From owner-chemistry@ccl.net Mon Jun 15 13:03:00 2020 From: "prabhleen kaur prabhleen.kr[a]gmail.com" To: CCL Subject: CCL: Use of CASSCF with dynamical correlations to calculate singlet-triplet gap Message-Id: <-54102-200615022158-4744-CJsGUgVCvL4fiuFFg+7lIg/a\server.ccl.net> X-Original-From: prabhleen kaur Content-Type: multipart/alternative; boundary="00000000000059224705a8197143" Date: Mon, 15 Jun 2020 11:51:40 +0530 MIME-Version: 1.0 Sent to CCL by: prabhleen kaur [prabhleen.kr : gmail.com] --00000000000059224705a8197143 Content-Type: text/plain; charset="UTF-8" Hello everyone, I am trying to use a multi-reference based CASSCF method to calculate the singlet-triplet gap in organic-diradicals. For a given system, I am increasing the active space step wise, like starting from (2,2) then (4,4) and so on. CASSCF calculations with only static correlations give the correct ground state (which in my case is triplet) but upon adding dynamical correlations (NEVPT2), the ground state of the system is changed to singlet in some cases. Is it possible ? What does this signify ? And how can we interpret it ? when does this kind of issue arise ? It is happening only in (4,4) space which is far from the complete state desired for the system. Could it be because of the small active space ? I am using ORCA for all my calculations. Thank You Best Regards Prabhleen Kaur PhD Scholar Institute of Nano Science and Technology Mohali, India --00000000000059224705a8197143 Content-Type: text/html; charset="UTF-8" Content-Transfer-Encoding: quoted-printable
Hello everyone,

I am trying to use a mu= lti-reference based CASSCF method to calculate the singlet-triplet gap in o= rganic-diradicals.
For a given system, I am increasing the active= space step wise, like starting from (2,2) then (4,4) and so on.
= CASSCF calculations with only static correlations give the correct ground s= tate (which in my case is triplet) but upon adding dynamical correlations (= NEVPT2), the ground state of the system is changed to singlet in some cases= .
Is it possible ? What does this signify ? And how can we interp= ret it ? when does this kind of issue arise=C2=A0?
It is happenin= g=C2=A0only in (4,4)=C2=A0 space which is far from the complete state desir= ed for the system.
Could it be because of the small active space = ?

I am using ORCA for all my calculations.

Thank You

Best Regards
Prabhleen Kaur
PhD Scholar
Institute of Nano Science a= nd Technology
Mohali, India

--00000000000059224705a8197143-- From owner-chemistry@ccl.net Mon Jun 15 13:38:00 2020 From: "Akshaya N akshayanarayanasamy|*|gmail.com" To: CCL Subject: CCL:G: Reorganization energy in Marcus-Hush formalism Message-Id: <-54103-200615095816-10326-U3plCQ6WozGKgc2ShTbHJA]~[server.ccl.net> X-Original-From: "Akshaya N" Date: Mon, 15 Jun 2020 09:58:15 -0400 Sent to CCL by: "Akshaya N" [akshayanarayanasamy!^!gmail.com] Hello everyone, In order to calculate reorganization energy, I ran three geometry optimizations: neutral, anion, cation in gaussian 16. Then I ran anion and cation in neutral geometry, the neutral molecule in anion and cation geometries. The calculations were carried out with B3LYP functional, DFT level of theory and 6-311G basis set. > From the total energies of these calculations, I tried to determine the reorganization energies U according to Eq lambda_hole = U(neutral, cation geometry) - U(neutral, neutral geometry) + U(cation, neutral geometry) - U (cation, cation geometry) I found lambda_hole to be negative. The U(neutral, cation geometry) was lesser than the U(neutral, neutral geometry) which made the whole lambda_hole to be negative. What could be the possible reason to get negative reorganization energy? Is it valid to take the modulus of U(neutral, cation geometry) - U(neutral, neutral geometry) in order to get positive reorganization energy? Thanks Akshaya N akshaya1717[A]iisertvm.ac.in From owner-chemistry@ccl.net Mon Jun 15 15:15:01 2020 From: "Geoffrey Hutchison geoff.hutchison(0)gmail.com" To: CCL Subject: CCL: Reorganization energy in Marcus-Hush formalism Message-Id: <-54104-200615151353-1713-FvTpkj8c0uOd6NHU40tEGA:_:server.ccl.net> X-Original-From: Geoffrey Hutchison Content-Transfer-Encoding: 8bit Content-Type: text/plain; charset=us-ascii Date: Mon, 15 Jun 2020 15:13:45 -0400 Mime-Version: 1.0 (Mac OS X Mail 12.4 \(3445.104.14\)) Sent to CCL by: Geoffrey Hutchison [geoff.hutchison]~[gmail.com] > What could be the possible reason to get negative reorganization energy? Consider a case where the molecule starts in a local minimum - you optimize the cation and bringing back to the neutral, you're in a different part of the potential energy curve. Perhaps some dihedral became more planar increasing conjugation, etc. In that case your single point could be lower in energy than the original. If you take the cation geometry and the single point of the neutral species is lower in energy than your original "optimized neutral" case, you need to re-optimize from the cation geometry. At the worst, you'd end up optimizing to the same geometry = zero reorganization energy. That would be an interesting compound = no difference in geometry between cation and neutral species! More likely, if you optimize the neutral species from the cation geometry, you'll go downhill and find a new optimum for the neutral. In general, before calculating reorganization energies, I'd highly suggest exploring multiple conformers to have confidence you're in a global minima. -Geoff --- Prof. Geoffrey Hutchison Department of Chemistry University of Pittsburgh tel: (412) 648-0492 email: geoffh**pitt.edu twitter: **ghutchis web: https://hutchison.chem.pitt.edu/ From owner-chemistry@ccl.net Mon Jun 15 22:58:00 2020 From: "Nuno A. G. Bandeira nuno.bandeira++tecnico.ulisboa.pt" To: CCL Subject: CCL: Use of CASSCF with dynamical correlations to calculate singlet-triplet gap Message-Id: <-54105-200615165549-10534-/n+rnl42+cAlhRljHL8bEg],[server.ccl.net> X-Original-From: "Nuno A. G. Bandeira" Content-Type: multipart/mixed; boundary="_780D8AB8-D7F4-4F87-8906-DD4E6AEABAA0_" Date: Mon, 15 Jun 2020 21:55:41 +0100 MIME-Version: 1.0 Sent to CCL by: "Nuno A. G. Bandeira" [nuno.bandeira[]tecnico.ulisboa.pt] --_780D8AB8-D7F4-4F87-8906-DD4E6AEABAA0_ Content-Type: multipart/alternative; boundary="_90D7A756-CF6E-4F1C-A488-FBCAAE32AC18_" --_90D7A756-CF6E-4F1C-A488-FBCAAE32AC18_ Content-Transfer-Encoding: quoted-printable Content-Type: text/plain; charset="utf-8" Dear Prabhleen, Are the singlet and triplet states nearly degenerate? If so what you descri= be is perfectly natural. Are you sure the correct ground state (experimentally) is the triplet?=20 How many roots did you ask for in the minimal CAS ? Depending on your syste= m you might try to get an idea of the energy spectrum by requesting the 3 s= inglets in CAS(2,2) and averaging them with the triplet. If you ran a state specific calculation for just the (one) singlet ground s= tate this will make sense if there=E2=80=99s a sizable gap with the other r= oots but not if they=E2=80=99re near degenerate in which case your roots ma= y flip or even converge to the wrong state. Also if you have a manifold of near-degenerate states you should request th= e multi-state formalism QD-NEVPT2 just in case. The size and nature of the active space may influence the outcome but in si= nglet/triplet problems the essential static correlation is already sufficie= ntly described by a CAS(2,2). Again it depends on your system and the type = of problem you want to tackle.=20 Regards, Nuno ----------- Nuno A. G. Bandeira, AMRSC Email: nuno.bandeira . ciencias.ulisboa.pt=20 BioISI - Biosystems & Integrative Sciences Institute; 8.5.57 - C8, Faculty of Sciences, University of Lisbon Campo Grande- 1749-016 Lisboa Portugal =C2=A0 Phone: +351 21 750 01 09 -------- =C2=A0 https://www.researchgate.net/profile/Nuno_Bandeira http://www.researcherid.com/rid/B-6399-2012=20 http://orcid.org/0000-0002-5754-7328=20 http://www.cienciavitae.pt/pt/4A19-ACC3-E225 http://pt.linkedin.com/pub/nuno-a-g-bandeira/47/55a/2aa =C2=A0 > From: prabhleen kaur prabhleen.kr[a]gmail.com Sent: 15 June 2020 20:09 To: Bandeira, Nuno A. G. Subject: CCL: Use of CASSCF with dynamical correlations to calculate single= t-triplet gap Hello everyone, I am trying to use a multi-reference based CASSCF method to calculate the s= inglet-triplet gap in organic-diradicals. For a given system, I am increasing the active space step wise, like starti= ng from (2,2) then (4,4) and so on. CASSCF calculations with only static correlations give the correct ground s= tate (which in my case is triplet) but upon adding dynamical correlations (= NEVPT2), the ground state of the system is changed to singlet in some cases= . Is it possible ? What does this signify ? And how can we interpret it ? whe= n does this kind of issue arise=C2=A0? It is happening=C2=A0only in (4,4)=C2=A0 space which is far from the comple= te state desired for the system. Could it be because of the small active space ? I am using ORCA for all my calculations. Thank You Best Regards Prabhleen Kaur PhD Scholar Institute of Nano Science and Technology Mohali, India --_90D7A756-CF6E-4F1C-A488-FBCAAE32AC18_ Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset="utf-8"

