From owner-chemistry@ccl.net Mon Jul 13 01:25:01 2009 From: "Marcin Sterniczuk marcinpsx{:}op.pl" To: CCL Subject: CCL:G: problem with Caldsu error in Gaussian Message-Id: <-39759-090712103738-8710-gb9EHjL0WCtMD5NZ66Sw1w.:.server.ccl.net> X-Original-From: "Marcin Sterniczuk" Date: Sun, 12 Jul 2009 10:37:34 -0400 Sent to CCL by: "Marcin Sterniczuk" [marcinpsx_._op.pl] Hello. I have a problem with single point calculation. I want compute Fermi contact and energy in my molecules but I have error: Inaccurate quadrature in CalDSu. I want use "DGauss A1 DFT Coulomb Fitting" from EMSL Basis Set Exchange Library to my system. I check Int(Ultrafine) and all diferent methods with this forum and nothing. I use dgdzvp basis to start and do guess=read and was the same problem. This is my output: Entering Link 1 = C:\G03W\l1.exe PID= 2188. Copyright (c) 1988,1990,1992,1993,1995,1998,2003, Gaussian, Inc. All Rights Reserved. This is the Gaussian(R) 03 program. It is based on the the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under DFARS: RESTRICTED RIGHTS LEGEND Use, duplication or disclosure by the US Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013. Gaussian, Inc. Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraph (c) of the Commercial Computer Software - Restricted Rights clause at FAR 52.227-19. Gaussian, Inc. Carnegie Office Park, Building 6, Pittsburgh, PA 15106 USA --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 03, Revision B.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh PA, 2003. ********************************************* Gaussian 03: x86-Win32-G03RevB.03 4-May-2003 12-Jul-2009 ********************************************* %chk=mrozyyyyxdcvf %mem=1,2GB %rwf=1.rwf,1999MB,2.rwf,1999MB,3.rwf,1999MB,4.rwf,1999MB %nproc=1 Will use up to 1 processors via shared memory. ------------------------------------- #p b3lyp/gen nosymm geom=connectivity ------------------------------------- 1/38=1,57=2/1; 2/15=1,17=6,18=5,40=1/2; 3/5=7,11=2,16=1,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,32=1,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; Leave Link 1 at Sun Jul 12 12:57:30 2009, MaxMem= 134217729 cpu: 0.0 (Enter C:\G03W\l101.exe) --- LTA --- Symbolic Z-matrix: Charge = 0 Multiplicity = 2 O 0. 0. 0. O 7.26013 0. 0. O -0.61556 7.23399 0. O 3.63007 5.71767 2.61542 O 3.05823 -1.87025 -0.8555 O 0.31986 4.24431 1.94146 O 2.69465 8.70735 0.67396 O 7.51211 3.34361 1.52946 O 2.3889 0.67495 -0.87405 O 5.849 2.21502 -0.16958 O 1.71114 7.178 -1.22872 O 2.65229 4.16996 0.72466 O 0.25306 1.43777 -2.18979 O 3.33006 -0.44397 -3.05055 O 0.51645 4.93278 -0.59108 O 3.84698 6.41518 0.08702 O 7.04368 4.46025 -0.80722 O 6.79016 1.09611 -2.34607 O 3.96936 8.45427 -1.54201 O 0.77168 2.44475 0.1647 O 4.88961 -0.07356 -0.98725 O -0.48786 6.47038 -2.4495 O 5.2289 4.42864 1.07218 Si 3.41019 -0.42359 -1.44703 Si 1.07009 3.95491 0.55582 Si 3.05212 7.67982 -0.50206 Si 6.40991 3.60859 0.3974 Si 3.83283 5.18459 1.11831 H -0.62285 6.27787 -3.38026 H 4.49618 8.55634 -2.33803 H 7.72405 4.50965 -1.48269 H 8.35799 2.9644 1.77905 H 8.13098 -0.04784 0.40117 H 7.49637 1.48841 -2.86469 H 2.42656 -2.58686 -0.76025 H -0.32858 -0.90196 0.01047 H 0.02209 1.08154 -3.05081 H 2.78545 -0.6084 -3.82383 Si 6.19961 0.81797 -0.8791 Si 0.85776 1.13735 -0.73301 Si 0.28939 6.45014 -1.06455 Zn 3.44105 3.79514 -2.57089 Ag 3.78582 2.42519 -0.8998 H -0.73706 7.55342 0.89711 H 2.24509 8.88076 1.50427 H 0.10565 4.86003 2.64616 H 3.0878 6.18737 3.25332 Isotopes and Nuclear Properties: Atom 1 2 3 4 5 6 7 8 9 10 IAtWgt= 16 16 16 16 16 16 16 16 16 16 AtmWgt= 15.9949146 15.9949146 15.9949146 15.9949146 15.9949146 15.9949146 15.9949146 15.9949146 15.9949146 15.9949146 IAtSpn= 0 0 0 0 0 0 0 0 0 0 AtZEff= 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 AtQMom= 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 AtGFac= 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 Atom 11 12 13 14 15 16 17 18 19 20 IAtWgt= 16 16 16 16 16 16 16 16 16 16 AtmWgt= 15.9949146 15.9949146 15.9949146 15.9949146 15.9949146 15.9949146 15.9949146 15.9949146 15.9949146 15.9949146 IAtSpn= 0 0 0 0 0 0 0 0 0 0 AtZEff= 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 AtQMom= 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 AtGFac= 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 Atom 21 22 23 24 25 26 27 28 29 30 IAtWgt= 16 16 16 28 28 28 28 28 1 1 AtmWgt= 15.9949146 15.9949146 15.9949146 27.9769284 27.9769284 27.9769284 27.9769284 27.9769284 1.0078250 1.0078250 IAtSpn= 0 0 0 0 0 0 0 0 1 1 AtZEff= 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 AtQMom= 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 AtGFac= 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2.7928460 2.7928460 Atom 31 32 33 34 35 36 37 38 39 40 IAtWgt= 1 1 1 1 1 1 1 1 28 28 AtmWgt= 1.0078250 1.0078250 1.0078250 1.0078250 1.0078250 1.0078250 1.0078250 1.0078250 27.9769284 27.9769284 IAtSpn= 1 1 1 1 1 1 1 1 0 0 AtZEff= 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 AtQMom= 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 AtGFac= 2.7928460 2.7928460 2.7928460 2.7928460 2.7928460 2.7928460 2.7928460 2.7928460 0.0000000 0.0000000 Atom 41 42 43 44 45 46 47 IAtWgt= 28 64 107 1 1 1 1 AtmWgt= 27.9769284 63.9291454 106.9050900 1.0078250 1.0078250 1.0078250 1.0078250 IAtSpn= 0 0 1 1 1 1 1 AtZEff= 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 AtQMom= 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 AtGFac= 0.0000000 0.0000000 -0.1135700 2.7928460 2.7928460 2.7928460 2.7928460 Leave Link 101 at Sun Jul 12 12:57:34 2009, MaxMem= 134217729 cpu: 1.0 (Enter C:\G03W\l202.exe) Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 8 0 0.000000 0.000000 0.000000 2 8 0 7.260131 0.000000 0.000000 3 8 0 -0.615556 7.233988 0.000000 4 8 0 3.630065 5.717667 2.615418 5 8 0 3.058226 -1.870251 -0.855504 6 8 0 0.319859 4.244307 1.941462 7 8 0 2.694650 8.707348 0.673955 8 8 0 7.512111 3.343611 1.529459 9 8 0 2.388904 0.674951 -0.874051 10 8 0 5.848997 2.215024 -0.169579 11 8 0 1.711136 7.177997 -1.228720 12 8 0 2.652294 4.169960 0.724662 13 8 0 0.253060 1.437766 -2.189789 14 8 0 3.330062 -0.443967 -3.050546 15 8 0 0.516450 4.932776 -0.591076 16 8 0 3.846980 6.415182 0.087017 17 8 0 7.043683 4.460246 -0.807224 18 8 0 6.790156 1.096106 -2.346074 19 8 0 3.969359 8.454273 -1.542011 20 8 0 0.771683 2.444752 0.164698 21 8 0 4.889609 -0.073556 -0.987245 22 8 0 -0.487861 6.470382 -2.449497 23 8 0 5.228903 4.428643 1.072184 24 14 0 3.410191 -0.423588 -1.447025 25 14 0 1.070094 3.954910 0.555820 26 14 0 3.052124 7.679819 -0.502058 27 14 0 6.409911 3.608588 0.397403 28 14 0 3.832834 5.184594 1.118311 29 1 0 -0.622853 6.277875 -3.380259 30 1 0 4.496179 8.556336 -2.338028 31 1 0 7.724052 4.509651 -1.482692 32 1 0 8.357987 2.964402 1.779049 33 1 0 8.130979 -0.047841 