From owner-chemistry@ccl.net Mon Jan 14 04:05:01 2008 From: "yorth kos yortama2003:_:yahoo.ca" To: CCL Subject: CCL:G: Compilation of NBO 5.0 G! Message-Id: <-36024-080113181221-11694-rl53W/IfJH0c7jMcFnyjkg|,|server.ccl.net> X-Original-From: yorth kos Content-Transfer-Encoding: 8bit Content-Type: multipart/mixed; boundary="0-1635242797-1200262332=:23579" Date: Sun, 13 Jan 2008 17:12:12 -0500 (EST) MIME-Version: 1.0 Sent to CCL by: yorth kos [yortama2003,+,yahoo.ca] --0-1635242797-1200262332=:23579 Content-Type: multipart/alternative; boundary="0-1031253524-1200262332=:23579" --0-1031253524-1200262332=:23579 Content-Type: text/plain; charset=iso-8859-1 Content-Transfer-Encoding: 8bit Dear CCL'ers Happy New Year to you all! I am having trouble in compiling (By compiler G77-3.4) the NBO 5.0 G on my personal computer (CPU: Intel P4 2.8 GHz, RAM: 256 MB) using Gaussian 03, rev. B02 (Linux version) and Ubuntu 7.10 Linux OS. I also tried the professor Weinhold's advice at his website to use the compiler directive g77 -Wno-globals -fno-globals gennbo.f -o gennbo In order to bypass checks for strict consistency between defined vs. called subroutine argument lists, but I couldn't compile it yet. I’m attaching the error that I get during the compilation process as a PDF file and I was wondering if you could kindly help me to figure out this trouble. Looking forward to hearing from you soon My best wishes Hossein Dr Hossein Fallah-Bagher-Shaidaei Associate Professor of Organic Chemistry Islamic Azad University-Rasht Branch P. O. Box 41335-3516 Rasht Iran --------------------------------- Looking for the perfect gift? Give the gift of Flickr! --0-1031253524-1200262332=:23579 Content-Type: text/html; charset=iso-8859-1 Content-Transfer-Encoding: 8bit
Dear CCL'ers
 
Happy New Year to you all!
 
I am having trouble in compiling (By compiler G77-3.4)
the NBO 5.0 G on my personal computer (CPU: Intel P4
2.8 GHz, RAM: 256 MB) using Gaussian 03, rev. B02 (Linux
version) and Ubuntu 7.10 Linux OS.
I also tried the
 professor Weinhold's advice at his
website to use the compiler directive 
  g77 -Wno-globals -fno-globals gennbo.f -o gennbo
 In order to bypass checks for strict consistency
between defined vs. called subroutine argument lists,
but I couldn't compile it yet. I’m attaching
 the error
that I get during the compilation process as a PDF
file and I was wondering if you could kindly help me
to figure out this trouble.
Looking forward to hearing from you soon
My best wishes
Hossein
Dr Hossein
 Fallah-Bagher-Shaidaei
Associate Professor of Organic Chemistry
Islamic Azad University-Rasht Branch
P. O. Box 41335-3516
Rasht
Iran


