From owner-chemistry@ccl.net Mon Jun 9 00:23:00 2008 From: "elite 158 elite158%%gmail.com" To: CCL Subject: CCL: IC50 deltaG Message-Id: <-37117-080609001333-20367-2iWKLJTaer0/ttUZ/L/dVw^server.ccl.net> X-Original-From: "elite 158" Content-Type: multipart/alternative; boundary="----=_Part_18451_15769621.1212981426343" Date: Mon, 9 Jun 2008 08:47:06 +0530 MIME-Version: 1.0 Sent to CCL by: "elite 158" [elite158]^[gmail.com] ------=_Part_18451_15769621.1212981426343 Content-Type: text/plain; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit Content-Disposition: inline Hello cclers, Thank you very much for updating us on IC50, Ki, DeltaG. However, I have a very naive question that I couldnt get clarified for so long. My apologies if the question looks silly. *Scenario*: We are working on developing / Identifying new chemical compounds that can Inhibit a particular enzyme. We however, wanted to initiate the project by studying already discovered chemical compounds known to inhibit that enzyme. The next step is to do a computational prediction based on that information with either QSAR or Pharmacophore or Dcokgins studies. In various publications we have accessed so far, the biological activity against the same target enzyme, but of various chemical compounds is reported as units of *IC50, Ki, Ki*app etc.,values. If we need to take into an account for all the ligands, known to inhibit the target enzyme we are studying, it makes an absolute requirement that all the activities are reported as either IC50 or Ki. Upon further research, we came across a KI and IC50 conversion facility through Cheng-Prusoff equation explained clearly in : http://www.unmc.edu/Pharmacology/receptortutorial/competition/analysis_sample4.htm However, for the interconvertion, there are no reported radioligand concentration and kd values that are required by the above mentioned formula. *Question*: How do we report the biological activities of various chemical compounds in various publications as a single consistent value? i.e., IC50 or Ki. when there is no information available for using the cheng-prusoff equation? Any help is highly appreciated.. Elite158 On Mon, Jun 2, 2008 at 10:35 PM, Michael K. Gilson gilson(_)umbi.umd.edu < owner-chemistry[A]ccl.net> wrote: > > Sent to CCL by: "Michael K. Gilson" [gilson,,umbi.umd.edu] > No, you can't assume IC50 is approximately Kd and use DG = RT ln IC50. > > IC50 is the concentration of inhibitor that leads to half-maximal > inhibition of the targeted enzyme > or receptor. If it is a competitive inhibitor, then it is competing with > substrate (in the case of > an enzyme) or with a labelled ligand (in the case of a receptor). For a > given value of Ki, the value > of IC50 will still vary depending upon how tightly the substrate or labeled > ligand binds the > protein, and also upon its concentration. The higher the affinity of the > substrate or labeled > ligand and the higher its concentration, the more inhibitor will be needed > to have an effect, and > hence the higher IC50 will be -- even though Ki is unchanged. > > The relationship is given by the Cheng-Prusoff equation. See, e.g., > http://www.ncgc.nih.gov/guidance/section11.html > > However, if two inhibitors are assayed for same substrate or labeled ligand > and same concentration > thereof, then Delta Delta G = -RT ln r, where r is the ratio of the IC50 > values. > > (The analysis is different if the inhibitor is not competitive.) > > Regards, > Mike > > > R D rafi4dd:gmail.com wrote: > >> Sent to CCL by: "R D" [rafi4dd+/-gmail.com] >> Hello, >> >> I need a clarification on fundamentals. I want to compare experimental >> IC50 values to calculated binding free energy values. >> Can I assume IC50 is approx = Kd and use DeltaG = RTlnIC50. >> >> for example if I want to convert an IC50 value of 1microM it will be >> equivalent to delta G of -8.2Kcal/mol. Am I right? >> >> Are we using DeltaG = RTlnIC50 (instead of -RTlnIC50) because we are >> focused on dissociation of receptor-ligand complex rather than association >> of receptor ligand complex. >> I apologise if the question is silly, but any reply will be greatly >> helpful. >> >> Thank you.> >> >> >> >> > > > -- > Michael K. Gilson, M.D., Ph.D. > CARB Fellow and Professor > Center for Advanced Research in Biotechnology > University of Maryland Biotechnology Institute > 9600 Gudelsky Drive > Rockville, MD 20850 > Voice: 240-314-6217 > Fax: 240-314-6255 > gilsonumbi.umd.edu > Lab Page: gilsonlab.umbi.umd.edu > BindingDB: www.bindingdb.orghttp://www.ccl.net/chemistry/sub_unsub.shtmlConferences: > http://server.ccl.net/chemistry/announcements/conferences/> > > ------=_Part_18451_15769621.1212981426343 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit Content-Disposition: inline
Hello cclers,
 
Thank you very much for updating us on IC50, Ki, DeltaG.
However, I have a very naive question that I couldnt get clarified for so long. My apologies if the question looks silly.
 
Scenario: We are working on developing / Identifying new chemical compounds that can Inhibit a particular enzyme. We however, wanted to initiate the project by studying already discovered chemical compounds known to inhibit that enzyme. The next step is to do a computational prediction based on that information with either QSAR or Pharmacophore or Dcokgins studies.
 
In various publications we have accessed so far, the biological activity against the same target enzyme, but of various chemical compounds is reported as units of IC50, Ki, Kiapp etc.,values. If we need to take into an account for all the ligands, known to inhibit the target enzyme we are studying, it makes an absolute requirement that all the activities are reported as either IC50 or Ki. Upon further research, we came across a KI and IC50 conversion facility through Cheng-Prusoff equation  explained clearly in : http://www.unmc.edu/Pharmacology/receptortutorial/competition/analysis_sample4.htm
 
However, for the interconvertion, there are no reported radioligand concentration and kd values that are required by the above mentioned formula.
 
Question: How do we report the biological activities of various chemical compounds in various publications as  a single consistent value? i.e., IC50 or Ki. when there is no information available for using the cheng-prusoff equation?
 
Any help is highly appreciated..
 
Elite158


On Mon, Jun 2, 2008 at 10:35 PM, Michael K. Gilson gilson(_)umbi.umd.edu <owner-chemistry[A]ccl.net> wrote:

Sent to CCL by: "Michael K. Gilson" [gilson,,umbi.umd.edu]
No, you can't assume IC50 is approximately Kd and use DG = RT ln IC50.

IC50 is the concentration of inhibitor that leads to half-maximal inhibition of the targeted enzyme
or receptor.  If it is a competitive inhibitor, then it is competing with substrate (in the case of
an enzyme) or with a labelled ligand (in the case of a receptor). For a given value of Ki, the value
of IC50 will still vary depending upon how tightly the substrate or labeled ligand binds the
protein, and also upon its concentration.  The higher the affinity of the substrate or labeled
ligand and the higher its concentration, the more inhibitor will be needed to have an effect, and
hence the higher IC50 will be -- even though Ki is unchanged.

The relationship is given by the Cheng-Prusoff equation.  See, e.g.,
http://www.ncgc.nih.gov/guidance/section11.html

However, if two inhibitors are assayed for same substrate or labeled ligand and same concentration
thereof, then Delta Delta G = -RT ln r, where r is the ratio of the IC50 values.

(The analysis is different if the inhibitor is not competitive.)

Regards,
Mike



R D rafi4dd:gmail.com wrote:
Sent to CCL by: "R  D" [rafi4dd+/-gmail.com]
Hello,

I need a clarification on fundamentals. I want to compare experimental IC50 values to calculated binding free energy values.
Can I assume IC50 is approx = Kd and use DeltaG = RTlnIC50.

for example if I want to convert an IC50 value of 1microM it will be equivalent to delta G of -8.2Kcal/mol. Am I right?

Are we using DeltaG = RTlnIC50 (instead of -RTlnIC50) because we are focused on dissociation of receptor-ligand complex rather than association of receptor ligand complex.
I apologise if the question is silly, but any reply will be greatly helpful.

Thank you.>


 


--
Michael K. Gilson, M.D., Ph.D.
CARB Fellow and Professor
Center for Advanced Research in Biotechnology
University of Maryland Biotechnology Institute
9600 Gudelsky Drive
Rockville, MD 20850
Voice: 240-314-6217
Fax:   240-314-6255
gilson<at>umbi.umd.edu
Lab Page: gilsonlab.umbi.umd.edu
BindingDB: www.bindingdb.org




E-mail to subscribers: CHEMISTRY[A]ccl.net or use:
    http://www.ccl.net/cgi-bin/ccl/send_ccl_message

E-mail to administrators: CHEMISTRY-REQUEST[A]ccl.net or use
    http://www.ccl.net/cgi-bin/ccl/send_ccl_message
http://www.ccl.net/chemistry/sub_unsub.shtml

Before posting, check wait time at: http://www.ccl.net

Job: http://www.ccl.net/jobs Conferences: http://server.ccl.net/chemistry/announcements/conferences/

Search Messages: http://www.ccl.net/htdig  (login: ccl, Password: search)
    http://www.ccl.net/spammers.txt

RTFI: http://www.ccl.net/chemistry/aboutccl/instructions/



------=_Part_18451_15769621.1212981426343-- From owner-chemistry@ccl.net Mon Jun 9 05:08:01 2008 From: "Andrew R Turner andrew.turner:-:ed.ac.uk" To: CCL Subject: CCL: Paralleling computers help Message-Id: <-37118-080609045206-16487-JuTdBQlAwEamcQk8duHl8A[-]server.ccl.net> X-Original-From: Andrew R Turner Content-Disposition: inline Content-Transfer-Encoding: quoted-printable Content-Type: text/plain; charset=ISO-8859-1; DelSp="Yes"; format="flowed" Date: Mon, 09 Jun 2008 09:13:31 +0100 MIME-Version: 1.0 Sent to CCL by: Andrew R Turner [andrew.turner!^!ed.ac.uk] You could have a look here: http://www.epcc.ed.ac.uk/library/documentation/training/ Cheers Andy =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D Dr Andrew R. Turner Research Computing Officer e: andrew.turner###ed.ac.uk t: +44 (0)131 650 7748 w: http://www.eastchem.ac.uk/rcf icq: 370-899-715 p: School of Chemistry University of Edinburgh EH9 3JJ =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D Quoting "Amin Ordikhani a.ordikhani{:}gmail.com" : > > Sent to CCL by: "Amin Ordikhani" [a.ordikhani[-]gmail.com] > Hi dear CCLers, > Could someone give of some information about paralleling computers so > that have higher speed for calculations? > Any information would help me. > I've searched the net and sent emails to some super parallel computer > centers but the more I tried the less I achieved. > Is there any guide book or something that practically help me?! > > Thanks in advance. > > -- > Sent from Gmail for mobile | mobile.google.com > > > > -=3D This is automatically added to each message by the mailing script =3D= -> > > > --=20 The University of Edinburgh is a charitable body, registered in Scotland, with registration number SC005336. From owner-chemistry@ccl.net Mon Jun 9 07:05:00 2008 From: "Georg Lefkidis lefkidis!^!physik.uni-kl.de" To: CCL Subject: CCL:G: AW: Paralleling computers help Message-Id: <-37119-080609065421-32543-ZDRgxfoWN6hCff7mniSEug_+_server.ccl.net> X-Original-From: "Georg Lefkidis" Content-Language: de Content-Transfer-Encoding: 7bit Content-Type: text/plain; charset="US-ASCII" Date: Mon, 9 Jun 2008 12:21:09 +0200 MIME-Version: 1.0 Sent to CCL by: "Georg Lefkidis" [lefkidis**physik.uni-kl.de] Hello everyone, lately I do many calculations in Gaussian using the SAC-CI method. Since I am interested in transitions between states I would like to be able to draw the CI wavefunctions, or the CI-density functions. Molden or ChemCraft however can deal only with the uncorrelated Hartree-Fock molecular orbitals. Is anyone aware of a program (or a method) to plot the SAC-CI orbitals or density matrix? Regards George Lefkidis ------------------------------------------------------------------- Dr. Georg Lefkidis Dept. of Physics University of Kaiserslautern PO Box 3049 67653 Kaiserslautern e-mail: lefkidis(at)physik(dot)uni(dash)kl(dot)de Tel.: +49 631 205 3207 ------------------------------------------------------------------- From owner-chemistry@ccl.net Mon Jun 9 07:57:01 2008 From: "Mikael Johansson mpjohans-.-chem.au.dk" To: CCL Subject: CCL: wave_function_optimization Message-Id: <-37120-080609074918-22928-NQqOexXrVhkSOhmGQn1dzw++server.ccl.net> X-Original-From: Mikael Johansson Content-Disposition: inline Content-Transfer-Encoding: quoted-printable Content-Type: text/plain; charset=UTF-8; DelSp="Yes"; format="flowed" Date: Mon, 09 Jun 2008 12:58:09 +0200 MIME-Version: 1.0 Sent to CCL by: Mikael Johansson [mpjohans-#-chem.au.dk] Hello Radoslaw! On Sun, 08 Jun 2008 "Radoslaw Kaminski rkaminski.rk a gmail.com" =20 wrote: > I found in one of the publications (Eur. J. Inorg. Chem., 2007, =20 > 324332) the statement like this: > > For every nickel complex it was necessary to check the > stability of the wave function to see whether any instability existed > I would be very grateful if somebody could tell me how to do it or =20 > where I can find some more information about it. When doing an SCF (HF or DFT), programs usually don't check anything =20 more than convergence. For the result to be physically meaningful, the =20 SCF needs to (among other things) converge to a minimum, instead of a =20 possible saddle point. This is one "instability" of the wave function. =20 Other instabilities include symmetry breaking etc. If the system has a =20 very complex electronic structure it is not uncommon for the SCF to =20 converge to a wrong solution (unfortunately, I'd say, it _is_ a bit =20 too uncommon to check for this :-) A good introduction to this is the paper by Seeger and Pople: "Self-consistent molecular orbital methods. XVIII. Constraints and =20 stability in Hartree-Fock theory", J. Chem. Phys. 66 (1977) 3045-3050. Many QC programs have an option to check for an instability and some =20 have automatic means of getting out of a wrong solution. Otherwise you =20 might have to manually flip orbitals, play around with level shifts, =20 etc. Check your manual. Have a nice day, Mikael J. http://www.iki.fi/~mpjohans ---------------------------------------------------------------- This message was sent using IMP, the Internet Messaging Program. From owner-chemistry@ccl.net Mon Jun 9 09:03:01 2008 From: "John McKelvey jmmckel!=!gmail.com" To: CCL Subject: CCL: wave_function_optimization Message-Id: <-37121-080609085742-28253-x993cI0q6ynu9BmTbzCDEg%a%server.ccl.net> X-Original-From: "John McKelvey" Content-Type: multipart/alternative; boundary="----=_Part_23569_23226416.1213016249929" Date: Mon, 9 Jun 2008 08:57:29 -0400 MIME-Version: 1.0 Sent to CCL by: "John McKelvey" [jmmckel+/-gmail.com] ------=_Part_23569_23226416.1213016249929 Content-Type: text/plain; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit Content-Disposition: inline My $0.02: An unstable wave function can easily lead to symmetry breaking. Example: Take the oft used resonant structure example, the allyl radical. The optimized geometry C2v ROHF solution for the allyl radical is typically higher in energy than the optimized geometry Cs ROHF solution. The higher geometrical symmetry may not break automatically for a well converged solution, but may need a slight "nudge." The above may not be the case for DFT.. I haven't looked at that. John McKelvey On Mon, Jun 9, 2008 at 6:58 AM, Mikael Johansson mpjohans-.-chem.au.dk < owner-chemistry__ccl.net> wrote: > > Sent to CCL by: Mikael Johansson [mpjohans-#-chem.au.dk] > > Hello Radoslaw! > > On Sun, 08 Jun 2008 "Radoslaw Kaminski rkaminski.rk a gmail.com" > wrote: > > I found in one of the publications (Eur. J. Inorg. Chem., 2007, 324332) >> the statement like this: >> >> For every nickel complex it was necessary to check the >> stability of the wave function to see whether any instability existed >> > > I would be very grateful if somebody could tell me how to do it or where >> I can find some more information about it. >> > > When doing an SCF (HF or DFT), programs usually don't check anything more > than convergence. For the result to be physically meaningful, the SCF needs > to (among other things) converge to a minimum, instead of a possible saddle > point. This is one "instability" of the wave function. Other instabilities > include symmetry breaking etc. If the system has a very complex electronic > structure it is not uncommon for the SCF to converge to a wrong solution > (unfortunately, I'd say, it _is_ a bit too uncommon to check for this :-) > > A good introduction to this is the paper by Seeger and Pople: > "Self-consistent molecular orbital methods. XVIII. Constraints and > stability in Hartree-Fock theory", J. Chem. Phys. 66 (1977) 3045-3050. > > Many QC programs have an option to check for an instability and some have > automatic means of getting out of a wrong solution. Otherwise you might have > to manually flip orbitals, play around with level shifts, etc. Check your > manual. > > Have a nice day, > Mikael J. > http://www.iki.fi/~mpjohans > > > ---------------------------------------------------------------- > This message was sent using IMP, the Internet Messaging Program. > > > > - This is automatically added to each message by the mailing script -http://www.ccl.net/chemistry/sub_unsub.shtml> > Job: http://www.ccl.net/jobsConferences: > http://server.ccl.net/chemistry/announcements/conferences/> > > ------=_Part_23569_23226416.1213016249929 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit Content-Disposition: inline My $0.02:

An unstable wave function can easily lead to symmetry breaking. 

Example:  Take the oft used resonant structure example, the allyl radical.  The optimized geometry C2v ROHF solution for the allyl radical is typically higher in energy than the optimized geometry Cs ROHF solution.  The higher geometrical symmetry may not break automatically for a well converged solution, but may need a slight "nudge."

The above may not be the case for DFT.. I haven't looked at that.

John McKelvey

On Mon, Jun 9, 2008 at 6:58 AM, Mikael Johansson mpjohans-.-chem.au.dk <owner-chemistry__ccl.net> wrote:

Sent to CCL by: Mikael Johansson [mpjohans-#-chem.au.dk]

Hello Radoslaw!