0.401166 34 1 0 7.496366 1.488413 -2.864690 35 1 0 2.426558 -2.586856 -0.760249 36 1 0 -0.328583 -0.901955 0.010471 37 1 0 0.022085 1.081536 -3.050806 38 1 0 2.785454 -0.608395 -3.823827 39 14 0 6.199605 0.817969 -0.879103 40 14 0 0.857757 1.137347 -0.733011 41 14 0 0.289385 6.450135 -1.064549 42 30 0 3.441054 3.795141 -2.570894 43 47 0 3.785815 2.425190 -0.899796 44 1 0 -0.737061 7.553420 0.897107 45 1 0 2.245089 8.880762 1.504270 46 1 0 0.105650 4.860030 2.646161 47 1 0 3.087800 6.187373 3.253325 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 O 0.000000 2 O 7.260131 0.000000 3 O 7.260130 10.693785 0.000000 4 O 7.260131 7.260131 5.211999 0.000000 5 O 3.685441 4.678219 9.854731 8.363659 0.000000 6 O 4.678218 8.363659 3.685440 3.685440 7.260130 7 O 9.139653 9.854732 3.685440 3.685441 10.693785 8 O 8.363659 3.685441 9.139653 4.678219 7.260131 9 O 2.631803 4.994835 7.267167 6.256665 2.631803 10 O 6.256665 2.631803 8.185915 4.994835 4.994834 11 O 7.480734 9.155585 2.631802 4.537868 9.155585 12 O 4.994834 6.256665 4.537868 2.631804 6.256665 13 O 2.631803 7.480735 6.256665 7.267168 4.537868 14 O 4.537868 4.994835 9.155584 8.376090 2.631804 15 O 4.994834 8.376090 2.631803 4.537869 7.267168 16 O 7.480734 7.267168 4.537868 2.631804 8.376090 17 O 8.376089 4.537869 8.185915 4.994835 7.480735 18 O 7.267168 2.631803 9.900618 7.480735 4.994835 19 O 9.466168 9.202267 4.988821 4.988822 10.387360 20 O 2.568936 6.935697 4.988821 4.988822 4.988822 21 O 4.988821 2.568937 9.202266 6.935697 2.568936 22 O 6.935697 10.387361 2.568937 6.570940 9.202266 23 O 6.935696 4.988822 6.570939 2.568937 6.935696 24 Si 3.728634 4.134652 8.771487 7.366600 1.602064 25 Si 4.134652 7.366601 3.728633 3.728633 6.314824 26 Si 8.279320 8.771488 3.728633 3.728634 9.556610 27 Si 7.366600 3.728634 7.915721 4.134652 6.543794 28 Si 6.543795 6.314824 5.023824 1.602065 7.366600 29 H 7.157221 10.629172 3.512884 7.372197 9.290677 30 H 9.944490 9.290678 5.774497 5.774498 10.629172 31 H 9.066218 4.769754 8.897722 5.917308 7.928836 32 H 9.044813 3.627393 10.095487 5.534729 7.642134 33 H 8.141010 0.960000 11.388057 7.642135 5.534729 34 H 8.161944 3.236917 10.345113 7.928837 5.917308 35 H 3.627394 5.534729 10.309288 9.044814 0.960000 36 H 0.960000 7.642134 8.141009 8.141010 3.627394 37 H 3.236916 7.928836 6.896859 8.161944 4.769754 38 H 4.769754 5.917308 9.364374 9.066218 3.236916 39 Si 6.314824 1.602065 9.401305 6.543795 4.134652 40 Si 1.602064 6.543795 6.314823 6.314824 3.728634 41 Si 6.543795 9.556611 1.602064 5.023824 8.771488 42 Zn 5.731792 5.966401 5.906882 5.534407 5.931761 43 Ag 4.585147 4.331518 6.580748 4.818858 4.356852 44 H 7.642134 11.036939 0.960000 5.039282 10.309288 45 H 9.282844 10.309288 3.627393 3.627393 11.036939 46 H 5.534728 9.044813 3.627393 3.627394 8.141010 47 H 7.642134 8.141011 5.039283 0.960000 9.044813 6 7 8 9 10 6 O 0.000000 7 O 5.212000 0.000000 8 O 7.260130 7.260130 0.000000 9 O 4.994834 8.185915 6.256665 0.000000 10 O 6.256664 7.267168 2.631803 3.852317 0.000000 11 O 4.537868 2.631803 7.480734 6.547883 6.547883 12 O 2.631802 4.537869 4.994835 3.852317 3.852318 13 O 4.994834 8.185916 8.376089 2.622000 5.999991 14 O 7.480734 9.900617 7.267168 2.622000 4.659961 15 O 2.631803 4.537869 7.480734 4.659961 5.999991 16 O 4.537868 2.631803 4.994835 5.999991 4.659961 17 O 7.267167 6.256665 2.631803 5.999991 2.622001 18 O 8.376090 9.155586 4.537869 4.659962 2.622001 19 O 6.570940 2.568937 6.935697 7.966295 6.659192 20 O 2.568936 6.570940 6.935697 2.612776 5.093489 21 O 6.935696 9.202266 4.988822 2.612777 2.612777 22 O 4.988822 4.988822 9.466168 6.659191 7.966296 23 O 4.988821 4.988822 2.568936 5.093489 2.612776 24 Si 6.543794 9.401306 6.314823 1.605651 3.813387 25 Si 1.602063 5.023824 6.543794 3.813387 5.137248 26 Si 5.023824 1.602064 6.543794 7.046021 6.147929 27 Si 6.314823 6.314824 1.602064 5.137248 1.605651 28 Si 3.728634 3.728634 4.134651 5.137248 3.813387 29 H 5.774497 5.774497 9.944490 6.836996 8.288550 30 H 7.372196 3.512884 7.157221 8.288550 6.836997 31 H 8.161943 6.896859 3.236915 6.598422 3.241205 32 H 8.141010 8.141010 0.960000 6.921740 3.264008 33 H 9.044813 10.309288 3.627394 5.926216 3.264008 34 H 9.066218 9.364374 4.769754 5.541708 3.241205 35 H 7.642134 11.388058 8.141010 3.264009 5.926216 36 H 5.534728 10.095487 9.044813 3.264008 6.921739 37 H 5.917308 8.897722 9.066218 3.241204 6.598422 38 H 7.928836 10.345113 8.161943 3.241205 5.541707 39 Si 7.366600 8.771488 3.728634 3.813387 1.605650 40 Si 4.134651 7.915721 7.366600 1.605650 5.137248 41 Si 3.728634 3.728633 8.279320 6.147928 7.046022 42 Zn 5.504995 5.934302 5.795712 3.704306 3.749836 43 Ag 4.836816 6.567560 4.542033 2.239500 2.198660 44 H 3.627393 3.627394 9.282844 7.760282 8.544732 45 H 5.039282 0.960000 7.642133 8.544731 7.760283 46 H 0.960000 5.039283 7.642134 5.926215 6.921739 47 H 3.627394 3.627394 5.534729 6.921740 5.926216 11 12 13 14 15 11 O 0.000000 12 O 3.708068 0.000000 13 O 5.999991 4.659961 0.000000 14 O 8.002144 5.999991 3.708067 0.000000 15 O 2.622000 2.622000 3.852318 6.547883 0.000000 16 O 2.621999 2.622001 6.547883 7.560386 3.708068 17 O 5.999991 4.659961 7.560386 6.547884 6.547883 18 O 8.002145 5.999992 6.547884 3.852318 7.560386 19 O 2.612777 5.022729 7.966296 9.047820 5.022728 20 O 5.022728 2.612776 2.612776 5.022728 2.612777 21 O 7.921239 5.093489 5.022728 2.612777 6.659191 22 O 2.612777 5.022728 5.093490 7.921238 2.612777 23 O 5.022728 2.612777 6.659191 6.659191 5.022728 24 Si 7.792210 5.137248 3.739494 1.605651 6.147928 25 Si 3.739493 1.605650 3.813388 6.120739 1.605651 26 Si 1.605650 3.739494 7.046022 8.518682 3.739494 27 Si 6.120739 3.813387 7.022311 6.147929 6.120739 28 Si 3.739494 1.605651 6.147929 7.022311 3.739495 29 H 3.299522 5.658646 5.060741 7.804960 3.299522 30 H 3.299522 5.658646 8.288551 9.103459 5.658646 31 H 6.583292 5.541708 8.108772 6.804678 7.274857 32 H 8.425063 5.926216 9.152712 7.760283 8.425063 33 H 9.802227 6.921740 8.425063 5.926216 9.152712 34 H 8.277478 6.598422 7.274857 4.596382 8.108772 35 H 9.802227 6.921740 4.792208 3.264009 7.760283 36 H 8.425062 5.926214 3.264008 4.792208 5.926215 37 H 6.583292 5.541707 0.960000 3.642783 4.596381 38 H 8.277478 6.598421 3.642784 0.959999 6.804677 39 Si 7.792210 5.137248 6.120739 3.813387 7.022311 40 Si 6.120738 3.813386 1.605650 3.739494 3.813387 41 Si 1.605650 3.739494 5.137249 7.792210 1.605650 42 Zn 4.029611 3.409299 3.983185 4.267601 3.710418 43 Ag 5.196312 2.639689 3.888373 3.614623 4.131833 44 H 3.264008 4.792208 6.921740 9.802226 3.264008 45 H 3.264008 4.792209 8.544732 10.434275 4.792209 46 H 4.792208 3.264008 5.926215 8.425063 3.264008 47 H 4.792209 3.264009 7.760284 9.152712 4.792209 16 17 18 19 20 16 O 0.000000 17 O 3.852318 0.000000 18 O 6.547884 3.708069 0.000000 19 O 2.612776 5.093489 7.921239 0.000000 20 O 5.022728 6.659192 6.659192 7.018000 