Looking for the perfect gift? Give the gift of Flickr! --0-1031253524-1200262332=:23579-- --0-1635242797-1200262332=:23579 Content-Type: application/pdf; name="g03nbo.out.pdf" Content-Transfer-Encoding: base64 Content-Description: 3057604258-g03nbo.out.pdf Content-Disposition: attachment; filename="g03nbo.out.pdf" JVBERi0xLjMNJeLjz9MNCjE1OCAwIG9iag08PCANL0xpbmVhcml6ZWQgMSAN L08gMTYwIA0vSCBbIDcwOCAyOTIgXSANL0wgOTMwMTkgDS9FIDM4OTk3IA0v TiA1MCANL1QgODk3NDAgDT4+IA1lbmRvYmoNICAgICAgICAgICAgICAgICAg ICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB4cmVmDTE1 OCAxMyANMDAwMDAwMDAxNiAwMDAwMCBuDQowMDAwMDAwNjExIDAwMDAwIG4N CjAwMDAwMDEwMDAgMDAwMDAgbg0KMDAwMDAwMTE1OCAwMDAwMCBuDQowMDAw MDAxMjk3IDAwMDAwIG4NCjAwMDAwMDE1MjggMDAwMDAgbg0KMDAwMDAwMjA2 NSAwMDAwMCBuDQowMDAwMDAyMTA2IDAwMDAwIG4NCjAwMDAwMDMwMzAgMDAw MDAgbg0KMDAwMDAzNjA4OCAwMDAwMCBuDQowMDAwMDM2MTY3IDAwMDAwIG4N CjAwMDAwMDA3MDggMDAwMDAgbg0KMDAwMDAwMDk3OCAwMDAwMCBuDQp0cmFp bGVyDTw8DS9TaXplIDE3MQ0vSW5mbyAxNTYgMCBSIA0vUm9vdCAxNTkgMCBS IA0vUHJldiA4OTcyOSANL0lEWzw0MGUyMTA0OGQyNjlhZGIwOWNjYzJlOWYy ZTBlZjlhOT48MTA3NjE5NTdjNDhmNDFlZDIwM2VlYTQ3OThhZjYxZjE+XQ0+ Pg1zdGFydHhyZWYNMA0lJUVPRg0gICAgIA0xNTkgMCBvYmoNPDwgDS9UeXBl IC9DYXRhbG9nIA0vUGFnZXMgMTUxIDAgUiANL01ldGFkYXRhIDE1NyAwIFIg DS9QYWdlTGFiZWxzIDE0OSAwIFIgDT4+IA1lbmRvYmoNMTY5IDAgb2JqDTw8 IC9TIDI2MSAvTCAzMDUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgL0xlbmd0aCAx NzAgMCBSID4+IA1zdHJlYW0NCkiJvJC/C0EBEMc/9yg/Jn+FeoOU7SkZmPSe Us8uyWZAZkqSRYpJisFmsAsLGfwP/gRlJIsjxWJ19e2+973re90BHjD2eJXY hPjEk6uKv8CPGPQ445CigotFgiZjMbkyo0ubEzty9FmxpkaUifhYsuHIgSl3 IqoNZa5GZYmpx0Jn85TokCYpFhmqxP+x4+vgwBtgat2gyFYu+pp660Y46Lw6 I8S1NRuK7EOAAQC7NTkFDWVuZHN0cmVhbQ1lbmRvYmoNMTcwIDAgb2JqDTE3 NiANZW5kb2JqDTE2MCAwIG9iag08PCANL1R5cGUgL1BhZ2UgDS9QYXJlbnQg MTUwIDAgUiANL1Jlc291cmNlcyAxNjEgMCBSIA0vQ29udGVudHMgMTY1IDAg UiANL01lZGlhQm94IFsgMCAwIDYxMiA3OTIgXSANL0Nyb3BCb3ggWyAwIDAg NjEyIDc5MiBdIA0vUm90YXRlIDAgDT4+IA1lbmRvYmoNMTYxIDAgb2JqDTw8 IA0vUHJvY1NldCBbIC9QREYgL1RleHQgXSANL0ZvbnQgPDwgL1RUMiAxNjMg MCBSID4+IA0vRXh0R1N0YXRlIDw8IC9HUzEgMTY3IDAgUiA+PiANL0NvbG9y U3BhY2UgPDwgL0NzNiAxNjQgMCBSID4+IA0+PiANZW5kb2JqDTE2MiAwIG9i ag08PCANL1R5cGUgL0ZvbnREZXNjcmlwdG9yIA0vQXNjZW50IDgzMiANL0Nh cEhlaWdodCA1NzggDS9EZXNjZW50IC0zMDAgDS9GbGFncyAzNCANL0ZvbnRC Qm94IFsgLTIxIC02ODAgNjM4IDEwMjEgXSANL0ZvbnROYW1lIC9EQUxLR0Er Q291cmllck5ld1BTTVQgDS9JdGFsaWNBbmdsZSAwIA0vU3RlbVYgNDIgDS9Y SGVpZ2h0IDQyMSANL0ZvbnRGaWxlMiAxNjYgMCBSIA0+PiANZW5kb2JqDTE2 MyAwIG9iag08PCANL1R5cGUgL0ZvbnQgDS9TdWJ0eXBlIC9UcnVlVHlwZSAN L0ZpcnN0Q2hhciAzMiANL0xhc3RDaGFyIDEyMiANL1dpZHRocyBbIDYwMCAw IDAgNjAwIDYwMCAwIDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYw MCA2MDAgNjAwIDYwMCA2MDAgDTYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYw MCA2MDAgMCAwIDYwMCAwIDAgMCA2MDAgNjAwIDYwMCA2MDAgNjAwIA02MDAg NjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2 MDAgNjAwIDYwMCA2MDAgDTYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDAgNjAw IDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIA02MDAgNjAw IDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAgNjAwIDYwMCA2MDAg NjAwIDYwMCA2MDAgDTYwMCA2MDAgNjAwIDYwMCBdIA0vRW5jb2RpbmcgL1dp bkFuc2lFbmNvZGluZyANL0Jhc2VGb250IC9EQUxLR0ErQ291cmllck5ld1BT TVQgDS9Gb250RGVzY3JpcHRvciAxNjIgMCBSIA0+PiANZW5kb2JqDTE2NCAw IG9iag1bIA0vSUNDQmFzZWQgMTY4IDAgUiANXQ1lbmRvYmoNMTY1IDAgb2Jq DTw8IC9MZW5ndGggODQ5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+IA1zdHJl YW0NCkiJtJZdc5pAFIbv+RVnphfRzoawgIreIWpKo5DKph9TOhNUtHQi2xFM 2n/f5VsUUduGzHAy7qov7/Oe4/YJd0OICBjIksMCL4ggsL/kv3aL78rQwZiX FSBr7kYL2jAP4h0CBHOfu7m1MKwC7prtF7AEZM4JQF64xkqQ/Bnllz3QfQi2 sw3dhp7vwqPv0KseNMkPtvEa81jCHSCDnTfICpZ68OJsfM9fJTvJW64BxaWp 4zEYqmk3CBpMkGo3dGw34yqlVU5rK63ttHbSqqS1y+qOGLGlxGJg78J1gjtd Qe6B3ZhTnz3i1l3YzQrZ1kN/aj4Q3Rhm0i1kahrqj++QFd2GH9Ux0lgZamwN I0tEloTGukVUE1XZkF9ivqpuVtu164fwBotMke+s3QU8PnlByFy3m0CXCQDw AqCMRvj7pwtOyLaKbHW2DaOFgK5doOF3d5OsH9oTv4NZDl89f0nhegmrTgcm cDs2++rY+lbn1n4eNu7Cc1ZXhWP5TkUUW3VBiGMwHQ509dZuWIjEVkaWxnZq mXXv76e6QZjeKCNG5H3ziJu44lFzNVgQ2rgSc/lBq4BnIllYCSL3TENCO9Gp T1Xjjt3v67TtkyaUwtJ9ASclHsCSbnI3ISf07G6CbQCe/0znTuhRv8C9By/7 5AqIYusExF9zL3QX9X3dFuROfV+nSD9rOhkOUreiJhXPbG5Wa/3DhxnDotAV a6geDIQdqiWd7770EYluSVdb2hTp7JbqORKREz2sFC3sBfNN1sCp2Rf3cPTh Z3VuyaF91Et/saZPV726eLRjU0uojzgQAx8Zg4k5thsp6xP9WeYnyUI1v2PD N/syXSXmxCrxOTb9Cz7lp9iZtjuknJCug4xV6ta5rDLhxb5/ZDWjjl81W9st Sa4kdOCBPrIb2QhlDcgPP/CYV40Br38amdodbwx5gWlMQfZN1UhAZr/IO817 djPUXpUpaCmtC1OQKO0bg6hdR4hlgr101vgth74IgVSEgDFnyooQxBguCUHZ o/8UB/ZqsF1Xx+HUbE7OXH3TepjkjXrq5FXjJq4bH1jqKN2//KnNJI5QijY6 BSRHAVTM40tOUlL5IJUfoxIzX28KH5uth6iONtSrQBsS7o8AAwC9Hg8oCmVu ZHN0cmVhbQ1lbmRvYmoNMTY2IDAgb2JqDTw8IC9GaWx0ZXIgL0ZsYXRlRGVj b2RlIC9MZW5ndGggMzI5NjYgL0xlbmd0aDEgNTM4NDggPj4gDXN0cmVhbQ0K SIm8VnlUFEcar+45wAGVCbcHtqIGdICa4RxBl8kMyhjOmQE1iSvNTAOdzGV3 D0c0G2Y0oOuBCxjxGQUPVGKiEfUFo6sonhEFo0bdeGwiz1uzHrvyxCRbDauI Pl/2j127Xr+Z+r5fff2r+q4CGABgACgFApCj0WsniW+s6UCS2wD4bkzXRyj6 C2AqAH7VSJZttJD28eF72wBoIwDATMZCjqivJ+8hPcK7ufLs+Zatb8QoAAiy AyA6l28uyStq3hcMgJIDwOlVQJGmA12hxQB8h9aDmAIk8JiFJwAwMhnNRxZY uOJTYMs09NcMgERnthlJfPbJHAC+mQuAz2cWstjeb7Ynvx7BAWElLdRVPTwC QPs6xOddu43l0D7Q0z6X19sZyr67rmIYAOHNyN5WJMO6B/8LfKvQrw/ofnwX QJdvubjfmLLkskf9MTe8zuVbjEQcjmHyAdBT7N6jwUUiAHPEkrFiTIi5YnFM WKeDGVD2nGTImqDSISChe6SDXMACGzADCnDoncAPSPS1J/T6249BFV2OjFOi 9SOKucTg2jqXVxt04YnQhTXgXoLDFbE/VIZcTtg16EvX43wv2P8ZTwxHdEi5 FA4UC7KEbt7uWitHMVaKk/tDX14k8R6QTTG0ns63ygit1Rguj4RyXuHhPeap glDbLBaKMdKkmdDb8rgikqGIDEeumWYLKIYl1CoY5N9fGQOjoBJ2P+/490cT OYxVREYro5XvvA4Kztrn942JgMC5CEDnfNzpBC2naEqHVRs2hRzKDdhmyDqo KU+aHL//T+dOnT1SWrbonOc9v89aP2gIbawoZCuPHMxdn3AnSOT4hzcw+6Se rlnitodmnU25afKgk0+Oet76aMnezdsnZd62nTBF499/lC8q+qnifObZrmWB uyecLXIeUl+8f/Hyt2vnLDim2jd+RHLy+kBcgILqBbcIEK8du79yvD9/Tdlf TcUtGxQORvr5aNw/B6ZcSY4K3KmbnBlQ+qs+bNYZ+cKD1HKVKuL+ZuOH19nl vksGDftwgap98bj243FRmnZH582ZB5yBcf7RkzcfnKC4OrxJ1Fz14+G49849 qoozLbljOPHtqVPtM34WrriEuy7OC93akl5/fKZJnpAAXYIO9KbWCXAMx6Xg ybr6WtnA5p2CmsjBswyGoc9TFqJIcq6SD4NDe5zm98w3BsbBckQaxRXZmA+e etXjJa/K4JgeRXDvStpCEXqOtNhpaz6hp5hC2kgROpuNk0dBRQ96bFo6kaJV vaVN0RqmESq1OinDkKSRESHGUGUs0fcb3XGolMvlMX3jMOZpHDobXx11/9mZ xyt3NhFqegDji4qKwgsRiEWgcKPNEoHqiI2lORtTEqHLUPH2bIw9nMgtIXRU XriM5x+eYtDwnOPk4agcIDsC71G/cxBqFaGfIkdJPuLF0HZhAwGSS3AXhoHT NdfzK/dZpNs+79zQdmSM4tDN+62y9d+Jagd9XHdtT0T6jL+3D25iAtoakrxV twMjWhKPVV6VhlV8mpq7rH7LEHFEpOh0Yv3FoYPOfPWwSWA5U9aV/v0ML+2l rzskfmmUZ1Kw5PBvtZWh0nhnbOXE9u0rpgbn6I4/2jawsa1QYp8XTO4sP77/ QuMJ+1bxldzGf0ol15OZo+WNsf0O6WWi0KUr9i5MDlCIRou2fCGLmpORNnky rMitX4X7fhJ0c+ykmcvv6gdd6p+Uefyhov7nq6ue3DvWeV5RVVv0L3h/5yeV urN1WuXNa9t9F++viLw6f1F1zvJpa/Bs6Vudo25fk9b86qyombfCtzu71jrL oXMu9EYnO3SU0BNKxO6o4opEbgJ3mM4LCWEy5D3okVOWjJV1JmFuGAajYeRT HI75vVnAcXZ2XETE7/i3u5QN9Ra6QzGG/YZjAHrwgoFCoQAXN7+QNHyez765 8kH1X9Rrh3/zw4OyB7OmCkvmBTxufNv8h1a34X882xJ9rGrew0z1nbAG2eqZ hw/vEMhH3Tgq7Rrp+2f2p/MpLZO6HC7PIBB/59aGpek5ecayZNOlkMHM5hlT F0s7mvEFdNbXgSFRmwK2KDJOv5uQ9HDsQsPE+a1HNq6rrw9oZdNGizjoktSi 170nz70c9xd3buy6aZHqlvksfZt678U0fz0NA+VnFBrPElUOo+TPGoYLm/5/ J/E/S+gJMKHHTrSGzqc59EGthlCbSZYlIokwIpU2MjYWUejlkU2aaRPJ0TYr UaiQe8B+/HqxN56ll3tDKT9x95ZMIdkCVA44m1XuBQf0HIWbjjJZbFaTPAgO 6S4iPr695tWIo43pNvtU7/EKPXSufKldLkAFvpxvl2e0N37bI14+Oi73i01Z lUt37detGbT6l02aiVfeuBC5gjzZuDs/0TMho6hp24C7OzcMZDVZO+4eGNm5 beWIjs6p1bX5enduwAnFA7Z01ODLux77NL/JtQyrkJ7ceMAzOWx6o3JCTGLV lwsvtE/LbLAccM/kxlobpntZn4zrt/FW/JzM6WmbcEyw1uWGgsAtu/tkUKrh 8PkkE9VBZzU/w4TOhajHl3rN+rTjpPqXgpoHca3W+PsertXG1xDFrpevXsN5 VkJUFYT+0AfyF8Pei5+fAHcrBejYEUQiFEO+WqArnDDmOYyEX+oSBiPxsLrQ 0v+qIqkz9KtdgianS7DdUECzhJFiODqPNpIcRdDdgcs7nWL56GWoPIqhrEZK RpBWE0FzLOFgEYwlWI6hjZy5RMI6ct+njBzB2WQEV0ARvefxzC4ftxkMaeT4 LoXaFkdZKCtHhCAmoRJEk+UBfJ8jyEKSNpO5Zp5JX2u9GyBIbpzkVRuN51kn hVmQGYQj0BfCGGqmg2I5NrEvzsZIEPQpsK97ZYQiWhmJPEqifq4qpJAg1eaw ciRilU1TRTK+1ypROYqUZOlVCGcvYej8Ao6/ZciVypgXzBGEymwmdDyCRQWB Rf2aMoUT6iSdQaVNk0xR6XSqNIM2SU9otHp1ikqbmqQhVGma5y4y/+a9SqCa utLwf+97QYwOAh4CHgSfW0VBTIQy6kA1hihPQ0KTF1lGW0EToApRBJfiArG1 Wq1SqRahFTdUBHdt3VproThWkU7daPUMbqjV49pORQvvzZ8Aisuc057pmST3 vdx7//+/37/ee3V8NI/nmGC5g1rP60cO4YQoLWc2aTnDCPzLm5zi+BG8Ri1o OeyaBCOvEXTxnMk8fJRWI3CCwcEiH6M18ngv07eh5w16Lsao1gi8Rot8KCBa qxcQtmMJ3mQy43qc2ixEGYyIRd4K0tSqAcdHx+j4FszauBij1mTinmqFRtBr dOZIh5Sno3LEHa01aqKw26qlwciN4AW9g30E/ldzMWrEqDHr1EYuxmyMMZi0 Qc5FYnmdjtMbBPlwrdNIOq2TQWPQm7SvmxE8r9YFIYueF/gxLTytYA2olZGL VEerR2pNwZxJq5U79MRQccqI1CKVzoSW1tiwDKSjy2zW52MxOXUaVgjLRC7d lu4IK2uqZaKpORHUmZgZSVmYQHLLTOR3Bvf0xMlZFm5aSiLGQbotk0uycBNs ODXRKSRxGpc4YUJWRnMGWm0Zac6ckU9vLvtIgZHqQMCrg+Xrw3JCf0+at45P tiXbgpNTrXgB7OYoJQxrpwrseGJzwyZ/9ohjJ48UdrLpT6gM3P9YGdpWA0x5 7r8qjcR/JO25PyHtOUfaC5bJwVygigsIVb3alxscpuo/aFCI8tlqwP3hcsC9 vBw4jPxiOVjj5tKxjffI2mf7VIm3KEXA79wVOKWizdbi23Jexd9LjqjqHxXL PHznb+Fu+nv7V07rOYVW1aaeTzxqjSrs++ii4kxj4b6GelXtxvfTFZeObt6a LXdZPTPEsiNu9MWEouJ0qzWy8ciP4ybGLZPOfKA/EjY0UFE30LZg+Vu1r/+c 9nO44pDO4DMq69M79saaQx5XHnu323t1+MruvgtnlHHDVzTU+a4bp7KzAbjp 9aIYsln/h737Jafgji6uzUahMhmsyf1M2eWJldozqrY7OYuHq6e9Dqrn9nll t6eMrMqTda811Q+wjo0qq1k1+cEmsYtCmdCGvKNKpxy1pkcOBxqwQRZkQCpY 8MmBHt8z8G3F8XTIXNsrp4fD8y2OT2s91zk9n5mRZcmcNcUy4LljHZub875X b7fiua+U5Y2/dv3xP/5yLffrVUUpJRWpn/nu7P7A59H1vQP9bOuTqh9/sfhN Y8mVFZEbFx7oznqstJwcd5uX6dcak7Uz2z8yp5jqY/4WkENNIW4HDsZH3D/f ObYPuRfZ+MHmuys7/dbV+mtfjyV0SZTH1LGex8PiLEWzohbfGBo3ZdMrPmvt NBrrEv/UKC4qOx2CQ2EOb+fuUeauVnVT+jU7V/HEh0JGFqat3pI5w5YxqdX7 HV7wPmZE80TPp5ypac7qkzYFz8+cCfPRUY6MNlumKlQ5sJk6UG9ok39qjUYb gwkY5MjxwX99LsGpBzRuKCkO6vTVfqYgxDdbEPyei5Z4pU/bYOnwpNOOYKw8 mZGpOjkvPoMGhqpCQsOUYQkvxEqpcUP4r7mxYm39PcvY4vOnn/ennUB+Rea3 RU3twnbq/XIHXPx22Q8DVo8J2DJ31aFFF9WrNriNFbfdlBli7l11zRCXl8/f +dv23mV8Q9IvYV78bPeayw3tO52r2kBG+SWkjCj/uMI3Yqpt40cmZUb1hSqy OV0ddW+0ceSFYQ+Xzl9WUn5w37/G3X5rVeKJU+8tLSy58lOd2WfBRsOaRfUl +du9ow5MyrOseePCpa4x4f2XpIatm5G043jVF/5upUW9jlr/frHhE83msj4N +4SND30j7Z/2rM7utq9AsdRcFeseZl+4YVdi3OHiz7u+tqLzax1djo1e/uq7 4QMqrdmG73vkuHu94d6namqPnTe+TF988MLWgAUF6+bvO+S9/+vVndvVCACE rSZ5IAOQFcpCsOvX/GYSwUo9ZTLajmlPqYyyLMDb7+WA8+PqeETb0m0wDDip kb0uzgVwKaXJw4BIkuSYZa9jWw6++PZnksAfQKpraZcd1I55sUmS6DkkFlpa 80fA7wrnUyDRzW+YCKchDT6Ej3EshJyEUly5E46fBoYAiYNwyMf8PgNm6T6O dof1cBeCYDCkSCJ4wDwQyRxYTyhQ5BoEp7Aa5NFwJpC9BQT6ESVTRuzQH6UI sBK8oQYl9pPk2N9N/Wg4cglwnHnTNUhSSg/IV+wxKQnWkXB6lt0GJ+A26cGC OF9aLBVJn4Ab/ML4NVVIKikNucwwHuvQbESQA6uhmsTTCHpYWoSY4hDDPPgc jpNAFtjx4AlGpH4HCmA/fAk1UAv1GKWdSADJIafIaRk0VYqVEi8lSTbQYj2L gRyc9SO9iZomMAnMVuZc0xXxouSPsgWYDjMhG5ZBHpTBOfgBzhOGyqlAzcxW 8IUISIAktGY+YiqFY1BHXEkoGUKGkQWknE5nmaZKYIAFL7RglNP6H0IR2rQE tkMlfAf/RJn30aYM6UICiZmMJXPIu2Qp+YiUkHKyjdzCgKllGCaXrWJviWcl uVQoleK6vtAVa3Bf9Mwg0KE/q+Em6tePBJGh5HsaSIMYwnZsEsUQaaQ0T/pG Ogc9oQ/SRkAk6hwNsYh6FsyHg1CFvNVwEq7BQ7QSg5c9T7QFR3oSIzGRLESx ldwlTVSB/htEJ9Nd9DQTyFSzsey2pj2il7hLvCtKUpm0Q6qQTjj9G4braNAD 42AKTHN6bC+u8w1chZ/g37iGC+mGWKPIaNS3AOXXkUYMJ1c6l5ZTiYlg8phj bBe2QNSLaWKBuFsKlaIxthjMrC4Qit8hGE1miEfZdrTmetiCntmN0XMW7hAf 4k+UhCdjSBwZT1KIjUwhU0k2mY1WLSV7yEFylpwndyhLXagX2imQTqB2mk/3 0Ep6ll5lgDExccxUJpvJZ/Yw3zE3WHc2iFWy0ex4dhb7tgxkjIvC9USjd2Na U1JTYVOFGCxGipPExeIR8ax4WeogHZbqwQWUiDEekhHjHNR/ASyFYoyPLYjx 0n8YrxrYKK4jPPN2zzb+wYeNMfjissdih2Cf+W+MbczZ5zuZOlFtbODOEHL+ OcfmR4WmRQoJ4EYiOGu3AUJoCW1A/SFtXSV7JJFsSFtoqVLauEn4KQpFKmlx UUOtVk2JVBmz/d7eD7hSqu7e7L03897MvJl5b+bRTboFn/8TtlB4ChdA49m2 33zQ+1Fovo5D3IW3mzfB/r08yCf5bT7DZ/k8/5Yv8DX+u2BoX4a3ErtgjejC Gl4Wg8IUH+K9Lf6tFCulymJliVKthLGafUof1vNN5Zoyqgo1T12kNqt71Hcc iqPTcdhx1HHO8WvHxynOlPXxM+LeCYJHeVecVauVLXScGoWifCwuiCreJcb5 VVHIZyGtUGlUGoVPVJLg04jyrTQ99WiKO8UtppMzNSx5iCPCo6xTi5VM+gr2 G4lW8ZwI0wl+m8ZFPSJthzIijovHlaPqQbWar9AeyCSRxZ9SDdVwNXx3kbbD Qx7ldfV3kqMjTbnj2CqyrH3qTYdQLuAcXMFC+Q238hg3ihmwVqX4BunoO3kM /6uwAz9E5A/zOipXrysD4gviD8BtoRf5LNZ4mraI0/xd+KUc+/HL3MjfVhbR bt4OayynTeIQzRHbxBzE8xr6hJ/lPOzccfhmrugiVckSHXRJhOD19zlHlPFu xOlW6meDSnmCz9C74gB9niPKz+7Mmpgn+M4YR5V6ivK4el49L1RwOgtrLsTp 4UWEfA9nxBrsTLdSjKgpJ4coRfw/hhPwEZombvMzYgv18LeUv/IPRA19kSLK kyLAh+/eVmuUJbDYKZwmvpTlaeSochSqS+Hxm1SNaHwCuaVb/aPjWdlWLir/ skKW++7jjql3r9FOWKcep1s/9lI9XeUZvJGbVEs0qJa1lgbF6+o1K58z2U0f WNhhd9/iKp5rabzdyuAmRPjGlB9NHFH71b3qV9VnkJvGcWo+RwfpZfoFssn3 kbcehB0fgTU34OzpQY5YSItpGVZXTbU4lVaB1khrcZ6GcUp2obbcjpP3O/QT iiJDNcAeGzGvizYB/yQy1NO0G/t/Hw3gDDhMJ+gD8WNxTHGLPvErsUP00FW6 qryjeHktXVKfV/dQM82lJs6F5IfhpdmYN2BdhLSHyIXTfyl2KeLeumX93vrh xHvgdwK6H0yppVspPiJvTYt3ZfWKqsqK5eUPL1u6ZPGihQvKPKUl8x+a92Bx 0Vx9jlub/bnCB1wFs2bmz8ibnpszzZk9NSszI31KWmqKQ1UEU6lfD4Q1szhs qsV6fb1H9vU2INruQ4RNDajA5DGmFraHaZNHejGy679GemMjvcmR7NSqqMpT qvl1zRyp07Uhbm0Kov31Oj2kmWN2+1G7vd9uZ6HtdmOC5p/ZXaeZHNb8ZmBH t+EP14FdNCPdp/si6Z5SiqZnoJmBlpmvb4tyfjXbDZHvr4gKSsuCUmaBXuc3 Z+l1UgNTKfK3dZqNTUF/ncvtDnlKTfZ16O0m6bVmdok9hHy2GDPFZ6baYrQe uRrq16KlZ4yBISe1h0syO/XOtg1BU2kLSRnTSiC3zszfeWPmvS6Y5/iC++6n uhTDP7NHk13D2KeZx5uC91Pd8hsKgQfmiqJA2AhA9ACM2NCsQZrYGwqavBci NbkSuarY+iK6X2LCmzRzil6rdxubwnBNgWHS6qfcJwsKvMPWdSrwa0ZLUHeb K116qK3ugeh0MlY/9cYsrzZrMsVTGnVOixk2OjU73sjMur8RSdLslj1cthpW Jy3LUiN9FQLC1Do0aBLUsaZy+YmUk9FRjmF4QoxZZic80mNO8YUNZ4XEy/mm o8ipa8ZtQgToY3+bjGmLY1KKnLdJNmWcJEMN9ETbLCkx58+XIZLqg0+hY7Xd X+Yp3TEkevRtTg1/MB81wrZtoYoFML/bLR3cP+SldnTM3qZgrK9Ru+skeReU hEwRlpQzCUreGknpTVCS08M6IvlNFA9EeWZacfKX7ZyR6++uMHnG/yBHYvSG Zr2hqTWo+Y1w3LYNLZN6MXp5khZvmbm+oOIS8ZZwKTYVQbkhOVh2gpmmWoRf ih3UnUOpaYhKG8NawHSG62PfULrb/X9OGrL+IWfZf/emxdU0K0om9ysn9Sep l2koUFgtFg0trYaRPokWwAlkGAFdCxhho23I6m3XNaduDKPwKDa2+cMJjw5Z p/pdZmAghEV0cwWiVVBtVOe+pqiX+5pbg8NOIq2vJXgSJY0vXBuKzgUtOKzh zLWxIomVPU32qIER6SdRMUqSa9hL1GtTVRth9zuGmGxcWgLH1DEkYjinjcPj kb6XeQvVw4h1ybqgjtvRMKn8UUdk3pQj5JdvcTqq2RuAu/yReIw99CfazyXI uSOooUdBGaRfos47xzm4Hd3kXB7hcmSuCB1C9rmCO8U65JpXcGs5hpvMZswY RKXYSzOpjLqRe7tBGcZ9o5mcVISM2EGXxQr6M1eBM6Fe2o/MOYjc1wteu5AV f0pv0s+hTR4qmQOg9YL6HnLXeqpEbo3g/jfGL6FiO4Qx0+wbXNCW1AxO995B zIu9p+Kv5JZ418ffO8j0N1ABvcBfsrW2zYKaeiXk5EDXreDUTocArWRSCW4C r9JHqPWLce9w4jbwF76FdT6PjH4a8jugS8TWqRuQQwdw43wDFcgEF4HPUWje Acun0mbRgrtgLmqkEdj5OnjJO5+EIKwXewk8CDzlewqVyTxAhSCO8imu5Euw 3lrIHIZlLtOYqLIm6Gvg/hLkeeC9qbwDd5GOuMelX3aBpxy9B+uUsNsaFecg c78Nr6A/Aem9NvSCcwLKYDcJ3bBaEPMkSD4vwCMSmmFFCdDChj1YobxBvsUu 3Fffp6etUdy/XFiv4F0JkF/UgRE6QvtRJcp6ulAUym8MEg+q8kJ7tP18Vvuz H/FEooE3Ow6vwd/FqD4VaFJDQ1ilwPqOcTb0nkK51ieCuYxOgya4h3voNcSG tFHCcgkrxSy1KwmbEbubUfuNIoLvh0HEcwgRfTBpz14AwZ4Ut2nMnjuTtkxA EeJd+vSKLT8HEddI27ArJT4BoCO+qqgP2mdiXAa5RBri4zSnkde6gyirsT6l +dYl3APkTo1A4mV7l4ZgDblHX4RvOxE356BDByQUopocBaYdXuvH/WcdqxRA 1fkf1qs+tqnrip/zbhI7gUc+FqUBmtiOA05wWFiiEAoG24lNRtw2AQLYxSVO WARbNIFwAijTGlbGtCqE0EkttImAla1CrFEcJ2udFJpMawWjH3R/lGmjGkhd p2l/QCXKVvWPZb97/fLBxyYmzce/c+4997x7zzv33PvuxTlay0SmeHGurGc/ fL8Cv7dhDv3UySUovQh0qkzuBo2pPP4V2fGe2TjflqFP6YHcLeopiPP0PioB HYBFPjxKetENL8qUHyGcZFNAcu62Ibvz4O9xxO4HyKtnIHNRWw06SJU4/bZj 9Ha1k7wO/w/gPZ+i9WQDBdD76zhZF9NhPHUMT8v95CJ2hFGqnLqFGTuIJ9ox 8kms8G/Rbm0J1+PmukEr5rdAJ/kkSgGtWFuJrD6puUQP7lwfILdP4c50ls7w AdzFfka7OYq5GqVJ7BpHsP4exz1mElH/mv5Mr9F7OPd/gBtnFx1B6wT9E/P7 N9i/pPIT9ynES+JjRdM9t2Gnne33iOpT9jjTHx/AjIxC84ZWy0dxZinmS3wJ d1AsKv6UTwCf8lngCl/nP/J3sLN9yd3cxNW4mZnYQS/D+q9aPf+e77DODs7G zM6uvysaTvqa4Nf4F7gZfp83QTfArRxB7i1RJvMoTVlmwQ/5O47Iy7Ulfxkg +TuPnfILOgF8AatTWAsgeCL36aT+BB/mT+D5Ob4C+wLMg3NGTpf/Dz/4PqC+ cES5WOUZ9D4idAKZP8kX+Cvlp9osUDbejy/zj2fedVpnvOsD8hRvlFAxkEhL xmZG3v+bb8THkLwI8ztHTscW2XtNyVGsd9luxo1RyjjHlf5fyGpZvwNf5Q/v o97lPO1X9V1Yo8/Tz2kAOwmgLcRsIy+ohZ5ERK4jN3RkwFlE4lmyUirm4Qro E8zGYbTKUQZogP/Od/ku1nc7/5q/5M94qbYTUYth3XhpKd+E5jO+xb9Bj5cQ hVMY6w84N3xEH/L3uAMefkgX4KMLufwCMjCbbiHbL4Au0avYP37Cz4LeAV3g V/nGbLRnoiAzRca5QOUDcR0oSHfoT/wV5usjIvWNwr4JH17Bqn2X3+dJ7IPv IXPH2ImVkc872Cd+SJfV86f5Iv+Sf6vWuFNRiaKpGXoXEZhbn6UaWAMz389H xdxvx8PwOXYl+c2Qb/K/4P4vx1zsVOeOJKQPcoz/8AyXcy7dBbAXYn/OxT56 UKEd1IrnJRqR2aXYW9vxFauBz7IvdNk0NSkm41sqPQmI1UqMLCiuOCTlPF3J eHql21suJmkvMARcBVKoGbzb0AiygLsBqe1T7WfE2xQDJoGPAakZh2YcmnFo xqFxiwSxeEu8GS+2YOjRkYXFFbe9i8QITQGaeBGbtg197zBksyH7IJdBHjdk r+iJr7FketNRZ7oNPgVoeLeBeF1DxZgqVLtUoX9a0z8CjcW7UAzAqwF4NQCv BuDVbXBGr/3Q90PfD32/0vcTq65spUZXRmEgnplnaFDwZoiQ2EoV6CJoyG1i a7zCMuGNiC3oekjxM6IJvE/xZsUbFO9Wrd2qvEeV96iyW5XdRlny8jnconim 5GKT2Iy5toiNol7JRuHHqrSIBtSlfFpsUPIpUafkk9DnQwZglwNZL9ar+gbU fZDfRl3KOrE+7rOs8O5FvRltOJkJqffBBx988iFIUtMHnAFuKE0zeDdwFRDK koUPVAvyCi+e8KAPD1o8JIQH5AatE+vQsha2a8E9wqXe0QUrF0ZyIVYu9OzC 9LgwPS4yCRe4VVTRCsADNAIRIBX9lOG5MvhVhhHKxHKcKizCph3FWrEIqyEt Wg8VQhZqPfFCi8ebro1SIxAB9gKHtNF4ak6mNxd20rYcaACagW7gNDAEmMmd bPHM09yaWzRoDSIF2V064nJVKFm5MikfL0jK+YsqMr37RCnCVEqnAQGXS+Fy KV51umYBNKSOgyaAq8ANQAbcgWA4EAwHXtCB5x3KKk3Z3QamAIEkcqD/e21S 1dMWoHxOL1JbAk0JaiV4pgS2JdDeAGf1hGxvBPqACaOtSCVzkUrOIvRVBG/L wd2qlAluEUVxLT0zgfjy6kxvNeLeAKBR60U0exG3XpkhmlzE5WhxGxZ9wBCQ KsZApSAHqARUBLKBrCDMoCjE7B0H9YGOgXpBR0E9mI3cIeeEU2uu2lPVXdVX dbpqqGqiyvS21gKKaBFPBuXl4QOTk21e5M3SUihMOn+t+KDi+xT3KP6YZ1FY /0tYvxzWXwnrL4X1YFh/OqyvD+vlYT3BrZ7HnPp1p37cqW916iudepVTr3Tq pU7dm80h3kY6vaN4jeIVihcpXsDb4jqlX+DtZDMj49kxavuR5XNbIoXjlsO2 hBni+WRte1Kskco3LStsuyxlSc3SpCi2XUxBD7SF3yATOz1lpt+Zmk0e0xOm b5qWm0pMDpPdZDHlmnPMWeYF5vnmDLPZnGZOMWtmMucmpm568MFmyk3LkiIt RfIUVc7SJNfk1xjHLjZruBjEviECWmBzDQdikzsp0GqN/WOzPcEZG5+Jpdpr OJYToEBTTX6s2hlImKY2xVY5A7H0xu3BYeZjIdRi2k8TTE3BBE9J1ZHFsZza 4Bgxlx3pXWzIUEg+ExxO4d7eEOXtd+e7c9ZlP7He9xAWMbhz9pfvnFuBJwWx lwObg7HzBaFYhSxMFYQCiNxmazg4pq3SVvp9Y1q1FKHgWMYhbZV/k9RnHPKF Zu3ICr1vjGxSKDuySjuy3mdXqFVLuyVSJO0KlV3hPXbDa21+37DNNm2zVtms vddm1702u5TNLsNGJG1sc2xMN8mmbGymmw/YFD6CzZKH2syJZluN87/8eAw3 z2vDtV3+Nrs/Yve3AZFYz/7d+bFDrVbrGNXyNdlkjYmlkdadu6VsaUvwNXub L1Zr91mH67sebI91yeZ6u2+YuvxNweEuT5svXu+p99tbfKGRupZlg/cM98L0 cMPLWh7SWYvsbJkcq27wIc2DsrlOjjUoxxqUY9V56tRYKuuRlmaqCdWGk3JE m5eBBI4stoVq8rL2rlPZvMaW/9zi8RTiczTPGYrNt9fEdEA2Lfcu98omrDLZ tADqTKMp/7k1tsXjfM5oyoI6215D+f7v+vCPRo3CI/6j0WjHjuiOqJTqH+3o BOQ0UZSiHYQ38M5X3zcLdmO5N/cAR9UeLaLRUAepOY12kuytQ7LZzmdKneiZ o3OTgKL3/2Rm4JaogO6inQwradhppM2/2a722KauM37OuQ/fazv2fdm+99qJ X9d23iGJnQRiyM3oIC8TA6EDbs0mrdI0NooYaKKaOobWxyptKtukaqsmkbIg SidgBLA8CpRVkzrYVmlVtVZa/yhbRmHDWykesC22d851snTa7tU55/N3Hv7u 9/h939lPynt8DCBCLp1CLnoYdXDGYQDOFQ6w4SzrKEH3ecxlaEJQwMkymChS FNJ5B+EVIdC46a+pHZuESjZXzW4S7mdzQhUXEtlqlrTeVVExKiZwhzEOLEao q4smA/4FIvRVcrF8rf51WmQ+BTaCSThp9uflfOiocjR4Rjmjnwk6NoKxZGJ8 1Bzs7Bqwxk05M17sHe5FcDJuTHC81BySrYlS/ep8LGMPRmNotodiIDNRDDQF zrJo/cz2oLmWmYWPzJpts12RWQNak8AaM63BEWto3WB6LD2ZlpyWyFviOsls fzEtmbGMZPrXYMKb+awEpRLKm125bivTZQ0krHHDmsisG0iPp/MTcCItBy3l iDqropCVV44oswqlrJOxCKYLHyXIR+RZmZIvobtgCtyFm4HaIVQKHXcK5YJQ xlSlcgePjRfz8XPHJiuVxWX2QuPdAXp6hCpZUc2SR7B7m/dJRu8qfHGk+vv8 PoWNxymWjaeSmYy8TA3K8Vgykx7o718hBgb6A36fg/oE1dgejVP9VER6uUXX W05EUUAUteiVCFIFSYORM4R7QfpRWNfDx6JLzMv2Kh1Gz5HZ2r3L8hW0UHsY kOVArbNFpb26F761QhE+5Oz+nWaNFlSh1rdC2bse4mS4UB+lbjGbwQzcbfbF Ym5hZCI+YRyMP2m8Dn6vs9tiT8cuxC4Y9HYuEo3FjUTSkQrnpzflpiYnHONb RkroV/NDNzaUoDXf19c+6kaHQTfwoWvAA5twVQngH7FzhqB1nnsd/9kV+6eK CwUJuPAWUZRKsOlcqu8L7SX0VnF4fG1KfzQ96sQL1uM2jM/Ygs+wAIcOz4fX brmM9oJt4GXI4jMef6ZDuF+tYHuWyzg4cmWhiuksMSvoqRSyxLiVcg/hVMqi FFhNWu+q9U+a2Y0zzW2JxGSyeSZsgmged1PGuAk3tuGuZWvIhDMgsjmGp2L5 6YlkzoRGfCo31rrBBG3tQrZDyK50ONrt5/BhXEW4tk7+NLF55/bzG1smlU9f qePcU78DmnFrqd8Zsp8dYF8BYwdxDuwHPr8/MNCgsEvEkin8xmOsTwn46YCf +ImjMZHJJFMK26DI1oAfT/f3DWTS9p4U8TY0TIz6yPYsVEVZVWXBT7NDW/bu +/5oLxweyk/PnyDzL33R4W+S1IAsNfGIPfqt7xzLmu3PvjE5NUef3k38bTcb btVUveWpFt2n9SQHnt66tTM2rMcPbvvKKfEBWfHAubNT9uotcy3BJj6c2fvs juGZoKgls9kDX34VmwvewJXsX+gPsf3bTIEpYtZp9D1w+gWujgu1SygHeFCD m0i43i8sVBfASBlHVpSyvy8Fb0DnBjaqahGW/rB6rz0abccHoEJtkTqDzwyC vJlqc7cLiAl4ZKfkZ1lGCPhl3zqZyfG8POsxABAwAGqh6xchgx1Fe4ZgaCFX tZ0D/xuGT1FavRqSzg7ptCQN2lZQHCzyKVLAjtBYKomSqJB9NeX2SJrjiV27 nnBoksedeMWEH++HCG6Ju1TR6b5eK80dr5WuuZ2i5orBiRrWQFdtER1akraN R7yuIU2nicS8xAb8AsNiaZ1OLDSW14sLXgT05rmLMLcs730i7wIW2Bb3v6RV EHLYnpAeHJAyaWQbn7iE5EeH/q+0d/fX6rVTMbeGpb0Gx+aOw7HrWFrVFasV a3ZB7KAglrYLps1vKiEhbob+rj80mPXac/I3FCocDBtTBtVufK7pcXmP8evA PakS/MjgOttjFGh1Kh5OiUqd7Smvk6EToKvLSBhKImEYGC3iRiiohELBoB4M 6YYsKbIs8RxnSKIiSWJXwoiHGNCqy5LIMx7OABLfRYNEiaJMSXRIFscBh5EL RqTLGE88JfiS6eXMYE6KOPBa+h+tEJTgWtM13bq3FbVq3W9eUkvQWDK3be1q VteEsq4K5UKZUCpWJxlGFkZWY0AgWm0AA/1cd4fnKeEXz3m61Q7ufwgaE8Be 299vW6IBJrBQwPEMxUY0i4mGE7EOZtmDUsuWGkwkl8wEH1VlSYWi7BRUUa/9 7aSgiX7fyZM+n6SJJ2t/1UTV65KpF2CYxFrtxg5WE71+bsetQJOkNd++3axJ TYFbOzmfV9RYcp05AtbTa+kcdiLL7NWscBjgu9AJwaJPcF6L57nQ+8DiApYo qpYgcNByOLj3V7mhW4tw+cNqB+iBK/rCzVbbAhDsYKkuEJwTSHyKDSASo43U Fl3+6Ggjn6Hvks+qfZvkJnjA/sQDhEbh2mM2b85ORcfs3LWL0AQpOmrvoN/C bgwI/ab6BngbfAA+whmiSMN76OfgbS++7CHHJfgD4AR7YPMKYvSU7VCIwiX1 wqtQrL0bTGpxCnZX3+uLa0430c1F5KBldAhXXbrpBldxlDFIoz//E1JWLQg3 QU+OHOSLZmh58QQ6dPAgluk39T9QENzFF9uQ6YTznIt+z6V59vwMtgC7GsuV bcBKLNcBtj7QNmMov3mQdHenh9ZsIg3//836Z6g/M3swIO0x1/C8H2o8NQRW 8xvgOG/xX+K/Cg/yz3PP8y/CH/LH4Um+CIrwTXiN/x28CW/z9+FDPuDioasE f3mBcq0DFl+C81goi7vcQ0HqXbEEXzt7yS57qjjLLellX6EA/6OYRnpRqA+q j4kYpJ3oxy7FI2qM8c/tCc3r9jGvBDya14UB6E/4u28xDNCwR5w6JyFn/GL9 Y0DVK/NdXNsoj+nWegWk6g+AHzdf/UEx5OE9nAddrD/8N9tVH9vEecbf93xn n+2zfV++88WfZ58dfyUxJC4OzTU3sXYMBqtUCio0ZXSKsk6BktEN0aFBxkBV VyYGGp3oClQrqdaWVXyEmESkSO2kVgVEC6UTtHRlEUUrQRsCRD+c7Hn9Adu0 ++Px68tdEv2e5/fxIH76+sGwt4W8kZ2+biUyTMgb9cbFlWwkJKJW3Mx44gmv bop5kxEZxtNkojJ14sgMw/RqhZdGq46e31yDl78FCHcTI68SrVPorGkfWPdS qpVPBTRVUzS/JmuMPRQMByPBaJC2N6fSqUwqm6Ltbs7FOTmWc3CM3ZaKC4aF YlKThXP2pIVa6DYLJ3y6hYMalBSXt1ArBaUa36tenoUrN4hK9QuX/vOCXcPy CxFJ65YjgtotkKJEImJ3vDz9tWXBoVkOCVCCPBTNB0X1didIaZYVD5yg2GR4 zhYR3d0tLigKOYVlTSe/5KqlwsEnq1HyVrSbcvHCfSop+P/sqeTffgT7eUct PpAkUOSrZgYBQVUcHfVMQUHCUEhqaJ8pFm1XBnt3zdvUGr7fp8Jp/i9bI9/m lUVzslq68ztb987JBdKdc5/bS104PfWv3evvLerbzcVrTmOenOPbuxZvWHvS TGiJqb8dP7r2lBnXDKwfJ2ybgPXmCn0bXO/AQZENlqdvWz7Bjlhn0Ao+KD4Y pJ2+UepPiMMvWE6e43z8uJOlyB0G7oiYYSg8zmoBIp6SQwzKo9RHSKD6RhDj ZDmNkscgXQpIpU5ZLtQnCLgP8Zg/Rq1GIciEp2oTBAIBEkaiYNU6JyerEo/4 iil2tgUwf/PG2//1ZUYB9VS73BCyO/rGNEx2FrUNx4huVfqrShabuiY7fZqL 1ejbXz8KSSoQECWVLiwmSu1hnYDEa4DER8ClHI7V1qSRoDvH0DICw1o27OJk M86AinRXaj4SPAqcumjlg0bHXN/T3i3NW9JbMkPpocwYdzjr9IgupciVsnQm kY3k5OZIOsHJbjIpnn+Ik8pXYkWh02wDyY9H6kAyx/AECKsbQjSGAO50urim Mv7ycPVvj0GoBtKTYP6ZYCa/5YFk3YJUuBuB593USpTHv22wkr91g5DyBonW gGg34DvBT+I6jKgGI7AzFDXEgJKMpfx6wEJSQrCwGpUtLBpQ6uwaHKzhDRca wAO5R2bpjTCsF41Z91EQaSECO+x156zrl93uQI4KtZkYyzdnMbo+sCj655+v elWzOzleUJ84uuLFS6llP5v66+ginTTpp+svX3vyR99P9w/9oifgcKl84eXH zj87e8Wap6Y+fonM6lvTl2gACkHjD/WXIEiAarXPnFkUZhvfNeYl55R+guwb 9C2l39E7ijtL+4pDpaPSqPqe9J58Ur0gfaJelb5Sp9sE8t6wHIfGCWXoYAgO GdbnzqUFWxv8IwHEJEJIi8TSqbwGrT8Ui4n5Mt56KGW2Q57ZOiya9oR5DyxB lstv2kKhTlvT7LZRaEGIGhxxa53tjN1zdRRvrDUCZJGY9YKJiYX8ZcB+Adlt EOlGZQK+wprTSeSyOvIkrNREM9RRNJKSTDPJjoSFJcYPC00xZWGZFi2Eqn0Z hAs+Sj0DJVQawIrS2Efq0bK2aqTqa61a/VbtUoMjtSbZpKeevlnuv9LqU3le fmH/9r+sONITadK0uQM7dq1fsj3PC24hsGTdrj0nHqde6xh+/PnPHy3wIh/w rRlZPX/bQ4RL+Nllj23r6pCdKp82H37zV4t2gjedI3yChBpGOnrf8oCfx6iI zoSjIQVgvXwkHB5XfH5YJn9giV7vuD+m632UDZKyjdKjMQB+xGajGT3iiZBN FXnBfMCvwiFCAwX54J7it5WpTZYPM96+cDiKfBEMVIiMUquQjpdZbuAQ1uI0 7efArT6Adhh32jGwoHKrZ6CrC2jRxZPkRHInf62apbpIfKp0CZ0MBEwIkcAW IM7Ns12NT9+MwgDWi7hdaOSJxqEuRO2CkMA2W+UMPvPGAyQSPlCtU++Q+mJ+ aglevsLW/M0Jgt3UzYYa4eXUpxUd5vxtMueAXB5dtOLuoDMUd2a02QGmJfO9 zPLMqszvM+9qFwJfBFiNDLFChliCQzCWYGU+ZijRJhwN6+gYAJUkOgJoTFjO sEnTLpRKSmX8d8upmq4mk3dgxyi1GWWo/mF4si9plPEnI7zWkqRdjRG+ixnE TcBostJTG1+ykLVNgmpP1kJ5Z3WOq9MbCIQYZ4gB/w44oQTtYQtrrHp3coHC uVzPABYaUkE2t/+Z3ETcUU+vtSfwhnnPmLs//OfhtasWWqkAL0jPH9xxfGjj pk0xD6xR84iE0NuneqPRi8Pv3C4mZ+mKqIlb333lN/vv5wMK1UJ0CORTBHSb QEUSqIBftbjWuGx0xCO5iB5JjU7fQmj6kuUt0veyc+j57MP0UtaeBIAPAb6x +me8+pnoMMrTZy0XUQ9422A9ZXhzA03TrEzLbIpOsVlptjRfWib9WFonPSNt NsakYeO8+7z4hUdyY4Z1xOwpzWfEknpv7If6On1dek3b6sKh+Fj2HHfJdZkT l7IQenhBjEly1B9RwqrGBzxxZHi4pDvlwoU2qjUPLpJx5LKMavd6jBnAkX3D LabN5gyW8UVLiZoy02w6PYHP7CbK8tlYtpCls8eok2gmMrCBOGpoJG4WYFHT ZozhEh68E+l6FhDvqPRAcAfPm5wkvZ4gXW5sXzWZSuZjOi3xPsEn+mx2zuP2 UPY8nbVwTIqX8euWH6VckOWSRpqFmzmmxcK6L0p+4sZJT7OFMo7m6liQweC7 qkmO6NpA1XCqaalmPTl8d1SqkwK2Q2alPjuJOPLLEJ/ujg7uX7ivd8vp8VdW HrtnTndh74frF5UCiuARM+ZbU29qqT8+uXrP3t4VS7soac2qT1/e+eWWX+// YPczT+zpjfs0UXXJUwc+198/8oc3ntv0+kOzgJVnpqds54CVfrTxgNNGjNsO 0pWl7HYbNe7kPJ4+P5L9fuSHMMGpbj+HbDym+twuwce7aJ5zjwIT/0151QdH UZ7x993du+x97u3e3d73V+5uL3d7e5e7fBwEjluqIh9CQosgQhJMxSmB1kQQ QdtCx4FIosY2YEcEAwqCRayTDxsjDrQj2LHDyNQ6pc44wIwUpGjplHHoaJI+ 7yaBQP9qkn3veZ/bndm8z/P8PjB1eMBl8IhXp8jnLxZqwqekAQ/gjkubJjJM 4GM1h+u+g7dxTWT8IGogwJOATv9i5HWCJTQ9+hYrWgW3nlknaWPRu/3bP3p5 t80oAApfAs9wSfMMcZTDHerdwqHyj9DX6Gsz42UCTllZJq+mdCYr4/ZZHe5O 9068m91t6kn0ynuUN/BriUHquHHYPCyfNn4k2zfjgxEq51BA2fT5o8Ghsc/7 KqOZ4bHPwWzcGODZiooYyaUqyofHrqL42JW+RHmEyCBBrlDZaDGZ1AeKdl22 qLdEh/DfVFsyKdqkIn3BWyyJ9SIlDuGvVFNVuGi7kC4aPPk7bAe06PVGWAkU /V1rVNKnWmtWKjlfiHcybFAIq8jvABzKlIFnqNQBjYZ4QCSfExaFzaooBwbj lpkgxPq/TgI14sZ21A5e4l0kj13uBzcA/8jlfjAJ5FOtBI+gc8NO54YIkwi7 tZzDXHK64XYnyTlJzklyt1mD5Tf5GzCwMAmFkCrTFzTaBisAvW2fEtP2NWvP 79t3fm3rylTdpy/++i91Scv+xzfs7934RK/rza1b3zy6ZctRqqvq0Kpdn322 q/lQdc30xS2dH3/c2dJQ9+W6l/e0tvT0jJY9euDATx47fBhw0Q646IK+iKMq 3KAqZSyTKpNR5jex4ZheIiAZTcNidcNisQbz1eZyWPJiVTqRdhIlxq3IXRT+ E/136npGdxzhHEFJ8tQQKboI9b+C8nBOCjyldwzmPsh9kmOaWEsMSVZzwlRh SIH7g8giQcLCcLFk0agjeKYaswBoxkhRtEjDgFkW6nXVGCty3hrvhbJi+n3q MKq+BV226yMgtL6B1riIxrvhi9K4n+A1ZzoBXIlEpjzKOC1Ws5XS8yBn7DaH jdHr4ikD9EiFCXokIZU7YwSp7DjDELPJJiFphSVqi0B+ECn67E3smgJeqFEm gNWOb2IYxNqQTlTVpdVVU8tTOA/VVCekW+Ut1NLHZ/c3LXtt1fF9jx2rvmu6 1LPy5888ON3r5s2uRNWnOO+o2btm7auvPjJjfVWEOrV+w8O/b9098nzH0Yt9 GxtezJbKbW7eZbLjqkups3/qGXhuR7+qylDn0zD/mG5BFvB8OdXA9Ykmtg/p hfewCJjAYHHQZPJ4/D9+FweRm4zZTJCsmosowWThScmjdar9th11f2xaw+LC 7Qvd0lCYsYhcI9310+oWkQvU4WrcyayhzdpbFPrKYniIuqH6nDHO5PEGmHoB wx8nZIWSQAsef/1T2ps0gmSzfTMTZUG9kXeZ9H3jQva2HZP7TnN+9E6yTomp 3xEdQK7RT1x2u4tc8D48Qsxx5lcohTL4HVWu5QGAfbPSBeVeYZ73vvQcpUFo EJu9zekG5UaKk1Eqlc5gilKMtiHqgCpaui29FuqcBVuSvMVi4wNGXogmyVdW SapKSVIyFYim0gZaS+n1VRptBAyU4rFrKVFcKoiiXQh4BL7cT1JzQyi0NfRC iD4TwqGkLxTy+wLlPq83nUoFfV6Hz+cVeD5IKaCYlVg0ajSwCAdlLhPKUJmM waOkJa9d8noo7zB+AJzhLNWRknwqZyghHnO+kO+875qPAZmQfqeSknhFEobx LMSPnejnjSUwRidUG9zL8Rjx9fw/+TGe4eHe/uw969xD4wYT9JssE4M5Ho4Q EtN0NEHjRmCyEiG0Dp0mojsybrnjZ6Cl2Qkqw7Z/NbZnr38wNfF/bbWny4A0 yQXN0Igj9B0yHE+Ynwi+4wuajtL0UyNn2/eTvhg9RdbZeP0N8okP4d2ztfSH RK7v67kcuoA7Rk9PynT6CmmZb/9wU7Z3UD8c2QtmBy2DHloOPeRHCZTHj6jv /zZ1RD5lPGn6q1HXneqU94ZfjvfKb8X1T8W2xNfLjyvdxm5HV6w7zt5vW23b YmyztfFtQpu9bH54YWRebIG83arLczPCdZG6eCk1Q76Hu9fGGrKesD/ii/tS vmyUS8nsZtux2IdZek54XnxjeHu4s3JX+GB4MMymWTBaMkIBkWJ1MsYBtjJs paMV1nw4EUhKYkJig4FgLp8XWUpko3HOHDJnzSVzvbnZ/Ki5zDyEn1aTShzx Np7i+Bf4E/wZ/jx/jdfz3upEBVgtZEPUNRBGnqr5m8d7goxo+8yFIzMXkZYg FovoGqiXZhxs415XA+M7LZUGysFYWnAYTXZJjqccioLjxqiC00JSQTGTpGB0 i59ReyNub29vhJ84H50y92Uajd4stD2SL9RqijACNkKLIMSondSXsu09efDp JxsOPjTyLNmfxMnm+uLdO58Y7cdvLN40a/krXaN/XjJe7sEndzdn9zQt6Woh Jadqo/7WQv2278S5rdPVTbPgELaMnWPuY46iaeicuklx4CwqoXpE60SnuNS1 2vGwuCbT5lgvtrkHXMaCv7Zyvji/doVrRU2r60c12/wvZY1VOS7sK8eIZq2i q5APR4OcBdGCKTogC/GCqYsJxuUCzVCywSqxqyKS5K3zSVwulMvmSjkm55ne MaUIC78iHDgyQo6/RE5+/PQ1EiQ8qNWA8CGwIVrwtukHC96OLX4QlI0fdBzv QESsBcauDoqiy+8WJxTQciKAYNInpMmkFE9ocpv8QgppzDWhXAi/ZeiammoB MvTZcbTlXZRu6YadDy1Vpe8l/Ng2sO5IA+8URPn7p9esaJrbtCO/7VLHGSY0 g5Tky5DX7Vsye7kcUhY1z3mg59joP5qanSLvyq5sjPrmHvnlsiM/xXQX4Pcr MHsbYfYCAHVmNfK8cYfpGWGHfYfjWWd3qDvcGXku0ZnsTplNFTgRTvpBsp1X DS8lBiPUXawrQPDW5E0irzeAAi6WIvsaXRLrdBTMDZ/hQkFRDARdrBw0GKgg S8UkjsMcF+YozptJB4M4DNWmkEd577+MV3tsU9cZP+f4Ed/Yyb1+xPG1fe17 r+2bxNfXjl83Qbj4OqZF0EcCanmsdcPERhUWKbChTWN9sG4dJYpoJlVagbGy SUN7SIsGrLyqdQ/+WlWVauv2RyeRSdA9pLQpQt3QGrPvXNsJCQFNhGOf7zoP fb/v+z3wGuxYSlFLy0AFFJbAPKi/R4tMBpZ+2cXchYKYbO/qZDtYF+tkrXYl 0ZPoTfQlrHavx+chdimRbI+nsdgVS+MEq6ax7ImmUXNDktSGmLkJctSd+9FN rQfg1rbEhOZWUOfRY26GsMGkwMt7ZtLDfcKXX9r1Yr1EK8dxds+FGh8fik9t rr/bXIrtg6N7Hh3b/80bnxuiWzH526dfe+yBHSOpjbAP2wGPDOBRxB4jOBqd sL9gt7idnarHIzjlcLQYiwlhC2MHnTnDRsr01UixfNm+lYAq+oLdqtcrBAtp OuAkqxaLQrpHowmWJFVFETSIkONGKUiw4ozFlWARKYkIQs4gcTpkhQ3jj8O3 wyRcsSiIwSPMSeYKM8vMMzamqChppHEa0c6DIvoTiTiIJrPFm/F87JmnVkPf NBFoIje3UAIBu0mVjKvtmwNqa7IZ3Esgc/QL2GsOQlntT6XFN01GM6+q2nqw WIeFq2G31FwidwuHRZTcrWC39JlmBT9BvkPb/tnnKSL7TA6zfIVWFk5hLdCQ owAp1qOmjtXPLqlV/SqtvFN/eNR88hE9RwGl1wGl/YBSAX1iPL3ThlnGpXKc wEihSFGWhVBeY/uj/aRfLRQEDWREpzLi4btUt1vglRTq4/pIn5pICCk5pvAF lIgrCPGACsMTxlFIaAkFpbjUSMqSov1OxeMxhBVOVlBIDJGR0MnQFdOH2EJb 3CKHEXeQm+bmOSvHFz+9QPdoUVKg+VwTD9igEgAB1yUsVnYf3YlCbRUQMAVh uSloQDBwfwy+j0WzhaEWBqwzYjlBG7/w3HIQlvmFjvbVIQAMDoJyvATKUcKK MTglHhNJhitzw5xlo+uh+FZnzbU1fsp5Kv6m/aKLsca6Y4qrJ6bE9bhdR2um 0Zo1SNCLGUpYeTaHc3o6l8ukhWK7I9rDaV4c6Q6APGl6MipwFilUUvSMou8u Fq1eKdFpAfs3Zog+n5ckE1Ymsjud1iIYo+C6HoV1RB3EwT9waGKFrEAcgKZf o3nA5DPq9q4tyQvVFhq0QF6oh76D2WoNnmtcuMvLlKfSjjjQHNvtmygFQbEP /vfe/tev4n7ZH2vpDwjQvhoVIDdVljRpCkt3QV+mRzRCmVpkpVrUWjCbibXd mtn51uihd44MH/5o6u2pNn8nxcjdje3vfWP/pc06Rn975MVtDagwpAXOh0/X XyvqI9OnDx+bxLbJiayPDUZ+HeW7hSfGv3ik9tWj730q9uIBgDiAu70d/jZA 9EuwVROwVVX8O8Pl+aH/F5kz/rcy1kZUcHaozYQQFE3nzwlYUCVBECUhmMqZ JZTBmb58JpPLC6nSEC1xbDlaJmW1Wi4PVYVSI0c47WozRjRChNPf18wQasL8 OWwv7lXjvb2JuKCuLdJSFQ3iQbUwOFgsCGtjcgRhzPA5JZVSRSWYUFS1kRlK a9e2Q6DIR+KFSLxqhKOF16szVfJK9WqVVM+TS0boQU9EktyRfmKQaWIZJlcI YckomSAW8ia5hNajTfjPsL5mZqOSR9dYLZk5km5siSYF0xPS0920iCtHZdXb vS/3+66VP8NkgOpTYHkyID0M6yv7DTgyIETnOr1wgYOazR1YcudX4wl40yjH 3NJdlZVx41sLfzTpuv5Xc+0LNFjcMhmEaHsjQT56i1YKo63P8NG9RK9HlkcO k8gfwWdb7z/zt57DzF2HAPJPmLko+ouhZaxpW8wldog+sSsTzkTW2fKufl9/ Vzlcjjxmq7oMn9H1cHhYGI50Maw5OS6dc7lYYH4+at7DOgqHo0jgG17ICczf 8EIBD733dOnuri6PWwhEFd6j8AFCFAerMIyDhlD3MIc5Xpy6Glj0QBR1AJui Pvf/QLkaWiv4WmqtdrNMvtug5oVxc3vF+qxp8l+lp3XdUrOWmknZ9+fAvjPQ NwXdMJ593vKC94DvMJmyvOKd9P3H72CI0+fsshwjJ9p+1vZ37rrvut9u5XZz b3Bv+Kw5hyLGihCwRD4a/iAQEKJtrMfptIpR4gE2DXRTKjU63GVkuLjyLMIH 4fcFe9ndnRGHo40+aKMPDrbhNr7nxAX8flPuwMJRjr1m+sbmpWTSLfQDuHW1 6CRzfmLv8vvgdNtYYF3W3ua1dGuYswMH+4lHa5hDunpqshmgoKUNznQ3RM7i 9+fNvLSis5aZaz8YPTdOhQ0/+r1NWzYOPFk/RweW7G40dyF4dHbbLqyb43tj w4beyJHN5MPFNmO0AxjxKHR5iHzBqAW0gB6sxPPF/IC+QXqy8ow0Xvma9Gxl 0pisHDWOV2Yqlypv570s0vMP5rcVrKys6g8VKsWt2cvl3xu/qThCcig7Jo9l Xy3MaD/V/yHf0m7p7bkhhLKtaVaXTXMnCuNwXoSBFgU+2U9LflGb1ki/hjVt Oqtp/VkhmUWNWe9ENmzLLxt3Jxiexrj3xeh9RGGVqNKvWBRVpnoj9MlSpWDo 1vKQnEUeFJFknyTJSMrKVhH3K8mYkuzr47OyLMK+wMIEyOCAsq5cdjg4xWAc 6Dw5cFaSAkzuPN5+ThwayqIhJXcR/wTJ5IDRbYxkd2b3Zi0oa2RHspbZ7Dx4 4srAJbwdiaiMdcO9XhLp3iEOz9PVq266iB9fCiHUP4F14rmbwYUAXPcF527O IUq6Qd7k3rlAOThn0vJCyQwoXKnxrynrh9IqUKXBIyNSgmkOD8DB5+Do1uDw 9ZaRanLlIdtzlxH9hoBjcXs/qWXuz9h3fDRT23df0m7r5EqlX9pJ9XHgbfn2 7Bk+XqBJ7jS8wp+wg9KEGVHvRdlSi6DxCsbGfhqOWjei9OCtx+mE108ueW28 k1aOk/VP0dd/05Jczz3zcjm+c4xWfvTts4fwH+qTdxPNwn+JbZHBdyWf31+Z px/CY+8mTQcI27EdtkNC48YghKQiDUnUggO3hCAkfdDMREWaiYjiDNGYwzKY CYKbjng9vPzjr5vU0UibH9bAHQNpzN3pge9yxtArEK57pZBGI/D7JE0t7f84 LxvYJs4zjr/v+RyfP5I7353ts893/r6Lcxd/xN8mjS2hJGtYKYwCAeYFaYx1 GxJzRVWKhLa1bCztEJsomhBbmxVogYmWJSoKdAxU0fK1FSagXdVKtFWaARIf m1hUKNh77xxSSMuEdnGe556zE+nOz/95fv9bS7WbPXZMfwqf3RmocLa2qGrf mTZUIeDQ/RxG95PH5HLxU2FcxHpAX/4wOA3OwH94/y5MgAk4IVgiQBZkUcr3 ehd6d4r7xbPgLDwrXIIXhOZ+Edp05TEvkZAkfSRGRhmSpBnB5tPRhgLBOUEs GJWCwYgk+OI63Fg7UtmOjkxWiFuNek2kcIIw4oKVdzT+GQdJzsdhXJTlOAcr 8LHWhuKVOQqmRGVFaZWF2Gj9+bJXgMDvFQQRYizUopgHQBREFl1CahXKVjEi +Xyi6BUkqNV9Xi+fz2EGh8RjsbicleJxq9WGM5KNkOR8XhBFIZcV5TI4BX3y gLxSfl0+JBvlshxNy2U6Q8ob5dPyx/I1dG0U+6TsEHxwAGIb4SmIQYh7vTiG 4cIo9nTZyfgNOIuLjzKnmPPMVQZn3IW3Jj3rI5qIPW7qMmcvxBuvShWVFUWp ctS4B+2RxlXNQN1uaFxLJW086EVD+ahz1htjyvq1R9YTMU4xrqWOKNz90ar6 //FZVd/rTyCmr8IQ/Ao0TUEVhPfjKnsIe3Fp7SC1VV88J7TYm9Hiu7ALFt7V mapHl/FJkUfSpeEAdn46CdxWsbP34pThkqbKGOrin6EuVuHKspPAoNnr9mJH MWiFTTwPnTxutetN1hKlW1rsSLERpdFMCLqjamurogoRC65/xJQymEy4ASE/ q9cuBWmFRWIOi1odDKSEQEAUhDCPQRqKXp5F3QR5wChSJCJK4TBaTGv28ayE lO9Fp2ULtFoskBC8IkTmrMwDoJYjGVJ9VB1QV6ob1fNqk+qJYQaR5rWPM/QA s5LZyFxjcJKBjLu9+KMpU1dFfIaQrFOjDQ01xhuw1jkJa536S/d0k1uAhASa +JC1e1Gg+BLUJ//aI9wDstz/hHJ9fAdC9x3gKTh9lOPYitubG7P6pBZ79Fn9 EbZiqzadGkzSi7tuPXTvt/7FPw1vf8mBGACIAwG+BzQDN7xVrh8n33Zj9Lhz nLtB3aCvO6+7m446P6A+oN9zvs9dpC7SJg/loR1OJ4cfpW+SE4zh9+bNtu3Y LuMu83bbiaYTBPEs9ivjBuKntkFm0PECttVI5JpyRMrcaStSKTrlLHJEG6bY 4lSEjjjj3AzM9GfyEDVMDzPDjr3OQ9wBN7GHfI3aQb/MbHNsd77O7XYTC5m5 zgr3ErWZ2eT8HbfFTXQz3Y5uZx/3TfdicjH1LZqIckUyy+QcBW422Ud104S1 yULwTTwRJWVGdpiaHG6IEwzZjAOTC0GqPWIxtEQAoBBJJMAQMIKn2IjJPeKZ uUYfKY9cvl25rLGn1gKugquAFFvVj4p2IIysoJ54w2nx2kv0aH1iBGVqtP75 CM2VnCiXW1i+5OScQonTghkt6xHSrb11ScvG0fp7U7WV1uq3tGyezIyWESg7 tL9r5OvlFgTNDn8z3cWIKMDR+oURxl1qnsyYlilHyTaZudH6vxFrM12wBQVb UDtTvnI0AEZZBCqQxRATAzsFUAvSpjQWCmIOFhU0Dn55dfBk7STMnBy8Mjj/ ysE/fQFNOw5ewXp21j4ZgotgCyRh/1Dt011/gz214x9dqr0Pu7XeGkGTZAma JCHQDq6VOdyD8yYR+Bie9kX4DN/N71csbbQ8Wr9Spp70rPNgMtFGbPJs9mHT efbr3VhyCk9V3YuFgBihyXApjIXDHLJk0QiJANgTb0eISLljE09Pib8BDBNo cQDdXVSArvBwGT37cNlMomAlS9qD0cgQ/T64XcvnQTWfh9Xptm0aY5jQTygS 6ECuIy2FAnBvw8TV+Lu468KeD3s7Zs0pLqjdgLbKtlm7n6mdgx/XVt2r6L8O zn0mkvcwj81b3fXdF7Xn/njdjj+ONB0DRXi8PLBe+UXiufRvlS3pna2vtG2P EfQPkz9IYRbZoPAyq7DtEuhLzEzPzD5cmFWshBdHFsiVxLzU/PTC3JLCt4vL lGXJ76eX5l5LbEsP5Q4m9qWG03tz+4vvKO8kgglbDnX7vqIlQYS10+vDSSKl NesixSYT0fZoIdNaaiu2FwsPh3uVDeHn5WeVdbF1icHs1vBWeZPy69jmxJbs DvCKcka5WLiZmEhPZG8WvdlcoYinUwmDKgUhApBQkA0hu7EcaRQN/gXD1uWm UThYZgwRV14C5o5I1BU1hMwty1UwCivD8LJfWw9cJh4BKqX61YQ6pBrVpzIR yT0DKfxOG+gqpyZuj1FjCB3jaPSjjTB2B7RN9cPDZiqtLBpzf8ah6zoatKw9 8uVEQF/2nQNWQVXroZ5Qp5ssxZaJdElpRSGmTYisiEJaC1mWp0ppLWRF9Lks 62pBJQpZ1tmMzlBQWCR4OE2li2DFaELM6tKdqr4k9A4KIhc2eZJJ53ISltH0 q6mYuUvB2BM/npftn98ZKPZ6bbTL4ujLZ9te6E5+43sPsWY753rz1atI3Ejg tdMfTsk78Jjd74rTLoa0cn531ma3GzmWpdZHYd8FTfC1nbV/1f5TexVbdrfs MdCPVP8XpPp2kIN/2A8C9SPl2f5Al8K6uK4lmeXJJ5MGk1JM9iUXe/qTq/yr 1NWZDZkdbbuTp6RzvjP+89K59quSnZTMyW5fT2C1+nPfc+pvfC/7/qge8x8P jCvN4pv1z4EZkF87Ie41sDO+nBA+f5sSaAq2qyFfDGQn3Wg7EOMxTfQxTe+x GIGMrtTWZkbDw3cAWwPasaFyM0A3IlKpiBdIUELt9cZPvBu9iEdgK3ovCOcE h4Kng9eCeFDjYdJepmCcukZhlDvft2Kq1XQzWqmOVcYqlIYdndTE5Une6NSs KBrEd0woKumC3mQPSBaoE/Ng1l563qy94bmL+4d9Nv+B/3JerbFNXXf8nnN9 Hd/Ejq/t+7R9r585sePm5UfqDhrfxEBfoMBgatNhErap/dJh8mGjTEXQFdJS ugVtmtaqFDatVUFVVwrdMKCmbGMqUz9AtW6dqNZ+GI2gIjyqoJaNOPufexMI MAlptu95/M899/r8n7/fzBRofuqdjLsgR6A+HchHu6HWzDorUxxEAD8r4GV3 oIwN8k3ssCV3PWF963aeeO2Vj7ftenTLT0w6W7/rjWr9yufrDq7Yt7H+AW6s P3hz2np/06N7Cr27vrQIoTJeWLX8ieKqFwF/HgZEIkL2WsR8Yrbdm1saGshV chvkUfnZ4PbQC/e81N/4QHRJH6Yusa9vb//flAnlitIQoocMqD21mU8h95jp excEVS8nMuju5mxXgu3Iez0M62vSyMKFeV9LuWmHo2NHa74lVmYdUHZifDNx Dd/dMmRUDWwEl4gtZjdJELOvmt6cHkvvSb+V5tLa4leOoAijzll02ZlJAIpW GZmeBmPChzIIal6gGpPUgPSyMKQ1hpTB0FRB4QMq2BSUajZOWgnEsVMSDazI imypO95qLxXsG0EKugfVt1pfS8j+3EZyfgVxv9m649WOpcOPvdH38ODEnz55 hqrVXjm6e/ehJYu7Xvxw9eq/vrnf0Rum1vm7EVRDq0bH1ma/mYv4wnrr82t2 frC9iy6djcDS6l/ufqL/cUMKJu6/f9vWccoLxiCuF1rV/Kdmm5d3FwQIu3g4 0pNI6GHs4goIwi6gyT1+v64l/EA8MISRVkPV3wuCz4BHwNCMCuHO8HD4ZNjh DZfCA+Gh8HqIprfCn4Vd4XMtlNCBPkemLH4GSdkqvkiYZIQrH1E8bnfzZ+D8 t7lwzGer7sYA7zxNzzb9FW1P1/dS9bBvUvU5eucToPo/qVejDfXtVp+Ac68E f3wKzt2F4keZMKSeyMzXByJC+AgMQ4D04htCZ5wT4S8iV/EV55XQ15H/RPkm 7HCiUFNkW+hlp9Ov0lQkMJIgYSmnSZKq6f62Lps0taP2NNPe3sXobb5GK4V5 0rzH08jrvnSCzu8juTj1Dj3dBZkpQdJplfgbid+HdcCx8ZiBUBVsg73MADPE sEwwqwUNl2uAH+Kr/GZ+jOd4rXse7wHaM8t67BEFuTcIz/9BZ638M1Kx0koR 2QoHjdsV6QZf8YmylTxu4THs9PnX1//2R/cZwWa3YbOWl8d/vHL74xa3tQWO 3un+ty995/0n8ThYzNNosdf+HX9cuvu7lsQmMwjAvF15MmjQDDcwDWoXs1R9 MDOs/0w4pV9Vr2Ya9zJ7dey2yGizIOQkQRAl3S3J8TYqggS/nmCGCGSYnCIO QtIZQtoyejzDNLH0BrXagLwNkYZqA/DaNG5oYLHehFFMo4sP6HpO1XVN1WOq ImGEDDggxLKaAQCjqKKiqIrcRuIaiYnEzZKmeCzmdjdhBrngH2dIl7pc3a9e Uh1gql6zScGkUxqS3pNYCeYHZxSkHEHPMDI+dfCuxbSufG9bRpiaqEwBgoGr YsWKYBUU+9vZaQGWTcef7VAzFk91Xbfa5U6w4fwphNwdBLNmBo5q2TffY5mQ 2hCMi3L/S4pf+0F9sE8RPR5RQfeoAU9zQPk1GnWip3+lijBRUdHuTUcvL7nd Em+312T2i/lzmn2AqzleBdum8GUbn5mqpGJZ4ZwOIHapoOgkUTfmk1hK26WT Jo6FoBI66e4KmSurwWqoGq7qz8mjyjHumHhW5oeFYd+wfzjgOImRIAuKKZuK Q8UhxdAiupFKKz24R+5WluAlcp8yiL4tP6I8p+xV/oJPyKfhWAFqdp+wXEBC QRSEgKh7RCnWSqVGMppcn8RMUkguTx5LnkpyyZ2pZLI1pcdSjNtp3cJ7+QiP vfx7/Gf8RX4GAnUnx/NOTndzjmiQ3iLqQzrSC5quBzU9qqkMHDhaq//bzEsO NipyDochiSLUkBS4mKqJqqphhFlkqAqMFcxixBqSDHfImCg1/EPTUAmDECsR 1uFqJbEg/UWjAeJxEo8bo3F0F8NAhaswGii9YmZPaiiiIc1sK2hmvievbemE QSKZ10zSmteI6U1FUkOpzamx1J7UydTFlCt1FG8EEKgA/FZk2CabnXDBVtkM FrzyRRnLNfTIO9gkBUBsGw9wUeldeJ3IsPBqB2o3pYiIjolIJAKHGG6AG+NO cg7uXVhNM4vRKvhz1PGhRkyCi17QhDNBYTozPUJhsjqhCdMjQXXSAs0jlTOw qgoXmOv5DTo6hiCZnJ6k0eHaJByHXr0xoL0dL/C8+QFQuSVkKiN3FNgx89B+ AsCsDYDZIbwFB5WgHJyFYA/tD85CtsMMnjl/ALuU2sylt2VhDqIxlRFUqQzG EiybYG/Om4lAIBcI3CJjP9564dzWpyJW6izSCna8+q+nz33/z3YupYIIW7r2 B0fvXNa8Fmc7r33Ifjoviy6HSNsCkVbGOfMX/gL6RqyYKJRN94A80NFXXOEe kisdK4pr3evkdR1ri7s7dhZfj9f8tVgtXyuf8J+IncifKP+DOZ+/WJosf8Vc RpeFuAqPzSJ/2ecvJ4R4Qojlc1kUy+fLfr/fiOXFWCyfTQh+wUBZEaEsBpwt EC9pDBA/iZEoCfaTMsmTAlnQTbIkWsNPmmHA6Y2uoGsBbsMX8yhPyuVSsVhK JDo6WssUmvtLfZxAEOLcbk7X3bKsIyr2eblOrgR+NcRxXHBxliRA+rvWx3R4 E11vHICYq+qsri06igikZhVJdt3Ulk2pkGo1aGn11JadUcHQPuunUZPTRUum weS6sDILDC2wODm/oQ5IKaMhmFq2JJhKOzRiqiTE/UZJaPbI0LjFOSo4OJvJ Ycdhxj/z0UHY469BD9usHnZCf/YgbLbmsJ/2B25+hBc+ViK3npObuWwGmpWS z+sLl3ycRBtBKiF4jhkAUUyFxTJtBNUr2s+HPgv9Ieh9zcDp0HWSSl+B0C1g 7BZBDwhmvXaOV9wmwC+hsSh12fqXtB2tv1bfN2rNp4ygIObQ8/XnLB//nHr0 GrQI9a+howkqi+KHp6fnAB0a/y/h1QPbxHWH37vn/+f4/vjOzl0S22fHf+Jk MXFISEpWu6xbh1gWxmhaQC4toQzoqsTtVhqQ1kjr1FBNA1Gga8sGKqCpQYJC GjCQjhbxTwpSSweDolSkVdZ0DEsIpVAVYu/3zk4IbN0iv/M739Pd5X2/7/t9 X25OYe5wmUAYxybrPJfCO6fVfAfU/Eqo+Tjedhj582P9bm/Cn8mPJRucSuKg H1sD1rgSUOKrAqvipsXiE66lFYs1g0Vb7t/s3+033NK+CTAmzRqQNSVgsHK6 jwODXIimqo+el1RUaxUVPq1C1fzVdfBLP1+LazPM8SQbr62ti1dUx9FkiG0o hljFeYTZBS0f1ogulxN8tShEK+ma+nB1IByuDFREA34/5v0CIoo1HnDWhaor Q9VRXyiqaqLoDKkKNeGB0Pw4jmeYYwOg6iGBh1mS00JIbBM3iERU6qf7w9bs OLRO6imK9lvXS/qBQ8tkopkmdF/fI3v/YRwt9zrH716plyVKQ5JVQBaDIIv9 qFQobQIlTKXh9/8WVv9/Lb02ZfwV7+Xchjg9G6OHn+MHcP2CqbqJM3zu4am6 GWRqp0oljD+dKhWolQsIkRzUCnTGZHM3weJT1qfkJ11dtjTb5TJlyFfMVxyx MDA4L3FzESZGmpgEaSMvkTXcC/x6ppdwBQfAWtuLDV/RrUQUslMBZp5jiGAw ehwljAjRCVu4pK+BS1bAUMpnciFDhlmbDCgFz9+JDEgtE0L2h3wYt+FO/BK+ jg1YUQFVHdE0JFUqWS2tE7Q16taIDgGgLAKAKAD3nOidS57qT1z+xn7GQbEA jFIY1GOASAqX4DP5L/qL34fcjgRDOG9LQQlSmtaAGzR5MovJWNaEQuoluTsX mb6Jc6Ww38yFiXbmZbq7a8n75lt67pq35s4cKw7SOew4yk3gxw1jSEA/SoYE 1nEDoTgLifMG9AoLa+MtIsKVVt42wzbfRmyK+PQ7pcWkQ+NNYjIpoqnE6Jyq I6HYOhee1fVlBOu6Y9j07TH6Qsar9AXveYMHk77734BnRautEidg3eSz70w+ +/4nG6fij1CsYUyG9O7sy43Q733Gh6AAS7/VMynccZQZIf805OHJv03Wr7S8 aOm1ECtrNbNLeASeE1nNVta8hEESw0D+gTljIhwPXwa79UOUNB0hBNnBwMk+ 9C7BCdJJNhBCVCeniKcH6auO8l8Cu5SY2jpRCl4qK+j8dje/4ijaI0fRHlF6 Yqzvlj+MsakQ8JgVOC0qouTKfZL7RJZgasjn6twOsVTFPbmeMkV06KxpnfjI qOYCqASVvGdegllDLIZiWbinNt3CGL64vVMHIOVVlImP7io0HiQTRDTWwf+o Je3IzJufNHeZe8xG8yC+gThwjreQPZaFW6bgnm538TXD+r3jTMk1F1FEzn1N gaOx4qxiZEVFOgtcU8CsbsxfMbSTHhRBjXhZ8md95l3evloSMge9sw2/cq5R XyjrkX6nbpK2qHvMO6Rd6t7YgHnQsV96Tz3sGXKM18k2rOAoJm8Km1VmXe2r tW/V9jn21J6su1D3jzpLxJ9h9ibVYEwLBv2aPyJWON1VjRpqrMKk3m6taczg keRi3BtBtnqNsFYN1fA1XTWkpmq23R6RtvFahZleKEE+n5aErs5pOKYltDZt qbZd26cd065oFk1tcm+YoZno9U7TdtMx0xWTwaTMih69K+y4unXiS6oDaVxd KM9sIpsFwmdjKZglWsazIOxFfW8Wm4Xm++S5qMxUEI4hc/4bNDN/HTXAUPLj /aKl1tKk/y0C2wpLWVgqwdKjyANLnPkP6JV0CmShwVQkQdzlbpgZCvjNxWJq nKWrwyQ7SUi/Jkuu+njjLPL4oY9f7xu5+EBvW0/Psv0+K++2OTq2zd9+oIvq xMnZL8899Iufrnnu2aMd3W++0bn2IMf3/nBFs61UFGycGv1Tx8R5yin8tsC3 zV7wk5WPLUWA/fcA+8eA2eUogiv300i3N8nyMT3O+UvKXfTcqcRkRXHJ/nKP mWDWF7Kn2AzuGAhpVp8GrrIjGSXl0BWAihUaBzvPmNRoYCGy+2QpyVkTnNQp XZFALque+MN0OCgIoxSQ1iw1iS00rkCXBRM5ShGA8T96JeywvQhGcuFqK57B zqh8JNIeWR55x7+78hA+zA56DoZPGIcs5w3DllHjVYvgMtThuPH77A9wGzvX 044fNabMKXY5XmH8JftrZp1tnafbu95zxPu+fyDoAg94/QDLRzL5q/s9Loor BS+9CAuAEZIlBPSSJ5vtpKphimYRMBz948UMNuVuDQy/pgeQdJoeyZ8vb9p0 mQ7D2MTfTuW+Pn4id/3Ubtp1DQ9Sub1zZvtnn22HAaqxB9CZB8yMousDmo3l EnImfzNZA5PT8nDw0/CId0T7V/Bq2Fwph10P+1qDreFHfang4vBqbrWyKrhe sbsy+RvJ553SIme7/ExwRfimajSpCi+rVXyVGFRf5d/it5ZuUXfLu2FtICQK nCKVYUQsDqXczZUgIrCoV9CqzGy/wVT+tlsLsI7ZlkU7vHij9wMv41VrJC1E Qd4RwlzIG9oYIiGl+sQ0nIFtrXr7TbeOA85ZSrXsKJVYAFiXWoo1PQFQ06mm Juiw4KlxgSCybKLkCIfubmyBJBIlDWqYierj5CRtGdjtFNyMad/mo8f/3rds aIHMC+6nd54Zyt3G7NCHpKScsuSvXtVd9kjP1dd3nv/xfMktVM95BpPTQ9hO ufAb2O09wAUP7PfnB+dGV0YZ6kj3Jh3IiI0x3ZT6LZ5S+hNfFnOXlZW6/R6b yx+xpmxAg/6IBvsNdPD5NcmD7KxkRqD9bq/V14MxhzFWa4JaD4/5DP59f3W0 p7BJ/M10cX8mWsBqUiqA5cyOwmec8uA7SJCiLJj3rqtIgn6HRbRQibnLi8Mo mr92wCeFj4BWhcDVByyVypRGTZnJgK5HhXASd0+WsnNaKRuYgsRs+vy5c93d 554f3qqfd13asvXSpa1bLhnGbj9LteUvZ7pH1rx4Ze0ZfLlQyTuGh3fQSmZQ D+xtDCpZQT70cXKVzfWGzMSZOcwCpoM5xZz6N99lH9vEecfx5zm/nM+vd+ez 47MvvvOdL8RvsROfkxAHfCxK0FhZaAUilAAD2nUCOsIKQ6t4SUQl1A1WqoAq qiEidas2ARtLAjVhU6YJNl5K6TTQSlUpSIP9M9JRBqxqiLPnOSdpEkTtyL/n njxx7rnn9/38vj/vFf5T9lP+s9A/A3fFr/wuXogLGtEYXhJ6TuwMvShuDW0R 94QOhI4KR8MfWDw7/EPCBdMF9rJwOWy1XWSCkoRqJFMZqSDNEcbhXB7M9wHY hRRUhHf1ClnKw3wfB7dyw9x1hCIzx0fiJ2ek6FLUkqIDGL1j1AT0gLHtH50F mX4/Z0VIGAxxYpgoTtybRj0y5zDin5WY05kJSCNvSXPqya/9d3+z9qNFXjcd oDOPej4pjUDPpY+gfSV/s7f3RhAee++vC7MenmHoupUwdPkDRI7/9vzstycP YvfwD9SfvYgyUwNXdVV3LrN0W/Y5e2r7nP3OwcSfEzcS9gqbh3JeommZ0mpA LUQNlvksAHINMmlFqOtBiDI3Wi0DdU0sUgkAK/E1qYCVstlllIu6vR4koRS8 bqTmEd2V9um+Lt/HPrOPz+04Bz8EZUO5FHlKnKP/MjqjZmyjx+8Y1RLM8phr Zlq+lp/o7ngihA40KYJEKCZCkICJnh6IMjAyp52Z4qmh/Qr/pIsxEtE3uZZI Q4Oj41vx59Wz+PPsyZ/v3J/1BTib950f/HAnfNMArWt88VQ/Q5zD+bh30y/8 Nj/LVpgqtrTuNawtyszdpT3mPSgz54EsDOu1rVwXR3wW+bt6L3JHHYs8jFo3 x15NbUxvzL7u2hXblj0Q684ei72dPRHryw6F3YQN02CDAQjKYrFRMgHCidqA RFdI6Czd4d7aiGRPREBvFWnLE1ZohdWVEpTsdprqo05TJg/VTq2jfkddpyxU MFcT6VYOKX3KacU8rFxXbiv3FbPCa/H1s5LVoEXzUnoUHQY22YU7GKnY6NOj s4mxZk6pPA9CEw9BcOJhf9xWV5z4sj9sA0V0lbRlcIg5s3gy5U+jstc441V2 LjA3hQyGI92EMnlcFTj1c5giRE5js3Uz0WHqKde+aKCrc+nnePjFkp3z/Ptv nhobO3Vz/9WDB69cOXjwKnHpXYMY55Z/K7m2GnneAHzu2/FFT85BeOYMBKXv HP7wWu/ha9eQFlYgLbyKtNAIf6SnjgbHJMIMffAl6w7rIXiY6IO/JE7DAcL+ K+v75KDlDPkX8hNyJEgGbUyFwW0PJ3IE1xnguIqAzMTShuFJdmaSyXRGjtH2 Mu9d0NVJuVx2SqbL/tWhdk7618Y6fK3k0rW5XF2t3AilmBAxx6qr0XE3AjNJ 222UxI8EIKoT7+mOJhCRaocz1zNEpgj/PTB/8fop6mMt0YaiJpGP36PMM4E/ l/7f8KvfW4mW5Yj/cOJPA6GohrzM7X4mqAHUlhqCpIMhC2lVQxZehEFSKEsS aRJlCjtdPKwTD89ITpErux/Uz+IcYHCR8H/tUaelW/ax5FPzU87ohWW9qze8 2bkWNTZi6T+4fKzdt6NzUXrLOqPzNFJjnaFs5IvGVi5ufat9/H/T+jWtfj0l 7Ry/NzVRtkpIvX9E2eC3MMCEHOxePS7zdbzOv8Bv5Lfzb/Ck10V3cMjHWp1U h8UiO/0Cf8SHfKzpIlGEh88KVpfTDuB5uA79PYHaELfZbJF87Rzk+Mrn95ah h10qPW6cUnPh8Sg9u6X9mnNIHj4l553DtMjUAyAO7doLl+B9jweMhnfJo3Ao KFqYW7dKzz95MINUyMtgLg2W9pgajZ1VguN6ggYIzgRtWu1ZJSB3J2z3dINu 2E10m4543N+1vWU7bjshDAkWwRYaQhIXkJotDlsRnjprNsuO8oZ1t8MaXM5L rNft7w0DZN3X6QxBmExh0emSKivbzdDMh4fgGfg3MLV5tHUGF0QUaVQem8fv FB6PT28aILvWiAog3vn0jjkrOb1/S119jhjZ1VNyhYO8SCzu6FiwvPTIeADU 5jfw7sefGMrfuPlQSjSEf+AVpPJhdK69SOU5ongOxFAa+12FWBFFzmlEvZ11 FF7xvu8lLmgwzsXVmlhcq87NjxbUBbGCtonbpDi+74WKt95LJLj22C31lnZP vaeNqWOarUlt0jZFN+VOcCcUazSnKKCMccc0wwUs+kEgQlHE/9RJF3DUaeS8 xU5FFGVFFhSQyhq0yGTatEwmq8kpLcc4jC9yp+1ut8MuMyGf0UF5AmKACASO coGAj5NDnDdZhecXx2KdaixWpcpJNapGo1JO43I5TeG8rFcCCgeAAry5KGdR oJwXBF8+ZK3KJ7P5VCqZJBx5lgG2PCTsXBHlLrVVgcq7anRFbgj2ARXNuLq0 bo2QtIz2Pc2kYRpVNnhR7UfVp4vqpgiakqgMGuA6ZKX4+vPwGOgGAfjSZKFp LhtSPBx9OIoCsu/No+inTCoaFR0UDAu/31yTaOlE0PBO3BgINxe8RRSFhnLk 68qxImXEfq66gEiEXqvgfsvuC/vdNYGEZTd9IQBs0xT7Io2YNvPyKeA9ey1C 2VPLSTfd3DyFRe/E7YFgVOMQFgc8jObFeEQR3xTiI5zpoBXkoDmbOjTxAGgT j8sg3LYG2z60Aq1aNrnqywGV16QyJ7cB3MAkIDO3PcwycHI0CQkFwjm8hPAP M5rFi/DlhKEVFwbH+lIRHl+PR6X7eDZfegf+uPTTGa3jVzCJ8YHHpc9Lq6ag Al9DijqPFMUhRQXAGl3b4HvNt8+HzIezA3tG5BI7sENkA74jDCMHADKGAEoM TbfTw7SJ5vmZNMQg/AYKPpOAb8/m3wPMv6nWYQbU0b360L0OI0/WRsT1Zk+D p9E939PkafYs8OieFk8rxVY5652Dof6keR6sh8QKYQO5QdhObhcs9WSd0Eq2 CitIS8bWsMDQ50gTbGpb2NS0YKHc4PPgqbDEwmXsx+xt9j5rBizN6qyJbXOz rMct+1TRMApApmVCbgvLshiW1fpMeTJLZ4lsWzqbzaTl+jYdT7480gJb2got LXpBTqWt4aqaVHWlYIVkvEHPgzZrPGIKRijKRDbU16uqz+5y/5/0soFt4jzj +Pve2XfOOfHn2c756+w4seM43zjEqY19CSF0ApLBimhgLh0l1QJ0IcA6DVCb bSofokWkrIWIMmWCtupIaRvIyBgbjKUF1GpBIyBBVQgo7Sqt6VIpqqYV23ve OyeBdKBKS3TP+exLcsr/eZ7/7++xWSWxptLaZaWsd/0utyfgJ9f+Lj/lvxtH FZ5EXMqzJlD8bHw4TseFhSVvK/99HJLdaDIZik2fQA0yjwr9wXCScSRMbqpD D6CFh14lOx8EEwzZwjJMzIaKLFV4ioP5AperUmuLgqqAiNWMwNlEXKwuEXF+ rp1QBmCGIUZIA1gjmQTccGQnrZ5DXOZLpIKDzdyAv3UD4OXKFHviTnm5sOQJ 7HFmUDmTJ+mHs/wEOGm2EDSxySl2BlB8MpnMgIlvNqnMHtLP12+oX+ONbH5k 1dyFC0mnHmqeU/50fZP8sqWqrHTefPntO6Qod9Brlm9e0NS0ILp4ZWqAdDN1 QHpsQVvqivy6e/4KV3CtcjETRqDLN0CXr4Auj+CdUu1V5qqGGmKGNNQRTT/T r6E72S6Weopdq1nroA85XmeobeIJfJKineI6kUJYRVFumFeFaS2ihbI0CRZL vlBgms20iiXpkA7rmrKupDCtARUZiqhZYJtX06SAbXU0wuDTeBR58FOS2eVV scC4JpORy+E89lsCFoihGGS83VfZC3grELadQaYs2SrNmZoEs/guJPv/cS3v cKo1rIbRUIxTDQ3n0LgUti2R2Xaq2fpFHn705nsOXmmvTgBbOJJAcHOzwfNb 3XF/F30Lb1c8vrf1yZbIKrkfbpM11/TLZ36wtfNeus32yvOtjUH3nu+l/jVD t63b5r+Q+mpWgwADdmduqWLQIVpkw49KEZNVZeVtVvoSvqS9Sn2s/oS9qmXW s+1Gqo1qU7Vr2rl1eRuMbeanbRqLl9Z7c2htDpvrRWRe9EJCPuts8lnKs9S8 i7ABVaInATEHqZ1SvsnLSHAbI8E9HcxZZpgZZSYYNTOI75zIhxU0lVvA3MZT yU4SGYAIEmTvyCFTOx0yrUCgfGbypIHX8bbTmTvguHdO5LmN7pk8mSQ2SsZa 0lp5gyPBk2IczHwNsOROaHkoGg4KSwq8/4XkAuJjea0JPoRi5Y22OE+Kmdfz 5I4hyQQvOA5gTUMKRevFGA4pqDHz1Yp55CtANWE0pxqx90RVVSw9fn4o/SU2 DZ3H5uW3e3tvkwO/cy49gY1nz2FjeuIvv7l56/Bro7dAm7L0c/L0FqEqXCYl qjh9XQCOmrKleDmVzFuLQRNmfd4WvK1kU7n2r8w57jp7PedG4HrVZ8ynnEag S+lt7It0D91HM1anPLJChUsQnK4Cq+JSWtPF+yypvqAi60Y4L1ihj1qcUehU XYVXywW9eL+KRWK0iPF79Rqssc8pRTqPW+9qca12dbhULqH6ib2KglMTGmsG LZeAguOxxBiMp+Ig4BzfKYBODsmaT5FSf3FuJckdZaB6CMIEJqpXZT55L+Cb 1lxWHJpGmTJ4dCJE4IEjdY80uGRR30+3/31zOvWn2y9+JI9Uxwwl0YevHOwZ Gek5MEKv6Vn1wy3DmwbSmVNphswTJAqbKioDUXv38OV93ZeHQbsu0O53oJ0P VeDFf0ChzNf9+rogab6Ivu44etNxvIhehlbb16Kf2Nd5N6Pt9mfLf4Vesu8o 7/G/Vnqg/C1/X+kb5cajPnwoeMxzLEgr+UGH1Hg6Qii7WWu5mF3LyhpeRtbw VDhA9kBZftREQF5X5nVyOZooxQS8aH8BW4iFHMHTxWE9N8pNcDRnryrxdon7 xF7xXVE1LI6KEyItCpUlXTOidi4ZJ5LCCVYurF4QNRVLyMA+S9aHb9n7hbXz 6HTmC1QBIFzEl8Ig9hfzoUFQNjhLWbIXcM20zc6WlZGHrnBOtfkeYem+98mu 3LhRptqNRM0P99w5k05h+s+je0YOHhwhB3Wphyj4zftTiuL/nMJ44PeZ9KLu 4eHu7suXwU2PgZuupH8G294i8dt1uDSnhVtn+rlpt+lV5rCZlROdpBUvZtOb w3KaOg5hR5JysqEsVETuaCluLiwuLiosCGl1fK4WNFGzediMeJ2BKyyKohDD JQxghpDFSCRzcHp2gqVYexniPYV63/d9Xb59vl7fhI/xCaWpvTOG2Gz4LAl2 uEQJTqBKKgaiEF0UYqure/Co3XfxUBME5YxZ5QbMvM5qck4RVHbqiCYF/oBf sTPv/549ijp6ZMGiXwhmTmf2hYXaQ2fxFhndn3HbBfHDQ6TSa0Z+vbzNbhZY s8/++LF0WBbHZLRRZ7J8M5y5RadhyhrxV9IuPuGsp0yLUStqb+zz9NX+NvKR +VLDTfM167X4xw3/NI+FP2+4a54M/7vBpDUzVnU8p0E0W6yWuKNhT8Er4T/q tSvMKyPtkXXRrZHnorsju6Ov8/08tzc6IFJLNaGgz18lzYuF7fl6HWvJrUPh 6kqfqnyuXpdLc4g2CtF587xG73xuENecpD3luHwQvyo5/XO9XhRll9d5W9yr 3R1u2m1vqnrMFw1avBJxSSv4odTaEcRBYcF8lmb8nFf7RHbkwPoSCUzkXTKJ Q+OG1Ji8UFOpcUQ0TkJJGesqyOiBwNNYbpM1N9XJwBKpbTB5nEXmIlvcIqKo o07EtR4opga4tCbyRWTLj897xBUDlrFHYxFxroj4eqOM0gSslIIVZ5MZZ0r9 k1E+zDnPZP6BbDC9jTC2cb4WpvdEgTXmjMxMLqTVzqRM1xHw2ByIHVEeSoQ4 br7BAldQGonFNvJgqo28Vp9wkt8D/xly0ykCFjwp91gsuHtYbrapbgvIzG0B eCHfShMGeIZ8WFOj3AqfkY1QEw74C/1yF1bT25U0Cz3FRJbtfKk52lS5453G H63+24ULz2sseWQZmASbr6fjaO/SZekLuxaP7D9Oh1zQqfvcdqsQC0TqQjWx YqfenO/b/uj6N9sKeJ3d/Ta0r6VcrExsbWyuqPCEfxzb8DxJnS8DbUVVL6NS dEkq/MaB8xx2B3WUG+DOc1e4MU79rG6H7hXdG7oPtNe0jE2DWbJBVHiTZNGo VKymABv4HItRbzCaeLWQGxzERySjO1pYyEYxRkyuV9Dyu1SD+C2JLy3V5Hj8 3g+Q0+D0ODc6zzrVQACfnigjQQ+aaAyWAxD02H8Zr9YYJ64rPOfOjNfj9eA7 D8/DjsfzAps1We96vWHprPC07oMS8VAbCqhZgRCFDWm0bFUkVJSS/MmikhYp hApof/AnpQIUEAuKgdBIgZC0SpNUitQfrRqENluqdgWNUEqVrrf3jr2wLBLK SD7n3nPvHdv3nO+c7zCtqjyIp6O2To4iaF4RJlG0IJNNdHZmhDyTyCbzDCW8 JBYoqR2CWYRLUb5d2rrqjtbNz8K9r+0CQvffi4rrwK7RddeWqiI2RPs/owdf /1XU/FBnsFsouKf/9O0tfbZoSinRWfWzXahMjXfpJnqP3yf3uJHdwhRIJk4m uPMaKmqQiaeEKAMny/FkUoi7KatVILOr9WzW0F2r4ND544wP/jdt33dstwBa SrWdgCkkdCPIW1YqLgQ4FVMdttO2GUbXaA8iLMaSHf+wAzoa8M/xImlCZonq IG1DyEVORfc4HbUipCK2Mu+XK4ez6TZMQEiTrT233cCywsX4hQon5Rk5prZu vgVDpQ3Dy0yawE8jZEieudEivqNOP43+Odcf+Wbp/Wk7TbMvnXpvT/jdiOO8 M7z6jycjN9yK2og9v65v2IWsyBk//86ON1vD/32mR50DMAGphq8QH3iwKew9 CSflUwprJ+xOO2mL9gI7ZZPOLYAB+SvKNrRdekZ9xjtNNp1Q5DAPCUwdkRYZ EYtlkRVXS6KIJTchya0iSv5tHvJPtwupxwhsRH5isadRLMYiV0CQTVNTzUgZ eQMZq9sVVlUkBGDLkkr6SNVjGFtRVUVRFRmYBK2mpKhmcZBgg4QQ8wK1ATvC TgUFZakmnZZY6SLsYBQQQjGUoUcekY/JH8mcfBlOk5hZCA6p5luJ3wkRmrwz NIXvELdT6hMBiPi/XB7ju0tjz18d6zaoMpj4PT//e6hM3D5nPm86f5nOe3so 7RlyPGg7rg01D/rmW9CZXzSPf4/6DQIq90N1IXS/HBkG86aZX8eK1H+RO7/V 6v+MticHZma4V4kni+yS8LWiVtBfYk9or+kNdEE7p8cZhNFe7YB2Wvud9onW 1OLH0Bn0IWLjXDxtcEa6iBZzxXRBH+AG0iu4Fen13Hp1Q3qDuaG4DZ7lhtPb 9e3m9uIebnf6sPZL/TfoJPfb9DH9PLrENdJn9DfMN4q/197V/6J9rP9Dm9BL nVpWK6GSVtLHzLHiKe2Sdo2/pv5Vuwk39bvoC+2uLolKFA0Yl1WMFdUV1bRT oKYlO31gfNsPffY2HR3zP/LZnf4LPsL+Wh/5/pGi7xeKrlNkkjF6YPEmYa9w QGBTQl5YI7C3BDgtvCV8Qg0gCEd4QYjxbpLn7EwUlblc2czlMqZrm8YhpOl2 Y2ZlWElzrK3yHGenVZWUoyIJOsMk8WgiQCzYhk7GOmIRsHZaIzs09BZcZ3T4 MYmm6+T603A99DjmKQD2KS5RCJxMYCuBGAuSjm2LYjI2YoBxxYQGvBwuYg6a YU+/GRZLVTNcWCAiZxFhZohISVUzCDcXoXgJjpMeRIf9oa6tQ2Hvsiqi+xDd h0IsVVEDjocib29OQ/qKyh1UA56QkbM9/VSNDyyrRtNSa0q+JtLkDZEm5yNN XkZ1KGt6lQ/T/Xv5Azxi+DU84i/DDWbxHMR8PjR0r3ZPTZh4YiiDp+lk2pg0 8fRQxphqLd6ZpIuMUYtSKWU5EZu9M4gn6GB6iiIs/jy+SrRxf0B1C3OlkvEI lJWHhoZGRx+2PWyM0Pfkmc5ZqluMm3EO3yc08COng2UL7GxKbeNQUfoUZZ6N 3Td8oTH8+mIKxr9T8eyh8a2NAzusbCY/SUlvEdBj0xMwB6HbkDr9L3R0Lkp/ QPLtDoLSOnolPJSX8jKSB6T1EsoygJm8uxmek0ecEW9z/QpcwR/IHzjve+9X 3q6+XU/FGYM57LJMBeS6JNc97HrYqfZVwKlWPCxjGyoqQKVal2XZdqqq41RR AEEqIIlSCeTACewg0xtUAj/wgq6vBfWgP6gGQViv1wYGap5X6O4u1Dby1QZ0 n7PrR2u4QSI6C8AnHUdLJnlGA03LwdEUP0JCI/ONClkf944W5Gifc7SwMZUr 59bkNuVGcnzO/HoikUl0xYLY5EXoIPHzIBGeMO8YUyYmgnJhc9WEQTw2RFiw ST4S9R5ZnchMGXiCGqmhrTOMgafIM0/wY92liJ3KM38YNys1uTHz8bj+ONWn xtUi1Z+Pyx7VN8YX6FT/7Wx2cHmbiLazPXlD6OEnyHm8hBzGITmJE+QYtsgZ bBHCi917p6JjKfK0Sv95yRBT1b7GzM2zRLeKf5T5R6Mf1jdzIxTkzppkdco1 sutGuJIMpISmL5dIyVxe/6ol14CK+tLHpBpQUV+axWRERF01UzWgwknk7OXV FBEV1cwux5R3VyjRJlpu63pj5uo4VpeTnu9qKJKBN0iEQwWUHnqYe2QcKtoD fR5A39zG7wlicBc9gAqAB2AS89AxeHGRmsrkm59RUOxvXmheigpY85aVSSmL 4MXmCV8h65/SerYVspDbSiH0KV314Z3mgQ6NEHbCIXVY1nyX8hRDFrUO0piu iEcrxNK8BVILVUktTlB1qPlT7jBBVQXeJGSCMWTDLYmO3g/90hox1L9Q/ut2 CsqTykp3GIal3cpud5+yz70gXVYuutfcP7sLCDTliixVlBansUSxfI/MZF3r BQusI65luW7W9Uq9ZMu57p6oN9TDzkp3d2/FLVUUAUUVjeePAM8jcAVgMmpU cvQeHfSyouuq4maUSpdPrc8VCmWvUPA9t8tzlUrF9lzV81yJwJcBlZEVBipk QZaAiVu8LFDqk82qQSZDEI0o9fGDrt6gVOpawFhrLbTTum7dpp1pdS0PDI95 m9/JX+dv8zHe7Ou6GGVxgsLVJDOP4kmS/mqDq6K0PIf8RJ2Dvmws3l3i29mY qEfl4i9LiGaneP7ujjgejA9GUHHawfSI8HowIPsc9MPmT0zr/+xXX2xTVRj/ nXu7trv03nbtersV1G2MgSuwIUw72MbKioN13crWOWBUgmYTUFOpjBkS/xse 1BBCfPDBaMQnDS+QaEyMiTEaNb4awrN/SIyDGBMn0dT6O/deAyQm40VfPOfm d853zvlOz3d+9+t3z5c04/YV6WTHxLSYcC7CP9yVjDRurC6+6PjeKucKFWBs jprxeic4j2sXXBeic/3xufSzRCyWkDH6KqBfozcl8OOgYRnMZkXQMrSPa0sw a9dhwCfzkUCXHgj49DbDdlwmG+sKx2KRcJttCS2qtZhWo2laZkizhG1qIWGF W5DgrbdlRcgQJd+2sLHdKBu6kWy2S+WQCDU3zT/nJiRugJRxMX+VmZ2XifQ2 uFkdkzuGOuGEFI0xjrFKk59xhiunZcRie/ki49XfIYpEu4RD5im3dEg7P4Zp kRJx0epld4HWHtEqOSbFPfql6itamsw0iSq0SnXJTe5y1f7jktIvc9qnFSl8 Abc88c/QXud3b/EG6gaJa4D/DSC4H6i3iRPEe8QSYJwDQt8DJnXCZ4CGASD6 FBC7BNj8t9psmziXZLvywE1YvBV3dvMetx5oPQ+s7gPavwU65oB1aaCTYynu sWEE6D4MbOLY5j+BHq5L7wJ6PwH6uO/AM8Ag7ctw3x0fAtnXgGHqjfwC5JnI jtG+8aiHV4FCkaBO4Wdggr9VfBmYug5Mc3zvWWAf7Z55Eyhx/wdPAQdfAh7i OR5+AZijHYepf7QDeJS2Pv4BUKYtx7j+SXJ2/DPgxGng5Bbgaeo9exl4PqKg oKCgoKCgoKCgoKCgoKCgoPD/BjQIyNIIXUoiSfixbNEBfwAwVoRMKxxpiMYa 43aiqTm5ctUdQAsV2td0rF13d2dq/YaNXd2b7tm8pefe+9K9W7f19Q9gMLNj KLvz/uFdu0dyo/mx8cKeicni1APTe/ftnzlQWn7z/6L4UGBtIUiG/DxRO7ai HzM4WatBnnA11rKfQalWq3134/HYvLnoy+4VxJy3TkectfAsiPNxZT+lTvmG fPUc6cR2T9Zo4RFP1jm+4Mk+ym97sp/y19nMaG44kxoqz1eOzFbGZhcKk/ni 7Q8iy6OOIodhtikMoYx5VLj1LOsx1gukaxJ5FDHB3iOcfQyHOHf76/4NTcle XYdow25O1ZGtCLowRZrfMi6QHdf3tStzuZ8+Onow3PdrsD7o0P3Omj2HZPv+ V+/+Vvvm9zN1yWCKXcm98z7+EmAAKmAzeAplbmRzdHJlYW0NZW5kb2JqDTE2 NyAwIG9iag08PCANL1R5cGUgL0V4dEdTdGF0ZSANL1NBIGZhbHNlIA0vU00g MC4wMiANL1RSMiAvRGVmYXVsdCANPj4gDWVuZG9iag0xNjggMCBvYmoNPDwg L04gMyAvQWx0ZXJuYXRlIC9EZXZpY2VSR0IgL0xlbmd0aCAyNTc1IC9GaWx0 ZXIgL0ZsYXRlRGVjb2RlID4+IA1zdHJlYW0NCkiJnJZ5VFN3Fsd/b8mekJWw w2MNW4CwBpA1bGGRHQRRCEkIARJCSNgFQUQFFEVEhKqVMtZtdEZPRZ0urmOt DtZ96tID9TDq6Di0FteOnRc4R51OZ6bT7x/v9zn3d+/v3d+9953zAKAnpaq1 1TALAI3WoM9KjMUWFRRipAkAAwogAhEAMnmtLi07IQfgksZLsFrcCfyLnl4H kGm9IkzKwDDw/4kt1+kNAEAZOAcolLVynDtxrqo36Ez2GZx5pZUmhlET6/EE cbY0sWqeved85jnaxAqNVoGzKWedQqMw8WmcV9cZlTgjqTh31amV9Thfxdml yqhR4/zcFKtRymoBQOkmu0EpL8fZD2e6PidLgvMCAMh01Ttc+g4blA0G06Uk 1bpGvVpVbsDc5R6YKDRUjCUp66uUBoMwQyavlOkVmKRao5NpGwGYv/OcOKba YniRg0WhwcFCfx/RO4X6r5u/UKbeztOTzLmeQfwLb20/51c9CoB4Fq/N+re2 0i0AjK8EwPLmW5vL+wAw8b4dvvjOffimeSk3GHRhvr719fU+aqXcx1TQN/qf Dr9A77zPx3Tcm/JgccoymbHKgJnqJq+uqjbqsVqdTK7EhD8d4l8d+PN5eGcp y5R6pRaPyMOnTK1V4e3WKtQGdbUWU2v/UxN/ZdhPND/XuLhjrwGv2AewLvIA 8rcLAOXSAFK0Dd+B3vQtlZIHMvA13+He/NzPCfr3U+E+06NWrZqLk2TlYHKj vm5+z/RZAgKgAibgAStgD5yBOxACfxACwkE0iAfJIB3kgAKwFMhBOdAAPagH LaAddIEesB5sAsNgOxgDu8F+cBCMg4/BCfBHcB58Ca6BW2ASTIOHYAY8Ba8g CCJBDIgLWUEOkCvkBflDYigSiodSoSyoACqBVJAWMkIt0AqoB+qHhqEd0G7o 99BR6AR0DroEfQVNQQ+g76CXMALTYR5sB7vBvrAYjoFT4Bx4CayCa+AmuBNe Bw/Bo/A++DB8Aj4PX4Mn4YfwLAIQGsJHHBEhIkYkSDpSiJQheqQV6UYGkVFk P3IMOYtcQSaRR8gLlIhyUQwVouFoEpqLytEatBXtRYfRXehh9DR6BZ1CZ9DX BAbBluBFCCNICYsIKkI9oYswSNhJ+IhwhnCNME14SiQS+UQBMYSYRCwgVhCb ib3ErcQDxOPES8S7xFkSiWRF8iJFkNJJMpKB1EXaQtpH+ox0mTRNek6mkR3I /uQEciFZS+4gD5L3kD8lXybfI7+isCiulDBKOkVBaaT0UcYoxygXKdOUV1Q2 VUCNoOZQK6jt1CHqfuoZ6m3qExqN5kQLpWXS1LTltCHa72if06ZoL+gcuidd Qi+iG+nr6B/Sj9O/oj9hMBhujGhGIcPAWMfYzTjF+Jrx3Ixr5mMmNVOYtZmN mB02u2z2mElhujJjmEuZTcxB5iHmReYjFoXlxpKwZKxW1gjrKOsGa5bNZYvY 6WwNu5e9h32OfZ9D4rhx4jkKTifnA84pzl0uwnXmSrhy7gruGPcMd5pH5Al4 Ul4Fr4f3W94Eb8acYx5onmfeYD5i/on5JB/hu/Gl/Cp+H/8g/zr/pYWdRYyF 0mKNxX6LyxbPLG0soy2Vlt2WByyvWb60wqzirSqtNliNW92xRq09rTOt6623 WZ+xfmTDswm3kdt02xy0uWkL23raZtk2235ge8F21s7eLtFOZ7fF7pTdI3u+ fbR9hf2A/af2Dxy4DpEOaocBh88c/oqZYzFYFTaEncZmHG0dkxyNjjscJxxf OQmccp06nA443XGmOoudy5wHnE86z7g4uKS5tLjsdbnpSnEVu5a7bnY96/rM TeCW77bKbdztvsBSIBU0CfYKbrsz3KPca9xH3a96ED3EHpUeWz2+9IQ9gzzL PUc8L3rBXsFeaq+tXpe8Cd6h3lrvUe8bQrowRlgn3Cuc8uH7pPp0+Iz7PPZ1 8S303eB71ve1X5Bfld+Y3y0RR5Qs6hAdE33n7+kv9x/xvxrACEgIaAs4EvBt oFegMnBb4J+DuEFpQauCTgb9IzgkWB+8P/hBiEtISch7ITfEPHGGuFf8eSgh NDa0LfTj0BdhwWGGsINhfw8XhleG7wm/v0CwQLlgbMHdCKcIWcSOiMlILLIk 8v3IySjHKFnUaNQ30c7Riuid0fdiPGIqYvbFPI71i9XHfhT7TBImWSY5HofE JcZ1x03Ec+Jz44fjv05wSlAl7E2YSQxKbE48nkRISknakHRDaieVS3dLZ5JD kpcln06hp2SnDKd8k+qZqk89lganJadtTLu90HWhduF4OkiXpm9Mv5MhyKjJ +EMmMTMjcyTzL1mirJass9nc7OLsPdlPc2Jz+nJu5brnGnNP5jHzivJ25z3L j8vvz59c5Lto2aLzBdYF6oIjhaTCvMKdhbOL4xdvWjxdFFTUVXR9iWBJw5Jz S62XVi39pJhZLCs+VEIoyS/ZU/KDLF02KpstlZa+Vzojl8g3yx8qohUDigfK CGW/8l5ZRFl/2X1VhGqj6kF5VPlg+SO1RD2s/rYiqWJ7xbPK9MoPK3+syq86 oCFrSjRHtRxtpfZ0tX11Q/UlnZeuSzdZE1azqWZGn6LfWQvVLqk9YuDhP1MX jO7Glcapusi6kbrn9Xn1hxrYDdqGC42ejWsa7zUlNP2mGW2WN59scWxpb5la FrNsRyvUWtp6ss25rbNtenni8l3t1PbK9j91+HX0d3y/In/FsU67zuWdd1cm rtzbZdal77qxKnzV9tXoavXqiTUBa7ased2t6P6ix69nsOeHXnnvF2tFa4fW /riubN1EX3DftvXE9dr11zdEbdjVz+5v6r+7MW3j4QFsoHvg+03Fm84NBg5u 30zdbNw8OZT6TwCkAVv+mLiZJJmQmfyaaJrVm0Kbr5wcnImc951kndKeQJ6u nx2fi5/6oGmg2KFHobaiJqKWowajdqPmpFakx6U4pammGqaLpv2nbqfgqFKo xKk3qamqHKqPqwKrdavprFys0K1ErbiuLa6hrxavi7AAsHWw6rFgsdayS7LC szizrrQltJy1E7WKtgG2ebbwt2i34LhZuNG5SrnCuju6tbsuu6e8IbybvRW9 j74KvoS+/796v/XAcMDswWfB48JfwtvDWMPUxFHEzsVLxcjGRsbDx0HHv8g9 yLzJOsm5yjjKt8s2y7bMNcy1zTXNtc42zrbPN8+40DnQutE80b7SP9LB00TT xtRJ1MvVTtXR1lXW2Ndc1+DYZNjo2WzZ8dp22vvbgNwF3IrdEN2W3hzeot8p 36/gNuC94UThzOJT4tvjY+Pr5HPk/OWE5g3mlucf56noMui86Ubp0Opb6uXr cOv77IbtEe2c7ijutO9A78zwWPDl8XLx//KM8xnzp/Q09ML1UPXe9m32+/eK +Bn4qPk4+cf6V/rn+3f8B/yY/Sn9uv5L/tz/bf//AgwA94Tz+wplbmRzdHJl YW0NZW5kb2JqDTEgMCBvYmoNPDwgDS9UeXBlIC9QYWdlIA0vUGFyZW50IDE1 MCAwIFIgDS9SZXNvdXJjZXMgMiAwIFIgDS9Db250ZW50cyAzIDAgUiANL01l ZGlhQm94IFsgMCAwIDYxMiA3OTIgXSANL0Nyb3BCb3ggWyAwIDAgNjEyIDc5 MiBdIA0vUm90YXRlIDAgDT4+IA1lbmRvYmoNMiAwIG9iag08PCANL1Byb2NT ZXQgWyAvUERGIC9UZXh0IF0gDS9Gb250IDw8IC9UVDIgMTYzIDAgUiA+PiAN L0V4dEdTdGF0ZSA8PCAvR1MxIDE2NyAwIFIgPj4gDS9Db2xvclNwYWNlIDw8 IC9DczYgMTY0IDAgUiA+PiANPj4gDWVuZG9iag0zIDAgb2JqDTw8IC9MZW5n dGggNzE5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+IA1zdHJlYW0NCkiJxJZt b6JAEMff8ykmuRfSy9ayiKK8Q8GGBNeebBPvjkvqA3pc6tIIXnvf/lbEgpW1 eDU5TBgDs7uz/9/MLF0q3VCqAga6kLBSV1RQ+G/3r9WsdzTQMa5rbaAr6aYX t2AWpx4KxDMm3dx6GJaxdM39FdwAOpMUoM+SvFQabBrVFwZu6O2OAb48i1gS sk0w968MuKK/uOM1ruMG1oFakgz7y7vvjob31CE2kO7Qux/4ch91iTXs9ZDr eDS9mcjrjfyrdB76uTC6cKmFVdRmO13FXC83q4Al8EnjIbHJKpjDw2MYJ5Ma ny1awAOPOt6sahDGELEAkj9PAUwS7qxyh+km2b6Io1UAUfIzWJdsJB+B+Yjv IVtEcL2Apa7DAG7dYdd0vR+vgb/qBA6DeDNdRxuuUgAP8/Bpwh5rxrFnq63r BjxP1ixkS6Ncgp7pumA5dyZxfdkaIIpMX3Z4QKlVM9vIrJbZZmZbmdW5LRHx WGpcokOeAVpba5RmwEHYBe4HgfcQ5XmArDGyviLr2xZ8lgIOsexxpSTYvs3R dwToM8nPR78Xpjp6gVT/AW25cPg47cQY9yKIC/kfgAq6wztosZKzDdk8ePkA 2+3MFypmNp0Hj0HNKMmZXF+9qeI38AUipClAupbt2r7MaZKMMtlSJsQcImI5 g/TJljPxviBrSGzkeHcO4XebCqumDLzeapZ3cFH97kPrIzrqFwJy+GPk2kQQ jSCPjpAfqpLDbxbYc73zjp6KXxV9+n6/u4+jXwRJmJT2cdzB+G21CxrtgbYj 27R4BY8RGXNFzVHlgilj21Gx9j7bLOF2K1OHujbCCiJ9h1MWZdLp4xcXWL3k pNbBZH4+qcOtX4JZoFQlJq6Bk5xOZfnp07Sjqq0ziY2RWgnWm156SUSVi+lQ HiGi+PcrIqFQF4Al+qwoLyVNOed8PInoVDXvYNlU+ivAAJlw8zQKZW5kc3Ry ZWFtDWVuZG9iag00IDAgb2JqDTw8IA0vVHlwZSAvUGFnZSANL1BhcmVudCAx NTAgMCBSIA0vUmVzb3VyY2VzIDUgMCBSIA0vQ29udGVudHMgNiAwIFIgDS9N ZWRpYUJveCBbIDAgMCA2MTIgNzkyIF0gDS9Dcm9wQm94IFsgMCAwIDYxMiA3 OTIgXSANL1JvdGF0ZSAwIA0+PiANZW5kb2JqDTUgMCBvYmoNPDwgDS9Qcm9j U2V0IFsgL1BERiAvVGV4dCBdIA0vRm9udCA8PCAvVFQyIDE2MyAwIFIgPj4g DS9FeHRHU3RhdGUgPDwgL0dTMSAxNjcgMCBSID4+IA0vQ29sb3JTcGFjZSA8 PCAvQ3M2IDE2NCAwIFIgPj4gDT4+IA1lbmRvYmoNNiAwIG9iag08PCAvTGVu Z3RoIDU1OSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PiANc3RyZWFtDQpIidyU XY+aQBSG7/kVJ+mFuEFkQGWXO/zohgQhwdnUpDYRcaA0caYBrNt/X8RqxQE/ 2jWbdLghcObMOeeZ9+1joY2xCghwKCBFVlRQ8mf31uvKTx3QEZI7j4BXQnuQ 9iBIiwgF0oAK7ecJgigVWnm8gjTAgaAA3giimUTrFaEZfEAwE6m/IkuYx6+N WRNYCHO6SIi/bECcAqMEsp/fCfhZHqnmAYt1tv2RshUBln0lye5/E3/Lk7eQ jDSkAx4KYrED5Ts+xzRk0Aoh0nUYw7Pt9k178qXYgh8EMVI0umByaKAnpaca sPETGtPIOMqpdh+LnLBfk5e+575gyxmB0//kWXgmWlPJmUrW0PTyM/lyoGKh qhrUTl7DTAwYzWK6JstZ0ziEHXYOTNs+nDyVVMn5aNmj3weXIoulVvRyDGE3 9U0SZ7dN/XTGfNuXpw4WhXS9SNg675fAPCQBY0nDqJoNQvoJn1KvJSreyBzW UuGAclTKbRzz6fau5rOrwcQD1/Uk7cExsTueXMVq+/2uMlG7N8ikZhg8ujTx N3dDx8+KB7YHewxM71QCq9FnCd1Esq/T1h15bVPfQGkPtpZS+mP5h1LtNeet sJ5XjQGe53VyPzQFnaHE6bVkgMPxKaZz3lsN7C0tcJv7b4yP41Jxm3kd1fT6 74o6JaTqNxpfHZf9Fa3iUu7mvSX1XibGyVHTzsnjgokNvAOH/v/jYyEJfXbJ xt6A2AgLvwQYAKtTzq0KZW5kc3RyZWFtDWVuZG9iag03IDAgb2JqDTw8IA0v VHlwZSAvUGFnZSANL1BhcmVudCAxNTAgMCBSIA0vUmVzb3VyY2VzIDggMCBS IA0vQ29udGVudHMgOSAwIFIgDS9NZWRpYUJveCBbIDAgMCA2MTIgNzkyIF0g DS9Dcm9wQm94IFsgMCAwIDYxMiA3OTIgXSANL1JvdGF0ZSAwIA0+PiANZW5k b2JqDTggMCBvYmoNPDwgDS9Qcm9jU2V0IFsgL1BERiAvVGV4dCBdIA0vRm9u dCA8PCAvVFQyIDE2MyAwIFIgPj4gDS9FeHRHU3RhdGUgPDwgL0dTMSAxNjcg MCBSID4+IA0vQ29sb3JTcGFjZSA8PCAvQ3M2IDE2NCAwIFIgPj4gDT4+IA1l bmRvYmoNOSAwIG9iag08PCAvTGVuZ3RoIDU0OSAvRmlsdGVyIC9GbGF0ZURl Y29kZSA+PiANc3RyZWFtDQpIiczWW2/aMBQA4Pf8iiPtAZgCxM4N8hYKrSKl VAJ3YxuTCCFJsyr2lITS7tcvhYWRGw3rkIAXJB8cn/PZPhkQrksIBgTE5ZDQ ETAIyXf3S5E7fQlUhDpSD0jAda8iBexoGyFAZFOuezNF4EVcO4kXkAjE5gQg G64JJR8ELfIjGW+jDhKRCmTINT1BpEvWcTXUFxVFg3nTZjT26dpZzVva9g/k Y2a6K900YTyYjPThvHnNm5gfXxvmaN46mB3Lve3s+RXgkhXoobcOHBrDB5Q8 nVqBs4KF/9xIJmQuLOgydKxVA/wIGHUgfvnpgBUnkTgJWK7j14GIBQ6w+MEJ d+PpqrdxKIn75lOXQdsFT1XhFm7Mu4FuTr/vA/dVAINCtF6GbJ3UwIGF61gs YA2tGIn6CKkabKyQ+tTTjiU/vR9M7u6JMR7t62bM+PGMN4b6JFO3tCbVerk1 iP3TzQhvihmzXHBBKk3oTFLZ1P+H2er55Vdds0zy9aWw/JZU5TmTsHSy2XD2 5Wv+qFWzvY6cFSvdEbWwKgpRZHu0ap+0k9XKipW3Sk0PrWRUalV5XPMn7QLI at+EWdsjUE97qMpNfnay3BaR1N4RqJJ+lIH6VN7Gqq7jyyE7ehFGT/bDY0M7 vsMFBZd2sULuGbLPE4O8l0wWxLfvwT9Mu+fV6Fy4JNtDpJ3KJvTj01TyGsVC /Uuj+utzgX1Kxv33v1uMCPdbgAEA9Vi63AplbmRzdHJlYW0NZW5kb2JqDTEw IDAgb2JqDTw8IA0vVHlwZSAvUGFnZSANL1BhcmVudCAxNTAgMCBSIA0vUmVz b3VyY2VzIDExIDAgUiANL0NvbnRlbnRzIDEyIDAgUiANL01lZGlhQm94IFsg MCAwIDYxMiA3OTIgXSANL0Nyb3BCb3ggWyAwIDAgNjEyIDc5MiBdIA0vUm90 YXRlIDAgDT4+IA1lbmRvYmoNMTEgMCBvYmoNPDwgDS9Qcm9jU2V0IFsgL1BE RiAvVGV4dCBdIA0vRm9udCA8PCAvVFQyIDE2MyAwIFIgPj4gDS9FeHRHU3Rh dGUgPDwgL0dTMSAxNjcgMCBSID4+IA0vQ29sb3JTcGFjZSA8PCAvQ3M2IDE2 NCAwIFIgPj4gDT4+IA1lbmRvYmoNMTIgMCBvYmoNPDwgL0xlbmd0aCA1ODYg L0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4gDXN0cmVhbQ0KSInUVVuPmkAUfudX nKQPYoPIMALKG6C7IaGY6Ox2k9rEG1iaODSAa/vvO8IuC4Is3bppig8Q58A5 32W+MQnXJ0QGBMTnkCRKMkjslz2pijgagIaQOBgC2XN9K1ZhE6cVEsQbyvVv 5wh2Mddj9RLCQDacBOTI8XB2ydAl39laD4kIIw3ImOONaHfYezSBDwgWPF3t vS0sg5+dRRdCH5Z0HXmrbQeCGELqQfLrhwerhFXKrGB9SE4Lcbj3IEy+eVG2 fmpCPnJ8WodY3ZeA+iH0fNhpGnyCW2dqGs78a2EaWRmm0+wkTNeh6OtgU4gP 6yg8JAHru4wf2f8dvQZA/goaSaqsw3EV0YDu9HyMHP78zpxN74jtTsA1P89s suDtB8F9EOyxMWNjVl4oXChfLfRTVKwziJuQsiEP3nbR1Wsw5d+wDMfJOxPB wYJ7YzuTp85lVHXCnboX5cr0OUZB8mf6nOvy/O1afc4gVym+ALYN2U2QG2kf 1dJe0q5E9tSyBAeV6K4KLZfgVHfHNekuI3+deBUrapO1U7Tze9ecnpxlMK5Z w/TOBruIGDXtQMYzVhvsXZGtoHg+yYl4e269trvq/I0LcRRvoudAyoLg/fNI a84j32uRRwhprfNoNjHGf5tHKkZvyKOs8xXy6F8cH2cMVBlvE08XuH9jPKlY ax1PWeerxNMV2S8Dv44O7+z8gdLofK3B+SyeBGfw33tfG+DhBe9XYKT4byZp SLNDwsXZYeE+HRqu8nJvtRfqNZHqNZkQ7rcAAwBkF7ukCmVuZHN0cmVhbQ1l bmRvYmoNMTMgMCBvYmoNPDwgDS9UeXBlIC9QYWdlIA0vUGFyZW50IDE1MCAw IFIgDS9SZXNvdXJjZXMgMTQgMCBSIA0vQ29udGVudHMgMTUgMCBSIA0vTWVk aWFCb3ggWyAwIDAgNjEyIDc5MiBdIA0vQ3JvcEJveCBbIDAgMCA2MTIgNzky IF0gDS9Sb3RhdGUgMCANPj4gDWVuZG9iag0xNCAwIG9iag08PCANL1Byb2NT ZXQgWyAvUERGIC9UZXh0IF0gDS9Gb250IDw8IC9UVDIgMTYzIDAgUiA+PiAN L0V4dEdTdGF0ZSA8PCAvR1MxIDE2NyAwIFIgPj4gDS9Db2xvclNwYWNlIDw8 IC9DczYgMTY0IDAgUiA+PiANPj4gDWVuZG9iag0xNSAwIG9iag08PCAvTGVu Z3RoIDU2MSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PiANc3RyZWFtDQpIicyW a4+iMBSGv/MrTrIfRjeIFATUb16YCQmriXSyk6ybDCC4bGKZUNTZf79VonIp jO51amJMek77nj59exxjoYuxAghwKCBZkhWQ2Sf7pWvSoAcGQlKvD3gjdCdU B58eI2SgPhG6Dw6CNRU6LF5GKmBfkAHvhRachvM4XswfsTUz4d6cjefLFhbn k4noTBaixb6WbWjj7yyrgySkIgPwNJedG8oxDn8UWqNkvd0EJIUPPVi2iLsJ VvAcUT+5Y4vFITyHAfHiO4goxCSA9MdLAG7KQhU2723TwwSNNwHE6bcgyeYv GhStf9RwzEAs40tEwhg6IawNAz7Bgz0fj2znK0f2WlbZxlI4BIsA3XpJvE0j poAJSg+KhucSzpFogJAxhL2bkIisLwG885uNF+ZoumxZT+LsSbSmo9PhFRJy A3HKyu2s9/tDVqMfE6ZyG6yW7WETi8nIts8asGir4uzess1aDTxgKAfs9YSL eEngrm7ndVj6BkqVEyhTorsX4p4o1ZBFA1lXrub1eWHhm3mV7ochqw2UFI1P Kdu5QqnJZnxeGaB9EqW3ASqDOa3NBVQouWqeChbOZa7aqKbW3zdUGRDi26iw SLN5aljmsBSL+d+GauRFd/TCq3RWVfMUgd5ko7d7Bp+Xql3NK9vZEW3lqseu WMzfslGx7l8xVD2gP9CNmi5zHkvtC2to/Bev3lBXA3pP3eiN/wx0lxLXe3fd SB/8y25kYuGnAAMAkhWtjgplbmRzdHJlYW0NZW5kb2JqDTE2IDAgb2JqDTw8 IA0vVHlwZSAvUGFnZSANL1BhcmVudCAxNTAgMCBSIA0vUmVzb3VyY2VzIDE3 IDAgUiANL0NvbnRlbnRzIDE4IDAgUiANL01lZGlhQm94IFsgMCAwIDYxMiA3 OTIgXSANL0Nyb3BCb3ggWyAwIDAgNjEyIDc5MiBdIA0vUm90YXRlIDAgDT4+ IA1lbmRvYmoNMTcgMCBvYmoNPDwgDS9Qcm9jU2V0IFsgL1BERiAvVGV4dCBd IA0vRm9udCA8PCAvVFQyIDE2MyAwIFIgPj4gDS9FeHRHU3RhdGUgPDwgL0dT MSAxNjcgMCBSID4+IA0vQ29sb3JTcGFjZSA8PCAvQ3M2IDE2NCAwIFIgPj4g DT4+IA1lbmRvYmoNMTggMCBvYmoNPDwgL0xlbmd0aCA1MzQgL0ZpbHRlciAv RmxhdGVEZWNvZGUgPj4gDXN0cmVhbQ0KSInklltvokAUx9/nU5xkH8SNIgPK 7Q2r25CwNtFp2mTZRFCgNMvQcKm7336xFgvlsri1SZPCC2EO5zK/85/DlKAR ITxgIC7CHMvxwGX34UmcsMoYJIzZsQwkQKOLWIRN/GTBQbyhaHS5wuDFaJjZ c1gAskEckB1itMhLA4cm8AVD6MKa2rvIT3rgxxBSB5I/Dw5YCZgMb/bBTpP9 QhwGDoTJnRMV1nG2/sOnbgjDPrnPvA8xiwUsAZkhxgVPkuA7XBpXU81Y/YS9 CfmKGI8TqB2yrgo6hTi1ozBN/Czu2nUSatk9FV6c8RP5ydnxG6xgLKmwsyLq U69omseF/FpdT5dX10RfzGExXc61mcnot4PF7UCfacss8zwfqLlwNVusSPJY zarehDTLN3W2Zl+tOrnQDOMYjwwMYbD4phvz53jlqsox+ZpiiqhMhlqBs4W1 /7uXuTuQixxrexq5POPXBE/nFT8mv4Kwp9btFSfytZQqpZco3Sx1UkOpAfA/ eSlKZ16HyBVe1f7gS8VUKX0wQTUCqsqoVGsX8bQ1cxFLuYxCDjJ+s6CaAO3f v5N4yuw7yahhB2oERe86C6qZV4OM2g+7xgNXFvhaSg2q/D9BveZ1Thntfbdg qZRcN5eOWBqb+QyCOmkayROuBUvenh1l1HbCvrugzjaNHqyTp1HbP8N5p5Es ip9+Gr0AmhP0V4ABAIUKyI0KZW5kc3RyZWFtDWVuZG9iag0xOSAwIG9iag08 PCANL1R5cGUgL1BhZ2UgDS9QYXJlbnQgMTUwIDAgUiANL1Jlc291cmNlcyAy MCAwIFIgDS9Db250ZW50cyAyMSAwIFIgDS9NZWRpYUJveCBbIDAgMCA2MTIg NzkyIF0gDS9Dcm9wQm94IFsgMCAwIDYxMiA3OTIgXSANL1JvdGF0ZSAwIA0+ PiANZW5kb2JqDTIwIDAgb2JqDTw8IA0vUHJvY1NldCBbIC9QREYgL1RleHQg XSANL0ZvbnQgPDwgL1RUMiAxNjMgMCBSID4+IA0vRXh0R1N0YXRlIDw8IC9H UzEgMTY3IDAgUiA+PiANL0NvbG9yU3BhY2UgPDwgL0NzNiAxNjQgMCBSID4+ IA0+PiANZW5kb2JqDTIxIDAgb2JqDTw8IC9MZW5ndGggNTM4IC9GaWx0ZXIg L0ZsYXRlRGVjb2RlID4+IA1zdHJlYW0NCkiJ1Jbfj5pAEMff+Ssm6YPaIO4u p4BveNoLCeclupdeUpuIulCashh+nNf/vpwGw4JQaXLXdnkh7OzszHz2u8OE SgNKCWCgroSRggig7Dm9jYaKcQMaxsqNDjSQBrfxCLbx0QJBvOXS4G6JwYul fmaPsAp0KyGgB6nrIZVvQsUdYwNjbQwHJ+I+98bQo98zkz5WsIo1oFOpC/lY Pk4WD4/Ums9gPlnMzOmqaz3J8yfZmpqLVe+4lH4sLCgMXHBMhvrRcSEGXSdj WHW3IU98nrLdqtcYya1p2+cYqGyr8vyTZc9qYyDn72bkpQHjCXzA2X7cCdgO 1v5LJ1saurDmm4g5uw74MYScQfJzz8BJMkuSGWzS5HUiDgMGYfKNRaf53PXR Dmd2X3zuhtB3wdM0uIc7+2Fi2suvTRUAi0OcbqIwzfJnsI6f93sn7FwqQqFq aERK5ITUBV6fFxZtzet1trCfgXADpTypMqXTztN72SYCphq2DcBOhA6Rn7Qj VCaT+75ISMi5zMVlFS5kWOHyjooqEyLoIiHBiaCeOi4VmgUuYjZ/W1KNwOLn hJ+BlYpVlY9ItJWQmk5zEzDV+D2wkpSuuPBEUjnLt9KSmPufqKoeUlVL9Xdc jYKaDnQRTe09a4z0FpCu7krv0JfEA92iQ1WqUBUW/xFcLaw37kv6sLEvXf57 qBHT/9mWCjD+hbY0o9IvAQYAXnWyiwplbmRzdHJlYW0NZW5kb2JqDTIyIDAg b2JqDTw8IA0vVHlwZSAvUGFnZSANL1BhcmVudCAxNTAgMCBSIA0vUmVzb3Vy Y2VzIDIzIDAgUiANL0NvbnRlbnRzIDI0IDAgUiANL01lZGlhQm94IFsgMCAw IDYxMiA3OTIgXSANL0Nyb3BCb3ggWyAwIDAgNjEyIDc5MiBdIA0vUm90YXRl IDAgDT4+IA1lbmRvYmoNMjMgMCBvYmoNPDwgDS9Qcm9jU2V0IFsgL1BERiAv VGV4dCBdIA0vRm9udCA8PCAvVFQyIDE2MyAwIFIgPj4gDS9FeHRHU3RhdGUg PDwgL0dTMSAxNjcgMCBSID4+IA0vQ29sb3JTcGFjZSA8PCAvQ3M2IDE2NCAw IFIgPj4gDT4+IA1lbmRvYmoNMjQgMCBvYmoNPDwgL0xlbmd0aCA2MDQgL0Zp bHRlciAvRmxhdGVEZWNvZGUgPj4gDXN0cmVhbQ0KSInElmuPmkAUhr/zK07S D2KDOgMq4je8bUgQE51NN1k28QaWpg4N4Nr++w4iLgrjrWs6JmKcM5fzPrxn pkOEGiEyYCCugFEVyYDYJ/nVbFS1OqgYV+stIGuh1g2bsAh3EQjCBRVqTxMM q1CosHiEFSALAQHZCuIKKXTuV922jBBS22CLC59GHt04S7vchjL5wQIruIoV rALpCSKkraubJlidcV/v2SKRTEWyBobZt8u7QeRrJnTX5MxkcqO1m0wPVpu1 QyP4gtnKdLZ2ljD1fpfYJL4LUzoPnNmyBF4IPnUg+vPLgVnEImUWMN9EcUfo rx3wo+9OkPTnd7wbgdmIV4+6PlRcWKkqDOHJHHV0c/J22O9BC6xhzLTYzgLq 0VU7n9DkuTMePRPD6h8UMF4k60UyevqYq0DScIEOWQq4eTeFSXcsmfWrOMT/ P0j9eOqrNOdogNW6pp2oz8l+n/+gb5nDkS3qtmgpdlmKn42P5xkguAi+1tIK EfBegXR5IsUADPa1XzFNMLfrQlOk2X1gUTJYwkWQgnEd+nPtPxDMkR5gUAg3 88DfMDUcmIbvSzrzS+0i5VBTLgSXMi420LexQQoMxGV+jh4zUBNfpncwTrJ2 byiZ8gXfnFawU1h4b5pt4EW3sTllkk/+dkquw6f0CcWNgzXH5jiNLKVW4wZK yS5uofTA+nac+w2VLidD3lou67jWWnxoHENddyLlUOG77gXJHgaXiRXz+kwv xXPf46AMDI44RV7iyPLvV4aTOofl1mUHHfknB+Pc+XT+ZPo/F4Y+Ef4KMAAH aMetCmVuZHN0cmVhbQ1lbmRvYmoNMjUgMCBvYmoNPDwgDS9UeXBlIC9QYWdl IA0vUGFyZW50IDE1MCAwIFIgDS9SZXNvdXJjZXMgMjYgMCBSIA0vQ29udGVu dHMgMjcgMCBSIA0vTWVkaWFCb3ggWyAwIDAgNjEyIDc5MiBdIA0vQ3JvcEJv eCBbIDAgMCA2MTIgNzkyIF0gDS9Sb3RhdGUgMCANPj4gDWVuZG9iag0yNiAw IG9iag08PCANL1Byb2NTZXQgWyAvUERGIC9UZXh0IF0gDS9Gb250IDw8IC9U VDIgMTYzIDAgUiA+PiANL0V4dEdTdGF0ZSA8PCAvR1MxIDE2NyAwIFIgPj4g DS9Db2xvclNwYWNlIDw8IC9DczYgMTY0IDAgUiA+PiANPj4gDWVuZG9iag0y NyAwIG9iag08PCAvTGVuZ3RoIDYzMSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+ PiANc3RyZWFtDQpIicSWXY+aQBSG7/kVJ+mF2KDODCqud6i4oWGxgdm6SWni F1iaOGwAa/vvO6gYFERdTTreEGc4c877zHmHHhUalBLAQD0BozoigPhv99Ru 1Z+aoGBcb3aAroRGP2rDPNquQBDNmdB4tjEsI6HG1yMsA50LCOhGEJdIZrOg 7nVBZxCtZ2Gwjn3mwiT6zdzNotKFKv3F19ZwHctYATrIvIOfUJt0YTMNmc+W u6X0syBCOuzXnjV6pbqpgdkbWzp1RP1NMt8kfaBaTjUTm7Q629hQMHBZDgTh ZrsLjjgPGM987S6cakEmfdUwDjkMXiSDSOZQN7R9Ekdrt4Mc/lfD5Xrlshg+ YQg8mLDZJvTjCvgRBFyp+O+7C9OYZ0B4sNk6TiaiYOVCEP90w8w85vPffeYF UMsX7sFSUeAFno1RTzXsH2U1n7Ly3AyrJOUMIYyVqwlZmjooIJQXJ88lLSPL pd0s5HJc1CmhXQ4fJ+SIbLpyFzDx/1T4qztgoTtd3AYsDX0KrgQTaV3ElMS4 0FIK7uAyYFuZhppuDkeOqEq6PdZU86xGOH8kEjCdEjC5TswckXRfvT+ytOO9 z1C9gdc8CN0U2V6qa5GlgQt7rRDZkSR5UNG7zyrdMrhFnXVGg/t77ASgjMjV jpfrJ/UK3yUF5eRt8PauKrLBJOnLiB5iZHdfNTKSbxTe7lsH5Xsfumweo/Lx Kb7nsuEfBmwaFF02HUzkMkR7aexvpqlyE7FlaftwvgGKD3+rVepe55sv3Xjn Xpm9H+tde4H+k3dtwtk0KreuZgs1r3OuPbGx1VPt5LZRpS9fLd3kn1CEF3OR nEaFfwIMAJosspwKZW5kc3RyZWFtDWVuZG9iag0yOCAwIG9iag08PCANL1R5 cGUgL1BhZ2UgDS9QYXJlbnQgMTUyIDAgUiANL1Jlc291cmNlcyAyOSAwIFIg DS9Db250ZW50cyAzMCAwIFIgDS9NZWRpYUJveCBbIDAgMCA2MTIgNzkyIF0g DS9Dcm9wQm94IFsgMCAwIDYxMiA3OTIgXSANL1JvdGF0ZSAwIA0+PiANZW5k b2JqDTI5IDAgb2JqDTw8IA0vUHJvY1NldCBbIC9QREYgL1RleHQgXSANL0Zv bnQgPDwgL1RUMiAxNjMgMCBSID4+IA0vRXh0R1N0YXRlIDw8IC9HUzEgMTY3 IDAgUiA+PiANL0NvbG9yU3BhY2UgPDwgL0NzNiAxNjQgMCBSID4+IA0+PiAN ZW5kb2JqDTMwIDAgb2JqDTw8IC9MZW5ndGggNzc0IC9GaWx0ZXIgL0ZsYXRl RGVjb2RlID4+IA1zdHJlYW0NCkiJvJVbj5pAHMXf+RST9EFsZl2Gq+sbKlpa BDPMXtLSZFHR2lbYAO6m374DgoKCi5t2MYFJ5uJ/zu+cmT5hrgnhAQJkySCu w/GAo79dS5Y6NyJQEOqIXUA2zPUgksE8SkdwIJr7zPXYRmAVMVd0PIcEQOYM B8gLw644wZ8FnWWPR0qX6wGHnQd+vPa33sJp90Cb/KQDr1AHCUgBZMiwIH/s 2z62boluauAe91XbYe0BhnryMkam007nko+FGYWHL6zMS910ZTVcbTeeH4MP PC3DdzfeAjyuo3nYoosFS/D4Es7cqAXWEQh8D8R/njzgxnQoT/tn2zjpiIKN B4L4hxfu+k/rT2cgOuPb2l8G4GoJVooCJmBsWH3VsL/vy94rA3QfRNtZGGyp Ll5ShhvOW73TgaKEqIIvbuiv/VWvav8D1TCoWioeOKwKVfh5inWTOKzitDPB ypIcy4YqNlQgeCNUEyxVUeKWVnIxt6S3Aa1EpjfSygVoRKtGj2NuS3ceB2EV OF7iRfEcuZTbSB0QCyfgqFYOq9Oysha/b8m0ZUJzqE/gVw0Ty4D6yFDHtaqi 0p6PgUp8V3pjJA/F3sMh1Kf6nUUuqqyet1jg/bR+DuKceCZwU+T5yodxzUDn 3qgH7S+i4HerSqqitrLSIKwjc2hbxgG6uEct7VtVRhBKlqjVGFWZUUgqq6We 26SS+r7aB9in5DHUjthrUxtO1AedJGGf0txrGJeOnhNTveIGpdYNOwr/zw1n D2k/jBfhc6t3zjdIEDn+yAMNkmUOJ4nGukqsif1Kfqr4yoirTvXJIrkD0/9T d65qdE+UL9h8NwdoqADNjYNNVIC2eT9oCsd3G2TQxGSI7xx2OIEEJjJwNFJq Fjw1i10mT/oVs28SUWp2rNnwXIBKrGrPC1ngL7pcS1Xf630NjyH+ZNkEwy9T FUMzKUunL41uqlTmJYexdCD568ndX76Z/S++fZPFLzqKj2SqIFp7rPxbto1P 1/fjeN5ur6dUPrD1Qy96N7YaYf4KMADlvCl/CmVuZHN0cmVhbQ1lbmRvYmoN MzEgMCBvYmoNPDwgDS9UeXBlIC9QYWdlIA0vUGFyZW50IDE1MiAwIFIgDS9S ZXNvdXJjZXMgMzIgMCBSIA0vQ29udGVudHMgMzMgMCBSIA0vTWVkaWFCb3gg WyAwIDAgNjEyIDc5MiBdIA0vQ3JvcEJveCBbIDAgMCA2MTIgNzkyIF0gDS9S b3RhdGUgMCANPj4gDWVuZG9iag0zMiAwIG9iag08PCANL1Byb2NTZXQgWyAv UERGIC9UZXh0IF0gDS9Gb250IDw8IC9UVDIgMTYzIDAgUiA+PiANL0V4dEdT dGF0ZSA8PCAvR1MxIDE2NyAwIFIgPj4gDS9Db2xvclNwYWNlIDw8IC9DczYg MTY0IDAgUiA+PiANPj4gDWVuZG9iag0zMyAwIG9iag08PCAvTGVuZ3RoIDcy NSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PiANc3RyZWFtDQpIibyW0Y6aQBSG 73mKk/RCbUaXAQH1DpFat4AGx22T0mRdRGtTYQO4m759x1FEBFnZ3RYTBmcm 8J//O+dAn3A3hAiAgSw5zLd4AXj621/JUqvbBgXjVrsDZMPdaJEMbsR28BC5 PncznGJYRVyT7uexCMTleCDPXH3Fi/5D0Fr2FF7o9OB5Hvprf9WDBvlFdzRx C4tYATLg6pAemmoYYNlkYN859YGJCFKd+oh3GmzEh1E4jOJhbB9GiY6m+s3W p4g9hnzM3Jwd+ESAIHWYgKNUQZJFoQdO3Q38eO1vvYXTKFU8nfXt8YyMLD2r +uuor9tDZH8eT4mNvkxUG1k7WSN60mlQL8rcHcJxVQ1X243nx/BBoeL8+cZb wP069CIvrjkNCJZw74fxInyqwTqCwPcg/vPowTymu6lZ8LCNdwtRsPEgiH96 4fHO6T5qLnxf+8sAmktYKQqYMDTGfdWY/iizDEY+RNuHMNhSwzy4f5r/Xmxq RaaduNxRumcZkfGAZcGdagxMZidDnTAWEujCcUbaX9zu0sJSx8igJxpMsbX4 OJ/qkUUZl1BPYi6inqocqqapoqlmozs0Q6OxpiGLriKDng5qLqZ9KXL5BHng ugnwvdHX8mbryb2v4p2x6JwyzbYoDmtZl/KYO+J1hc+Ak/GEFotTb2JGU06L Ge8vPrF5hc4bulUNsNSRCgHn0y5RMWLlOmDPP5dh0B30f6riQp6cIM0GnsIV GMs4eNzZWQnmOcQknJdhFoG5bEQlHNlUuNx58z3hXyPKJ0pxrb0njmxalHTV ghbZ7Z6/NHMRJGZo5oSaMZhN0O0u5rcUT0kByVU6ZF7aK+qpuFEWYRMTbO7m 8f9VUR5RSfq/GdZLL49K2AqL6pWwrqss5V0RZY2uWFm4fbGyhPbxE5S1GKuA UZ4QsnRD16q9kdpSt7SgSj80U21ZSDlEGWXXfn7ohPsrwABC8ARECmVuZHN0 cmVhbQ1lbmRvYmoNMzQgMCBvYmoNPDwgDS9UeXBlIC9QYWdlIA0vUGFyZW50 IDE1MiAwIFIgDS9SZXNvdXJjZXMgMzUgMCBSIA0vQ29udGVudHMgMzYgMCBS IA0vTWVkaWFCb3ggWyAwIDAgNjEyIDc5MiBdIA0vQ3JvcEJveCBbIDAgMCA2 MTIgNzkyIF0gDS9Sb3RhdGUgMCANPj4gDWVuZG9iag0zNSAwIG9iag08PCAN L1Byb2NTZXQgWyAvUERGIC9UZXh0IF0gDS9Gb250IDw8IC9UVDIgMTYzIDAg UiA+PiANL0V4dEdTdGF0ZSA8PCAvR1MxIDE2NyAwIFIgPj4gDS9Db2xvclNw YWNlIDw8IC9DczYgMTY0IDAgUiA+PiANPj4gDWVuZG9iag0zNiAwIG9iag08 PCAvTGVuZ3RoIDYzNyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PiANc3RyZWFt DQpIicSWW4+aQBiG7/kVX9ILsUFlkINy54EaNniIjN0mpcl6QEtThw1g3P77 jhgVZMZ1t9odL5RhZvLO+8w7fm0s1DBWAAFeCkiuygrI9LP/pWvVpgoGQlW1 AXgt1DqxDvM4HSFDPCdCreciWMVChY6XUR3wXJABbwWxFa02a58k8EkBTyTT tb+Ap2DxEvlxyStDuIQnEiVxEpUgiCEkPiR/nn2YJnS0QgfMNsnuRRyufQiT n34EZfyLrl1BVVRHBuCuIJ5mIDrje0CWIVSWsDIM6EPPGbZbjvsjnYc/C+JK rpNZWF2aitZEqgnbaUQCsjIzCytaI10Y0qao0Gk5DgzG2MVjTxyMLVdqeeKD 7pWlfuvb7jH9+pL2GrTXsQbSwHKsDtVT1Au5hhjKdFVrmnQ/85AkAdn4C69s HocdZ7qT9ng4wfbAymuzuydNR2kOfU+fzpXlFsw0hWHHiaV2Yvmbsvt4lmAT iDezKNxQv3yqyt8GcclkQW806mfQcx6kqPFwlNpZQeegEQN1DnL+7OQh57ea wd2sa6/jzimzi6BRETUXsnLszwZ0RzAJn99CkMkr68Z+r0yCPDvuh6hoBDN9 PBwcwu8Hc+leYCHSb4pot/ZV12SzwbkmGboPZnT6I2pGdzKSHhj35asxYnty gZh+fYBO0m6SIt4lWT/Amq+fb5Wngy3vw1bYwT/DYv99IIYvV8DikL8Ttnyy jJvC4iYrH5wsLMVgZoyRg9QPx3q0XU/s9qVHu22Ne9KVVYn9lWoZXaDHjJcu XxGvTDnCVnepLnlDMWKc5UzlFZb7IuAj6soCzLOd/Q+EvKPGhck5cPfGamHh rwADAHgvJmsKZW5kc3RyZWFtDWVuZG9iag0zNyAwIG9iag08PCANL1R5cGUg L1BhZ2UgDS9QYXJlbnQgMTUyIDAgUiANL1Jlc291cmNlcyAzOCAwIFIgDS9D b250ZW50cyAzOSAwIFIgDS9NZWRpYUJveCBbIDAgMCA2MTIgNzkyIF0gDS9D cm9wQm94IFsgMCAwIDYxMiA3OTIgXSANL1JvdGF0ZSAwIA0+PiANZW5kb2Jq DTM4IDAgb2JqDTw8IA0vUHJvY1NldCBbIC9QREYgL1RleHQgXSANL0ZvbnQg PDwgL1RUMiAxNjMgMCBSID4+IA0vRXh0R1N0YXRlIDw8IC9HUzEgMTY3IDAg UiA+PiANL0NvbG9yU3BhY2UgPDwgL0NzNiAxNjQgMCBSID4+IA0+PiANZW5k b2JqDTM5IDAgb2JqDTw8IC9MZW5ndGggNjEyIC9GaWx0ZXIgL0ZsYXRlRGVj b2RlID4+IA1zdHJlYW0NCkiJzJZbj5pAFMff+RQn6cNig8gMKsqbt27Y4CUy Nk1Kk/WClqaCEYztt+8Rl8VZLlVrzcLLMMzM+c/58R9OmwkVxigQYEuBKLJC QcH72KrX5GYVNELkagPYWqh0gjrMg2iEAsHcEyqPFoFVIJRxvEJUYHNBAbYX xNZ2tVs7XggfNLBFb7p2FvD8Mwi3TvBgl8Bf4pOzd4MHcAPwPQfC3xsHpiEO pvh+tgsPLwJ/7YAffne2UGI/cOkykYlKNGBdQUxmEJzx1fWWPpSXsNI06MOj OWy3TOtbNI99FMSVonozX17qYHgQ7GZbfxe6GPcZew+i9JMItNaIIrzOwY6G qsN+uvVcb6VniIH46rRME9hwZLGxLZaJ1LLFp7pdkvqtL+OeJZFj41PUr2G/ 2Rug+lglcBdJq6eaWtN03PPc91D/zlnYJT09nVNhHAIb3Sj+WxkmjsDnRAWf AV4Pzdh4AppGVEN/g5TPxpoJMd7O32FmgclPxEU4ihJBMhJxP0TpD4W+9ic4 6jfFEWfjuNdMMHnpqDWbjSJEp8no9EeYjO5kJD0d9vwv5ikwUCOTTg7wtLQr /JQ6JnKxqTG2+XpzPxelEfHAbwurKCcXY8s01ZWw8pzFfxqn/7ZbwuLTcha2 auHh95KPQXuI27TFQQalNKOojcol4zOGHRX4ixT+MjVK1QKfpehbk/Z4OGHG oMcL5tmlyEmG1RlLBWdAts1oUpW4i18nVclLOXBJWXJY+fxihDdWIcxcn9wB 6xv35cHkFvjfCPnUJTBreSXmFTBvUmO+L2em6pN35sweE/4IMAAZeSeCCmVu ZHN0cmVhbQ1lbmRvYmoNNDAgMCBvYmoNPDwgDS9UeXBlIC9QYWdlIA0vUGFy ZW50IDE1MiAwIFIgDS9SZXNvdXJjZXMgNDEgMCBSIA0vQ29udGVudHMgNDIg MCBSIA0vTWVkaWFCb3ggWyAwIDAgNjEyIDc5MiBdIA0vQ3JvcEJveCBbIDAg MCA2MTIgNzkyIF0gDS9Sb3RhdGUgMCANPj4gDWVuZG9iag00MSAwIG9iag08 PCANL1Byb2NTZXQgWyAvUERGIC9UZXh0IF0gDS9Gb250IDw8IC9UVDIgMTYz IDAgUiA+PiANL0V4dEdTdGF0ZSA8PCAvR1MxIDE2NyAwIFIgPj4gDS9Db2xv clNwYWNlIDw8IC9DczYgMTY0IDAgUiA+PiANPj4gDWVuZG9iag00MiAwIG9i