From owner-chemistry@ccl.net Wed Jan 5 08:29:00 2011 From: "Alex Allardyce aa:-:chemaxon.com" To: CCL Subject: CCL: Call for papers: ChemAxon European UGM, May 16-19, 2011, Budapest, Hungary Message-Id: <-43520-110105061100-25538-8P6nObCXv/bTxqoOoS+H7g]^[server.ccl.net> X-Original-From: Alex Allardyce Content-Transfer-Encoding: 7bit Content-Type: text/plain; charset=ISO-8859-1; format=flowed Date: Wed, 05 Jan 2011 11:58:55 +0100 MIME-Version: 1.0 Sent to CCL by: Alex Allardyce [aa/./chemaxon.com] Excuse cross postings We are calling for papers for ChemAxon's 2011 European User Group Meeting, to be held on Tuesday and Wednesday, May 17-18th at the Danubius Health Spa Resort on Margit island in the heart of Budapest, Hungary. The meeting will feature presentations from ChemAxon users, lightning presentations/exhibition from ChemAxon Partners and the latest updates on product developments, as well as discussion shaping future product development. Satelite meetings include end user and developer training and Markush IP forum. Oral abstract submission deadline is February 28th, poster abstracts May 1st. To find out more visit the meeting page (http://www.chemaxon.com/events/2011_eugm-2/), and to submit an abstract please Register (http://www.chemaxon.com/ugm.php). To review the archives of previous meetings, including original presentations (slides and video) and meeting reports from Yvonne Martin and Wendy Warr visit this page (http://www.chemaxon.com/library/ugm-presentations/). We look forward to seeing you there. BR for 2011 Alex Satellite meetings Developer and User training Preceding the meeting will be a dual track developer and end user Training Day on May 16th, preceding the UGM. To see the topics and schedule visit: Developer Training Day(http://www.chemaxon.com/events/2011_eugm-2/#training--developer). End user: Application Focus Training Day (http://www.chemaxon.com/events/2011_eugm-2/#training--application-focus). Patent professionals and Markush structure users Following the UGM on the morning of May 19th, we have a Markush Forum meeting sponsored by Thomson Reuters. A meeting for interested organizations to participate in the further development of ChemAxon's tools for Markush structure enumeration and search. More information here (http://www.chemaxon.com/events/2011_eugm-2/#markush-forum). ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Alex Allardyce Marketing Dir. ChemAxon From owner-chemistry@ccl.net Wed Jan 5 09:04:00 2011 From: "Vladimir Chupakhin chupvl * gmail.com" To: CCL Subject: CCL: PyMCS - still available? Message-Id: <-43521-110105033657-22235-wVy+niNOuqFBnw2vsON/jQ:-:server.ccl.net> X-Original-From: Vladimir Chupakhin Content-Transfer-Encoding: 8bit Content-Type: text/plain; charset=UTF-8 Date: Wed, 5 Jan 2011 11:35:46 +0300 MIME-Version: 1.0 Sent to CCL by: Vladimir Chupakhin [chupvl~!~gmail.com] Hello, No, the archive seems to be lost for the society :) Would You be so kind to upload it somewhere? -- Vladimir Chupakhin, Postdoc at joint project between Chemoinformatics laboratory and Structural Chemogenomics group University of Strasbourg, Strasbourg, France On Wed, Jan 5, 2011 at 5:39 AM, Andrew Dalke dalke * dalkescientific.com wrote: > > Sent to CCL by: Andrew Dalke [dalke[-]dalkescientific.com] > Hi all, > >  Many years ago I announced on this list some maximum common > substructure software I wrote while working for Bioreason. > > http://www.ccl.net/cgi-bin/ccl/message-new?1999+06+11+001 > >> Date: Fri, 11 Jun 1999 02:07:38 -0600 >> From: Andrew Dalke >> Subject: CCL:maximum common substructure > >> For those interested, a description of our algorithm and a reference >> implementation in Python is available from >>  http://starship.python.net/crew/dalke/MCS/ > > Did anyone happen to download MCS-1.0.tar.gz and keep it > for the last 10.5 years, and can make it available to me? > > That web site is long gone. The computers I had then are > long gone. Archive.org has the page but not the source > package. I've contacted the current copyright holders to > Bioreason's code, and at best it's in storage somewhere. > > Cheers, > >                                Andrew >                                dalke!A!dalkescientific.com > -- > Want to become better at developing the software you need for your research? > "Python for Cheminformatics" and "Web Applications Development with Django" > Leipzig, Germany, 14-18 February. http://www.dalkescientific.com/training/>      http://www.ccl.net/cgi-bin/ccl/send_ccl_message>      http://www.ccl.net/cgi-bin/ccl/send_ccl_message>      http://www.ccl.net/chemistry/sub_unsub.shtml>      http://www.ccl.net/spammers.txt> > > From owner-chemistry@ccl.net Wed Jan 5 09:39:00 2011 From: "Jean Jules FIFEN julesfifen() gmail.com" To: CCL Subject: CCL:G: help Message-Id: <-43522-110105070017-27311-MIH3XV5k1dQVYJW7m25A7w**server.ccl.net> X-Original-From: Jean Jules FIFEN Content-Type: multipart/alternative; boundary=0015175ca7bc3aa93a04991820b4 Date: Wed, 5 Jan 2011 13:00:05 +0100 MIME-Version: 1.0 Sent to CCL by: Jean Jules FIFEN [julesfifen===gmail.com] --0015175ca7bc3aa93a04991820b4 Content-Type: text/plain; charset=ISO-8859-1 modify the initial geometry to a more physical one, and eventually add the key word scf(maxcycle=999). On 4 January 2011 18:51, Bilel Mansouri bilelmansouri80-,-yahoo.fr < owner-chemistry#,#ccl.net> wrote: > > > > > > > > HI > > I'm doing a (what I thought was simple) test job of tow water molecules > whith supermolecule methode using B3LYP > and I use the following input job > # opt=(modredundant,maxcycles=999), Int(Grid=ULTRAFIN) B3LYP/6-311g > g counterpoise=2 > I have the error message and i use the keyword int=grid=ultrafine > > > Item Value Threshold Converged? > Maximum Force 0.000882 0.000450 NO > RMS Force 0.000269 0.000300 NO > > Maximum Displacement 0.056470 0.001800 NO > RMS Displacement 0.014132 0.001200 NO > Predicted change in Energy=-1.659919D-03 > Optimization stopped. > -- Number of steps exceeded, NStep= 100 > -- Flag reset to prevent archiving. > ---------------------------- > ! Non-Optimized Parameters ! > ! (Angstroms and Degrees) ! > -------------------------- > -------------------------- > ! Name Definition Value Derivative > Info. ! > > -------------------------------------------------------------------------------- > ! R1 R(1,3) 3.9996 -DE/DX = > -0.0023 ! > ! R2 R(1,5) 1.003 -DE/DX = > 0.0 ! > ! R3 R(1,6) 1.003 -DE/DX = > 0.0 ! > ! R4 R(1,7) 2.9817 -DE/DX = > -0.0009 ! > ! R5 R(1,9) 3.0732 -DE/DX = > -0.001 ! > ! R6 