0.000000 21 O 6.659192 5.022729 2.612777 8.595260 4.962475 22 O 5.022728 7.966295 9.047821 4.962476 4.962476 23 O 2.612777 2.612776 5.022728 4.962476 4.962476 24 Si 7.022310 6.120739 3.813387 8.895960 4.217434 25 Si 3.739493 6.147928 7.022311 5.748991 1.588270 26 Si 1.605650 5.137248 7.792211 1.588270 5.748991 27 Si 3.813388 1.605651 3.739494 5.761795 5.761795 28 Si 1.605651 3.813386 6.120739 4.217435 4.217435 29 H 5.658645 8.288550 9.103459 5.404098 5.404099 30 H 3.299522 5.060740 7.804962 0.960000 7.582016 31 H 4.596381 0.960000 3.642785 5.446217 7.437280 32 H 5.926216 3.264009 4.792209 7.773556 7.773556 33 H 7.760284 4.792209 3.264008 9.663382 7.773556 34 H 6.804678 3.642785 0.960000 7.919120 7.437280 35 H 9.152713 8.425064 5.926216 11.175774 5.376915 36 H 8.425063 9.152712 7.760283 10.412565 3.526304 37 H 7.274856 8.108772 6.804678 8.497922 3.572075 38 H 8.108771 7.274856 4.596381 9.420205 5.411591 39 Si 6.147929 3.739494 1.605651 7.982893 5.761795 40 Si 6.120739 7.022311 6.147929 7.992118 1.588269 41 Si 3.739493 7.046021 8.518683 4.217434 4.217434 42 Zn 3.754182 4.065936 4.307182 4.800543 4.053709 43 Ag 4.110666 3.842360 3.589464 6.065968 3.196642 44 H 4.792208 8.544731 10.434276 5.376915 5.376915 45 H 3.264008 6.921739 9.802227 3.526305 6.737033 46 H 4.792208 7.760283 9.152712 6.737033 3.526304 47 H 3.264009 5.926216 8.425064 5.376916 5.376916 21 22 23 24 25 21 O 0.000000 22 O 8.595260 0.000000 23 O 4.962476 7.018000 0.000000 24 Si 1.588269 7.982893 5.761794 0.000000 25 Si 5.761795 4.217434 4.217434 5.353381 0.000000 26 Si 7.982893 4.217434 4.217434 8.166173 4.350000 27 Si 4.217434 7.992119 1.588269 5.353380 5.353380 28 Si 5.761795 5.748992 1.588269 6.181527 3.075915 29 H 8.743822 0.960000 7.582015 8.056826 4.873905 30 H 8.743823 5.404099 5.404099 9.089130 6.425382 31 H 5.411591 8.497923 3.572075 6.553435 6.981291 32 H 5.376915 10.412566 3.526305 6.809311 7.455922 33 H 3.526305 11.175774 5.376915 5.083585 8.118007 34 H 3.572076 9.420206 5.411591 4.728884 7.686382 35 H 3.526305 9.663382 7.773556 2.473646 6.809312 36 H 5.376914 7.773556 7.773555 4.041232 5.083585 37 H 5.411590 5.446217 7.437280 4.039403 4.728885 38 H 3.572075 7.919120 7.437279 2.464475 6.553436 39 Si 1.588270 8.895960 4.217434 3.105613 6.181528 40 Si 4.217434 5.761794 5.761795 3.075915 3.105613 41 Si 7.982893 1.588270 5.748991 7.558689 3.075914 42 Zn 4.424146 4.754790 4.107280 4.365972 3.927253 43 Ag 2.733083 6.085183 3.159910 2.925079 3.440058 44 H 9.663382 3.526305 6.737032 9.291248 4.041232 45 H 9.663382 5.376915 5.376915 9.830490 5.152106 46 H 7.773556 5.376915 5.376915 7.455922 2.473644 47 H 7.773556 6.737033 3.526305 8.118006 4.041232 26 27 28 29 30 26 Si 0.000000 27 Si 5.353381 0.000000 28 Si 3.075915 3.105613 0.000000 29 H 4.873904 8.417576 6.425383 0.000000 30 H 2.494867 5.968682 4.873905 5.699309 0.000000 31 H 5.730490 2.464475 4.728884 8.740606 5.246563 32 H 7.455923 2.473645 5.083585 10.874422 7.945666 33 H 9.291249 4.041233 6.809312 11.443052 9.733798 34 H 7.979149 4.039403 6.553436 9.440682 7.696365 35 H 10.288956 7.455923 8.118007 9.733798 11.443052 36 H 9.237895 8.118006 7.455922 7.945666 10.874422 37 H 7.695102 7.686381 6.981292 5.246563 8.740607 38 H 8.933071 6.981291 7.686381 7.696364 9.440682 39 Si 7.558689 3.075915 5.353380 9.089130 8.056826 40 Si 6.904529 6.181528 5.353381 5.968681 8.417576 41 Si 3.075914 6.904530 4.350000 2.494868 4.873905 42 Zn 4.418379 4.202345 3.961604 4.830567 4.882263 43 Ag 5.320491 3.157378 3.418959 6.358634 6.337514 44 H 4.041232 8.178668 5.152107 4.464965 6.233677 45 H 2.473645 6.809311 4.041232 6.233677 4.464965 46 H 5.152106 6.809311 4.041233 6.233677 7.601418 47 H 4.041233 5.083585 2.473646 7.601419 6.233678 31 32 33 34 35 31 H 0.000000 32 H 3.664508 0.000000 33 H 4.948257 3.320196 0.000000 34 H 3.330111 4.948257 3.664509 0.000000 35 H 8.885144 8.511542 6.351055 6.836625 0.000000 36 H 9.816310 9.671250 8.511542 8.672384 3.320196 37 H 8.575036 9.816310 8.885143 7.487661 4.948256 38 H 7.487661 8.672383 6.836624 5.244925 3.664509 39 Si 4.039403 4.041233 2.473645 2.464476 5.083586 40 Si 7.686382 8.118006 7.455923 6.981292 4.041233 41 Si 7.695102 9.237896 10.288956 8.933071 9.291249 42 Zn 4.476470 6.617278 6.752559 4.674705 6.711000 43 Ag 4.493824 5.326511 5.166124 4.301924 5.194965 44 H 9.301526 10.225302 11.690477 10.896088 10.750837 45 H 7.618897 8.511542 10.750837 10.065314 11.690477 46 H 8.672383 8.511542 9.671251 9.816310 8.511542 47 H 6.836625 6.351055 8.511543 8.885144 9.671252 36 37 38 39 40 36 H 0.000000 37 H 3.664508 0.000000 38 H 4.948257 3.330111 0.000000 39 Si 6.809311 6.553435 4.728884 0.000000 40 Si 2.473645 2.464475 4.039403 5.353381 0.000000 41 Si 7.455923 5.730491 7.979149 8.166173 5.353380 42 Zn 6.552581 4.391277 4.625017 4.397194 4.137041 43 Ag 5.369055 4.538492 4.330510 2.899995 3.203105 44 H 8.511541 7.618897 10.065314 9.830491 6.809311 45 H 10.225301 9.301526 10.896087 9.291249 8.178667 46 H 6.351054 6.836624 8.885142 8.118006 5.083585 47 H 8.511542 8.672384 9.816310 7.455923 6.809312 41 42 43 44 45 41 Si 0.000000 42 Zn 4.387606 0.000000 43 Ag 5.334074 2.188194 0.000000 44 H 2.473645 6.603660 7.069936 0.000000 45 H 4.041232 6.625771 7.058880 3.320196 0.000000 46 H 4.041232 6.283038 5.660907 3.320196 4.695466 47 H 5.152107 6.306273 5.647093 4.695466 3.320196 46 47 46 H 0.000000 47 H 3.320196 0.000000 Symmetry turned off by external request. Stoichiometry AgH14O23Si8Zn(2) Framework group C1[X(AgH14O23Si8Zn)] Deg. of freedom 135 Full point group C1 NOp 1 Rotational constants (GHZ): 0.1161039 0.0728866 0.0558959 Leave Link 202 at Sun Jul 12 12:57:36 2009, MaxMem= 134217729 cpu: 1.0 (Enter C:\G03W\l301.exe) General basis read from cards: (5D, 7F) Centers: 29 30 31 32 33 34 35 36 37 38 44 45 46 47 S 1 1.00 Exponent= 4.5000000000D+01 Coefficients= 1.0000000000D+00 S 1 1.00 Exponent= 7.5000000000D+00 Coefficients= 1.0000000000D+00 S 1 1.00 Exponent= 1.5000000000D+00 Coefficients= 1.0000000000D+00 S 1 1.00 Exponent= 3.0000000000D-01 Coefficients= 1.0000000000D+00 **** Centers: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Centers: 21 22 23 S 1 1.00 Exponent= 2.0000000000D+03 Coefficients= 1.0000000000D+00 S 1 1.00 Exponent= 4.0000000000D+02 Coefficients= 1.0000000000D+00 S 1 1.00 Exponent= 1.0000000000D+02 Coefficients= 1.0000000000D+00 S 1 1.00 Exponent= 2.5000000000D+01 Coefficients= 1.0000000000D+00 SP 1 1.00 Exponent= 7.8000000000D+00 Coefficients= 1.0000000000D+00 1.0000000000D+00 SP 1 1.00 Exponent= 1.5600000000D+00 Coefficients= 1.0000000000D+00 1.0000000000D+00 SP 1 1.00 Exponent= 3.9000000000D-01 Coefficients= 1.0000000000D+00 1.0000000000D+00 D 1 1.00 Exponent= 7.8000000000D+00 Coefficients= 1.0000000000D+00 D 1 1.00 Exponent= 1.5600000000D+00 Coefficients= 1.0000000000D+00 D 1 1.00 Exponent= 3.9000000000D-01 Coefficients= 1.0000000000D+00 **** Centers: 24 25 26 27 28 39 40 41 S 1 1.00 Exponent= 9.8300000000D+03 Coefficients= 1.0000000000D+00 S 1 1.00 Exponent= 1.9660000000D+03 Coefficients= 1.0000000000D+00 S 1 1.00 Exponent= 4.9200000000D+02 Coefficients= 1.0000000000D+00 S 1 1.00 Exponent= 1.2300000000D+02 Coefficients= 1.0000000000D+00 S 1 1.00 Exponent= 3.0720000000D+01 Coefficients= 1.0000000000D+00 SP 1 1.00 Exponent= 9.6000000000D+00 Coefficients= 1.0000000000D+00 1.0000000000D+00 SP 1 1.00 Exponent= 1.9200000000D+00 Coefficients= 1.0000000000D+00 1.0000000000D+00 SP 1 1.00 Exponent= 4.8000000000D-01 Coefficients= 1.0000000000D+00 1.0000000000D+00 SP 1 1.00 Exponent= 1.2000000000D-01 Coefficients= 1.0000000000D+00 1.0000000000D+00 D 1 1.00 Exponent= 9.6000000000D+00 Coefficients= 1.0000000000D+00 D 1 1.00 Exponent= 1.9200000000D+00 Coefficients= 1.0000000000D+00 D 1 1.00 Exponent= 4.8000000000D-01 Coefficients= 1.0000000000D+00 D 1 1.00 Exponent= 1.2000000000D-01 Coefficients= 1.0000000000D+00 **** Centers: 42 S 1 1.00 Exponent= 7.5500000000D+04 Coefficients= 1.0000000000D+00 S 1 1.00 Exponent= 1.5100000000D+04 Coefficients= 1.0000000000D+00 S 1 1.00 Exponent= 3.7760000000D+03 Coefficients= 1.0000000000D+00 S 1 1.00 Exponent= 9.4400000000D+02 Coefficients= 1.0000000000D+00 S 1 1.00 Exponent= 2.3600000000D+02 Coefficients= 1.0000000000D+00 SP 1 1.00 Exponent= 7.4000000000D+01 Coefficients= 1.0000000000D+00 1.0000000000D+00 SP 1 1.00 Exponent= 1.4800000000D+01 Coefficients= 1.0000000000D+00 1.0000000000D+00 SP 1 1.00 Exponent= 3.7000000000D+00 Coefficients= 1.0000000000D+00 1.0000000000D+00 SP 1 1.00 Exponent= 9.2000000000D-01 Coefficients= 1.0000000000D+00 1.0000000000D+00 SP 1 1.00 Exponent= 2.3000000000D-01 Coefficients= 1.0000000000D+00 1.0000000000D+00 D 1 1.00 Exponent= 7.4000000000D+01 Coefficients= 1.0000000000D+00 D 1 1.00 Exponent= 1.4800000000D+01 Coefficients= 1.0000000000D+00 D 1 1.00 Exponent= 3.7000000000D+00 Coefficients= 1.0000000000D+00 D 1 1.00 Exponent= 9.2000000000D-01 Coefficients= 1.0000000000D+00 D 1 1.00 Exponent= 2.3000000000D-01 Coefficients= 1.0000000000D+00 **** Centers: 43 S 1 1.00 Exponent= 1.8937500000D+05 Coefficients= 1.0000000000D+00 S 1 1.00 Exponent= 3.1562000000D+04 Coefficients= 1.0000000000D+00 S 1 1.00 Exponent= 6.3120000000D+03 Coefficients= 1.0000000000D+00 S 1 1.00 Exponent= 1.2620000000D+03 Coefficients= 1.0000000000D+00 S 1 1.00 Exponent= 2.5200000000D+02 Coefficients= 1.0000000000D+00 SP 1 1.00 Exponent= 6.0800000000D+01 Coefficients= 1.0000000000D+00 1.0000000000D+00 SP 1 1.00 Exponent= 1.0100000000D+01 Coefficients= 1.0000000000D+00 1.0000000000D+00 SP 1 1.00 Exponent= 2.0200000000D+00 Coefficients= 1.0000000000D+00 1.0000000000D+00 SP 1 1.00 Exponent= 4.0500000000D-01 Coefficients= 1.0000000000D+00 1.0000000000D+00 SP 1 1.00 Exponent= 8.1000000000D-02 Coefficients= 1.0000000000D+00 1.0000000000D+00 D 1 1.00 Exponent= 6.0800000000D+01 Coefficients= 1.0000000000D+00 D 1 1.00 Exponent= 1.0100000000D+01 Coefficients= 1.0000000000D+00 D 1 1.00 Exponent= 2.0200000000D+00 Coefficients= 1.0000000000D+00 D 1 1.00 Exponent= 4.0500000000D-01 Coefficients= 1.0000000000D+00 D 1 1.00 Exponent= 8.1000000000D-02 Coefficients= 1.0000000000D+00 **** Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned off. 1197 basis functions, 1308 primitive gaussians, 1308 cartesian basis functions 194 alpha electrons 193 beta electrons nuclear repulsion energy 9268.2620685358 Hartrees. IExCor= 402 DFT=T Ex=B+HF Corr=LYP ExCW=0 ScaHFX= 0.200000 ScaDFX= 0.800000 0.720000 1.000000 0.810000 IRadAn= 0 IRanWt= -1 IRanGd= 0 ICorTp=0 NAtoms= 47 NActive= 47 NUniq= 47 SFac= 1.00D+00 NAtFMM= 60 Big=F Leave Link 301 at Sun Jul 12 12:57:37 2009, MaxMem= 134217729 cpu: 0.0 (Enter C:\G03W\l302.exe) NPDir=0 NMtPBC= 1 NCelOv= 1 NCel= 1 NClECP= 1 NCelD= 1 NCelK= 1 NCelE2= 1 NClLst= 1 CellRange= 0.0. One-electron integrals computed using PRISM. NBasis= 1197 RedAO= T NBF= 1197 NBsUse= 1197 1.00D-06 NBFU= 1197 Precomputing XC quadrature grid using IXCGrd= 2 IRadAn= 0 IRanWt= -1 IRanGd= 0. Defaulting to unpruned grid for atomic number 47. NRdTot= 2977 NPtTot= 394022 NUsed= 407514 NTot= 407530 NSgBfM= 1033 1033 1033 1033. Leave Link 302 at Sun Jul 12 12:58:12 2009, MaxMem= 134217729 cpu: 33.0 (Enter C:\G03W\l303.exe) DipDrv: MaxL=1. Leave Link 303 at Sun Jul 12 12:58:15 2009, MaxMem= 134217729 cpu: 2.0 (Enter C:\G03W\l401.exe) Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 8.10D-02 ExpMax= 1.89D+05 ExpMxC= 1.89D+05 IAcc=4 IRadAn= 199590 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 199590 IDoV=1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Harris En= -10775.6953367384 of initial guess= 0.7500 Leave Link 401 at Sun Jul 12 13:17:33 2009, MaxMem= 134217729 cpu: 1157.0 (Enter C:\G03W\l502.exe) UHF open shell SCF: Requested convergence on RMS density matrix=1.00D-04 within 128 cycles. Requested convergence on MAX density matrix=1.00D-02. Requested convergence on energy=1.00D-02. No special actions if energy rises. Using DIIS extrapolation, IDIIS= 1040. Two-electron integral symmetry not used. 407513 words used for storage of precomputed grid. IEnd= 5998373 IEndB= 5998373 NGot= 134217729 MDV= 129948169 LenX= 129948169 Fock matrices will be formed incrementally for 20 cycles. Cycle 1 Pass 1 IDiag 1: Symmetry not used in FoFDir. MinBra= 0 MaxBra= 2 Meth= 1. IRaf= 0 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0 JSym2E=0. Defaulting to unpruned grid for atomic number 47. Spurious integrated density or basis function: NE= 387 NElCor= 0 El error=2.38D-03 rel=6.15D-06 Tolerance=1.00D-03 Shell 390 absolute error=5.79D-02 Tolerance=1.20D-02 Shell 390 signed error=5.79D-02 Tolerance=1.00D-01 Inaccurate quadrature in CalDSu. Error termination via Lnk1e in C:\G03W\l502.exe at Sun Jul 12 14:21:10 2009. Job cpu time: 0 days 1 hours 23 minutes 40.0 seconds. File lengths (MBytes): RWF= 628 Int= 0 D2E= 0 Chk= 32 Sc Please help me. I'm beginner. Marcin Sterniczuk Institute of Nuclear Chemistry and Technology 03-195 Warsaw Dorodna 16 POLAND (+48 022)5041359 From owner-chemistry@ccl.net Mon Jul 13 04:26:01 2009 From: "luca bertini luca.bertini%a%unimib.it" To: CCL Subject: CCL:G: excited state optimizations using TDDFT with gaussian 09 Message-Id: <-39760-090713034750-7494-bGPL7hcygXq72fXhx+mVww*server.ccl.net> X-Original-From: "luca bertini" Content-Transfer-Encoding: 8bit Content-Type: text/html;charset=iso-8859-1 Date: Mon, 13 Jul 2009 09:10:43 +0200 MIME-Version: 1.0 Sent to CCL by: "luca bertini" [luca.bertini,unimib.it]
Dear Patrick,
con you tell us the value of this imaginary mode frequency? If this value is, say,  less then  50i cm^-1, you might be close to a genuine local minimum, and therefore you can conclude that your structure is a local minimum.
This kind of problem are usual even in DFT for ground state.