Dear Prabhleen,<= /p>

 

= Are t= he singlet and triplet states nearly degenerate? If so what you describe is= perfectly natural.

 =

Are you sure the correct ground sta= te (experimentally) is the triplet?

 

How many roots d= id you ask for in the minimal CAS ? Depending on your system you might try = to get an idea of the energy spectrum by requesting the 3 singlets in CAS(2= ,2) and averaging them with the triplet.

 

If you ran a s= tate specific calculation for just the (one) singlet ground state this will= make sense if there=E2=80=99s a sizable gap with the other roots but not i= f they=E2=80=99re near degenerate in which case your roots may flip or even= converge to the wrong state.

<= o:p> 

Also if you have a manifo= ld of near-degenerate states you should request the multi-state formalism Q= D-NEVPT2 just in case.

&nb= sp;

The size and nature of the activ= e space may influence the outcome but in singlet/triplet problems the essen= tial static correlation is already sufficiently described by a CAS(2,2). Ag= ain it depends on your system and the type of problem you want to tackle. <= o:p>

 =

Regards,

= Nuno

 

 

-----------

= Nuno A. G. Bandeira, AMRSC

Email: nuno.bandeira . ciencias.= ulisboa.pt

 

BioISI - Biosystems & = Integrative Sciences Institute;

<= span style=3D'font-size:12.0pt;color:black'>8.5.57 - C8, Faculty of Science= s, University of Lisbon

Campo Grande- 1749-016 Lisboa Portugal<= o:p>

 

Phone: +351 21 750 01 09

-------= -

 

https://www.researchgate.net/profile/Nuno= _Bandeira

http://www.researcherid.com/rid/B-6399-2012

http://orcid.org/0000-0002-5754-7328

http://www.cienciavit= ae.pt/pt/4A19-ACC3-E225

http://pt.linkedin.com/pub/nuno-a-g-ban= deira/47/55a/2aa

 

 

From: prabhleen kaur prabhleen.kr[a]gmail.com<= br>Sent: 15 June 2020 20:09
To: Bandeira, Nuno A. G.
Subject: CCL:= Use of CASSCF with dynamical correlations to calculate singlet-triplet gap=

 

Hello everyone,

 =

I am trying to use a multi-reference ba= sed CASSCF method to calculate the singlet-triplet gap in organic-diradical= s.

For a given system, I am increasing t= he active space step wise, like starting from (2,2) then (4,4) and so on.

CASSCF calculations with only static corr= elations give the correct ground state (which in my case is triplet) but up= on adding dynamical correlations (NEVPT2), the ground state of the system i= s changed to singlet in some cases.

Is i= t possible ? What does this signify ? And how can we interpret it ? when do= es this kind of issue arise ?

It is= happening only in (4,4)  space which is far from the complete st= ate desired for the system.

Could it be = because of the small active space ?

 

I am using ORCA for all my= calculations.

 

Thank You

 

Best Regards

Prabhleen Kaur

P= hD Scholar

Institute of Nano Science and= Technology

Mohali, India

 

 