R(2,4) 3.9997 -DE/DX = > -0.0029 ! > ! R7 R(2,7) 0.9737 -DE/DX = > 0.0004 ! > ! R8 R(2,8) 0.9697 -DE/DX = > 0.0007 ! > ! R9 R(3,9) 0.9722 -DE/DX = > -0.0013 ! > ! R10 R(3,10) 0.9664 -DE/DX = > -0.0001 ! > ! R11 R(3,11) 1.7428 -DE/DX = > 0.0002 ! > ! R12 R(4,8) 4.4728 -DE/DX = > -0.0008 ! > ! R13 R(4,11) 0.981 -DE/DX = > 0.0003 ! > ! R14 R(4,12) 0.9659 -DE/DX = > 0.0 ! > ! A1 A(3,1,5) 99.0096 -DE/DX = > 0.0 ! > ! A2 A(3,1,6) 99.0096 -DE/DX = > 0.0 ! > ! A3 A(3,1,7) 68.5648 -DE/DX = > 0.0 ! > ! A4 A(5,1,6) 104.9845 -DE/DX = > -0.0007 ! > ! A5 A(5,1,7) 60.6293 -DE/DX = > -0.0003 ! > ! A6 A(5,1,9) 101.859 -DE/DX = > 0.0001 ! > ! A7 A(6,1,7) 60.6293 -DE/DX = > -0.0003 ! > ! A8 A(6,1,9) 101.859 -DE/DX = > 0.0001 ! > ! A9 A(7,1,9) 73.3866 -DE/DX = > 0.0 ! > ! A10 A(4,2,7) 3.2523 -DE/DX = > 0.001 ! > ! A11 A(7,2,8) 110.0485 -DE/DX = > 0.0001 ! > ! A12 A(1,3,10) 126.5996 -DE/DX = > 0.0001 ! > ! A13 A(1,3,11) 96.7028 -DE/DX = > -0.0001 ! > ! A14 A(9,3,10) 111.1913 -DE/DX = > -0.0001 ! > ! A15 A(9,3,11) 112.1111 -DE/DX = > 0.0001 ! > ! A16 A(10,3,11) 136.6976 -DE/DX = > 0.0 ! > ! A17 A(2,4,11) 95.2594 -DE/DX = > -0.0002 ! > ! A18 A(2,4,12) 154.9369 -DE/DX = > -0.0001 ! > ! A19 A(8,4,11) 106.7444 -DE/DX = > -0.0002 ! > ! A20 A(8,4,12) 143.4519 -DE/DX = > -0.0001 ! > ! A21 A(11,4,12) 109.8037 -DE/DX = > 0.0003 ! > ! A22 L(1,7,2,4,-1) 285.8641 -DE/DX = > -0.0011 ! > ! A23 L(3,11,4,2,-1) 168.2659 -DE/DX = > -0.0003 ! > ! A24 L(1,7,2,4,-2) 180.0 -DE/DX = > 0.0 ! > ! A25 L(3,11,4,2,-2) 180.0 -DE/DX = > 0.0 ! > ! D1 D(3,1,2,4) 0.0 -DE/DX = > 0.0 ! > ! D2 D(3,1,2,8) 180.0 -DE/DX = > 0.0 ! > ! D3 D(5,1,2,4) 102.9058 -DE/DX = > 0.0001 ! > ! D4 D(5,1,2,8) -77.0942 -DE/DX = > 0.0001 ! > ! D5 D(6,1,2,4) -102.9058 -DE/DX = > -0.0001 ! > ! D6 D(6,1,2,8) 77.0942 -DE/DX = > -0.0001 ! > ! D7 D(9,1,2,4) 0.0 -DE/DX = > 0.0 ! > ! D8 D(9,1,2,8) 180.0 -DE/DX = > 0.0 ! > ! D9 D(5,1,3,10) 126.5651 -DE/DX = > 0.0004 ! > ! D10 D(5,1,3,11) -53.4349 -DE/DX = > 0.0004 ! > ! D11 D(6,1,3,10) -126.5651 -DE/DX = > -0.0004 ! > ! D12 D(6,1,3,11) 53.4349 -DE/DX = > -0.0004 ! > ! D13 D(7,1,3,10) 180.0 -DE/DX = > 0.0 ! > ! D14 D(7,1,3,11) 0.0 -DE/DX = > 0.0 ! > ! D15 D(7,2,4,11) 180.0 -DE/DX = > 0.0 ! > ! D16 D(7,2,4,12) 0.0 -DE/DX = > 0.0 ! > ! D17 D(1,3,4,2) 0.0 -DE/DX = > 0.0 ! > ! D18 D(1,3,4,8) 0.0 -DE/DX = > 0.0 ! > ! D19 D(1,3,4,12) 180.0 -DE/DX = > 0.0 ! > ! D20 D(9,3,4,2) 0.0 -DE/DX = > 0.0 ! > ! D21 D(9,3,4,8) 0.0 -DE/DX = > 0.0 ! > ! D22 D(9,3,4,12) 180.0 -DE/DX = > 0.0 ! > ! D23 D(10,3,4,2) 180.0 -DE/DX = > 0.0 ! > ! D24 D(10,3,4,8) 180.0 -DE/DX = > 0.0 ! > ! D25 D(10,3,4,12) 0.0 -DE/DX = > 0.0 ! > > -------------------------------------------------------------------------------- > GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad > Input orientation: > --------------------------------------------------------------------- > Center Atomic Atomic Coordinates (Angstroms) > Number Number Type X Y Z > --------------------------------------------------------------------- > 1 8 0 0.184505 0.000000 0.154984 > 2 8 0 0.033034 0.000000 2.881640 > 3 8 0 4.161469 0.000000 0.583652 > 4 8 0 4.011921 0.000000 3.292071 > 5 1 0 -0.032703 -0.765799 0.712955 > 6 1 0 -0.032703 0.765799 0.712955 > 7 1 0 0.995253 0.000000 3.035531 > 8 1 0 -0.438867 0.000000 3.727326 > 9 1 0 3.261177 0.000000 0.215677 > 10 1 0 4.826475 0.000000 -0.117892 > 11 1 0 4.189967 0.000000 2.324276 > 12 1 0 4.842678 0.000000 3.787965 > --------------------------------------------------------------------- > Distance matrix (angstroms): > 1 2 3 4 5 > 1 O 0.000000 > 2 O 2.730860 0.000000 > 3 O 4.000000 4.724906 0.000000 > 4 O 4.948780 4.000000 2.712545 0.000000 > 5 H 0.972090 2.300862 4.265472 4.857702 0.000000 > 6 H 0.972090 2.300862 4.265472 4.857702 1.531598 > 7 H 2.992467 0.974448 4.004577 3.027557 2.652829 > 8 H 3.626323 0.968439 5.571875 4.472020 3.136535 > 9 H 3.077270 4.186678 0.972590 3.166673 3.418096 > 10 H 4.649983 5.654580 0.966641 3.505901 4.988824 > 11 H 4.555168 4.194133 1.740858 0.984036 4.584076 > 12 H 5.907378 4.894293 3.275922 0.967506 5.814764 > 6 7 8 9 10 > 6 H 0.000000 > 7 H 2.652829 0.000000 > 8 H 3.136535 1.592257 0.000000 > 9 H 3.418096 3.617456 5.101177 0.000000 > 10 H 4.988824 4.962090 6.519933 1.600445 0.000000 > 11 H 4.584076 3.272932 4.836802 2.304093 2.523753 > 12 H 5.814764 3.920311 5.281894 3.906711 3.905890 > 11 12 > 11 H 0.000000 > 12 H 1.602627 0.000000 > Stoichiometry H8O4 > Framework group CS[SG(H6O4),X(H2)] > Deg. of freedom 20 > Full point group CS > Largest Abelian subgroup CS NOp 2 > Largest concise Abelian subgroup CS NOp 2 > Standard orientation: > --------------------------------------------------------------------- > Center Atomic Atomic Coordinates (Angstroms) > Number Number Type X Y Z > --------------------------------------------------------------------- > 1 8 0 -2.501070 0.069787 0.000000 > 2 8 0 -0.827351 2.227623 0.000000 > 3 8 0 0.782472 -2.214584 0.000000 > 4 8 0 2.445684 -0.071777 0.000000 > 5 1 0 -2.299150 0.633470 0.765799 > 6 1 0 -2.299150 0.633470 -0.765799 > 7 1 0 0.000000 1.712804 0.000000 > 8 1 0 -0.629035 3.175540 0.000000 > 9 1 0 -0.138519 -1.901999 0.000000 > 10 1 0 0.824466 -3.180313 0.000000 > 11 1 0 1.945446 -0.919177 0.000000 > 12 1 0 3.398064 -0.242189 0.000000 > --------------------------------------------------------------------- > Rotational constants (GHZ): 3.6566956 1.7161673 1.1744164 > ********************************************************************** > Population analysis using the SCF density. > ********************************************************************** > Electronic spatial extent (au): = 919.2008 > Charge= 0.0000 electrons > Dipole moment (field-independent basis, Debye): > X= 1.8028 Y= -0.6387 Z= 0.0000 Tot= 1.9126 > Quadrupole moment (field-independent basis, Debye-Ang): > XX= -30.6350 YY= -7.6894 ZZ= -26.4884 > XY= -5.0915 XZ= 0.0000 YZ= 0.0000 > Traceless Quadrupole moment (field-independent basis, Debye-Ang): > XX= -9.0307 YY= 13.9149 ZZ= -4.8841 > XY= -5.0915 XZ= 0.0000 YZ= 0.0000 > Octapole moment (field-independent basis, Debye-Ang**2): > XXX= 53.7799 YYY= -7.6173 ZZZ= 0.0000 XYY= 5.7536 > XXY= -2.5321 XXZ= 0.0000 XZZ= -7.1177 YZZ= 1.2264 > YYZ= 0.0000 XYZ= 0.0000 > Hexadecapole moment (field-independent basis, Debye-Ang**3): > XXXX= -509.3830 YYYY= -156.7525 ZZZZ= -23.2511 XXXY= 30.6051 > XXXZ= 0.0000 YYYX= 48.4794 YYYZ= 0.0000 ZZZX= 0.0000 > ZZZY= 0.0000 XXYY= -160.2397 XXZZ= -90.8949 YYZZ= -82.4570 > XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 26.3538 > Atom 7 needs variable 8= 0.9744477035 