnJieSwg UGVyLU9sYSA8UGVyLU9sYS5Ob3JyYnlAYXN0cmF6ZW5lY2EuY29tPg0KU3ViamVjdDogQ0NMOiBF eHBsYW5hdGlvbiBvbiBzcGVjaWZpYyBtZXRhbCByZWFjdGl2aXR5DQoNClNlbnQgdG8gQ0NMIGJ5 OiBTZWJhc3RpYW4gS296dWNoIFtzZWIua296dWNoXmdtYWlsLmNvbV0NCkZvciBhbGwgdGhlIGNv bXB1dGF0aW9uYWwgb3JnYW5vbWV0YWxsaXN0cyBvdXQgdGhlcmU6DQpXaHkgSXIgYW5kIG5vdCBv dGhlciBtZXRhbHMgY2F0YWx5c2VzIGh5ZHJvZ2VuYXRpb24/DQpXaHkgUGQgZm9yIGNyb3NzLWNv dXBsaW5nPw0KV2h5IFJ1IGZvciBtZXRhdGhlc2lzPw0KSSBjYW5ub3QgZmluZCBhbnkgc3BlY2lm aWMgZXhwbGFuYXRpb24gdGhhdCBjb25uZWN0cyBhIG1ldGFsIHRvIGl0cyByZWFjdGlvbi4gVG9u cyBvZiBtZWNoYW5pc3RpYyBzdHVkaWVzIGFuZCByZXZpZXdzLCB3aXRob3V0IGV4cGxhbmF0aW9u cyBvbiB3aHkgdGhpcyBtZXRhbCBhbmQgb25seSB0aGlzIG1ldGFsIGZvciB0aGlzIHJlYWN0aW9u cy4NCklzIHRoaXMgaW5mbyBoaWRkZW4gb3IgdW5rbm93bj8gQW55IGdvb2QgcGFwZXIgb3IgYm9v az8NCg0KVGhhbmtzLA0KU2ViYXN0aWFuDQoNCg0KDQotPSBUaGlzIGlzIGF1dG9tYXRpY2FsbHkg YWRkZWQgdG8gZWFjaCBtZXNzYWdlIGJ5IHRoZSBtYWlsaW5nIHNjcmlwdCA9LSBUbyByZWNvdmVy IHRoZSBlbWFpbCBhZGRyZXNzIG9mIHRoZSBhdXRob3Igb2YgdGhlIG1lc3NhZ2UsIHBsZWFzZSBj aGFuZ2UgdGhlIHN0cmFuZ2UgY2hhcmFjdGVycyBvbiB0aGUgdG9wIGxpbmUgdG8gdGhlIEAgc2ln bi4gWW91IGNhbiBhbHNvIGxvb2sgdXAgdGhlIFgtT3JpZ2luYWwtRnJvbTogbGluZSBpbiB0aGUg bWFpbCBoZWFkZXIuIEUtbWFpbCB0byBzdWJzY3JpYmVyczogQ0hFTUlTVFJZQGNjbC5uZXQ8bWFp bHRvOkNIRU1JU1RSWUBjY2wubmV0PiBvciB1c2U6IGh0dHA6Ly93d3cuY2NsLm5ldC9jZ2ktYmlu L2NjbC9zZW5kX2NjbF9tZXNzYWdlPGh0dHA6Ly93d3cuY2NsLm5ldC9jZ2ktYmluL2NjbC9zZW5k X2NjbF9tZXNzYWdlPiBFLW1haWwgdG8gYWRtaW5pc3RyYXRvcnM6IENIRU1JU1RSWS1SRVFVRVNU QGNjbC5uZXQ8bWFpbHRvOkNIRU1JU1RSWS1SRVFVRVNUQGNjbC5uZXQ+IG9yIHVzZSBodHRwOi8v d3d3LmNjbC5uZXQvY2dpLWJpbi9jY2wvc2VuZF9jY2xfbWVzc2FnZTxodHRwOi8vd3d3LmNjbC5u ZXQvY2dpLWJpbi9jY2wvc2VuZF9jY2xfbWVzc2FnZT4gU3Vic2NyaWJlL1Vuc3Vic2NyaWJlOiBo dHRwOi8vd3d3LmNjbC5uZXQvY2hlbWlzdHJ5L3N1Yl91bnN1Yi5zaHRtbDxodHRwOi8vd3d3LmNj bC5uZXQvY2hlbWlzdHJ5L3N1Yl91bnN1Yi5zaHRtbD4gQmVmb3JlIHBvc3RpbmcsIGNoZWNrIHdh aXQgdGltZSBhdDogaHR0cDovL3d3dy5jY2wubmV0PGh0dHA6Ly93d3cuY2NsLm5ldD4gSm9iOiBo dHRwOi8vd3d3LmNjbC5uZXQvam9iczxodHRwOi8vd3d3LmNjbC5uZXQvam9icz4gQ29uZmVyZW5j ZXM6IGh0dHA6Ly9zZXJ2ZXIuY2NsLm5ldC9jaGVtaXN0cnkvYW5ub3VuY2VtZW50cy9jb25mZXJl bmNlcy88aHR0cDovL3NlcnZlci5jY2wubmV0L2NoZW1pc3RyeS9hbm5vdW5jZW1lbnRzL2NvbmZl cmVuY2VzPiBTZWFyY2ggTWVzc2FnZXM6IGh0dHA6Ly93d3cuY2NsLm5ldC9jaGVtaXN0cnkvc2Vh cmNoY2NsL2luZGV4LnNodG1sPGh0dHA6Ly93d3cuY2NsLm5ldC9jaGVtaXN0cnkvc2VhcmNoY2Ns L2luZGV4LnNodG1sPiBJZiB5b3VyIG1haWwgYm91bmNlcyBmcm9tIENDTCB3aXRoIDUuNy4xIGVy cm9yLCBjaGVjazogaHR0cDovL3d3dy5jY2wubmV0L3NwYW1tZXJzLnR4dDxodHRwOi8vd3d3LmNj bC5uZXQvc3BhbW1lcnMudHh0PiBSVEZJOiBodHRwOi8vd3d3LmNjbC5uZXQvY2hlbWlzdHJ5L2Fi b3V0Y2NsL2luc3RydWN0aW9ucy88aHR0cDovL3d3dy5jY2wubmV0L2NoZW1pc3RyeS9hYm91dGNj bC9pbnN0cnVjdGlvbnM+DQpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXw0KDQpDb25m aWRlbnRpYWxpdHkgTm90aWNlOiBUaGlzIG1lc3NhZ2UgaXMgcHJpdmF0ZSBhbmQgbWF5IGNvbnRh aW4gY29uZmlkZW50aWFsIGFuZCBwcm9wcmlldGFyeSBpbmZvcm1hdGlvbi4gSWYgeW91IGhhdmUg cmVjZWl2ZWQgdGhpcyBtZXNzYWdlIGluIGVycm9yLCBwbGVhc2Ugbm90aWZ5IHVzIGFuZCByZW1v dmUgaXQgZnJvbSB5b3VyIHN5c3RlbSBhbmQgbm90ZSB0aGF0IHlvdSBtdXN0IG5vdCBjb3B5LCBk aXN0cmlidXRlIG9yIHRha2UgYW55IGFjdGlvbiBpbiByZWxpYW5jZSBvbiBpdC4gQW55IHVuYXV0 aG9yaXplZCB1c2Ugb3IgZGlzY2xvc3VyZSBvZiB0aGUgY29udGVudHMgb2YgdGhpcyBtZXNzYWdl IGlzIG5vdCBwZXJtaXR0ZWQgYW5kIG1heSBiZSB1bmxhd2Z1bC4NCg== --_000_DB7PR04MB5339BD8224E48BF9CF072601CAA60DB7PR04MB5339eurp_ Content-Type: text/html; charset=UTF-8 Content-Transfer-Encoding: base64 PGh0bWwgeG1sbnM6dj0idXJuOnNjaGVtYXMtbWljcm9zb2Z0LWNvbTp2bWwiIHhtbG5zOm89InVy bjpzY2hlbWFzLW1pY3Jvc29mdC1jb206b2ZmaWNlOm9mZmljZSIgeG1sbnM6dz0idXJuOnNjaGVt YXMtbWljcm9zb2Z0LWNvbTpvZmZpY2U6d29yZCIgeG1sbnM6bT0iaHR0cDovL3NjaGVtYXMubWlj cm9zb2Z0LmNvbS9vZmZpY2UvMjAwNC8xMi9vbW1sIiB4bWxucz0iaHR0cDovL3d3dy53My5vcmcv