On Sun, 08 Jun 2008 "Radoslaw Kaminski rkaminski.rk a gmail.com" <owner-chemistry[*]ccl.net> wrote:

I found in one of the publications (Eur. J. Inorg. Chem., 2007,  324332) the statement like this:

For every nickel complex it was necessary to check the
stability of the wave function to see whether any instability existed

I would be very grateful if somebody could tell me how to do it or  where I can find some more information about it.

When doing an SCF (HF or DFT), programs usually don't check anything more than convergence. For the result to be physically meaningful, the SCF needs to (among other things) converge to a minimum, instead of a possible saddle point. This is one "instability" of the wave function. Other instabilities include symmetry breaking etc. If the system has a very complex electronic structure it is not uncommon for the SCF to converge to a wrong solution (unfortunately, I'd say, it _is_ a bit too uncommon to check for this :-)

A good introduction to this is the paper by Seeger and Pople:
"Self-consistent molecular orbital methods. XVIII. Constraints and stability in Hartree-Fock theory", J. Chem. Phys. 66 (1977) 3045-3050.

Many QC programs have an option to check for an instability and some have automatic means of getting out of a wrong solution. Otherwise you might have to manually flip orbitals, play around with level shifts, etc. Check your manual.

Have a nice day,
   Mikael J.
   http://www.iki.fi/~mpjohans


----------------------------------------------------------------
This message was sent using IMP, the Internet Messaging Program.



- This is automatically added to each message by the mailing script -
E-mail to subscribers: CHEMISTRY__ccl.net or use:
    http://www.ccl.net/cgi-bin/ccl/send_ccl_message

E-mail to administrators: CHEMISTRY-REQUEST__ccl.net or use
    http://www.ccl.net/cgi-bin/ccl/send_ccl_message
http://www.ccl.net/chemistry/sub_unsub.shtml

Before posting, check wait time at: http://www.ccl.net

Job: http://www.ccl.net/jobsConferences: http://server.ccl.net/chemistry/announcements/conferences/

Search Messages: http://www.ccl.net/htdig  (login: ccl, Password: search)
    http://www.ccl.net/spammers.txt

RTFI: http://www.ccl.net/chemistry/aboutccl/instructions/



------=_Part_23569_23226416.1213016249929-- From owner-chemistry@ccl.net Mon Jun 9 10:08:00 2008 From: "Ismael Ortiz Verano ieortizv:_:bt.unal.edu.co" To: CCL Subject: CCL: Relativistic treatment for transition metals in PC GAMESS Message-Id: <-37122-080609014516-32249-qpCFFO4+pPwQSr7c/eeRQg:+:server.ccl.net> X-Original-From: "Ismael Ortiz Verano" Content-Type: multipart/alternative; boundary="----=_Part_14821_24637974.1212986508415" Date: Sun, 8 Jun 2008 23:41:48 -0500 MIME-Version: 1.0 Sent to CCL by: "Ismael Ortiz Verano" [ieortizv(-)bt.unal.edu.co] ------=_Part_14821_24637974.1212986508415 Content-Type: text/plain; charset=ISO-8859-1 Content-Transfer-Encoding: quoted-printable Content-Disposition: inline Antonio, see you at https://bse.pnl.gov/bse/portal (EMSL basis set exchange). In this database you must select the element that you need, select the "Format" (i.e. GAMESS-US or UK). Then at left you can see the basis set avalable for your element. Select you some of this basis set and click on "Get basis set". Copy the basis set of your element and put it in your GAMESS input, in the $DATA group: Atom Z x y z basis set Atom2 Z x y z basis set $END etc Remember: you don't need put a $BASIS group --=20 Ismael Ortiz Verano Grupo de Qu=EDmica Te=F3rica Universidad Nacional de Colombia Tel: (57)(1) 3165000 ext 10608 2008/6/6 Antonio G. De Crisci antonio.decrisci:+:utoronto.ca < owner-chemistry+/-ccl.net>: > > Sent to CCL by: "Antonio G. De Crisci" [antonio.decrisci/./utoronto.ca] > Hello All, > > Does anybody know what basis set in PC GAMESS gives partial (or full) > relativistic treatment for calculations on molecules that contain late > transition metals? > > Thanks, > Antonio De Crisci > University of Toronto > > > > -=3D This is automatically added to each message by the mailing script = =3D-> > > --=20 Ismael Ortiz Verano Grupo de Qu=EDmica Te=F3rica Universidad Nacional de Colombia Tel: (57)(1) 3165000 ext 10608 ------=_Part_14821_24637974.1212986508415 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: quoted-printable Content-Disposition: inline Antonio, see you at https://bse.= pnl.gov/bse/portal (EMSL basis set exchange). In this database you must= select the element that you need, select the "Format" (i.e. GAME= SS-US or UK). Then at left you can see the basis set avalable for your elem= ent. Select you some of this basis set and click on "Get basis set&quo= t;. Copy the basis set of your element and put it in your GAMESS input, in = the $DATA group:



Atom    Z   x     y&nbs= p;   z
basis set

Atom2  Z    x &nbs= p;  y    z
basis set
$END
etc

Remember: you = don't need put a $BASIS group

--
Ismael Ortiz Verano
Grup= o de Qu=EDmica Te=F3rica
Universidad Nacional de Colombia
Tel: (57)(1) 3165000 ext 10608

<= br>
2008/6/6 Antonio G. De Crisci antonio.decrisc= i:+:utoronto.ca <owner-chemistry+/-ccl.net>:

Sent to CCL by: "Antonio G. De Crisci" [antonio.decrisci/./utoronto.ca]
Hello All,

Does anybody know what basis set in PC GAMESS gives partial (or full) relat= ivistic treatment for calculations on molecules that contain late transitio= n metals?

Thanks,
Antonio De Crisci
University of Toronto



-=3D This is automatically added to each message by the mailing script =3D-=
E-mail to subscribers: CHEMISTRY+/-ccl.n= et or use:
     http://www.ccl.net/cgi-bin/ccl/send_ccl_message=

E-mail to administrators: CHEM= ISTRY-REQUEST+/-ccl.net or use
     http://www.ccl.net/cgi-bin/ccl/send_ccl_message=

Subscribe/Unsubscribe:
     http://www.ccl.net/chemistry/sub_unsub.shtml

Before posting, check wait time at: http://www.ccl.net

Job: http://www.ccl.n= et/jobs
Conferences: http://server.ccl.net/chemistry/announcements/co= nferences/

Search Messages: htt= p://www.ccl.net/htdig  (login: ccl, Password: search)
     http://www.ccl.net/spammers.txt

RTFI: http://www.ccl.net/chemistry/aboutccl/instructions/





--
Ismael Ortiz Verano
= Grupo de Qu=EDmica Te=F3rica
Universidad Nacional de Colombia
Tel: (5= 7)(1) 3165000 ext 10608 ------=_Part_14821_24637974.1212986508415-- From owner-chemistry@ccl.net Mon Jun 9 13:18:01 2008 From: "John McKelvey jmmckel*gmail.com" To: CCL Subject: CCL: 'Fine" vs "Coarse" grained parallel on AMD vs Intel dual/quad processors Message-Id: <-37123-080609123948-9753-CvfYaKjXDQt5ufTCxTAHLA:-:server.ccl.net> X-Original-From: "John McKelvey" Content-Type: multipart/alternative; boundary="----=_Part_156_123019.1213022994345" Date: Mon, 9 Jun 2008 10:49:54 -0400 MIME-Version: 1.0 Sent to CCL by: "John McKelvey" [jmmckel%x%gmail.com] ------=_Part_156_123019.1213022994345 Content-Type: text/plain; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit Content-Disposition: inline Hello.. Hopefully someone has experience in some sort of quantitative comparison of AMD vs Intel chips in parallel ve single processor modes. It seems that people think that Intel is now much faster than AMD. An observation by a colleague is that doing RI-MP2 [99% DGEMM, prepared for parallel] on an dual-quad is slower than running on a single processor, presumably because of memory bandwidth. Assuming this is an accurate analysis, and assuming that AMD has better bandwidth, where might be the break even point, if any, in wall clock time for comparing AMD with Intel and the set of factors of clock speed and memory bandwidth, all else being equal? Cheers, John McKelvey ------=_Part_156_123019.1213022994345 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit Content-Disposition: inline Hello..

Hopefully someone has experience in some sort of quantitative comparison of AMD vs Intel chips in parallel ve single processor modes.  It seems that people think that Intel is now much faster than AMD.  An observation by a colleague is that doing RI-MP2 [99% DGEMM, prepared for parallel] on an dual-quad is slower than running on a single processor, presumably because of memory bandwidth.  Assuming this is an accurate analysis, and assuming that AMD has better bandwidth, where might be the break even point, if any, in wall clock time  for  comparing AMD with Intel and the set of factors of clock speed and memory bandwidth, all else being equal?


Cheers,

John McKelvey
------=_Part_156_123019.1213022994345-- From owner-chemistry@ccl.net Mon Jun 9 14:38:01 2008 From: "Venable, Richard (NIH/NHLBI) E venabler(a)nhlbi.nih.gov" To: CCL Subject: CCL: 'Fine" vs "Coarse" grained parallel on AMD vs Intel dual/quad processors Message-Id: <-37124-080609143233-11500-EZc6uatuoOj4crhQYtWZvw|server.ccl.net> X-Original-From: "Venable, Richard (NIH/NHLBI) [E]" Content-class: urn:content-classes:message Content-Type: multipart/mixed; boundary="----_=_NextPart_001_01C8CA5F.24436EE7" Date: Mon, 9 Jun 2008 14:32:15 -0400 MIME-Version: 1.0 Sent to CCL by: "Venable, Richard (NIH/NHLBI) [E]" [venabler++nhlbi.nih.gov] This is a multi-part message in MIME format. ------_=_NextPart_001_01C8CA5F.24436EE7 Content-Type: text/plain; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable I suggest test jobs with 1, 2, 4, and 8 processes on a dual-quad = machine, to find the best performance for a given calculation. Memory = access, disk access, and process-to-process communication can all have = an impact, as the multi-core systems are sharing these data pathways. I've also heard that OS load balancing can slow things down, but that = there is means to associate a process with a CPU, which has been termed = "processor affinity". -- Rick Venable 5635FL/T906 Membrane Biophysics Section NIH/NHLBI Lab. of Computational Biology Bethesda, MD 20892-9314 U.S.A. (301) 496-1905 venabler AT nhlbi*nih*gov -----Original Message----- > From: John McKelvey jmmckel*gmail.com [mailto:owner-chemistry#,#ccl.net] Sent: Mon 09-Jun-08 10:49 AM To: Venable, Richard (NIH/NHLBI) [E] Subject: CCL: 'Fine" vs "Coarse" grained parallel on AMD vs Intel = dual/quad processors =20 Hello.. Hopefully someone has experience in some sort of quantitative comparison = of AMD vs Intel chips in parallel ve single processor modes. It seems that people think that Intel is now much faster than AMD. An observation by = a colleague is that doing RI-MP2 [99% DGEMM, prepared for parallel] on an dual-quad is slower than running on a single processor, presumably = because of memory bandwidth. Assuming this is an accurate analysis, and = assuming that AMD has better bandwidth, where might be the break even point, if = any, in wall clock time for comparing AMD with Intel and the set of factors = of clock speed and memory bandwidth, all else being equal? Cheers, John McKelvey ------_=_NextPart_001_01C8CA5F.24436EE7-- From owner-chemistry@ccl.net Mon Jun 9 15:58:01 2008 From: "Serguei Patchkovskii ps/a\ned.sims.nrc.ca" To: CCL Subject: CCL: 'Fine" vs "Coarse" grained parallel on AMD vs Intel dual/quad processors Message-Id: <-37125-080609152515-3479-xOhILuT4mDVbU8zQKD0/gA^_^server.ccl.net> X-Original-From: Serguei Patchkovskii Content-Type: TEXT/PLAIN; charset=US-ASCII Date: Mon, 9 Jun 2008 14:52:45 -0400 (EDT) MIME-Version: 1.0 Sent to CCL by: Serguei Patchkovskii [ps^ned.sims.nrc.ca] On Mon, 9 Jun 2008, John McKelvey jmmckel*gmail.com wrote: > people think that Intel is now much faster than AMD. An observation by a > colleague is that doing RI-MP2 [99% DGEMM, prepared for parallel] on an > dual-quad is slower than running on a single processor, presumably because > of memory bandwidth. Assuming this is an accurate analysis, ... Assuming a competent BLAS3 library, a calculation dominated by a reasonably-sized DGEMM matrix-matrix multiplication should be almost completely insensitive to the memory bandwidth. The whole point of BLAS3 is what it allows the ratio of memory transfers to flops to be reduced (very nearly) at will. Under the same assumptions, BLAS3 should also scale nearly-perfectly with the number of CPUs. As a result, the scaling your colleague has observed is very likely of an origin not related to the BLAS3 performance per se. As a general rule, the only way to determine the performance scaling of a non-trivial application is to measure it on the specific hardware you are interested in. There are simply too many potential gotchas to make scaling predictions based on (a subset of) the micro-architectural features. Serguei --- Dr. Serguei Patchkovskii Tel: +1-(613)-990-0945 Fax: +1-(613)-947-2838 E-mail: Serguei.Patchkovskii~!~nrc.ca Coordinator of Modelling Software Theory and Computation Group Steacie Institute for Molecular Sciences National Research Council Canada Room 2011, 100 Sussex Drive Ottawa, Ontario K1A 0R6 Canada From owner-chemistry@ccl.net Mon Jun 9 17:54:00 2008 From: "Peter Burger burger],[chemie.uni-hamburg.de" To: CCL Subject: CCL: 'Fine" vs "Coarse" grained parallel on AMD vs Intel dual/quad processors Message-Id: <-37126-080609174953-12283-02uYUYMEdxl9IV8LaaCfyw]^[server.ccl.net> X-Original-From: Peter Burger Content-Transfer-Encoding: 7bit Content-Type: text/plain; charset=ISO-8859-1; format=flowed Date: Mon, 09 Jun 2008 22:51:49 +0200 MIME-Version: 1.0 Sent to CCL by: Peter Burger [burger|a|chemie.uni-hamburg.de] Hi John, I find this still hard to believe based on my own observations. Obviously scaling suffers on a dual-quad Intel CPU but not by _that_ much. Anyways, with regard to Intel the new Nehalems which will come out by the end of this year and will have Intels reincarnation of NUMA (quickpath) and a triple channel on CPU DDR-3 1333 memory controller per CPU. Based on preliminary performance data - something really to look forward. Cheers Peter John McKelvey jmmckel*gmail.com schrieb: > Hopefully someone has experience in some sort of quantitative comparison of AMD vs Intel chips in parallel ve single processor modes. It seems that people think that Intel is now much faster than AMD. An observation by a colleague is that doing RI-MP2 [99% DGEMM, prepared for parallel] on an dual-quad is slower than running on a single processor, presumably because of memory bandwidth. Assuming this is an accurate analysis, and assuming that AMD has better bandwidth, where might be the break even point, if any, in wall clock time for comparing AMD with Intel and the set of factors of clock speed and memory bandwidth, all else being equal? > Cheers, > John McKelvey > > -- Prof. Dr. Peter Burger Institut fuer Anorganische und Angewandte Chemie Universitaet Hamburg Martin-Luther-King-Platz 6 D-20146 Hamburg Tel.:+49 040 42838 3662 FAX 6097 email: burger::chemie.uni-hamburg.de http://www.chemie.uni-hamburg.de/ac/AKs/Burger From owner-chemistry@ccl.net Mon Jun 9 22:04:00 2008 From: "Kamalakar Jadhav kjadhav!A!vlifesciences.com" To: CCL Subject: CCL: Annoucement: Release of VLife's QSARPro Software Message-Id: <-37127-080609080336-32517-xkixCz7+9YOc6dDPF7goJA*|*server.ccl.net> X-Original-From: Kamalakar Jadhav Content-Type: multipart/alternative; boundary="------------050807000305070902010207" Date: Mon, 09 Jun 2008 17:05:53 +0530 MIME-Version: 1.0 Sent to CCL by: Kamalakar Jadhav [kjadhav]~[vlifesciences.com] This is a multi-part message in MIME format. --------------050807000305070902010207 Content-Type: text/plain; charset=ISO-8859-1; format=flowed Content-Transfer-Encoding: 7bit Dear Researchers, We would like to announce the release of the VLife's QSAR package "QSARPro" QSARPro : This is a specialty software for extensive QSAR / QSPR / QSTR studies, with multiple methods for variable selection & statistical regression. The software implements unique methodologies like GQSAR (group based QSAR) and kNN MFA (k nearest neighbor molecular field analysis). The main features of the product include: -Wide choice of variable selection methods including systematic and stochastic methods -Range of regression methods like multiple regressions, PLS, PCR etc and non-linear methods like k nearest neighbor (kNN) and neural network -Complete flexibility in combining any of the variable selection method with any of the regression methods -Novel method kNN MFA for 3D QSAR -Intuitive fragment based method, GQSAR, that gives site-specific clues for better lead design -Host of validation parameters to validate the QSAR equation -Activity prediction using saved QSAR model -More than 1000 descriptors, with wide variety -Manual and automated methods for training and test set selection -Several types of graphs for QSAR analysis -Intuitive data manager with worksheet functions and graphical interfaces More about G-QSAR (Patent pending): Molecular-site specific clues for improving the structural design is an important aspect of drug and molecular discovery. The group or fragment based methodology GQSAR addresses this requirement, by consideration of molecular fragments. The innovative methodology offers QSAR results along with site-specific clues for molecule design improvements. You can get a quick access to QSARPro evaluation copy through following link http://www.vlifesciences.com/vlife_tech/evaluation_form.php -- Best Regards, Kamalakar Jadhav Know more about VLife - Home | Products | Services VLifeSciences Technologies Pvt Ltd: Mail Disclaimer This e-mail, its contents and any files transmitted with it may contain information which is confidential,proprietory, privileged belonging to VLife Sciences Technologies Private Limited and/or its associates/ group companies/ subsidiaries. The recipient acknowledges that the views expressed in this email message are not necessarily the views of VLife, and its Directors, Management, Employees or Associates. This communication represents the originator's personal views and opinions. If you are not the intended recipient or the person responsible for delivering the e-mail to the intended recipient, any use, dissemination, forwarding, printing, copying or transferring with modification or without modification of this e-mail is strictly prohibited and may be unlawful. If you received this e-mail in error, please immediately notify info===vlifesciences.com and remove this communication entirely from the system. You shall be under obligation to keep the contents of this e-mail, strictly confidential and shall not disclose, disseminate or divulge the same to any Person, Company, Firm or Entity. The recipient further acknowledges that no guarantee or any warranty is given as to completeness and accuracy of the content of this email message and its attachments. VLife makes no representations or warranties to the effect that this communication is virus-free and does not accept any liability for any damage caused by any virus transmitted by this email. The rights to monitor all e-mail communication through our network are reserved with us. --------------050807000305070902010207 Content-Type: multipart/related; boundary="------------030002040704000009030005" --------------030002040704000009030005 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit Dear Researchers,
We would like to announce the release of the VLife's QSAR package "QSARPro"