but is 0.9720898606 > Input z-matrix variables are not compatible with final structure. > > FAULTILY FAULTLESS, ICILY REGULAR, SPLENDIDLY NULL... > MAUDE BY TENNYSON > Error termination request processed by link 9999. > Error termination via Lnk1e in C:\G03W\l9999.exe at Thu Nov 04 19:09:35 > 2010. > Job cpu time: 0 days 1 hours 13 minutes 15.0 seconds. > File lengths (MBytes): RWF= 20 Int= 0 D2E= 0 Chk= 11 > Scr= 1 > Any insight would be very helpful. > > Thanks! > > > > > > > -- J. Jules. --0015175ca7bc3aa93a04991820b4 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: base64 PGRpdiBkaXI9Imx0ciI+bW9kaWZ5IHRoZSBpbml0aWFsIGdlb21ldHJ5IHRvIGEgbW9yZSBwaHlz aWNhbCBvbmUsIGFuZCBldmVudHVhbGx5IGFkZCB0aGUga2V5IHdvcmQgc2NmKG1heGN5Y2xlPTk5 OSkuIDxicj48YnI+PGRpdiBjbGFzcz0iZ21haWxfcXVvdGUiPk9uIDQgSmFudWFyeSAyMDExIDE4 OjUxLCBCaWxlbCBNYW5zb3VyaSBiaWxlbG1hbnNvdXJpODAtLC08YSBocmVmPSJodHRwOi8veWFo b28uZnIiPnlhaG9vLmZyPC9hPiA8c3BhbiBkaXI9Imx0ciI+Jmx0OzxhIGhyZWY9Im1haWx0bzpv d25lci1jaGVtaXN0cnlAY2NsLm5ldCI+b3duZXItY2hlbWlzdHJ5QGNjbC5uZXQ8L2E+Jmd0Ozwv c3Bhbj4gd3JvdGU6PGJyPgo8YmxvY2txdW90ZSBjbGFzcz0iZ21haWxfcXVvdGUiIHN0eWxlPSJt YXJnaW46IDBwdCAwcHQgMHB0IDAuOGV4OyBib3JkZXItbGVmdDogMXB4IHNvbGlkIHJnYigyMDQs IDIwNCwgMjA0KTsgcGFkZGluZy1sZWZ0OiAxZXg7Ij48dGFibGUgYm9yZGVyPSIwIiBjZWxscGFk ZGluZz0iMCIgY2VsbHNwYWNpbmc9IjAiPjx0Ym9keT48dHI+PHRkIHN0eWxlPSJmb250OiBpbmhl cml0OyIgdmFsaWduPSJ0b3AiPgo8YnI+CjxibG9ja3F1b3RlIHN0eWxlPSJib3JkZXItbGVmdDog MnB4IHNvbGlkIHJnYigxNiwgMTYsIDI1NSk7IHBhZGRpbmctbGVmdDogNXB4OyBtYXJnaW4tbGVm dDogNXB4OyI+PGJyPgo8ZGl2Pgo8dGFibGUgYm9yZGVyPSIwIiBjZWxscGFkZGluZz0iMCIgY2Vs bHNwYWNpbmc9IjAiPgo8dGJvZHk+Cjx0cj4KPHRkIHZhbGlnbj0idG9wIj48YnI+CjxibG9ja3F1 b3RlIHN0eWxlPSJib3JkZXItbGVmdDogMnB4IHNvbGlkIHJnYigxNiwgMTYsIDI1NSk7IHBhZGRp bmctbGVmdDogNXB4OyBtYXJnaW4tbGVmdDogNXB4OyI+CjxkaXY+Cjx0YWJsZSBib3JkZXI9IjAi IGNlbGxwYWRkaW5nPSIwIiBjZWxsc3BhY2luZz0iMCI+Cjx0Ym9keT4KPHRyPgo8dGQgdmFsaWdu PSJ0b3AiPjxicj4KPGJsb2NrcXVvdGUgc3R5bGU9ImJvcmRlci1sZWZ0OiAycHggc29saWQgcmdi KDE2LCAxNiwgMjU1KTsgcGFkZGluZy1sZWZ0OiA1cHg7IG1hcmdpbi1sZWZ0OiA1cHg7Ij48YnI+ CjxkaXY+Cjx0YWJsZSBib3JkZXI9IjAiIGNlbGxwYWRkaW5nPSIwIiBjZWxsc3BhY2luZz0iMCI+ Cjx0Ym9keT4KPHRyPgo8dGQgdmFsaWduPSJ0b3AiPgo8YmxvY2txdW90ZSBzdHlsZT0iYm9yZGVy LWxlZnQ6IDJweCBzb2xpZCByZ2IoMTYsIDE2LCAyNTUpOyBwYWRkaW5nLWxlZnQ6IDVweDsgbWFy Z2luLWxlZnQ6IDVweDsiPgo8ZGl2Pgo8dGFibGUgYm9yZGVyPSIwIiBjZWxscGFkZGluZz0iMCIg Y2VsbHNwYWNpbmc9IjAiPgo8dGJvZHk+Cjx0cj4KPHRkIHZhbGlnbj0idG9wIj4KPGRpdj48YnI+ PGJyPkhJPGJyPiZndDsgSSYjMzk7bSBkb2luZyBhICh3aGF0IEkgdGhvdWdodCB3YXMgc2ltcGxl KSB0ZXN0IGpvYiBvZqB0b3egd2F0ZXIgbW9sZWN1bGVzIHdoaXRoIHN1cGVybW9sZWN1bGUgbWV0 aG9kZaB1c2luZyBCM0xZUDwvZGl2Pgo8ZGl2PmFuZCBJIHVzZSB0aGUgZm9sbG93aW5nIGlucHV0 IGpvYiA8L2Rpdj4KPGRpdj48Zm9udCBzdHlsZT0iYmFja2dyb3VuZC1jb2xvcjogcmdiKDI1NSwg MjU1LCAwKTsiPiMgb3B0PShtb2RyZWR1bmRhbnQsbWF4Y3ljbGVzPTk5OSksIEludChHcmlkPVVM VFJBRklOKaAgQjNMWVAvNi0zMTFnPC9mb250PjwvZGl2Pgo8ZGl2Pjxmb250IHN0eWxlPSJiYWNr Z3JvdW5kLWNvbG9yOiByZ2IoMjU1LCAyNTUsIDApOyI+ZyBjb3VudGVycG9pc2U9MjwvZm9udD48 YnI+SSBoYXZlIHRoZSBlcnJvciBtZXNzYWdloKBhbmQgaSB1c2UgdGhlIGtleXdvcmQgaW50PWdy aWQ9dWx0cmFmaW5lPC9kaXY+CjxkaXY+oDwvZGl2Pgo8ZGl2PqA8L2Rpdj4KPGRpdj6goKCgoCBJ dGVtoKCgoKCgoKCgoKCgoKAgVmFsdWWgoKCgIFRocmVzaG9sZKAgQ29udmVyZ2VkPzxicj6gTWF4 aW11bSBGb3JjZaCgoKCgoKCgoKCgIDAuMDAwODgyoKCgoCAwLjAwMDQ1MKCgoKAgTk8gPGJyPqBS TVOgoKCgIEZvcmNloKCgoKCgoKCgoKAgMC4wMDAyNjmgoKCgIDAuMDAwMzAwoKCgoCBOTzwvZGl2 Pgo8YmxvY2txdW90ZSBzdHlsZT0iYm9yZGVyLWxlZnQ6IDJweCBzb2xpZCByZ2IoMTYsIDE2LCAy NTUpOyBwYWRkaW5nLWxlZnQ6IDVweDsgbWFyZ2luLWxlZnQ6IDVweDsiPgo8ZGl2Pgo8ZGl2IHN0 eWxlPSJmb250LWZhbWlseTogdGltZXMgbmV3IHJvbWFuLG5ldyB5b3JrLHRpbWVzLHNlcmlmOyBm b250LXNpemU6IDEycHQ7Ij4KPGRpdj5NYXhpbXVtIERpc3BsYWNlbWVudKCgoKAgMC4wNTY0NzCg oKCgIDAuMDAxODAwoKCgoCBOTyA8YnI+oFJNU6CgoKAgRGlzcGxhY2VtZW50oKCgoCAwLjAxNDEz MqCgoKAgMC4wMDEyMDCgoKCgIE5PIDxicj6gUHJlZGljdGVkIGNoYW5nZSBpbiBFbmVyZ3k9LTEu NjU5OTE5RC0wMzxicj6gT3B0aW1pemF0aW9uIHN0b3BwZWQuPGJyPqCgoCAtLSBOdW1iZXIgb2Yg c3RlcHMgZXhjZWVkZWQsoCBOU3RlcD0gMTAwPGJyPgqgoKAgLS0gRmxhZyByZXNldCB0byBwcmV2 ZW50IGFyY2hpdmluZy48YnI+oKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKAgLS0tLS0tLS0tLS0t LS0tLS0tLS0tLS0tLS0tLTxicj6goKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoCAhIE5vbi1PcHRp bWl6ZWQgUGFyYW1ldGVycwogITxicj6goKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoCAhIChBbmdz dHJvbXMgYW5kIERlZ3JlZXMpoCAhPGJyPqAtLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLaCgoKCg oKCgoKCgoKCgoKCgoKCgoKCgoKCgoCAtLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLTxicj6gISBO YW1loCBEZWZpbml0aW9uoKCgoKCgoKCgoKCgoCBWYWx1ZaCgoKCgoKCgoCBEZXJpdmF0aXZlIElu Zm8uoKCgoKCgoKCgoKCgoKCgICE8YnI+CqAtLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0t LS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLTxicj6gISBS MaCgoCBSKDEsMymgoKCgoKCgoKCgoKCgoKCgoAogMy45OTk2oKCgoKCgoKAgLURFL0RYID2goCAt MC4wMDIzoKCgoKCgoKCgoKCgoCAhPGJyPqAhIFIyoKCgIFIoMSw1KaCgoKCgoKCgoKCgoKCgoKCg IDEuMDAzoKCgoKCgoKCgIC1ERS9EWCA9oKCgIDAuMKCgoKCgoKCgoKCgoKCgoKAgITxicj6gISBS M6CgoCBSKDEsNimgoKCgoKCgoKCgoKCgoKCgoCAxLjAwM6CgoKCgoKCgoCAtREUvRFggPaCgoCAw LjCgoKCgoKCgoKCgoKCgoKCgICE8YnI+CqAhIFI0oKCgIFIoMSw3KaCgoKCgoKCgoKCgoKCgoKCg CiAyLjk4MTegoKCgoKCgoCAtREUvRFggPaCgIC0wLjAwMDmgoKCgoKCgoKCgoKCgICE8YnI+oCEg UjWgoKAgUigxLDkpoKCgoKCgoKCgoKCgoKCgoKAgMy4wNzMyoKCgoKCgoKAgLURFL0RYID2goCAt MC4wMDGgoKCgoKCgoKCgoKCgoCAhPGJyPqAhIFI2oKCgIFIoMiw0KaCgoKCgoKCgoKCgoKCgoKCg IDMuOTk5N6CgoKCgoKCgIC1ERS9EWCA9oKAgLTAuMDAyOaCgoKCgoKCgoKCgoKAgITxicj4KoCEg UjegoKAgUigyLDcpoKCgoKCgoKCgoKCgoKCgoKAKIDAuOTczN6CgoKCgoKCgIC1ERS9EWCA9oKCg IDAuMDAwNKCgoKCgoKCgoKCgoKAgITxicj6gISBSOKCgoCBSKDIsOCmgoKCgoKCgoKCgoKCgoKCg oCAwLjk2OTegoKCgoKCgoCAtREUvRFggPaCgoCAwLjAwMDegoKCgoKCgoKCgoKCgICE8YnI+oCEg UjmgoKAgUigzLDkpoKCgoKCgoKCgoKCgoKCgoKAgMC45NzIyoKCgoKCgoKAgLURFL0RYID2goCAt MC4wMDEzoKCgoKCgoKCgoKCgoCAhPGJyPgqgISBSMTCgoCBSKDMsMTApoKCgoKCgoKCgoKCgoKCg oAogMC45NjY0oKCgoKCgoKAgLURFL0RYID2goCAtMC4wMDAxoKCgoKCgoKCgoKCgoCAhPGJyPqAh IFIxMaCgIFIoMywxMSmgoKCgoKCgoKCgoKCgoKCgIDEuNzQyOKCgoKCgoKCgIC1ERS9EWCA9oKCg IDAuMDAwMqCgoKCgoKCgoKCgoKAgITxicj6gISBSMTKgoCBSKDQsOCmgoKCgoKCgoKCgoKCgoKCg oCA0LjQ3MjigoKCgoKCgoCAtREUvRFggPaCgIC0wLjAwMDigoKCgoKCgoKCgoKCgICE8YnI+CqAh IFIxM6CgIFIoNCwxMSmgoKCgoKCgoKCgoKCgoKCgIDAuOTgxoKCgoKCgoKCgIC1ERS9EWAogPaCg oCAwLjAwMDOgoKCgoKCgoKCgoKCgICE8YnI+oCEgUjE0oKAgUig0LDEyKaCgoKCgoKCgoKCgoKCg oKAgMC45NjU5oKCgoKCgoKAgLURFL0RYID2goKAgMC4woKCgoKCgoKCgoKCgoKCgoCAhPGJyPqAh IEExoKCgIEEoMywxLDUpoKCgoKCgoKCgoKCgoKAgOTkuMDA5NqCgoKCgoKCgIC1ERS9EWCA9oKCg IDAuMKCgoKCgoKCgoKCgoKCgoKAgITxicj6gISBBMqCgoCBBKDMsMSw2KaCgoKCgoKCgoKCgoKCg IDk5LjAwOTagoKCgoKCgoCAtREUvRFggPaCgoAogMC4woKCgoKCgoKCgoKCgoKCgoCAhPGJyPqAh