= --_90D7A756-CF6E-4F1C-A488-FBCAAE32AC18_-- --_780D8AB8-D7F4-4F87-8906-DD4E6AEABAA0_ Content-Type: image/jpeg; name="37A011DF8E03463F9A665FB535B94F88.jpg" Content-ID: Content-Transfer-Encoding: base64 Content-Disposition: inline; filename="37A011DF8E03463F9A665FB535B94F88.jpg" /9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsK CwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQU FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAC+ARYDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwB3/C5f H/8A0PHiT/wb3H/xdK3xm8fY/wCR48Sf+Da4/wDi647dTJCFGSeK+89nD+VH8fxxeLl/y9l/4Ezr 2+NHj/8A6HnxJ/4N7j/4uo/+F0fED/oevEn/AIN7j/4uuKe4j/v49qia6jXjzKmVOH8qOlV8X/z9 l97/AMzuj8avH/8A0PPiT/wb3H/xdQyfGz4gc/8AFdeJf/Bvcf8AxdcK12nZ81Xa6XnmsnRja9jW NbF/8/ZfezvD8bviCSR/wnniYcHH/E4uPT/fr2Y/E7xf4m/ZuuLy18Ta7HrFi+XvLfUplnIHPLht x/OvlVr1Uyx+bHavbv2b/E0N5pPifw3czpBb3EDNH5h6sQa8HHUWtYo+tyfE1oy9+o382eaH4/fE O50i1S0+IHio3ZJVy2tXOc/991Um+MHxXWRI4fiP4qkkk4x/blzgf+P1xuu276JrGq2mFDRTsY5B 6ZrotN8MfYfDP9ry6lG11jKRk81OHi+XVHqYitWVRtTf3s1YP2gPif4TvfI1Lx54mugepfWLlsfm 9UJPj18VL7WAmn/ELxQyuchG1u5x/wCh1wur3F5cBprkeaZOSx7ZrJj8+GWJ4WdZFPyuOgrrUL7o yji623O/vZ6d4g+PnxX0eQR3PjzxXBKw+Vl1u52/+h1D/wANBfFS8hR7fx54ukmT7+3W7oL+W+s2 3gTVLHzNXmW4Kjjb16Vzf9rXOmTTQ2Ef+jtx8w5FWqavsarFVn9t/ezv4/2hPidaoXm+IHippX6R nW7kgf8Aj9dx4V+O3iWz+z65f+PvGF0YTuls21y6aJvbaXxXz5GHkkL3TPnqu0d6t/2jNb2xjtw2 wnLZ5/nWM6N+gU8ZVjLWb+9nsPjz9orxf4g15tT0X4heK9NtrkZa0j1q5RIseih8CqGgfHTxvrV+ stx8V/FFolvwY/7buQH+o38149NLJL5hhixvHzcf5xVHTbS3utSAvV8mMdWXNRGj5HTDF1ZS5ud/ ee/fEz9rfxnra6dpWh+MPEFqkAxNfWmqTxu3+8VcE1zlx8ePiFo+lrLN8T/F1zk5ULrl0XOe3+sr y2JrPSvELqiGaykP4Vpyalpdj4ihvWt2u4FXAhT7ob3qZUToniZylpN/ee06P8VPGnhddL13X/iZ 40vdLvM77JNfu965P/XTiovH3xi8eJZ3Wq6V8TfFdlpcRxbxtrlzvIxnDHzOTz3rynWb2TUNGuLz UJT50r7bW2t+Ci9M1Q1qGf8A4R2K1tZft8WP3rv1Deh/DFZewNI4iX87+89M8L/tI/GDSdPh1O78 R+KNVsOon/ta4dffdl6b/wANCfE7VPFsF7a/EDxRBa3BwbV9YuBEv0XfivNYfHmr6T4JbwxaSbdL kYNM2AWH0PWpvES/2DpenWi3IuX8sTLLHyQD/CT61ccOOVef87+867x98dviZpeuyRWvxP8AFxGN zpFrt0FX6ASVza/tC/FuRfMHxK8ZKnr/AG9d/wDxyuMuNS8yQTLCzTkYdm5yKuPq7Taf5AtcHuVF dcaKS2Mvbz/nf3noR/aV+J1r5SH4keKJFK8sdauSf/Q6yNQ/aS+J8j5h+JHjOIFsH/if3eB/5Erh Li1s0t94EgnIx3NQWWm3mosQi+ahPO0Yq/ZrsV7ef87+89RuPjx8Tre0SaP4o+MZG6kHX7s/+1Ks Q/tHfFG5lg/4uJ4rVR1xrl1z/wCRK8uuNNubWTydjkd19KlsbWaG4DSI+MfdrR0o8uxg8RNfbf3n qGp/tAfE9bqMx/Erxaqd1GuXX/xyktf2gvidJlYviT4ukdztO7Xbr5fTH7yuDt7+26zQsWB4Fa3h OxGs+JrC2hXyFmmUZx71liKS9mrIUa1RyTU397Ppj4kfGfxt4N+BPh2BfGXiP+3L073vjqs/n7c/ 39+79a8Pf4/fFBfl/wCFk+LvlUc/27dc/wDkSvVv2tprHS9H8NaDb7JpbWFcyKfUc180GQPuBPzL yfeurLKCi/eVzfG4qo4JRk/vPt7/AIJ4fFDxl42+NetWPiLxbruvWUfh6edLbU9SmuY1kFzbAOFd iAwDMM9cMfWiuZ/4JknPx617j/mWrj/0qtaK83OIqOKairaI+64enKeBTk7u7PNXXauazb6UrG3N X5pl6AMV9cVlX5zGSOlfR8x/L9CJhXFwwkYZqLzmI65pswzITTAflNPc9yMVZDvOfOM0jN3yc00M OeKa3zd8U/I2jFWBSS2A3JB6/Sr+j3zaZrUN3HI0aMBG+0479az412SBic0SMWVlQ7QTkd8Vy16X PG1jopTdOV0aPjjT1hvI7o7mim5LN3rDnklaNVFzmFeimur3DxH4fkicb57cfKPWueaOJdNXdH/p an5o/SsKdJRVj1Z1XON0ypNIbq32sx2j0qmPLWTKrlh69KvrMq7xszk+tU2Xy23Dnmuv2cUjmjJr UmikudrsBtHqBSW0ySRtvX52PLHrUkd1KyFFXO6ovKMa/Nwc1EoRtojX2jtoy28Ya3BAwFOTjrUU