VFIvUkVDLWh0bWw0MCI+DQo8aGVhZD4NCjxtZXRhIGh0dHAtZXF1aXY9IkNvbnRlbnQtVHlwZSIg Y29udGVudD0idGV4dC9odG1sOyBjaGFyc2V0PXV0Zi04Ij4NCjxtZXRhIG5hbWU9IkdlbmVyYXRv ciIgY29udGVudD0iTWljcm9zb2Z0IFdvcmQgMTUgKGZpbHRlcmVkIG1lZGl1bSkiPg0KPHN0eWxl PjwhLS0NCi8qIEZvbnQgRGVmaW5pdGlvbnMgKi8NCkBmb250LWZhY2UNCgl7Zm9udC1mYW1pbHk6 IkNhbWJyaWEgTWF0aCI7DQoJcGFub3NlLTE6MiA0IDUgMyA1IDQgNiAzIDIgNDt9DQpAZm9udC1m YWNlDQoJe2ZvbnQtZmFtaWx5OkNhbGlicmk7DQoJcGFub3NlLTE6MiAxNSA1IDIgMiAyIDQgMyAy IDQ7fQ0KQGZvbnQtZmFjZQ0KCXtmb250LWZhbWlseTpDb25zb2xhczsNCglwYW5vc2UtMToyIDEx IDYgOSAyIDIgNCAzIDIgNDt9DQovKiBTdHlsZSBEZWZpbml0aW9ucyAqLw0KcC5Nc29Ob3JtYWws IGxpLk1zb05vcm1hbCwgZGl2Lk1zb05vcm1hbA0KCXttYXJnaW46MGNtOw0KCW1hcmdpbi1ib3R0 b206LjAwMDFwdDsNCglmb250LXNpemU6MTEuMHB0Ow0KCWZvbnQtZmFtaWx5OiJDYWxpYnJpIixz YW5zLXNlcmlmO30NCmE6bGluaywgc3Bhbi5Nc29IeXBlcmxpbmsNCgl7bXNvLXN0eWxlLXByaW9y aXR5Ojk5Ow0KCWNvbG9yOmJsdWU7DQoJdGV4dC1kZWNvcmF0aW9uOnVuZGVybGluZTt9DQphOnZp c2l0ZWQsIHNwYW4uTXNvSHlwZXJsaW5rRm9sbG93ZWQNCgl7bXNvLXN0eWxlLXByaW9yaXR5Ojk5 Ow0KCWNvbG9yOnB1cnBsZTsNCgl0ZXh0LWRlY29yYXRpb246dW5kZXJsaW5lO30NCnByZQ0KCXtt c28tc3R5bGUtcHJpb3JpdHk6OTk7DQoJbXNvLXN0eWxlLWxpbms6IkhUTUwgUHJlZm9ybWF0dGVk IENoYXIiOw0KCW1hcmdpbjowY207DQoJbWFyZ2luLWJvdHRvbTouMDAwMXB0Ow0KCWZvbnQtc2l6 ZToxMC4wcHQ7DQoJZm9udC1mYW1pbHk6IkNvdXJpZXIgTmV3Ijt9DQpwLm1zb25vcm1hbDAsIGxp Lm1zb25vcm1hbDAsIGRpdi5tc29ub3JtYWwwDQoJe21zby1zdHlsZS1uYW1lOm1zb25vcm1hbDsN Cgltc28tbWFyZ2luLXRvcC1hbHQ6YXV0bzsNCgltYXJnaW4tcmlnaHQ6MGNtOw0KCW1zby1tYXJn aW4tYm90dG9tLWFsdDphdXRvOw0KCW1hcmdpbi1sZWZ0OjBjbTsNCglmb250LXNpemU6MTEuMHB0 Ow0KCWZvbnQtZmFtaWx5OiJDYWxpYnJpIixzYW5zLXNlcmlmO30NCnNwYW4uSFRNTFByZWZvcm1h dHRlZENoYXINCgl7bXNvLXN0eWxlLW5hbWU6IkhUTUwgUHJlZm9ybWF0dGVkIENoYXIiOw0KCW1z by1zdHlsZS1wcmlvcml0eTo5OTsNCgltc28tc3R5bGUtbGluazoiSFRNTCBQcmVmb3JtYXR0ZWQi Ow0KCWZvbnQtZmFtaWx5OkNvbnNvbGFzO30NCnNwYW4uRW1haWxTdHlsZTIyDQoJe21zby1zdHls ZS10eXBlOnBlcnNvbmFsLXJlcGx5Ow0KCWZvbnQtZmFtaWx5OiJDYWxpYnJpIixzYW5zLXNlcmlm Ow0KCWNvbG9yOndpbmRvd3RleHQ7fQ0KLk1zb0NocERlZmF1bHQNCgl7bXNvLXN0eWxlLXR5cGU6 ZXhwb3J0LW9ubHk7DQoJZm9udC1zaXplOjEwLjBwdDt9DQpAcGFnZSBXb3JkU2VjdGlvbjENCgl7 c2l6ZTo2MTIuMHB0IDc5Mi4wcHQ7DQoJbWFyZ2luOjcwLjg1cHQgNzAuODVwdCA3MC44NXB0IDcw Ljg1cHQ7fQ0KZGl2LldvcmRTZWN0aW9uMQ0KCXtwYWdlOldvcmRTZWN0aW9uMTt9DQotLT48L3N0 eWxlPjwhLS1baWYgZ3RlIG1zbyA5XT48eG1sPg0KPG86c2hhcGVkZWZhdWx0cyB2OmV4dD0iZWRp dCIgc3BpZG1heD0iMTAyNiIgLz4NCjwveG1sPjwhW2VuZGlmXS0tPjwhLS1baWYgZ3RlIG1zbyA5 XT48eG1sPg0KPG86c2hhcGVsYXlvdXQgdjpleHQ9ImVkaXQiPg0KPG86aWRtYXAgdjpleHQ9ImVk aXQiIGRhdGE9IjEiIC8+DQo8L286c2hhcGVsYXlvdXQ+PC94bWw+PCFbZW5kaWZdLS0+DQo8L2hl YWQ+DQo8Ym9keSBsYW5nPSJFTi1VUyIgbGluaz0iYmx1ZSIgdmxpbms9InB1cnBsZSI+DQo8ZGl2 IGNsYXNzPSJXb3JkU2VjdGlvbjEiPg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+SGkgU2ViYXN0aWFu LDxvOnA+PC9vOnA+PC9wPg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+PG86cD4mbmJzcDs8L286cD48 L3A+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj5JIGd1ZXNzIG1vc3Qgb2YgeW91ciBhbnN3ZXJzIGhl cmUgd2lsbCBwb2ludCBvdXQgdGhhdCB0aGUgcXVlc3Rpb24gaXMgd3JvbmcuIFRoZXJlIGFyZSBw bGVudHkgb2YgbWV0YWxzIHRoYXQgZG8gZWFjaCBvZiB0aGUgdGFza3MgeW91IGhhdmUgcG9pbnRl ZCBvdXQuIEnigJlkIHNheSB0aGUgbGVhc3Qgc3BlY2lmaWMgb25lIGlzIGh5ZHJvZ2VuYXRpb24s IHRoZSB3b3JsZHMgbGFyZ2VzdCBhc3ltbWV0cmljIGNhdGFseXRpYw0KIHByb2Nlc3MgdXNlcyBS aCwgbm90IElyLiBCdXQgSSBndWVzcyB5b3Ugd2FudCB0byBmaW5kIG91dCB3aHkgc29tZSBtZXRh bHMgc2VlbSBpZGVhbGx5IGJhbGFuY2VkIGFuZCB0aHVzIGhhdmUgZ2FpbmVkIGhpZ2ggcG9wdWxh cml0eS4gSeKAmWxsIGp1c3QgYWRkcmVzcyBjcm9zcyBjb3VwbGluZyBoZXJlLiBJdOKAmXMgYWxs IGEgcXVlc3Rpb24gb2YgYmFsYW5jZS4gQXMgeW91IHlvdXJzZWxmIGhhdmUgcHVzaGVkIGVhcmxp ZXIsIGVhY2ggb2YgdGhlc2UNCiBjYXNlcyBhcmUgY2F0YWx5dGljIGN5Y2xlcywgYW5kIGZvciBh biBlZmZpY2llbnQgY2F0YWx5dGljIGNvdXBsaW5nIGN5Y2xlIHlvdSBuZWVkIHRvIGhhdmUgdHdv