IEEzoKCgIEEoMywxLDcpoKCgoKCgoKCgoKCgoKAgNjguNTY0OKCgoKCgoKCgIC1ERS9EWCA9oKCg IDAuMKCgoKCgoKCgoKCgoKCgoKAgITxicj6gISBBNKCgoCBBKDUsMSw2KaCgoKCgoKCgoKCgoKAg MTA0Ljk4NDWgoKCgoKCgoCAtREUvRFggPaCgIC0wLjAwMDegoKCgoKCgoKCgoKCgICE8YnI+oCEg QTWgoKAgQSg1LDEsNymgoKCgoKCgoKCgoKCgoCA2MC42MjkzoKCgoKCgoKAgLURFL0RYID2goAog LTAuMDAwM6CgoKCgoKCgoKCgoKAgITxicj6gISBBNqCgoCBBKDUsMSw5KaCgoKCgoKCgoKCgoKAg MTAxLjg1OaCgoKCgoKCgoCAtREUvRFggPaCgoCAwLjAwMDGgoKCgoKCgoKCgoKCgICE8YnI+oCEg QTegoKAgQSg2LDEsNymgoKCgoKCgoKCgoKCgoCA2MC42MjkzoKCgoKCgoKAgLURFL0RYID2goCAt MC4wMDAzoKCgoKCgoKCgoKCgoCAhPGJyPqAhIEE4oKCgIEEoNiwxLDkpoKCgoKCgoKCgoKCgoCAx MDEuODU5oKCgoKCgoKCgIC1ERS9EWCA9oKCgIDAuMDAwMaCgoKCgoKCgoKCgoKAKICE8YnI+oCEg QTmgoKAgQSg3LDEsOSmgoKCgoKCgoKCgoKCgoCA3My4zODY2oKCgoKCgoKAgLURFL0RYID2goKAg MC4woKCgoKCgoKCgoKCgoKCgoCAhPGJyPqAhIEExMKCgIEEoNCwyLDcpoKCgoKCgoKCgoKCgoKCg IDMuMjUyM6CgoKCgoKCgIC1ERS9EWCA9oKCgIDAuMDAxoKCgoKCgoKCgoKCgoKAgITxicj6gISBB MTGgoCBBKDcsMiw4KaCgoKCgoKCgoKCgoKAgMTEwLjA0ODWgoKCgoKCgoCAtREUvRFggPaCgoCAw LjAwMDGgoKCgoKCgoKCgoKCgICE8YnI+CqAhIEExMqCgCiBBKDEsMywxMCmgoKCgoKCgoKCgoKAg MTI2LjU5OTagoKCgoKCgoCAtREUvRFggPaCgoCAwLjAwMDGgoKCgoKCgoKCgoKCgICE8YnI+oCEg QTEzoKAgQSgxLDMsMTEpoKCgoKCgoKCgoKCgoCA5Ni43MDI4oKCgoKCgoKAgLURFL0RYID2goCAt MC4wMDAxoKCgoKCgoKCgoKCgoCAhPGJyPqAhIEExNKCgIEEoOSwzLDEwKaCgoKCgoKCgoKCgoCAx MTEuMTkxM6CgoKCgoKCgIC1ERS9EWCA9oKAgLTAuMDAwMaCgoKCgoKCgoKCgoKAgITxicj4KoCEg QTE1oKAgQSg5LDMsMTEpoKCgoKCgoKCgoKCgCiAxMTIuMTExMaCgoKCgoKCgIC1ERS9EWCA9oKCg IDAuMDAwMaCgoKCgoKCgoKCgoKAgITxicj6gISBBMTagoCBBKDEwLDMsMTEpoKCgoKCgoKCgoKAg MTM2LjY5NzagoKCgoKCgoCAtREUvRFggPaCgoCAwLjCgoKCgoKCgoKCgoKCgoKCgICE8YnI+oCEg QTE3oKAgQSgyLDQsMTEpoKCgoKCgoKCgoKCgoCA5NS4yNTk0oKCgoKCgoKAgLURFL0RYID2goCAt MC4wMDAyoKCgoKCgoKCgoKCgoCAhPGJyPgqgISBBMTigoCBBKDIsNCwxMimgoKCgoKCgoKCgoKAg MTU0LjkzNjmgoKCgoKCgoCAtREUvRFggPaCgCiAtMC4wMDAxoKCgoKCgoKCgoKCgoCAhPGJyPqAh IEExOaCgIEEoOCw0LDExKaCgoKCgoKCgoKCgoCAxMDYuNzQ0NKCgoKCgoKCgIC1ERS9EWCA9oKAg LTAuMDAwMqCgoKCgoKCgoKCgoKAgITxicj6gISBBMjCgoCBBKDgsNCwxMimgoKCgoKCgoKCgoKAg MTQzLjQ1MTmgoKCgoKCgoCAtREUvRFggPaCgIC0wLjAwMDGgoKCgoKCgoKCgoKCgICE8YnI+oCEg QTIxoKAgQSgxMSw0LDEyKaCgoKCgoKCgoKCgIDEwOS44MDM3oKCgoKCgoKAgLURFL0RYID2goKAg MC4wMDAzoKCgoKCgoKCgoKCgoCAhPGJyPgqgISBBMjKgoAogTCgxLDcsMiw0LC0xKaCgoKCgoKCg IDI4NS44NjQxoKCgoKCgoKAgLURFL0RYID2goCAtMC4wMDExoKCgoKCgoKCgoKCgoCAhPGJyPqAh IEEyM6CgIEwoMywxMSw0LDIsLTEpoKCgoKCgoCAxNjguMjY1OaCgoKCgoKCgIC1ERS9EWCA9oKAg LTAuMDAwM6CgoKCgoKCgoKCgoKAgITxicj6gISBBMjSgoCBMKDEsNywyLDQsLTIpoKCgoKCgoKAg MTgwLjCgoKCgoKCgoKCgoCAtREUvRFggPaCgoCAwLjCgoKCgoKCgoKCgoKCgoKCgICE8YnI+CqAh IEEyNaCgIEwoMywxMSw0LDIsLTIpoKCgoKCgoCAxODAuMKCgoKCgoKCgoKCgIC1ERS9EWCA9oKCg CiAwLjCgoKCgoKCgoKCgoKCgoKCgICE8YnI+oCEgRDGgoKAgRCgzLDEsMiw0KaCgoKCgoKCgoKCg oKAgMC4woKCgoKCgoKCgoKAgLURFL0RYID2goKAgMC4woKCgoKCgoKCgoKCgoKCgoCAhPGJyPqAh IEQyoKCgIEQoMywxLDIsOCmgoKCgoKCgoKCgoCAxODAuMKCgoKCgoKCgoKCgIC1ERS9EWCA9oKCg IDAuMKCgoKCgoKCgoKCgoKCgoKAgITxicj6gISBEM6CgoCBEKDUsMSwyLDQpoKCgoKCgoKCgoKAg MTAyLjkwNTigoKCgoKCgoCAtREUvRFggPaCgoAogMC4wMDAxoKCgoKCgoKCgoKCgoCAhPGJyPqAh IEQ0oKCgIEQoNSwxLDIsOCmgoKCgoKCgoKCgoCAtNzcuMDk0MqCgoKCgoKCgIC1ERS9EWCA9oKCg IDAuMDAwMaCgoKCgoKCgoKCgoKAgITxicj6gISBENaCgoCBEKDYsMSwyLDQpoKCgoKCgoKCgoCAt MTAyLjkwNTigoKCgoKCgoCAtREUvRFggPaCgIC0wLjAwMDGgoKCgoKCgoKCgoKCgICE8YnI+oCEg RDagoKAgRCg2LDEsMiw4KaCgoKCgoKCgoKCgoCA3Ny4wOTQyoKCgoKCgoKAgLURFL0RYID2goCAt MC4wMDAxoKCgoKCgoKCgoKCgoCAhPGJyPgqgISBEN6CgoAogRCg5LDEsMiw0KaCgoKCgoKCgoKCg oKAgMC4woKCgoKCgoKCgoKAgLURFL0RYID2goKAgMC4woKCgoKCgoKCgoKCgoKCgoCAhPGJyPqAh IEQ4oKCgIEQoOSwxLDIsOCmgoKCgoKCgoKCgoCAxODAuMKCgoKCgoKCgoKCgIC1ERS9EWCA9oKCg IDAuMKCgoKCgoKCgoKCgoKCgoKAgITxicj6gISBEOaCgoCBEKDUsMSwzLDEwKaCgoKCgoKCgoKAg MTI2LjU2NTGgoKCgoKCgoCAtREUvRFggPaCgoCAwLjAwMDSgoKCgoKCgoKCgoKCgICE8YnI+CqAh IEQxMKCgCiBEKDUsMSwzLDExKaCgoKCgoKCgoKAgLTUzLjQzNDmgoKCgoKCgoCAtREUvRFggPaCg oCAwLjAwMDSgoKCgoKCgoKCgoKCgICE8YnI+oCEgRDExoKAgRCg2LDEsMywxMCmgoKCgoKCgoKAg LTEyNi41NjUxoKCgoKCgoKAgLURFL0RYID2goCAtMC4wMDA0oKCgoKCgoKCgoKCgoCAhPGJyPqAh IEQxMqCgIEQoNiwxLDMsMTEpoKCgoKCgoKCgoKAgNTMuNDM0OaCgoKCgoKCgIC1ERS9EWCA9oKAg LTAuMDAwNKCgoKCgoKCgoKCgoKAgITxicj4KoCEgRDEzoKAgRCg3LDEsMywxMCmgoKCgoKCgoKCg IDE4MC4woKCgoKCgoKCgoKAgLURFL0RYCiA9oKCgIDAuMKCgoKCgoKCgoKCgoKCgoKAgITxicj6g ISBEMTSgoCBEKDcsMSwzLDExKaCgoKCgoKCgoKCgoCAwLjCgoKCgoKCgoKCgoCAtREUvRFggPaCg oCAwLjCgoKCgoKCgoKCgoKCgoKCgICE8YnI+oCEgRDE1oKAgRCg3LDIsNCwxMSmgoKCgoKCgoKCg IDE4MC4woKCgoKCgoKCgoKAgLURFL0RYID2goKAgMC4woKCgoKCgoKCgoKCgoKCgoCAhPGJyPqAh IEQxNqCgIEQoNywyLDQsMTIpoKCgoKCgoKCgoKCgIDAuMKCgoKCgoKCgoKCgIC1ERS9EWCA9oKCg CiAwLjCgoKCgoKCgoKCgoKCgoKCgICE8YnI+oCEgRDE3oKAgRCgxLDMsNCwyKaCgoKCgoKCgoKCg oKAgMC4woKCgoKCgoKCgoKAgLURFL0RYID2goKAgMC4woKCgoKCgoKCgoKCgoKCgoCAhPGJyPqAh IEQxOKCgIEQoMSwzLDQsOCmgoKCgoKCgoKCgoKCgIDAuMKCgoKCgoKCgoKCgIC1ERS9EWCA9oKCg IDAuMKCgoKCgoKCgoKCgoKCgoKAgITxicj6gISBEMTmgoCBEKDEsMyw0LDEyKaCgoKCgoKCgoKAg MTgwLjCgoKCgoKCgoKCgoCAtREUvRFggPaCgoAogMC4woKCgoKCgoKCgoKCgoKCgoCAhPGJyPqAh IEQyMKCgIEQoOSwzLDQsMimgoKCgoKCgoKCgoKCgIDAuMKCgoKCgoKCgoKCgIC1ERS9EWCA9oKCg IDAuMKCgoKCgoKCgoKCgoKCgoKAgITxicj6gISBEMjGgoCBEKDksMyw0LDgpoKCgoKCgoKCgoKCg oCAwLjCgoKCgoKCgoKCgoCAtREUvRFggPaCgoCAwLjCgoKCgoKCgoKCgoKCgoKCgICE8YnI+oCEg RDIyoKAgRCg5LDMsNCwxMimgoKCgoKCgoKCgIDE4MC4woKCgoKCgoKCgoKAgLURFL0RYID2goKAK IDAuMKCgoKCgoKCgoKCgoKCgoKAgITxicj6gISBEMjOgoCBEKDEwLDMsNCwyKaCgoKCgoKCgoKAg MTgwLjCgoKCgoKCgoKCgoCAtREUvRFggPaCgoCAwLjCgoKCgoKCgoKCgoKCgoKCgICE8YnI+oCEg RDI0oKAgRCgxMCwzLDQsOCmgoKCgoKCgoKCgIDE4MC4woKCgoKCgoKCgoKAgLURFL0RYID2goKAg MC4woKCgoKCgoKCgoKCgoKCgoCAhPGJyPqAhIEQyNaCgIEQoMTAsMyw0LDEyKaCgoKCgoKCgoKCg IDAuMKCgoKCgoKCgoKCgIC1ERS9EWCA9oKCgCiAwLjCgoKCgoKCgoKCgoKCgoKCgICE8YnI+oC0t LS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0t LS0tLS0tLS0tLS0tLS0tLS0tLS0tPGJyPqBHcmFkR3JhZEdyYWRHcmFkR3JhZEdyYWRHcmFkR3Jh ZEdyYWRHcmFkR3JhZEdyYWRHcmFkR3JhZEdyYWRHcmFkR3JhZEdyYWQ8L2Rpdj4KPGRpdj6goKCg oKCgoKCgoKCgoKCgoKCgoKCgoKCgIElucHV0IG9yaWVudGF0aW9uOqCgoKCgoKCgoKCgoKCgoKCg oKCgoKCgoKAgPGJyPqAtLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0t LS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS08YnI+oENlbnRlcqCgoKAgQXRvbWljoKCgoCBBdG9t aWOgoKCgoKCgoKCgoKCgIENvb3JkaW5hdGVzIChBbmdzdHJvbXMpPGJyPgqgTnVtYmVyoKCgoCBO dW1iZXKgoKCgoCBUeXBloKCgoKCgoKCgoKCgoCBYoKCgoKCgoKCgoCBZoKCgoKCgoKCgoAogWjxi cj6gLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0t LS0tLS0tLS0tLS0tLS0tPGJyPqCgoCAxoKCgoKCgoKCgIDigoKCgoKCgoKCgoKAgMKCgoKCgoKAg MC4xODQ1MDWgoKAgMC4wMDAwMDCgoKAgMC4xNTQ5ODQ8YnI+oKCgIDKgoKCgoKCgoKAgOKCgoKCg oKCgoKCgoCAwoKCgoKCgoCAwLjAzMzAzNKCgoCAwLjAwMDAwMKCgoCAyLjg4MTY0MDxicj4KoKCg IDOgoKCgoKCgoKAgOKCgoKCgoKCgoKCgoCAwoKCgoKCgoCA0LjE2MTQ2OaCgoCAwLjAwMDAwMKCg