V5Fb7i6blbgZpskwhQL5nX2quFMm5j8yDnFZcpHMxpV4nLKvyMahaERs3yK2f7wq5azZljjkPyuO OOlWtU0/7EsTM25X7gdKfKuxqqko7DdPis4dPeV41aQ8KGHFF/pa2dtb3LxqUYgkKKbb26THykG4 H5uTjFLeXU82yEjMSdqycBe2kVNaukv2gKLtMYwCOCKhtyVOxHYREfMPU1ZjtRIrEHLHtjpUBhMW ADxnH41soRtsWq8hnkwqwjjXABz9aFVbeTZsaXJOFPNSzWr2jKz5G7oQKJGK7XDfN64p8kexft5F eS2KyEzRKi9l7VJ9oFqylYlK9CFFKqNeSZfLntzilXbbNtkHB4+lPlQe1ZfttRspFw9ihP0qOQp5 n+j7YR6DgUyC1G4yAHZ60t19n6pzRyJ9ClUfchkkkjlLMyk/Sk+1O7ZIBP0qN4QzKd2fapvLCjO3 Ao5O5hKqyKOMSMPlXg9x2rqvBtn5csl9u2LGP3behrnbeESSgIMt/d9a6nULiPw/ows1AaSQbzzj Ge1KpFTjZGlOtKO5zvjDXr7xArS3cxmmjJCsT2rlIXLEK2M4znvWlrwENqHUnc/X2rGsyWIYnPau 3CxUTvlJzjdn2T/wTHXHx4145P8AyLVx/wClVrRS/wDBMk/8X417/sWrj/0qtaK+Yzj/AHp+iP07 hz/cF6s8xTcy+XnDehrN1WMwN5bcsRnirrSOp8zGX9aztTkaVS7fer3Y6n8zULnPS/fP1qLjmppP vtUHc1ue3FaIb92nqu6k4700P8xplivwKjDYIOaJMn3qMH2qo7lI0dD1D+zb5Gz8pPze9S+JtNkt r/7fGuIJRgnsaymzIpG3B7c10uiX8GqWEmnXZ3Jj91n1rjqpp3OylLRpnIkY96azArgCrF9ZyaXq Zt3UhckAnpRNCscIbselEZaGrjoRQll5UZqS4jkcKSMZqtHMUBwcc1I149y0cYbHNa9BJDbuARNG SR6VLptlcXUkpjjLIBz6U682qEVhuPWp9G1qXSzLnGxu1QXoULgOBym2RD8ua0oYrmSFJbnBjHbN V7jOoXZLtsDDIq3DY3iWL7H81eymoKjqM8RWUWnraT2cwMrfeRTWXNfENz8pI5zUI3hpA7bnHTJ6 Vbs7WD7K8krCRieKZRVtLiSGRmJ+Q0m5ZJSzlsD5hj1q3cQCB0Zh+7b+H0qsypJI2GwmeKoVzTsY ZfENuyCUI8f3VPU/5xVN7NYXKM4Z1ODUNtdS2twHgby36ZqOd5POZzksxyT60BdEk262YFTT4yGK tJhhmk2+dt3dO9FxF8oCHJoFuXLvUlZ44oxtj71H9ngX+LNVmsWAVm4psjdsc1rGwbDpdqudvTPF BkZsAqcUQx+YCz/Kq1paPpUmrXiEZEKnk4qJzSWglF3ua/hnTYIw93OQFVePrWHqF0+pXskspwuc Ln0FbHim7h8tLO1fytow23ua58qduM7to4qKV+prXkrJIyvERzEuD8lZFmw+6Dk9eK1NcLSWIX/V kcZP8qzdLk8xvIYrHIq5B9a6liKVP4j1aFCc6eh9j/8ABMfj48a96/8ACNXHH/b1a0Vof8E0dFvo fjNreo3FhNBbt4eniWdlwrE3NscfXg/lRXyeZVo18Q5w2sj9QyGm6eCUX3Z4xI521mX0n7s1pzfd NYuoSfKa+kgfzLh9TIZjuao0PXPrT85LVEc10WPYiPPSov4qXkU0N8x4zxTsXYd3wOT6U0IwkZdp 3f3cc0seRkKQqnrIe1bnhvw/Jq8zhVItwMvM3cdwKcfddzVR0MBUMrYQ5PTAoU7pF8tiskZ6joa7 3/hFfB15KbH+3PKvH4SRTxE3vWN4s8E3fheNLxWe+0X7n2yMcbqmpyzOyNFpcwg8rxZZi3OI7yFe d3BOK5i9d/tAhdDHt+UKRjpUm/7KyyWkzIyn5pD3rdV7bxJa7JVEVyg4kHeuLl5djXWSSOTkjImI 6Y6inuVjxj5X7etXL3T7jT2KMGORywHb1qTStH1bXYWn0rTpdSWI7crEWxn/APVTdTlWppTouTdu hlbi+dz5P1qzb6ebiMsX/DNbSfD/AMWWbqzeGrqdXO4qIDx+lLD4L8Wi4lY+GbyKLsTAeP0rP29P qzrjg6s17sSkthGtiwIcyR8gqO1UrTULiPeIHcrnHIp+pR3ujzBLywutOYnG6SEhafpdqtxI0N3M Iz96Mr/FWsHGp8LMZYepQ/iqxQaMNIWUM2euBSQxDzAqkjnJFWXWSCZsL8tROpEyuvBIzVyjy7HH zos6jKZERdp446VTS3JOAcmrSzvjDLup3nKrbgu00K1he0RRWNoJCWBA96dO3QgZFWJJNrCRiM9s 9KsW3hTXNeYXul6Rc6harw7W4JGaylNRZ1UabrSUYmaZd2E2nmkYSbl2c4OTV3UdH1DRLySDWbJ7 GcqGjjk4bBNV5lFr5cSK11cuRsWPqD2qpSgle5pLD1Odwih4nlkUAjimBA0m1OWHbvW1b+BvFt5D 5kPh2+dR83mhDipLXwrqszCLUtNudKZOfMmXGazdeNi/qNdx5mjN03S7jWrg2sYPyfM20dB71139 r2nhvT3tYNsk+MEjnFVbrVrbw7Zta2sYkuXHzyp3FZsngrxTqxhuLXQLy6t2G5niU4xWClGUtwhR ntbUxriYszTuuC5xQI5MrGg3v1NSyQzWmoeRLaSiUN5flSjBU12nh/wXb6PEb7VLnc5yyR+ld9Wo oR90w9g+b3jn9L+GOp+PZI4mYafb5+eaT5Rj6mvdvA/gH4Y/C+xWTUdmtX8XLMSGANeQ+JPE062g j05jFDnscd6w7fxBJEsqvm4dnH8Wa+TxU5zlZH3OA5I07H6Gfso/GCy8c/EnUdE0vSYtO0+10mSd CibScTQr/wCz0V5Z/wAE+mnb4yauXi8uNvD0xH1+0W1FcCTirM+5y6SlQuu7PnK4rG1Jq1pnrH1B gSc19zA/lfDqxlt1qORtrU6RvmOOlRNyea6lsezFDlk7fr6UwudxA+bvmgAnIHU8Y7U5FKqUIxIg