IHN0YXRlcyB0aGF0IGFyZSBlYXNpbHkgYWNjZXNzaWJsZSwgd2l0aCBzaW1pbGFyIGVuZXJnaWVz LiBBZGRpdGlvbmFsbHksIGZvciByb2J1c3RuZXNzLCB5b3Ugb25seSB3YW50IHRoZXNlIHN0YXRl cywgbm90IGFueSBvdGhlcnMsIHRvIGJlIGFjY2Vzc2libGUuIEZ1cnRoZXJtb3JlLA0KIG9yZ2Fu aWMgcmVhY3Rpb25zIGNhbiBkaXZlcmdlIGlmIHlvdSBzdGFydCBmb3JtaW5nIHJhZGljYWxzIChl dmVuIHRob3VnaCB0aGF0IHJlYWN0aXZpdHkgY2FuIGJlIHRhbWVkLCB3aXRoIGVmZm9ydCkuIElm IHlvdSB3YW50IHRvIGF2b2lkIHJhZGljYWxzLCBnbyBmb3Igc29tZXRoaW5nIHRoYXQgaGFzIG9u bHkgY2xvc2VkIHNoZWxsIHN0YXRlcy4gVGhpcyB3b3VsZCBleGNsdWRlIGZpcnN0IHJvdyB0cmFu c2l0aW9uIG1ldGFscywgZWFjaCBvZg0KIHdoaWNoIGhhdmUgZWFzaWx5IGFjY2Vzc2libGUgb3Bl biBzaGVsbCBzdGF0ZXMuIEJ1dCB0byByZWl0ZXJhdGUsIHNvbWV0aW1lcyB3ZSB3YW50IHRvIHBh eSB0aGUgZWZmb3J0IHRvIGZpbmUtdHVuZSB0aGUgcmVhY3Rpdml0eSBvZiB0aGVzZSBtZXRhbHMg YW5kIGxpbWl0IHRoZSBzaWRlIHBhdGhzLiBZb3UgY2FuIGRvIG11Y2ggbW9yZSBlZmZpY2llbnQg Y291cGxpbmcgd2l0aCBGZSwgTmksIG9yIGV2ZW4gQ3UgdGhhbiB3aXRoIFBkLCBidXQgZHVlDQog dG8gdGhlIHByZXNlbmNlIG9mIGFkZGl0aW9uYWwgb3hpZGF0aW9ucyBzdGF0ZXMsIGVhY2ggc3lz dGVtIG11c3QgYmUgb3B0aW1pemVkLCB5b3UgZG9u4oCZdCBoYXZlIOKAnG9mZi10aGUtc2hlbGbi gJ0gc29sdXRpb25zIHRhdCBhbHdheXMgd29yay48bzpwPjwvbzpwPjwvcD4NCjxwIGNsYXNzPSJN c29Ob3JtYWwiPjxvOnA+Jm5ic3A7PC9vOnA+PC9wPg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+U3Rh eWluZyBpbiB0aGUgc2Vjb25kIG9yIHRoaXJkIHJvdywgdGhlIHNlY29uZCByb3cgaXMgZ2VuZXJh bGx5IGZhdm9yZWQgYnkgcHJpY2UuIFRoZW4sIHdoeSBQZD8gT2J2aW91c2x5IGl0IGhhcyB0d28g ZWFzaWx5IGFjY2Vzc2libGUgb3hpZGF0aW9uIHN0YXRlcywgMCBhbmQgJiM0MzsyLiBPdGhlciBz dGF0ZXMgY2FuIGJlIHJlYWNoZWQsIGJ1dCBvbmx5IHVuZGVyIGZvcmNpbmcgb3IgYmltZXRhbGxp YyBjb25kaXRpb25zLg0KIFRoZSBlbmVyZ2llcyBvZiB0aGVzZSB0d28gc3RhdGVzIGhhcHBlbiB0 byBiZSBpbiBhIHJhbmdlIHN1aXRhYmxlIGZvciB0aGUgbmVlZGVkIHJlYWN0aW9ucywgbW9zdGx5 IGJlY2F1c2UgYXJ5bCBoYWxpZGVzIGFyZSB2ZXJ5IGNvbW1vbi4gSWYgd2UgaGFkIGZvY3VzZWQg b24gZGlhem9uaXVtIHNhbHRzIGluc3RlYWQsIHlvdeKAmWQgZmluZCB0aGF0IG90aGVyIG1ldGFs cyB3b3VsZCBiZWNvbWUgb3B0aW1hbCwgYnV0IGZvciBzYWZldHkgcmVhc29ucywNCiB3ZSB3aWxs IG5vdC4gV2hhdCBhbHRlcm5hdGl2ZXMgYXJlIHRoZXJlPyBSaCBpcyB1c2VkLCBidXQgaWYgeW91 IGdvIHRvIGNsb3NlZCBzaGVsbCwgaXQgaGFzIHRvIHV0aWxpemUgdGhlICYjNDM7MSwmIzQzOzMg Y3ljbGUuIFRoZSBjb3N0IG9mIHJlYWNoaW5nICYjNDM7MyBzZWVtcyB0byBiZSBoaWdoIGZvciBz aW1wbGUgYXJ5bCBoYWxpZGVzLCBhbmQgdGhlIGhpZ2ggY2hhcmdlIG9mICYjNDM7MyB3b3VsZCBt YWtlIGl0IHNlbnNpdGl2ZSwgcmVkdWNpbmcgcm9idXN0bmVzcy4NCiBIb3cgYWJvdXQgUnU/IEJv dGggMCBhbmQgJiM0Mzs0IHNlZW1zIHRvIHJlcXVpcmUgdG9vIG11Y2ggZW5lcmd5LCBhbmQgdGhl IG9kZCBudW1iZXJzIHdvdWxkIGJlIG9wZW4gc2hlbGwuIEEgYmltZXRhbGxpYyAmIzQzOzIsJiM0 MzszIHNob3VsZCBiZSBwb3NzaWJsZSwgYnV0IHN0YWJpbGl6aW5nIGEgbXVsdGltZXRhbGxpYyBj YXRhbHlzdCBpbiBvbmx5IHRoZSBiaW1ldGFsbGljIHN0YXRlIHNlZW1zIGhhcmQgYW5kIG5vdCBv dmVybHkgcm9idXN0ICh0aGVyZSBhcmUNCiBzb2x1dGlvbnMsIGZvciBzcGVjaWZpYyBwcm9ibGVt cykuIEkgY291bGQgY29udGludWUgbGlrZSB0aGlzLCBidXQgaXQgd291bGQgYmUgdmVyeSBsb25n LCB5b3XigJlkIGhhdmUgdG8gZXhwbGFpbiBmb3IgZXZlcnkgbWV0YWwgZXhhY3RseSB3aHkgaXQg aGFzIHRoZSB3cm9uZyBiYWxhbmNlLCBhbmQgZm9yIGV2ZXJ5IG1ldGFsLCB5b3UgY291bGQgcHJv YmFibHkgdXNlIHRob3NlIGFyZ3VtZW50cyB0byBjb21lIHVwIHdpdGggdGhlIGV4Y2VwdGlvbiwN CiB3aGVyZSB0aGF0IG1ldGFsIHRvbyB3b3VsZCBiZSBhIGNvdXBsaW5nIGNhdGFseXN0LiBFdmVu IG1vcmUgc28gZm9yIGh5ZHJvZ2VuYXRpb247IEkgZG9u4oCZdCB0aGluayB0aGVyZSBpcyBhIHNp bmdsZSBtZXRhbCB0aGF0IGhhc27igJl0IGJlZW4gdXNlZCB0byBoeWRyb2dlbmF0ZSBzb21ldGhp bmcuPG86cD48L286cD48L3A+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj48bzpwPiZuYnNwOzwvbzpw PjwvcD4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPk1ldGF0aGVzaXMgaXMgaGFyZGVyIHRvIGVsdWNp ZGF0ZSwgdGhlcmUgeW91IG5lZWQgdGhlIHBlcmZlY3QgYmFsYW5jZSBiZXR3ZWVuIHNpbmdsZSBh bmQgZG91YmxlIGJvbmRzIHRvIG1ldGFsIGF0IGEgc2luZ2xlIG94aWRhdGlvbiBzdGF0ZS4gSSBk