--
Luca Bertini
Dipartimento di Biotecnologie e Bioscienze
Universita' degli Studi di Milano-Bicocca
Piazza della Scienza, 2
20126 Milano, Italy
Tel: +39 02 64483438
email: luca.bertini a unimib.it



On Wed, 8 Jul 2009 15:12:23 -0400
 "patrick o tuck potuck:_:lakeheadu.ca" <owner-chemistry a ccl.net> wrote:
>
> Sent to CCL by: "patrick o tuck" [potuck%a%lakeheadu.ca]
> Hello:
>
> SO I am using gaussian 09 and have been fortunate to
>find a stationary point in the first excited state of a
>molecule. However, after running a numerical frequency
>check on it (only numerical is available to my knowledge
>for excited state TDDFT), it tells me it has one imag.
>frequency, i.e a Transition state!
>
> So I corrected the Transition State coordinates to put
>me close to the minima with no i-freqs, but after running
>an optimization again, it fails and reads out:
>
> "You need to solve for more vectors in order to follow
>this state."
>
> My question is what is the significance of this and how
>to avoid it. Am I on a flat part of the PES, and the
>software doesn't not where to go, or is there some kind
>of conical intersection thing happening. A suggestion of
>a keyword to help find a minima would also be very much
>appreciated.
>
> Patrick
>
>
>
> -= This is automatically added to each message by the
>mailing script =-
> To recover the email address of the author of the
>message, please change
> the strange characters on the top line to the a sign.
>You can also
>
>
>
>      http://www.ccl.net/cgi-bin/ccl/send_ccl_message
>
> E-mail to administrators: CHEMISTRY-REQUEST a ccl.net or
>use
>      http://www.ccl.net/cgi-bin/ccl/send_ccl_message
>
>
>      http://www.ccl.net/chemistry/sub_unsub.shtml
>
>
>
>
> Conferences:
>http://server.ccl.net/chemistry/announcements/conferences/
>
> Search Messages:
>http://www.ccl.net/chemistry/searchccl/index.shtml
>
>
>      http://www.ccl.net/spammers.txt
>
> RTFI:
>http://www.ccl.net/chemistry/aboutccl/instructions/
>
>