zhe9K50QjcfY27X1wkONqMcFfWtrxDfXqRppNtbzxQquSwB5rT+H/htdbmN4JxBLAclZOnpxXrcY itNs14trKFGPugk1hVlyo9KjR5jzr4U/ByD4jeFfE2rX9w+lz6VGWVpeN1bHw/1vQ/DEB8M6petr FjqA8tEZsxwseARXs3wH0GH4pXfi3QbsfZbK8hKDyxjA9a8J+NHwDsPg74nj0Q6qyxsBcQuzHII5 4rzlWfNY+ieF5aNzM8U6L4c8C+IrrSNRsp5YkHyzDo69iKXxj8I38PeC7fxhpV9HeaVJ923VsyJz 3HtXXfFDw7L46+GPhfxVpxE93a4sbmNeTJtG0MR74rB8E6TqugQ6rpHiG3ntkuLYyw28q/KuRnp0 rrUrtI8qVPlaRwljrwu7eC3v/wB4D8of06V9q/8ABP7w7awaR4l3BLlGuNylhnHAr4MhWOGznRQz yea2O2Oa+5/+Cb95LL4a8RM2VX7QVwT7CuTH3Wx7WS8qrtTR9Yatrnhnw1NHHqVzZWUsi5CyYBqp H488EswX+0tPOT1JUCvj/wDb8htrvxpodu1zJAzQbgkbFdzenH1r5TbwPr+tNJa6M97qMx48iN2y h69a8WNpbs+yq1o0ZqEY3P1W+Inwd8I/Fzw1Pbz2lvMtwh8u6hUHBxwcivyo+I3gef4d+PNU0Bj5 qW8p+zsewzX6bfsmeHvEHh/4O6fZ+IYZLe/Qj5ZSScfjXw3+1Fp8XiP9oy70uykVZ7nYkZUYG4nm unD1XF2TPOzXCqtR5rWPDpLiVt4A+cn5qkWP94cDHPWvpHU/2F/E2h+G73WJ9Tjby4jMV9gM183R yC2aaKb/AEuZH27Iep57V7ixEOp8LVy6dK2m4PMtvOFZuvtT57iO4+7/AAjG7GOfSvX/AIffsj/E Lx/bRXZg+wWMw3ozj5gp6V0fiz9g/wAf6TpvmWVwmoN9/avX8feoliKSZ0LKasldI+dXH2mEq7Au COvfrX6C/wDBPewguPhfqG+3Qst195hmvgjWvDeqeHNQ+w6zp8llqUTGMRlMKcdzX6Cf8E8oZofh rfpNGYz9pOfQ15+MrRkkoHt5Pg3RrWqI8C/b8tXf41afbwxRkyQqiqo5yeB+te/fstfsmaL4R8N2 ev63aLqOtXKiQiUfc7iuJ/ah8L2etftQ+Ejevst1aMsM43fNX174m+12fgfURokf+mQ2hECYzuwv GK8+VWXKkfS0cHD6xOb2K8mr+EtDEkMs1hamP70ZCgiqmqeC/CfjrS5E+z2l3DKhTfAQcZ+lflL8 RdU8YTapPL4gt9St7gSMjlWdQ2W4JxXtf7Gnx6fwZ4s1DSfEeq+Tpcke+FrmUkKB9T1pRUnrcUq1 BpwS2OP/AGrvgTcfBTxNFPYzb9BvHJiG3iJielffP7POm21z8H/D8whj837Pgtt6n1r5Q/bE/aO8 KfEzwb/Y+hlNQmgukIkIDblBw2D6V9f/ALO3y/BvQFxtKwYx7DpWrk0jloUaMpNpHwL8QvD9vofx U8V3dztMnnkqF9M151r2oy6jPNtb90W4HpXd/Hm9luPir4kiDEYlbkH3NeWYmlztyBjlvWuynKUl ZnyWaRjSq+6Z+rXEq2wRSCMgc9j616B4F0PQtJ0G+u9ZQXdzMP3bKeVOK8+lVTG6Mpk55zzSzalP 9lS1tZCmeuTiuWVP3tTfDzap3PrX/gnZqBm+Oevwb2aMaBcMgY9B9ptv8aKyv+Ca9vLB8etd81gx Phq4/wDSq1orgrq07I/Q8jlzYNPzZ4ZLJlutZl+Rmrsh+brWdfYYnJr7aCR/NlBJGdIx3HHSm9Rk 0snDGkX5uO9bWPTG5PI/EH0ra8J+HrnXNQikhZXVDmWPPLAVjqp81YwfmZgNuM5r1vwvpunadpjm OOZNROAxUcDNZT0O7DxcmX449qqbOwCCH/WL3P8AjzUcxe+/fzWRtjHyIyx5x3p81jKtsrrcTCZT klepojKXQCXi3RmHQqMZrm3Tue2o22Pav2PdReLxh4puWjAhhtXl2eyjpXn37Z8y+Ll0Txnbw77G SR7fd9DgD869L/Yxs/O8V+JUlUbGQpIrcEZ7fSvOvjtptzpfwg1DTJSPI03UjsU/eOZc5HtXjRT9 qz6atJfUVJHBfC+9uLn4P+LrWKZ1vraVLiNFPCgc1qeDfGmu/EeyvdW8UWrR6Tawm2XVFX7hxjkj r+NVf2bWiXSfG6vH50UtsUdjzyV5IqG9+J114D+Dp8EWdukttqMrSmSRckZOcZr0JaNWPApfvbM4 PxR8MNb8J2EGvGD7R4bui32a85AYZ6n8a+sv+CbILeGPE6A5l+2Flz0xgV85xfEDWPGHwXn8L3bx y2Omg7F7qM56/jX0d/wTdkV/D3iFkBSNJvLx9AOTXNiZXjqe5lcFGs2z6G+Jn7OXh74qeLrDXta3 yNZLsSFSQD044Nb2m+EPBnw3tTcRWtjpyoCTPIF3HA6EnmvCv2wP2ndf+Dt5a6RodmHe6Q/v+cr0 5r4i8XfFzxz403vq2uvJaSL80Mbnj8PWvOo4f2mtz6bF46jTqJW1P170PXtP8RQrd6beQ3duVH+q bODX55/H/wACp4H/AGjdB1C7RhBqF6jRMT0Yt61uf8E6/EWpS+K9b0p76e7tBFv2TEkKfau9/bus bT/hJPhrIV3StqSoOeeGFQ4eynaJ1SmsTRUuh9I+Oo4o/hdrBk5jWwfLf8Br4p/Yr+A+k+NNau/F OowrPa2twzQRsMg/Nxn1/Gvsz4lt9m+DOtGTounNux67a8x/YhggtfgnZPbqqlpWL46ls96z5pdy KtGEuVtHbfFb45eGPgvaQwXzR/a3H7mzh4z6cCuf+Hf7WHhXx1dx2U7/ANl3Ux2oshx81fJ37WVx /ZnxgvbjV42nliBa1jY/L09K+d28QXN1rmn3cLOly9yvlLFwynI4xXRToqcbtnDVxjo1fZ8p+l37 Unwh0/xn4FvdasrGF9Zsk88Oo5dQOelYH7Bmpyat8OdSZovKljuthGMY9v0r2Xw2003wrtJdRB89 