b27igJl0IGtub3cgZW5vdWdoIG9mIHRoZSBkZXRhaWxzLCBidXQgUnUsIE1vLCBhbmQgT3Mgc2Vl bSB0byBkbyBpdCB3ZWxsLCBhbmQgdGhlcmUgaGF2ZSBiZWVuIHJlcG9ydHMNCiBvZiBmaXJzdCBy b3cgYWxzbywgSSBiZWxpZXZlLiBJdOKAmXMgdmVyeSBtdWNoIGluIHRoZSBzZW5zaXRpdml0eSB0 byBzaWRlIHJlYWN0aW9ucywgYWlyLCB3YXRlciwgZXRj4oCmPG86cD48L286cD48L3A+DQo8cCBj bGFzcz0iTXNvTm9ybWFsIj48bzpwPiZuYnNwOzwvbzpwPjwvcD4NCjxwIGNsYXNzPSJNc29Ob3Jt YWwiPkNoZWVycyw8bzpwPjwvbzpwPjwvcD4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxvOnA+Jm5i c3A7PC9vOnA+PC9wPg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+UGVyLU9sYTxvOnA+PC9vOnA+PC9w Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+PG86cD4mbmJzcDs8L286cD48L3A+DQo8cCBjbGFzcz0i TXNvTm9ybWFsIj48Yj5Gcm9tOjwvYj4gb3duZXItY2hlbWlzdHJ5JiM0MztwZXItb2xhLm5vcnJi eT09YXN0cmF6ZW5lY2EuY29tQGNjbC5uZXQgJmx0O293bmVyLWNoZW1pc3RyeSYjNDM7cGVyLW9s YS5ub3JyYnk9PWFzdHJhemVuZWNhLmNvbUBjY2wubmV0Jmd0Ow0KPGI+T24gQmVoYWxmIE9mIDwv Yj5TZWJhc3RpYW4gS296dWNoIHNlYi5rb3p1Y2hdXltnbWFpbC5jb208YnI+DQo8Yj5TZW50Ojwv Yj4gZGVuIDIgbWFqIDIwMjAgMTY6MTk8YnI+DQo8Yj5Ubzo8L2I+IE5vcnJieSwgUGVyLU9sYSAm bHQ7UGVyLU9sYS5Ob3JyYnlAYXN0cmF6ZW5lY2EuY29tJmd0Ozxicj4NCjxiPlN1YmplY3Q6PC9i PiBDQ0w6IEV4cGxhbmF0aW9uIG9uIHNwZWNpZmljIG1ldGFsIHJlYWN0aXZpdHk8bzpwPjwvbzpw PjwvcD4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxvOnA+Jm5ic3A7PC9vOnA+PC9wPg0KPHAgY2xh c3M9Ik1zb05vcm1hbCI+U2VudCB0byBDQ0wgYnk6IFNlYmFzdGlhbiBLb3p1Y2ggW3NlYi5rb3p1 Y2heZ21haWwuY29tXSA8bzpwPg0KPC9vOnA+PC9wPg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+Rm9y IGFsbCB0aGUgY29tcHV0YXRpb25hbCBvcmdhbm9tZXRhbGxpc3RzIG91dCB0aGVyZTo8bzpwPjwv bzpwPjwvcD4NCjxkaXY+DQo8ZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+V2h5IElyIGFuZCBu b3Qgb3RoZXIgbWV0YWxzIGNhdGFseXNlcyBoeWRyb2dlbmF0aW9uPzxvOnA+PC9vOnA+PC9wPg0K PC9kaXY+DQo8L2Rpdj4NCjxkaXY+DQo8ZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+V2h5IFBk IGZvciBjcm9zcy1jb3VwbGluZz88bzpwPjwvbzpwPjwvcD4NCjwvZGl2Pg0KPC9kaXY+DQo8ZGl2 Pg0KPGRpdj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPldoeSBSdSBmb3IgbWV0YXRoZXNpcz88bzpw PjwvbzpwPjwvcD4NCjwvZGl2Pg0KPC9kaXY+DQo8ZGl2Pg0KPGRpdj4NCjxwIGNsYXNzPSJNc29O b3JtYWwiPkkgY2Fubm90IGZpbmQgYW55IHNwZWNpZmljIGV4cGxhbmF0aW9uIHRoYXQgY29ubmVj dHMgYSBtZXRhbCB0byBpdHMgcmVhY3Rpb24uIFRvbnMgb2YgbWVjaGFuaXN0aWMgc3R1ZGllcyBh bmQgcmV2aWV3cywgd2l0aG91dCBleHBsYW5hdGlvbnMgb24gd2h5IHRoaXMgbWV0YWwgYW5kIG9u bHkgdGhpcyBtZXRhbCBmb3IgdGhpcyByZWFjdGlvbnMuPGJyPg0KSXMgdGhpcyBpbmZvIGhpZGRl biBvciB1bmtub3duPyBBbnkgZ29vZCBwYXBlciBvciBib29rPzxicj4NCjxicj4NClRoYW5rcyw8 YnI+DQpTZWJhc3RpYW48YnI+DQo8YnI+DQo8bzpwPjwvbzpwPjwvcD4NCjwvZGl2Pg0KPC9kaXY+ DQo8cHJlPjxvOnA+Jm5ic3A7PC9vOnA+PC9wcmU+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj4tPSBU aGlzIGlzIGF1dG9tYXRpY2FsbHkgYWRkZWQgdG8gZWFjaCBtZXNzYWdlIGJ5IHRoZSBtYWlsaW5n IHNjcmlwdCA9LSBUbyByZWNvdmVyIHRoZSBlbWFpbCBhZGRyZXNzIG9mIHRoZSBhdXRob3Igb2Yg dGhlIG1lc3NhZ2UsIHBsZWFzZSBjaGFuZ2UgdGhlIHN0cmFuZ2UgY2hhcmFjdGVycyBvbiB0aGUg dG9wIGxpbmUgdG8gdGhlIEAgc2lnbi4gWW91IGNhbiBhbHNvIGxvb2sgdXAgdGhlIFgtT3JpZ2lu YWwtRnJvbToNCiBsaW5lIGluIHRoZSBtYWlsIGhlYWRlci4gRS1tYWlsIHRvIHN1YnNjcmliZXJz OiA8YSBocmVmPSJtYWlsdG86Q0hFTUlTVFJZQGNjbC5uZXQiPg0KQ0hFTUlTVFJZQGNjbC5uZXQ8 L2E+IG9yIHVzZTogPGEgaHJlZj0iaHR0cDovL3d3dy5jY2wubmV0L2NnaS1iaW4vY2NsL3NlbmRf Y2NsX21lc3NhZ2UiPg0KaHR0cDovL3d3dy5jY2wubmV0L2NnaS1iaW4vY2NsL3NlbmRfY2NsX21l c3NhZ2U8L2E+IEUtbWFpbCB0byBhZG1pbmlzdHJhdG9yczogPGEgaHJlZj0ibWFpbHRvOkNIRU1J U1RSWS1SRVFVRVNUQGNjbC5uZXQiPg0KQ0hFTUlTVFJZLVJFUVVFU1RAY2NsLm5ldDwvYT4gb3Ig dXNlIDxhIGhyZWY9Imh0dHA6Ly93d3cuY2NsLm5ldC9jZ2ktYmluL2NjbC9zZW5kX2NjbF9tZXNz YWdlIj4NCmh0dHA6Ly93d3cuY2NsLm5ldC9jZ2ktYmluL2NjbC9zZW5kX2NjbF9tZXNzYWdlPC9h PiBTdWJzY3JpYmUvVW5zdWJzY3JpYmU6IDxhIGhyZWY9Imh0dHA6Ly93d3cuY2NsLm5ldC9jaGVt aXN0cnkvc3ViX3Vuc3ViLnNodG1sIj4NCmh0dHA6Ly93d3cuY2NsLm5ldC9jaGVtaXN0cnkvc3Vi