QSARPro : This is a specialty software for extensive QSAR / QSPR / QSTR studies, with multiple methods for variable selection & statistical regression. The software implements unique methodologies like GQSAR (group based QSAR) and kNN MFA (k nearest neighbor molecular field analysis). The main features of the product include:
-Wide choice of variable selection methods including systematic and stochastic methods
-Range of regression methods like multiple regressions, PLS, PCR etc and non-linear methods like  k nearest neighbor (kNN) and neural network
-Complete flexibility in combining any of the variable selection method with any of the  regression methods
-Novel method kNN MFA for 3D QSAR
-Intuitive fragment based method, GQSAR, that gives site-specific clues for better lead design
-Host of validation parameters to validate the QSAR equation
-Activity prediction using saved QSAR model
-More than 1000 descriptors, with wide variety 
-Manual and automated methods for training and test set selection
-Several types of graphs for QSAR analysis
-Intuitive data manager with worksheet functions and graphical interfaces
More about G-QSAR (Patent pending): Molecular-site specific clues for improving the structural design is an important aspect of drug and molecular discovery. The group or fragment based methodology GQSAR addresses this requirement, by consideration of molecular fragments. The innovative methodology offers QSAR results along with site-specific clues for molecule design improvements. You can get a quick access to QSARPro evaluation copy through following link http://www.vlifesciences.com/vlife_tech/evaluation_form.php

--
Untitled Document

Best Regards,
Kamalakar Jadhav

Know more about VLife - Home | Products | Services

VLifeSciences Technologies Pvt Ltd: Mail Disclaimer
This e-mail, its contents and any files transmitted with it may contain information which is confidential,proprietory, privileged belonging to VLife Sciences Technologies Private Limited and/or its associates/ group companies/ subsidiaries. The recipient acknowledges that the views expressed in this email message are not necessarily the views of VLife, and its Directors, Management, Employees or Associates. This communication represents the originator's personal views and opinions. If you are not the intended recipient or the person responsible for delivering the e-mail to the intended recipient, any use, dissemination, forwarding, printing, copying or transferring with modification or without modification of this e-mail is strictly prohibited and may be unlawful. If you received this e-mail in error, please immediately notify info===vlifesciences.com and remove this communication entirely from the system. You shall be under obligation to keep the contents of this e-mail, strictly confidential and shall not disclose, disseminate or divulge the same to any Person, Company, Firm or Entity. The recipient further acknowledges that no guarantee or any warranty is given as to completeness and accuracy of the content of this email message and its attachments. VLife makes no representations or warranties to the effect that this communication is virus-free and does not accept any liability for any damage caused by any virus transmitted by this email. The rights to monitor all e-mail communication through our network are reserved with us.