tMzLv6kBO9eRfsT3lvL4f8VG04txqchAX61ySWtj0acFKop21Z4N+3Zr39m/GzSZ4pHintY1kDKe fl+bH6V9F/s+/tSeGPiB4Zsob68j0/VI0EbRzOAW968E/a8+HN18Uv2iNG0WymS3uZYgdzen/wCq uf8AiV+xufhN8MdT8UHVpjq1u6tEsGcdR1xXXyLlseZKdWliJO2h956p4N8LeNLZzc2VjfpJj5tq knHI5ryHx9+xR4A8XW8uywbT53HDRuV5/CvgHQPjp420mCBrTxHLDEp2bWct81fUn7Mf7YniLxZ4 4tvBvii3W4Zh8t7tzu/Wp5ZRHTrUMSuWUbM+fvjt+zhq/wAD9at4Fthd6PeN5FvcqP8AVbjyTjr+ Nfo/8CtMOk/CXQrXzPNMVuAz+vFY/wC01odnrXwr1J7hE8y1HmRbhzkelb3wUm+0fCfQpdu0mDkZ rJzvozrp4aNG8kfnZ8W44T8VPFTOdoM7d/evLri4khJGP3J6NXcfG6+2fGHxSgPyidvpjNedXd+8 kLQgAoBkEda9ijG8bn5/mUlKrZlbVL+ext2extvNYj73WuVjvp7uYyXCmNvbjmu1DnSNGa8eRcFS PLauDk1JbqVWK4DEmoqR1CnL3LI+xv8AgmTMZvj/AK8S5b/imbjr/wBfVpRUf/BMHb/wvzX8fe/4 Rm4/9KrSivHxH8Q/Sch/3JerPFJPvdazr75ec5q9IjfeBGKzbxWkY/MOtfaxP50oop7t3NIxPG0c g5zS7SuB1+lDBhGxUZPTHeqnKy0PUpx5nY3PB+nxatrQLko8eGXuM16VJf3VtuHmqhxguFrM+HHg qaPTP7VuJI7aNhjDffrqzDYQR4e7juM8gYrhdRtnv4eioq7OcW1Z40uv7Vk3M3K1prPJMg/4mTGR eh2VswmwuNPACW0XlHJc/lxVa60l1WN7doXST+6eQKTl0O2MVdndfsneLP7L+M13YNNvjvLYmRpO MuOnFeO/tH+KtZuvih4m0ZpcaZbyq6wnvk5qPSPEFz4X+Nnhu9t/3cZuVjkKnjb3zXQ/taeC7tvj Vd3enoBFfRIxycfwg81yQjabZ2zqXw/szkvgz4sfwPoXid3s5Zra5hCq6jIztxmut8F654V8ZfBn V9I1G1Mvi+OfdCxTBSPPB/Ktf4G2uj+HfBaWnikpFa397gPJ04PIye1ehfG5/AGitb23gyK1OqzQ /v5rbDDy9vBJ9aVRu6FQUKcU2ef/ABU8DeDfA3wUtrPQ76NvEl0gkuFV+ScDIxXp3/BN2MHwv4gO Cn7/AOZffAz/ACr4jnuJZpnu7meSa6WR1CsxwBnA/QV71+zP8ctR+Edhqv2TQ59UimcviMcA4+tV WpOdOw8HjI08Q77H1r+0f+yufjpq2n38epvYCAc4HXjp1rxtf+CcKbWB8RPu7FRirbf8FFprW38y 58LyQ7WCMjHB71D/AMPHoGaTd4cYLkAfP0+tebCjVhsj6XFTwdWSmezfs4fsu2/wIm1O5j1Br26v F2ZZSpX8ea8Z/bU8aWWvfGDwD4bgkWT7NdJIXVujlhxXPeKv+CiWp6hpLRaVojWtzLlVZ26Dpnp+ NfNkfiDVNQ8VJ4t1NpLyaG4WUmQHavOcA1rHDSb5pGc8xo06fJBH6u/ERWm+D+twMPNc6cwPPX5e tfJv7BXxSi0f7b4c1S78uGeRxaFz8pbcazPEH7edvrHhm50NNGZXmtzAWUk8EYrwHVNUHhXw1p6a e7WF0F80SLneCewPrWTwzT1CeaJqNj9FPj7+zd4e+Odqlzc/6Nq0S4juozx/9evNvhL+wn4f8FeJ Yta1i5OqyW7B4YmHGR+NfPXw3/bi8YeBIk0/VoBrUKJwzZyAD3z3rrda/wCCi2t32lzJpnh5bebG 3d1KnHXFUqU4qyHLHUZvme59J/tVfGLTvhf8N7+CK5jGqXcfkJAjAFEx6fjXD/8ABPC6M/wx1O4d f9ZeM7ZHJya+Bda8S6/8W/EVzqeqXU2pXcwbEQJ2Rf5/pX0H+zh+0Rc/B3wfqloNEkvbOGVfOkH8 LDOaiWGe4RzVe0T6HaftX+PI/hv+0r4e8Qk8wBcrnGVPB/Q19d6XqGgfGbwKXDxXmmajb7JY1IJQ kc1+Z3x/+Kdn8bfHEWtLbvCqwhYoCvzemfyrP+Ffx/8AE/wVvpYtOu5ptNBGYZs4z6CtfYNrQyjm n72XNsz6e8Qf8E5bC91aebTtaktbJ5PMSIdV/SvUfgZ+xxofwm1pNbubs6hq8YxvYfKPwzxXhWk/ 8FIL6JfKu/DzNPkgNu46Vn69+3t4o8Wi403SbJNPd48+cF5Ht9a55U5x3Oili8JTTklqfQP7Z3xK t/Dvw7uNGtZVlvrvCMFIJQHua9J+AsRt/gz4fR33N9n65zmvzk1PUNZ8RaNPf61JcXd5NIC/mZ6n n8K9j8H/ALc0PgPwlp2gf2OzC2XYJDznPP8AWojTbd0dKzKnKLVrHgfxwx/wt/xYJDtWSZgPY5rh IYxJJDEOqL69a6H4geK4fG3jW/1h4hCs8pkKr15OawdywXbuOARkfSvoKEbR1PzXG1vaVroTxTZt fWcMZdYUUZOa43w/JZre3cNwnm4XETdia1fF1w9xZKRIRnjrWZYafBNdWscc3lD7sjnscE1xYi6e h6OGs46n2Z/wTHu4/wDhcuvWrWvlXI8PzuJMdV+02wx+oorqv+CdOlW2k/EPU0klWXUm0OVty/8A PPz7fv8AXFFeHWfNK5+m5IrYRerPlds7ay7pSrHPGa0Wc7KzbjJYk5Nfa8x/OVIg5jGSMnFdB4X0 iNo/7RueYYznyz3xWEi+dPADxubBHtmuq8WXSWGlwWVsVRyAWwfWpb5tD16K5dTQuPixZ3S+R9kl jt4/lCr0NQR/EjRlIVrCQ47d64yzjYXAVwuMd6dNbrI5ZmWMg8cVlyne8Q4qx6Do/wARtCmvhE9k +1s/u2PB4pYvilp2g6lOU0+VT/zzcnle+K8zB2ykkqXXlWUc11VrYweNrdYg6Q6vGOGYgBhUOJMc