X3Vuc3ViLnNodG1sPC9hPiBCZWZvcmUgcG9zdGluZywgY2hlY2sgd2FpdCB0aW1lIGF0Og0KPGEg aHJlZj0iaHR0cDovL3d3dy5jY2wubmV0Ij4NCmh0dHA6Ly93d3cuY2NsLm5ldDwvYT4gSm9iOiA8 YSBocmVmPSJodHRwOi8vd3d3LmNjbC5uZXQvam9icyI+DQpodHRwOi8vd3d3LmNjbC5uZXQvam9i czwvYT4gQ29uZmVyZW5jZXM6IDxhIGhyZWY9Imh0dHA6Ly9zZXJ2ZXIuY2NsLm5ldC9jaGVtaXN0 cnkvYW5ub3VuY2VtZW50cy9jb25mZXJlbmNlcyI+DQpodHRwOi8vc2VydmVyLmNjbC5uZXQvY2hl bWlzdHJ5L2Fubm91bmNlbWVudHMvY29uZmVyZW5jZXMvPC9hPiBTZWFyY2ggTWVzc2FnZXM6IDxh IGhyZWY9Imh0dHA6Ly93d3cuY2NsLm5ldC9jaGVtaXN0cnkvc2VhcmNoY2NsL2luZGV4LnNodG1s Ij4NCmh0dHA6Ly93d3cuY2NsLm5ldC9jaGVtaXN0cnkvc2VhcmNoY2NsL2luZGV4LnNodG1sPC9h PiBJZiB5b3VyIG1haWwgYm91bmNlcyBmcm9tIENDTCB3aXRoIDUuNy4xIGVycm9yLCBjaGVjazoN CjxhIGhyZWY9Imh0dHA6Ly93d3cuY2NsLm5ldC9zcGFtbWVycy50eHQiPg0KaHR0cDovL3d3dy5j Y2wubmV0L3NwYW1tZXJzLnR4dDwvYT4gUlRGSTogPGEgaHJlZj0iaHR0cDovL3d3dy5jY2wubmV0 L2NoZW1pc3RyeS9hYm91dGNjbC9pbnN0cnVjdGlvbnMiPg0KaHR0cDovL3d3dy5jY2wubmV0L2No ZW1pc3RyeS9hYm91dGNjbC9pbnN0cnVjdGlvbnMvPC9hPiA8bzpwPjwvbzpwPjwvcD4NCjwvZGl2 Pg0KPGhyPg0KPHAgY2xhc3M9IntJbXByaW50LlVuaXF1ZUlEfSIgc3R5bGU9IkZPTlQtU0laRTog OHB0Ij48Zm9udCBmYWNlPSJBcmlhbCIgc2l6ZT0iMSI+PC9mb250PjwvcD4NCjxwIGNsYXNzPSJ7 SW1wcmludC5VbmlxdWVJRH0iIHN0eWxlPSJGT05ULVNJWkU6IDhwdCI+PGZvbnQgZmFjZT0iQXJp YWwiPjxzdHJvbmc+Q29uZmlkZW50aWFsaXR5IE5vdGljZToNCjwvc3Ryb25nPlRoaXMgbWVzc2Fn ZSBpcyBwcml2YXRlIGFuZCBtYXkgY29udGFpbiBjb25maWRlbnRpYWwgYW5kIHByb3ByaWV0YXJ5 IGluZm9ybWF0aW9uLiBJZiB5b3UgaGF2ZSByZWNlaXZlZCB0aGlzIG1lc3NhZ2UgaW4gZXJyb3Is IHBsZWFzZSBub3RpZnkgdXMgYW5kIHJlbW92ZSBpdCBmcm9tIHlvdXIgc3lzdGVtIGFuZCBub3Rl IHRoYXQgeW91IG11c3Qgbm90IGNvcHksIGRpc3RyaWJ1dGUgb3IgdGFrZSBhbnkgYWN0aW9uIGlu IHJlbGlhbmNlDQogb24gaXQuIEFueSB1bmF1dGhvcml6ZWQgdXNlIG9yIGRpc2Nsb3N1cmUgb2Yg dGhlIGNvbnRlbnRzIG9mIHRoaXMgbWVzc2FnZSBpcyBub3QgcGVybWl0dGVkIGFuZCBtYXkgYmUg dW5sYXdmdWwuPC9mb250PjwvcD4NCjxwIGNsYXNzPSJ7SW1wcmludC5VbmlxdWVJRH0iIHN0eWxl PSJGT05ULVNJWkU6IDhwdCI+PGZvbnQgZmFjZT0iQXJpYWwiPjwvZm9udD48L3A+DQo8cCBjbGFz cz0ie0ltcHJpbnQuVW5pcXVlSUR9IiBzdHlsZT0iRk9OVC1TSVpFOiA4cHQiPjxmb250IGZhY2U9 IkFyaWFsIj48L2ZvbnQ+PC9wPg0KPHAgY2xhc3M9IntJbXByaW50LlVuaXF1ZUlEfSIgc3R5bGU9 IkZPTlQtU0laRTogOHB0Ij48Zm9udCBmYWNlPSJBcmlhbCI+PC9mb250PjwvcD4NCjxwIGNsYXNz PSJ7SW1wcmludC5VbmlxdWVJRH0iIHN0eWxlPSJGT05ULVNJWkU6IDhwdCI+PGZvbnQgZmFjZT0i QXJpYWwiPjwvZm9udD48L3A+DQo8cCBjbGFzcz0ie0ltcHJpbnQuVW5pcXVlSUR9IiBzdHlsZT0i Rk9OVC1TSVpFOiA4cHQiPjxmb250IGZhY2U9IkFyaWFsIj48L2ZvbnQ+PC9wPg0KPHAgY2xhc3M9 IntJbXByaW50LlVuaXF1ZUlEfSIgc3R5bGU9IkZPTlQtU0laRTogOHB0Ij48Zm9udCBmYWNlPSJB cmlhbCI+PC9mb250Pjxmb250IHNpemU9IiYjNDM7MCI+PC9mb250PjwvcD4NCjxwIGNsYXNzPSJ7 SW1wcmludC5VbmlxdWVJRH0iIHN0eWxlPSJGT05ULVNJWkU6IDhwdCI+PGZvbnQgZmFjZT0iQXJp YWwiPjwvZm9udD48L3A+DQo8cCBjbGFzcz0ie0ltcHJpbnQuVW5pcXVlSUR9IiBzdHlsZT0iRk9O VC1TSVpFOiA4cHQiPjwvcD4NCjxwIGNsYXNzPSJ7SW1wcmludC5VbmlxdWVJRH0iIHN0eWxlPSJG T05ULVNJWkU6IDhwdCI+PC9wPg0KPC9ib2R5Pg0KPC9odG1sPg0K --_000_DB7PR04MB5339BD8224E48BF9CF072601CAA60DB7PR04MB5339eurp_-- From owner-chemistry@ccl.net Mon May 4 12:17:00 2020 From: "Sebastian Kozuch seb.kozuch[a]gmail.com" To: CCL Subject: CCL: Explanation on specific metal reactivity Message-Id: <-54057-200504091906-25218-Q0/ba8ktyANAsLcovOkC6g-,-server.ccl.net> X-Original-From: Sebastian Kozuch Content-Language: en-US Content-Transfer-Encoding: 8bit Content-Type: text/html; charset=utf-8 Date: Mon, 4 May 2020 16:18:58 +0300 MIME-Version: 1.0 Sent to CCL by: Sebastian Kozuch [seb.kozuch[a]gmail.com] Hi Per-Ola,
This was actually useful. I guess that a thorough discussion like this, considering the difficulties in obtaining such information, should be written in a review or perspective article. So here is a challenge for the organometallic community ;)