oCAwLjU4MzY1Mjxicj6goKAgNKCgoKCgoKCgoAogOKCgoKCgoKCgoKCgoCAwoKCgoKCgoCA0LjAx MTkyMaCgoCAwLjAwMDAwMKCgoCAzLjI5MjA3MTxicj6goKAgNaCgoKCgoKCgoCAxoKCgoKCgoKCg oKCgIDCgoKCgoKAgLTAuMDMyNzAzoKAgLTAuNzY1Nzk5oKCgIDAuNzEyOTU1PGJyPqCgoCA2oKCg oKCgoKCgIDGgoKCgoKCgoKCgoKAgMKCgoKCgoCAtMC4wMzI3MDOgoKAgMC43NjU3OTmgoKAgMC43 MTI5NTU8YnI+oKCgIDegoKCgoKCgoKAgMaCgoKCgoKCgoKCgoCAwoKCgoKCgoCAwLjk5NTI1M6Cg oCAwLjAwMDAwMKCgoCAzLjAzNTUzMTxicj4KoKCgCiA4oKCgoKCgoKCgIDGgoKCgoKCgoKCgoKAg MKCgoKCgoCAtMC40Mzg4NjegoKAgMC4wMDAwMDCgoKAgMy43MjczMjY8YnI+oKCgIDmgoKCgoKCg oKAgMaCgoKCgoKCgoKCgoCAwoKCgoKCgoCAzLjI2MTE3N6CgoCAwLjAwMDAwMKCgoCAwLjIxNTY3 Nzxicj6goCAxMKCgoKCgoKCgoCAxoKCgoKCgoKCgoKCgIDCgoKCgoKCgIDQuODI2NDc1oKCgIDAu MDAwMDAwoKAgLTAuMTE3ODkyPGJyPqCgIDExoKCgoKCgoKCgIDGgoKCgoKCgoKCgoKAgMKCgoKCg oKAgNC4xODk5NjegoKAKIDAuMDAwMDAwoKCgIDIuMzI0Mjc2PGJyPqCgIDEyoKCgoKCgoKCgIDGg oKCgoKCgoKCgoKAgMKCgoKCgoKAgNC44NDI2NzigoKAgMC4wMDAwMDCgoKAgMy43ODc5NjU8YnI+ oC0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0t LS0tLS0tLS0tLS0tLTxicj6goKCgoKCgoKCgoKCgoKCgoKCgIERpc3RhbmNlIG1hdHJpeCAoYW5n c3Ryb21zKTo8YnI+CqCgoKCgoKCgoKCgoKCgoKCgoKAgMaCgoKCgoKCgoCAyoKCgoKCgoKCgIDOg oKCgoKCgoKAgNKCgoKCgoKCgoCA1PGJyPqCgoKAgMaAgT6CgoCAwLjAwMDAwMDxicj6goKCgIDKg CiBPoKCgIDIuNzMwODYwoKAgMC4wMDAwMDA8YnI+oKCgoCAzoCBPoKCgIDQuMDAwMDAwoKAgNC43 MjQ5MDagoCAwLjAwMDAwMDxicj6goKCgIDSgIE+goKAgNC45NDg3ODCgoCA0LjAwMDAwMKCgIDIu NzEyNTQ1oKAgMC4wMDAwMDA8YnI+oKCgoCA1oCBIoKCgIDAuOTcyMDkwoKAgMi4zMDA4NjKgoCA0 LjI2NTQ3MqCgIDQuODU3NzAyoKAgMC4wMDAwMDA8YnI+oKCgoCA2oCBIoKCgIDAuOTcyMDkwoKAg Mi4zMDA4NjKgoCA0LjI2NTQ3MqCgIDQuODU3NzAyoKAgMS41MzE1OTg8YnI+CqCgoKAgN6AgSKCg oCAyLjk5MjQ2N6CgIDAuOTc0NDQ4oKAgNC4wMDQ1NzegoCAzLjAyNzU1N6CgIDIuNjUyODI5PGJy PqCgoKAgOKAgSKCgoCAzLjYyNjMyM6CgIDAuOTY4NDM5oKAgNS41NzE4NzWgoCA0LjQ3MjAyMKCg IDMuMTM2NTM1PGJyPqCgoKAgOaAgSKCgoCAzLjA3NzI3MKCgCiA0LjE4NjY3OKCgIDAuOTcyNTkw oKAgMy4xNjY2NzOgoCAzLjQxODA5Njxicj6goKAgMTCgIEigoKAgNC42NDk5ODOgoCA1LjY1NDU4 MKCgIDAuOTY2NjQxoKAgMy41MDU5MDGgoCA0Ljk4ODgyNDxicj6goKAgMTGgIEigoKAgNC41NTUx NjigoCA0LjE5NDEzM6CgIDEuNzQwODU4oKAgMC45ODQwMzagoCA0LjU4NDA3Njxicj6goKAgMTKg IEigoKAgNS45MDczNzigoCA0Ljg5NDI5M6CgIDMuMjc1OTIyoKAgMC45Njc1MDagoCA1LjgxNDc2 NDxicj4KoKCgoKCgoKCgoKCgoKCgoKCgoCA2oKCgoKCgoKCgIDegoKCgoKCgoKAgOKCgoKCgoKCg oCA5oKCgoKCgoKAgMTA8YnI+oKCgoCA2oCBIoKCgIDAuMDAwMDAwPGJyPqCgoKAgN6AgSKCgoAog Mi42NTI4MjmgoCAwLjAwMDAwMDxicj6goKCgIDigIEigoKAgMy4xMzY1MzWgoCAxLjU5MjI1N6Cg IDAuMDAwMDAwPGJyPqCgoKAgOaAgSKCgoCAzLjQxODA5NqCgIDMuNjE3NDU2oKAgNS4xMDExNzeg oCAwLjAwMDAwMDxicj6goKAgMTCgIEigoKAgNC45ODg4MjSgoCA0Ljk2MjA5MKCgIDYuNTE5OTMz oKAgMS42MDA0NDWgoCAwLjAwMDAwMDxicj6goKAgMTGgIEigoKAgNC41ODQwNzagoCAzLjI3Mjkz MqCgIDQuODM2ODAyoKAgMi4zMDQwOTOgoCAyLjUyMzc1Mzxicj4KoKCgIDEyoCBIoKCgIDUuODE0 NzY0oKAgMy45MjAzMTGgoCA1LjI4MTg5NKCgIDMuOTA2NzExoKAgMy45MDU4OTA8YnI+oKCgoKCg oKCgoKCgoKCgoKCgIDExoKCgoKCgoKAgMTI8YnI+oKCgIDExoCBIoKCgIDAuMDAwMDAwPGJyPqCg oCAxMqAKIEigoKAgMS42MDI2MjegoCAwLjAwMDAwMDxicj6gU3RvaWNoaW9tZXRyeaCgoCBIOE80 PGJyPqBGcmFtZXdvcmsgZ3JvdXCgIENTW1NHKEg2TzQpLFgoSDIpXTxicj6gRGVnLiBvZiBmcmVl ZG9toKCgIDIwPGJyPqBGdWxsIHBvaW50IGdyb3VwoKCgoKCgoKCgoKCgoKCgoCBDUzxicj6gTGFy Z2VzdCBBYmVsaWFuIHN1Ymdyb3VwoKCgoKCgoKAgQ1OgoKCgoCBOT3CgoCAyPGJyPqBMYXJnZXN0 IGNvbmNpc2UgQWJlbGlhbiBzdWJncm91cCBDU6CgoKCgIE5PcKCgIDI8YnI+CqCgoKCgoKCgoKCg oKCgoKCgoKCgoKCgoCBTdGFuZGFyZCBvcmllbnRhdGlvbjqgoKCgoKCgoKCgoKCgoKCgoKCgoKCg oKAKIDxicj6gLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0t LS0tLS0tLS0tLS0tLS0tLS0tLS0tPGJyPqBDZW50ZXKgoKCgIEF0b21pY6CgoKAgQXRvbWljoKCg oKCgoKCgoKCgoCBDb29yZGluYXRlcyAoQW5nc3Ryb21zKTxicj6gTnVtYmVyoKCgoCBOdW1iZXKg oKCgoCBUeXBloKCgoKCgoKCgoKCgoCBYoKCgoKCgoKCgoCBZoKCgoKCgoKCgoCBaPGJyPgqgLS0t LS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0t LS0tLS0tLS0tPGJyPqCgoCAxoKCgoKCgoKCgIDigoKCgoKCgoKCgoKAgMKCgoKCgoCAtMi41MDEw NzCgoKAgMC4wNjk3ODegoKAgMC4wMDAwMDA8YnI+oKCgIDKgoKCgoKCgoKAKIDigoKCgoKCgoKCg oKAgMKCgoKCgoCAtMC44MjczNTGgoKAgMi4yMjc2MjOgoKAgMC4wMDAwMDA8YnI+oKCgIDOgoKCg oKCgoKAgOKCgoKCgoKCgoKCgoCAwoKCgoKCgoCAwLjc4MjQ3MqCgIC0yLjIxNDU4NKCgoCAwLjAw MDAwMDxicj6goKAgNKCgoKCgoKCgoCA4oKCgoKCgoKCgoKCgIDCgoKCgoKCgIDIuNDQ1Njg0oKAg LTAuMDcxNzc3oKCgIDAuMDAwMDAwPGJyPqCgoCA1oKCgoKCgoKCgIDGgoKCgoKCgoKCgoKAgMKCg oKCgoCAtMi4yOTkxNTCgoKAgMC42MzM0NzCgoKAgMC43NjU3OTk8YnI+CqCgoAogNqCgoKCgoKCg oCAxoKCgoKCgoKCgoKCgIDCgoKCgoKAgLTIuMjk5MTUwoKCgIDAuNjMzNDcwoKAgLTAuNzY1Nzk5 PGJyPqCgoCA3oKCgoKCgoKCgIDGgoKCgoKCgoKCgoKAgMKCgoKCgoKAgMC4wMDAwMDCgoKAgMS43 MTI4MDSgoKAgMC4wMDAwMDA8YnI+oKCgIDigoKCgoKCgoKAgMaCgoKCgoKCgoKCgoCAwoKCgoKCg IC0wLjYyOTAzNaCgoCAzLjE3NTU0MKCgoCAwLjAwMDAwMDxicj6goKAgOaCgoKCgoKCgoCAxoKCg oKCgoKCgoKCgIDCgoKCgoKAgLTAuMTM4NTE5oKAKIC0xLjkwMTk5OaCgoCAwLjAwMDAwMDxicj6g oCAxMKCgoKCgoKCgoCAxoKCgoKCgoKCgoKCgIDCgoKCgoKCgIDAuODI0NDY2oKAgLTMuMTgwMzEz oKCgIDAuMDAwMDAwPGJyPqCgIDExoKCgoKCgoKCgIDGgoKCgoKCgoKCgoKAgMKCgoKCgoKAgMS45 NDU0NDagoCAtMC45MTkxNzegoKAgMC4wMDAwMDA8YnI+oKAgMTKgoKCgoKCgoKAgMaCgoKCgoKCg oKCgoCAwoKCgoKCgoCAzLjM5ODA2NKCgIC0wLjI0MjE4OaCgoCAwLjAwMDAwMDxicj4KoC0tLS0t LS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0t LS0tLS0tLTxicj6gUm90YXRpb25hbCBjb25zdGFudHMgKEdIWik6oKCgoKAKIDMuNjU2Njk1NqCg oKCgIDEuNzE2MTY3M6CgoKCgIDEuMTc0NDE2NDwvZGl2Pgo8ZGl2PqAqKioqKioqKioqKioqKioq KioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqPC9k aXY+CjxkaXY+oKCgoKCgoKCgoKAgUG9wdWxhdGlvbiBhbmFseXNpcyB1c2luZyB0aGUgU0NGIGRl bnNpdHkuPC9kaXY+CjxkaXY+oCoqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKioq KioqKioqKioqKioqKioqKioqKioqKioqKioqKioqKio8L2Rpdj4KPGRpdj6gRWxlY3Ryb25pYyBz cGF0aWFsIGV4dGVudCAoYXUpOqAgJmx0O1IqKjImZ3Q7PaCgIDkxOS4yMDA4PGJyPqBDaGFyZ2U9 oKCgoCAwLjAwMDAgZWxlY3Ryb25zPGJyPqBEaXBvbGUgbW9tZW50IChmaWVsZC1pbmRlcGVuZGVu dCBiYXNpcywgRGVieWUpOjxicj6goKAgWD2goKCgIDEuODAyOKCgoCBZPaCgoCAtMC42Mzg3oKCg IFo9oKCgoCAwLjAwMDCgIFRvdD2goKCgIDEuOTEyNjxicj4KoFF1YWRydXBvbGUgbW9tZW50IChm aWVsZC1pbmRlcGVuZGVudCBiYXNpcywgRGVieWUtQW5nKTo8YnI+oKAgWFg9oKAgLTMwLjYzNTCg oCBZWT2goKAgLTcuNjg5NKCgIFpaPaCgIC0yNi40ODg0PGJyPqCgIFhZPaCgoCAtNS4wOTE1oKAg WFo9oKCgoCAwLjAwMDCgoCBZWj2goKCgIDAuMDAwMDxicj6gVHJhY2VsZXNzIFF1YWRydXBvbGUg bW9tZW50IChmaWVsZC1pbmRlcGVuZGVudCBiYXNpcywgRGVieWUtQW5nKTo8YnI+CqCgIFhYPaCg oCAtOS4wMzA3oKAgWVk9oKCgIDEzLjkxNDmgoCBaWj2goKAgLTQuODg0MTxicj6goCBYWT2goKAK IC01LjA5MTWgoCBYWj2goKCgIDAuMDAwMKCgIFlaPaCgoKAgMC4wMDAwPGJyPqBPY3RhcG9sZSBt b21lbnQgKGZpZWxkLWluZGVwZW5kZW50IGJhc2lzLCBEZWJ5ZS1BbmcqKjIpOjxicj6gIFhYWD2g oKAgNTMuNzc5OaAgWVlZPaCgoCAtNy42MTczoCBaWlo9oKCgoCAwLjAwMDCgIFhZWT2goKCgIDUu NzUzNjxicj6gIFhYWT2goKAgLTIuNTMyMaAgWFhaPaCgoKAgMC4wMDAwoCBYWlo9oKCgIC03LjEx NzegIFlaWj2goKCgIDEuMjI2NDxicj4KoCBZWVo9oKCgoCAwLjAwMDCgIFhZWj2goKCgIDAuMDAw MDxicj6gSGV4YWRlY2Fwb2xlIG1vbWVudCAoZmllbGQtaW5kZXBlbmRlbnQgYmFzaXMsIERlYnll LUFuZyoqMyk6PGJyPqBYWFhYPaAgLTUwOS4zODMwIFlZWVk9oCAtMTU2Ljc1MjUgWlpaWj2goCAt MjMuMjUxMSBYWFhZPaCgoCAzMC42MDUxPGJyPqBYWFhaPaCgoKAgMC4wMDAwIFlZWVg9oKCgIDQ4 LjQ3OTQgWVlZWj2goKCgIDAuMDAwMCBaWlpYPaCgoKAgMC4wMDAwPGJyPgqgWlpaWT2goKCgIDAu MDAwMAogWFhZWT2gIC0xNjAuMjM5NyBYWFpaPaCgIC05MC44OTQ5IFlZWlo9oKAgLTgyLjQ1NzA8 YnI+oFhYWVo9oKCgoCAwLjAwMDAgWVlYWj2goKCgIDAuMDAwMCBaWlhZPaCgoCAyNi4zNTM4PGJy PqBBdG9toKAgNyBuZWVkcyB2YXJpYWJsZaCgIDg9oKAgMC45NzQ0NDc3MDM1IGJ1dCBpc6CgoCAw Ljk3MjA4OTg2MDY8YnI+oElucHV0IHotbWF0cml4IHZhcmlhYmxlcyBhcmUgbm90IGNvbXBhdGli bGUgd2l0aCBmaW5hbCBzdHJ1Y3R1cmUuPC9kaXY+Cgo8ZGl2Pjxicj6gRkFVTFRJTFkgRkFVTFRM RVNTLCBJQ0lMWSBSRUdVTEFSLCBTUExFTkRJRExZIE5VTEwuLi48YnI+oKCgoKCgoKCgoCBNQVVE RSBCWSBURU5OWVNPTjxicj6gRXJyb3IgdGVybWluYXRpb24gcmVxdWVzdCBwcm9jZXNzZWQgYnkg bGluayA5OTk5Ljxicj6gRXJyb3IgdGVybWluYXRpb24gdmlhIExuazFlIGluIEM6XEcwM1dcbDk5 OTkuZXhlIGF0IFRodSBOb3YgMDQgMTk6MDk6MzUgMjAxMC48YnI+CqBKb2IgY3B1IHRpbWU6oCAw IGRheXOgIDEgaG91cnMgMTMgbWludXRlcyAxNS4wIHNlY29uZHMuPGJyPqBGaWxlIGxlbmd0aHMg KE1CeXRlcyk6oCBSV0Y9oKCgoCAyMCBJbnQ9oKCgoKAgMCBEMkU9oKCgoKAgMCBDaGs9oKCgoCAx MSBTY3I9oKCgoKAgMTxicj48L2Rpdj4KPGRpdj6gQW55IGluc2lnaHQgd291bGQgYmUgdmVyeSBo ZWxwZnVsLjxicj48YnI+PC9kaXY+CjxkaXY+oFRoYW5rcyE8YnI+PC9kaXY+PC9kaXY+PGJyPjwv ZGl2PjwvYmxvY2txdW90ZT48L3RkPjwvdHI+PC90Ym9keT48L3RhYmxlPjxicj48L2Rpdj48L2Js b2NrcXVvdGU+PC90ZD48L3RyPjwvdGJvZHk+PC90YWJsZT48YnI+PC9kaXY+PC9ibG9ja3F1b3Rl PjwvdGQ+PC90cj48L3Rib2R5PjwvdGFibGU+PGJyPjwvZGl2PjwvYmxvY2txdW90ZT48L3RkPjwv dHI+PC90Ym9keT48L3RhYmxlPgo8YnI+PC9kaXY+PC9ibG9ja3F1b3RlPjwvdGQ+PC90cj48L3Ri b2R5PjwvdGFibGU+PGJyPgoKCgoKICAgICAgPC9ibG9ja3F1b3RlPjwvZGl2Pjxicj48YnIgY2xl YXI9ImFsbCI+PGJyPi0tIDxicj48ZGl2IGRpcj0ibHRyIj5KLiBKdWxlcy48L2Rpdj48YnI+Cjwv ZGl2Pgo= --0015175ca7bc3aa93a04991820b4-- From owner-chemistry@ccl.net Wed Jan 5 10:14:01 2011 From: "Jieying Gao gaojy222+*+hotmail.com" To: CCL Subject: CCL:G: Problem runing job in G03 Message-Id: <-43523-110104215006-2887-g2Rn+p48ILQb8jVRdekmoQ]~[server.ccl.net> X-Original-From: "Jieying Gao" Date: Tue, 4 Jan 2011 21:50:05 -0500 Sent to CCL by: "Jieying Gao" [gaojy222(-)hotmail.com] Dear CCL members, I am facing problem to optimize structure in GO3. The metal Ni catalyzed structure was optimized adpted the oniom method. When I try to use BP86 method for high level (6-31g* for C H O N atoms and SDD for Ni), and HF/sto-3g for low level. I got the following error message: Scaled steepest descent with Shift=0.075 failed. Search did not lower the energy significantly. No lower point found -- switch to steepest descent. Search did not lower the energy significantly. No lower point found -- run aborted. Error termination via Lnk1e in /global/scratch/software/gaussian/g03/l508.exe at Tue Jan 4 14:21:46 2011. Job cpu time: 0 days 10 hours 52 minutes 2.6 seconds. File lengths (MBytes): RWF= 100 Int= 0 D2E= 0 Chk= 78 Scr= 1 I used SCF=QC and OPT=CalcFC and still I got the same results. I therefore request you to send your valuale comments and suggestion. Thank you. Sincerely yours, Jieying Gao gaojy222*|*hotmail.com From owner-chemistry@ccl.net Wed Jan 5 10:49:00 2011 From: "Alex Allardyce aa^chemaxon.com" To: CCL Subject: CCL: PR FYI: Thomson Reuters and ChemAxon Partner to Help Speed Drug Discovery for Life Science Message-Id: <-43524-110105061406-5064-XnHnDmaKnB/kXR+85E3e3w!A!server.ccl.net> X-Original-From: Alex Allardyce Content-Type: multipart/alternative; boundary="------------050205040603010700000203" Date: Wed, 05 Jan 2011 12:14:06 +0100 MIME-Version: 1.0 Sent to CCL by: Alex Allardyce [aa_-_chemaxon.com] This is a multi-part message in MIME format. --------------050205040603010700000203 Content-Type: text/plain; charset=ISO-8859-1; format=flowed Content-Transfer-Encoding: 8bit Excuse cross postings: I forward this announcement for your interest. Alex Thomson Reuters and ChemAxon Partner to Help Speed Drug Discovery for Life Science Researchers /For the first time ever, R&D end users can search and analyze Thomson Reuters trusted Markush chemical structures and patents with ChemAxon's cheminformatics applications to streamline workflow productivity/ London, UK and Budapest, Hungary -- 4 January 2011 -- The IP Solutions business of Thomson Reuters®, the leader in intellectual property research and analysis solutions, and ChemAxon, the leader in cheminformatics software for the life sciences industry, today announced a strategic partnership whereby Thomson Reuters is providing its chemical IP Data Feeds -- Markush Structures and patent data to users of ChemAxon's JChem chemical software platform. This search and analysis solution will speed drug discovery and allow life science researchers to easily integrate critical content into their existing systems and workflow. The Markush structures from Thomson Reuters are part of the company's Derwent World Patents Index® (DWPISM) database, the world's most trusted and authoritative source of global patent information. The Markush database contains essential data on the relationship or "families" of 550,000 patents, making it the world's leading source for life sciences patentability research, competitive intelligence and IP screening. ChemAxon's JChem software allows life science professionals to structure and visualize chemical compounds for property prediction, virtual synthesis, screening and drug design. Through this partnership R&D end users can now research and analyze Markush structures using ChemAxon's JChem chemical software platform, a means they had no access to before. The ability to quickly retrieve this information will now allow R&D end users to save time and capitalize on R&D investment. "The ability to search and visualize complex chemical patents is critical to the work of life science R&D professionals. To date, however, this has been a challenge as there wasn't a tool that enabled R&D end users to do this type of work themselves," said Cindy Poulos, vice president of product management, Thomson Reuters. "Through this partnership, Thomson Reuters and ChemAxon are making a comprehensive worldwide database of chemical compounds widely accessible in a user-friendly, flexible format to end users." "The Markush structures database has become a vital backbone of pharmaceutical research in the digital age," said Alex Drjver, CEO of ChemAxon. "By delivering this data directly to the end user in an intuitive, flexible format, our clients have access to the functionality and data necessary to stay competitive in today's fast-paced, complex marketplace." The Thomson Reuters IP Data Feed - Markush Structures database