From owner-chemistry@ccl.net Mon Jul 13 07:52:00 2009 From: "Kavitha velappan kavitha.velappan/a\gmail.com" To: CCL Subject: CCL: model/building Message-Id: <-39761-090713073937-16134-n+Ozm/18DBLnSHt+qIhqcg-#-server.ccl.net> X-Original-From: Kavitha velappan Content-Type: multipart/alternative; boundary=0015174c18baf6ee3b046e94c582 Date: Mon, 13 Jul 2009 13:39:22 +0200 MIME-Version: 1.0 Sent to CCL by: Kavitha velappan [kavitha.velappan##gmail.com] --0015174c18baf6ee3b046e94c582 Content-Type: text/plain; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit Hello Neeraj: There is a package available for building clusters - Multiple Minima Hypersurface (MMH) Approach. Prof. Luis Montero-Cabrera and his co-workers at the University of Havanna, Cuba have developed this package. Since my boss has collaboration with this group, we use this package and seems to be quite useful for small molecules. Here are some references related to MMH approach. *1. Montero, L. A. et al. Journal of the American Chemical Society 1998, 120, 12023.* *2. Montero, L. A.; Molina, J.; Fabian, J. International Journal of Quantum Chemistry 2000, 79, 8.* *3. Montero, L. A. GRANADA and Q programs for PC computers; GRANADA and Q programs for PC computers ed., 1996.* Good luck kavitha On Sun, Jul 12, 2009 at 12:11 PM, neeraj misra neerajmisra ~~ hotmail.com < owner-chemistry() ccl.net> wrote: > > Sent to CCL by: "neeraj misra" [neerajmisra:hotmail.com] > Dear CCLer's > Is there any literature available for learning the modelling of > simple dimers/trimers and so on..Are there any packages available for > building small clusters of atoms.. > > Thanks to all> > > --0015174c18baf6ee3b046e94c582 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: quoted-printable Hello Neeraj:

There is a package available for building clusters - M= ultiple Minima Hypersurface (MMH) Approach. Prof. Luis Montero-Cabrera and = his co-workers at the University of Havanna, Cuba have developed this packa= ge. Since my boss has collaboration with this group, we use this package an= d seems to be quite useful for small molecules. Here are some references re= lated to MMH approach.

1. Montero, L. A. et al.=A0 Journal of the American Chemical Society 1998, 120, 12023.

2. Montero, L. A.; Molina, J.; Fabian, J. Interna= tional Journal of Quantum Chemistry 2000, 79, 8.

3. Montero, L. A. GRANADA and Q programs for PC computers; GRANADA and Q programs for PC computers ed., 1996.

Good luck
kavitha

On Sun, Jul 12, 2009= at 12:11 PM, neeraj misra neerajmisra ~~ hotmail.com <owner-chemistry() ccl.net> wrote:

Sent to CCL by: "neeraj =A0misra" [neerajmisra:hotmail.com]
Dear CCLer's
=A0 =A0 =A0 =A0 =A0 =A0 Is there any literature available for learning the= modelling of simple dimers/trimers and so on..Are there any packages avail= able for building small clusters of atoms..

Thanks to all



-=3D This is automatically added to each message by the mailing script =3D-=
E-mail to subscribers: CHEMISTRY() ccl.net or use:
=A0 =A0 =A0http://www.ccl.net/cgi-bin/ccl/send_ccl_message

E-mail to administrators: CHEMISTRY-REQUEST() ccl.net or use
=A0 =A0 =A0http://www.ccl.net/cgi-bin/ccl/send_ccl_message

Subscribe/Unsubscribe:
=A0 =A0 =A0http://www.ccl.net/chemistry/sub_unsub.shtml

Before posting, check wait time at: http://www.ccl.net

Job: http://www.ccl.n= et/jobs
Conferences: http://server.ccl.net/chemistry/announcements/co= nferences/

Search Messages: http://www.ccl.net/chemistry/searchccl/index.shtml
=A0 =A0 =A0
h= ttp://www.ccl.net/spammers.txt

RTFI: http://www.ccl.net/chemistry/aboutccl/instructions/



--0015174c18baf6ee3b046e94c582-- From owner-chemistry@ccl.net Mon Jul 13 08:27:00 2009 From: "Tamar Ansbacher tamar.ansbacher ~ mail.huji.ac.il" To: CCL Subject: CCL:G: standard orientation Message-Id: <-39762-090713075239-17931-dZicJb6kW+/gv2ZuyZk5qw::server.ccl.net> X-Original-From: Tamar Ansbacher Content-Type: multipart/alternative; boundary=00504502d30c4e6f63046e947e5e Date: Mon, 13 Jul 2009 14:19:20 +0300 MIME-Version: 1.0 Sent to CCL by: Tamar Ansbacher [tamar.ansbacher\a/mail.huji.ac.il] --00504502d30c4e6f63046e947e5e Content-Type: text/plain; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit Dear All. I wonder how does Gaussian define the standard orientation for molecules with C1 symmetry. (no symmetry). After setting the origin (center of mass or center or charge by the way?) - what defines the X Y Z axes? thank you ! Tamar --00504502d30c4e6f63046e947e5e Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: quoted-printable
Dear All.
I wonder how does Gaussian define the standard orientation for molecul= es with C1 symmetry. (no symmetry).
After setting the origin (center of mass or center or charge by the wa= y?) -
what defines the X Y Z axes?
thank you !
Tamar
=A0
--00504502d30c4e6f63046e947e5e-- From owner-chemistry@ccl.net Mon Jul 13 10:28:01 2009 From: "Ajanta Deka ajanta---tezu.ernet.in" To: CCL Subject: CCL:G: ONIOM Optimization Message-Id: <-39763-090713081027-25318-su1D+iQtcIDN32QDg+OSuQ===server.ccl.net> X-Original-From: "Ajanta Deka" Date: Mon, 13 Jul 2009 08:10:23 -0400 Sent to CCL by: "Ajanta Deka" [ajanta*tezu.ernet.in] Dear All, I am trying to do an optimzation using ONIOM method (Gaussian 03)for faujasite zeolite. For the QM part I am using uB3LYP/6-31g(d,p) and uB3LYP/LanL2dz and UFF for the MM part. I observe something strange in the output. When I look at the energy values in the subsequent steps of optimization, this is what I find SCF Done: E(UB+HF-LYP) = -2190.15693744 A.U. after 24 cycles SCF Done: E(UB+HF-LYP) = -2190.15700719 A.U. after 24 cycles SCF Done: E(UB+HF-LYP) = -2190.15693744 A.U. after 24 cycles SCF Done: E(UB+HF-LYP) = -2190.15700718 A.U. after 24 cycles SCF Done: E(UB+HF-LYP) = -2190.15693745 A.U. after 24 cycles SCF Done: E(UB+HF-LYP) = -2190.15700721 A.U. after 24 cycles SCF Done: E(UB+HF-LYP) = -2190.15693745 A.U. after 24 cycles SCF Done: E(UB+HF-LYP) = -2190.15700720 A.U. after 24 cycles SCF Done: E(UB+HF-LYP) = -2190.15693744 A.U. after 24 cycles SCF Done: E(UB+HF-LYP) = -2190.15700718 A.U. after 24 cycles Thus, the energy is approaching two different values. Ultimately, the job fails with the following messaqe Error termination request processed by link 9999. Error termination via Lnk1e in /home/ramesh/g03/l9999.exe at Sat Jul 11 18:01:11 2009 Job cpu time: 6 days 21 hours 53 minutes 6.0 seconds. File lengths (MBytes): RWF= 100 Int= 0 D2E= 0 Chk= 20 Scr= 1 I have tried by changing the initial geometry slightly, but I get the same result. I have successfully got the optimized geometry for a similiar system (with slightly different charge). I do not know how to overcome this error. Please help me. with warm regards, Ajanta Deka From owner-chemistry@ccl.net Mon Jul 13 11:03:01 2009 From: "patrick owen tuck potuck,,lakeheadu.ca" To: CCL Subject: CCL:G: excited state optimizations using TDDFT with gaussian 09 Message-Id: <-39764-090713102819-18721-FWLMdzf50W7buyiUUMCtIg+/-server.ccl.net> X-Original-From: "patrick owen tuck" Date: Mon, 13 Jul 2009 10:28:15 -0400 Sent to CCL by: "patrick owen tuck" [potuck]_[lakeheadu.ca] July 13th Dear Luca: The imaginary frequency is 96i. I have seen this too in ground state optimizations (0-50i) for which methyl rotations can be an issue. In past cases, I have been able to get away from transition states by adding the imaginary freq's motion (or a fraction of it) to the original coordinates and re-optimizing. THis usually gets me near my local minimum. However, after doing so in this case I get my second-time optimization job to fail on g09 with the statement "You need to solve for more vectors in order to follow this state." I am curious both in knowing what this means and how to avoid it in future. Patrick July 13TH Dear Patrick, con you tell us the value of this imaginary mode frequency? If this value is, say, less then 50i cm^-1, you might be close to a genuine local minimum, and therefore you can conclude that your structure is a local minimum. This kind of problem are usual even in DFT for ground state. -- Luca Bertini July8th Hello: SO I am using gaussian 09 and have been fortunate to find a stationary point in the first excited state of a molecule. However, after running a numerical frequency check on it (only numerical is available to my knowledge for excited state TDDFT), it tells me it has one imag. frequency, i.e a Transition state! So I corrected the Transition State coordinates to put me close to the minima with no i-freqs, but after running an optimization again, it fails and reads out: "You need to solve for more vectors in order to follow this state." My question is what is the significance of this and how to avoid it. Am I on a flat part of the PES, and the software doesn't not where to go, or is there some kind of conical intersection thing happening. A suggestion of a keyword to help find a minima would also be very much appreciated. Patrick From owner-chemistry@ccl.net Mon Jul 13 11:38:01 2009 From: "aditya khandavelli svk003=latech.edu" To: CCL Subject: CCL:G: problem with Caldsu error in Gaussian Message-Id: <-39765-090713035624-8576-kC3jADUAzy4UQ8MwUVg/HA[*]server.ccl.net> X-Original-From: aditya khandavelli Content-Type: multipart/alternative; boundary=0016360e3caa864c78046e906b40 Date: Mon, 13 Jul 2009 01:27:45 -0500 MIME-Version: 1.0 Sent to CCL by: aditya khandavelli [svk003###latech.edu] --0016360e3caa864c78046e906b40 Content-Type: text/plain; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit Hello, I encountered this error before. Inaccurate quadrature in CalDSu in gaussian'03 generally occurs due to a failure in determining the guess wave function. Try giving Guess=INDO in your input line. This Keyword worked for me, hope it works for you too.. have a look at the following links you may get a clear picture. http://people.uleth.ca/~stacey.wetmore/errors.html http://ftp.ccl.net/cgi-bin/ccl/message-new?2004+11+26+004 good luck, Aditya Khandavelli --0016360e3caa864c78046e906b40 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: quoted-printable
Hello,

I encountered this err= or before. Inaccurate quadrature in CalDSu in gaussian'03 generally occ= urs due to=A0a failure in determining the guess wave function.<= /span>

<= span class=3D"Apple-style-span" style=3D"font-family: arial, Arial, Helveti= ca, sans-serif; ">Try giving Guess=3DINDO in your input line. This Keyword = worked for me, hope it works for you too..