VK5t6kNH8ea/Y3+kXB0u+jkD+XKSAfx6V237Rln4h1bx14dAuFkivLaGIy253DeVAI4/nXl2m+BN dn1hLcaRNdGQ+WJIQQF967231aT4SeHbxtSvxrPiAExWlrIwY26t0b2xS5T0FXVtTL+NN/Lb6hoH g3T4Zb9NPhjicqpx5jAZYn610uvfBLU/gX8PpvEF9qK3d1qUQiWNiSYVIrzWb4n63JPPcLFALq4O 77Rt3EY6HNV/F3xQ8T+NtOWx1zUWuYFIIHTt6UOlciWKVmkcxHsLGRuZG5cH19a9p/Z38SJoelam LieFd0pGyUZ4rxYxgLtVfMJIK+terfBfS7bVrDUIHtRLczFlWUnCLx69K6Zq0bHFQqNyuddrEfhf Ub9ZnntpppWLJH/Dv6jNJHpfhLy5jJBareXETvcqCCEYA4Ax61zU3wu0zSL+0s5Xma7nn3KyEmMd T97pWhqvwLsbe3vLqa/lhuZ51dBE+QB0rn1PWlUlZal+ODwxZ6ToOrXNgivqVwsQVgAIgpxyPcHN aOt33hNpbizc2qWLMCwUjpWJrHwkg1y4trSDV2f+z1R5UdsLyR933qrpPwL0jxhqmsXCS3FrDZxb ZopSVZv9oA9RVWZUZcxvC38IP4ieGwt7drMRhlfjmtTxe3hPVWtY57eCAW/CliPn54rg9b+EOn+E Ph9ceJLK/mmuI3VBb7iSRmul8QeCdM8aeGfDEl7DNZWhthNNcxZ37gucfSuWoveNro5DxVpOhXXx W0uO3ntodNuAu9cjGehH6V1+qN4K0O6u7uxS0u0YAeWMdcY7/Subh+Ael6pC92l3PIhhM1ucndwe n1q5q3wr0Cyms1sEkmj+zfvjuJywNUK5s+CW8NaBfy3dmbTE0TSOrEfLnNcX8M9SgisfG1tLqMEc d5qCsu7HKHdkD9K1NU+C+latqMz6TNPGoSJCoJ7rlvyNLD8E9AvrOzso5pLW8SRlkYttyR0P86fL ciU+U6axuPCK3ouGtbZWsIhG0nHzEjH9ap6jH4HuNDujLHHK0ko2suM5zXjnxI8KxeBdeGmWV3Ld 28qeZLuY5DZrkNzG4IErxoGDKN3GQetaxhoc0qzPqSTw7odjZaNdXem28UE0pU7sZ2EYzmoPAVl4 SvINRulS1jnzlASM8Gvnm/8AEWqatGkV3qM0lvGu1IuQF96t+GIds99OCyQBem+s61P3So1j6k1/ WNKm064uVNv5LXMYVF/ujG6uex4Gs/ENxb/Z4JmZA6s2McjPFePeGXOoaBdw+bJIokLbST8tc5ew bruN/nymQWBrjpU7M1liGokni2O2PiS/NsgSIk7QGBA59qwMvIxJJIAwauXEqRsSifMT83PNV5CP L+Uk59q9eEbRPCcnKdzI14KtghLcjnBrO0GybU5nkt5Arlh8p6dMZrQ8R4NjFgqSOoNaPhqXT9Js 5JPMSWZ04iTqDmvMr+Z9JhI3gfWf/BOLTL3R/wBoXWbe5uGnT/hFrhhuPAP2q0orc/4JyaDqU3xS 1jxHfQSQxyaHNbJuBxzcW7f+y0V4FZpy0P0vJYuOESfdny/IlUJ/vGtNvuVRuf8AVGvsj+bqRVtf mvoh6Y/nVzxbcCTUgCfmVFqh5jQukg6KwJq94kjF1DHfJ1bAoPapbGNJNKSsnTFN3S3TZLYqGR/M b3I5ojyrcduatRuimWAGgIUcFuNxqaF/Jk8tp2gePkSqcZqqLh1yQPvcVNGoj4PKdfxpSVkLmsdV p/jTxHYTQxpqbxr5i+X5QyxrM8TPLdaxLdu7yzuPnDnOKXw6rCQzlPkhO6ql9cG5vpZh95vvVnT+ IPaFQJ0w3Hahogo3Mcg0m0J06Uu7NdctzGXcady4I+9jC1oaT4i1PR7O4t7C6a2t5P8AWbfvE+1U W60xm2srdx0pWvoaQnZm3a+ONbjs0t/tjeVGdyyTff3fX8aRvGXiKPfFJqDXBlxtJPTmsKZhKdzd ajKp35pch0+2NuXxdrO5pTfPIT8rPGejLyM/iKlk8ceIVuvOfUmMzJ8xhOBt/wBqsOOUr93he9IN oVR/dbdWsYC+sSNG68Wa1eabc2MmoTPZSAFVPrXQ2HjLWZvD50/7a2yzUwrk9ulcZ9zmrFreG1li cdAcms5Ub+8XHETLlj4w8Q2qpGNRdVhUxgBveoY/GWvW0Jt1v2Lf3ielQX8bXGZYjksc4qgI3P3k wRxzUcsS/bTNu18a69p202+pMZW/1nP5f1qWPxfr015HcfbWCK25yDWBtZegA+lOwPxPFHJAn20i zqV/Pq149zc3BnndurHPy1nsnWp1jMzCJTginSRpFMqoN796SSi9CZTclqNh/eOy/wCzW5K39l6H Hbt8s0/U07Q9CIZr274t1/hqtqU0c12fn3RDpWDl7SfKb6xhdGz8P5VhubqDfuRk5HvUerSNpxkV o8iQ/I1Yui3EsWtRNC3yudpz0rrfHGnN5cTcPwMMvQcVhUj7OSRrCTcNTh5ZDCxZlyx4NOhvlj3I YwfSpX3vGExypwT61UuGePctdqlojhvaRj+IcGCVyoK46H+dZWj3B0F4b5IlmbqFY5rV15GksTzg EiqsVrLazWqSWzOkq/KwrzK+t0fSYSfuH39/wTz+I+seLPiHqOnXdrHa2MOhyyoEGMsJ7cD9GNFY v/BOHR4rT4uatdKzB28PzIUJ6f6RbH+lFfP14qM7I/S8lk5YRN92fNbfcrOu/u1fZh5dZ1w27g9K +tifzjRK6/PHjr61bt5RNGbVz8mMjPQVTVtnSk8wbsdCe9dB6alZFaayMUzbfmHY1FtZT056VqRt 5eN/zKamC2TnPQ/Wi7LTuZccGcEnFXLXT2vGUI2BnnNXdmnLtIc7x2NNl1v9yY4YRH23AVEk5Esu Xl1Fpdn9lgbdI4+YisJU2EktgnrSGQsxJOSeppsmKuFMEDdT6UzpRmms3NbeRQ7JprNjGaazndxQ 2OM047gJjJyeaOP7tG7FCsGOMVqMXI/uj8qNw9P0pjADpTaoCVmDdqjPcUifL1p7FfTmlIoktbpr