Best,
Sebastian

On 4/5/20 9:55 AM, Norrby, Per-Ola Per-Ola.Norrby=astrazeneca.com wrote:

Hi Sebastian,

 

I guess most of your answers here will point out that the question is wrong. There are plenty of metals that do each of the tasks you have pointed out. I’d say the least specific one is hydrogenation, the worlds largest asymmetric catalytic process uses Rh, not Ir. But I guess you want to find out why some metals seem ideally balanced and thus have gained high popularity. I’ll just address cross coupling here. It’s all a question of balance. As you yourself have pushed earlier, each of these cases are catalytic cycles, and for an efficient catalytic coupling cycle you need to have two states that are easily accessible, with similar energies. Additionally, for robustness, you only want these states, not any others, to be accessible. Furthermore, organic reactions can diverge if you start forming radicals (even though that reactivity can be tamed, with effort). If you want to avoid radicals, go for something that has only closed shell states. This would exclude first row transition metals, each of which have easily accessible open shell states. But to reiterate, sometimes we want to pay the effort to fine-tune the reactivity of these metals and limit the side paths. You can do much more efficient coupling with Fe, Ni, or even Cu than with Pd, but due to the presence of additional oxidations states, each system must be optimized, you don’t have “off-the-shelf” solutions tat always work.

 

Staying in the second or third row, the second row is generally favored by price. Then, why Pd? Obviously it has two easily accessible oxidation states, 0 and +2. Other states can be reached, but only under forcing or bimetallic conditions. The energies of these two states happen to be in a range suitable for the needed reactions, mostly because aryl halides are very common. If we had focused on diazonium salts instead, you’d find that other metals would become optimal, but for safety reasons, we will not. What alternatives are there? Rh is used, but if you go to closed shell, it has to utilize the +1,+3 cycle. The cost of reaching +3 seems to be high for simple aryl halides, and the high charge of +3 would make it sensitive, reducing robustness. How about Ru? Both 0 and +4 seems to require too much energy, and the odd numbers would be open shell. A bimetallic +2,+3 should be possible, but stabilizing a multimetallic catalyst in only the bimetallic state seems hard and not overly robust (there are solutions, for specific problems). I could continue like this, but it would be very long, you’d have to explain for every metal exactly why it has the wrong balance, and for every metal, you could probably use those arguments to come up with the exception, where that metal too would be a coupling catalyst. Even more so for hydrogenation; I don’t think there is a single metal that hasn’t been used to hydrogenate something.

 

Metathesis is harder to elucidate, there you need the perfect balance between single and double bonds to metal at a single oxidation state. I don’t know enough of the details, but Ru, Mo, and Os seem to do it well, and there have been reports of first row also, I believe. It’s very much in the sensitivity to side reactions, air, water, etc…

 

Cheers,

 

Per-Ola

 

From: owner-chemistry+per-ola.norrby==astrazeneca.com/a\ccl.net <owner-chemistry+per-ola.norrby==astrazeneca.com/a\ccl.net> On Behalf Of Sebastian Kozuch seb.kozuch]^[gmail.com
Sent: den 2 maj 2020 16:19
To: Norrby, Per-Ola <Per-Ola.Norrby/a\astrazeneca.com>
Subject: CCL: Explanation on specific metal reactivity

 

Sent to CCL by: Sebastian Kozuch [seb.kozuch^gmail.com]

For all the computational organometallists out there:

Why Ir and not other metals catalyses hydrogenation?

Why Pd for cross-coupling?

Why Ru for metathesis?

I cannot find any specific explanation that connects a metal to its reaction. Tons of mechanistic studies and reviews, without explanations on why this metal and only this metal for this reactions.
Is this info hidden or unknown? Any good paper or book?

Thanks,
Sebastian

 

CHEMISTRY/a\ccl.net or use: E-mail to administrators: CHEMISTRY-REQUEST/a\ccl.net or use Before posting, check wait time at: http://www.ccl.net Job: http://www.ccl.net/jobs Conferences: http://server.ccl.net/chemistry/announcements/conferences/ Search Messages: http://www.ccl.net/chemistry/searchccl/index.shtml RTFI: http://www.ccl.net/chemistry/aboutccl/instructions/


Confidentiality Notice: This message is private and may contain confidential and proprietary information. If you have received this message in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this message is not permitted and may be unlawful.