--------------030002040704000009030005 Content-Type: image/jpeg; name="Kamalakar.jpg" Content-Transfer-Encoding: base64 Content-ID: Content-Disposition: inline; filename="Kamalakar.jpg" /9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja3kAAQAEAAAAZAAA/+4AJkFkb2JlAGTAAAAA AQMAFQQDBgoNAAAW7gAAUdIAAGuVAACGB//bAIQAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEB AQEBAQEBAQEBAQEBAQEBAQEBAQICAgICAgICAgICAwMDAwMDAwMDAwEBAQEBAQECAQECAgIB AgIDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMDAwMD/8IA EQgArQH0AwERAAIRAQMRAf/EATcAAQABBQEBAQEAAAAAAAAAAAAGAwQFBwgJCgIBAQEAAQUB AQEAAAAAAAAAAAAABQMEBgcIAgEJEAAABgIBAwMBBgYCAwEAAAAAAgMEBQYBFQcREhQgUBMI EEBgNBYXMCExMzU2cCMiMiYYEQACAgECAwUEBQYGCwsNAAACAwEEBRESABMGITEiFDWTFZbW QVEyIwdhcYFCUiQgQFCSMzYQkaFicoJDU7PTFjCxojR0tCV1lbV2YMHC0mNzo1TURVVlFxIA AQIDAwcIBQgHBwUAAAAAAQACEZEDITEyEpLS4jMENEFRYXGB0SITIFChsSPwweFicnMUBTBg QlKissJAcPGCQ1OTEGOzJCUTAQACAQIEBQQDAQEBAAAAAAEAESExQVFhgfFQ8HGRwSChsdEQ MEDhYHD/2gAMAwEAAhEDEQAAAffwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAA1No7NOXdb55e+Lexr1MZf1Nuassud96Sm6NRWvGHSuSTDMYb1ynNDgAAAAAA AAAAAAAAAAAAAAAAAAAaI5a2L5q4Xt/UWfympswlL6x87twyFsK3uK1r7WWWyMn2PDfR3lfI wAAs46vpbmzPYAyGa5lA7/3lrgcZHU5fRN7iIu90jlUL06DGmSAAAAAAAAAAAAAAAANGcs7C 4u542lx51LkcHuJKTwVD+ZFQ6c0nA8gbhyu8mKM12PA+/eT8tgAQm+ocH5lEW/CG5sRytvDr LtTTOxuhNW3B5vHqMVLOvzpjct51ZhBesxkSwNqAFmXgLMvAAAAAAAAAAAAAaN5Z2FybzBs7 RO25mA5fdYWSq9a84QXDXWGS9gc2Y554dUZ1J9jQ30lZbyCABgq9Pxx3hrzVPvFerfzD6i9Q uscY8uZG12Ia0PT8yp5Ll4QY7LOgThUsCcmMKxkzV50CYo1SUzZB6CAAAAAAAAAAGi+Wdh8D 4Ts7PRlOI5pVyVj5wk96y0dSmuDUvPbobYEr2NCfQxlPKQAEIk47zc3NqTSXImuehuRd8d/9 jZhmc2uuaiXGhTrAgJzabANgm1TFETI6TwgxbkfJAaXM+bWKR1oAAAAAAAAAAc/8t7K5d4/2 JQloy38XNO7V1PLxTF1bvy07k2ftnZOKfQ7lPKAAAjFlY+RehOd+ocK3Tvrak1S3TJ6YJIbM NeF6VjNmBN9k0AAAAAAAAAAAAAAAANHcybC5h4625lPNjZX1OK5BXsrypNMRp0rW78xu9csu s/j/AKP8s5FAAAxFvb/21q/36rSPuxMQX5kSiVyuUjIgAAAAAAAAAAAAAAAAAAAAAAAxcbd4 OGkAAAAAAAAAAAAAAAAAAAAAAAAAAAABd3NGS5FFAAQY1+QkmJsEjJED9mePySMjRRJeRIzB lSJlobLJwAAAAAAAAADh06NKRgDLFgXZjDMFybBNNGXNVm2D+F2bYAABESsRQkplCqRoy5hi uUTFGSLAvCqXJjidFUqgAAAAAAAAA5FL8lBFyNmxiLl0YA3gYYhBhzLE0NWmwDoYAAGCIiWR +jKl2YgkZHiqUz+F8YkvyuZIwhsYAAAAAAAAAAAAGsCOGaPwSEgp+yelUhR+yOkvNqAHljtf D/UDVeXX3j0AAAAAAAAAAAAAAAAAAABTBUBiD+mAICbSIsZgzREz+lEGbJcAfLv1TqPcsJfe peqcv7Rwmer+foAAAAAAAAAAAAAAAAAAGjyGHSJhDUJ+zcpzkZY/B/TJksNSG1yCg6bAPl36 p1GBtaIvPQDXmSd14FkWx426AAAAAAAAAAAAAAAAAAAAAAAAAAAA+XfqnUYAFX596SxiU7Jw ud64w+a3dBSH6AAAAAAAAAAAAAAAAAAAAAAAAAAPl36p1GAAABPo656fxaW6VxiV6MxuU3vA SOTpewAAAAAAAAAAAAAAAAAAAAAAAPl36p1GAAAAABe0/W54S+3pAyO7IO/3PCX+4Ya92tEX uWpewAAAAAAAAAAAAAAAAAAAAPl36p1GAAAAAAAABU+fZ/HXG0Yq82VGXWxo262BHXM5sLia 2NxLrOvK7StKLWrILarlaXsAAAAAAAAAWPvzg7ing69PB16ceuaUduaUbuaUZuqUXuqMUvKM Su6MauqXBewMcAAAAAAAAAAAAAAAuvH3M0amXoe8rS939P1X8/cpS9/0AAGMq+fw+Yyt4sff nHVfOMq+MTV8W3v4AAAAAJ7H3IAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAH//aAAgBAQABBQL8 Y2yXexDea5a/TYgOWE7KLBzC2rOYHmppY1zXSSTI4+oWFRcNOQH0mykea74S1xnKvIaV/wDd b0Xq25BpcQ/Y8MHImeqs8Xm68hQjeo2PlCwnXqdY49hZOj8OSqqUrYXyUVyDUZc89yx6nCvw INbQ4wtdrmu2V4+m3svH/ZzbylI8T1eFeqScO/fN41qg6UWmp/mPjutWP7DO2xHnsN5/K3b+ VR4fRM5JxMsVvbuZnBDTXIzBw3q1Jfty0DiJsda2HYNJPlaPjm8dyr6bHONq1Cn55MqIi8wc qeZT/wC7jJkZGIsFzqlVFit1YqKP1RzMXYeB4n/FSWWOI+rXii6v6W+Q6iWEtV4qdIb1e21u 6Rbv/dvt8hD5/sXcINU/vV4/K2KOVl4Pj+lSVSNbOM37qXhOLpd1LWSBa2eKNxleWxKRTUKf HWxm7kL1R46SiuTvTJxzSXYWyh5gZVWIRSxUY91MoM2iDBr9UNXQZ1rkyaS5Mr/1URzCE4Ji f8Uugg6R+mZkyO5+lGEhl6BBzlvmfqI4p4+huI0Hf+7fUHQKTirSNigKFbq3yTd+RVDIcgr8 xxnJt9sCqfJtwST5PsVlQg17VyFYHULyDauSnsJyis7NDc0WNd7xfyLO3N/91vP5WcQknRpk j9k5cSFsTanl5xJ4+kbN2SUvPJOCu5NKefyzaE5Lr0uwleS/TY8yOITXSRjOcKvXMeX+dZkj SUVNwzCxQ/EvD8TxRH8pcaRfK1aY8FS8ajUan+k2nHXGbDjtX6VUSJ8ZXzgiEuFo4/4sa0h4 7/3a+05O9QEzR5nNlc8d2QsnDUtzH2mA4qQgpmR4nReOJDiB3YEZPjWb82fgGFDmqDxEdCtw 1HvEOhG8dzp7T91v+ejVdBVyCRj3sTjpRMZjnmBr3xlVGi/xoIOWotBUFLtBREdA8v8Aqm/m 0zBg7k3b+AcV4UHu8e38jRFMk0eXnSypeXEEyvr2lG1E/KzdxMMOWomTdubXE0p7YLyrHx8D yOvI2deOWUsXsN4QUcNMNXyecNnJ8Yhih7SYeQXNRIU2EI47Bt4b1Q1lY2SPvHHcROY5B9bd gxaHeMWkgizZNWCKjVssoWLjCCTr0NMMY6HjYmMKyZEOSNjkgsyZuQq3QXBWjQqvuDpk1el0 EKNBCjQQo0EKNBCjQQo0EKNBCjQQo0EKNBCjQQo0EKNBCjQQo0EKNBCjQQo0EKNBCjQQo0EK NBCjQQo0EKNBCjQQo0EKNBCjQQo0EKNBCjQQo0EKNBCjQQo0EKNBCjQQo0EKNBCjQQo0EKNB CjQQo0EKNBCjQQo0EKNBCjQQo0EKNBCjQQo0EKNBCjQQo0EKEYeLbK+mwySsQwrthmJd8S5z ihbBZZWIkoWVy9ZRU3IvZqJcnQgkVnEa6ZzNgcRJbKupDruliysNYZiUmIqemF3MHKOZRar2 KZmjVywKO2RpRypYF7I+Tk3k7PYla6/cyUZ90h+SpWfxO2yPrmX10hmOY/kavSS6t4hkJdpa FcWBlc2MqjTbmjYWkXd4eWk4i5RE5KSC52zCMuf/AMsa9wOIMt9knENXriwnFoy8Q8rJIXSD ctvVOP04yMQfsjLmnowkdh+yzluvHLjCzMqLyTj49w0eN1nirmOZuIx6wlWpH6JVt0zw1TlY 7L40ywKjs4xKThn0ZIorPY0yBZlicfAj1IQiePujbjVZrWrdTLDZnjGov279jQpFrGOOPLC7 n3dSlzvK1Q5SIdVKhSFSzWuP56Ln6lAOK+2s8XbnbqSo0tpW3H8zHQGKRNKxDerPkbJWuP56 Ln4ykGYXD1SbLElG5rie/SqyRYiQq6TlSGgcQ7l7CpSUS7q7F0oaJRUcHgV1ZRlXiJEQh5RJ xIwK6zROBblm3law6h1641cy0RDKRZSxaZYdtXEGrD71a5BzHsWc5Is419Y3TES9oNHH26pp WMu6D9H9XPCKWJ4vHwc5MIwccS3pnhG1s82LJcVmcPiyncIfbx1zj8JWzlu8Q9pMYpR3F7vs dtWznDxo3ft5GBjJZSyVZSeemjWJztazDoFNDRbgPmbaSaGhopNqavROWeigkGX6ehEmicdF tj+iqX2zU1ap841adwmomsn7Peo9SUZ15dSYtqxi4WnCyZ4yWQkMVxiyVdUiH/lExiCiVqgM zX6uqpq+7kq5lu3f0skolKWeOYya1pR+KXm4yOk5uXIilanxEUrb6q5drRVD1z6h2yggrdWr KT34hzpmgeXL3ACE+oqPUENyRSJ4Yz19/ibTZIIRPPl2YiL+oqDWxGcscfygavWb5P35Bw4a qR3Jl9ixH/UDdGwYfUc1MGPPFBdBlyRRH4av2L4vvxTGIZnbrVHhpy9yIzDXn69IBt9R0qUN vqOizBv9QdKVCHN/HSoR5Y48XCV+o6oTstdWCT5kv91O5bJGPOwiYUuFSRCnIVGSypyrx6kF eaON0wtzvx+mFfqFpRAt9RkFgLfUjgLfUZOGH/6Hufd9/TXWRBJiWTLi0WYuMXa5lwnyBeE8 fuJeh+59/H7oX8fuhfx+6F/H7oX8fuhfx+6F/GeRb1nP7h3rI/XF0B7da1TKWKwLBSVk1gos qt/F8esDx6wPHrA8esDx6wPHrA8esDx6wPHrA8esDx6wPHrA8esDx6wPHrA8esDx6wPHrA8e sDx6wPHrA8esDx6wPHrA8esDx6wPHrA8esDx6wPHrA8esDx6wPHrA8esDx6wPHrA8esDx6wP HrA8esDx6wPHrA8esDx6wPHrA8esDx6wPHrA8esDx6wPHrA8esDx6wPHrA8esDx6wPHrA8es Dx6wPHrA8esDx6wPHrA//9oACAECAAEFAvxjeJ6QgWsNN3ebbzU5doJtDS97mUpaRvUWg2vl ueLp5vZkpK43KIcwco7fxeFlfk915S/IVGznVdXRt5jOYd4hIWtSik1EVeFSYS8nZXDKz3pk RzB1bPSBJnuW9TtfxWrG8PCuLfcFUT0WYdyjD0PXiEe2RcqKy/svKX5Ckf7PaFSoYt6J1q7Q 0TpQEO6TXkp5mse9XJUqVcqeOsFjHRb0tkDOVl6yRw3m6DPQxe/vNx0zMjFehwgk6Qh45SPR 9l5S/IVd+2jJy4WOKl42CvDBVrK3iJaN4CfWhpIlwrahLZaMTh6tjOYBPGcLelJQ6KjF0Z0k 9XaM0rBFQ83bmjVFk29r5S/IVpZJFjDGbyxS1ur5UTrVW8dtAVYpcVquqZl4aCJX6pntgi5x lX0s/h8n5kcYsEzsHbfr1gH5n8d7Xyj+QbuEkCnko4xjP4www/ZHHnx+CleNSneO2blOr/4E uMFX9Tnu8dJI6x5eKPFuaZ3fB7Xyaiusx178a+Qxn4pgNpC0M0cS1sxlw3lXa+vfiskVTg0s G+X1lSTJl00bPUmrRuyS95ctGzwujiBo4gaOIGjiBo4gaOIGjiBo4gaOIGjiBo4gaOIGjiBo 4gaOIGjiBo4gaOIGjiBo4gaOIGjiBo4gaOIGjiBo4gaOIGjiBo4gaOIGjiBo4gaOIGjiBo4g aOIGjiBo4gaOIGjiBo4gaOIGjiBo4gaOIGjiBo4gaOIGjiBo4gaOIGjiBo4gaOIGjiBo4gaO IGjiAjExrdT/AI/koLqDFMQ3vzuPavcO4J0gM4zjPvzli1d4c1w2Auzcts+/f1C8OwcBetqY C0a+b/gBVo2XCtfYnCtbXwFYiQSBiHJn34xSmwpFx6oUrzIwUrRgeAkCg8a/TBkzk9//AKg7 NooDw8acGrzAwNWkgatKg1dfYGYKSwMxEiUZj32Bls5wMkPj7rgpsjCC+Rhm7yMRz/IxEyOR iEk8jEBIZGK69yMVtcYrIxW0B+nGXsGS4yMoo5HitR4LIZj2ORrmA1ceNVHjVR41UeNVHjVR 41UeNawGuYDwWQwzaYGGzfAwklgYxjH8XudDudDudDudDudDudDudDudDudDudDudDudDudD udDudDudDudDudDudDudDudDudDudDudDudDudDudDudDudDudDudDudDudDudDudDudDudD udDudDudDudDudDudDudDudDudDudDudDudDudDudDudDudDudDudDudDudDudDudDudDudD udDudD//2gAIAQMAAQUC/GMKxQeqFr7VUysAgiZKuoLhWuIIDMIywC1bGcYgmGDZrUUVstCR WYv3Wu5/7WjldE8vnODOM5ZM2ShnKMal1cuXy5HUongFTMuxfIYawfqTJ8ii0Ql2QMEmqSyM EGTn0N26jpZRIpGPste/vI/35fPQ0n/NvFY/lHHxl07Ln55U2MIrqnRilVTKwnpUPhMhJHJD tJpk7yyN/wCFrXwd76ElDoqP3RXSnste/vEN2KO3OHJ273CaSj4nxJGMgfz2hjOXBnSqKhEm ckqitDekxcGw7Om2MpL/AAYrVrTJFrLKOFfa69/ex8RTl7O0pks5/wDbBMk7ksl7Us9xToHc xrpBVCH9Lv5fH+JULlUduEAkbuJ7XWsdVlkTGzhJcgwRYfCtgZSX6/EqcN0FCmJ3FauV1XUB 6nPd4ySSi6hEDN0239Pa68oVNbKzc+DKIj5kwV524w8GFUjZ+duTBFWazSWXbar1kSSTzkuD YwXBce8pLrIZ2L8bF+Ni/GxfjYvxsX42L8bF+Ni/GxfjYvxsX42L8bF+Ni/GxfjYvxsX42L8 bF+Ni/GxfjYvxsX42L8bF+Ni/GxfjYvxsX42L8bF+Ni/GxfjYvxsX42L8bF+Ni/GxfjYvxsX 42L8bF+Ni/GxfjYvxsX42L8bF+Ni/GxfjYvxsX42L8bF+Ni/Gxfg752qX/j9tIdBjOM49+Rc KoZRkElB/X39JdVEJSeAmskr+AE3rhMEkygjpBT8AEVVTBJFcoJJpgrxscYNg3v+M5wCunBQ WSXwCymAWRbZGHTcwwYpvwBhZYow9c4GJJxgYlDjEoQYkkBh+2GHjbI8luPlSyO4ufuvXA+R MfMiPJbjzGw85qNg2GzQGZRMZlBmUUGzX9g65HecfKqPnXHkuB5LgeW5HluR5bkeW5HluR5b keW5HkuB5LgeQuPmWHyqDvNn+N0SHRIdEh0SHRIdEh0SHRIdEh0SHRIdEh0SHRIdEh0SHRId Eh0SHRIdEh0SHRIdEh0SHRIdEh0SHRIdEh0SHRIdEh0SHRIdEh0SHRIdEh0SHRIdEh0SHRId Eh0SHRIdEh0SHRIdEh0SHRIdEh0SHRIdEh0SHRIdEh0SHRIdEh//2gAIAQICBj8C/XGhV/Ly 0PfUIMRHkTt63apurKIdk+NpETywgHXJu971V3N1Nz8jwNJMSCeVreZfiWu3alupuc9mL7IH vsHSjvQfu1bd235LLQOcg8nVHpTd23Xyn13mwCmPl3LKqbxuTavNkEzMPdFfhd+8pr+TwCBH OD8ulUN63gt82oyJssQYYQ9bbr987+Vbt+QMoU2bvkOEQTHwsc+PW4i3rW6bp/u7/TbnB4VX ed2aPgsAYOQWhjewRTd63gDzoua6Fxh0dIIivzCqBYyrkM6Gnx+4sW7/AJSwN/COyA/njUNh j0RBmnbzD4tBwcD0OIaR7Qexbof+2gen06m9G0U6bnZoiv8A6DWu3Yn9kQLern6vah+X/k1S HhDnVB9a0BvNZaT0wstVWnvri+tRePEbyHCyPPCBt9F297yYUGwib4RIEeq23oVagD/69OhS znmp/SG+pt1+9d/Kt36qn/ietwrPwN/MqMeqD1vLWYgGnsa9pPsBKDnXVKr3Dqsb/SvzKmzE zeWx/wCNrPfTK3eAPxHUXdjYZR7MgreMq92S0dr2/NFboD/td6byGz0m0GYin0HVbHtLT4ec Q506vkivurb3U7YDpbi64RA5SiSqm9u/1qtnUyz35Q7PRfu1YRovaQeopwruy65IEfq02imy YblHpcfU26/eu/lVHfd7MN3blxsjexwHtKZu24vLqorh2EizJeOXrCbQ/N3GnvTRDKgS1/TZ GB54iHTyIt/LHedvUPDAENb0mIF3MOqxHfXxqU6m0HKYmMftA/OOVeca4a7mLX5Q/hPsim7r ugI3Cm6Nt73c8OQDk6yTzDdQL/LQjfH0hVp4wsuo0sPsPUvxG8vyWe/q51/8Vwo7jVA8wkQH mROVkD6wgeYuJTN03cQo02wHy9/qzdfvnfyr8vpwpQq7xWD4hpMMlxFputAX5gfzDy/ibxur eRvh83JOTC7w3wRPl+HwiHmmzxvbG/oBVJtQ+Ks0NZU8zE4tjlZPJkkXXRsKZv1BjHAVoeKp lNPjyLnGB/ehC+AXmby0U3Oqf7tmUXGNKAPIIH6E78y3KmKW85dkapdHx5Ph8VtnigREDqW6 E3eV3psLhD0mefso/L2qOU2HWE51MxpNiGd/beiU19S2szwu7OXtHt9Wbr967+VEPpNe7KaY nkyTGAsI8VxiCifwNOJH79QdoAIEeyEeS+Lcnc2CDrfiVLRA2X2Xg89ijU3Km4km5z23uJgM