is indexed from 550,000 patent families, plus 1.7 million related, exemplified, specific compounds. It includes patents for pharmaceuticals, agrochemicals and general chemistry spanning 26 patent-issuing authorities. Markush data is integrated with high-quality patent summary data from DWPI, enabling access to enhanced patent abstracts, family and assignee details, and relevant bibliographic data. For more information, contact Steve Hajkowski, product manager, Thomson Reuters, at steve.hajkowski__at__thomsonreuters"{.:{com About ChemAxon Ltd ChemAxon is a leader in providing cheminformatics software development platforms and applications for the biotechnology, pharmaceutical and agrochemical industries. With core capabilities for structure visualization, search and management, property prediction, virtual synthesis, screening and drug design, ChemAxon focuses upon active interaction with users and software portability to create powerful, cost effective cross platform solutions and programming interfaces to power modern cheminformatics and chemical communication. About Thomson Reuters Thomson Reuters is the world's leading source of intelligent information for businesses and professionals. We combine industry expertise with innovative technology to deliver critical information to leading decision makers in the financial, legal, tax and accounting, healthcare and science and media markets, powered by the world's most trusted news organization. With headquarters in New York and major operations in London and Eagan, Minnesota, Thomson Reuters employs 55,000 people and operates in over 100 countries. For more information, go to www.thomsonreuters.com. -- *Alex Allardyce* Marketing Dir. *ChemAxon**Ltd*. Maramaros koz 3/A, Budapest, 1037 Hungary http://www.chemaxon.com Tel: +361 453 0435 Fax: +361 4532659 mailto:aa|a|chemaxon.com --------------050205040603010700000203 Content-Type: text/html; charset=ISO-8859-1 Content-Transfer-Encoding: 7bit Excuse cross postings:

I forward this announcement for your interest.
Alex

Thomson Reuters and ChemAxon Partner to Help Speed Drug Discovery for Life Science Researchers

For the first time ever, R&D end users can search and analyze Thomson Reuters trusted Markush chemical structures and patents with ChemAxon’s cheminformatics applications to streamline workflow productivity

London, UK and Budapest, Hungary – 4 January 2011 – The IP Solutions business of Thomson Reuters®, the leader in intellectual property research and analysis solutions, and ChemAxon, the leader in cheminformatics software for the life sciences industry, today announced a strategic partnership whereby Thomson Reuters is providing its chemical IP Data Feeds – Markush Structures and patent data to users of ChemAxon’s JChem chemical software platform. This search and analysis solution will speed drug discovery and allow life science researchers to easily integrate critical content into their existing systems and workflow.

The Markush structures from Thomson Reuters are part of the company’s Derwent World Patents Index® (DWPISM) database, the world’s most trusted and authoritative source of global patent information. The Markush database contains essential data on the relationship or “families” of 550,000 patents, making it the world’s leading source for life sciences patentability research, competitive intelligence and IP screening.  ChemAxon’s JChem software allows life science professionals to structure and visualize chemical compounds for property prediction, virtual synthesis, screening and drug design. Through this partnership R&D end users can now research and analyze Markush structures using ChemAxon’s JChem chemical software platform, a means they had no access to before.  The ability to quickly retrieve this information will now allow R&D end users to save time and capitalize on R&D investment.

“The ability to search and visualize complex chemical patents is critical to the work of life science R&D professionals. To date, however, this has been a challenge as there wasn’t a tool that enabled R&D end users to do this type of work themselves,” said Cindy Poulos, vice president of product management, Thomson Reuters. “Through this partnership, Thomson Reuters and ChemAxon are making a comprehensive worldwide database of chemical compounds widely accessible in a user-friendly, flexible format to end users.”

“The Markush structures database has become a vital backbone of pharmaceutical research in the digital age,” said Alex Drjver, CEO of ChemAxon.  “By delivering this data directly to the end user in an intuitive, flexible format, our clients have access to the functionality and data necessary to stay competitive in today’s fast-paced, complex marketplace.”

The Thomson Reuters IP Data Feed - Markush Structures database is indexed from 550,000 patent families, plus 1.7 million related, exemplified, specific compounds.  It includes patents for pharmaceuticals, agrochemicals and general chemistry spanning 26 patent-issuing authorities.  Markush data is integrated with high-quality patent summary data from DWPI, enabling access to enhanced patent abstracts, family and assignee details, and relevant bibliographic data.  For more information, contact Steve Hajkowski, product manager, Thomson Reuters, at steve.hajkowski__at__thomsonreuters"{.:{com

About ChemAxon Ltd
ChemAxon is a leader in providing cheminformatics software development platforms and applications for the biotechnology, pharmaceutical and agrochemical industries. With core capabilities for structure visualization, search and management, property prediction, virtual synthesis, screening and drug design, ChemAxon focuses upon active interaction with users and software portability to create powerful, cost effective cross platform solutions and programming interfaces to power modern cheminformatics and chemical communication.

About Thomson Reuters
Thomson Reuters is the world's leading source of intelligent information for businesses and professionals.  We combine industry expertise with innovative technology to deliver critical information to leading decision makers in the financial, legal, tax and accounting, healthcare and science and media markets, powered by the world's most trusted news organization. With headquarters in New York and major operations in London and Eagan, Minnesota, Thomson Reuters employs 55,000 people and operates in over 100 countries. For more information, go to www.thomsonreuters.com.
 
--
Alex Allardyce
Marketing Dir.
ChemAxon Ltd.