-- 
‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗
.........Sebastian Kozuch.........
......Department of Chemistry.....
Ben-Gurion University of the Negev
.........kozuch/a\bgu.ac.il.........
......www.bgu.ac.il/~kozuch/......
˭˭˭˭˭˭˭˭˭˭˭˭˭˭˭˭˭˭˭˭˭˭˭˭˭˭˭˭˭˭˭˭˭˭
From owner-chemistry@ccl.net Mon May 4 16:23:00 2020 From: "JPD-workstation_home djukic#,#unistra.fr" To: CCL Subject: CCL: Explanation on specific metal reactivity Message-Id: <-54058-200504142649-16004-PrnEnkXTJfOUWY3Jd7m4iA ~~ server.ccl.net> X-Original-From: JPD-workstation_home Content-Language: fr Content-Type: multipart/alternative; boundary="------------1A33B126696C262A176C3D60" Date: Mon, 4 May 2020 20:26:37 +0200 MIME-Version: 1.0 Sent to CCL by: JPD-workstation_home [djukic#,#unistra.fr] This is a multi-part message in MIME format. --------------1A33B126696C262A176C3D60 Content-Type: text/plain; charset=utf-8; format=flowed Content-Transfer-Encoding: quoted-printable Hi Sebastian, You are right. However, you will find out readily that some issues are=20 unanswered/unsolved still today. One example is for instance the reactivity of M-H bonds in transfers to=20 organic substrates.=C2=A0 What is being actually transfered and how=C2=A0= depends=20 a lot not only on the metal, its oxidation state, the ligand retinue but=20 perhaps also on "environmental factors". It is indeed easy to draw a simplified picture of the earth from the=20 moon, things get tougher when one gets on the surface. This potential review you are mentioning should be a critical one made=20 > from the "surface", and should confront experimental evidence (for the=20 more documented cases) to theory. Best. JP Le 04/05/2020 =C3=A0 15:18, Sebastian Kozuch seb.kozuch[a]gmail.com a =C3= =A9crit=C2=A0: > Sent to CCL by: Sebastian Kozuch [seb.kozuch[a]gmail.com] Hi Per-Ola, > This was actually useful. I guess that a thorough discussion like=20 > this, considering the difficulties in obtaining such information,=20 > should be written in a review or perspective article. So here is a=20 > challenge for the organometallic community ;) > > Best, > Sebastian > > On 4/5/20 9:55 AM, Norrby, Per-Ola Per-Ola.Norrby=3Dastrazeneca.com wro= te: >> >> Hi Sebastian, >> >> I guess most of your answers here will point out that the question is=20 >> wrong. There are plenty of metals that do each of the tasks you have=20 >> pointed out. I=E2=80=99d say the least specific one is hydrogenation, = the=20 >> worlds largest asymmetric catalytic process uses Rh, not Ir. But I=20 >> guess you want to find out why some metals seem ideally balanced and=20 >> thus have gained high popularity. I=E2=80=99ll just address cross coup= ling=20 >> here. It=E2=80=99s all a question of balance. As you yourself have pus= hed=20 >> earlier, each of these cases are catalytic cycles, and for an=20 >> efficient catalytic coupling cycle you need to have two states that=20 >> are easily accessible, with similar energies. Additionally, for=20 >> robustness, you only want these states, not any others, to be=20 >> accessible. Furthermore, organic reactions can diverge if you start=20 >> forming radicals (even though that reactivity can be tamed, with=20 >> effort). If you want to avoid radicals, go for something that has=20 >> only closed shell states. This would exclude first row transition=20 >> metals, each of which have easily accessible open shell states. But=20 >> to reiterate, sometimes we want to pay the effort to fine-tune the=20 >> reactivity of these metals and limit the side paths. You can do much=20 >> more efficient coupling with Fe, Ni, or even Cu than with Pd, but due=20 >> to the presence of additional oxidations states, each system must be=20 >> optimized, you don=E2=80=99t have =E2=80=9Coff-the-shelf=E2=80=9D solu= tions tat always work. >> >> Staying in the second or third row, the second row is generally=20 >> favored by price. Then, why Pd? Obviously it has two easily=20 >> accessible oxidation states, 0 and +2. Other states can be reached,=20 >> but only under forcing or bimetallic conditions. The energies of=20 >> these two states happen to be in a range suitable for the needed=20 >> reactions, mostly because aryl halides are very common. If we had=20 >> focused on diazonium salts instead, you=E2=80=99d find that other meta= ls=20 >> would become optimal, but for safety reasons, we will not. What=20 >> alternatives are there? Rh is used, but if you go to closed shell, it=20 >> has to utilize the +1,+3 cycle. The cost of reaching +3 seems to be=20 >> high for simple aryl halides, and the high charge of +3 would make it=20 >> sensitive, reducing robustness. How about Ru? Both 0 and +4 seems to=20 >> require too much energy, and the odd numbers would be open shell. A=20 >> bimetallic +2,+3 should be possible, but stabilizing a multimetallic=20 >> catalyst in only the bimetallic state seems hard and not overly=20 >> robust (there are solutions, for specific problems). I could continue=20 >> like this, but it would be very long, you=E2=80=99d have to explain fo= r every=20 >> metal exactly why it has the wrong balance, and for every metal, you=20 >> could probably use those arguments to come up with the exception,=20 >> where that metal too would be a coupling catalyst. Even more so for=20 >> hydrogenation; I don=E2=80=99t think there is a single metal that hasn= =E2=80=99t been=20 >> used to hydrogenate something. >> >> Metathesis is harder to elucidate, there you need the perfect balance=20 >> between single and double bonds to metal at a single oxidation state.=20 >> I don=E2=80=99t know enough of the details, but Ru, Mo, and Os seem to= do it=20 >> well, and there have been reports of first row also, I believe. It=E2=80= =99s=20 >> very much in the sensitivity to side reactions, air, water, etc=E2=80=A6 >> >> Cheers, >> >> Per-Ola >> >> *From:* owner-chemistry+per-ola.norrby=3D=3Dastrazeneca.com*_*ccl.net=20 >> *On=20 >> Behalf Of *Sebastian Kozuch seb.kozuch]^[gmail.com >> *Sent:* den 2 maj 2020 16:19 >> *To:* Norrby, Per-Ola >> *Subject:* CCL: Explanation on specific metal reactivity >> >> Sent to CCL by: Sebastian Kozuch [seb.kozuch^gmail.com] >> >> For all the computational organometallists out there: >> >> Why Ir and not other metals catalyses hydrogenation? >> >> Why Pd for cross-coupling? >> >> Why Ru for metathesis? >> >> I cannot find any specific explanation that connects a metal to its=20 >> reaction. Tons of mechanistic studies and reviews, without=20 >> explanations on why this metal and only this metal for this reactions. >> Is this info hidden or unknown? Any good paper or book? >> >> Thanks, >> Sebastian >> >> CHEMISTRY*_*ccl.net or use: E-mail to administrators:=20 >> CHEMISTRY-REQUEST*_*c= cl.net=20 >> or use Before posting, check=20 >> wait time at:=20 >> http://www.ccl.net=20 >> Job: http://www.ccl.net/jobs=20 >> Conferences:=20 >> http://server.ccl.net/chemistry/announcements/conferences/=20 >> Search=20 >> Messages: http://www.ccl.net/chemistry/searchccl/index.shtml RTFI:=20 >> http://www.ccl.net= /chemistry/aboutccl/instructions/=20 >> >> >> ----------------------------------------------------------------------= -- >> >> *Confidentiality Notice: *This message is private and may contain=20 >> confidential and proprietary information. If you have received this=20 >> message in error, please notify us and remove it from your system and=20 >> note that you must not copy, distribute or take any action in=20 >> reliance on it. Any unauthorized use or disclosure of the contents of=20 >> this message is not permitted and may be unlawful. >> > > --=20 > =E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97= =E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2= =80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80= =97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97= =E2=80=97 > .........Sebastian Kozuch......... > ......Department of Chemistry..... > Ben-Gurion University of the Negev > .........kozuch*_*bgu.ac.il......... > ......www.bgu.ac.il/~kozuch/...... > =CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD= =CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB= =AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD > -=3D This is automatically added to each message by the mailing script=20 > =3D- To recover the email address of the author of the message, please=20 > change the strange characters on the top line to the .:. sign. You can=20 > alsoE-mail to=20 > subscribers: CHEMISTRY.:.ccl.net or use:=20E-mail to=20 > administrators: CHEMISTRY-REQUEST.:.ccl.net or use=20Subscribe/Unsubscribe:=20Before posting, check=20 > wait time at: http://www.ccl.net Job: http://www.ccl.net/jobs=20 > Conferences:=20 > http://server.ccl.net/chemistry/announcements/conferences/ Search=20 > Messages: http://www.ccl.net/chemistry/searchccl/index.shtml If your=20 > mail bounces from CCL with 5.7.1 error, check:=20RTFI:=20 > http://www.ccl.net/chemistry/aboutccl/instructions/=20 --------------1A33B126696C262A176C3D60 Content-Type: text/html; charset=utf-8 Content-Transfer-Encoding: quoted-printable

Hi Sebastian,


You are right.