mAsjARBu7FkncGW/Xq95h8uwZW6ssLrMp9zsrw3/ALMRA4vCLUGbvuzKLhyhzjZbZbffebbL 1uv3aAHP6b8jFkH3IU6Yi8rIOzf4gfeOw+yCr/u5Tfcfo9WbsKLHPIquuBP7PQtjWzHdyj5N WP2Hdy2dX/j1U3d93FQUmXfBBhE5XKyOK1R+LGz/AEW8l37CdvO8UqzqzzEnIN8lsK2Y7uW6 hzSHinzIdf6CLGgE8wXk70wPp/K7lHYvI3ZobS9dBm9Ma9gMbVw9KS4elJcPSkuHpSXD0pLh 6Ulw9KS4elJcPSkuHpSXD0pLh6Ulw9KS4elJcPSkuHpSXD0pLh6Ulw9KS4elJcPSkuHpSXD0 pLh6Ulw9KS4elJcPSkuHpSXD0pLh6Ulw9KS4elJcPSkuHpSXD0pLh6Ulw9KS4elJcPSkuHpS XD0pLh6Ulw9KS4elJcPSkuHpSXD0pLh6Ulw9KS4elJcPSkuHpSXD0pLh6Ulw9KS4elJcPSku HpSQrUaNNtUXED+8A1txze7ulzLJeIOHr/4zfFzi9ZVH4lPovl3KBv8AX/x2Ann5ZrK3R8eh 3evjsLfdO71/A3KJZku522fR7FHd3g9di+JTdDot936gfGY13Yvh5TD1x9/evg1Gu67O9W0y R0W+5QeCD0+v4OEQvFSb2We6C8Be3t718KqO0Lwhruo98F4qT+wR9y8YI6/X9q8dNh7AtmOw kfOrMsdveF4Krh2R7l4KrT2Q71YaZ7T3KxgP+YLZH2LY1M0q2m+RVoP9lsBVjHSKspVM0rY1 JFbJ3sWz/ib3q5o7Va6mO09y8VRntXirfw6y8VR3sWKrMaPqC1WtbJbNmaFsaWaO5bGnmhbK nJbJq2TVsmrZNWyatk1bJq2TJLZU5LY0s1vcrKVPNCsYyQVjWyVn6XBTzzoLBTzzoLBTzzoL BTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoL BTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoL BTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoL BTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoL BTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoLBTzzoL /9oACAEDAgY/Av1xe2vGAaiKDHuA+sPngg2ox7Y/WHJ1HpXwmuMOWNny6oqNZrsnnDojv9iu dNZXlnPt7vasio14cOledkVXv5mm0/L2KrvtBtRtRjX3u/aZEclhtHrap9ke9NotyfLL7bLb Tzx+ZMIvyX/0oU6NjrGg+89d/an0t48UDDrBH+ITsq3yrO2JbH+EzRyD8FhFlltxPTHuTKwx Ryey/wB/vK8oOLC5t4vHUq1AGLW0Xcw5Oj020+cgL4JPmdPKvxe/NiIwa09F5PzJjt3GSx7b ukeiKFHaGMOwRVOodq6o+TQ35yfU1T7KZ9433hUzzNd/SmvGEPHtBHzqo7kyoSH0qt9YxHVl v7xNVafKXWf5gIe9Nbz1B85XmUzkmAt5hlAOPYIlb3F3mU2+YGu/eaOkX8oj0ekXm5B4bced BscioeQ968vmTKA/02W9bvoh6LatOx7TEIGmMmmI2dLiXH2mHUB6mqfZTXwjBwMimFrXANBv hy5PMTzL8PXblUruezmIP0ryd0aWDnuh1Dnlz2oVKV7fdzfLlghVfTPnDoBPYf8ABZRsYLh3 9PuQqVSBTDbVXfQINPynXelkm5ZLTlHo+dZTwA1R3oO/F/sNPKOSJ+RgnV6ttRxifVlT7ITS cmOWYxhd8O+PbDt6UMqAPZ2psXWHJ5RZEuB5OQAHtQg4B1nNytN/MGvg3qTct3gNQc2HK5ey 3qtTMp3KI3WeOBHY22Ka6Pi5bum7q5YgSIXlU4ZdhEbotcHW9Bhat7NbJ8yp5j4C0CIujARu 5h6TvJ2kFhdHqWU6yiLvl0/9On1ZVH1R71iIvUPNMgtqbuYLw1TIH3qPmukFjPs6F4nlwQyI B0OW5Vq9UAZVJ8Ifu8ht5xb6dTIx5BhJClSEXlNputML0fVjy4geFY2zCxNmFjb7Fkio2A6l tG+xRy2zCxtmF5VV7MhzYHxch7VXYx7NkbIjm/QE02tBPMFAqAu9dZVFxaehbV81tXzW1fNb V81tXzW1fNbV81tXzW1fNbV81tXzW1fNbV81tXzW1fNbV81tXzW1fNbV81tXzW1fNbV81tXz W1fNbV81tXzW1fNbV81tXzW1fNbV81tXzW1fNbV81tXzW1fNbV81tXzW1fNbV81tXzW1fNbV 81tXzW1fNbV81tXzW1fNbV81tXzW1fNbV81tXzW1fNbV81tXzW1fNbV81kVKjiw/3gZFefeo i71/4DZzKD/C72Kz1/8ADKhWEl8Mg/qBfEdK+I2S8Lh+oHgcQvFArxtIWKdi8Nvr+xWPPvVs CvE1WxCseF4T+oHhc6axK3JKtaFa0q5yv9ixBY2zVjmzVn9mvCxtmFjbNYwsXsK5ZK53y7VY 0qxnt+hWNCub7e/1DeVidNY3TKxumsbljKxlYysZWMrGVjKxuWN01jdMrE6axGatJ/TXulrK 90tZXulrK90tZXulrK90tZXulrK90tZXulrK90tZXulrK90tZXulrK90tZXulrK90tZXulrK 90tZXulrK90tZXulrK90tZXulrK90tZXulrK90tZXulrK90tZXulrK90tZXulrK90tZXulrK 90tZXulrK90tZXulrK90tZXulrK90tZXulrK90tZXulrK90tZXulrK90tZXulrK90tZXulrK 90tZXulrK90tZXulrK90tZXulrK90tZXulrK90tZXulrK90tZXulrK90tZXulrL/2gAIAQEB Bj8C/wDLGoylIQTnGB71wzsgNY0/TxVHM5CuhtwWMSoKLXny1SIywhQDNgSZaRM/amJ07p4t RiryrBU4TL4Og6vth/N2THOWEF/RTwC8neV5kx5gUqtPzFyVz3Mle4FJGfo5pr3fRrx5XH3Q XckSIKV+lFWy0QjcfJ2tfWaQDGu0WSems6aRM8G1zqqVKA2ta0Fgpa1jJsYxhlArABjWZnsi OPLhcs2I3aebRiIml+fV9hFzT8yZ4VkMZdpW6jomVuUjsLbOhDInsapoT3gUQUfTHFzCKy/T +LpKsuDzuToR5eshCJsGTTXzGsORCYARGTYcwMRrPHTvS2VyOEvUspbwJG+jjDRz8dm0VbqC GLIItVnFVtDqJgJAX8rY/wDJYbP/AMPjMdTvsZf3jVxu6urzdXyChqK0BY1/d3NhRlqUxzNZ MpnXt46kY3WFrVjTZMd8LCcgRz+gY4Y7N6uTYm5lL6gNi94BGiKgGEixVcXMWvwyMiqNBmOz ig/A8ygp1VGSqwtrTmlcRacqYQ1xsdoMoBkbiLST+rjpwUTyo6mBWSsguZjahFOnbmmcfrL8 1kAn/CRx561XI8zk6t+1TueYsCVJiW2UUVCkGxVYlpVoI94EUwye2NI0yOHI5mtcpTdUvXsG 7UYodwRPYPMqNPfp9rYP7PGRyDcfVyi6WW8x7vvcyadkgAZWFkVGBsTDNJkddC00ns146Zy7 ERXde6mxbnANi1ZiXTYXvPm3HPf45ju3bR7hiIiI/hvfpryVMbp9fLCT0/Tpx+9gs0FPbyh2 mv8AKPbO6I+qf7fA4vDWOWXLBtu4vSTjmiLFJQX6n3c6lPf26dnbxbXfaVh1J4CLz+2aXBMg Jl+uQEsu2e3Sf7I9QUemDz8OsDR8yy/XqY/G2nxPlSuriTyFgGSJdigiOzSWBujjE5FogDch jKF1gL15YMtVVPMQ3TJbBI+zXhl22RBXTK+YYjJ7Ia0EwciOs7Blms/VHF6uJa1quPxxafq+ YtNvkUj9f3Cg4p9JZTqAY6huXcfj/d9OlfvzVtZVgroryFinWdVoG+TiYFpie2d2m3t/sooE 2It2a1q2hOhasrUW002mxOmyISzIJjtnXx9n0/yFR/5Qz/R8Z+P/ANXa/wBFPHVVYftWadKs P53hklf+nxKG+BlrG3qwCfhnmqlNwg7fsny6Zf73GIrDMSaMTLWafqTYuWNoF9RbEwX5ijj8 PiYMx5fGeVsx/mHtx2IatR/Uc8lkfnXPGMuScQrH43Izb7Y+58hYvG3d9U8gIP8AMUcS4Ynb SxV6wz6trOXSHX/HtRxbpXa43FNvZAl0iMwHIXEYx9jHY4iWa2bchkFKT4Zgp39nH4cwvHLw 9y5PS2Qy+IULlhjspZfPOT5ayxr6ctSK3cop8HN+iNI/hX83bBrUUQWUqTpzGG5y6yFxu0gd 73DEz9EdvDFN6XHyzRNcwOWnnQs42zOs47YU6T3aRwKJYdC0WkQm5tATL6lWBmVFrPdrtKfq 4GxH+V1g/wDCjun9I/73Fq4caeet6L/vlVR5e72xHH6OK49Q5/GYp1xqkUqtmyHnrrnsFKl0 6Ab7tsiYWn3YFpxXs9T57F4FFthJrOyltVRb2gO4gWTSGCIRnic1hbqcji7+bwbqd2vMymwu LT1ya5KBnTeEx+jjG/8AV9P/AJuvi5OTahGO8s3zrrTQRXVWkJhptc2RWoBH9aZjTjqLII6x weRqdOup189mk2wnGUlrrKo47mZLspO54V98ythxDGSOvHVdjqjqPC0OrusfxIv3/J5HIVwy WR87Vw5UeWtkix0Tk7LxX2fb104r2eqc5Sw4XGEumt0sbbuGuIlvlKNZb7tkUQUSyQXMLiY3 acDmulsxTzWNJpomzTOZ5dhe2Tr2FMEH1niJiWxgiW0onumOOn//AAt1j/3t0N/Amrz0+aFI 2CrcwOfCDMlg+U68yEkwJGC00mYn+zLrL010wSxlr2AlcE1gqUMmyRGCY04EfrKdP43R/wCU M/0fGTxqGJU67TehTLEshImxZCPMlS3MgdZ+gZ4yp5C3jrHnopCqKLLbJHy/mpOWeYpVYiPv o00meG53pi2qvYsWPONqMadNqb0lzDsY+0sdgwxvj0KV8svszMdghlesLq7Ai4H2K02mZG7k TXptXbtFquK5bY3zzDOR8PZ9qLOLukQQ0heiyAwR1Li93JtAEyInpBkJD2blmUajM6w/F1Mj XPFWWQbxTln16L5HTYyzQMVmxgwMf5M9NOyZ4eJOC3kr2w71oBIVRCoLk1qsMiGchcsKd0wJ Mme2I0iIytGghtq7aynJrV0DJta44CBEIjt11/tcdI1MtWfVu/7QYdxhY+2YWHKcp0HqUNW5 ZwUHEzBR/CtYy+qHVLiSS9c/SJdxDP6pgUQQz9BRrwypQydfJ1dSmJHXzdXt/oLiwHky8f7w u3TWRHu41c5gz3fZge3/AAZ1meKGKvXRSMWPBas/0vk5AOSvTUt1iZIhHWYjSI4RTrBsRWUK lj/ejHfM/SRd8z9M8Yz8T8HiqK+puierOnuoLmSTUSvIXaFZy6a127iVxbeFW55WRkiLlLXO nZ3dI/h/0naIj/FSrQzV+6uBlmF/D6vNXIZXKviYYCbFo5VTSB/0jmEPeM8Lw+NSupj8blOm cdj6odgqq096UJDXtnlpV+fs4xv/AFfT/wCbr4ZXspVYruGQah6waloT3gxbIIDGfqnj8b8e dSqVD/8ApORr+SJCpqcgH3RBHlpHk8kBGIgdNI04ylp2IxjrVbr7PjWstoVWPrjXDGEiEOJU sVCC7Q2zG36OPxZVhsd09fz2IxmNw2BtdUZO3Vq9MYFAq87Yo4+nQt3ckORuvWxgAdfxtjVs CXD8HY6k97dTda5C7nbXNWjHruWaihK77nxKZPy9KmL43zJF2nHdG0Y6f/8AC3WP/e3Q3Fjq OOlcH7+vdW9Hhcy/u+v5+yN3qXF1LYus7OYcWaxyB694zpxn+jegV9I/hyvG0cLfzd6eg+oe oyzeTvqtvo48KXTTscmpVpUZgmWGtNkk/atfhKeMPiOm1YXpXIr6Y9/9V5PN4bK5VVeyecy2 AoUMNhWZDAWuVkH4J9nm2G+CsYRtk+HV6eS6Sx2fn8H+nffOUPE5bJ4wNvWfV3LnE4actj7E zYnTXnXJ5Pb/AEvfx0BhMYnpPH5nqFn4m43qK/eo5a7j6d38PcvjsV57C0kZao5yLvmDPy73 ROsxHNjZPMudJtV0/d68D8Rw/D/H5Qad6n045DenldVf7Q3MX7xsXAKph98MqBb+8fA7D2zO 3qfoLq92HyeQR/8AzXqnEZ3CY+1iEX8W/wDFHp7F2617E2sjl5p36F1Q6EFggcpsaREiXHWt 7oxnS1LD9D5a9gl4/OYzI3b/AFTlcPSrWsuM5CrmMcnp+mLbPl65cm0RGEsKNkwPCw6Cdgen sdj+mOleocvb6jxV/PWLGR6rotydPp+tUp5XAwmrSpq/ebfMKSM4hYeEp46M6y6mw2C81H4Z fin1Jk72Mq3wt1K/Subxyn0sR5jI2YXUv160E0WQ0yYA7SGOyemrJvxPUiupbAV7XSWC6O6v xmR6cK5Re/HmnqnKsPGZtS7YLRaMq9WJlm9fhjTigV3q/oFr7FRz890AjEZbDdX9LPFJyNMC yObsPybKNnau2Z0kr7yCdNsF/FaH/KGf6PjqWFe99isLhHYzyVjJV494Ldnxf5byTVc5nKMO YHiifBJR2DxRHGBeYmpSzvgg7t0DamjE44bZsY1tkyePg5hSRF3dvFsl1dz6Q5t0TGItzFzy WO6eu0a618/UJfZyFlMTEnJQqYjxDM8ZH/o9r61Fl5p11UbPO8pRzVWrXCq/tC5ZyuCN1oNs T94uI7BmeMjTBFiLSenLhGyrj3xA5j3Mm6ucc8eetoebNiVzJQRMXIiG4d05McfSZbWmhcbS /cLJzYWvp5WQp5TevYBtuZgpreXGImPq1GeLWMs/vNSEjNezWqvSCiWipLZv89MBE2LBM5Mp a0ZHwz4gKeMnkLi3sqDayVS1FXlzaCvksW/GudVhpAubNdduTXBEMSYx2x38fhurGebKjhW9 N4RFi+pNe3c8pbNrLTqyLFtVbe6yUAENZtAY8Wv8LI+6hYV/kxCYV/S6EwIdKtO3miiSkdO3 Xu408hek9Z7PKvktfp7NmuvG8/AgJ2rie/ZE9s7frPgyju0iP/PwpjZ3PRM1nzPeRLgZFk/l NZRr+XXjKYHKp8xjcxQtY28ruk61xJobsLSdjIE9RLvEu3i3XrZTIdQZC3C685XKQMNq4qs2 w+nhqCRJg08eixba0hGfvHNIp/VgV9MZi/kMdUXlKuU5+N8v5iW1U2kgv96S9fLLzU6+HXs4 RXp/jb+Li0VVwpCTzlOwtahjaC4CxQbHLWPYMdwxEad0cWK09S9W9UMsNFhXersz72thARMC qvy69OrXV4u3YuJL6ZnSOOr7FPJXMi7rDqS71Hc8ytKl1TtOewKtYFalIKF2kkRTumNdB7uL hjrrY606oczt/XiylHZ9UctEcI64xPUHUPQ/WC1Ah+b6ZtRXZeStcIDza/CUuGuMK3CYwao2 nBREaZHN5DqLP9a9UZNQ029R9T2pt3q2LWcNDFY+CIxpUiePMYIz94cRr9kYjp//AMLdY/8A e3Q3EYFt88cMZbCZXzK0DZLdhcrVygp5ZNTGliauyZ18Ouvbxd6s6N6pX0xlcxj6OOz1fIYI OosPlRxc2Pdt6aUZPDWq2TqKtGrmBY2ErSCCdNeKHU+I678p1iGFLp/OZXIdM08jieoMbGQt ZKlFjA1L+HinZxT7ZjXaqxBcqdrOZxPV2Sz7cxlG9HY7pS3J4+tRCwVDNZbMzkRGszlp5hZX lQmB8ALjxFMzx07mBzLrJdP3/wASLwIKkC4tT+IuVqZRyyOLJyqMVNXYM6TzddfDx1Bkq2et Y/NZHrTH9dYPKJpIaXT+Xx2CqYCEzXa2V5WhbpIYL1ny94OmOyYguM5a6p6tLK9R5oel6Y5W ng14vHYrDdL9TUuqU4vG4b3ldYPvC/VnntbaacyUaaQG2ep/9lut29MYbrSyd7qHF+4a2Vsr yNqmmhk8h07k23qvue1kqtcZZzU3AF2rAEZnipX6Rn8UcDzekun8NdPovotXV+NzNHAzcx2H rnetYrKJxHU1CrBCVh3KVKnAR7u+OiY6rKRs47ofq7pjM4AtlgW1+uMkjJXUWL6mxHPpIXyD 2RImRTMT3a0MOP4mMd05i68UqSZ6Ux8dSHSRX8tRr3+oTvuq2ZrBA6sCglrJDxF2zr091T1f 1hV6ltdKKyg4PyXSlPp2yTsrRZjbFjM3EZG/7wkaTjgVpXURDC37NYHT+K46Y+iyz/RcblXH VolD0bF/ZmXht5p7SBvNRMRK5Egke36+xQxnLZQsRjU69IyZpJzPNM0Eyd0Fp2TE+GO3v1dz cy50nAwv9ypAKNJTuIYFe4pOAL7Uz9v83H3eYuLiEgEwSqrtWAgFc4pekzgj2biiJEZLt+vX d75sCPZGzy9Hs7VSc/0PaU8o4jXugvrjWTEcjYXJirQhCvugl8iZYP3fe3lTrH9H458PG5+R fc8DI2uUgZNrG7+bJLCJHYPhgR2hEfRxlQtBaalmSkTXS2ebZJgMAKOYJhLCZMfRx0tiMdYs WYo57BpvFYlBSrKcxJZCmB14hbBoWClMl+sYTPdp/Dy/ltZse7L/ACIjvl3lW8rT8u/ThNKi k7Fl5bVrD+6RT3AAx2yU9kRxXqPKHb0LOLAxMA1mwYeMa/5pnZ9e3Sfp4yM/qc5Gn1bth7v7 kxxjMfklOb7wqZK6ZVtTchOPp2rkbU8vlNOzFNggMtWRSM7YLSdKVP3fixuOyuTXaiMnWehe MUfUKcYNFi7f/Sl9rsJ9+avuFRMf5wOLnm8M8Ap42nZi95uqunZsPpdBW3ahve6jQrj+INUj aXMkVpdOhbR34jq65h8ipGVVTLyE7Iu1HZOsZYuq4D262MhkJTTWPf5iyuNO/TKYfG1Fsfgc 3Wx2S5jCOLSHr6xQQVGfu4ouKyfSLRLXnLgO/wAclC8JUp49zZzNskc2MhjBTWUE9PJNvMZY XFpwW+pEhKV6noB/5SVKbe6ax2BxtKvXbSbRRWuUMTWsWs1W6gzmRfahgrVTgpxDfvZ3c+04 RnSS14w2Ux9cPLZjp7I5tY5GuwbSeQjFWagNRFqvsmF3y5wbt2o9kxp2l01dxqxc/JZ5Vd9e xVUunj8XmOq8JSKxFm9NnJW71ro23JwhQ8mDX4SHewcXlhJXlqWFz2OaEyXOJ2UvdN2a5LHZ ISoAw7N+pRMTI6RPbp/INIVrM5h7J8AEen3f07Y7uP8Aitj8sclmk/8AB4mPK2fFEwUclsdk 