ag08PCAvTGVuZ3RoIDYwOCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PiANc3Ry ZWFtDQpIicyWXW+iQBSG7/kVJ9kLcaPIAIpypy1raKluyphssmzi18iyrdDw ke7++x1QRHSk2LRGTAzOzJk5533mHWeAuRbGEiDAKw6JgiiBSD+bt05b6Cmg IiQoXcBrrnUTdmARpiNECBce1xpaCJyQa9LxIpIBLzgR8CvH9wMnXhMvgi8q 2Lw3W5MlTN1wEdTsOvgrmHpzPyBhDdwQfI9A9O+FwCyiYyU6YB5HSUforwn4 0W8SbPrr+A+dvokEJCMV8C3HpxGIRvx0vZUPzRU4qgoPMDTHg75p/UpD8FeO d0SZriisNDA8CON54MeRS9edPpGn+JnUtL3JpXY3nXwXI7V7XUWD11nguZ6j MfKA/Lnpmybg8fehjm3eeNStRt/m7zp2vfHQ/5H8RJuXb2m7SttNfUQryDKF gwcd1yCpitjVaOUL36NVxGRp1zXWBIVcUMO4TRPY5mEkOYySL9PCSUOeR1GH w4wkhgA5bynFG/kvDonOw3sIMyvobagsQGVSnImlXA7EkONyqFhbRtr15Fg6 H4olU2RTLRPQKUE+F1V1B0kKE0sp61JId2/5iXFYlCK7FicVYX+op05JchYy BvP3gmJtnxxPcW98rrcyZSog64hy76Sj5PZGjHv9fmLqNp+QoAvuSCXYdJxJ k6pyhrlQ6d+mKnfFEpMdwbcmg8fxBBsjfZeuYRoWzvidznULsgLDosXQ3uXk 2Q2j7HayvRVUZZlNzGRacjpmniplyRLrElQP3HeKZSH8EgSL0u0flznL5d/k cvl+mEXNq2O9UmMeXUqu0Jg65v4LMAAaiSWJCmVuZHN0cmVhbQ1lbmRvYmoN NDMgMCBvYmoNPDwgDS9UeXBlIC9QYWdlIA0vUGFyZW50IDE1MiAwIFIgDS9S ZXNvdXJjZXMgNDQgMCBSIA0vQ29udGVudHMgNDUgMCBSIA0vTWVkaWFCb3gg WyAwIDAgNjEyIDc5MiBdIA0vQ3JvcEJveCBbIDAgMCA2MTIgNzkyIF0gDS9S b3RhdGUgMCANPj4gDWVuZG9iag00NCAwIG9iag08PCANL1Byb2NTZXQgWyAv UERGIC9UZXh0IF0gDS9Gb250IDw8IC9UVDIgMTYzIDAgUiA+PiANL0V4dEdT dGF0ZSA8PCAvR1MxIDE2NyAwIFIgPj4gDS9Db2xvclNwYWNlIDw8IC9DczYg MTY0IDAgUiA+PiANPj4gDWVuZG9iag00NSAwIG9iag08PCAvTGVuZ3RoIDY5 OCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PiANc3RyZWFtDQpIicSUX3OaQBTF 3/kUd6YPms5G2UXF8IZKrAb/FDZtZ2pnorhaq4IDOGm/fRcCigasRmNx3GXc Re6e37mnRoUipQQw0ImAxYJIQOSfl7tKuXBXAhnjQqkKdCkU614FLC/cIYJn 2UKxaWKYesIt3y9iCagliECfhbzqTtdLZvvwQYZB3h4u2RieFp7vMi83uAFn Ak9zNl8vWA5mHjg2A//PisHQ57sJ3zBa+8GC5ywZOP5P5sIN/cX/+xYXsIRl oA0hv30C8ye+z+yJA7cTmMoydKCp92qqbv4In6MfhfxUlOyRU5go0LLBW49c Z+3P+HufVkOXF5pTEm8g5Wr4hs0zpHxXlRV4Hrr2zJ4qKcVAeEkiH+qqrkNf NbQuHeTbhmYi41PPpMFIUaODKPraqmlGE6mDfIsfNpylaC5Fc5nPm9ph78Kv T0XkklxSuBaWY/Nzrdl4cKO8/gPzsWb0Hmmrq20qbBnafVaFtW6jV6+jfk9H n9EXVNMfUIpM++UFF0nRaGsKQraumI0dO/ZExOIUTwTHe6MT0qhu1XoHlodl wymS/Se+aabbUg1WEyylBMuhZZ3BMtbn1P7O0uzafM/u1QyDXLRrdxPrCL6l ZK/+TiT4dbt1P7c9tmDWfm7vO6AikmNyO3aCqelanasbCmugbmAIrrSp0QB0 OwLfrvC5o34LVrsBh/D+PssDaQ6oYrl6UjcfqOyhz39oNcJyklVdJKkT8Ocr 343RR+Ifiz5cj4/3hqBOwbgj1KXgHVLrcDxfDegp0VzO6twT8b1DNu93s8sm rpdTUtlXxUPsN/y5RIYZJSPdCWwsRzckjm4SZzcpHxPiGU0sSdLBGJczY3y3 1iiw+ddAHL1ZN3AwkGCQUFPtdNRzEhzjhA88PzbBi+TXa+FXGDNkujTQf4l2 ElqNCn8FGAD17FrICmVuZHN0cmVhbQ1lbmRvYmoNNDYgMCBvYmoNPDwgDS9U eXBlIC9QYWdlIA0vUGFyZW50IDE1MiAwIFIgDS9SZXNvdXJjZXMgNDcgMCBS IA0vQ29udGVudHMgNDggMCBSIA0vTWVkaWFCb3ggWyAwIDAgNjEyIDc5MiBd IA0vQ3JvcEJveCBbIDAgMCA2MTIgNzkyIF0gDS9Sb3RhdGUgMCANPj4gDWVu ZG9iag00NyAwIG9iag08PCANL1Byb2NTZXQgWyAvUERGIC9UZXh0IF0gDS9G b250IDw8IC9UVDIgMTYzIDAgUiA+PiANL0V4dEdTdGF0ZSA8PCAvR1MxIDE2 NyAwIFIgPj4gDS9Db2xvclNwYWNlIDw8IC9DczYgMTY0IDAgUiA+PiANPj4g DWVuZG9iag00OCAwIG9iag08PCAvTGVuZ3RoIDY3MiAvRmlsdGVyIC9GbGF0 ZURlY29kZSA+PiANc3RyZWFtDQpIicSV0Y6aQBSG73mKk/RCbVAZEATvEF3j BpXAmGxSm6gsWpsIBjC2b99hlAXWka6utmMcTuAwOfN//xm6mGtiLAICvOKQ 0BBEEMjvGClyQ2tBG6FGSwW85ZpGpIAb0QwBItfnmgMHwTri6iRfQBJglxMA H7gqpMOZdu3JFA/HfbD7T7Yzqw7Jlcd8d9ybGAZP/jaPbd4xbJRMYjJJ/EAf jXQeavgnWbCOGkhCbcC93MK5IdI8/JWr6uF6v/X8GL4gEWZVf7H1XmG+CVy3 MqtBsIJ56K3CqAKbCALfg/j3zoNFTFJF8ny5j5MHUbD1IIh/eOHxeVaEKKu0 CPoGIm982/irAOorWLfbMIKBOenqpvOdUfdakPxl0Fh1YOhDtF+GwT7ekArm 3q+d58aVztse3jJFRdCUDhwWob/x11lCYe+GbprQf7H6BiYlEV11ojDZDL0i JQ3aaaCeAlE6Bs9JLntpOhBj+1mFakuWO0QLN/DJbvbe66zWKYOWc0NaM7GD U7BD3hL80CLBSH9JkqhxSkplG0HN+WAXh6kPTrJfbYRk8Svwn0n2Hv8iDIND VGGplsksq6pUZgRqAjyxHGzPqnVEuSboT8KhY/BE7ydOMPtjUj1bScQwoqoh tQSzKDN7s1AVxTzs0XryPMfJZJIUciMr67aeFynZONhFhPNVZN8TTddmki1q w2BTRH8HSmVyXMWL0TifoFTehkVvZJSUu1IqSvMRXpqmfuhQJZoYI4to0pta /HOy88+0VYbq4lmqIe2as5RZqsXfE2GxvaQUnLvdPbC9LunDAFeizEMRnnUb G1xJt92Iq/S8Peu9VJgMYfvfIPzrCfngr1dRpjwpSbm9xe5+Qv6Xr9clbS5+ x85UuT+vPub+CDAAmLAdWgplbmRzdHJlYW0NZW5kb2JqDTQ5IDAgb2JqDTw8 IA0vVHlwZSAvUGFnZSANL1BhcmVudCAxNTIgMCBSIA0vUmVzb3VyY2VzIDUw IDAgUiANL0NvbnRlbnRzIDUxIDAgUiANL01lZGlhQm94IFsgMCAwIDYxMiA3 OTIgXSANL0Nyb3BCb3ggWyAwIDAgNjEyIDc5MiBdIA0vUm90YXRlIDAgDT4+ IA1lbmRvYmoNNTAgMCBvYmoNPDwgDS9Qcm9jU2V0IFsgL1BERiAvVGV4dCBd IA0vRm9udCA8PCAvVFQyIDE2MyAwIFIgPj4gDS9FeHRHU3RhdGUgPDwgL0dT MSAxNjcgMCBSID4+IA0vQ29sb3JTcGFjZSA8PCAvQ3M2IDE2NCAwIFIgPj4g DT4+IA1lbmRvYmoNNTEgMCBvYmoNPDwgL0xlbmd0aCA1NTggL0ZpbHRlciAv RmxhdGVEZWNvZGUgPj4gDXN0cmVhbQ0KSInUlmuPmkAUhr/PrzhJPyw2iAwg IN9YdTcavERm0yalSXcpUJs4GMFs9t93QKmyXFZX3KaYOJM5k7m8z7xn5pag DiESYCA+wqIgSiCy366mdoWeAhrGgqIDWaFOP1LBjdIeIkQuRZ17G0MQoTbr L2IZiItEIM+IC0SZPoWCb0h6T1YNcDg3pPGSbr2fTsuAFvnNOraxgGWsARkg DvJf37QsILO5TRYON1oMbX40+JoUEzMtWNMdP03+LNaFNVjDqdNKxyWfC6Ol n3Q0q9TV01nNTbBdeTSGTyqEPvyIw3UUb25gGUFIPYhf1h48xmz1Ehv8aRsn gShceRDGv7zNURyz+Lcl9UNoF/fmQ6BpMIF7a3ZrWvb3v8s8qNTt9XQDnh83 dEkDo3wfmSb9yZxpMniY8+Nk56bDjVWnlSmDd5W7tF1j7W8pg0t0yeHT3o9v v9Q53yTCJHoAJ2fg3NX6cnDJ2KW4qvQpAVejzFUR5k9UJbiSIS7ElWlTehQK 3suEOSDUPgbhK8fpulznuFwGauMzGOWPSrXZMiGOmaniucwaz5B5e0lXyIvZ SakxWlGb6/EqylHupwo2dbgvoVSbYCt5NXuPneqlqiRYqsrFSfAtZSrw4Q9K h6c9QF4nwWbvsf/vAXIirtq7ppF77FzH/ZPbS8WSUuG4qmeHuVjMvtgON5jw JGEzYjOnpaSwynSvjT1Mg2NlFxx392UC+P3m05RymkOC/ggwAHkPFJAKZW5k c3RyZWFtDWVuZG9iag01MiAwIG9iag08PCANL1R5cGUgL1BhZ2UgDS9QYXJl bnQgMTUyIDAgUiANL1Jlc291cmNlcyA1MyAwIFIgDS9Db250ZW50cyA1NCAw IFIgDS9NZWRpYUJveCBbIDAgMCA2MTIgNzkyIF0gDS9Dcm9wQm94IFsgMCAw IDYxMiA3OTIgXSANL1JvdGF0ZSAwIA0+PiANZW5kb2JqDTUzIDAgb2JqDTw8 IA0vUHJvY1NldCBbIC9QREYgL1RleHQgXSANL0ZvbnQgPDwgL1RUMiAxNjMg MCBSID4+IA0vRXh0R1N0YXRlIDw8IC9HUzEgMTY3IDAgUiA+PiANL0NvbG9y U3BhY2UgPDwgL0NzNiAxNjQgMCBSID4+IA0+PiANZW5kb2JqDTU0IDAgb2Jq DTw8IC9MZW5ndGggNjE5IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+IA1zdHJl YW0NCkiJ5JVdj5pAFIbv+RUn6YXaoDKIIt4hUsMGpZHZ7Ca1ySoitanDhsG4 /fcdxkWkoutXu02KCTOZj+M773PO0MVCHWMZEOC5gKSaJIPEfpteq1nTFFAR qiltwEuhbtAWeJSvkIB6RKj3XQQBFapsvYQagD1BArwWypA+7n135Nxja2iC Pho5D+643BuIWOyZtmOIrjEShyPTFS32MrFo9ZyhaOmGwXqPyThU8HcWsopq qIFUwL2d0DuPzNfhj0JZj4LV0icxfFBhXCaTpT+Dp8UsJKVxBcI5PE2iKFzT EiwohMSH+OezD5OYrZXZgukqTiZouPQhjL/50WY+EyE321wE34HYji8LMg+h OodAVWEAfdvp6rb7tUB3IDXINKzNO3ILyUoH1pOILEjQ2UrPncjQbTvvmD4u W+wfeSsrrLNrHBu8UzaTd83XtsXa4uD8Qdu5TFlbVVCHncwLSbwgK382rnQK Tv8P0G3v0J143rV0k+AnMc37VUDygFO3ZvqWa2fRzSXILZgWZ1xKMrVooz1j qu1W7Evk0wup7vuT7bia77tVaj6xTq7ZvRT583zzlco+C1usP2h8HdYk9Okw 84m2tQwsAnQ1jcIVM8xnycaco3GpyLXM5qbWfiMVeCJg53PfxAx84lXKdqBz 69Cm84mPq2zcNofsBIcMLSphTVLVcy7onCaUMnzVYyVahsnLdnEykOk5dr0U QZY50Dh8Dvz4vNv3d5Bp7BOqswDJwdv3GjjH79qzMOU4XwpnP1mO36utm8LJ u3EZpnepHE07Wjnqkcrhmv6b4tnT/beL5wApEwu/BBgA6yctTQplbmRzdHJl YW0NZW5kb2JqDTU1IDAgb2JqDTw8IA0vVHlwZSAvUGFnZSANL1BhcmVudCAx NTIgMCBSIA0vUmVzb3VyY2VzIDU2IDAgUiANL0NvbnRlbnRzIDU3IDAgUiAN L01lZGlhQm94IFsgMCAwIDYxMiA3OTIgXSANL0Nyb3BCb3ggWyAwIDAgNjEy IDc5MiBdIA0vUm90YXRlIDAgDT4+IA1lbmRvYmoNNTYgMCBvYmoNPDwgDS9Q cm9jU2V0IFsgL1BERiAvVGV4dCBdIA0vRm9udCA8PCAvVFQyIDE2MyAwIFIg Pj4gDS9FeHRHU3RhdGUgPDwgL0dTMSAxNjcgMCBSID4+IA0vQ29sb3JTcGFj ZSA8PCAvQ3M2IDE2NCAwIFIgPj4gDT4+IA1lbmRvYmoNNTcgMCBvYmoNPDwg L0xlbmd0aCA2NjMgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4gDXN0cmVhbQ0K SInEVm2PmkAQ/s6vmKQf1AaVXQXUb4ic1SJcZC+5pDbxDalNhItg7vrvu6Co yMId9rRr4m52N8PM88wzO13C1QnBgICsOCTUBAwC/e1XklhrN0FGqNZsAdlw ddWXYOFHNwTwFy5X71sIHJ+r0vsCagBZcAKQV64M8VAVXQdiPvY1MikPxprF D3rP4TRSooluPfBG+KdbJNzQNWNSgQr5TS1VUQ01kAykd2YxGji6Qb5yZWXr 7Da2G8AXCbwVTAPvxbGDEqx98Fwbgj8vNswCmJQxNTvfBeGB721s8IJf9vbs HNHzH2t35UH19HUstqKvr8CRZRhBXze7im79ZDjoCA137tVWHRi44O/mW28X rKkH04XnLl2/1Dm6fLyJJYTlDrzOtu7adU4XEqFGCKqm0TOsCMEHXqEzpuHw 3x+VcQheBKOlkfBkKNGDA7gRrmyr0UCQjvTkXBth3KHAUP9pIDt7Oal08oix nrpj84kMDC3p7vPANNKuJtPgPU+zGJ+U3dnGXsJ0vXzb2n6JchgmwQHyjyZB bJmZDDnUpzC7pN63F6FXLNhOOIvtVjM/CdIiuiAa7RdRagxlun9SEQtPxEjF NhZRDttYvGA74RO6narxp6o6tM0kNAkGg5Ik459ETh4YBWlK8HwtOelkwYwc uG3JjdG4jqa7KCezYtKCXqRi/sPjmMXUfxFPFh6ZMmJk/H1qXAY/2eK5pmVJ 1cqUkuL4b6WkD5Y5CTXf0c8RD0tTaagHPHojnvDjbyYNf9+MUDaiuRkvxP1i GG7kPuuIgds5YaiQoM5akEyHu0bPVFWeGF2Tt9QxJZe2JwOFbhXuP1rn/Yfn xt3H4dUvxGJsvFD3cQkXg8/cF+YOzGqE+yvAAPg4GWsKZW5kc3RyZWFtDWVu ZG9iag01OCAwIG9iag08PCANL1R5cGUgL1BhZ2UgDS9QYXJlbnQgMTUzIDAg UiANL1Jlc291cmNlcyA1OSAwIFIgDS9Db250ZW50cyA2MCAwIFIgDS9NZWRp YUJveCBbIDAgMCA2MTIgNzkyIF0gDS9Dcm9wQm94IFsgMCAwIDYxMiA3OTIg XSANL1JvdGF0ZSAwIA0+PiANZW5kb2JqDTU5IDAgb2JqDTw8IA0vUHJvY1Nl dCBbIC9QREYgL1RleHQgXSANL0ZvbnQgPDwgL1RUMiAxNjMgMCBSID4+IA0v RXh0R1N0YXRlIDw8IC9HUzEgMTY3IDAgUiA+PiANL0NvbG9yU3BhY2UgPDwg L0NzNiAxNjQgMCBSID4+IA0+PiANZW5kb2JqDTYwIDAgb2JqDTw8IC9MZW5n dGggNjY1IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+IA1zdHJlYW0NCkiJzJZt j5pAEMff8ykm6Qu1QWWRB/Ud4kNpEIysSZPa5BSR2pyLEcy1374LHkXkQb3z TDGBzeywO/v/zQz2MNPEmAcEeM0grsHxwNHfcSSJjY4AMkINoQ14yzRVXwLb jzw48G3CNEcWAtdn6tSfQy3ANsMBfmGqLtciS6+x7vIdHqEuzKu2R4INOTir ea0LNfyLOtZRA7WQDLjPVCG+rFlvas6wZgzAGqjTgTWvavTO9scsZqdfTAtP 2Z7RN1WVxUbPZC11ymp902A1hZqilfHnk/VOLv5kX15sR/sqe/ewdUgAnzo0 SLLYOit42ixsuzKvgbeGJ9+x945fgY0PHnEg+LNzYBFQX546LA9BOOF7Wwe8 4KezP85njxe9gegb3zdk7UF9Da4swxhGutlTdOvHv7gT4SQkCF14WezJhrjd ooOpiq4XC6VQG43z+BTigXgcfA0NpYKhHMH+Y7LhbMITcSdAV79DiG9DGi+d +F0CWaRYDtICrR4GN51zhUhTi9wBZKxQ7rEzxRrLcwIXJXCf/eCRcFOKgUbA Pyz33oHq5YS7B4vdrtLNrWeZy4Uf50keeqxMJvOqMRuH+hrhLWSLXhlL9DlW voVmCmAYOgxp9Bfzqoi+JIk30s/Gp+mahSnuKKqC4K5r0OfMWyf1/Lzxg4R4 pPktxNPqvJF9HtHMyd7LMV+qC425iOM1jfkjiKYbs1Dcl28GeZe+fF7ENAiH rCp5miUii532hc9zhB6bk9EAvzbIM9boOBhGdpna9YFRomduycoiX4I602Cz MRVwZXXaxakhCamso+Rh5iOmgbdzneC2v0/nLOO1ryjJj6VS/tVCpflSSCoV 3zv4ZFMmj4p0VyppQUpq7tH1M8DMXwEGAKQdPlcKZW5kc3RyZWFtDWVuZG9i ag02MSAwIG9iag08PCANL1R5cGUgL1BhZ2UgDS9QYXJlbnQgMTUzIDAgUiAN L1Jlc291cmNlcyA2MiAwIFIgDS9Db250ZW50cyA2MyAwIFIgDS9NZWRpYUJv eCBbIDAgMCA2MTIgNzkyIF0gDS9Dcm9wQm94IFsgMCAwIDYxMiA3OTIgXSAN L1JvdGF0ZSAwIA0+PiANZW5kb2JqDTYyIDAgb2JqDTw8IA0vUHJvY1NldCBb IC9QREYgL1RleHQgXSANL0ZvbnQgPDwgL1RUMiAxNjMgMCBSID4+IA0vRXh0 R1N0YXRlIDw8IC9HUzEgMTY3IDAgUiA+PiANL0NvbG9yU3BhY2UgPDwgL0Nz NiAxNjQgMCBSID4+IA0+PiANZW5kb2JqDTYzIDAgb2JqDTw8IC9MZW5ndGgg NTkxIC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+IA1zdHJlYW0NCkiJ1JbRjppA FIbveYqT9GK1QZ1BBPUOgbU0CEZmkyalyaIitRsHI5hN374DWxQE3LXd3VpN nMkcnDnn/84/YUS4DiECYCArDqM2EgCx79NM6rUHIsgYt8U+kA3XUSMJFlH6 BIJoQbnO2MEQRFyLPY9wF8iCQ0AeuQacfDA0yQ8Wa+E27mIZiMY1AtSl87C9 GgoDWZKG4DYWIY3XdO8v3eYw/QP5mNtKVUwTiD0d68RtYN7Qvsx0h58o6WDM 9FveSn5MhyQLpm65zdypQq+fnlrMS6jIS9kF+41PY/ggQLiC+zjcBn58A+sI QupD/HPrgxezdAV2wHwfJ4Eo3PgQxt/9XS6OWfzrmq5CaGXFrCCQZZjA2LRH iul8O1R5FKM36ItDePR2dE2DChlOhDCSYhW38Vlym5kY+Glym67LbP1lYvxb TCdFHuAk60ck0qsiKapRCadOjLfFVBYjg1Noli5C/X4lkqwyuci5nNOFNsqE eJ7UtZintuP/3kbVYlxIqt48l/Gp80+xE97WSZkgLyAlYfkZ/xz0UKZT3dJ+ 66FNeMLPPtms/ISLwfJIRyEbxWzSY5NaMx0xFfsjf9sh8Yy1Suydu9HMviOG pdcnrOmmrfIjS7NVlSfWyOYddcYbKgudzbTKXwOWG/U2/hLu14t4d8N4JEC9 7dany8uAZpufgj1zIZb1qgB61iXvgLbYcbVAC5u8Bsaay7fGmuX3DoxybDfe g/+HcLPiKl37P3q0/EZy3R7FOAdyvvMe3g1knWJX6FKdcL8EGAAm4BhnCmVu ZHN0cmVhbQ1lbmRvYmoNNjQgMCBvYmoNPDwgDS9UeXBlIC9QYWdlIA0vUGFy ZW50IDE1MyAwIFIgDS9SZXNvdXJjZXMgNjUgMCBSIA0vQ29udGVudHMgNjYg MCBSIA0vTWVkaWFCb3ggWyAwIDAgNjEyIDc5MiBdIA0vQ3JvcEJveCBbIDAg MCA2MTIgNzkyIF0gDS9Sb3RhdGUgMCANPj4gDWVuZG9iag02NSAwIG9iag08 PCANL1Byb2NTZXQgWyAvUERGIC9UZXh0IF0gDS9Gb250IDw8IC9UVDIgMTYz IDAgUiA+PiANL0V4dEdTdGF0ZSA8PCAvR1MxIDE2NyAwIFIgPj4gDS9Db2xv clNwYWNlIDw8IC9DczYgMTY0IDAgUiA+PiANPj4gDWVuZG9iag02NiAwIG9i ag08PCAvTGVuZ3RoIDUyNCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PiANc3Ry ZWFtDQpIidSWXW+bMBSG7/0rjrSLJhMhmJCQ5I4vdZFoqMC9WiaVEKBMiomA qOu/r0PFapSQZSlZM3NhCx9s/D5+j60T1CdEBgwkQlgSJRkk9ry1RkNxooCK saiMgaxR38hHEORlhAR5QFH/1sMQ56jH4iU8ABIgCcgz6sTSgC5TMZrKE1VS prDoBCktEroNV4vuFLrkJwvsYREPsArERB2oivegu84Dmc0t0O7vrbm56Mxc yxPMO4EI7jfHI65gWrZjCPrcdAxDIHPdETzDFWYG6yqHJl+5AbkicxPLw3E5 sZbF23VIC/iCZfab1F+HK3hMVvRm0YU0gkd/swnp6gaSHFIaQvGyCcEvWKjM ApbbYteRp+sQ0uIpzN7699dXfoHZF98TGqXQiyBWVbiDW9vRNdv78fu/35Ub YZUp9+xnNKHxtGlhhmbbzUpp7B2btazlqlaqxpA1jgqGDwh2zWh3vRxQhQPq Bx8Fuhv8JIxNeh0A2qDUP0Nb33GNQGuDtIGxkujguve8WunDoR1xaDd+dibb am3vcVdr0fqm+pNZK8U+g+1fWVTlOD69LD/Asb6lTifaJNjVpN8TPdqwQdpz a0OWamY75s/T9NwD9QIePeqlFt16TLHPzb+n3ZD2su6kdqCee6LuC/Qf5N9W PXqBi9F5HpUl3qO/sjC/Ppde7m7Uskstgl4FGADfT0uTCmVuZHN0cmVhbQ1l bmRvYmoNNjcgMCBvYmoNPDwgDS9UeXBlIC9QYWdlIA0vUGFyZW50IDE1MyAw IFIgDS9SZXNvdXJjZXMgNjggMCBSIA0vQ29udGVudHMgNjkgMCBSIA0vTWVk aWFCb3ggWyAwIDAgNjEyIDc5MiBdIA0vQ3JvcEJveCBbIDAgMCA2MTIgNzky IF0gDS9Sb3RhdGUgMCANPj4gDWVuZG9iag02OCAwIG9iag08PCANL1Byb2NT ZXQgWyAvUERGIC9UZXh0IF0gDS9Gb250IDw8IC9UVDIgMTYzIDAgUiA+PiAN L0V4dEdTdGF0ZSA8PCAvR1MxIDE2NyAwIFIgPj4gDS9Db2xvclNwYWNlIDw8 IC9DczYgMTY0IDAgUiA+PiANPj4gDWVuZG9iag02OSAwIG9iag08PCAvTGVu Z3RoIDYzMyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PiANc3RyZWFtDQpIibyW W6+aQBSF3/kVO+nDwQaVAQX0jVs9GgQDY9KkNPGGHJsKRjAn/fcdOcf7iKC2 4wvCZrL2+mbNoGGmjrEACPCcQXyNF4Anv48rqVlrNUBGqNZQAC+Zup5IME2y Ch6SacTUOx6CMGGqpJ5HIuApwwN+Z1jYDW+ouc4Qd20T1MHAtA2f7bqmxxl9 DnPuq+NhlzNMy9E5zTYcXeewrTmcp7tcVyePoIJ/kSmrqIZEJAM2jqY+GkJW h78yrLoON8sgSuGL0ACfjcbLYAaj30m6DpIXvwLxHEbj1SqIZi+wSCCOAkj/ rAIYp6RaIAWTTbp9kMTLAOL0LVgfSRCaSibh8AYib/xYRPMYqnMIZRn60LEc TbW8nxTpIS9Gk7g2b0M3gmQzWcebdEEUjN4mW3ntfRf7QqHZUhpteB+vo0UU HgqOetdVywLsDDom/vRW9dme5Fe4vvp9+xd9XHzL7svkvmXaRDZlqmwgSsN7 PSKPJKlNGp/GEZG+CWZ+pZ0P6VJf18h07eUhziLLgFzmC6NCzoCm8SoM0sJA qfh2c+dgvHCDRqeED8/gdLJartO5uWYKMNmZQI+hQOn+wEn6P5zOsqMoYl52 di6QRn22ikrwOF0P1/NzEXxCqKUUIXSmrkdj9CmvUHhuxIfsj49jOV0gZfbD f4jq0gx6cK5gySF9P6BbBxoNlfRUVEUT1NraQtnfcg3R+wOyqxjDAdcrt83d 8uUKuVa5QJ3Je0aqTlf+AZq4gzZdrp6Vr5099+Er6spjZ1NJVDkny4PQ7kma /FRohZMm0b8krrvyqpFefdam4LqExdku1rH1UNBEnkrPxMxfAQYAXIANPQpl bmRzdHJlYW0NZW5kb2JqDTcwIDAgb2JqDTw8IA0vVHlwZSAvUGFnZSANL1Bh cmVudCAxNTMgMCBSIA0vUmVzb3VyY2VzIDcxIDAgUiANL0NvbnRlbnRzIDcy IDAgUiANL01lZGlhQm94IFsgMCAwIDYxMiA3OTIgXSANL0Nyb3BCb3ggWyAw IDAgNjEyIDc5MiBdIA0vUm90YXRlIDAgDT4+IA1lbmRvYmoNNzEgMCBvYmoN PDwgDS9Qcm9jU2V0IFsgL1BERiAvVGV4dCBdIA0vRm9udCA8PCAvVFQyIDE2 MyAwIFIgPj4gDS9FeHRHU3RhdGUgPDwgL0dTMSAxNjcgMCBSID4+IA0vQ29s b3JTcGFjZSA8PCAvQ3M2IDE2NCAwIFIgPj4gDT4+IA1lbmRvYmoNNzIgMCBv YmoNPDwgL0xlbmd0aCA3NDAgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4gDXN0 cmVhbQ0KSInMlmFvojAYx9/zKZ7kXgwvzNEC6nyHzm04ph502SXHJVOHzrtZ DGDcfftrEQQU5py35VhWCqXN0//v/zy2RYQzQjAgIBMByVUZg8z+1r2aVj1X oY5QVW0AmQtn7aAG4yD6QoZgTIWzKxvBNBBO2fcyUoCMBRnIShAhuey7ltW/ I0avA9ctq2M7Yo+1knHxnd9u9fR2KZk24U9mpyf1LNImplOBCvnFljxFVaSg OpCLzNKZC0ffka+CqPvT5dylIXzB4Ih0OHcf4WH2+OK7wQlbzpvAw9OIP8As AI+6EP5ZuDAM2ceYjY+WIR8IvLkLXvjk+pkAsNaIAkhnIDbjx4xOPDidwLRe h1u4Mvst3bR/FgQ+lRU68qqTJtbOa2oTVkOfzui0uYk9t6W2bpo5yXRH7Nac ypZm/G2dvd0RbWfB6EKbsU00CgMnN9luxh4NZ3TpPjqVZsG2/wOkWor0OQiP QsoXfjvInGBgUAiWI99bMrlc5i46C1fhSZFmKfIaxvIW8gINEJLX4I2eQe6J IzK8BpYZX95B56xjXfeZpuvnWjyAUdxR4jfdeEpXYfcSOxRaASu40Aq56RkD JHF2LIvjZrckwH67Ld1fEembZNhEMiy9dyNFPsnJtI9/XqPUCfVMcgdhYoOY xFt9EI0nuzvcB0VMNzp9HMmSrMwwLSk7n0e3uPYU53QjQ9If0t/vZLlrqqPL 9Haer6aht0jyfMcJ2msFPXIC06s/ONwJWEk66r5kLik+DHxDfaXC75ThjAWS oMstQCS7bSHeYN4ovFEP9wEqTulY9I9L6VcK9jbSErU+Ce52pS5BWpbLR4E8 tlyjbJYvQv+ddP/xD3ewXCyeS/JZ25/P9t1gYDri5f1W5U7oKzjpxJCj49vN QLfWpdJgTYfsF3hPUdcaxae3MiOkYXPo7P+WHdYGvDNIznDFMR6SzWrKez5c JLjXgh+cy3lxjjp5fzrYDhH+CjAAymlmNQplbmRzdHJlYW0NZW5kb2JqDTcz IDAgb2JqDTw8IA0vVHlwZSAvUGFnZSANL1BhcmVudCAxNTMgMCBSIA0vUmVz b3VyY2VzIDc0IDAgUiANL0NvbnRlbnRzIDc1IDAgUiANL01lZGlhQm94IFsg MCAwIDYxMiA3OTIgXSANL0Nyb3BCb3ggWyAwIDAgNjEyIDc5MiBdIA0vUm90 YXRlIDAgDT4+IA1lbmRvYmoNNzQgMCBvYmoNPDwgDS9Qcm9jU2V0IFsgL1BE RiAvVGV4dCBdIA0vRm9udCA8PCAvVFQyIDE2MyAwIFIgPj4gDS9FeHRHU3Rh dGUgPDwgL0dTMSAxNjcgMCBSID4+IA0vQ29sb3JTcGFjZSA8PCAvQ3M2IDE2 NCAwIFIgPj4gDT4+IA1lbmRvYmoNNzUgMCBvYmoNPDwgL0xlbmd0aCA2NTIg L0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4gDXN0cmVhbQ0KSInMlmuPmkAUhr/z K07SD2qDOjOIqN/QtVu6XgjMZrcpTbyhtS1gAGP333dAURDY9dLYxagnmREP 7/OeM6dNuSqlBDDQOYdRBRFA7LWN6mKlWQMJ40qtAdTiqh2vDlMv3IHAm9pc 9V7HsPC4MtuPsAB0yiGgG64IiQtDif5kK2VcwQKWgN5xxQUS7IlTmbcEJDZQ C4zi1LH9pb02Z0apFf6AfozdSH9sa8NHqgy6LFTVnlH89MQ/3dPg3ef7shoE Kq/cPWtdnX9QZY0fBJHCPrqUj2VAxEaYAWRcJCNT2V2sLdP24UOdZWmPLXMG o+Xsj2t6BaMEzhxG3nq1+l2ApQeObYL/sjJh7LPNhK1P1n6w4DmWCY7/w3T3 z3bYh9m+b0t77kB5DgtJgj7c94Ztuad/3+/eC0bqRBRbsBm79tJeZEjVkXu9 mEiyUVQI+4cwEFAUkCgQtsGXOvs+X7f3wjZxwxTRYPXAEaMYyJXvXoYxXE/L cxLQHL1AscFbT1xnzdQyYcQstln4hVamCQTypgmYPkw5o6h9HupUO3KCkLIE PvYGqbEglDpHY5wQIEW/SaRM+snHz/LBUeY7M6hbRyh6RwttoWjy4OE6L4gx K3jTvRV2yp/theDmZzggMs2rXHPUuiXhhPfyueZV9VU0k+7K53pC17bGq5sB /v/lekXbvingc8pVipWrO7Z/XYgzLc/ph3GOaO+qI59Yrzml9W8rN9W43kCM Ud6YdQHkK+as48PYe7HyD+MmzmzaKWm3s9nX/rEJMtiTiPRO0mhG68vPRyWe rXC2E6TGefNYMtUD+wB7PLvdcBZP7vW6Tgp0wF/LbNc78S+czSKBLmrcKbRd yv0VYAAP1lv/CmVuZHN0cmVhbQ1lbmRvYmoNNzYgMCBvYmoNPDwgDS9UeXBl IC9QYWdlIA0vUGFyZW50IDE1MyAwIFIgDS9SZXNvdXJjZXMgNzcgMCBSIA0v Q29udGVudHMgNzggMCBSIA0vTWVkaWFCb3ggWyAwIDAgNjEyIDc5MiBdIA0v Q3JvcEJveCBbIDAgMCA2MTIgNzkyIF0gDS9Sb3RhdGUgMCANPj4gDWVuZG9i ag03NyAwIG9iag08PCANL1Byb2NTZXQgWyAvUERGIC9UZXh0IF0gDS9Gb250 IDw8IC9UVDIgMTYzIDAgUiA+PiANL0V4dEdTdGF0ZSA8PCAvR1MxIDE2NyAw IFIgPj4gDS9Db2xvclNwYWNlIDw8IC9DczYgMTY0IDAgUiA+PiANPj4gDWVu ZG9iag03OCAwIG9iag08PCAvTGVuZ3RoIDY2NiAvRmlsdGVyIC9GbGF0ZURl Y29kZSA+PiANc3RyZWFtDQpIicyWXY+aQBSG7/kVJ+mF2qzKgIJ4py61Gvwo zKZtShO/kNqEwQDG3X/fARYBHaxGbYoJORkP4+F9zhnfLubqGAuAAK85xNd4 AXj6iSOpWVMaICNUa7QAO1y950uw9KMMHvwl4ep9A4Htc1WazyMR8JLjAe+5 MiRXr6NpYHwffe1js6x/nhhYf+qY5YEompU44JNAoMFYV42nAb2pOFwcSnRt 1PkWrkIF/6a7V1ENiUgG/Jz5lehCUQb+yJVtXiQLt7Zui7wit9pglpcuCTZk Z63MSjuzkdBs5TcyXrr65AUPxupx0TSehrcRrWeaq3PwHNV3aZnxJRyK7Xj2 zrFIAB9kWiiZO9YKZpvVq2f5JbMC7hpm/puzt4MSbHxwiQXB29aCeUCzqWSw 2AXhF77rWOAGvyzvsHOah2jejw1Zu1Bdgy3LMIK+Nul2NOPnqWgwIODvFp67 o5JZMCNeQMMSS7fDM0JTaTXasJ97ZEPs9nkRop7Ak2lfpfKGIh6jRnHwKVqX 6bqmjukbJJUea8kCj5DIBp/bIFfJMGKagzkMixiHN432AF1ICylooAzc/Pun mIWIaeBubetypkyWyfv8nSmLz5GUt1BJxGD3O2LI8Q9JnbYMa/iku1LJdweT T4EeDyZ1+fwo5w9OBuqbp6n4wGQR+1/mqPAkuH2iigS5itgJ8rvOUkonr8Nj JysR5gJikqDI5+YpUmOsY/q3n3MoSHo3JgJKHEriWYTGiXkJkwsUQoy5yWDj JfHMoJ10QMahHBU96fVCgxI7FaOnx27lS+RXBgaOPcsZiuwpa6WmxJlvE0fy 7gmuopnsfb0jYTEsOIfuTPNav1lIMyf54xnm1UlpKhmL6Qe30syrcx+uKub+ CDAA9mgobwplbmRzdHJlYW0NZW5kb2JqDTc5IDAgb2JqDTw8IA0vVHlwZSAv UGFnZSANL1BhcmVudCAxNTMgMCBSIA0vUmVzb3VyY2VzIDgwIDAgUiANL0Nv bnRlbnRzIDgxIDAgUiANL01lZGlhQm94IFsgMCAwIDYxMiA3OTIgXSANL0Ny b3BCb3ggWyAwIDAgNjEyIDc5MiBdIA0vUm90YXRlIDAgDT4+IA1lbmRvYmoN ODAgMCBvYmoNPDwgDS9Qcm9jU2V0IFsgL1BERiAvVGV4dCBdIA0vRm9udCA8 PCAvVFQyIDE2MyAwIFIgPj4gDS9FeHRHU3RhdGUgPDwgL0dTMSAxNjcgMCBS ID4+IA0vQ29sb3JTcGFjZSA8PCAvQ3M2IDE2NCAwIFIgPj4gDT4+IA1lbmRv YmoNODEgMCBvYmoNPDwgL0xlbmd0aCA2NzkgL0ZpbHRlciAvRmxhdGVEZWNv ZGUgPj4gDXN0cmVhbQ0KSInMll2PmkAYhe/5FW/SC7VBZQYV9Q6VWoyChdl2 09LEVdHa1GEDmN3++w6oKwj4uZpixHF4MxzOM3OGFuHKhGBAQGYcEkoCBoF9 1q1atdSogIRQqVIHsuTKba8GEy+sEMCbUK7cNRHMPa7I6gUkAplwApAXLg/b oy33+6AZRH8gVt74rJvE4GUrr6KaVQgbGG0aorjtqWx7hG0jKIYC+c1GL6IS EpEEpBO5S3igsIJ85PJzQaRjpzRrikioiU2w8hOH+gu6sqdWoRkZCFfr8YHM h5bBpKqasi9ab7f5b10SfIe82TaCxoD/wg/kIa+ahNcMxTyucX3gN6WyO18t berDB4SZTPq0tKcwWkxfXdvLWQVwZjCiru+s/BwsPHCoDf7fZxuefFaNWcF4 5QcXPGdpg+P/st23oXd1zGH4saAzB4ozmEsSDKDb11ty3/yZtAzXcENqwsuT Sxd0ftCs/5VtUPauRGMDJjjG3YkQFXdE/3j+dUTj5lzIFlQK3mrsspsv2H1H dDx13GmumTILqo16ZW8W7LkQ0if6sKswS9XAK4azF9AcyI/BX7RufAr7Jdbf VzSmNmpZ+hJBKU8cwS4ifBx7lka1E2rbSFQDeVpw6rMZwTp2Eg8zj69dHFL1 nee5fTrVVIbJ+ZRKNcObG1NLsyR1YWYROoj9ClaXJW7tXakFY5+SrqKAz0nX Vkc3OlY+lp1484uq+zmLcTRwtY1tpkIuTFiG6ryE3chtsbNi8F9lxug7z6Dq YdI+qrq2jtuEtMsitpG5Z66T7e4Jm8Y39mg3oJq0DqWsthOoZkyPO/DNfhXa 2zjPx3rFq1Biu3R9JieXlmUHIzhz2d0ljKti/bTtMqamlwzg3rEAztrP46t4 68Otts/MIFYI90+AAQBLMj7+CmVuZHN0cmVhbQ1lbmRvYmoNODIgMCBvYmoN PDwgDS9UeXBlIC9QYWdlIA0vUGFyZW50IDE1MyAwIFIgDS9SZXNvdXJjZXMg ODMgMCBSIA0vQ29udGVudHMgODQgMCBSIA0vTWVkaWFCb3ggWyAwIDAgNjEy IDc5MiBdIA0vQ3JvcEJveCBbIDAgMCA2MTIgNzkyIF0gDS9Sb3RhdGUgMCAN Pj4gDWVuZG9iag04MyAwIG9iag08PCANL1Byb2NTZXQgWyAvUERGIC9UZXh0 IF0gDS9Gb250IDw8IC9UVDIgMTYzIDAgUiA+PiANL0V4dEdTdGF0ZSA8PCAv R1MxIDE2NyAwIFIgPj4gDS9Db2xvclNwYWNlIDw8IC9DczYgMTY0IDAgUiA+ PiANPj4gDWVuZG9iag04NCAwIG9iag08PCAvTGVuZ3RoIDY3NSAvRmlsdGVy IC9GbGF0ZURlY29kZSA+PiANc3RyZWFtDQpIicSVW4+aQBiG7/kVX9ILcYPK gIJ4h8oaDOIGZrMmpYknoDYVDOBu++874BE5rNbtFhMyzgwzL+8z70cXUw2M OUCAHQqxdZYDlvx2LaFVl5ogIlRvtgGvqUYvFGARJjNYCBce1RiYCNyQqpH5 LOIBLygW8BtFuyzvzf260+FaUrvZgbdZ4K08twNV/INMqaE64pEIuE/RcLp6 sqYBHj8NFGzRqqGYjGzRQ8GqMiN5Ev9Fu8Zj0i+Sfk3RrWqyKH5ILZVc6Gw7 rtVOtjsq41GLb3fAohe+F628rb20qu/ou1A4jCWp/UTZXuAwFqfHN83EcUe5 QADuOCYH7nZtexF8EcB3YBr5G9eOKrAKwfdsiH5vbJhFRC9HFpxvo3gg9Nc2 +NF3OzgbR2T868pzfKgd1nbAFUUYwUAbd2XN/FbmCyfwrHgdscQN3cDkXS2a IFF5oo1JGixpqD0dx2YQk8hNwZc0E58KvEHH/jNgTZHPBZZ63HzuGuNnrOrK UdpIfmJeBniUVZSmdxKU9iaL7QAubcwJISIyvdnaXsJ0PdtUCJEYqRdEP8Mb kR7e7xJtLtKUX3kgU059GL6DWzmBSWXw4NN/QZqfv6IEHvGtlr8CO/xLgtmj lBvTknhmLPs8qneGsuBQfGA8cyt0CVXpRJVAvI9qvPL1LFOWgepBuJ0H/pYY ZsPUsYkWp9IpK8pIQujKonxucNdQ5D4hP2H0CTFTNkq/RfmAebF9RUR3p26/ H2Y0ntEfVU3Z71dWTt8rpAmgeWDPlv/wW5h65TyzC+tRkcVlNfHc7KLKSGxv 3Wi72TPiqHRl80FM2Z/FnRePT7I6bUxhKsLXTCoyJiGJFbirQb0YKr4zC01J YG8pdns8u50LUpFfxXaAFEz9EWAAn+PnLwplbmRzdHJlYW0NZW5kb2JqDTg1 IDAgb2JqDTw8IA0vVHlwZSAvUGFnZSANL1BhcmVudCAxNTMgMCBSIA0vUmVz b3VyY2VzIDg2IDAgUiANL0NvbnRlbnRzIDg3IDAgUiANL01lZGlhQm94IFsg MCAwIDYxMiA3OTIgXSANL0Nyb3BCb3ggWyAwIDAgNjEyIDc5MiBdIA0vUm90 YXRlIDAgDT4+IA1lbmRvYmoNODYgMCBvYmoNPDwgDS9Qcm9jU2V0IFsgL1BE RiAvVGV4dCBdIA0vRm9udCA8PCAvVFQyIDE2MyAwIFIgPj4gDS9FeHRHU3Rh dGUgPDwgL0dTMSAxNjcgMCBSID4+IA0vQ29sb3JTcGFjZSA8PCAvQ3M2IDE2 NCAwIFIgPj4gDT4+IA1lbmRvYmoNODcgMCBvYmoNPDwgL0xlbmd0aCA2MzYg L0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4gDXN0cmVhbQ0KSInMlVuvmkAUhd/5 FTvpg3iCyoAC8oaXYzhBNDKmJqWJN7Q0FU4A4+m/7wzeZcRjbUwxMTgzDGuv b/aygbkKxhIgwAsOiWVRApF8tndKrVyvgopQuaoBXnGVZqzALE5XiBDPAq7S cRAsY65E1otIBjzjRMAbjjei5XrlBQl8QRAuYBxMN5GfFMCPIQw8SH6/ezBJ wOUltwjTdUIn4nDlQZj88KKTeUTmv/nBIoRSEf8ku5dQGclIBdzi+AUsVRW6 0LF6DcNyvgNdgl84finKwTQsL3RUFxVJh80kCvxgqcNxD6mmpXvA/nKGjUFv iE27DXbj68DELm+OBHskmC1jQFRkXw+MC2U1yNW6KuqkllkYJH6w9uZuUT8s OzzZNCzr8GanORC6xqhhOC+qYL+aVnun4OyR9JIYRf0v9oMZQLyeRuGaFO7B OAnfZ6v3gp5dKdXqde0CVKbW1CLc6ze7fQKnNewLb4O2Ixgu/6a4RWoY/Ym2 N6/puErGrbZ9xi+D/oLeeZVnHKu3OZ6cozOpJtVmtlKJO6UmVWnTL8vBdOCo NMv5lDadPTKWiaZgsvLmMPbnH5EXF8gmFPvO7s9iP3VoWzvzIDCxX/HsOVjZ Zl1pRTbC26HwAMzbscHCqh6x/oqTx7DSnT8P81YPL72koDOOyyl2rcqMXYYJ e/ydNo3cx8mzuNdEWbu3dY967gR9PV/O03rvxRG5lNPJ1PQnIWfhu3D6EWj5 LuVn8JNA3hO/Sk6f3gvtH8cvo3eJQvb/r6bJecj3wIlTLl9CD/Uos0ORrOQm s5qXzKmqZ4RyXodSa5/WoVlcV4z6e3B5Dt2FsI25PwIMAHCcKa0KZW5kc3Ry ZWFtDWVuZG9iag04OCAwIG9iag08PCANL1R5cGUgL1BhZ2UgDS9QYXJlbnQg MTU0IDAgUiANL1Jlc291cmNlcyA4OSAwIFIgDS9Db250ZW50cyA5MCAwIFIg DS9NZWRpYUJveCBbIDAgMCA2MTIgNzkyIF0gDS9Dcm9wQm94IFsgMCAwIDYx MiA3OTIgXSANL1JvdGF0ZSAwIA0+PiANZW5kb2JqDTg5IDAgb2JqDTw8IA0v UHJvY1NldCBbIC9QREYgL1RleHQgXSANL0ZvbnQgPDwgL1RUMiAxNjMgMCBS ID4+IA0vRXh0R1N0YXRlIDw8IC9HUzEgMTY3IDAgUiA+PiANL0NvbG9yU3Bh Y2UgPDwgL0NzNiAxNjQgMCBSID4+IA0+PiANZW5kb2JqDTkwIDAgb2JqDTw8 IC9MZW5ndGggNzI4IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+IA1zdHJlYW0N CkiJzJVRj5pAEMff+RST9EFt9jwWBNQ3VLyYIBjYSy+pTU4Urc25XABr+u07 cKig6GHTtIcJgzAsM/Ob+W+PCfeMSUCBLQUqNkUJRPy9XalKs9MCjdJmqw1s I9z3IxXmUeohQjTnwv2DS2EVCXfoL1IZ2FwQge2EOuwP97Hn2I9sZBnA7InL nGl95BguGQ2eEjPWU4O3hsRKTia64A3TsKYNaLAfuN4dbVKZasAGuXVzh5T6 sc9CXQ9X243PY/ikwrTOZxt/Ac8vURz6UQ2XC5bwHAev+L8G6wgC7kP869WH WYzeEjp42zh5EAUbH4L4ux/mIpCUdhrB8Q2Kb3xd82UAd0tYaRqM4cG0e7rp fiuJfCXK3Auayy6MOERbLwy28RojeOZeFPthrXvI4uCptltaF3azkK/56vj8 JP2+bppg9VxmYG11LC9mQhIrZ7aVWSWzKlpzaCUsGpcWTQ9akv4hOFlpi0oX yzAPOCay9RfTRvcasVwn7KNlxCVDyxzbxO07ZGybVs+uFloZc+XIfBO8YJR7 5lmFb2GerHwr6bMSnZMO/MWsVlalwzuSKLXEa9BzZRwaVs/sIVGsXiWUhe6S VbnTuQJQUk4Apo22/yarMJ5lkGhKZOlz78WrTKSUxH7tUiKFTE85IAS8rHWv saMdSk+Hr0pjO4Y+QCJPxHpCjdP/iIvSEUu5FBbJxv7te0YimMQajkyjwOWM YY5LMZtTQtwL/dniXxGimiRJ70ldmrEx0LHWmDGzWapmNFO1KqqXWA1tCfhL aC6MKUJqye9DyrVGIXCDuJbzQHCYkvMkPad3jAHugUZ/QoyhOSA3SyCVcvve OopnewnMWv4DbXvRT+7v4rJtj3ZE9WozFAbuizNiNw9ccTqOVDWR3rSnZUP4 FgMjplyYwfMYLisi93bhujqgv6yIqMdHGBeK8x8VURPlCsNWUMQzGB9eEA0m /BZgAKFl65sKZW5kc3RyZWFtDWVuZG9iag05MSAwIG9iag08PCANL1R5cGUg L1BhZ2UgDS9QYXJlbnQgMTU0IDAgUiANL1Jlc291cmNlcyA5MiAwIFIgDS9D b250ZW50cyA5MyAwIFIgDS9NZWRpYUJveCBbIDAgMCA2MTIgNzkyIF0gDS9D cm9wQm94IFsgMCAwIDYxMiA3OTIgXSANL1JvdGF0ZSAwIA0+PiANZW5kb2Jq DTkyIDAgb2JqDTw8IA0vUHJvY1NldCBbIC9QREYgL1RleHQgXSANL0ZvbnQg PDwgL1RUMiAxNjMgMCBSID4+IA0vRXh0R1N0YXRlIDw8IC9HUzEgMTY3IDAg UiA+PiANL0NvbG9yU3BhY2UgPDwgL0NzNiAxNjQgMCBSID4+IA0+PiANZW5k b2JqDTkzIDAgb2JqDTw8IC9MZW5ndGggNTIyIC9GaWx0ZXIgL0ZsYXRlRGVj b2RlID4+IA1zdHJlYW0NCkiJzJZdb6JAFIbv51ecZC+qG8SZoYh6h9U2JJQm Omab1E2qMrBs4rBhQLP/flHXBuSjtmbJDjeEORzOO8+8cxgx1GWMAgHmIYJV TAGn1/Gup6uDWzAIUW/7wDaoeyd7sJaHCAxyLVD3YUbAl6iTxmOiAVsjDGyH Wj7WxCpUvSFYAmSyisIkDgSHV7kVfOfdDKHNfqaxHaISjRjAxpl3yAD36BB2 y0gEwj+Gsq+oBacxm4+mT3NmORNwRt+mFlu0rGfFeVassTldtDO5qd4/5IaS Qepq0AyskyEsWutQpJUn3F20Syq5M237rYZ7xaaKc2/Zk7815EIPg749NyM/ 2XARwxcCoQevYrWLgvgGAglhulDx718clnFaAE2TrZJ4PyHDDYcw/sGjzDxJ 518C4YXQKer2wDcMeIQH+2lk2rPvdZLPUXk8g2pfcgYQIcbFgKYTc1wCqLg4 RSwnGVksvUEplryoc0DHGq4EFPGlez2gfe4aLFR/B4vcxtxdNuCgekC5DZFi 6Rs1WAo2zPmGKbaWw1LBsiEHVQLKSS66pYClgLLMNxVar3fQGSCC9YuPs+P3 KrCUH6m0REzjDqoFJLc88MtPs6JZKqRe3njKN28dH0o/2G7mijO2Hi86z/L7 8d+2npPyz1ioklBj/abwG0C0z/ebDxD6vzuO6/Im/tkmDP0RYAD/06vDCmVu ZHN0cmVhbQ1lbmRvYmoNOTQgMCBvYmoNPDwgDS9UeXBlIC9QYWdlIA0vUGFy ZW50IDE1NCAwIFIgDS9SZXNvdXJjZXMgOTUgMCBSIA0vQ29udGVudHMgOTYg MCBSIA0vTWVkaWFCb3ggWyAwIDAgNjEyIDc5MiBdIA0vQ3JvcEJveCBbIDAg MCA2MTIgNzkyIF0gDS9Sb3RhdGUgMCANPj4gDWVuZG9iag05NSAwIG9iag08 PCANL1Byb2NTZXQgWyAvUERGIC9UZXh0IF0gDS9Gb250IDw8IC9UVDIgMTYz IDAgUiA+PiANL0V4dEdTdGF0ZSA8PCAvR1MxIDE2NyAwIFIgPj4gDS9Db2xv clNwYWNlIDw8IC9DczYgMTY0IDAgUiA+PiANPj4gDWVuZG9iag05NiAwIG9i ag08PCAvTGVuZ3RoIDUyNCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PiANc3Ry ZWFtDQpIicyW226jMBCG73mKkXoRUiUEOwca7kjCVkgslYirrVRWagKGUm1M xaHRvv26iVKFYKendFW4QYyx55/Pv4cJUXqEYEBAYgXpmo5B5/f2aTTUxgMw ENIGF0BWSm9ajCAsNiN0KEKm9C7nCJJC6fLxOuoDCRUdyFpRQXAhaJMHHu8i DfWRAWSmqIneZ8tMi82+gYZjEwI1zFiZsopGQdvcfEDO96abWq4L3uSX75BA nU/9jmt7He+H49pBe296PLzYTF9PAAsSsPKkWlFWwhmCLIY7tlznadmCtICM USj/PlJYlDwvzBdYVuVzoMhWFLLynuZ7ccTjtymLM+juso4hMQz4CZfu1cRy 579f5LyoBodBUS3zrOKaKdzFNIpo3DKbI9EYIcOE9SJnKUvMY1rn1xP/6po4 ns0r5dvWLFCdm45303Fmll8r064Iclq1HDgj4+2MtiuLGNVGN8js9DTJ5HQR fZ5MXfr7GRVPUfwnEjPSR/iAUU1rjcx2D0vI4OFrZOQ+Gp/CRzJGz++/yjN1 /kIyEtUCH0kZNX0kZyRxT7M4TTI7gntkMBKTkZjxwz4SMzqNe6TnWh3eMfeE jy2R7tPa6Diig2MND/QjYBoH7BubkPh0/Xobfbj1HIBp7GB5D2pI/byLDhGN 0H/oPLJ/gu/SeZ5YFX7fzoPf8XcgN49NlH8CDACJBKg4CmVuZHN0cmVhbQ1l bmRvYmoNOTcgMCBvYmoNPDwgDS9UeXBlIC9QYWdlIA0vUGFyZW50IDE1NCAw IFIgDS9SZXNvdXJjZXMgOTggMCBSIA0vQ29udGVudHMgOTkgMCBSIA0vTWVk aWFCb3ggWyAwIDAgNjEyIDc5MiBdIA0vQ3JvcEJveCBbIDAgMCA2MTIgNzky IF0gDS9Sb3RhdGUgMCANPj4gDWVuZG9iag05OCAwIG9iag08PCANL1Byb2NT ZXQgWyAvUERGIC9UZXh0IF0gDS9Gb250IDw8IC9UVDIgMTYzIDAgUiA+PiAN L0V4dEdTdGF0ZSA8PCAvR1MxIDE2NyAwIFIgPj4gDS9Db2xvclNwYWNlIDw8 IC9DczYgMTY0IDAgUiA+PiANPj4gDWVuZG9iag05OSAwIG9iag08PCAvTGVu Z3RoIDYyNCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PiANc3RyZWFtDQpIicyU XY+aQBSG7/kVJ+mF2KAyKLJ6p0gtWcQNzCablCYqAms3DmaAmv77Dq4iKHTX dNcINzOZj/ec88x7hphrYSwBAuxzSGyKEojsfx115WavAwpCzc4d4DXXUqMu uNFuhwiRS7jW2EYQRFyD7RdRG7DLiYC3HA+FT4I6/sVWGqiJ2kgBPOL4AQ2S tUdi+IIg9GFGFlu6imuwiiAkHsR/Nh7MY3B4yanDIonThShcexDGzx7NrSO2 /mNF/BAaqQr+yvE+BIoCExgb0+HAsH/m5CX5bicfiG2yCJt+H3QCUbKgYRKv mO7M936TxK31S0LOzqAeQkoftnNKViR43ZrqZgnbj0Nr+oh1UwNzaGmDkcPr T4L5JOijgcXiPTuQ+1C2mum1FanH9BzeDQmLMvGWTr1fklR2hzowjEzZVi3B 0EzB/KYb2l68mFgZrTSAc0bUmy8/kVEh61MyEY3d55daWeLZGUWWT7hUZrqr kW1h9fu9w6tTS3N4czRx6sJ+jI9DOzdUrePEMu+d+j9wlqJso04pyqoHdAhx NBGwYAspTX0nXKhDGcj3mE9moZD52lvCbEXJS41dm5Le1/oi0ockTolfTpou Nx5d1/rnO5UuKuV75oA9X2v0oFmTjG850101D5OBpebewOSBTd50TAXpDpIv In0INsWcIhZ0FoygsyAEfWqNBUO38RvNQyp5FEfY7XLY+3JfDLtYksuxn8M8 SeuDEVZbtKKbVCOseA2fAbPYiDs5hHPq/i/Cd/u1qt9W+LGq314D5vVc+JHN N15vrgbzxl2o3LwLuzlwIQ2u7kLl9l2oYe6vAAMAd+AjTAplbmRzdHJlYW0N ZW5kb2JqDTEwMCAwIG9iag08PCANL1R5cGUgL1BhZ2UgDS9QYXJlbnQgMTU0 IDAgUiANL1Jlc291cmNlcyAxMDEgMCBSIA0vQ29udGVudHMgMTAyIDAgUiAN L01lZGlhQm94IFsgMCAwIDYxMiA3OTIgXSANL0Nyb3BCb3ggWyAwIDAgNjEy IDc5MiBdIA0vUm90YXRlIDAgDT4+IA1lbmRvYmoNMTAxIDAgb2JqDTw8IA0v UHJvY1NldCBbIC9QREYgL1RleHQgXSANL0ZvbnQgPDwgL1RUMiAxNjMgMCBS ID4+IA0vRXh0R1N0YXRlIDw8IC9HUzEgMTY3IDAgUiA+PiANL0NvbG9yU3Bh Y2UgPDwgL0NzNiAxNjQgMCBSID4+IA0+PiANZW5kb2JqDTEwMiAwIG9iag08 PCAvTGVuZ3RoIDg5MiAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PiANc3RyZWFt DQpIidyV8W+qSBDHf+evmOQu0V626oJWa/J+WFEb8gANbC9Nznsp4qq8yGIA 77X//Y0oFn2Kbe9yP9waWGVnl5nPd2bscaXOuQoU+FyhjVpDhQZ+dt/uWrX7 JrQprTU7wEOlrid34CeZRQMSXyr1B5fCIlFu0b5BNeC+0gD+Q6kuGpqcRrV5 V2s3aasLk6ofyTSQGzGb3HThhn9Hw1taoxptA+8rVciH+9hzRo/csAfg9McD x5pUOXGJ4dhficEcnRjcGhNj5DwQ03D55CY7jP9WOKIw1MKr1FYnexWLF5tQ yBR+aaNf0gvFDJ5XQZJW8LBoDs/xbC3isAJBApEUkL6uBXgp2qpoMN2k24Uk CgVE6VLEu/WfI8p2UNzxRyDnEdzOYdFugwUP5qjHTPfPg98HVmBISDbTONog KQHP8+BlFla6Pxs2Oy3ahR9eLAO56J4DoDPThKHx1Ed8fYtwwiZVQ5vcZHNn P9P9rO7n1n6+x9nuGxaxe8wlZwieUqZnwn/LgHutSc9mwJHPBd2Lfv+O2g/w RomrEouNC47ZNhsRc2iPHWLglndlwnb1Tf/Om/6ht87l32H/pPo5onepf4HY aR7I7/65LKD3lLbL0qCA1O45A9ZHbZ+I/USMPnOu4KJHMZ042GyoWucjRZ2l Y+4D75nE1Ig9NMzBRS/OyUUzeeQ0Ft7sY/qcqpGfXaJKLuTl6vS9SKwq5+Iu glJLK3VXpzobDcxJdag/kKHey65dhme5zvjIci+ComfaA23dlfXcXM+ztXfw BYvL1bG0trcL3lxQ+4qM2lvVBYkfH8pux/PDdbc9/J/32oW3wYVKtywDmmqz gVzLQh97MUaWon+TquW9sDT80h8MLfbEuEXwAV+7X3bPr9Tffnw7GBnyL28V zGAm/BW+JA0iucUWxRCLuYiF9JFZBMlrOI1W8DwT89B78VJsZBmcbzs4QRp4 q9UrJELIY3poUJr+2+DvPhS8MVrvgzdG4/8k3CBafzrc08pVm5SWh6tHYYhe 1a1oVQebpVGYEENfevGCWJtVGqyxWAZYOnhtJy8JcJ3JPDHwT/Y9SK6PT0ML PFmCCxfycwu4jhsNQlKPIJ22ll8B237ymAiCEevLRSF4fVLVyOGXwVL+ui4s s1RfWtYprGsd59MssFL85eL/huPfouOXgykAGXDlbwEGAEasNrsKZW5kc3Ry ZWFtDWVuZG9iag0xMDMgMCBvYmoNPDwgDS9UeXBlIC9QYWdlIA0vUGFyZW50 IDE1NCAwIFIgDS9SZXNvdXJjZXMgMTA0IDAgUiANL0NvbnRlbnRzIDEwNSAw IFIgDS9NZWRpYUJveCBbIDAgMCA2MTIgNzkyIF0gDS9Dcm9wQm94IFsgMCAw IDYxMiA3OTIgXSANL1JvdGF0ZSAwIA0+PiANZW5kb2JqDTEwNCAwIG9iag08 PCANL1Byb2NTZXQgWyAvUERGIC9UZXh0IF0gDS9Gb250IDw8IC9UVDIgMTYz IDAgUiA+PiANL0V4dEdTdGF0ZSA8PCAvR1MxIDE2NyAwIFIgPj4gDS9Db2xv clNwYWNlIDw8IC9DczYgMTY0IDAgUiA+PiANPj4gDWVuZG9iag0xMDUgMCBv YmoNPDwgL0xlbmd0aCA0NzIgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4gDXN0 cmVhbQ0KSInclt9P2zAQx9/9V9wD0lJU0jhJKeOttIB4CBrU06SRoZlgp5li O4sNrPz1OOHH0lG2rgraivPgy/mU3PejO9t7BPUI8QED4Qh7rueDZ597a7vv vg9hgLEb7gARqDfS25DoOsIDnUjUO5xgSDXasvEeDoAkyANyg5zUC+SFcvlu 6IfY3wXokG92aQu7OMADIGPkwMPYADje0x816w6NGE3T2InoD2vGne4odoLu 09vR0JBZ0VgemtE0ihqO+i9k8+e3lxrnjeT8/k6d3JG8pnl2CZcsyWlJTaYk KA6qhJJxVjKZMDAK9ExcqBy+ZtSYWfEOqIHYOY87cJbJzGQ0z2egGZPVwnMC deiXp6QXMmuq+eek2gdHTTIVok1wwWJwVvan1DQIWEbPHKQ4nXcclOkfoLXC QNykZo0Z/LYsBiv205tC0n7jVDtOUb5ZQq9SUrxM2wQWLgZm1Z8y3VB//MFE KrfTuJ6uBCkmXWuOr0SFalLI199jrPqS6bVUv3KZrApKF7JNUP2X+urzPudz Z/RJpMSc4/CAJr822iR2/Oqkr6xlymWlZqHmlnG+1hQWlkYV89covgu19A3l kXcDxTyj/wpKe4xSTpN1ZbRP0J0AAwB8J4AvCmVuZHN0cmVhbQ1lbmRvYmoN MTA2IDAgb2JqDTw8IA0vVHlwZSAvUGFnZSANL1BhcmVudCAxNTQgMCBSIA0v UmVzb3VyY2VzIDEwNyAwIFIgDS9Db250ZW50cyAxMDggMCBSIA0vTWVkaWFC b3ggWyAwIDAgNjEyIDc5MiBdIA0vQ3JvcEJveCBbIDAgMCA2MTIgNzkyIF0g DS9Sb3RhdGUgMCANPj4gDWVuZG9iag0xMDcgMCBvYmoNPDwgDS9Qcm9jU2V0 IFsgL1BERiAvVGV4dCBdIA0vRm9udCA8PCAvVFQyIDE2MyAwIFIgPj4gDS9F eHRHU3RhdGUgPDwgL0dTMSAxNjcgMCBSID4+IA0vQ29sb3JTcGFjZSA8PCAv Q3M2IDE2NCAwIFIgPj4gDT4+IA1lbmRvYmoNMTA4IDAgb2JqDTw8IC9MZW5n dGggNTc0IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+IA1zdHJlYW0NCkiJ7JVd j5pAFIbv+RXnoonasDIDiMqd7tKtiYBRtm1SuxEQ7bQwGBh367/vyKpRF7Fa 1950SPiYM5lz3uc9GdqOIDmODBiciYBRFcmA+PXyptWqTRXqGFfVBjiRIN2m GvhptgJB6lNBuh9gmKbCDV+PsAKOLyBwnoUynDkeoeL84Hvc4CpWcB2cO6Hc oU9uSMYwDvzQTVxGYgrxBOIEkmASJAH1A2AxpIvIi0MYEZexWVoCl8Gw/Dis wFdCCSNuGC4gDQK6DCyTOO+Fcrbg21ZOudbIck6RQr24OtFVWcWaDjllrUt+ B2AS356xYdl0f7VYxFOu93+lbDl5op6I+PGMXVJPvVAP3MZRxEuSOvZMAn7L dC2fubouIZHEs0vpk1ETqTo8uwkldKoX6rRN07Ykq31vWFLfeBgY4kOvZ/TF tv2xL94Zlt0TP9h986BqvIls41WwzoX4MWWEzoPxsKK/3uCk1Gule+Wvhpwj ceWgF8b+TxhRbxrQEpAUZATeggUpEAphQKfs+wt1zKl7cwayuopns/KW4RuB DVnbo5svrNvuSlbX+Cxan1pdkX/xLEg0W1/arYFYK2glfKR7FS0X7zGPC+tR C+qRN5F9qqEXZlRVxEejmKwib605he4B80/jfABOcRvncz7D7eN0d91+G867 DK7dz39IdxfEmZyL3f7H/fwXdIvPQVzk8pX7+f9pcY3TIv9f96anBXQopHMv iedcZwCjZE55oKTnMdHU5p47hiP8FmAAaNHYogplbmRzdHJlYW0NZW5kb2Jq DTEwOSAwIG9iag08PCANL1R5cGUgL1BhZ2UgDS9QYXJlbnQgMTU0IDAgUiAN L1Jlc291cmNlcyAxMTAgMCBSIA0vQ29udGVudHMgMTExIDAgUiANL01lZGlh Qm94IFsgMCAwIDYxMiA3OTIgXSANL0Nyb3BCb3ggWyAwIDAgNjEyIDc5MiBd IA0vUm90YXRlIDAgDT4+IA1lbmRvYmoNMTEwIDAgb2JqDTw8IA0vUHJvY1Nl dCBbIC9QREYgL1RleHQgXSANL0ZvbnQgPDwgL1RUMiAxNjMgMCBSID4+IA0v RXh0R1N0YXRlIDw8IC9HUzEgMTY3IDAgUiA+PiANL0NvbG9yU3BhY2UgPDwg L0NzNiAxNjQgMCBSID4+IA0+PiANZW5kb2JqDTExMSAwIG9iag08PCAvTGVu Z3RoIDc3OCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PiANc3RyZWFtDQpIidRW bW/aMBD+nl9x0iYBVQoklJci9UMIFEVqQgdGe2OIEJyQidgoMWv59zte2hIa Au3YpF2EHOyTffc895zTIFKBEBUUIK6kFPNFFYr4bN4q5fz1FVQVJX9VAxJI BT2qgBOtPYoQOUwqtHsKeJF0if5FpQTEkYpAHqQsvJiu3d1Bt29Zjc4gq3e6 Ldlqd4hsdO7lomz0LYM0ZUPvWKQ7yEGO/MQdLpW8UlKqQJqxndamrH3IhZT1 iiU25nm3fqVWKpU6DLIOZ8JnCzoZ5Oo7W6nlWnyrXr/R7fSJYbXigZkts9P9 ug7NaLas3jvCW5n6HKIWeouAMgEfShgeswM6gZHP5xnci7swChcMU8iAHwFn FMRyTsEW6Kqiw3ghVgsRDyhwMaXhZv1p77Wfgn7ffeZyuHTBq1bBhPZdp6Hd 9X68xgkMBtFiHPIFokRh5FKb+yyTBNUOttVaqQ5pmd/bISYmML5B1rQfNRHd NFu3pvZFI6aME2Teu9nMbxFcBZWE29aGz04G+2XP/AlMqDPDQ4TP2Qo2HkJI XRpS5iBmHKJlMOYzGE2oG9iPtggyGxCHG3B84duz2RIiSlkcPXT4cST56nV6 8gYT1MPULUwP62Rqh55sLmbCn8uWhqXewN9qsCMf1zWGr1E/ovIpQKRYogqq tatEFcSO0XkQIIwFk88KJ0f9ROwgJ8fwOqyBE01NwPaNrPs2y7yIZp9vXHiC YK2WBFmsgFO3LMeg6lJ7dlEDTQT61JN1WRP61DRxCD57AodvLdfF4ZPJAxza t7aT1nRizMUzjoVSPsrhR4BtFW1C22FHH2RL8vM/QxNkOd9Z3mSwz2ZyGarv lSEK0Jl6xzmJF9EOOyngnJOnFPUdkFcyNcl8n5uk49fOedhz0olLE1E5gZy/ A8MhcaXa8By9RuAdnHK9xNrN8J+2myOF8d/0ndPtDzqUMw2CN98acaQTCT2g 0vN3qD1eX1VY8vfwHpub83doQeJeTZB5Nz5xG3onfw+c4X7H6+TBE28mq0Wk 3wIMAGv8UbAKZW5kc3RyZWFtDWVuZG9iag0xMTIgMCBvYmoNPDwgDS9UeXBl IC9QYWdlIA0vUGFyZW50IDE1NCAwIFIgDS9SZXNvdXJjZXMgMTEzIDAgUiAN L0NvbnRlbnRzIDExNCAwIFIgDS9NZWRpYUJveCBbIDAgMCA2MTIgNzkyIF0g DS9Dcm9wQm94IFsgMCAwIDYxMiA3OTIgXSANL1JvdGF0ZSAwIA0+PiANZW5k b2JqDTExMyAwIG9iag08PCANL1Byb2NTZXQgWyAvUERGIC9UZXh0IF0gDS9G b250IDw8IC9UVDIgMTYzIDAgUiA+PiANL0V4dEdTdGF0ZSA8PCAvR1MxIDE2 NyAwIFIgPj4gDS9Db2xvclNwYWNlIDw8IC9DczYgMTY0IDAgUiA+PiANPj4g DWVuZG9iag0xMTQgMCBvYmoNPDwgL0xlbmd0aCA1ODEgL0ZpbHRlciAvRmxh dGVEZWNvZGUgPj4gDXN0cmVhbQ0KSInEllFvmzAUhd/5Ffdh0qCiBJM0sLxl SVv1IdOaWJq0MWmUGMoEhoHTrvv1NWHZgDgkkER1Hq5lLHN8Ph+Tj1jqYWwA AuxJSNd0A3T+K3rDK+3DAEyEtIEFOJJ6k2wIbraeoUPmUql3u0DgZ9Iln6+j PmBX0gE/S7Kv9+lDrHmjgWFa+ghAwT/5o0ukoT4yAU8lGf62dwB3Y/bFZyov OJnn5Sb18zInmfrpM5vFIS/TdVlFOFmovDtdRfmURULV9eL44v+SvKHSG40r a/3GiqjhCGzZjSkL6IosbWXULHHMIi7RlmfO7zHLbEUtNFcHuPrqAN9HaUCk s9aMf3Pu6JMTBktYEjd0UocFMYXYgziFlHgkJdQlwGLIXqKHOIQfgcOeffYe HMa3ZdgKfAtowAInDF8gI4TmDzZL2zKyle/7DHoLahV4+bMDkJWXOCWoqjW7 kQkJVk1rz5IlaWuWW35tCNYcOgW3jTlmszlIYMYbIm3O3iFcuyXTS/39NKvn bSujQvvOSPgQr3bk1Gy4WutHplDLhZVY7Zcozmr9jjqSWkqy02VQfJucNI2C 7XdtrcBuH75jcXbPqSEwuz35LKGH5nVjetMZMAQphTlxwgsrv9smj746Ucds 8jibqcVdx8vXa8/j5X4WR7zc3jhuW2uQIHYVXVbbv0C5phKrQl1lINdZv5cX 3EaVD+U9MeDOKXXYH+J5x6fUqKW0FqSOrI6J5Y4EipFtfS/PBarWDIFprQn+ iuLoHGm7xtKrAAMApFpTaAplbmRzdHJlYW0NZW5kb2JqDTExNSAwIG9iag08 PCANL1R5cGUgL1BhZ2UgDS9QYXJlbnQgMTU0IDAgUiANL1Jlc291cmNlcyAx MTYgMCBSIA0vQ29udGVudHMgMTE3IDAgUiANL01lZGlhQm94IFsgMCAwIDYx MiA3OTIgXSANL0Nyb3BCb3ggWyAwIDAgNjEyIDc5MiBdIA0vUm90YXRlIDAg DT4+IA1lbmRvYmoNMTE2IDAgb2JqDTw8IA0vUHJvY1NldCBbIC9QREYgL1Rl eHQgXSANL0ZvbnQgPDwgL1RUMiAxNjMgMCBSID4+IA0vRXh0R1N0YXRlIDw8 IC9HUzEgMTY3IDAgUiA+PiANL0NvbG9yU3BhY2UgPDwgL0NzNiAxNjQgMCBS ID4+IA0+PiANZW5kb2JqDTExNyAwIG9iag08PCAvTGVuZ3RoIDY0MyAvRmls dGVyIC9GbGF0ZURlY29kZSA+PiANc3RyZWFtDQpIidSVW2/aMBTH3/MpzsOk BRYgDrRcpD6wFKqqYWNrpE1dWs01DmRNnCh2N9innxMuIyWkhVJ1cx58iXXO +f/Osf3eVmq2bQAC21WQXtUN0OU3Hx0fVdsNaCJUbbTADpSayY+B8HSHDpww pXZ2iWDMlYrcr6M62ETRwf6lqLBsnyn2yy3oisCcjDVT6wpzMhjILvgyFrK7 6rmu7D4NwkB2Z31MoGT/kFYqqIrqqAn26Zq1XRpKDdllRR3rdXYbVt1Ow2i2 Wh1wVBIy4bF7OnJKnTV/xlEr4+8NwDxCRx3gaVdwp7SINbOQRL22cN4VdnTp qIYml5JRSXuOJmOl45z9xL43ghElPo6x8EIGoQthDDF1aUwZoSBC4LPgNvTh OxZjF5O3gIVUbDgl+OYxT3jY92fAKWXJj6VpR0VO6TqfGOpAMaO54IVabeCR j5EoVrxTbpJtL5ORdcu7NiOHyY4J8rAQEX88QVmMT0nVA2RbE1QIAGUUzp1n vLULjtLDpMso5n7/piUvgr2LPfBIGImdiz2bv3V1bT1T9htFPJRBBVTQGFJF Vs8cnpz2+oPu12SopSKtE0dd/a1Ip+Wl9nz1G+1mXxwj6gZ46lMSLZDcZJEs zS7RpBuuH0n4P4GkCFJvGsWU84TNSvQEc/AYCeOYEgEjLDCIWURTcpjdgSsH nuCQ1DGditxz1S6+AsEMgyBkNWto1D5Yw0WFW/KWMTOzq8zsiW/C3iXA/C25 3zwON9sulNcUfhAI5CUgNF8HwkGA/D4EECPnmXkHcNH3Yr664LXFIZdiLyyc u27J4dozXQR5KTmLbEfxd24S4H+qv7ASnofFx3tQ6dnKHwEGAJNNL64KZW5k c3RyZWFtDWVuZG9iag0xMTggMCBvYmoNPDwgDS9UeXBlIC9QYWdlIA0vUGFy ZW50IDE1NSAwIFIgDS9SZXNvdXJjZXMgMTE5IDAgUiANL0NvbnRlbnRzIDEy MCAwIFIgDS9NZWRpYUJveCBbIDAgMCA2MTIgNzkyIF0gDS9Dcm9wQm94IFsg MCAwIDYxMiA3OTIgXSANL1JvdGF0ZSAwIA0+PiANZW5kb2JqDTExOSAwIG9i ag08PCANL1Byb2NTZXQgWyAvUERGIC9UZXh0IF0gDS9Gb250IDw8IC9UVDIg MTYzIDAgUiA+PiANL0V4dEdTdGF0ZSA8PCAvR1MxIDE2NyAwIFIgPj4gDS9D b2xvclNwYWNlIDw8IC9DczYgMTY0IDAgUiA+PiANPj4gDWVuZG9iag0xMjAg MCBvYmoNPDwgL0xlbmd0aCA2MTQgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4g DXN0cmVhbQ0KSInUVVtv2jAUfs+vOA+TBjSF2KHcJB7aFNapaYVKHtiWVXOD U7ImDoq9Dvbr66QNBBFSWOnEjER84iPnfJdjn1lKzbIwILBcBWlVDYMmf8+z xkm1XYcmQtV6C6xAqRm8AQ5PMjTgDlNqn4YI7rlyLPM1pIPlKBpYv5XSvaaz u7Dqduq42cYdgLL1Uy4doyrSUROsc6UEL+MI4LLvRVzYpSsyOxVclQ+zZwzs snppktz3ppymr2WY7G5VlnvuOm4z9eGTVlLfZ/ZIfG8MY+r4JCLCCxmELoQR RNSlEWUOBRECnwd3oQ8//IDMPgIRYJdu7TJ885gnPOL7c+CUsnhhnYIk9fui +hXS9BfSsrAkVeZg+OBNM9iv+1H4ZxnnUbEPdFMuP3ug+PYvJnPlR/eJtpmD FgaykoAKGkGCbzjxu+e9/tXpaHhhxmYfREHXLumV5zXJRTJB3TT7CG3p/VVG mn/DyJi60uB84hewsk5JmnqQrGxlnN5sGlHOY3YWuCeEg8ecMIqoI2BMBAEx n9KEO8IewJUTT3BwQiboLM8qh8zCJl7iffbLRmrFFTZahZfFB4AYH46B4soS auHBsP/615zcWKk6Nc+ightK/EoLeqORaiDVwKqhq0ZdHalf1K/qjUmC5G/4 WIA8HSi/gHZHwolL9NgvOrbLnXU+jDAIQlY7q8kyEptID0mTGCgb4GygZ4JR 6qxiX+G3H750ll6kePujF208ZBp57bWTIJs6CL3m5XxRNuj7T+RZlyrO21Eg B72uT7ztNqqssvceDfN/9E2hRm+6uR38Ht3Us5QnAQYAaP0rmAplbmRzdHJl YW0NZW5kb2JqDTEyMSAwIG9iag08PCANL1R5cGUgL1BhZ2UgDS9QYXJlbnQg MTU1IDAgUiANL1Jlc291cmNlcyAxMjIgMCBSIA0vQ29udGVudHMgMTIzIDAg UiANL01lZGlhQm94IFsgMCAwIDYxMiA3OTIgXSANL0Nyb3BCb3ggWyAwIDAg NjEyIDc5MiBdIA0vUm90YXRlIDAgDT4+IA1lbmRvYmoNMTIyIDAgb2JqDTw8 IA0vUHJvY1NldCBbIC9QREYgL1RleHQgXSANL0ZvbnQgPDwgL1RUMiAxNjMg MCBSID4+IA0vRXh0R1N0YXRlIDw8IC9HUzEgMTY3IDAgUiA+PiANL0NvbG9y U3BhY2UgPDwgL0NzNiAxNjQgMCBSID4+IA0+PiANZW5kb2JqDTEyMyAwIG9i ag08PCAvTGVuZ3RoIDU1NyAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PiANc3Ry ZWFtDQpIidSWbW+bMBDH3/Mp7sWkQUUBG5qndymrpk5bVxW/SDsmzSVOSgVG ApY2+/Qj0FQmhYSHReouEviIOXz3u7/hnEg6IRgQkIWEDM3AYGS/YjQ408YW DBHSrBGQUNLtZABeks8wIPG4pH92ECwT6TSbbyATiCcZQJ4kGbZ2w2hwMoKL 2Uy1kWpj1TZV21Jn6q16p958pWF+cFagkMfs3lOkIRMNgXwSYrwxlM8mJ5K8 NEx+H2mLiYWH4/EEXNmLeOrz32zuKhMhKD4blYPaURhGXD/Xs6W58jf6fB2H rpItUnSw6JiCU9ziPATZuNXS6w2/JnXJVzTw5zBnXkBjmvoRh2gBUQwxW7CY cY9BGkGyDu+jAH555kegaZY6dhX44XM/9WkQrCFhjG/+2IZ1ZeQqP6tLN5jA vmIdhWIHlptpxyJYit3NcEUNW8J83s9SYFgucyXNUkqtGDYrRiW7kWHs1WG5 LT4A3Aok7oTxl+mV4DkPLAimuxeuGuuws7zWjYnUqqo7hxo9HmRS2xx1dMQl /msmtc3UmcmflirZdl2JjlXa8960zCVP2ZLFUOSiFhuHmnsoP2G0KcdLEV5S L06k447SSk/HJNaq7XBFFVvyfKS8/zvMqlJbf4rtJVjB9P/Q4z6+HVSabJ5O D4Mta7TZK+5IsPt8BLw79Xb/FhXB9xJ23gLvX9t9K5XbQaWjJp1QLG+XsS1c mH53Sh3CHbrabYELIv0VYAAI2XaPCmVuZHN0cmVhbQ1lbmRvYmoNMTI0IDAg b2JqDTw8IA0vVHlwZSAvUGFnZSANL1BhcmVudCAxNTUgMCBSIA0vUmVzb3Vy Y2VzIDEyNSAwIFIgDS9Db250ZW50cyAxMjYgMCBSIA0vTWVkaWFCb3ggWyAw IDAgNjEyIDc5MiBdIA0vQ3JvcEJveCBbIDAgMCA2MTIgNzkyIF0gDS9Sb3Rh dGUgMCANPj4gDWVuZG9iag0xMjUgMCBvYmoNPDwgDS9Qcm9jU2V0IFsgL1BE RiAvVGV4dCBdIA0vRm9udCA8PCAvVFQyIDE2MyAwIFIgPj4gDS9FeHRHU3Rh dGUgPDwgL0dTMSAxNjcgMCBSID4+IA0vQ29sb3JTcGFjZSA8PCAvQ3M2IDE2 NCAwIFIgPj4gDT4+IA1lbmRvYmoNMTI2IDAgb2JqDTw8IC9MZW5ndGggNTcy IC9GaWx0ZXIgL0ZsYXRlRGVjb2RlID4+IA1zdHJlYW0NCkiJxJVfj5pAFMXf +RT3oUlhM4vMiH/WN0W3sdm2yTIPtqVJZxF32eDQCmvrt+8ARUFBHUvbMTEw A7lnzu+eYUSVFqUEMNCFgg3dIGCIX3bV7eg3JvQw1s0+0KXSsqIuuFH6hAGR y5XWGxvDY6Rci+cN3AbqKgbQH4oKu0FAo89i+hrruI17QMeKOuVrFvhzmHtu wFYs9kMO4QLCFay8hbfyuOtBHEK0WT6EAXyNnrwgiF8Di8FRiaPBZ5/7sc+C YAOR5/FkISlCrxTVUbGjfSnUJJ1+WvPRaPOHUF8MTNK76QygQlYu+RWAnZS0 kP0UDMe3aPjBRm+H3GZr9D5dQe/YT7r5hqad8Qijae92hLcKCnvfTRaq9w08 EPtwQx77/MWbO9rg4N1cAXVUUUmocDSUSSpMCFWFu0xfYaLCA6gdTVFypSnt ubNjU+WHPJEzDcAV+/9fzPaa6Pgg21ckcbEwOs0qdy8z5CBbFU41ze+kGVIZ q+6GhtO2f5xIjYt5PjMesfWfx69bOhpz9Ft99x4Lrvowmc2QhZFFkNVGlolm 6CP6hO7v2DL9s9cX+1HDk5yTv6R0gUmmpDAh1WqkomMkmawCtjw3ZLlL57Ap KZUiInW2lI/Fig9pHZbaz2qjgErj4twkjCL53JTjcSRBB93fLK+auJgn4wKT 7y++cCr1w1EtM92cEPMbh7gRt46aHdjlRZIunhBIKnySZOOaTabnX3yY8PHm qANT0yp/G1EttQlVfgkwAIngCekKZW5kc3RyZWFtDWVuZG9iag0xMjcgMCBv YmoNPDwgDS9UeXBlIC9QYWdlIA0vUGFyZW50IDE1NSAwIFIgDS9SZXNvdXJj ZXMgMTI4IDAgUiANL0NvbnRlbnRzIDEyOSAwIFIgDS9NZWRpYUJveCBbIDAg MCA2MTIgNzkyIF0gDS9Dcm9wQm94IFsgMCAwIDYxMiA3OTIgXSANL1JvdGF0 ZSAwIA0+PiANZW5kb2JqDTEyOCAwIG9iag08PCANL1Byb2NTZXQgWyAvUERG IC9UZXh0IF0gDS9Gb250IDw8IC9UVDIgMTYzIDAgUiA+PiANL0V4dEdTdGF0 ZSA8PCAvR1MxIDE2NyAwIFIgPj4gDS9Db2xvclNwYWNlIDw8IC9DczYgMTY0 IDAgUiA+PiANPj4gDWVuZG9iag0xMjkgMCBvYmoNPDwgL0xlbmd0aCA2MDUg L0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4gDXN0cmVhbQ0KSInMleGPmjAYxr/z V7zJPhzeUNuCon7D011IEBPtZSZjySEWjwXLAjjnfz/EwxMFPHfZ3WrSENvS Pr/36UOfCk1KCWCgroBRAxFAyW//1G41ugqoGDeUDtCV0LyL2uBE6QwEkcOF 5v0UwzIS6sl8hGWgjoCAbgRR579s31vAgjm+HdqxF3AIXAhCCJnLQsYdBnEA 0XY1D3x4jJ58e+HegB2DJRKrBt887sWe7ftbiBjju4Ea/ZG8vI4bWMYq0IEg WiK2at/TAXoriEsk83nQcHsK6ahqDzZ2yD2+7B2tJK1OuhKydqcZBswmQ21g iS1EJP1uPBlKxtCU8HOPktOcbw25hgvOIKNOt5eocQIee3zNFlatd5hWsj+W 0u1lkuybdtnmuTVpIwWqtHC5XjEewyeyg/34O2T24ga8CAKe4N7+ZC+A5+t4 NxAFKwZB/MTCo3G8L4AbQN0t0L5UVRjBvTHua8a0AD/uojY5wZ8TMH3oT8YP VDeHYPa/TnRqifpMMmeSPtAmpYqPUed1H0PvyoXQS6qX4s/OkLInkvlFN4YX uO/+f6GNU9p8vgm9+G24s3e7UAA5E63mRRfhLpH7dvAnHseo/UqP5yDLt6ZG x6NpjnXJDT1ze6bq3flfzJiKm305WbK6ltv9cP+O+GN8ZcZgZZ8x5kAfPXd9 bbrv8FWu/ycZc7jSZfY/g/AOaXNqeqxUZEzxJyZnf4MUGL/4y/KBcXMx00t8 +xreVZKryMt/FTfGx4d6nlVFvP8P/lZQpb/PinZG3BIN8jkhcI3TsyoMqfBH gAEAjlqbEQplbmRzdHJlYW0NZW5kb2JqDTEzMCAwIG9iag08PCANL1R5cGUg L1BhZ2UgDS9QYXJlbnQgMTU1IDAgUiANL1Jlc291cmNlcyAxMzEgMCBSIA0v Q29udGVudHMgMTMyIDAgUiANL01lZGlhQm94IFsgMCAwIDYxMiA3OTIgXSAN L0Nyb3BCb3ggWyAwIDAgNjEyIDc5MiBdIA0vUm90YXRlIDAgDT4+IA1lbmRv YmoNMTMxIDAgb2JqDTw8IA0vUHJvY1NldCBbIC9QREYgL1RleHQgXSANL0Zv bnQgPDwgL1RUMiAxNjMgMCBSID4+IA0vRXh0R1N0YXRlIDw8IC9HUzEgMTY3 IDAgUiA+PiANL0NvbG9yU3BhY2UgPDwgL0NzNiAxNjQgMCBSID4+IA0+PiAN ZW5kb2JqDTEzMiAwIG9iag08PCAvTGVuZ3RoIDU0MCAvRmlsdGVyIC9GbGF0 ZURlY29kZSA+PiANc3RyZWFtDQpIicyWX4ubQBTF3/0UF/qwphjjjP8S3zSx i2AMmFkaWAtNsmotRIsa0n77qll3YxwT6XbDjiDCjMM59/zuqEGYESEYEJCA QQIvYBCK6/ikyPxEAhUhXhoD2TGjaabANqtWCJBtY2Z0v0QQZsywWC8gEciW EYAcGFZPw/3Oj3P4hCAJ4Hu8OaRRfgdRBknsQ/7nlw/rHDwWewPY7PNyIkt2 PiT5Dz89mUfF/GMUBwkMB+RnsfsQ8UhEKpAZwwYQqirM4d5eGLq9/AblEvKZ YUNBjDcJH2gSHquqBod1GkdxqMHrHlgeV3tAPaa6bcPKNfWZx8oC5qzpwjU5 23Q49HwXCi1tEdAYiKJBRNJEK7xskziP4r3/5A20l2WNtxsaRIU7SsClAnwi oPVeNTDF3WsOuMrhd+qvn94WQ0CpwbUY0ERQ8FkMDRPLB8NdPBDLMcExvroW 8VhrxTkrzprp7kXXdcmbvk+LLyNq8S+kWMVQ66gzcL5YttkjgHLuvfAv96ZC X7tXz9x34t/y3R//tnk69LLaD/pz7Mdd2Hc0bkcL1A7frQUqv7cAvxnutRZ4 6cnTKHqeP/+M/i3gb8Z/oQ3aFaC0QcPH/4dfoVe8E+GGAiwdW8CZWfPnm6Ev OWe+6PUNoofxQejvgLl/H3R57s5CpX8AzqKkkC9eJf921F/44/k41Kv0I//C AdbkXnkj93UgJmH+CjAA9hyh/gplbmRzdHJlYW0NZW5kb2JqDTEzMyAwIG9i ag08PCANL1R5cGUgL1BhZ2UgDS9QYXJlbnQgMTU1IDAgUiANL1Jlc291cmNl cyAxMzQgMCBSIA0vQ29udGVudHMgMTM1IDAgUiANL01lZGlhQm94IFsgMCAw IDYxMiA3OTIgXSANL0Nyb3BCb3ggWyAwIDAgNjEyIDc5MiBdIA0vUm90YXRl IDAgDT4+IA1lbmRvYmoNMTM0IDAgb2JqDTw8IA0vUHJvY1NldCBbIC9QREYg L1RleHQgXSANL0ZvbnQgPDwgL1RUMiAxNjMgMCBSID4+IA0vRXh0R1N0YXRl IDw8IC9HUzEgMTY3IDAgUiA+PiANL0NvbG9yU3BhY2UgPDwgL0NzNiAxNjQg MCBSID4+IA0+PiANZW5kb2JqDTEzNSAwIG9iag08PCAvTGVuZ3RoIDUzNSAv RmlsdGVyIC9GbGF0ZURlY29kZSA+PiANc3RyZWFtDQpIicyWX4+aQBTF3/kU N+lDsUGdGUGQN1S6IaGY4GxqUppUXbA0cWgAY/vtO+L6h2XGatrdOCbGOJfh nnN+MzCkSpdSAhhoomDUQQQQ/+x/9Y3OQAcT445uAV0r3VHRh2VRVSAolkzp PkwxrAqlzesR7gFdKgjoVlGdfLVZx6yEdwSyBL79yuP503tIC8hYDOXvnzHM S4hUErVgsSl3E0W2jiErv8f52Tzm819SlmTQTqBFf/Dl27iDe9gEOlbUlWnC J3jwJ0PHn36tCugH/jfqsUXWSWw8QH1iw3aes5St7LMViGFVK8BhTB+H4eSR eoELwfBz6NFI9WZaMNO8sRPyLpo3B8HAzR50Xj+wuZZlxsqUbeKnqGUfy2pX jxzfP959NAldze9pwUfPd58baFxRDSLQdQoAVwGwxTZPy39LoGlBAn9LQCeW ab5IoKai0jwLXWccqQYimrfX7QYafv5GUvFYIPzcd8sS+i6NsdYL7mv7Vsiu E3KxkUMGu5lXQ7/ytWn3Qb5Zly9HvyH8GvTF5MmAH6BrgBfgTmq4S7aqAPuD ptfCftf5m8JeT1WO/fEkPLlP0PXuH2E3Kth58NyY+0H+xdaWwd8wQQR/TcJ/ R54g48JZI0C4Af/J++YWkD1yRBHcC/gSgm/dAmLp4gywfjv4lnbDA+dNoZe+ 4twP9Fj8YiM9vK488S/j7lLljwADAN96nA8KZW5kc3RyZWFtDWVuZG9iag0x MzYgMCBvYmoNPDwgDS9UeXBlIC9QYWdlIA0vUGFyZW50IDE1NSAwIFIgDS9S ZXNvdXJjZXMgMTM3IDAgUiANL0NvbnRlbnRzIDEzOCAwIFIgDS9NZWRpYUJv eCBbIDAgMCA2MTIgNzkyIF0gDS9Dcm9wQm94IFsgMCAwIDYxMiA3OTIgXSAN L1JvdGF0ZSAwIA0+PiANZW5kb2JqDTEzNyAwIG9iag08PCANL1Byb2NTZXQg WyAvUERGIC9UZXh0IF0gDS9Gb250IDw8IC9UVDIgMTYzIDAgUiA+PiANL0V4 dEdTdGF0ZSA8PCAvR1MxIDE2NyAwIFIgPj4gDS9Db2xvclNwYWNlIDw8IC9D czYgMTY0IDAgUiA+PiANPj4gDWVuZG9iag0xMzggMCBvYmoNPDwgL0xlbmd0 aCA3ODUgL0ZpbHRlciAvRmxhdGVEZWNvZGUgPj4gDXN0cmVhbQ0KSInMle9v mkAcxt/zV3yTvZB2VLlDpTXpC1S6kAA2SjOXuaaIh2WBuwZwbf/7Hf5WoNI1 W3ZGNNxx930+z3NH1xEajoMBgeMLSK7LGGT+Wf1rt+pXTVARqjcvwYmERi9p g5csR8iQeFRofBkhmCfCBR8vIwUcT5DBeRZELZ4vIkJT+ISA+fBAp89xkNYg SIBRAunrEwE3hYmIJ2cwXaRZR8IiAix9JPFeP+L93wPqM7g4c37y2S9QHSlI BacviD7MVRUs+GIOupo5+gHZEOdcEOeyQqes7nfQldzGHXh2YxrQeQd2c+DW 5XIO2LTRXXc4uHMMWwe7+3VoOBPRGEv2WDL62pBXkV8eChrK19BUMEYdrsVj NA3ogswmZ53tsL1ne5ppbtfuDYb6RDTxZ05AMrFk3ximvi7j6LllwwXa/mcX DjRUYV8kekf8UPgBe6WQfamVBS7g8/f6kPX8LfrZ3IXMNwzUQwbleyCn/uM+ HCVfaVdIfo64ZBgHnEt2bC73Gz3/nPyB6nZLeSvrS7U3ujYw7LXa5cXSrcHw m2R3B4Nb50h30XGDCnTvwGMVq6fB79l9UJBRWlGZ+UWpx3x96kZkBg+Bx2JS 43NkbvjEZQGt7EY+AIX+vLEjcnjAoJAspjFbcDgEHmYkTDy/1ilIML5U1ZNu joe61p+ILRmv0Zm6LaH1VS5Fd+Lk4rvnD06ubS1olSsF8xqWl/JCyvzL3HqJ iTv72Nbxd1wrH1rHFlEvidy0VkRgH5na7kBe5K0b8xymvL6JaLkvWhpd9/Ub SxtrjiXxG87T6Hp1/0TM1+1+O8igv9wwmMGMeCFfJA0YzaixGGLik5hQjzNj kLxGUxZmQfMj98VNo9oK0v0KUpAGbhi+QkII3U69GfAmpkwyXksuyYVBUzLn 0lcCJVtLWZTwnD668VyyFmEaPPGbOt/n/Jv9uEnA+zXK/yZ3CZGqEKnSCl8Q TbXCOdVjUcTBNiwWNqC6gI3Z/MV98jh9Zyt667wzC4FLa7utdJwC3rHBsNxL qxTojvBbgAEAdjrxIwplbmRzdHJlYW0NZW5kb2JqDTEzOSAwIG9iag08PCAN L1R5cGUgL1BhZ2UgDS9QYXJlbnQgMTU1IDAgUiANL1Jlc291cmNlcyAxNDAg MCBSIA0vQ29udGVudHMgMTQxIDAgUiANL01lZGlhQm94IFsgMCAwIDYxMiA3 OTIgXSANL0Nyb3BCb3ggWyAwIDAgNjEyIDc5MiBdIA0vUm90YXRlIDAgDT4+ IA1lbmRvYmoNMTQwIDAgb2JqDTw8IA0vUHJvY1NldCBbIC9QREYgL1RleHQg XSANL0ZvbnQgPDwgL1RUMiAxNjMgMCBSID4+IA0vRXh0R1N0YXRlIDw8IC9H UzEgMTY3IDAgUiA+PiANL0NvbG9yU3BhY2UgPDwgL0NzNiAxNjQgMCBSID4+ IA0+PiANZW5kb2JqDTE0MSAwIG9iag08PCAvTGVuZ3RoIDU0NiAvRmlsdGVy IC9GbGF0ZURlY29kZSA+PiANc3RyZWFtDQpIidRVUW+bMBB+51fcw6RBRQmG pKR5S0lb9YFqS1xV2lg1SgxhwoDAaZd/PwNpBQ1JaJZs6fFwxj7Zd9/n+3yB hQ7GGiDAnoBURdVA5V85Ousp510wEFK6fcBU6JjZGbhZEaFC5kZC53qCwM+E Ux6vIh2wK6iAnwXRV/XoMVa8QVfvGr0BgIR/8aVTpCAdGYBHgggvNiZOeNKH IaPmzJdNecjMmWVxR+99xt23S8/j7qsVU+6urxy32A2fVPZYGqqco/X6xTm1 VPoDsEU3jlgQzcnUlgYbEvsEcHuR3WVELlOzRcv5zYe2JJu2qMuvfzdDhhdJ ZbmsoDKxNmEA7XXtJnpywmAKU+KGTuqwII4g9iBOISUeSUnkEmAxZAv6GIfw 02HUnfmfwWG8JM2W4HsQBSxwwnABGSFRvvCytS0iW/qxDZx/x1ONrjygBUnV ffZNTR2UNdm+5awO0zvZczcTVyGsCZ6DA7KBtGZ7qOG4EySBw9giWeLysP5C 13EvQtcg1WtA6gDX+EPqTnv7C4VyZ5TurFDGESjUG4ZXbth5G6kqz6/Qwolb mcDJuD5xlfqtZWoPgsSfk2efvZusFUT0ZnUqS14Wuiwvd2OSybdfmBWH3I0K N6c4mch8OJrTPGSSRFvKRw3l/0eaNt+nnduJ62Mrhur9s9JYjQAdkLVmNI6q n4x2z/4euy1/65L0Q3TbFnCOrPcusfBHgAEA1o9bdQplbmRzdHJlYW0NZW5k b2JqDTE0MiAwIG9iag08PCANL1R5cGUgL1BhZ2UgDS9QYXJlbnQgMTU1IDAg UiANL1Jlc291cmNlcyAxNDMgMCBSIA0vQ29udGVudHMgMTQ0IDAgUiANL01l ZGlhQm94IFsgMCAwIDYxMiA3OTIgXSANL0Nyb3BCb3ggWyAwIDAgNjEyIDc5 MiBdIA0vUm90YXRlIDAgDT4+IA1lbmRvYmoNMTQzIDAgb2JqDTw8IA0vUHJv Y1NldCBbIC9QREYgL1RleHQgXSANL0ZvbnQgPDwgL1RUMiAxNjMgMCBSID4+ IA0vRXh0R1N0YXRlIDw8IC9HUzEgMTY3IDAgUiA+PiANL0NvbG9yU3BhY2Ug PDwgL0NzNiAxNjQgMCBSID4+IA0+PiANZW5kb2JqDTE0NCAwIG9iag08PCAv TGVuZ3RoIDU4NSAvRmlsdGVyIC9GbGF0ZURlY29kZSA+PiANc3RyZWFtDQpI idSWXW+bMBSG7/kV52LSoKIEE9Kw3GVJW/WCfSSWJm1MmksMZQLDwOnW/foZ ULKQOA0kUac5FwcRg895n/Niv8VKD2MLEOBAQaZhWmCKX311NTDe2DBEyLAd wInSmxRX4BfVDBMKnym92zmCsFAuxXwT9QH7ign4p6LCkcMCDX8X77hEBuqj IeCpot6xRxJHC1hQPyY54VHKIA0gzSGnAc0p8ynwFIqn5D6N4VtEeJCHr4Fw 8FTL0+BLxCIekTh+goJSVv5RLoIvFNVTkad93VjTGjjVmqHZZ/epEYzsvj3s j0CS1irlVwB3Y/4p5LoIOJuV4SYPyzCjhf7uA3fTWIRpFZYJzua6uJwuk3LK PGP6Op1D6qD1zM38HHMkKvVTxiO2pAtPG+28sM5RpOOpLvk15omntUhsY7JE orNTy2nRmdq2FmtWu9WfTGhv+ccOJJHtn4Bt03vyYa2f7867yNhh3ivRa3V2 /CqTbTiQ9ADMKIkvHBBVTx5CfaKP+eTBdUVIysYY88/XQSDCRzdNRLi9IX5X afa4E0khyptJ4Kwz2SBU59S4UWa3caPq6rmQURe3yquGX7e/V6dQI/w3DYLT XTpofFFXdE9ltbfec8PbcuAZkT3fbpakdToT/JGkSVvfrbRsw/KF3SbDt38P f9aFkh39xZBKCR/lzDAg/tGnHslX1G5x6ql2lqpa3Y389xmXVfxfWKsNlqZY 3Tc8nrU44LQ3nr33qNMKS3OgA+3gWN0MVK/7F4ssg1rVa6z8EWAA+GQlfgpl