WQMRuU9vStCazivVEiMAcYxWR3z3p8bMvKvt9q5WubQZK2mXKt8o3D/ZFJ/Z1zniByf92pV1CeLG zcDUra5qDR7d4VfXvU+yZaloMt9HumkBKtHnqx4qysdrpcR83Es+cg4yaoyXtxJ964JPpk1X2sZA 5bcR60eyY+ZHT/2x9r0YQKhAY8nNc5cLDHIEXkU5bmU27xqpC5zUKL8+0DmnGnysOa4+3kbz3ETY MYyK7jw3q6a9pcljc480AgMetcpp9t9nld5cYYcVHpck1jf+ZDyQckD0rlxEdTeLJNQt5LC5eBuA OFNVZFNyjDbh8AV0uuWa65YpfwhvNj5IArCjuhcYfAQ9CDxUKVlYJU7yTMjVLE3FukOCcsAa7Lxt oi6PY+HgjI/mxgBRjOcd6zria10SNbi7ZZMnI5rl9a1iXxHfI0kjGNiBbfMRtI+lcNSLkz3MP7sb H15/wTZbU4fj74htr9lCf8I5O6Rr/wBfVrz+tFH/AATdmjm+P+thpTJdR+GJ1ck9vtVpRXi4mPLU sfpmR/7mvVnzs8ny4qpcMAM0PMf8mqlxIcV9p7E/nuFJod5gPams2OcVmXF68SkLxWbJrFwuRmq2 0PTp4fmR0bXBbgjinKyoAQuOa5T+2bk96Q67c9AaDo+pyR1bMGYnbyaajOqlTgrXKNrV0RjOKVta uuOcYoH9Ul3OlZttLJJ7Vyza3ct/F+lNbXbhu9UpcuyKWDZ1Ik4+6aRlLHI4rlv7euBxmnf25ctz /WnzeRX1RnTbdvU4NOLHtzXLHXrleMj8aa2vXTdD+VVzeQ/qjZ1W7b94cUeYvbr9K5P+3LzsaUa3 edyPyp87egvqT7nUk7utNbA/irmf7bvPUAeuKhbXL3kgcD2pc/J8RawMpbHXyKTtAHJpPs5UjOc5 5rmbHUtTvrjdFC7rG2G2jPNaGsW/iDT8zSWcipKeBjpWH1qJv/Z8jWaNxk44pEG7noRXKtrGpRHb MrRL6kU+PW7uMEKQ4Jzmqp1IyehnLL5o6zJYY3UhG3lThvWuY/ty8wCfloGvXI6n9K6HKxl9UaOm y3Q4P0HNI0bryeFrm/8AhILkc5/Spbe/u74MXkAUDOD3qefyF9VOoW48uIRFcl+jCq8ZMMxUrwP4 jXMtrF025A3yxjP0qzp99f6pq+n2seGM0q5XPXnkVlUqWVzanhNdTs7bTZZYDdXDGO3XoelNXVVt 5llS0BXG0NnrXR/ESHzNUttCtsJarECzLxyBXl+tXk+nXRhjPmCPjrXD7aM9GbvC8rOz0fxVLp12 wKf6Ow5VuRU+oaXDeQNqFuA0THJjTqK8vk8Q3sj7cqo6HFanhXWtVhvy1t+8jU/MjHgj6VlUkoms aHVlvWoYrpPNkk/cRnlScH6VzbXBWbcmUjB/df7PvXp2reF7Lx9pstzprG1v04eEjgtXFDRbjw/q AXWLRvsyphnXpXJ7VXOyMY2sj7B/4JpaekPxz1i5U+Y0nhicO/v9qteKKl/4Jl3xn+MGvRwqBZHQ J3jPf/j5th/WivJxj5qtz9GyNWwaXmz5ca9Ru8f5moZJ0bqy/nX6Z/8ADEHw6/59ZPzob9hv4cSD D2chH1r3vr8ex+bR4frX+I/L+4aFiSWX8xVFlgb/APWK/Ulv2D/hi3/LjL/31Qv7B/wxXpYy/wDf VH9oQ7HbDI6sNmfln5MXOBn6c1HJAi8gY+vFfqj/AMMH/DFv+XBz9Tmj/hg34Y/8+Dj/AHeP60f2 hDsdH9j131Pyr8tfb8xR5S+35j/Gv1U/4YN+GP8Az5S/99Uf8MHfDL/nyk/OrjmFPqh/2PW7n5U+ TH6fqKXyYx1TH5f41+qv/DBvwy/58pfzp0n7B/wyk/5cZR/wKq/tGl2H/Y9b+Y/KXyYPb8xTlghY 4/qK/VT/AIYJ+F//AD4Sf99Uf8MF/DEdLKUfjVLMqXYP7HrfzH5WPaRqe35im/ZYf4l3fQiv1XP7 BvwyP/LnL/31R/wwb8Mv+fKX86f9p0uwv7GrfzH5UG3gXlU2n/eFHkof/wBYr9V/+GDfhj3sZD+N Kf2D/hgP+XCT/vqn/adHsH9j1v5j8pzBB5KqzAHdk5Pau5+HPwrbx9NPf3Ev2PTLIZaQnCmv0e/4 YR+GbKQLB8H1NddY/sq+CNN8MTaJaWjQ2sww5U8muKvjoz2R2UcrqLdn5ceIdRttHMltoiIkcDYE nHz+5rJvPHE99YvaXt3m4xhMgY/nX6YTfsD/AA0mUg204DcnDU22/YG+FsLFm0+SbP8AfbmvL9sd Ty2fc/L640qaTTzqdzNGyxDiLcOcVm24srqDzvMSFpDnYrDiv1XuP2DfhjdLsFnOkX/PPfxVKT/g nr8LAyslnMuOwauyjjIw3FLLZyjufly1tEuAW3jt0/xpDbREcfKfwr9UG/YP+GWFUWUvy/7VH/DB /wAMv+fKX/vqvTWZU7ao8mWU1m9GfleLWPu/Htik+yRjOG57civ1R/4YR+GX/PlL/wB9Uf8ADCPw z/58pf8Avqj+06XYj+yK/c/LBbVFydy4cYbmrmkyRaPqVreRgeZE4KnPAPfNfqJ/wwj8Ndv/AB5y fnVyx/Yf+Glqro2nNKG/vHpXNWx0Kiskb0spqp6s+C/Gdnbf8I/pmuwS+dJcYQ7WGQT+PSvINaig W4nXlZM8gkf41+rS/sW/D2GJI3tpntkO5Yd3ArNm/YR+GV1O0zWUuWOfvV5sK0Yyuazyqpfc/J9Y LZFwwy59xn+denfDjwjb2fgvUdXumAdiFh3HkHJz/Sv0Pb9gj4Xs6t9gkyv+1W837IHgFdEXS4rN 44FO489a2qYiFTdESyqry7n5oWsIt598Fz5UxG75TgGuqs/EVqbY2+p2cV7Cy4bdjJ9a++n/AGN/ h8Sg+wsCgxkGnP8Asa/D+RQfskgx6GuSUl0OSnlddN6nk37CNj4St/idqj6GJIr/APsSYNCQNojM 8BPf120V9G/CT4BeGPhX4iudW0WFo7qa0a1Zm/uF0Y/qgorhm23qffZRRlQwqhLuz//Z --_780D8AB8-D7F4-4F87-8906-DD4E6AEABAA0_--