9/6vE60LXi7/APjek/oktOLNq3h7jX25TNgoflFcwq9UqSikE2VrghqnIaxGsxPbxEe5LPYT ij94yvZL42t7rMfaHs+rThFStRsAisoEISKnTC0qGAWuJKCnaAxpHH/FbHsWaR/weMhlMZjM nFilll3KVkcW2yAPrypqXCLazUM2MHXtiY46TtWsZlYj/aLHusWLFK3EdtoSY1rWL+vtmZn/ AHBjKtKpWY6ZJx166Um0p7ZlhLAZOZn6+ORcQD1a66FrqM/tAYzBgX5YmJ4ivTSKExMltHdO pT3kRHJGZflmeFubXQ1yYIVNYlZsUJkBHCzIZIIIljM6d8jH1cLgMdRHk7uTtqIjlb9m7l6L 8G7ljrp9UcHjr1FZVWMqtka5uoNFlKxWtVTVaoMrWkkl1JU+A47AiO7s4o4ajVBWNxqayKVU 5OxCV05Aqv3lknOYxJrgoMiI90btde3gmhUqiw3eYNgoVBm/SR55HA7idtnTd38J5VCkvyzJ bX2VUByGyvlSxO0I5TJV4dY0nb2cH5ipWscwVAznIU3mAgyakD3jO4UtOSGJ+yU6xxHPQl2k FEc1YM0g40OI3xOkFHf9fAuGrXFwQ0QaKVw0BeUMfAsgdww4xiS/anv/AJRELaF2AEt4i0d0 QWkxrH5dJ49Mqeyjj0yp7KOPTKnso49Mqeyjj0yp7KOPTKnso49Mqeyjj0yp7KOPTKnso49M qeyjj0yp7KOPTKnso49Mqeyjj0yp7KOPTKnso49Mqeyjj0yp7KOPTKnso49Mqeyjj0yp7KOP TKnso49Mqeyjj0yp7KOPTKnso49Mqeyjj0yp7KOPTKnso49Mqeyjj0yp7KOPTKnso49Mqeyj j0yp7KOPTKnso49Mqeyjj0yp7KOPTKnso49Mqeyjj0yp7KOPTKnso49Mqeyjj0yp7KOPTKns o49Mqeyjj0yp7KOPTKnso49Mqeyjj0yp7KOPTKnso49Mqeyjj0yp7KOPTKnso49Mqeyjj0yp 7KOPTKnso49Mqeyjj0yp7KOPTKnso49MqeyjgHIoVlNDtBgLiCHWJjsn80/whyQyuK9W7QnJ S0dYDFutqrXnwW4eX5NLufM9vhXPZxFG5XTUbTqOuZYRUcEn3lFG309WCCYWhRTsuFxdsE2t OmnbopPl6kPZs6a5vJZtjrdd2tWuwCueW/GqquZZ267oCuXi4sUUIQ+PL1MwnVRyfuimvIu6 hHQW6seryClrLTQTvL7C4q2rjqqjy1m8eJTBiBWccLbDcfKoI5my1uKULz290FP0Rrw/DMFG /DsyfvhgrOPunOSfTMJ1LQSvY18sZPboxJRHHRQDETFvqB1ZmpNHQNmfsaxymL3Tvrx2FuH8 ndx+Jefla8jaxdqV0VRWEbMV6/SeAyoURs8yWeUJ1nWVxp49x/aLTjM2uTjielSm4Z7m49Na 0b1buXYChn8qgQBunLKbS+YJjE6aSycPZU9C25HNOw1q/kKgpr45lcsnDZsV0ZJiDZNnHxUC V2SUb2DMTMTt46Wrm1NrzMZUm2Uw1K2GijG1ilBZYrQt89hczT6NOGpKmpeOVezNB4lNALFX 3baciq7wZuzecdqFxJgVNQ7WgQltjc3DHbOgdTM5PqLGChNVyn1fc7cnNZ/mSttF8uVjZhg8 se040+zO641tugC03ctRjErTPn63u7IHTW62+bh6m5a+ZMQkR2uDSZ+0fmLVNFei7HvteM6C m0LqnqXFBsVs1k7LdgGcOJqKxKYmfD49gXDzdipWu0bVaveiBRXo133FViQmvbDJZCvbVYZY HlFzBZO8YIILh+LG3QoppIxtiVWUy25k4ussgfli85XFKF8nZE7GFzvyRoblw3HQtHUeOwPu UknOXsJvRS35IHReGBhIWys6cgh8okpmdfsXk1XY1dSv1Vjum1rdRe9+zIdO4nKlbJwX0DJo sX/CG3SR7JnumOfc5U2kZHN4xxoAlKceGzWQw82AUbHEqLPkeZt3Ft3aaz/FcTgcb7t/2ov3 b/nXuUcY/GYylZsePy82AZbvNqJ1hYn3ds6RwCbqcpdbFJl+z7tx7LUVaNeYB1+2QyCkVxPv 7ZmPq4w46X7rM/SO/iVY2g+464gErseBS43wRKbE9ukRHbOkRxi1VxygryzvJ1bj8ZYRR94x EzONOycbfORppoO4Nf1uF4hismMtygYQMjOPdGKnLsGCHHRcLTWxOv0Dt/Lx15TyMqDF9LJw L0GpLCscvIYt123zNksl5cxfggRifo7eMyumjIUsjisd5+amWonTaSWoY2rYFclPMQyQ+uJ4 x6HTzcwWJVk8p5RJRQoc4zFS3uIyFD3CO4Vaycj4u7t4Vi0qyld1tdl2Pdex7qlbJqplI2Dp MZ4jhe3XxCM6cWsTjl5BrqR3F23lSYukhtFwIakrRTy5aZMjaMazI9vZxesr05lepZeG6NR3 qSZjujs1jUeOnsxlK1q3kM2qIXSwtFtlz3xDWM5NeCLYtalazuPihnllcsIyluMfQp16hsyd q/zWJmmunrBc4DUWvbp2d/bGvX+UrqUuenLMKxirVN9dwfdhzFZGu1gM56m7hKPD3cRjuXdq 5IMTWyxBdoupKt0m7Fneo87tZT55aRM6d/CsWhOUQ60q0/HNu49tStlFUykbB0WO0k9m39aA 7OMNZSywXv3JMxVJHlyizFpBtCz5lE+JC63JnfM90TH1/wAO3cfjrOTqoQ9lyvViiRRUUhrn sNeQt00tVAL0kYIinX7PfotTeTj8rcVzPdtl9D3oakyyBIl1bVmHAEQUxIkYxH6eKmT93uYN jFT1KCkpqS5cGFXTfLHqWF6x5/aM7tC2n4uzip7xWrF3rnOrVaeTfjYvOGTDmpR5a3bW4WzA TIgZfRrGvC11XUnchcMUFdiGclW51SDWK5nlr3pYvWOzUSH6J4bfE6/JlctbbXIEJqQJeMmr 13ioYn69OK9M6plyyqMM0ITKMZ7xsto0rL9xgags2t4blicj4iLaESXGSqrrsS6qdc7Bmpax s89Ugp4SJSbI2VtmpxE6BGnh04nHuxnlqtzm/vZVqcY23YGs289JwDZfLYqpNkkaoXOyY3bu zhqF0jrqTCgKjcrKV+7WEhYqsiuJMX5ewk9RidJGYkSgTEhh1ReHtjYx6TZRRCscvzdaGeWM 8aU3ASkN0RGjiRMxMTppxGdLDXQjW4q5Z5OMOxRq457EWbFpybzObUWSymIQbjIe0RmOPIhU bEoK75ayNZXlm3K478hWqSBy7zgC+d3gGGePbJbT0oZVWLsOuZa0eMrqWvGqyJuQF1rENfZu V60CsMcz/LaTp2a68FW8mS3WGjTtX4RWhEXZo+8QoXHiznS4qPjidsq7YHduIYk106U1FhFe 2NZ1VNfm17mtilkVpWRjyrUrKR3bWQYTuESjh+RsV968ZaclTmIU1hWEMiufke0j3+b1TH2J lgz9GkzUtnQsrstvThmcyvW81j7Eu5fJttF5hCjYQzHKNkHBQQ6j28SXJVqTRfM8sdZcACsX TOna0VhAwXfpHG1YCESRnMAMDG9hkxh6R+sxhSUz9Mz/ABWvTr2aVXqfH5l+cx+ZQB7PNFZk gXaLlC5yDp6KMZiY7I79OFs87jfIuwRY99C1ay0V8bk2SZMyuPr1OSm+yN+0fMbdNInSdIjj oS2yxUkelMDYxFsQl0zYYzH16S21tyhjZqnWd2k9vHSlE7lImYDqpueskPP2OrssW3QlGqon naWI79I/LwGVtZDG2xp9W1eoKduzZyzMhOPRZFo4Xy5bsdRQgI8MqGd8xH2Yjj8QLlDKLoP6 rrYNWMsJJwvpMxVA6rueYhEr8xJaQS5khGde/jNWrJ4lc5jARjCTSfk7PKujvHnss5GDsWhe JbyKZgomdsDpGsoijfrgq7h2VM8AzYZE5ZRtOjmMfDgmJMYdsMC5Y7Y+njDZvJ3MZZdjgyiL thdrL272Ti4lgJtubkNwg4JKIlQ7QGNZiZ10jLIstQ4sh1BlcuuUb9BTfMCWs94BPNCA7fo4 hvT2SxgVLGLtYu7jcvFmKwlYKZjJ1jpqY07gDO3afg2x+WeOlMNi8hWfVwQMTlKN+xkaFLMi xIiLHFi5mz+6v3GCpnaW7xT2dvT9SldxZZfpnP2ctSJ0WgxtyvZc4jr2IBbLFUpW39WGbdPy 6x1zVuXcaV7q2xFlRoiyNWrPLAZWcGuW7Q26RPimY7Z4RmouIWtXQq+lo5cGVgLwX4t+cATC FEgRjs1nXX6OMNm8ncxll2ODKIu2F2svbvZOLiWAm25uQ3CDgkoiVDtAY1mJnXSLufK0tmM3 37uJx/j30cpml015iz3QuBfFWdun+cn+HkMdLJVGQo26Utgd8ri0hiJZA6jukN+umvHvvmgU GwLDK7l2WGFlVHyC21GheVWRHJ03QaGzPbpI68WcS61zxficZhYaVeI0oYypCQA0S01tllhr 2T3djdvbt1nFDTsDjMdjLVS3GLq15VUJlPK1ssJKTWsVay2ObXkTli3eE5kIApmSylkbXPnL 2JvWxmutURdJryNiZCdVolJgHL7fEEs1k2MIixd04ncpoc2qLaQCximqhooRYjsGG/Yk5GZ4 xvYAV8c0HbZBr7b5TbC8hB3bFhmtOLQ7iAgOf2SDt1yLnEZrySqSmKEmJkIpc6YkXJYDfHLf o07uJsuuV3YuMeWMRjW0rBPq12oldkkX/eezzFs9u9hoMuUEBGmpER+8LJ5B5MpyLghlDarH V/LUwIK1j7woEjNkzO02HPhEdojm7R5asb8oolVbAYxg2caICQ0VATMo9Dq1LmEeyFr3tMim e3TjFY/G3K1KhjJTvqW6L8gq4FRYDRS/lZLHM5KDHmEO6eYYju8OsEzNlyubsYKFJr8rab11 1vtWDlrefbIEbIIYVHLnQoKYgojDc6mSCO7z2XMYN1nLvNsMOacFZWFW2rzGgNmGxH7HFbJu 5cxVX4FQmebYf5Z9LnXrJuZFnl1rEwGgAcT3mXZENkrvm7E1KWOQ46/KhdHGA8aC2rB089wn aYbTiQ5kn2CEaRx7p+5fHk5rEdxE2FPaQTzH2kQ5RO5zpkzjmDMzP2vp4rUluLVOVXl3PkI3 WLI2vMlExr4RnSAiZkigRjWSLWZ/jVM61mzUmxlaVRrqdCcnaFDpZzPL0hq3DcydvcKynjK3 rishkq9e9Rr4tt3He4sjei6dSsQsqWVU+WKblnQWEpO4fo7N0sEsRLm4/FKzObBV5WlGk07g BFU2KD3hYL3c+YHRUaL+1EzEcWvK4xmRr47H1slkXjaVW5KLp2BrQhTRkrLNKpGceDaGmm6f DxeoBQma+NSttu6VpK/E+uT0rSg9N+sBMERmsR7O/t0zLZqLj3Rioy8xTyNbIrdXILZcmbCB hC7Y+U8UDLF+KNDnghfgGJBDMNNpnvGsfKp52wNWi4AENW2Qdu5yuwQgfCZ68ZW7VKAsVaTn JKRE4EwHWJkSiRLhuQcsm7WV0KUE7Za+09dZAyc67A5jYki0nQdeyZ7OLGW8oKzrXhx7FWLy KdTnnyJFoZC6NfmVZXZGdYVLddRhclGnFC7Uoc65kspaw9WnFtcIO3Ti+17PPyvTycVcaxsH y90xpG3Xirbv1t+QvZzqOgmqbAQFdWLzWVriFl9ZNqP3WrVBe4AZJn2/TJRhGUcY57s35jYi w9dPyvk43WueZC3XbpMBsgt86fqzuj+yjDdasIgGBVV6ggSNkRHYAZUAiSZpHZzxjd+3E9p8 KtVHptVnhDE2K7Aclq57jW1ckBjP1x/JUbiEdxQI7piNSnuGNe8p42bh37d2zWN23XTdt79u v9lBWvs07Krqy3yEA5G7YZTExEiO76ezia9mN6ZZXfpBSHjq2FW0luGYnQXJGfy8C+2DimUe WbyLlqsu7T3Szyl5dZyl3qm4p8DIIdCKO4yidU3E1kNqVqeQEGX1WeSmy565JdS6mrdjRpco bCyFR6lGsEQzkd6985ZIpvARlo9IJKtt27vAPKOYnTTi+tZXLE3aHum5NrKXrzfJRDYCtB2b DirwsXlpt2/a17+LEyG/n+7VP2vP/wCy2Js0g8JeAkuLt+v6eLWPtRJotJJDwBhLPltjSdDC YNcz9ExxYoXLl2wq1KWTGRzFxzlHXZzUOqPdZ59VqnjBia5GYMYnvjhVEjuaTd94KtTlb3vE r0BI+ZC/NnzZHyZ2abtvL8OmnEYuTYoBuHkVHOUtDkE3XGbDtKvlZ8+Lmk09Z3+KDKJ1iZji rixl1eKtqzdpGvJ21ZFNi++06yxV3zMXi8wdtsFqc7oLSdeMYsNAZjFtCiB2mG2BsBy2yfNY TbJsiO0j3FM9vf8Awd2HvT5Ui3OxtrWxjn/XJV5KOUydPtrkD/LwutmdenMiWg/vR8zGNP61 5CBGER9P3wriO7cXANSwGqYMGtiyE1mBdsEBjMiQzH8kYemidtg82B1W9uiLicVlnUbBafQm 4AF+jip1MaGoHJ9PZ2nWW0SE0U8bd6SHksifss97Puz+UeKkTaJJGxkAiOTpcmEMKVFzFGzR QxzPAQTqPbrGsTbHEMSu7KXbJctzNfuWeFHIsVjCzJ6bC10ifo4wzc6WMtNo36Nm3Wuquqxl tXkXV4RmG7cuxUpsvh3OJZr56w1H6eL6bMNrJOc/YqV6J2aYe75uX20KyuxNoceaZHYHg3J2 xtEfBGLieyYx1L/my+KqK6ceT6+c6hs5bIJXbHM2MbaRlJQrL86kpa6wXXVRR980XisCXACE xxbt5vHWati5hTJhHcpPpUqyb8+Uq1uRZZPLBf2i0gjaRHMQMxEWbWEitWroxVqkunWYXvjL qm1XN2XyvaNjmw1eleWkVj78yORk9sZhvTlKu+sWCrGilWqtw8VrtOX+UxWXKybhfmrXmJ5r yKDAQ0MI7JLqP3rUtquWJxdq5YsPqNBlo6xQS641rNiF1lhoKh18KxiJndxiaD8fUsNyVvy7 rbqiXPrYyql9+4KnmsjT5nlQiJiYkefuHtji81gUjbXx+KnprHWMW6yV9lc7Bzj8VbWxXu2y VsR3EjRgfdGf3YRHGIpuxtJxMGxk71tlJDHlVxRVQrUvMkuTGH3bqymNfEpRj3TPE3FuXYy/ m8BWqYm1hFONlGGh5mxSyLBa4FVgtObLVSuEsXPMgo04O2ly7WXZlcLXDFWcIo2jjSTTTcuU 8mYsfCKVdrrPNUS1wwSUcSX8OJwmXs1k66lSOYsUGazqW6m+GI3F+1EQf1TwCOqsQVc+yJyG I+9R+dlCwfOUMfTItZP97xBYTM0bxTGs1wby7gRprqyk+FW1xp9YR/L4msiAwmCEwmRISjuk SjtiY4Fa8wWSrDpEVcyPvANI7oh5kN4BiPoFsRwK+ocFZqF2RNnFOC2qZ/amrZmsxQR+RjJ4 GKHUVCHF3VrpzjrO79gVXoRLSj+83RxrHbE9sTH0/wAvx7ozmToDH+Rr3HDXn/DrSU1z/SM8 CF8cXmlx9orVTytmY/vW0DrpifyyouBjMYHJUD7pOi6vkVa/tTzfd7RGfqiCmPy8Ryuo6dU5 715MXYzZP1S26tNef0HMcc2lbrXFf52q9Vhfb3eNREP8vw2s91dsdzUNNLI/Ma5EuB8r1RlC gYiIG60cmERHcMDkQtRER/vcQNythckPZuJtV1Z86d+h1bK0DM/+7niIynS9hX7TKGRXY1/M ixWrbez/ANpPEeYdlcZr3+dxps293/447/EeX6qw0SXdFq0NApnXTTbe8sWszxupXalwdNd1 WwmwOnZOuqjKNNCj+3/L8EBEBR3EMyJR+aY7Y4/cupM7VGP1E5W8C/0rh/LL9MceDqR7R+kb dTH29f8AGsVDZH6JjiOcvB3vr8xQcBT3f/J3KsRPZ9X08R5zpnHv7tfLX7FTXt7dOam7p2fn 4jznTF9Hdr5a/XtafXpzUU9dP0cRzqXUNafDrvp0mBrPfpKckZzA/wCDHEczLWavf/T4rJFp p9flq1jv41DqilHhgvvk3a/ZP5LFVc7vyd8cTt6u6djTT+ly9FPf9XOcvXjROfwrZ010XlaJ 9n1+F89nA8m5Vbv+xyrCmb/8HaU7v4rtbYQsv2TaAF/aIonguZmMUvZrv35CoOzTv3atjbpx Et6p6dVE90szeNDX826zHBQXVvT87Y1nl5Sq6O7Xwylhwc/m14jd1RQnX/Nhad/b5Nc9v6eC 06glpDOm1WKzM69uk7TLHiqY/wAbgtlnJ2NI7OTjGxu/IPPJHb+fTiYXj+o3zt1iRp48Akvo GZZlROPz7Z4/d+ncs3w9nOsU0ePt7PBNjQfy/wBziYr9IT3RtN2c07fp1UGKnWP8fifLdO4p Xb2c6zbsdn0xOzy2s68a+7Omdv7PlMp3a/te+PtafyBPJc1W7Tdy2EG7TXTXbMa6a8bF5TIr GO4Qu2RHt7+wWRHECPUWdERiIEYy1+IiI7IiIixpERHECPV3U4iMRAjGeysRER2RERFrSIiO No9W9QzGuv3mWutn+c1xlpx/WzPf9o2P/X4/rVlPaL/1fH9asp/PX/q+P61ZT+ev/V8f1qyn 89f+r4/rVlP56/8AV8f1qyn89f8Aq+P61ZT+ev8A1fEz/tZne2dezIPiO36ogoiI40/2tz// AGlZj+7B6xx/W/qj/t/Lf/V8bm9T9QsL9o81kjL+2VmZ4jm53Mt293Myd09Ne/Tc+dOI52Rv t267eZcsHt10103MnTXTiJa1jZjulhken5t0z/uvrGe+HMf81cesZ74cx/zVx6xnvhzH/NXH rGe+HMf81cesZ74cx/zVx6xnvhzH/NXHrGe+HMf81cesZ74cx/zVx6xnvhzH/NXHrGe+HMf8 1cesZ74cx/zVx6xnvhzH/NXHrGe+HMf81cesZ74cx/zVx6xnvhzH/NXHrGe+HMf81cesZ74c x/zVx6xnvhzH/NXHrGe+HMf81cesZ74cx/zVx6xnvhzH/NXHrGe+HMf81cesZ74cx/zVx6xn vhzH/NXHrGe+HMf81cesZ74cx/zVx6xnvhzH/NXHrGe+HMf81cesZ74cx/zVx6xnvhzH/NXH rGe+HMf81cesZ74cx/zVx6xnvhzH/NXHrGe+HMf81cesZ74cx/zVx6xnvhzH/NXHrGe+HMf8 1cesZ74cx/zVx6xnvhzH/NXHrGe+HMf81cesZ74cx/zVx6xnvhzH/NXHrGe+HMf81cesZ74c x/zVx6xnvhzH/NXHrGe+HMf81cesZ74cx/zVx6xnvhzH/NXHrGe+HMf81cesZ74cx/zVx6xn