bmRzdHJlYW0NZW5kb2JqDTE0NSAwIG9iag08PCANL1R5cGUgL1BhZ2UgDS9Q YXJlbnQgMTU1IDAgUiANL1Jlc291cmNlcyAxNDYgMCBSIA0vQ29udGVudHMg MTQ3IDAgUiANL01lZGlhQm94IFsgMCAwIDYxMiA3OTIgXSANL0Nyb3BCb3gg WyAwIDAgNjEyIDc5MiBdIA0vUm90YXRlIDAgDT4+IA1lbmRvYmoNMTQ2IDAg b2JqDTw8IA0vUHJvY1NldCBbIC9QREYgL1RleHQgXSANL0ZvbnQgPDwgL1RU MiAxNjMgMCBSID4+IA0vRXh0R1N0YXRlIDw8IC9HUzEgMTY3IDAgUiA+PiAN L0NvbG9yU3BhY2UgPDwgL0NzNiAxNjQgMCBSID4+IA0+PiANZW5kb2JqDTE0 NyAwIG9iag08PCAvTGVuZ3RoIDUzMCAvRmlsdGVyIC9GbGF0ZURlY29kZSA+ PiANc3RyZWFtDQpIibRU0W6bMBR95yuOtIeQqUkw0JLwlqRdFSltpMZ9GtNC wDBPYEc2tMq+fg5pkmZlVfcwI1mIezn3nnOuPaHWgFIXBDSziNN3XDjm2b9d XfZHPgJC+v4QtLQGU32FRDcZDnQirMHtkiDXVs/kO8QDTSwH9NmyZ+IpLniK lCVFrOKKSwGZQSooljHFRMJQSehtuZYFViVP5KbqIK4Q2W7UxVcueMXjothC MyZ2gS79acB7pE88EoBeW3Zkk6j7rQnQz5adO55Yy34WYiag67WSdcUFw0ok OhZFJ3wF4V4OG4jjP2Q0Go5CPMdKcJGHLdVwWMvHycPikc7ub/Dl5n5+t4hs erGcPlzMzGZ6P/SDlkXedut7geeHhncihem3ZmnUDdtApuP5/KWiyR7vSpJm e6l5zuzPym4LpbHK65KJCp88gyjikqVYcZ2ojoE0dq0yJopSdsA1pFGy2m7Y yaN1Xe0CWpYMsvrB1D5+6LzJI3svM4lehjwIcIfb+WIyni9bfGvz4EyDjyj/ vgonD86VeO2G7/27G9dv3GibAPcY+W/KH+jvaX3Ig78ogUVdaZ6yXTux2GKj ZK7iErU5mSdFzFHLeMHARVLUqWGRKVniCOKELQPv+iQIwZSSKoTmv5oST7Hi 8dogdbjcfG+IV1LC3B45a8MIRuQdjGLjtmGcDYezu67s5vsNtX4LMACaOlSr CmVuZHN0cmVhbQ1lbmRvYmoNMTQ4IDAgb2JqDTw8IA0vUyAvRCANPj4gDWVu ZG9iag0xNDkgMCBvYmoNPDwgDS9OdW1zIFsgMCAxNDggMCBSIF0gDT4+IA1l bmRvYmoNMTUwIDAgb2JqDTw8IA0vVHlwZSAvUGFnZXMgDS9LaWRzIFsgMTYw IDAgUiAxIDAgUiA0IDAgUiA3IDAgUiAxMCAwIFIgMTMgMCBSIDE2IDAgUiAx OSAwIFIgMjIgMCBSIDI1IDAgUiANXSANL0NvdW50IDEwIA0vUGFyZW50IDE1 MSAwIFIgDT4+IA1lbmRvYmoNMTUxIDAgb2JqDTw8IA0vVHlwZSAvUGFnZXMg DS9LaWRzIFsgMTUwIDAgUiAxNTIgMCBSIDE1MyAwIFIgMTU0IDAgUiAxNTUg MCBSIF0gDS9Db3VudCA1MCANPj4gDWVuZG9iag0xNTIgMCBvYmoNPDwgDS9U eXBlIC9QYWdlcyANL0tpZHMgWyAyOCAwIFIgMzEgMCBSIDM0IDAgUiAzNyAw IFIgNDAgMCBSIDQzIDAgUiA0NiAwIFIgNDkgMCBSIDUyIDAgUiA1NSAwIFIg DV0gDS9Db3VudCAxMCANL1BhcmVudCAxNTEgMCBSIA0+PiANZW5kb2JqDTE1 MyAwIG9iag08PCANL1R5cGUgL1BhZ2VzIA0vS2lkcyBbIDU4IDAgUiA2MSAw IFIgNjQgMCBSIDY3IDAgUiA3MCAwIFIgNzMgMCBSIDc2IDAgUiA3OSAwIFIg ODIgMCBSIDg1IDAgUiANXSANL0NvdW50IDEwIA0vUGFyZW50IDE1MSAwIFIg DT4+IA1lbmRvYmoNMTU0IDAgb2JqDTw8IA0vVHlwZSAvUGFnZXMgDS9LaWRz IFsgODggMCBSIDkxIDAgUiA5NCAwIFIgOTcgMCBSIDEwMCAwIFIgMTAzIDAg UiAxMDYgMCBSIDEwOSAwIFIgMTEyIDAgUiANMTE1IDAgUiBdIA0vQ291bnQg MTAgDS9QYXJlbnQgMTUxIDAgUiANPj4gDWVuZG9iag0xNTUgMCBvYmoNPDwg DS9UeXBlIC9QYWdlcyANL0tpZHMgWyAxMTggMCBSIDEyMSAwIFIgMTI0IDAg UiAxMjcgMCBSIDEzMCAwIFIgMTMzIDAgUiAxMzYgMCBSIDEzOSAwIFIgMTQy IDAgUiANMTQ1IDAgUiBdIA0vQ291bnQgMTAgDS9QYXJlbnQgMTUxIDAgUiAN Pj4gDWVuZG9iag0xNTYgMCBvYmoNPDwgDS9DcmVhdGlvbkRhdGUgKEQ6MjAw ODAxMTMxOTUwMjQrMDMnMzAnKQ0vTW9kRGF0ZSAoRDoyMDA4MDExMzE5NTAy NCswMyczMCcpDS9Qcm9kdWNlciAoQWNyb2JhdCBEaXN0aWxsZXIgNS4wIFwo V2luZG93c1wpKQ0vQXV0aG9yIChGYWxsYWgpDS9DcmVhdG9yIChQU2NyaXB0 NS5kbGwgVmVyc2lvbiA1LjIpDS9UaXRsZSAoTWljcm9zb2Z0IFdvcmQgLSBn MDNuYm8ubG9nKQ0+PiANZW5kb2JqDTE1NyAwIG9iag08PCAvVHlwZSAvTWV0 YWRhdGEgL1N1YnR5cGUgL1hNTCAvTGVuZ3RoIDEwNjIgPj4gDXN0cmVhbQ0K PD94cGFja2V0IGJlZ2luPScnIGlkPSdXNU0wTXBDZWhpSHpyZVN6TlRjemtj OWQnIGJ5dGVzPScxMDYxJz8+PHJkZjpSREYgeG1sbnM6cmRmPSdodHRwOi8v d3d3LnczLm9yZy8xOTk5LzAyLzIyLXJkZi1zeW50YXgtbnMjJyB4bWxuczpp WD0naHR0cDovL25zLmFkb2JlLmNvbS9pWC8xLjAvJz48cmRmOkRlc2NyaXB0 aW9uIGFib3V0PScnIHhtbG5zPSdodHRwOi8vbnMuYWRvYmUuY29tL3BkZi8x LjMvJyB4bWxuczpwZGY9J2h0dHA6Ly9ucy5hZG9iZS5jb20vcGRmLzEuMy8n IHBkZjpDcmVhdGlvbkRhdGU9JzIwMDgtMDEtMTNUMTY6MjA6MjRaJyBwZGY6 TW9kRGF0ZT0nMjAwOC0wMS0xM1QxNjoyMDoyNFonIHBkZjpQcm9kdWNlcj0n QWNyb2JhdCBEaXN0aWxsZXIgNS4wIChXaW5kb3dzKScgcGRmOkF1dGhvcj0n RmFsbGFoJyBwZGY6Q3JlYXRvcj0nUFNjcmlwdDUuZGxsIFZlcnNpb24gNS4y JyBwZGY6VGl0bGU9J01pY3Jvc29mdCBXb3JkIC0gZzAzbmJvLmxvZycvPgo8 cmRmOkRlc2NyaXB0aW9uIGFib3V0PScnIHhtbG5zPSdodHRwOi8vbnMuYWRv YmUuY29tL3hhcC8xLjAvJyB4bWxuczp4YXA9J2h0dHA6Ly9ucy5hZG9iZS5j b20veGFwLzEuMC8nIHhhcDpDcmVhdGVEYXRlPScyMDA4LTAxLTEzVDE2OjIw OjI0WicgeGFwOk1vZGlmeURhdGU9JzIwMDgtMDEtMTNUMTY6MjA6MjRaJyB4 YXA6QXV0aG9yPSdGYWxsYWgnIHhhcDpNZXRhZGF0YURhdGU9JzIwMDgtMDEt MTNUMTY6MjA6MjRaJz48eGFwOlRpdGxlPjxyZGY6QWx0PjxyZGY6bGkgeG1s Omxhbmc9J3gtZGVmYXVsdCc+TWljcm9zb2Z0IFdvcmQgLSBnMDNuYm8ubG9n PC9yZGY6bGk+PC9yZGY6QWx0PjwveGFwOlRpdGxlPjwvcmRmOkRlc2NyaXB0 aW9uPgo8cmRmOkRlc2NyaXB0aW9uIGFib3V0PScnIHhtbG5zPSdodHRwOi8v cHVybC5vcmcvZGMvZWxlbWVudHMvMS4xLycgeG1sbnM6ZGM9J2h0dHA6Ly9w dXJsLm9yZy9kYy9lbGVtZW50cy8xLjEvJyBkYzpjcmVhdG9yPSdGYWxsYWgn IGRjOnRpdGxlPSdNaWNyb3NvZnQgV29yZCAtIGcwM25iby5sb2cnLz4KPC9y ZGY6UkRGPjw/eHBhY2tldCBlbmQ9J3InPz4KZW5kc3RyZWFtDWVuZG9iag14 cmVmDTAgMTU4IA0wMDAwMDAwMDAwIDY1NTM1IGYNCjAwMDAwMzg4NDUgMDAw MDAgbg0KMDAwMDAzODk5NyAwMDAwMCBuDQowMDAwMDM5MTM0IDAwMDAwIG4N CjAwMDAwMzk5MjYgMDAwMDAgbg0KMDAwMDA0MDA3OCAwMDAwMCBuDQowMDAw MDQwMjE1IDAwMDAwIG4NCjAwMDAwNDA4NDcgMDAwMDAgbg0KMDAwMDA0MDk5 OSAwMDAwMCBuDQowMDAwMDQxMTM2IDAwMDAwIG4NCjAwMDAwNDE3NTggMDAw MDAgbg0KMDAwMDA0MTkxMyAwMDAwMCBuDQowMDAwMDQyMDUxIDAwMDAwIG4N CjAwMDAwNDI3MTEgMDAwMDAgbg0KMDAwMDA0Mjg2NiAwMDAwMCBuDQowMDAw MDQzMDA0IDAwMDAwIG4NCjAwMDAwNDM2MzkgMDAwMDAgbg0KMDAwMDA0Mzc5 NCAwMDAwMCBuDQowMDAwMDQzOTMyIDAwMDAwIG4NCjAwMDAwNDQ1NDAgMDAw MDAgbg0KMDAwMDA0NDY5NSAwMDAwMCBuDQowMDAwMDQ0ODMzIDAwMDAwIG4N CjAwMDAwNDU0NDUgMDAwMDAgbg0KMDAwMDA0NTYwMCAwMDAwMCBuDQowMDAw MDQ1NzM4IDAwMDAwIG4NCjAwMDAwNDY0MTYgMDAwMDAgbg0KMDAwMDA0NjU3 MSAwMDAwMCBuDQowMDAwMDQ2NzA5IDAwMDAwIG4NCjAwMDAwNDc0MTQgMDAw MDAgbg0KMDAwMDA0NzU2OSAwMDAwMCBuDQowMDAwMDQ3NzA3IDAwMDAwIG4N CjAwMDAwNDg1NTUgMDAwMDAgbg0KMDAwMDA0ODcxMCAwMDAwMCBuDQowMDAw MDQ4ODQ4IDAwMDAwIG4NCjAwMDAwNDk2NDcgMDAwMDAgbg0KMDAwMDA0OTgw MiAwMDAwMCBuDQowMDAwMDQ5OTQwIDAwMDAwIG4NCjAwMDAwNTA2NTEgMDAw MDAgbg0KMDAwMDA1MDgwNiAwMDAwMCBuDQowMDAwMDUwOTQ0IDAwMDAwIG4N CjAwMDAwNTE2MzAgMDAwMDAgbg0KMDAwMDA1MTc4NSAwMDAwMCBuDQowMDAw MDUxOTIzIDAwMDAwIG4NCjAwMDAwNTI2MDUgMDAwMDAgbg0KMDAwMDA1Mjc2 MCAwMDAwMCBuDQowMDAwMDUyODk4IDAwMDAwIG4NCjAwMDAwNTM2NzAgMDAw MDAgbg0KMDAwMDA1MzgyNSAwMDAwMCBuDQowMDAwMDUzOTYzIDAwMDAwIG4N CjAwMDAwNTQ3MDkgMDAwMDAgbg0KMDAwMDA1NDg2NCAwMDAwMCBuDQowMDAw MDU1MDAyIDAwMDAwIG4NCjAwMDAwNTU2MzQgMDAwMDAgbg0KMDAwMDA1NTc4 OSAwMDAwMCBuDQowMDAwMDU1OTI3IDAwMDAwIG4NCjAwMDAwNTY2MjAgMDAw MDAgbg0KMDAwMDA1Njc3NSAwMDAwMCBuDQowMDAwMDU2OTEzIDAwMDAwIG4N CjAwMDAwNTc2NTAgMDAwMDAgbg0KMDAwMDA1NzgwNSAwMDAwMCBuDQowMDAw MDU3OTQzIDAwMDAwIG4NCjAwMDAwNTg2ODIgMDAwMDAgbg0KMDAwMDA1ODgz NyAwMDAwMCBuDQowMDAwMDU4OTc1IDAwMDAwIG4NCjAwMDAwNTk2NDAgMDAw MDAgbg0KMDAwMDA1OTc5NSAwMDAwMCBuDQowMDAwMDU5OTMzIDAwMDAwIG4N CjAwMDAwNjA1MzEgMDAwMDAgbg0KMDAwMDA2MDY4NiAwMDAwMCBuDQowMDAw MDYwODI0IDAwMDAwIG4NCjAwMDAwNjE1MzEgMDAwMDAgbg0KMDAwMDA2MTY4 NiAwMDAwMCBuDQowMDAwMDYxODI0IDAwMDAwIG4NCjAwMDAwNjI2MzggMDAw MDAgbg0KMDAwMDA2Mjc5MyAwMDAwMCBuDQowMDAwMDYyOTMxIDAwMDAwIG4N CjAwMDAwNjM2NTcgMDAwMDAgbg0KMDAwMDA2MzgxMiAwMDAwMCBuDQowMDAw MDYzOTUwIDAwMDAwIG4NCjAwMDAwNjQ2OTAgMDAwMDAgbg0KMDAwMDA2NDg0 NSAwMDAwMCBuDQowMDAwMDY0OTgzIDAwMDAwIG4NCjAwMDAwNjU3MzYgMDAw MDAgbg0KMDAwMDA2NTg5MSAwMDAwMCBuDQowMDAwMDY2MDI5IDAwMDAwIG4N CjAwMDAwNjY3NzggMDAwMDAgbg0KMDAwMDA2NjkzMyAwMDAwMCBuDQowMDAw MDY3MDcxIDAwMDAwIG4NCjAwMDAwNjc3ODEgMDAwMDAgbg0KMDAwMDA2Nzkz NiAwMDAwMCBuDQowMDAwMDY4MDc0IDAwMDAwIG4NCjAwMDAwNjg4NzYgMDAw MDAgbg0KMDAwMDA2OTAzMSAwMDAwMCBuDQowMDAwMDY5MTY5IDAwMDAwIG4N CjAwMDAwNjk3NjUgMDAwMDAgbg0KMDAwMDA2OTkyMCAwMDAwMCBuDQowMDAw MDcwMDU4IDAwMDAwIG4NCjAwMDAwNzA2NTYgMDAwMDAgbg0KMDAwMDA3MDgx MSAwMDAwMCBuDQowMDAwMDcwOTQ5IDAwMDAwIG4NCjAwMDAwNzE2NDcgMDAw MDAgbg0KMDAwMDA3MTgwNSAwMDAwMCBuDQowMDAwMDcxOTQ0IDAwMDAwIG4N CjAwMDAwNzI5MTEgMDAwMDAgbg0KMDAwMDA3MzA2OSAwMDAwMCBuDQowMDAw MDczMjA4IDAwMDAwIG4NCjAwMDAwNzM3NTUgMDAwMDAgbg0KMDAwMDA3Mzkx MyAwMDAwMCBuDQowMDAwMDc0MDUyIDAwMDAwIG4NCjAwMDAwNzQ3MDEgMDAw MDAgbg0KMDAwMDA3NDg1OSAwMDAwMCBuDQowMDAwMDc0OTk4IDAwMDAwIG4N CjAwMDAwNzU4NTEgMDAwMDAgbg0KMDAwMDA3NjAwOSAwMDAwMCBuDQowMDAw MDc2MTQ4IDAwMDAwIG4NCjAwMDAwNzY4MDQgMDAwMDAgbg0KMDAwMDA3Njk2 MiAwMDAwMCBuDQowMDAwMDc3MTAxIDAwMDAwIG4NCjAwMDAwNzc4MTkgMDAw MDAgbg0KMDAwMDA3Nzk3NyAwMDAwMCBuDQowMDAwMDc4MTE2IDAwMDAwIG4N CjAwMDAwNzg4MDUgMDAwMDAgbg0KMDAwMDA3ODk2MyAwMDAwMCBuDQowMDAw MDc5MTAyIDAwMDAwIG4NCjAwMDAwNzk3MzQgMDAwMDAgbg0KMDAwMDA3OTg5 MiAwMDAwMCBuDQowMDAwMDgwMDMxIDAwMDAwIG4NCjAwMDAwODA2NzggMDAw MDAgbg0KMDAwMDA4MDgzNiAwMDAwMCBuDQowMDAwMDgwOTc1IDAwMDAwIG4N CjAwMDAwODE2NTUgMDAwMDAgbg0KMDAwMDA4MTgxMyAwMDAwMCBuDQowMDAw MDgxOTUyIDAwMDAwIG4NCjAwMDAwODI1NjcgMDAwMDAgbg0KMDAwMDA4Mjcy NSAwMDAwMCBuDQowMDAwMDgyODY0IDAwMDAwIG4NCjAwMDAwODM0NzQgMDAw MDAgbg0KMDAwMDA4MzYzMiAwMDAwMCBuDQowMDAwMDgzNzcxIDAwMDAwIG4N CjAwMDAwODQ2MzEgMDAwMDAgbg0KMDAwMDA4NDc4OSAwMDAwMCBuDQowMDAw MDg0OTI4IDAwMDAwIG4NCjAwMDAwODU1NDkgMDAwMDAgbg0KMDAwMDA4NTcw NyAwMDAwMCBuDQowMDAwMDg1ODQ2IDAwMDAwIG4NCjAwMDAwODY1MDYgMDAw MDAgbg0KMDAwMDA4NjY2NCAwMDAwMCBuDQowMDAwMDg2ODAzIDAwMDAwIG4N CjAwMDAwODc0MDggMDAwMDAgbg0KMDAwMDA4NzQ0MCAwMDAwMCBuDQowMDAw MDg3NDg2IDAwMDAwIG4NCjAwMDAwODc2MzMgMDAwMDAgbg0KMDAwMDA4Nzcz NCAwMDAwMCBuDQowMDAwMDg3ODgzIDAwMDAwIG4NCjAwMDAwODgwMzIgMDAw MDAgbg0KMDAwMDA4ODE4NyAwMDAwMCBuDQowMDAwMDg4MzQ2IDAwMDAwIG4N CjAwMDAwODg1ODIgMDAwMDAgbg0KdHJhaWxlcg08PA0vU2l6ZSAxNTgNL0lE Wzw0MGUyMTA0OGQyNjlhZGIwOWNjYzJlOWYyZTBlZjlhOT48MTA3NjE5NTdj NDhmNDFlZDIwM2VlYTQ3OThhZjYxZjE+XQ0+Pg1zdGFydHhyZWYNMTczDSUl RU9GDQ== --0-1635242797-1200262332=:23579-- From owner-chemistry@ccl.net Mon Jan 14 04:52:00 2008 From: "Tom Keal keal[a]mpi-muelheim.mpg.de" To: CCL Subject: CCL: Asking for "Usage of C sharp in Computational Chemistry" Message-Id: <-36025-080114042158-30478-Azw4cfh3xHO8Wqw2AS5TKw++server.ccl.net> X-Original-From: Tom Keal Content-Transfer-Encoding: 7bit Content-Type: text/plain; charset=ISO-8859-1 Date: Mon, 14 Jan 2008 09:51:20 +0100 MIME-Version: 1.0 Sent to CCL by: Tom Keal [keal,+,mpi-muelheim.mpg.de] Hi Lukasz and Mahmoud, I absolutely agree with Lukasz's recommendations, but it's no longer the case that C# is restricted to Windows - the Mono project (http://www.mono-project.com) provides a .NET environment for Linux which includes support for C#. I'm not aware of any computational chemistry programs that use it though... In general the language you use will be dictated by whatever project you're working on. But Python is definitely a good language to start with because it will be immediately useful for scripting and will also teach you all the principles of a modern programming language. From there you can easily pick up Fortran or C later if you need to. Best wishes, Tom Keal Lukasz Cwiklik cwiklik::gmail.com wrote: > Dear Mahmoud, > Your question and my answer can start a "flame war" at CCL list, > however, I will try to write what I think as a computational chemist > who is doing quite a lot of software development in everyday work. Of > course, my opinion can be biased by my experience/environment but > there are no independent opinions in this topic anyway. > 1. As for now, C# is almost completely useless for a computational > chemist with one exception: if writes applications for MS Windows. If > you do not develop for Windows, C# is not a good choice. > 2. A knowledge of C or C++ would be necessary if you want to write a > new code. Basic knowledge of Fortran is needed if one need to work > with existing Fortran codes. In my biased opinion, in these days > starting a new project in Fortran is not an optimal choice. > 3. A knowledge of a good, modern and flexible scripting language is > also a must and I propose Python. I think, Python would be as useful > for a young computational chemist as C, C++ or Fortran. > 4. But one must remember - the choice always depends on particualar > conditions. If your advisor has a lot of experience in scientific > software development and works in this field currently, maybe his/her > reasons for choosing C# have a good basis. > > I hope other CCLers will add their suggestions here. > Best, > Lukasz From owner-chemistry@ccl.net Mon Jan 14 07:06:00 2008 From: "Matthias Mann matthias.mann,chemie.tu-dresden.de" To: CCL Subject: CCL:G: Compilation of NBO 5.0 G! Message-Id: <-36026-080114070351-17473-g1wi6jzsjRKIgN5AsQeazA*server.ccl.net> X-Original-From: "Matthias Mann" Date: Mon, 14 Jan 2008 07:03:47 -0500 Sent to CCL by: "Matthias Mann" [matthias.mann:_:chemie.tu-dresden.de] Hallo all, also with the pgi compiler we was never able to compile nbo5g. There are a lot of "undefined reference" errors in linking of l607. Some suggestions of Frank Weinhold didn't help. The versions: g03 rev.D, pgf77 6.1, nbo5g under suse linux (arch=P6). Gaussian package itself compiles without problems. Matthias > "yorth kos yortama2003:_:yahoo.ca" wrote: > > Sent to CCL by: yorth kos [yortama2003,+,yahoo.ca] > > Dear CCL'ers > > Happy New Year to you all! > > > I am having trouble in compiling (By compiler G77-3.4) > > the NBO 5.0 G on my personal computer (CPU: Intel P4 > > 2.8 GHz, RAM: 256 MB) using Gaussian 03, rev. B02 (Linux > > version) and Ubuntu 7.10 Linux OS. > > I also tried the professor Weinhold's advice at his > > website to use the compiler directive > > g77 -Wno-globals -fno-globals gennbo.f -o gennbo > > In order to bypass checks for strict consistency > > between defined vs. called subroutine argument lists, > > but I couldn't compile it yet. Im attaching the error > > that I get during the compilation process as a PDF > > file and I was wondering if you could kindly help me > > to figure out this trouble. > > Looking forward to hearing from you soon > > My best wishes > > Hossein > > Dr Hossein Fallah-Bagher-Shaidaei > > Associate Professor of Organic Chemistry > > Islamic Azad University-Rasht Branch > > P. O. Box 41335-3516 > > Rasht > > Iran From owner-chemistry@ccl.net Mon Jan 14 08:37:00 2008 From: "Rene Thomsen rt|molegro.com" To: CCL Subject: CCL: Molegro releases Molegro Molecular Viewer Message-Id: <-36027-080114075512-8861-eDAy5arUVRUdMo0s1jdFiw^^^server.ccl.net> X-Original-From: "Rene Thomsen" Date: Mon, 14 Jan 2008 07:55:09 -0500 Sent to CCL by: "Rene Thomsen" [rt .. molegro.com] Aarhus, Denmark, January 14th, 2008 - Molegro is pleased to announce the release of Molegro Molecular Viewer, a free cross-platform application for visualization of molecules and Molegro Virtual Docker results. Molegro Molecular Viewer offers a high-quality visualization tool combined with a user interface experience focusing on usability and productivity. Highlights of Molegro Molecular Viewer: * Share and view results from Molegro Virtual Docker docking runs. * Imports and exports PDB, SDF, Mol2, and MVDML files. * Automatic preparation of molecules. * Molecular surface and backbone visualization. * Labels, sequence viewer, and biomolecule generator. * Cropping of molecules and clipping planes. * Structural protein alignment. * Cross-platform: Windows, Linux, and Mac OS X is supported. To download Molegro Molecular Viewer, please visit our company website at: http://www.molegro.com. For more information contact: Rene Thomsen, CEO Molegro Hoegh-Guldbergs Gade 10, Bldg. 1090 DK-8000 Aarhus Denmark E-mail: rt]![molegro.com Phone: (+45) 89 42 31 65 About Molegro Molegro is a Danish company founded in 2005. Our company concentrates on developing high-performance drug discovery solutions leading to a faster drug-development process. Our goal is to provide scientifically superior products focusing on both state-of-the-art algorithms and an intuitive graphical user interface experience. From owner-chemistry@ccl.net Mon Jan 14 09:18:01 2008 From: "Michel Petitjean ptitjean:+:itodys.jussieu.fr" To: CCL Subject: CCL: Re(2): Asking for Usage of C sharp in Computational Chemistry Message-Id: <-36028-080114035100-21418-WS5oSwDEm5oVnQ30WBzhUw() server.ccl.net> X-Original-From: Michel Petitjean Date: Mon, 14 Jan 2008 09:50:45 +0100 (MET) Sent to CCL by: Michel Petitjean [ptitjean-x-itodys.jussieu.fr] To: chemistry . ccl.net Subject: CCL: Re(2): Asking for Usage of C sharp in Computational Chemistry /* Apologies for multiple posting of my previous reply, due to some machine troubles */ Dear Mahmoud Arafat, Since I never used Windows (yes indeed !!!), I just discovered C-sharp from your posting and one of its replies. However I heard a lot about the multiple difficulties encountered by Windows users. Unix systems are found on any kind of machine, from the smallest low-cost microcomputers including those selled with Windows (after having installed linux) and macosx (which encounters an increasing success), to the most powerful supercomputers (parallel and/or vector machines). Windows is restricted to microcomputers, and, IMHO, is inadequate for professional uses. I do not recommend to develop for this platform, except if it is to develop rapidly low quality products of small life expectation. So, I do not recommend to develop softwares with languages depending on Windows. Unix, C and FORTRAN will undoubtly survive for a long. I do not know about the others. Michel Petitjean, DSV/iBiTec-S/SB2SM (CNRS URA 2096) CEA Saclay, bat. 528 91191 Gif-sur-Yvette Cedex Phone: +33(0)1 6908 9681 / Fax: +33(0)1 6908 4007 E-mail: petitjean . itodys.jussieu.fr, michel.petitjean . cea.fr http://petitjeanmichel.free.fr/itoweb.petitjean.freeware.html Formerly: ITODYS (CNRS, UMR 7086), 1 rue Guy de la Brosse, 75005 Paris, France. Sent to CCL by: "Mahmoud Arafat Ibrahim" [M_Arafat82 * Yahoo.Com] > Dear Dr. / Prof. > In the fact, I am a new researcher in Computational Chemistry Subject and I am going to specialized in Drug Design. I have started studying C sharp as a programming language as my first step in this new field (it was an advise from one professor). After an intermediate step in C sharp, I am now confusing about its usage in my new field. Indeed, I found that all programs have been used in Computational Chemistry are based on FORTRAN or C language. So, I am now hesitating about my step and asking for advice. > > May you direct me to the best step? > -Stop studying Programming languages as whole where they are usefulness in Computational Chemistry. > -Study FORTRAN or C language where they are more abundant in Computational Chemistry. > or > -Continue studying C sharp where it is the most modern language. > I hope to read from you as soon as possible. > Sincerely; > M. Arafat, > Chemistry Department, > Faculty of Science, > Minia university, > Egypt. From owner-chemistry@ccl.net Mon Jan 14 09:53:01 2008 From: "Michel PETITJEAN michel.petitjean]|[cea.fr" To: CCL Subject: CCL: Asking for Usage of C sharp in Computational Chemistry Message-Id: <-36029-080113164355-28413-f4LV2Dbs3gGyu38QZflnmg|-|server.ccl.net> X-Original-From: "Michel PETITJEAN" Content-class: urn:content-classes:message Content-Transfer-Encoding: quoted-printable Content-Type: text/plain; charset="iso-8859-1" Date: Sun, 13 Jan 2008 21:48:40 +0100 MIME-Version: 1.0 Sent to CCL by: "Michel PETITJEAN" [michel.petitjean]-[cea.fr] To: chemistry ~~ ccl.net Subject: CCL: Re: Asking for Usage of C sharp in Computational Chemistry Dear Mahmoud Arafat, If you are willing to develop sophisticated programs in the future, it is much more useful to know a bit of C AND a bit of FORTRAN rather than knowing deeply C. So, you will be able to select the most adequate for a given function to programme. Note that C and FORTRAN are easily mixable (calling or called) on most unix systems, provided that you take some care in the arguments type you use. Furtermore, using advanced features of languages is not a good idea if you would like to generate portable programmes. Most people agree than FORTRAN is better for numerical programming (although it is fine for many other purposes), and than C is better for system-oriented applications. Anyway, please be able to programme by yourself rather than being dependant on somebody else that you will have to pay much and implore=20 on the knees to do the job. Michel Petitjean, DSV/iBiTec-S/SB2SM (CNRS URA 2096) CEA Saclay, bat. 528 91191 Gif-sur-Yvette Cedex Phone: +33(0)1 6908 9681 / Fax: +33(0)1 6908 4007 E-mail: petitjean ~~ itodys.jussieu.fr, michel.petitjean ~~ cea.fr http://petitjeanmichel.free.fr/itoweb.petitjean.freeware.html Formerly: ITODYS (CNRS, UMR 7086), 1 rue Guy de la Brosse, 75005 Paris, France. Sent to CCL by: "Mahmoud Arafat Ibrahim" [M_Arafat82 * Yahoo.Com] > Dear Dr. / Prof. > In the fact, I am a new researcher in Computational Chemistry Subject = and I am going to specialized in Drug Design. I have started studying C = sharp as a programming language as my first step in this new field (it = was an advise from one professor). After an intermediate step in C = sharp, I am now confusing about its usage in my new field. Indeed, I = found that all programs have been used in Computational Chemistry are = based on FORTRAN or C language. So, I am now hesitating about my step = and asking for advice. > > May you direct me to the best step? > -Stop studying Programming languages as whole where they are = usefulness in Computational Chemistry. > -Study FORTRAN or C language where they are more abundant in = Computational Chemistry. > or > -Continue studying C sharp where it is the most modern language. > I hope to read from you as soon as possible. > Sincerely; > M. Arafat, > Chemistry Department, > Faculty of Science, > Minia university, > Egypt. From owner-chemistry@ccl.net Mon Jan 14 11:46:00 2008 From: "Jim Harrison jim456harrison!=!yahoo.com" To: CCL Subject: CCL:G: optimization problem, g03 Message-Id: <-36030-080113032312-5990-7Zd+lArbnhN8SySZuWinfQ . server.ccl.net> X-Original-From: Jim Harrison Content-Transfer-Encoding: 8bit Content-Type: multipart/alternative; boundary="0-644376299-1200208954=:62408" Date: Sat, 12 Jan 2008 23:22:34 -0800 (PST) MIME-Version: 1.0 Sent to CCL by: Jim Harrison [jim456harrison- -yahoo.com] --0-644376299-1200208954=:62408 Content-Type: text/plain; charset=iso-8859-1 Content-Transfer-Encoding: 8bit > from my own experience, I know that when convergence failure occurs, this implies that the input geometry is very far from the optimized state as u may already know. what I normally do is to take the final structure of the output with the convergence failure and then use it as the input. but if this final structure is again too far from the optimized one, then it will take too much time. also use opt only instead of opt=tight . if u want then u can take the final structure of the opt operation as input for another run with opt=tight. hope that will help Martha. bye. "Kowalczyk, Marta MKowalczyk++gc.cuny.edu" wrote: optimization problem, g03 Hello, I do optimizations(in G03) for squaramide diphen molecues with nitro substitution in ortho, meta, para position. I use TD DFT method with b3lyp functional (and unrestricted formalism for ions). Base 6-31g(d,p) has been used. But with 631g+(d,p) base calculations stop via the l502.exe. ----------------------------------------- Convergence failure -- run terminated. Error termination via Lnk1e in /opt/g03/l502.exe ----------------------------------------------------- This problems is present only for molecule with para-substitution(both neutral and ionic ground state). Keywords such as Fopt=tight, Fopt=verytight or change from lower to higher multiplicity doesn't help. Using option symmetry(PG=C2v) doesn't help neither. What should I do? Best regards, Marta Kowalczyk Phd student, CUNY New York --------------------------------- Never miss a thing. Make Yahoo your homepage. --0-644376299-1200208954=:62408 Content-Type: text/html; charset=iso-8859-1 Content-Transfer-Encoding: 8bit > from my own experience, I know that when convergence failure occurs, this implies that the input geometry is very far from the optimized state as u may already know. what I normally do is to take the final structure of the output with the convergence failure  and then use it as the input. but if this final structure is again too far from the optimized one, then it will take too much time. also use opt  only instead of opt=tight . if u want then u can take the final structure of the opt operation as input for another run with opt=tight. hope that will help Martha. bye.