However, you will find out readily that some issues are unanswered/unsolved still today.

One example is for instance the reactivity of M-H bonds in transfers to organic substrates.=C2=A0 What is being actually transfered and how=C2=A0 depends a lot not only on the metal, its oxidation state, the ligand retinue but perhaps also on "environmental factors".

It is indeed easy to draw a simplified picture of the earth from the moon, things get tougher when one gets on the surface.

This potential review you are mentioning should be a critical one made from the "surface", and should confront experimental evidence (for the more documented cases) to theory.

Best.
JP


Le 04/05/2020 =C3=A0 15:18, Sebastian = Kozuch seb.kozuch[a]gmail.com a =C3=A9crit=C2=A0:
Sent to CCL by: Sebastian Kozuch [seb.kozuch[a]gmail.com] Hi Per-Ola,
This was actually useful. I guess that a thorough discussion like this, considering the difficulties in obtaining such information, should be written in a review or perspective article. So here is a challenge for the organometallic community ;)

Best,
Sebastian

On 4/5/20 9:55 AM, Norrby, Per-Ola Per-Ola.Norrby=3Dastrazeneca.com wrote:

Hi Sebastian,

=C2=A0

I guess most of your answers here will point out that the question is wrong. There are plenty of metals that do each of the tasks you have pointed out. I=E2=80= =99d say the least specific one is hydrogenation, the worlds largest asymmetric catalytic process uses Rh, not Ir. But I guess you want to find out why some metals seem ideally balanced and thus have gained high popularity. I=E2=80=99ll j= ust address cross coupling here. It=E2=80=99s all a question of b= alance. As you yourself have pushed earlier, each of these cases are catalytic cycles, and for an efficient catalytic coupling cycle you need to have two states that are easily accessible, with similar energies. Additionally, for robustness, you only want these states, not any others, to be accessible. Furthermore, organic reactions can diverge if you start forming radicals (even though that reactivity can be tamed, with effort). If you want to avoid radicals, go for something that has only closed shell states. This would exclude first row transition metals, each of which have easily accessible open shell states. But to reiterate, sometimes we want to pay the effort to fine-tune the reactivity of these metals and limit the side paths. You can do much more efficient coupling with Fe, Ni, or even Cu than with Pd, but due to the presence of additional oxidations states, each system must be optimized, you don=E2=80=99t have =E2=80=9Coff-the-shelf=E2=80=9D solutions tat always work.

=C2=A0

Staying in the second or third row, the second row is generally favored by price. Then, why Pd? Obviously it has two easily accessible oxidation states, 0 and +2. Other states can be reached, but only under forcing or bimetallic conditions. The energies of these two states happen to be in a range suitable for the needed reactions, mostly because aryl halides are very common. If we had focused on diazonium salts instead, you=E2=80=99d find that o= ther metals would become optimal, but for safety reasons, we will not. What alternatives are there? Rh is used, but if you go to closed shell, it has to utilize the +1,+3 cycle. The cost of reaching +3 seems to be high for simple aryl halides, and the high charge of +3 would make it sensitive, reducing robustness. How about Ru? Both 0 and +4 seems to require too much energy, and the odd numbers would be open shell. A bimetallic +2,+3 should be possible, but stabilizing a multimetallic catalyst in only the bimetallic state seems hard and not overly robust (there are solutions, for specific problems). I could continue like this, but it would be very long, you=E2=80=99d have to explain for every metal e= xactly why it has the wrong balance, and for every metal, you could probably use those arguments to come up with the exception, where that metal too would be a coupling catalyst. Even more so for hydrogenation; I don=E2=80=99t think there is a single= metal that hasn=E2=80=99t been used to hydrogenate something.<= /o:p>

=C2=A0

Metathesis is harder to elucidate, there you need the perfect balance between single and double bonds to metal at a single oxidation state. I don=E2=80=99t know en= ough of the details, but Ru, Mo, and Os seem to do it well, and there have been reports of first row also, I believe. It=E2=80= =99s very much in the sensitivity to side reactions, air, water, etc=E2=80=A6

=C2=A0

Cheers,

=C2=A0

Per-Ola

=C2=A0

From: owner-chemistry+per-ola.norrby=3D=3D= astrazeneca.com*_*ccl.net <owner-chemistry+per-ola.norrby= =3D=3Dastrazeneca.com*_*ccl.net> On Behalf Of Sebastian Kozuch seb.kozuch]^[gmail.com Sent: den 2 maj 2020 16:19
To: Norrby, Per-Ola <Per-Ola.Norrby*_*astrazeneca.c= om>
Subject: CCL: Explanation on specific metal reactivity

=C2=A0

Sent to CCL by: Sebastian Kozuch [seb.kozuch^gmail.com]

For all the computational organometallists out there:

Why Ir and not other metals catalyse= s hydrogenation?

Why Pd for cross-coupling?

Why Ru for metathesis?

I cannot find any specific explanation that connects a metal to its reaction. Tons of mechanistic studies and reviews, without explanations on why this metal and only this metal for this reactions.
Is this info hidden or unknown? Any good paper or book?
Thanks,
Sebastian

=C2=A0

CHEMISTRY*_*ccl.net or use: E-mail to administrators: CHEMISTRY-REQUEST*_*ccl.net o= r use Before pos= ting, check wait time at: http://www.ccl.net Job: http://www.ccl.net/jobs Conferences: http://server.ccl.net/chemistry/announcements/conferences/<= /a> Search Messages: http://www.ccl.net/chemistry/searchccl/index.shtml RTFI: http://www.ccl.net/chemistry/aboutccl/instructions/


Confidentiality Notice: This message is private and may contain confidential and proprietary information. If you have received this message in error, please notify us and remove it from your system and note that you must not copy, distribute or take any action in reliance on it. Any unauthorized use or disclosure of the contents of this message is not permitted and may be unlawful.


--=20
=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=
=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=
=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=
=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=80=97=E2=
=80=97
.........Sebastian Kozuch.........
......Department of Chemistry.....
Ben-Gurion University of the Negev
.........kozuch*_*bgu.ac.il.........
......www.bgu.ac.il/~kozuch/......
=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=
=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=
=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD=CB=AD
-=3D This is automatically added to each message by the mailing script =3D-E-mail to subscribers: CHEMISTRY.:.ccl.net or use: http://www.ccl.net/cgi-bin/ccl/send_ccl_message<= /a> E-mail to administrators: CHEMISTRY-REQUEST.:.ccl.net or u= se http://www.ccl.net/cgi-bin/ccl/send_ccl_message<= /ahttp://www.ccl.net/chemistry/sub_unsub.shtml Before posting, check wait time at: http://www.ccl.net Job: http://www.ccl.net/jobs Conferences: http://server.ccl.net/chemistry/annou= ncements/conferences/ Search Messages: http://www.ccl.net/chemistry/searchccl/index.= shtmlhttp://www.ccl.net/spammers.txt RTFI: http://www.ccl.net/chemistry/aboutccl/= instructions/
--------------1A33B126696C262A176C3D60-- From owner-chemistry@ccl.net Mon May 4 16:58:00 2020 From: "Seyhan Salman ssalman!^!cau.edu" To: CCL Subject: CCL: SOC calculations Message-Id: <-54059-200504143129-16354-0xpFB+0Mov2sapybx6hWaA=server.ccl.net> X-Original-From: "Seyhan Salman" Date: Mon, 4 May 2020 14:31:27 -0400 Sent to CCL by: "Seyhan Salman" [ssalman.:.cau.edu] Hi all, How do you calculate Spin-orbit-coupling between the excited singlet (S1) and triplet (T1) states using ZORA and ADF program? Thank you. Seyhan