vhzH/NXHrGe+HMf81cesZ74cx/zVx6xnvhzH/NXHrGe+HMf81cesZ74cx/zVx6xnvhzH/NXH rGe+HMf81cesZ74cx/zVx6xnvhzH/NXHrGe+HMf81cesZ74cx/zVx6xnvhzH/NXH/9oACAEB AwE/If8A2NKnqhMQUpgrLyG6VhI2nti0gxMyNJWTTZjEqJmWuwAw8K5qGrd1PyVT8FVuHD+8 ivAjeuAtYsDVp6auy57+1zb1eth/AW18hXrgQGY+F5cEMpPYz/3zWhWi+K3d065WoipkPJ0Y cOORyi5UXtAC8WhziDkQ9CqniK0QiBoQa5qLs0FA0ATAdK3E1Uxrhbg8dKohd7HFhVlh1hsp 7rYkcuwRc0KOC2JEocthFnnzBOnWjE0RH1C5S+WkpW2iWxgulXcIvMfuMkGUwBbtSfZCi1BW 00kkDupAvT+W41MBEwuGqXEm6XQ6JZCWLRlgWAWcWDSyg0rtEM8RhqizUM7kLpG/mePPbKyY wzNIctDAFWiFPAfLOGdBZ0/TK17wUAFtuCndMYV8y0giGK02bmoWVRVofe4M4zeK1L+Zw8zK ZtBfThNAvWKCa85H6HUMBItrrbtS1AVbvxJoMqhRiQVyaIobl90Cg+kYYSNfFCQOGaNVHcxj MdyBZwHSzWP/ADGp8XHJQbXEHRUvpNTmlQn05G8oDtXV5zN7lRDg2m6NAsKlWPAfjChoMXH+ 7pApzgZ/gXr15VwTtaomu466mxCRNRgeLViz4Aa9/u4bxCWywZQORMbJBJTj7hVZPRg92n6P Yp0ADZ5lFilhsf5Ksp89ip9dlGUP9fnnBGlBQZFcCLWcJmpSdTS1zYPCZ4kAqiV5VyZAhpwP BzJGAA1C8dSsIhuKazQIEl8Vgu52FnUoDFCMTFYjIFoZpnq64ro1xegy0EMxApbLMaFZYv1L 6cimgg5PDkgyQV/wXsBjYVfEBJQ+uCcBZOscVu83R06y1RUWoA7GdZSpBe4pVcsezadWYWGS lGUGxAcrbarQBJSc67FNs7C+KEu/8F/VB5YRlECMMSjF5uSMAWAGJgvSgo2VgBZpFP58VBUx daDhNJaNnVA7o8lb+N7GQBGl4p0lnLE1loRkLQYnLPYFQ4XMwi3Ok0ZnTVwoEmuFAsCnheeA WTRFTSRmUk1gssGCAMS/icw3YI0c7fdbdrz0Co6yYy4hB1XjUonkL1X6YW1kuOEypuW9hdaS NOXdn3a8iBNoR/5gQBu09DNdZn+xh+eMCuWvy6sW0jX8RWlNjeDANGwJAkX6Y3s4cPWWnCJV q0yp/QnTyW8EaXuQ9i1JVMBtfDMSx8V4ZKNowIW8/aCDpjRqjr3N8tWqtX0szINWp+h7VWZN EublZZc29r4o/wCY4gU6sF5rFcJVhCetLXRXAIyFdV3kuVat5FYs5MggHwsIGQm3BMhlbWOq UW5JY+QhgnAKSPJgxJbem2IipRxNhec4SIW1pCiikPxg53yogJXKywi0+geNsv0+81kKZXhP IqBddk4IyAcP4D3t8OxAmFZMYqVKwOdc+j+Zu0YaaTNKf95amasqob9A42pSILCFrFCxRAYq dxWl178wHVnUT6fR06DuTaK6SAQs2kyJjLViFAJmDlJUWMY1RDEsF8JtdsS/rCCw/wA0FH3I /G1Yr5KQaxVnPCYP81NdL+zHWZHxsNiUhve4tWQ3GWNrEMa1UygBZ1bEyg3zUFIFU0ndxlN8 gZBgN5w0oLENQxWpFNMpDOnzpazV1nuklWNsUAkhddkddVbzxmQ2AACr0MzAMGO4iSEKNl9a mpqeuLiZVigRTkZ5jWbIGtai4IA5cgm7BdKwGEFoNifAcnMs9Jr7dJZOcOhAVgXFx14mKJed KTrzEuS5dtQ5yqwGVbz8w2F2QKgO3xlYNT0EwpBGcckYpTZQIobtBXeaD48BRlS19MYtfzRR aRQUyEULBrS6Eo7Qs5ZQoqoXCvAuch8jECERR375+gk1XBVuAg0bOpNRXBXYr60wGcvmooD2 ErNzGjxJ0fxAymgAABADP58BiHYuCZ59VMIpScciEn4L80lWvdcjmhaebl/oXcsVQDzlqliB gBrBsKBSmENSx4Mlo2aABaaA0CHTicw1l4QIOiAEZAHNBIV2hebQgz2RloHkNlG5aFv/AD6j MzElLRMuD2JsNji1cIIIMiq+kV7zgTrWt4NfigmhWFgEmYRgGVDZrBXXtxzBcxoRsniNHWQM eZ0sHXwzfffffffffffffffffffffffffffffffffffffffffff+/ffffffffffffffd4zqH kUslsdfqT1WAiEO9XSva5mq10Ph0tQc2EnC6rG5SAMuArpQSDfDFkRxihWpF3yeOJ2uRpAM4 LRotzWeIqUUOLm5QxFrQYqpdtsbKFydcpkpqjQMvHMKArIj0/wCJDrt2iMwNPyXKfSJtV3lF ruzGuwz24yNpSFEfkwdEunhjLMsmrwM51pthTIQJ4UMhJJXgUkbiN2IWGkssINtg6XZiQuVk rFmikMs/R/zHSchjcWDfZxGCcojbDBxQQLbjpDd0C/8AKmtm6yvSw8uhFcu1oVwI2Q6Mw4Xz 5lqtfrYKhEy7HQOU81TYbqrBQkeEtaZLcAsxiHv8HS4V5oTEUjr0PbgvAssLgW0yYCc4FadS rnh9a/b8jUlQRFtyuIpNaClXczCUwNiqayzEIOUFyi7CcADVcR5FDIFnUSDFSiAwNOR7kSBi 7jK9rcgFWqhltpVgoyGw+PMdpb2qEo6qXIgdTXZoPrcpRi6dxmzIItBz3fb0jjYZORoAAHk8 6hqzGfIrfqZ8sQWkV2moCqShhoiGCBuQBI660y6FhzqBDi4+fQVgMQKIlbfKEE/uKmFql5Ta CYU83pMTjRVkiZ5UBHgL90ksj8WCbkxhhZRBghhmLbpFN+JJYOKa2MKCF5yXJ4IzS0BcCcDZ GTrUqNGsGJznUMKh9AZYkNxpWIdGtrQhJWEVBCZGjl/oqqRhrlnXQsTBoIoR3QKYQdZJy5f8 tBrYevDgXsYUXclVgoANg6GUFF8bzgNEvWKFx/E9aCAWRreMVTYMB0EpYRXCizdQeGE7ToCi ECOOut+ZaHWAScnxVBGMseyCxCHZNfXjisRHJwOIFc9gK3wLCx1vXBw40HiSwcNm9WYWhMUh WPdeuMB43VRYmW3nTdYumoihUlSA0VVgoQLOaZhDsmvrxxWIjkV4q7nwWoaelxZb9RvmOJYJ E0i6qyNQWIz1aZ2Ga9lJA1Bh7GHbOhgL5cVyfxLyADMAdghBJWOtpCGQkpskGu1yCdq1DMs7 Sd1P3RKQntOyFkhm2rhkY2OIHHS/UpQuNlpyphqQSR8JEpCUubWULWo+LPMDmkPjoHSCfbck lVPTJ8siCa4kJk+VCVq2wU6weTdQlXATUmrtp8cKlqqAyvR2GlLKomUGMGuKajZ/1oxpS0Eg LDQllUfQgcDBWTamAxVafj+1b7CeK8iJdwC6zmyVQuJYDmffgnllggqwzR9him73OD1hZlKq n53w4klAlfUg4RMB2RITTIQHEHOEmgQ26+blSt3gxdBBLOmrkpIKrwvqIRrkzBYPKZ6Ilxqt cLTGusWLX0BhX0itvc4CoWT9H+Y02kyJ4V6PgS+6LOgZZ+PCsPJidXpf8nxkNrfYQWZN48NW 3ciQIXQKcMp40X7c2b9NNK34RVhOLY2ATV7p0y5SLHWa+MKInH2aNT3FsksZYqvzLVqmTh03 Je8rU7V+tQJtCYGxZU61jbNEqZhvjQIahjkMdQH0cexDdvNiLueettC0V0GdI3TO3zqrFKl+ mpfSZixQNFb8KxxFEwHdWLWlKMTDQ8mh1LZFWIo+EJU1tD8aOH2iaAyYgLYhOQ7Td7JijEwG JbRQ0sl4JlgRm9UoEjEHL+1gTUBYNomJazYEhqqGQRiDRKRDRHIjMR9unfL1E3RtiqIL7MBN 0qiFTO5CNCwSRPIegEsUoSSN2AzEiiFfQoFD6sqBP3EeAMs+kCYJy9SiVy9d9cLRT0eHo203 5Es11km22d+IFseEJkQD+kMA/XaUW8MUc2NnrwuYczrastGkZtKvGGcOdEMtCJuJh4Pj6FWk m2pHjCZIIVqHpONdir7YK1eYZihcI1KPQWGVmi4VWv48dspmABAAhYHIiYRPH1L32bg8L72N A6oCoHZj4rxpWiuKHqTYzigZra4E/KWVxl21qt2G5wcfHzTsgUNKAgpxlAXz4RQ2igArAxKO 3itrRUXcjFGt22Iapb1qPmynPGXpsFkMt4zeLwcaJsdR9iAOiYKtxxJhmLKgFloi+A4+PvkO 2x4qElAbwU0IFYF4sqJFC0CPB6zKVoI1HlFRyodlrFUHSWvLcRaBsc50nuYtw8Y2m7lKZqNO pXH11RNDaaubLVDB0XV86gVBcg9UKFxeoJoqieLq1ZjIWm8bQa1WYlxhZ1nkM5O3bf5cYjHD jo4gwlmZhvF9M5vSFJTRWjKIShGhGYoV0rjo1eNcQ5Z7V0VV0Xq4Lg+TG3RYAvWyiaXNBJOR 0NiD0JmSik0dTCZFA4vSWu5Mhtl05W5/LMpoFS3BY0oTGHpoquQ7mhxRs6zm347U+yXVcvAO 9QFrwq9Lha2SPlWgpbCcATuowAoDSE4Am/RkBQGkycxa1tekGl1/B4MDRxlHqt3606dOnTp0 zeiy5W+jsAEQKoRGnZxgKczP8PMcnDCBoYgR5MWG+acSKna6iVwXWtRoKabw5RIBfEt27du3 bt27du3bt27du3bt27du3bt27du3bt27du3bt3+rdu3bt27du3bt27du3bt27du3bt27du// 2gAIAQIDAT8h/wDY7BSW5cq9MynFc0kDq4sWtZaLpoqPQUwahKp73dYhn07Cw5Cg4tY2CRgX Rt49rRYbroZACzBWi8P3oAyqgBVAl4MNqOQ0vjQcFjnFbQnPLJtxHAESZmipS2dukMykm2z4 ugOA6iKDHFk+pUyTWT4ZbpcGpN3ZEorIGryE0R3bItbXsjS7qjEwZxy+M9tfAeMUNW0bYFsB pVnVtT1HFx0LNz0y4QaOOrOO6frE5gnjbTrUM69uosmhxZfuMRbIrQHuYCzgFFjxoGoRC3LI yiXp9L9n1hovQZohW1naXPluV2px+F4P5msdeaQXDIehmA+tV5h9OkQDU5kar3UfMfINwvSW Lg71x0CPIltsPOPwi6QMwPuzQ6sDDssnB+peAXV2oV+wxo3oQZffMnPNhFu4ArKBtGC1Et+8 K2jqSy9/0ikFT4hTCrJXHZnOlZo9oD4PowItglt4zoRDVscMxsG+KANenRMWqlNNhyZUBpjh SrC3DVS3qdUGWxLuCK41Bet2GQVKDixqUWc7jmzNe4woVfYFDrxAhsCP5YG40fUolLZ5/MF8 6fc3V6+7HIixzWwNV6dcEW24BFXI2WBZM1yEo1YfI48V1W6q6+G4PvRbxwRegPTeA6tOK+DG kWperHRlR1ZXfJxUcfNk4Qr2rRasCwWGrK/4GBWzRqFttYmJqvxq9L0Jqgjm7BUJrgBHUgsK lgocwPdBSZ34GfqKxTWvTRq+WF8o3gz6H5miQ0aV837KNoLeMxYu3UFL1BXm8N0QNjUWLQNE XTErGEUGdDBDQMCHFLJeEbgUyMTrxCBNRFRSAKwxoQoHo7IoDZQH07FubF4FYNl028dIa356 oSIrt7pGbcUbplDqq+pGsQlsytbdV/LNkYe+/t9fQ19bV94nZGDztxY3y4lor+q45N4LDw3r k8MWqoio5qMukAI1myDTrFp/3FxHq7o8rTYurCtCeQxPZiyC0u1vQT2KlEAfD2FCNuoktKOj +htruQL9a1mUAXTs8UUnNDAo03Rbl3VVXmq1RoeNU1UA2Dpfszt2duzt2duzt2duzt2duzt2 duzt2duzt2duzt2duzt2duzt2duzt2duzt2duzt2duzt2duzt2duzt2duzt2duzt2duzt2du zt2duzt2duzt2duzt2duzt2duzt2duzt2duzt2duzt2duzt2duzQpqAmKx0/+gWxZ1fPj1fC HDFZEpPU8fqPK4j139GzlL/7OPrv93oREaHZ8fonQL2M9NOUsgD0n2YeoesqwXGr9i17+PoD UU80M7fKMA3gbe5Y+xM9zXD72rrX/gNbbii/fX7zO+iUe1n7JmyuRf2r+J9j5+1L9py12E/P j9C3BS5vF5Jsu3yCfYv3gco5KfcX8fx5t55DqjdP8ifnx9AVkTUO53e9TVCfJVSax9MfJG/c B+DBfuC/BjQM8mvzn2kPlSa10VfhZqfRT8E0W+v6po+riP8AlEtB6TVDfm0mr30/TNA6hfkm g9Sn5ZwAc/8ApmteqPxc88T6fOP0XoL9T/kfP9IbV+gP3MO94AtDj6xC1Po/UWbb/JtFG2yZ a32T8E7Vnn39zy7+55d/c8u/ueXf3PLv7nl39yn9edq/xkCoB5dpoe9P1TRZ6CaPD08SBgwY MGDBgwYMGDBgwYMGDBgwYMGDBgwYMGDBgwYMGDB/6gYMGDBgwYMGDBgwYMGDBgwYMGDBgwYP /9oACAEDAwE/If8A2IdoyU1vKsM20a6GWW9GhV6kphlTJsvU4IwhypVQ8L3fRTerIJR2rWLo OAXxQXRdoQm7eq1cAG6uAMrLOA4NPaD7jGOIyOY/crmKOzNBMN6LRV0GuVQFrgmH7BdSLqQs pFE8WoPjIrTHq2qOiUHABNAXV66Y4uTAPFyYUCyOVox2L2bDCOaA3wBg45lCzFy3fXajTaRm tDVlrcQpApjWwHGL1CPYFcOZBNOuPNrldNb7amZWWANYLUUQ61bq2/XVmH3xqKxgN1nq4ev2 jDKGhZUDfOBphW7IZdZToJlOAiY439JQDjFq7KW7tUcWiD1hudTnwYfYfzM3hcyT7Lg1gkvI H7mI8KewX4dJUunqAyezxy2/N8xT1iG1IdD4I2oNvH5DZnylYi+tj6aGGgKOBrxa/Voopl4E nob4S4LRYbeWj3pdiZj9Pp5/MXm/YJdexdfpVqlTmNkrhJcnRsp8VUeDfYfzMwMOKugWrQ0O Ms4I81SuaSzsiiB6qZowJkam6a3BWAS61Z5LAPoNIhirZ3PgNFOwVNU4g9hrOrg139BBp6Xe Lq3ZajTAKFytmRSdA5yl6m+IETkjhNvqT5XHfKWo5bPbPIj5y97X0NM9JYNONwgvb3Kdgq4x FmnN+DQNjHhgyeS5yH3PMrgaNzFaHMO6m03Qq3SUBzooIJU9eiPsEVk4Qg5YN7S0PFYV7l1I hA0BQ5hrhGgqwKzTQsq1PIcybavZzbIBGo0dV4YN0KLC8kBhgzMYAKW2UoOHRmMdIrQACTAW 5FcfUhnulWuua51dc5e17hNWfq3DjXyg1TSVy6MeGAhJRiiDG9lXs41KT9bcR4t9UWvvW/DO trw22zOmdE6zaMo1sUBepzVtJlmIXee8F+eraNszWCatN6bNM6Rdb9kDhnGmmhjOkaTJi6Xr W1S2ejNmjiyNrsJv9ffDWr7xwDsHnQ4u0XGk3xNZnQX4YLgRq1vznkie8Fr5znHb92UPK1Z3 t/kGU67e+3SInlVXccrruzQfKc4bcWNC7BMBLOEVoLg9IAP9GqFZAX1ozKo2SqNeNGaCUqrH itKUpSlKUpSlKUpSlKUpSlKUpSlKUpSlKUpSlKUpSlKUp9VKUpSjXWYLh/8AoFQ09vN9/fjB Ti9zx+0etae36n3J/l+6ggvI8fWyhw1PaI0Lx/R/bBL5Jv7a+PimTWYI5TL/AL947DHPL7Nf lm9Lg4fv/wCA+yE49tJhqfMp+1fiK1jlT+pphHya4hVoHLPj6NpGfn7+1zQ5elfh+Juc9G/y H5movWP1c/NFr81MwD6N+P6ZJpi6ppbfUH8k/MA/STcb0U/c2G9Ef1F6h0P3F6s6vgZo33j8 kE09lDUDohqA9f8AKlhS4hr75E9fKc4l+hEf+n6iXF5OES0XCOi9CP2Gf9/hDYPqv6mTb9PA ADRgWCr1Z3pPM3zAP2p3h/oERERHvDO8J5W+Ytlu9X7iuvuo6odWKuv9vZsdmx2bHZsdmx2b HZsdmx2bHZsdmx2bHZsdmx2bHZsdmx2bHZsdmx2bHZsdmx2bHZsdmx2bHZsdmx2bHZsdmx2b HZsdmx2bHZsdmx2bHZsdmx2bHZsdmx2bHZsdmx2bHZsdmx2bHZsdmx2bHZsdmx2bHZsdmx2b HZsdmx2bH//aAAwDAQACEQMRAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAACC1BhAAAAAAAAAAAAAAAAAAAAAAAAAAAHqF7cAAA2kAg4gAAAAAAAAAAAAAA AAAFtldEwAAIDoAFcAoAAAAAAAAAAAAAAAAI9HcmAAH+SEAAglEkkgkkAAAAAAAAAAHNqe04 AAnE4kgkkoEEkEAAAAAAAAAAAAv2xngAAAHgAAAAAAAAAAAAAAAAAAAAAALaHsYAAA2wAAAA AAAAAAAAAAAAAAAAAAAAAAAA22222222222222222222222222222yAAEkAAAkkAggAAAAAA AAAAAAkEkkEgkAAAEEAAAkAkEAAAAAAAAAAAEAEEAgkAAAAEkAkAAAAgAAAAAAAAAAAAAEkk kkEgABQAAAAAAAAAAAAAAAAAAAAAAEkEggEAAroAAAAAAAAAAAAAAAAAAAEAEAkAgEkAFtfQ AAAAAAAAAAAAAAAAAAAAAAAAAAAAttoYGAAAAAAAAAAAAAAAAAAAAAAAAAAFttttz5IAAAAA AAAAAAAAAAAAAAAAAAAttttttq+qKAAAAAAAAAAAAAAAAAAAAAFtttttttttnRJukMAAAAAA AAAAQiJsZUttttttttttttttttnf/JJJnvp9tttttu222222222222222222222222222222 2//aAAgBAQMBPxD/ANjrhJSDpzamseWSeYsjxY2YmQvqW3XSzqs6Diwo8HwNbZostuCNRjff 2DNKONR5YlYKSsOgBYlgXXF+6yLgRYsXfvUiaG0m15BCWFCX2mlzmRJ3OzL5XiIbQGHiwDIh hxZ25GvqEXh61kVqn2FVzMxNhDuMMcCW4gmOgjHNDOTIuj0hom+wgQJFXJuzd+NNjRCoFzV2 OSckhMnQTuaNHagw3aWCUcOAxLlmDpJVYWuRL5gM1/rDBCdaIGKEQpe1zLcMwVzVzODCgwsp oQjMCs3pccZSj+VZh4uEpbP8Dfd4iS1ufUDM6hIFyOwresbYqAlMgJcNY2kV7P8ARIrrdlRD BSKzYXOA5DOZfzqqLY7CHFedEjwLsphNq96H4hiQgJP7meXgVbiL1bb0PQAC4qFCBZbAWEZQ L9EMY/8AUlthcc5obQFbIAibfhQVq31ZICPUqrhQaILs4q0LcF4PNCh5CoVdqjMWo/nvqu1L vDK5KWKsZBHE/wA1RaXgapQiFbpZTOo+QdxKwKKlWv8AwwjH4BXBcrc2ILttcUqQBbqke5Tm lC+WE8vJO5QLrFJGBH4hTVWfxSwepytvolRWFXMa3H3Ab8wjQT2z9wyY3qMWYhSzPoo9ik09 IGma1XTxRhX9NzI9na34Wb2IoI/hfzmaL6EkgVc/1Ok4P7SesbHaMuC0LwtB2aa1bnXIGWwF xEuBusIPO6vNAouA8k8eu0nzMoGUCiheWXbHsFXeQ8y5RCCSCfUAWONzsJJyt1IGbdnksAWQ g30xGDygJD9RLJdpUkjpYbYDE8IKj6wVVCUrIBZmRVxQs3gBoy1oUKECrOvW319M7CLsC14+ 01VEQu+PZd5sPRn+L5CLCwIBWejPoDgIolaWqFLb+KR7ABpUGN9TRDcq7XAecaEAA2hhzTbm iAxZ/ipEh0CxEurqWa2iJvyIED+GsyLT/gtbZGEuBJDi8kIJWJOlOc/tTXUuFZApvFS0bHy7 IYTKIA9H8JmfU5Tgl4KKX7jlSHMyMICDzTBFcRkUDzdKnhuOvESXO7D13QT9BVO2DwOMVPwr XZ7UcSNmKb2Te+Zdk2hr1W/81cLSvNknrmDNUG3J51YUyAG7JAsxnwLCgpEvzAcVvKESC7mX xIn1HaGQYGt17FIYkvhdXkZzietwPUtjaZ4O/wAX01AEaaZgfsb4RAsB1yjZTepPFaH1DLFs pErMLqutMcHqykFAUWxeG5fQ7cUkW0e1uKM0iXhKqkgaApdNBJf5fLcDLlcY24VVybbNQBHd 8cIjJ6+q8WQQgnCIBqv+azdklYYG2xd2QbEjIiNAcRlbuLd6qrKtF4l56RB4A1DoeWZmDSKN TuS9fKs3o6gBpkvJw3mtAES//wAdM3smJVMv5IRBrRSABUKIAEqD9HAqBOODEIQt+ikQw5Fb sahOZtOv5TRqUH8xRfoVr0nB0GX7uJWyXsXtnDnctWraRrAiHlh/4ugEDo7eTQ6baQIsNb+E eMUmgmxyIKZQQXk9QdMf5gRp+WvRwK5Bp9ZkAGN+MICr9ZwuLJZJtwaDNRZpRnoBh+EWtpwU XqFxzza/mMgUrbTGFggBHiOjhaTz+r5EBAWAFahbxQSoqtMIRPLfQpuUnlQsStjpA05p3U6f XGgOQ4RHBRgEVlq8E6XL0fVVjBYoIObDqwFaSzA7VHGTq/FTDTHWz3yM58hKsBMxUB6KMKl5 20ILDxVSILGBJ0T6gW+SS4EEYBehbz/kRdcyIG1hSCpcIzwyQzbDDLnyWl6J9DfBfAlHfcFa PdwCesyFk1bUhnesXgTdrikobFIYzQ+sMr81RjZQPR234RGIC0uqIixZZeEZYT1q2SdsNLVY DBQBEqmNtH40PehK8TabNnnWOdPxAHt0aSIRFBBpGlZcNmehf26rL2TwyQFTxnaqoLdOAj9r NUV1D/Qdvx5s44opBWyEKwI6Ar84gtSifWFkjtFpkeUAN6IASxVrBFQJw774KpCFZzMTgCOY LYBTrtUw82MYXQnSYkccqz7QMC1rApCSknHFACoQs6Z01kLVFihEUR1ChzLEHFQAWCCsUKJO UTYqAniHCr/bKXkzgp5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v +J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v +J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v +J5v+J5v+J5v+J5v+J5v+J5v+J5v+J5v+IcS9y1lak5L6kL7JgPMqDr0NM8mBNLNcReE+uTZ a1Oq+JrxyZnhhGcweMCFRGfAfrHKFFJr23K1GZyJ8ZhGJQwD6K76DGk5qgvYNRI0m7hCBk72 wcLEnKwDW5oULuqlcBwCUywHZ4lIjJfc8uD7TiyyfrfJuKsYwKFpSpSppPws9D6+BWzb3ZYv 4TR0b464ADW1FiXQvLXFY6mU63fn/FQ7dyeaLHwgAzbKa0EfXB21CPKuySK/yMIYVsgLl1UX AH2lGCdKtgAiCIFnHX0nOlP7mapfcm6RoCNrEGqMbNHKORJKMlsOu4lGtYsqDMPnZ4qQrQBR JEVwq1PiLQxWShVYa6e9poKrIJnQG4gRQtOCigMm9TJl9qSNgTWY9GiePSJsAQQnE9LK4Soe LKc4vxvyygeA8MEn9kcQdQ6WqGSBQCQEoRqxKmZwtajt1Os2b/QBsgf1c8wF1io+WmzQU9c0 0x9oGjUkWPyw6CvMn1oU7d0YgASeFTXh0JQMUssdUZVB0sUoZIHp85XYBTSWCK2o4GFYFzEE kTrfjN0NTW45fgZ9fxJSPpR0h4qkv/VsCEmJCRMuEX0G0hoCYFuRkZhJ9A8iQKf/ADDfqmn9 x174o70IlYS5tBkFxK6qVe5YOe7jY0IJAxTMD0taoWljTkQiqQmIFGwQnggH8Jz0XfUX/INj wVTZBINfOyDasbxB40GweZEdr/oXYqgyWXQrW2dOmN1KVjaFBHE1H8EEJ9vRbUpBnqTNXyFz EdJ4VqxPGtjMUToOQDDsvcb1cZ9UM7l4TZsNUb6pRV11sHjiWgrIAu5l+e/xskcCK/I0QBWn IhsvXETyrKsGlhFO/WM155pnAtgYdl7jerjPqgZYApXfaktRS+s2/JjPoycIXZZYuVcEY/oW uIHADXGpm5oKEd/Aar4nFk9ptIUZDc9+FVonA3X+WM7R0J26iFdvgrqngM6KspKcGvLsKbIZ kkL7wVLzNb2R4AleF1gSICMl9mJlJ4kHXVbxSakhDuUPi5tHP2VVpJOjRxvpFgYj5/3jGa1A ZV0B5sSLrRMye4XSYGxAWkGLATRMExlo48wMFMju3UFUimf62T4q/YaLmDWcKhk/cPu26ZQr UVLHUxWlKqIiRiyvo5bFKVj4s8pvk72VEh+Yop1i49gi0XmRLwDBUysQCBLFK2PGg2wyo3IT p+vPZeQGuLXU11aeNEhlcrQjjCkUzJTCm4SvchjJ9dUyQjRSE5RCuCKTfoWHnwB4B0A0Q8i5 979saSZE4+FCoVMA3RhFXk0JiZVHIAHIAdaILv8AkhqGrBFoHW3YNS1iAmoxbMIuxBJUI17z iCEiwCjDNH1M1jOTM0C/j0bxsKSuuDEusNx8PHYhVhdSJgtKlENTdojNjEwFCxbXFqyUjjl1 YhUlTrHwqPQEtPfIaAhqWtW7eRJ4qnW/k0qJyIR7gKasgspe+oOnQfQ4GF/elvUKU1dPJdlV G66gruQExxb1Is0Dg2NeEHBRJqEBe6okJzDVfmBBoAHC+azAXQdj6qS9SUZ/ubGiZsCVoqj8 1csZOSyG+AXT6F4Bz8Ub0PRB8OTABSORl0bLtXUG06XM+Sbpiw3EqsjL9vONXRXhTfFUWjjc QcrRN/Clokg934KozUtkYTDxOMNOk3lLHZ9JCQpZTAfkuzsBBXEI3kBD+fo0bh828VgeFRCs fUMaIuWNYesmcERLwHShtJYBRQe+0gSt5xz1AXB48DyDPA8VlAhYyim+S+n6vdUgXLrOxZU8 vIoCGJCHrFXa6ApEB/iAbF5SWJhPH3cVsKGgIeXoiIBBkG1RqVaDqltwl3g5NmdSWBAxrWgW hQp0AU6aQ2AnNSHo0M7ibg8fWtpg8NWKgBQ4QRQhl4DsCAMACAtdacmj4yrBAUg5SYO16RTV UpssKQHoUCJdWdbCVbYWKkyC2R9NDq6g5OUoyx3EpalGgvx6gePgRA1I6iMArQoSgzBuglkp Bgy+aoq67l3226sg9GBfYYi1G4vISaJZ0TFOfOhwFAQCXNwi2F66IXKVXGkNzAv5RWYvUUXA nBrDDQqBSXjBuYhsWMqoKDA5wbAIziq9KYGC+QmhZCrjdNQSyJbFpxmxT7gXW/Lb9P8AK+KG mh24AzDVM1MhcylTWIx4ZilskbtS1iFoS1apwYOIK1hrVgFKjcwqkBpSBlV00SqrExduqGCt 2LTysQbBuiWlzhpSlYIuJ2Vr1VOwGMF3gYFYB8NKpYpoGBiq0IVk0OCJKtpil6wHLR1A2eEO BSPSI/Ly6j54fAPIhhAPZMlasTxzC4ZqdVDK3DLlT/iQ4AAKIdaqd0SnAABREb5gGgQEgFYz aBb/AA3CFABhAUWCcVVfrWrVq1atKkNCaAGBcGGADEMwWjYFJ8jhAORH+ErZoa8HTpDcF0QF aNACDSGbqroueSNCA+wYL0IldLA7UvYhQviSVKlSpUqVKlSpUqVKlSpUqVKlSpUqVKlSpUqV KlSpUqX/AFJUqVKlSpUqVKlSpUqVKlSpUqVKlSpUv//aAAgBAgMBPxD/ANiqQRIJqiLbnhER awYAKQGgyCGCrjgJYEq1GELCohsEoGxQRw4KBAJTy6NEW3WZ3Exr7EgKVbSEXymCAL7S8K1G BouDjMACrarUDAdFaGSYFfIUzLILorALtwazIcFKWImtI06JjxZ0PH8CXZ0UrNocGwugUApq s41Co9DekUD8RyIhKsApLLuVwsqktQQArap1KAfRhO6N13wangmR6JO6lEhrSMza54gT1iR3 XG+6+0MwV20a1+J+YrpSDlc3xVf1tj62tsRaSmHZFb2uHVFGwV3CK5wwIUSEML3LTfdkkaVH FGBbkINTquBUtn6BDSIgKC0UhqpSENUnvSks1Buy8KRfBfIuGW5gwAw6mgX3KzolMFaLejxx wEyxullYRHJru9WYlFEcORH+yXBRCFisFOjThOi4SAoAI7po5lDwcOSwY4hMHADrK9NALyOS lUspp0v6kIaDQCJrLSA3aMXNMs8UkIZaLNvptKaPR3Q16glqUGVpLf7i10iL6q16bO1aYXat cV9BM013M+TS0mRpMkJobTLsVDkVhlg8FzHz1gCdzs1o1WNoaFXAw+vy4rIy1AN0roMKMF+h RjawF0hKgkLEaCTjDGwFqIL3KnZ44NiVi5M/ngqg5UNBZUNC47hxHKiRbN6soGCSqowNbmY7 ZZ5ojzvj9SAS05mybiWDRFHWKdQZ4DXXPrgBdFazGWo60VFtINAaBUIgZlfSs/bGqKtkCpu1 YdWgLdtznJeGDL5KRKxSaGaiuoJZWikuAo6QApe5Nk6qtJjGpCrVLWRgEFYbZdKTqGqNAMoY UwQrRGuA5SIVKqojQ0GKUGpm5TIcUdcO2FdDS7h9LSNa0kS9y7OcH8gKAWm7QUMuC3FZ+oCd yvfEN8XAtizdFsp5K7SBxvAPtLebjKJsy0oCS3LaMbd2Udbv3K+8Yaqhtc3i7uPDE2Lp8SXW 3LCkFVCnBrB2szsoIOQq0NMFDJetyaiAJbZBwgaTSrKbXlZlv6BDUEDxGdxpcgC6iloIADk5 1CRWTVNgRULaW4zUhirRmvLj9rTbrgpjix6j9dKhceaumc8JRSUH3V0AZSgMrUDqqhVUIcFE juYVIAJsS2rg8wbep4Yr4htCAQgFwLi8RBICbmTSRsc7UunEQw3OiVTovseub1byz2rxSj5U KQYDA41wMaDvg55MXauqxQMlRmNE8gAYAKJVqCt/ZmM4WAnBIfV+VHjqv9D6YtjbqoCubcQM tFohiyoVMAUulFASrSOouagwhZQHjNCDTaloHRsL4L4Yssssssssssssssssssssssssssss sssssssssssssst/esssssssssssssssosVVNSUaWk9F/wDoFKg1tgXqraOK6tbBCjZhZBqI CPJPH6FKlUvSVaGw7uWYsKi3ClzFeDNuqEfAlIIiaiOROD4+qoag4+FU1OJeJE4aD9hDs4A+ MLr8q9jbHSAnTj4+9ABSJYjsjhI4jTdtnVqLXW0eeWWezjvQL56n6S8QG3h4qkdTiDERpwnj 5Lad06ah6CXbK0MzzFjkQRdgT0pqHmodcaRJRWi7fTolDynOwhfYD4+uRtkPZElijWVZ3xtK /nMvtiTqMUr0/q2G7Un3f2/u5ojhF+ybSyGqh9665/qcrUq77A4Ps+PvCF1EsekyK7dfRkOj Oq6oOhe4ZdLfPG/E/fbXVbHlH74/aWvIOnbD71zlq5dVC8rABfVzZddDH/P2uIU/NcD9tz0d mVly/JJUJsm6w88Mze8bUq9bMf5eZsRJ7hEQe0Ul3pVZXG0VNbf4k0Sj7pWQE61jOkvq1cX4 G+krbLF2H3BB5VjepR5x3VetfsuUyVebRriWjyKdJx6eS8cmfL7xsJ65PwKFdpfNev2/eaX1 O76bOt8/AKvD6UGr1q5zV6u+7CBFNq2rxZXIJtW9eLFOBrYXsB9p55+Ivn7MOyQ7JDskOyQ7 JDskAAFZzPulsDb8z6fx85K9CPYm4LfWnftF3ldaN1xohqCutA/HiWHDhw4cOHDhw4cOHDhw 4cOHDhw4cOHDhw4cOHDhw4cOH/Vhw4cOHDhw4cOHDhw4cOHDhw4cOHDhw//aAAgBAwMBPxD/ ANjZ6lvNq2mpUHeNIA2yXqFrFFTNd7qoWxGSOhYFXmycR6QOWZdGo7GuQbaxgJKRkWBShtFc WEAEQAAqAAoAFQmM53X6HQaONRDVCwUWXViGwiyhmCNFSUGQoBCYKhIfF0JWaobjGTeoeKqV qDpFmzYjdlitstwrKICwoh3tR1aI662AgouBsPAkBYgQQQCXVubsWBW7JNUvUaAHD2TiMZnp sBZRDV6EVZgwgCXjfnFOvYKsq9BLrAwSAWwUVOACOZb6sdgOYchaor9ToqMeFVul3HWlqhQa UBTsMHJoo3PgKzayq10EFLIno1YDpgNgCAGj6A3PQLkwgUMVLbMwTJfuAQNTS42c2J4OWnmz LEN4Pji+tVLz0WZLG5iXrek3aTc1Qcr6yNSPaLXq0HLKcBL5GtzIQeubpRNmIx94PfSq9TjE rjwBShBYYUGaIJAhwoYXXDRKjZVa+kqlEwaqoB1U9IQ/iUsB7yCGmAQJsStvAJ2EijGAPqan RLgkSt6gt/tWHP6FjjZsZOZZk0TDiJfAVpSn1RKyAU+jbwIWMb1SQympyrKEXpcNH2tZQAnS ywDGcwtspolBRFVyMDRi5WUPXQU6rkpZpIdSKPDwEAoEAbqKloAcxDNg1S6W1KtiSn+G6IJO LVIiQLSdLb2wLdqduW+haytN/oC1KEJQCikPqJ+jSedzUdmUwPhPNNCbluKDE1wGh5FlZwLi 0CxCAkhW0pQi6BFjU7vmgF0GaCtAAMB/Vt4EyLQ/NitWR0elGYb0klQkemSXaWQYLQqFlEvJ EONt0xbJhQSQqDO1Q02qkJQo6gzhtfs2LTqkuXxM3zoF4lQFWSi4SxzVci16YMWNyKIJ78lB gALIGRCms5jlXhUY+JCVf0pBog7CB7qXUzQq2pa27PFvfa/WbURNSUsa7pa0aozRBHTwCtI7 m0tzrR6ldb/q28C0GGQmArLVhEjk0qBvN1BYc4RZkqNgOMIMDQxrcUBPMaciIFqmgIMwCrtW R9IyUALEptQBYCBjyGaEjUxRZhzFQkogzG2ILrcXMCpR2TY4XAI0CMDU0oC6JOxUNrcIAtiV q4jDIkCVrooQLNM4P11OVxRq6fzwlEsQfdXQDKUC1QgHzoCAApecJWcpShdQt/A/Dfx4YH8v EHhLGZaanZzHltEaeDhO0jG9Xv8AFAl8JdQLMi00GlmJlagDW7vKtnN6qq3BpVwK0aGpRV3V thWM6yvl0lzei8FlchFQ06xrpv13noQAHIP6F6LbGuqgU8W5Ut5dHU6Spbgf9cvXxq9v8CbD Sm1g9J3lO8p3lO8p3lO8p3lO8p3lO8p3lO8p3lO8p3lO8p3lO8p3lO8p3lO8p3lO8p3lO8p3 lO8p3lO8p3lO8p3lO8p3lO8p3lO8p3lO8p3lO8p3lO8p3lO8p3lO8p3lO8p3lO8p3lO8p3lO 8p3lO8oV8gXQESzfIPT/AOgXCUY1HkAy+nPA5gsSWIInETD4/r4HOR/B5oecOMxxWnlXHSDS 2HGFLEbE5J4/bN3rL6qzqA8GUyfUjq1nT0JficDQ9XQ6nj6AiDRJUrPk/dx9AEq1fEB9wHUl eEe70qrfS4Ilmnj7uI4J7tTqSqHygWPdQUOLGP3v+es6Va1OoPYs5ktQPcXx/mzEUfclLYDZ 09jFYc/Je4EOxzw/soe6fcJX8502rDCUPkfgvj4qsRmkjwBPa6mjh5Kx+80J6iQG88nEh3nE 4karfNT7N+0+7nEcgW5+I9p+ZQ/lI5SnJfwyoy2lBv2f8qdJzISxTBrZV95lSHMobRx8E/C3 0mu9AX4Uv6aOH5an3l70RZ96mIcrgn3t9oDWY3DPTy4QNOu/E+UR94/AjXei8nzp4BrMXwUg dLyF8wMoAPLrAygwgBoq5r+Vnl75neD9TvB+p3g/U7wfqd4P1O8H6neD9RdvzXrLcec9f4MJ 2/M8aja4r8zak4p8zLtXm34l+/fv379+/fv379+/fv379+/fv379+/fv379+/fv379+/1fv3 79+/fv379+/fv379+/fv379+/fv3/9k= --------------030002040704000009030005-- --------------050807000305070902010207-- From owner-chemistry@ccl.net Mon Jun 9 22:40:00 2008 From: "aron kennedy myccl1^-^yahoo.com" To: CCL Subject: CCL: band structure calculation Message-Id: <-37128-080609210151-20663-3SrdImGtyhsZpuGHp5XvZw%%server.ccl.net> X-Original-From: "aron kennedy" Date: Mon, 9 Jun 2008 21:01:47 -0400 Sent to CCL by: "aron kennedy" [myccl1###yahoo.com] Dear CCL users, I'm new to band structure calculations. Is it possible to calculate band structures for cluster models? If I take a graphene model placed in a box of 35x35x35 dimension can I calculate the band structure. Theoretically is it correct? Please suggest me some books from where I can learn about band structures. sincerely A. Kennedy