"Kowalczyk, Marta MKowalczyk++gc.cuny.edu" <owner-chemistry~~ccl.net> wrote:
optimization problem, g03
Hello,
I do optimizations(in G03) for squaramide diphen molecues with nitro substitution in ortho, meta, para position. I use TD DFT method with b3lyp functional (and  unrestricted formalism for ions). Base 6-31g(d,p) has been used. But with 631g+(d,p) base calculations stop via the l502.exe.
-----------------------------------------
Convergence failure -- run terminated.
 Error termination via Lnk1e in /opt/g03/l502.exe
-----------------------------------------------------
This problems is present only for molecule with para-substitution(both neutral and ionic ground state).
Keywords  such as Fopt=tight, Fopt=verytight or change from lower to higher multiplicity doesn't help. Using option symmetry(PG=C2v) doesn't help neither.
What should I do?

Best regards,
Marta Kowalczyk
Phd student, CUNY
New York




Never miss a thing. Make Yahoo your homepage. --0-644376299-1200208954=:62408-- From owner-chemistry@ccl.net Mon Jan 14 12:21:00 2008 From: "Noel M O Boyle baoilleach]^[gmail.com" To: CCL Subject: CCL: Calculating Continuous Symmetry for wave-functions Message-Id: <-36031-080114115516-11432-MlJUHAopw/DOkg6TREUnHQ---server.ccl.net> X-Original-From: "Noel M O Boyle" Date: Mon, 14 Jan 2008 11:55:12 -0500 Sent to CCL by: "Noel M O Boyle" [baoilleach===gmail.com] You may find it more useful to start using an open source quantum mechanics program. That way, you will be able to use its functions for calculating overlap of MOs in your own program. I recommend you look at PyQuante, a QM program implemented in Python. It is especially designed with algorithm development in mind (I think). Noel O'Boyle > "Chaim Dryzun chdnew . yahoo.com" wrote: > > Sent to CCL by: Chaim Dryzun [chdnew::yahoo.com] > --0-2041898603-1199980433=:870 > Content-Type: text/plain; charset=us-ascii > > Hello, > > My name is Chaim Dryzun and I am a PhD student of professor David Avnir at the Hebrew University of Jerusalem, Israel. My main interst is measuring symmetry and chirality. My work includes developing new methods for calculating Continuous Symmetry Measures (CSM) and Continuous Chirality Measures (CCM). > Recently I've started to develop new method for calculating symmetry for functions. I would like to calculate symmetry for wave function of molecules and relate it to some observables (like charge transfer, absorbsion coofiecient and so on). In order for me to do that, I need an analytical function to work on. I can run the molecule at the quantum cacculation program (like Gausiaan program) with some basic set (I stared with simple ones like STO-6G and 6-31G). The programs gives me the Molecular orbitals - with the occupations of each MO and the cooficient of the AO that build the MO. I need construct all the MOs and than on each MO I will operate with a symmetry operator and than I will have to overlap the resulting function with all the MOs - this will give me a value Si (i is an index of the MO i've been working on) and the sum of all Si's=S will be the symmetry measure for the wave-function. How can help me build a program that do all this ? > > thank you in advance, > Chaim Dryzun > > > ____________________________________________________________________________________ > Looking for last minute shopping deals? > Find them fast with Yahoo! Search. http://tools.search.yahoo.com/newsearch/category.php?category=shopping > --0-2041898603-1199980433=:870 > Content-Type: text/html; charset=us-ascii > >
>
Hello,
>
 
>
My name is Chaim Dryzun and I am a PhD student of professor David Avnir at the Hebrew University of Jerusalem, Israel. My main interst is measuring symmetry and chirality. My work includes developing new methods for calculating Continuous Symmetry Measures (CSM) and Continuous Chirality Measures (CCM).
>
Recently I've started to develop new method for calculating symmetry for functions. I would like to calculate symmetry for wave function of molecules and relate it to some observables (like charge transfer, absorbsion coofiecient and so on). In order for me to do that, I need an analytical function to work on. I can run the molecule at the quantum cacculation program (like Gausiaan program) with some basic set (I stared with simple ones like STO-6G and 6-31G). The programs gives me the Molecular orbitals - with the occupations of each MO and the cooficient of the AO that build the MO. I need construct all the MOs and than on each MO I will operate with a symmetry operator and than I will have to overlap the resulting function with all the MOs - this will give me a value Si (i is an index of the MO i've been working on) and the sum of all Si's=S will be the symmetry measure for the wave-function. How can help me build a > program that do all this ?
>
 
>
thank you in advance,
>
Chaim Dryzun

>
Looking for last minute shopping deals? > Find them fast with Yahoo! Search. > --0-2041898603-1199980433=:870-- > > From owner-chemistry@ccl.net Mon Jan 14 14:30:01 2008 From: "Karen.Green-#-sanofi-aventis.com" To: CCL Subject: CCL: some history of computational programming RE: Asking for "Usage of C sharp in Computational Chemistry" Message-Id: <-36032-080114142745-31698-g4o7he2DueXu++LGDBCL2w(-)server.ccl.net> X-Original-From: Content-class: urn:content-classes:message Content-Transfer-Encoding: quoted-printable Content-Type: text/plain; charset="us-ascii" Date: Mon, 14 Jan 2008 11:55:13 -0700 MIME-Version: 1.0 Sent to CCL by: [Karen.Green\a/sanofi-aventis.com] Dear M. Arafat, Here is my take on it. (Others please correct any errors you might find.) In my opinion, to answer this question requires you know a little about the history of computational programming. A LITTLE HISTORY OF COMPUTATIONAL PROGRAMMING The oldest computational programs were written to be stand-alone programs in the computer languages available at the time that had natively-defined math functions. This usually meant FORTRAN. Later in the '80's you saw the development of C and so some later programs were beginning to be written in this systems language -- primarily for portability on different platforms. =20 Stand-alone programs written in these earlier languages became difficult to maintain and further develop so a new paradigm was sought. Object-oriented programming was introduced to try to better organize the code, and so object-oriented versions of common languages were developed, for example, C++ (the object-oriented version of C). In the mid-90's the internet was made available to a broader, public audience. After that, there was more focus on internet applications and direct machine-machine connectivity. The limitations of ftp were beginning to become a problem. Microsoft developed the .NET framework to address the need for direct machine connectivity over the internet -- specifically, to allow easier (more native) creation of web services. C# is the .NET version of C++. Also, there is a difference between compiled (FORTRAN,C,C++) vs. scripted languages (Perl). Usually compiled languages are used for large scale projects. WHICH LANGUAGE TO USE/LEARN IS DETERMINED BY WHAT YOU NEED TO DO So, in my opinion, what language you learn depends on what you specifically need to do, in other words, what programs you need to work with or develop to interact with. You first need to define the requirements of your programs and that will help you better understand which language(s) you should learn. =20 Generally, after a while, once you know enough computer languages, it is not too difficult to learn a new one -- similar concepts appear throughout. Hope the information helps, Karen M. Green -----Original Message----- > From: owner-chemistry.:.ccl.net [mailto:owner-chemistry.:.ccl.net]=20 Sent: Sunday, January 13, 2008 1:57 AM To: Green, Karen SMA/US Subject: CCL: Asking for "Usage of C sharp in Computational Chemistry" Sent to CCL by: "Mahmoud Arafat Ibrahim" [M_Arafat82 * Yahoo.Com] Dear Dr. / Prof. In the fact, I am a new researcher in Computational Chemistry Subject and I am going to specialized in Drug Design. I have started studying C sharp as a programming language as my first step in this new field (it was an advise from one professor). After an intermediate step in C sharp, I am now confusing about its usage in my new field. Indeed, I found that all programs have been used in Computational Chemistry are based on FORTRAN or C language. So, I am now hesitating about my step and asking for advice. May you direct me to the best step? -Stop studying Programming languages as whole where they are usefulness in Computational Chemistry. -Study FORTRAN or C language where they are more abundant in Computational Chemistry. or -Continue studying C sharp where it is the most modern language. I hope to read from you as soon as possible. Sincerely; M. Arafat, Chemistry Department, Faculty of Science, Minia university, Egypt. -=3D This is automatically added to each message by the mailing script = =3D-http://www.ccl.net/cgi-bin/ccl/send_ccl_messageSubscribe/Unsubscribe:=20http://www.ccl.net/spammers.txt From owner-chemistry@ccl.net Mon Jan 14 16:30:01 2008 From: "Michael K. Gilson gilson!^!umbi.umd.edu" To: CCL Subject: CCL: Easy links to binding data in BindingDB Message-Id: <-36033-080114162721-4370-bEKZMB89/3og0oBRdadsuQ_-_server.ccl.net> X-Original-From: "Michael K. Gilson" Content-Transfer-Encoding: 7bit Content-Type: text/plain; charset=ISO-8859-1; format=flowed Date: Mon, 14 Jan 2008 16:27:08 -0500 MIME-Version: 1.0 Sent to CCL by: "Michael K. Gilson" [gilson(-)umbi.umd.edu] Dear Colleagues, If you are interested in protein-ligand affinity data, you might be interested in a new set of links into BindingDB that allow programmatic access to some standard searches. They allow one to make links directly to a BindingDB query from another web-site, such as another database. For example, if you want a link to binding data for a compound with a certain SMILES string, there is a URL template into which you can insert the SMILES string and thus navigate to the desired data. There are links by: Protein (target) name BLAST by protein sequence SMILES exact compound match SMILES substructure SMILES similarity (Tanimoto with Jmol fingerprints) PDB ID (returns binding data for proteins 85% similar to the protein in the PDB ID, and with a matching ligand) PubMed ID (returns binding data from the selected article) The URL templates are here: http://www.bindingdb.org/bind/SearchTemplates.jsp Comments and suggestions are always welcome! Best regards, Mike -- Michael K. Gilson, M.D., Ph.D. CARB Fellow and Professor Center for Advanced Research in Biotechnology University of Maryland Biotechnology Institute 9600 Gudelsky Drive Rockville, MD 20850 Voice: 240-314-6217 Fax: 240-314-6255 gilsonumbi.umd.edu Lab Page: gilsonlab.umbi.umd.edu BindingDB: www.bindingdb.org From owner-chemistry@ccl.net Mon Jan 14 18:03:01 2008 From: "Soren Eustis soren|jhu.edu" To: CCL Subject: CCL:G: Stable, NoSymm and Wavefunction Stability Message-Id: <-36034-080114174956-4782-XBT8h2NpYnYvnOzPtFlqxA=server.ccl.net> X-Original-From: "Soren Eustis" Content-language: en-us Content-Type: multipart/alternative; boundary="----=_NextPart_000_0061_01C856CD.6BBF6950" Date: Mon, 14 Jan 2008 16:49:25 -0500 MIME-Version: 1.0 Sent to CCL by: "Soren Eustis" [soren]_[jhu.edu] This is a multipart message in MIME format. ------=_NextPart_000_0061_01C856CD.6BBF6950 Content-Type: text/plain; charset="US-ASCII" Content-Transfer-Encoding: 7bit I was looking at the Gaussian site and their instructions for calculating energies for antiferromagnetic complexes. In doing so, I came across the Stable keyword as a method of checking wavefunction stability. They found a few situations where the wavefunction was not stable! I always use unrestricted wavefunctions, so I have no constraints there. However, I DO NOT request nosymm for my calculations - thus G03 symmetrizes the density matrix by default, hence adding a constraint. So my question is this: Should I always test my UHF or UDFT wavefunction symmetry? Or is this just a factor in rare cases? Perhaps removing the symmetry constraint is a safer (yet costly) option in general. What are people's thoughts on the stable keyword and/or using SCF=nosymm? Thanks in advance. Soren Soren N. Eustis, M.A. Graduate Research Assistant Department of Chemistry Johns Hopkins University ------=_NextPart_000_0061_01C856CD.6BBF6950 Content-Type: text/html; charset="US-ASCII" Content-Transfer-Encoding: quoted-printable

I was looking at the Gaussian site and their = instructions for calculating energies for antiferromagnetic complexes.  In doing = so, I came across the Stable keyword as a method of checking wavefunction = stability. They found a few situations where the wavefunction was not stable! I always = use unrestricted wavefunctions, so I have no constraints there.  = However, I DO NOT request nosymm for my calculations – thus G03 symmetrizes the = density matrix by default, hence adding a constraint.

 

So my question is this:  Should I always test = my UHF or UDFT wavefunction symmetry?  Or is this just a factor in rare = cases? Perhaps removing the symmetry constraint is a safer (yet costly) option in general.  What are people’s thoughts on the stable keyword = and/or using SCF=3Dnosymm? 

 

Thanks in advance.

 

Soren

 

Soren N. Eustis, M.A.

Graduate Research Assistant

Department of Chemistry

Johns Hopkins University

------=_NextPart_000_0061_01C856CD.6BBF6950-- From owner-chemistry@ccl.net Mon Jan 14 20:21:00 2008 From: "Kalju Kahn kalju^^chem.ucsb.edu" To: CCL Subject: CCL: extrapolation schemes Message-Id: <-36035-080114193511-10345-Z+govhv+cFrGMa6Et5GKfg-#-server.ccl.net> X-Original-From: "Kalju Kahn" Content-Transfer-Encoding: 8bit Content-Type: text/plain;charset=iso-8859-1 Date: Mon, 14 Jan 2008 15:56:36 -0800 (PST) MIME-Version: 1.0 Sent to CCL by: "Kalju Kahn" [kalju**chem.ucsb.edu] Dear Jozsef, There are lots of papers on this topic, here is just a selection of works that have influenced my choice of extrapolation schemes: For the HF energy extrapolation comparisons see: 1) Halkier, A.; Helgaker, T.; Jorgensen, P.; Klopper, W.; Olsen, "Basis-set convergence of the energy in molecular Hartree-Fock calculations" J. Chem Phys Lett 1999, 302, 437. 2) Jensen, F. "Estimating the Hartree-Fock limit from finite basis set calculations" Theor Chem Acc 2005, 113, 267 Both studies conclude that the exponential form is better than the inverse power form, and caution that the extrapolation of HF energies > from Dunning-type basis sets has a limited practical accuracy. For correlation energy (E2) in the MP2 approach, see: 3) Klopper, W. "Highly accurate coupled-cluster singlet and triplet pair energies from explicitly correlated calculations in comparison with extrapolation techniques." Mol Phys 2001, 99, 481. 4) Valeev, E. F.; Allen, W. D.; Hernandez, R.; Sherrill, C. D.; Schaefer, H. F. I. "On the accuracy limits of orbital expansion methods: Explicit effects of k-functions on atomic and molecular energies" J Chem Phys 2003, 118, 8594 These works suggest that a separate extrapolation of singlet and triplet pair contributions using inverse power law formulas provides the best results. Also, double-zeta data should be omitted, so minimally one needs cc-pVTZ and cc-pVQZ energies (although I have come across a few cases where the two-point extrapolation from cc-pVTZ and cc-pVQZ energies gives E(2) that is inferior to cc-pVQZ results. For correlation energy E(3) in MP3, see: 5) Kahn, K.; Granovsky, A. A.; Noga, J. "Convergence of Third Order Correlation Energy in Atoms and Molecules" J Comput Chem 2007, 28, 547 Again, singlet and triplet pair energies behave differently with singlet pair contribution frequently showing a delayed onset of convergence. Thus, cc-pVDZ and cc-pVTZ data should not be used for the extrapolation of E(3). Extrapolation formulas now require three data points (cc-pVQZ, cc-pV5Z, and cc-pV6Z) making such extrapolations quite expensive. For correlation energy in coupled cluster methods, see: 6) Halkier, A.; Helgaker, T.; Jørgensen, P.; Klopper, W.; Koch, H.; Olsen, J.; Wilson, A. K. "Basis-set convergence in correlated calculations on Ne, N2, and H2O" Chem Phys Lett 1998, 286, 243 3) Klopper, W. "Highly accurate coupled-cluster singlet and triplet pair energies from explicitly correlated calculations in comparison with extrapolation techniques." Mol Phys 2001, 99, 481. Double-zeta data must be excluded, and rather large basis are needed for accurate results. Finally it looks like that one can truncate the basis sets on hydrogen atoms without drastically loosing accuracy in extrapolations. Please see: 7) Mintz, B.; Lennox, K. P.; Wilson, A. K. "Truncation of the correlation consistent basis sets: An effective approach to the reduction of computational cost?" J Chem Phys 2004, 121, 5629 8) Mintz, B.; Wilson, A. K. "Truncation of the correlation consistent basis sets: Extension to third-row (Ga-Kr) molecules" J Chem Phys 2005, 122, 134106/1 9) Kahn, K.; Kahn, I. "Improved efficiency of focal point conformational analysis with truncated correlation consistent basis sets" J Comp Chem 2008 (ASAP Online: http://www3.interscience.wiley.com/cgi-bin/abstract/116835736/ Hope this helps, Kalju > > Sent to CCL by: Jozsef Csontos [jozsefcsontos%x%creighton.edu] > Dear All, > > could you point me to papers which compare different extrapolation > procedures to the basis set limit. > > Thank you, > Jozsef > > -- > Jozsef Csontos, Ph.D. > > (jozsefcsontos_at_creighton_dot_edu) > Department of Biomedical Sciences > Creighton University, > Omaha, NE> > >