<= span class=3D"Apple-style-span" style=3D"font-family: arial, Arial, Helveti= ca, sans-serif; ">have a look at the following links you may get a clear pi= cture.

<= span class=3D"Apple-style-span" style=3D"font-family: arial, Arial, Helveti= ca, sans-serif; ">http://people.uleth.ca/~stacey.w= etmore/errors.html

=

=
good luck,

Aditya Khandavelli

=

--0016360e3caa864c78046e906b40-- From owner-chemistry@ccl.net Mon Jul 13 12:13:01 2009 From: "Mark Zottola mzottola:_:gmail.com" To: CCL Subject: CCL: Dipolar interactions in polar medium Message-Id: <-39766-090713103233-20659-GIjxcwZcuzXcnh929bvV5g---server.ccl.net> X-Original-From: Mark Zottola Content-Type: multipart/alternative; boundary=0016e6d5096e773b35046e971bc8 Date: Mon, 13 Jul 2009 10:26:26 -0400 MIME-Version: 1.0 Sent to CCL by: Mark Zottola [mzottola _ gmail.com] --0016e6d5096e773b35046e971bc8 Content-Type: text/plain; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit For simplicity, assume the compound XCH2CH2Y has two conformers. The first conformer has X and Y arranged antiperiplanar. The second conformer has X and Y synclinal. The relative population of the two conformers in the gas phase would depend on the dipolar interaction of X and Y. Now assume that X and Y were both electronegative and the compound was dissolved in a polar medium. Would the polar medium stabilize the bad dipolar interaction and lessen the energy difference between conformers? Or would the polar medium exacerbate the situation and increase the energy difference between conformers? I tend to think the former is true. Is this correct? Thanks, Mark --0016e6d5096e773b35046e971bc8 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: quoted-printable
For simplicity, assume the compound XCH2CH2Y has two conformers.=A0 Th= e first conformer has X and Y arranged antiperiplanar.=A0 The second confor= mer has X and Y synclinal.=A0 The relative population of the two conformers= in the gas phase would depend on the dipolar interaction of X and Y.=A0 No= w assume that X and Y were both electronegative and the compound was dissol= ved in a polar medium.=A0 Would the polar medium stabilize the bad dipolar = interaction and lessen the energy difference between conformers?=A0 Or woul= d the polar medium exacerbate the situation and increase the energy differe= nce between conformers?=A0 I tend to think the former is true.=A0 Is this c= orrect?
=A0
Thanks,
=A0
=A0
Mark
--0016e6d5096e773b35046e971bc8-- From owner-chemistry@ccl.net Mon Jul 13 12:47:01 2009 From: "Anandarup Goswami ananda1911.:.gmail.com" To: CCL Subject: CCL: Problem with transition structure calculation Message-Id: <-39767-090713113448-29462-dWCGBnZuHzYd13yVFqurZQ]-[server.ccl.net> X-Original-From: "Anandarup Goswami" Date: Mon, 13 Jul 2009 11:34:45 -0400 Sent to CCL by: "Anandarup Goswami" [ananda1911---gmail.com] Hi, I am trying to calculate the transition structure for a substitution reaction on benzene using methyl analog of LDA (i.e. putting methyl groups instead of isopropyl group just to reduce the job time). It works fine when done at the HF level (where it gives the negative imaginary frequency of ~300), but when I do this same computation at the B3LYP level, the nucleophile starts moving apart and it gives a very low negative frequency (~20). Also, this computation works fine at the B3LYP level when I add some sterics to the structure (using i-Pr instead of Me groups). I was wondering if anybody knows the reason for this discrepancy and also what is the best approach to do this. Thanks, Anandarup Goswami From owner-chemistry@ccl.net Mon Jul 13 14:30:00 2009 From: "Jose Alberto Fernandes jafernandes{:}ua.pt" To: CCL Subject: CCL:G: ONIOM Optimization Message-Id: <-39768-090713142817-8648-52gVL7VscTzArpZ7vH4KCw---server.ccl.net> X-Original-From: "Jose Alberto Fernandes" Date: Mon, 13 Jul 2009 14:28:13 -0400 Sent to CCL by: "Jose Alberto Fernandes" [jafernandes-,-ua.pt] Hello Ajanta That problems happens many times with me, and some times it is almost impossible to solve. Well, you have already tried to start with other structure. Let's try these approaches: *Do not use guess=check *Try to put the medium structure of the two structures corresponding to the two energies you have got. *Try to reduce the step in the optimization by adding opt(maxstep=1) in the input Good luck Jose > "Ajanta Deka ajanta---tezu.ernet.in" wrote: > > Sent to CCL by: "Ajanta Deka" [ajanta*tezu.ernet.in] > Dear All, > > I am trying to do an optimzation using ONIOM method (Gaussian 03)for > faujasite zeolite. For the QM part I am using uB3LYP/6-31g(d,p) and > uB3LYP/LanL2dz and UFF for the MM part. I observe something strange in the > output. When I look at the energy values in the subsequent steps of > optimization, this is what I find > > SCF Done: E(UB+HF-LYP) = -2190.15693744 A.U. after 24 cycles > SCF Done: E(UB+HF-LYP) = -2190.15700719 A.U. after 24 cycles > SCF Done: E(UB+HF-LYP) = -2190.15693744 A.U. after 24 cycles > SCF Done: E(UB+HF-LYP) = -2190.15700718 A.U. after 24 cycles > SCF Done: E(UB+HF-LYP) = -2190.15693745 A.U. after 24 cycles > SCF Done: E(UB+HF-LYP) = -2190.15700721 A.U. after 24 cycles > SCF Done: E(UB+HF-LYP) = -2190.15693745 A.U. after 24 cycles > SCF Done: E(UB+HF-LYP) = -2190.15700720 A.U. after 24 cycles > SCF Done: E(UB+HF-LYP) = -2190.15693744 A.U. after 24 cycles > SCF Done: E(UB+HF-LYP) = -2190.15700718 A.U. after 24 cycles > > Thus, the energy is approaching two different values. > Ultimately, the job fails with the following messaqe > > Error termination request processed by link 9999. > Error termination via Lnk1e in /home/ramesh/g03/l9999.exe at Sat Jul 11 > 18:01:11 2009 > Job cpu time: 6 days 21 hours 53 minutes 6.0 seconds. > File lengths (MBytes): RWF= 100 Int= 0 D2E= 0 Chk= 20 > Scr= 1 > > I have tried by changing the initial geometry slightly, but I get the same > result. I have successfully got the optimized geometry for a similiar > system (with slightly different charge). I do not know how to overcome > this error. Please help me. > > with warm regards, > Ajanta Deka > > From owner-chemistry@ccl.net Mon Jul 13 15:08:01 2009 From: "Cory Pye cpye|*|crux.smu.ca" To: CCL Subject: CCL:G: raman relative intensity Message-Id: <-39769-090713072118-31389-ErhtLqpQ3RUhTY96KsJ1Tg]|[server.ccl.net> X-Original-From: Cory Pye Content-Type: TEXT/PLAIN; charset=US-ASCII Date: Mon, 13 Jul 2009 07:10:35 -0300 (ADT) MIME-Version: 1.0 Sent to CCL by: Cory Pye [cpye^^crux.smu.ca] Firstly, make sure that you are using the right experimental comparison. Raman spectra are usually reported in the "I" format, whereas it is the "R" format that can be related directly to the scattering activity. There is a frequency factor and a Bose-Einstein factor that you have to multiply by to interconvert them. Secondly, the intensity of the band is related to the area not the peak height. If a band is very broad, it might appear to be not that intense compared with a sharp peak, but the integrated band could be idenatical. Thirdly, sometimes theoretical predictions may swap two bands. No amount of uniform scaling will fix that. Also Fermi resonances can mess things up, sometimes. -Cory On Sun, 12 Jul 2009, partha p kundu partha1kundu!A!yahoo.com wrote: > > Sent to CCL by: "partha p kundu" [partha1kundu]-[yahoo.com] > Hi, > I am trying to calculate Raman relative intensity from optical activity from Gaussian calculation by multiplying (n-n0)^4/n*C since the exponential term was giving value of 1.But with that the intensity at the lower wavelength was very low compared to the higher wave no. and the data did not match at all with the experimental data.Am I doing any mistake? > Please help me. > Thanks in advance. > Partha. > ************* ! Dr. Cory C. Pye ***************** ! Associate Professor *** ** ** ** ! Theoretical and Computational Chemistry ** * **** ! Department of Chemistry, Saint Mary's University ** * * ! 923 Robie Street, Halifax, NS B3H 3C3 ** * * ! cpye{:}crux.stmarys.ca http://apwww.stmarys.ca/~cpye *** * * ** ! Ph: (902)-420-5654 FAX:(902)-496-8104 ***************** ! ************* ! Les Hartree-Focks (Apologies to Montreal Canadien Fans) From owner-chemistry@ccl.net Mon Jul 13 16:08:01 2009 From: "Cihan Aydin cihan.aydin- -umassmed.edu" To: CCL Subject: CCL: Structure-Based Homology Modeling... Message-Id: <-39770-090713160547-1370-yktIAxP8K/EbrbL+qlxBpw^^^server.ccl.net> X-Original-From: "Cihan Aydin" Content-Transfer-Encoding: 7bit Content-Type: text/plain Date: Mon, 13 Jul 2009 16:05:20 -0400 MIME-Version: 1.0 Sent to CCL by: "Cihan Aydin" [cihan.aydin-*-umassmed.edu] Greetings CCL community, I have two structures for a multidomain protein (in different conformations) from the different genus in the same family. The system I am looking is also in the same family but different from the two I mentioned above. I have the individual structures for each domain for my system but I don't have the full length structure for my system. I would like to model the individual domains onto the two full length structures > from the other genii. In addition, I also want to model the substrate-bound forms of these domains from my system to the full length structures from the other genii, but the full length structures in either case does not contain the substrates. I have x-ray structures for every one of them. So I am now asking for a suggestion on which available program to use. I tried to use MODELLER but it's nocleic acid modeling is non-existent so if you have any suggestions (free software) I will really appreciate it. Thanks, -- Cihan Aydin UMass Graduate School of Biomedical Sciences PhD Student ]*[ Schiffer Lab 364 Plantation St. LRB 970M Worcester, MA 01605 cihan.aydin]*[umassmed.edu +1 (508) 856-3430 From owner-chemistry@ccl.net Mon Jul 13 16:42:00 2009 From: "Sten Nilsson Lill stenil++chem.gu.se" To: CCL Subject: CCL:G: ONIOM Optimization Message-Id: <-39771-090713163024-13987-lS/MqfskGzDDDzuUgUWZjw/./server.ccl.net> X-Original-From: "Sten Nilsson Lill" Content-Transfer-Encoding: 8bit Content-Type: text/plain;charset=iso-8859-1 Date: Mon, 13 Jul 2009 21:52:32 +0200 (CEST) MIME-Version: 1.0 Sent to CCL by: "Sten Nilsson Lill" [stenil^^chem.gu.se] Ajanta, do you see the same behavior for the ONIOM extrapolated energy as well or is that slowly converging? To solve the oscillating behavior of the SCF solutions you can try the keyword scf=novaracc, and as suggested earlier do not read in the old wavefunction again when starting the new calculation Hope that helps, Sten > > >> "Ajanta Deka ajanta---tezu.ernet.in" wrote: >> >> Sent to CCL by: "Ajanta Deka" [ajanta*tezu.ernet.in] >> Dear All, >> >> I am trying to do an optimzation using ONIOM method (Gaussian 03)for >> faujasite zeolite. For the QM part I am using uB3LYP/6-31g(d,p) and >> uB3LYP/LanL2dz and UFF for the MM part. I observe something strange in >> the >> output. When I look at the energy values in the subsequent steps of >> optimization, this is what I find >> >> SCF Done: E(UB+HF-LYP) = -2190.15693744 A.U. after 24 cycles >> SCF Done: E(UB+HF-LYP) = -2190.15700719 A.U. after 24 cycles >> SCF Done: E(UB+HF-LYP) = -2190.15693744 A.U. after 24 cycles >> SCF Done: E(UB+HF-LYP) = -2190.15700718 A.U. after 24 cycles >> SCF Done: E(UB+HF-LYP) = -2190.15693745 A.U. after 24 cycles >> SCF Done: E(UB+HF-LYP) = -2190.15700721 A.U. after 24 cycles >> SCF Done: E(UB+HF-LYP) = -2190.15693745 A.U. after 24 cycles >> SCF Done: E(UB+HF-LYP) = -2190.15700720 A.U. after 24 cycles >> SCF Done: E(UB+HF-LYP) = -2190.15693744 A.U. after 24 cycles >> SCF Done: E(UB+HF-LYP) = -2190.15700718 A.U. after 24 cycles >> >> Thus, the energy is approaching two different values. >> Ultimately, the job fails with the following messaqe >> >> Error termination request processed by link 9999. >> Error termination via Lnk1e in /home/ramesh/g03/l9999.exe at Sat Jul 11 >> 18:01:11 2009 >> Job cpu time: 6 days 21 hours 53 minutes 6.0 seconds. >> File lengths (MBytes): RWF= 100 Int= 0 D2E= 0 Chk= 20 >> Scr= 1 >> >> I have tried by changing the initial geometry slightly, but I get the >> same >> result. I have successfully got the optimized geometry for a similiar >> system (with slightly different charge). I do not know how to overcome >> this error. Please help me. >> >> with warm regards, >> Ajanta Deka> > > Ph. D. Sten Nilsson Lill Dep. of Chemistry University of Gothenburg Kemigården 4 S-412 96 Göteborg, Sweden Phone: +46-31-772 2873 Fax: +46-31-772 3840 E-mail: stenil a chem.gu.se Alternative e-mail: stenil a physto.se From owner-chemistry@ccl.net Mon Jul 13 19:15:00 2009 From: "Breton, Gary gbreton^^^berry.edu" To: CCL Subject: CCL: Problem with transition structure calculation Message-Id: <-39772-090713185308-24121-EfSnuIES4i4+8Elo/U4gZg . server.ccl.net> X-Original-From: "Breton, Gary" Content-class: urn:content-classes:message Content-Transfer-Encoding: quoted-printable Content-Type: text/plain; charset="iso-8859-1" Date: Mon, 13 Jul 2009 18:12:37 -0400 MIME-Version: 1.0 Sent to CCL by: "Breton, Gary" [gbreton/./berry.edu] I'm a little confused. I assume you are attempting to model a = nucleophilic substitution reaction utilizing the methyl analog of LDA as = the nucleophilic component? Or is the LDA acting as a base removing a = proton from the benzene ring? Also, what do you mean by "the = nucleophile starts moving apart"? Do you mean that it pulls away from = the center of reaction further than what was observed at the HF level? = IF so, it may mean you may simply need to start at a closer distance = than the HF calculation. With some clarification, additional help might be possible. Best of luck, Gary Breton -----Original Message----- > From: owner-chemistry+gbreton=3D=3Dberry.edu-,-ccl.net on behalf of = Anandarup Goswami ananda1911.:.gmail.com Sent: Mon 7/13/2009 11:34 AM To: Breton, Gary Subject: CCL: Problem with transition structure calculation =20 Sent to CCL by: "Anandarup Goswami" [ananda1911---gmail.com] Hi, I am trying to calculate the transition structure for a substitution = reaction on benzene using methyl analog of LDA (i.e. putting methyl = groups instead of isopropyl group just to reduce the job time). It works = fine when done at the HF level (where it gives the negative imaginary = frequency of ~300), but when I do this same computation at the B3LYP = level, the nucleophile starts moving apart and it gives a very low = negative frequency (~20). Also, this computation works fine at the B3LYP = level when I add some sterics to the structure (using i-Pr instead of Me = groups). I was wondering if anybody knows the reason for this discrepancy and = also what is the best approach to do this. Thanks, Anandarup Goswami -=3D This is automatically added to each message by the mailing script = =3D-http://www.ccl.net/cgi-bin/ccl/send_ccl_messageSubscribe/Unsubscribe:=20Job: http://www.ccl.net/jobs=20http://www.ccl.net/spammers.txt From owner-chemistry@ccl.net Mon Jul 13 22:47:00 2009 From: "jie zhong liang zjliang(0)mail.shcnc.ac.cn" To: CCL Subject: CCL:G: how to caculate the physical and chemical properties of molecules Message-Id: <-39773-090713223710-20803-WvU0MWGFuj6hEc4olx/+dA,server.ccl.net> X-Original-From: "jie zhong liang" Date: Mon, 13 Jul 2009 22:37:06 -0400 Sent to CCL by: "jie zhong liang" [zjliang-x-mail.shcnc.ac.cn] Dear all, I want to caculate the the physical and chemical properties of inorganic molecules by some quantum softwares such as Gaussian03.I don't know what should I do to compare the difference of the small molecule such as sodium dodecyl sulfonate in liquid and solid environment in a protein.What properties should I caculate and how to caculate? Anyone's help would be appreciated very much! Zhongjie Liang zjliang__mail.shcnc.ac.cn