Maramaros koz 3/A, Budapest, 1037 Hungary
http://www.chemaxon.com
Tel: +361 453 0435
Fax: +361 4532659

mailto:aa|a|chemaxon.com
--------------050205040603010700000203-- From owner-chemistry@ccl.net Wed Jan 5 12:14:00 2011 From: "Vincent Leroux vincent.leroux#,#loria.fr" To: CCL Subject: CCL: Thiazolidinedione Tautomers Message-Id: <-43525-110105121054-25245-CJriOI/0y9H1Or7KgpcW1g{=}server.ccl.net> X-Original-From: Vincent Leroux Content-Transfer-Encoding: 8bit Content-Type: text/plain; charset=windows-1252 Date: Wed, 05 Jan 2011 18:10:40 +0100 MIME-Version: 1.0 Sent to CCL by: Vincent Leroux [vincent.leroux_._loria.fr] Hi Nancy, For generating tautomers, there are various good tools available, e.g. QUACPAC, MN.TAUTOMER. In any case, the most stable tautomeric state at a given pH might change upon binding - I would recommend to use multiple states explicitly for virtual screening calculations. If you want to pick a single state (e.g. for MD simulations), it might be better to select a low level state that binds well rather than the most stable state in solution for the isolated ligand, if it does not perform as well. Docking followed by minimization (using the FF that will be used for MD) prior to MD might greatly help in such a situation. Vincent Le 05/01/11 01:55, Nancy nancy5villa#gmail.com a écrit : > Thanks for the info. I would greatly appreciate it if anyone can > provide as much detail as possible as to which of the tautomer(s) is > most stable in an aqueous solution at ph 7.4. > > Thanks in advance, > Nancy > > > On Tue, Jan 4, 2011 at 7:34 PM, Jeremy R. Greenwood > > wrote: > > Hi Nancy, > > > I am performing molecular docking and molecular dynamics > simulations of > > thiazolidinediones (TZDs) binding to the ligand binding domain of the > > PPAR-gamma receptor protein. The thiazolidinedione ring can exist in > > numerous different tautomeric states; is there any particular > tautomer(s) > > that would be dominant, and thus most appropriate for docking and > molecular > > dynamics simulations, at pH 7.4? > > > > I have read the article "Metformin and glitazones: does similarity in > > biomolecular mechanism originate from tautomerism in these drugs?" > J. Phys. > > Org. Chem. 2008, 21 30–33, as a reference, but it does make it > clear as to > > which tautomer is most appropriate for simulating binding to a > receptor > > protein at pH 7.4. > > Since it is an acidic heterocycle, and since it is acting as > a bioisostere for the acid group on the endogenous ligand, > I recommend you simply deprotonate it (and adjust the surrounding > protein to match accordingly). There's only one reasonable tautomer > of the conjugate base anion (although you can represent it various ways, > with the formal -1 charge on the deprotonated nitrogen or either > oxygen). > > hope this helps, > > --Jeremy > > From owner-chemistry@ccl.net Wed Jan 5 14:00:00 2011 From: "=?iso-8859-15?q?=D6d=F6n_Farkas?= farkas|,|chem.elte.hu" To: CCL Subject: CCL:G: help Message-Id: <-43526-110105103950-7933-dV52eDtOJryM05l2RRF0Xw!=!server.ccl.net> X-Original-From: =?iso-8859-15?q?=D6d=F6n_Farkas?= Content-Disposition: inline Content-Transfer-Encoding: 8bit Content-Type: text/plain; charset="iso-8859-15" Date: Wed, 5 Jan 2011 16:39:25 +0100 MIME-Version: 1.0 Sent to CCL by: =?iso-8859-15?q?=D6d=F6n_Farkas?= [farkas:-:chem.elte.hu] Hi! It seems, that this version of G03 did not apply your request for the maximum number of optimization cycles. It seems strange, however, if you try restarting it with the same input just adding the "restart" keyword to the Opt options, it might help. Good luck, if it still does not work, you can contact me directly. Ödön Odon Farkas Associate Professor Laboratory of Chemical Informatics Institute of Chemistry Eötvös Loránd University, Budapest 1/A Pázmány Péter sétány H-1117 Budapest, Hungary Cellphone: +36-30-2553111 On Tuesday 04 January 2011 18:51:53 Bilel Mansouri bilelmansouri80-,-yahoo.fr wrote: > HI > > > I'm doing a (what I thought was simple) test job of tow water molecules > > whith supermolecule methode using B3LYP > > and I use the following input job > # opt=(modredundant,maxcycles=999), Int(Grid=ULTRAFIN)  B3LYP/6-311g > g counterpoise=2 > I have the error message  and i use the keyword int=grid=ultrafine >   >   >       Item               Value     Threshold  Converged? >  Maximum Force            0.000882     0.000450     NO >  RMS     Force            0.000269     0.000300     NO > > > > Maximum Displacement     0.056470     0.001800     NO >  RMS     Displacement     0.014132     0.001200     NO >  Predicted change in Energy=-1.659919D-03 >  Optimization stopped. >     -- Number of steps exceeded,  NStep= 100 >     -- Flag reset to prevent archiving. >                            ---------------------------- >                            ! Non-Optimized Parameters ! >                            ! (Angstroms and Degrees)  ! >  --------------------------                            > -------------------------- ! Name  Definition              Value          > Derivative Info.                ! > --------------------------------------------------------------------------- >----- ! R1    R(1,3)                  3.9996         -DE/DX =   > -0.0023              ! ! R2    R(1,5)                  1.003          > -DE/DX =    0.0                 ! ! R3    R(1,6)                  > 1.003          -DE/DX =    0.0                 ! ! R4    > R(1,7)                  2.9817         -DE/DX =   -0.0009              ! ! > R5    R(1,9)                  3.0732         -DE/DX =   > -0.001               ! ! R6    R(2,4)                  3.9997         > -DE/DX =   -0.0029              ! ! R7    R(2,7)                  > 0.9737         -DE/DX =    0.0004              ! ! R8    > R(2,8)                  0.9697         -DE/DX =    0.0007              ! ! > R9    R(3,9)                  0.9722         -DE/DX =   > -0.0013              ! ! R10   R(3,10)                 0.9664         > -DE/DX =   -0.0001              ! ! R11   R(3,11)                 > 1.7428         -DE/DX =    0.0002              ! ! R12   > R(4,8)                  4.4728         -DE/DX =   -0.0008              ! ! > R13   R(4,11)                 0.981          -DE/DX =    > 0.0003              ! ! R14   R(4,12)                 0.9659         -DE/DX > =    0.0                 ! ! A1    A(3,1,5)               99.0096         > -DE/DX =    0.0                 ! ! A2    A(3,1,6)               > 99.0096         -DE/DX =    0.0                 ! ! A3    > A(3,1,7)               68.5648         -DE/DX =    0.0                 ! ! > A4    A(5,1,6)              104.9845         -DE/DX =   > -0.0007              ! ! A5    A(5,1,7)               60.6293         > -DE/DX =   -0.0003              ! ! A6    A(5,1,9)              > 101.859          -DE/DX =    0.0001              ! ! A7    > A(6,1,7)               60.6293         -DE/DX =   -0.0003              ! ! > A8    A(6,1,9)              101.859          -DE/DX =    > 0.0001              ! ! A9    A(7,1,9)               73.3866         -DE/DX > =    0.0                 ! ! A10   A(4,2,7)                3.2523         > -DE/DX =    0.001               ! ! A11   A(7,2,8)              > 110.0485         -DE/DX =    0.0001              ! ! A12   > A(1,3,10)             126.5996         -DE/DX =    0.0001              ! ! > A13   A(1,3,11)              96.7028         -DE/DX =   > -0.0001              ! ! A14   A(9,3,10)             111.1913         > -DE/DX =   -0.0001              ! ! A15   A(9,3,11)             > 112.1111         -DE/DX =    0.0001              ! ! A16   > A(10,3,11)            136.6976         -DE/DX =    0.0                 ! ! > A17   A(2,4,11)              95.2594         -DE/DX =   > -0.0002              ! ! A18   A(2,4,12)             154.9369         > -DE/DX =   -0.0001              ! ! A19   A(8,4,11)             > 106.7444         -DE/DX =   -0.0002              ! ! A20   > A(8,4,12)             143.4519         -DE/DX =   -0.0001              ! ! > A21   A(11,4,12)            109.8037         -DE/DX =    > 0.0003              ! ! A22   L(1,7,2,4,-1)         285.8641         -DE/DX > =   -0.0011              ! ! A23   L(3,11,4,2,-1)        168.2659         > -DE/DX =   -0.0003              ! ! A24   L(1,7,2,4,-2)         > 180.0            -DE/DX =    0.0                 ! ! A25   > L(3,11,4,2,-2)        180.0            -DE/DX =    0.0                 ! ! > D1    D(3,1,2,4)              0.0            -DE/DX =    > 0.0                 ! ! D2    D(3,1,2,8)            180.0            -DE/DX > =    0.0                 ! ! D3    D(5,1,2,4)            102.9058         > -DE/DX =    0.0001              ! ! D4    D(5,1,2,8)            > -77.0942         -DE/DX =    0.0001              ! ! D5    > D(6,1,2,4)           -102.9058         -DE/DX =   -0.0001              ! ! > D6    D(6,1,2,8)             77.0942         -DE/DX =   > -0.0001              ! ! D7    D(9,1,2,4)              0.0            > -DE/DX =    0.0                 ! ! D8    D(9,1,2,8)            > 180.0            -DE/DX =    0.0                 ! ! D9    > D(5,1,3,10)           126.5651         -DE/DX =    0.0004              ! ! > D10   D(5,1,3,11)           -53.4349         -DE/DX =    > 0.0004              ! ! D11   D(6,1,3,10)          -126.5651         -DE/DX > =   -0.0004              ! ! D12   D(6,1,3,11)            53.4349         > -DE/DX =   -0.0004              ! ! D13   D(7,1,3,10)           > 180.0            -DE/DX =    0.0                 ! ! D14   > D(7,1,3,11)             0.0            -DE/DX =    0.0                 ! ! > D15   D(7,2,4,11)           180.0            -DE/DX =    > 0.0                 ! ! D16   D(7,2,4,12)             0.0            -DE/DX > =    0.0                 ! ! D17   D(1,3,4,2)              0.0            > -DE/DX =    0.0                 ! ! D18   D(1,3,4,8)              > 0.0            -DE/DX =    0.0                 ! ! D19   > D(1,3,4,12)           180.0            -DE/DX =    0.0                 ! ! > D20   D(9,3,4,2)              0.0            -DE/DX =    > 0.0                 ! ! D21   D(9,3,4,8)              0.0            -DE/DX > =    0.0                 ! ! D22   D(9,3,4,12)           180.0            > -DE/DX =    0.0                 ! ! D23   D(10,3,4,2)           > 180.0            -DE/DX =    0.0                 ! ! D24   > D(10,3,4,8)           180.0            -DE/DX =    0.0                 ! ! > D25   D(10,3,4,12)            0.0            -DE/DX =    > 0.0                 ! > --------------------------------------------------------------------------- >----- > GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad > Input orientation: > --------------------------------------------------------------------- > Center     Atomic     Atomic              Coordinates (Angstroms) > Number     Number      Type              X           Y           Z > --------------------------------------------------------------------- > 1          8             0        0.184505    0.000000    0.154984 > 2          8             0        0.033034    0.000000    2.881640 > 3          8             0        4.161469    0.000000    0.583652 > 4          8             0        4.011921    0.000000    3.292071 > 5          1             0       -0.032703   -0.765799    0.712955 > 6          1             0       -0.032703    0.765799    0.712955 > 7          1             0        0.995253    0.000000    3.035531 > 8          1             0       -0.438867    0.000000    3.727326 > 9          1             0        3.261177    0.000000    0.215677 > 10          1             0        4.826475    0.000000   -0.117892 > 11          1             0        4.189967    0.000000    2.324276 > 12          1             0        4.842678    0.000000    3.787965 > --------------------------------------------------------------------- > Distance matrix (angstroms): >                     1          2          3          4          5 >      1  O    0.000000 >      2  O    2.730860   0.000000 >      3  O    4.000000   4.724906   0.000000 >      4  O    4.948780   4.000000   2.712545   0.000000 >      5  H    0.972090   2.300862   4.265472   4.857702   0.000000 >      6  H    0.972090   2.300862   4.265472   4.857702   1.531598 >      7  H    2.992467   0.974448   4.004577   3.027557   2.652829 >      8  H    3.626323   0.968439   5.571875   4.472020   3.136535 >      9  H    3.077270   4.186678   0.972590   3.166673   3.418096 >     10  H    4.649983   5.654580   0.966641   3.505901   4.988824 >     11  H    4.555168   4.194133   1.740858   0.984036   4.584076 >     12  H    5.907378   4.894293   3.275922   0.967506   5.814764 >                     6          7          8          9         10 >      6  H    0.000000 >      7  H    2.652829   0.000000 >      8  H    3.136535   1.592257   0.000000 >      9  H    3.418096   3.617456   5.101177   0.000000 >     10  H    4.988824   4.962090   6.519933   1.600445   0.000000 >     11  H    4.584076   3.272932   4.836802   2.304093   2.523753 >     12  H    5.814764   3.920311   5.281894   3.906711   3.905890 >                    11         12 >     11  H    0.000000 >     12  H    1.602627   0.000000 >  Stoichiometry    H8O4 >  Framework group  CS[SG(H6O4),X(H2)] >  Deg. of freedom    20 >  Full point group                 CS >  Largest Abelian subgroup         CS      NOp   2 >  Largest concise Abelian subgroup CS      NOp   2 >                          Standard orientation:                         >  --------------------------------------------------------------------- >  Center     Atomic     Atomic              Coordinates (Angstroms) >  Number     Number      Type              X           Y           Z >  --------------------------------------------------------------------- >     1          8             0       -2.501070    0.069787    0.000000 >     2          8             0       -0.827351    2.227623    0.000000 >     3          8             0        0.782472   -2.214584    0.000000 >     4          8             0        2.445684   -0.071777    0.000000 >     5          1             0       -2.299150    0.633470    0.765799 >     6          1             0       -2.299150    0.633470   -0.765799 >     7          1             0        0.000000    1.712804    0.000000 >     8          1             0       -0.629035    3.175540    0.000000 >     9          1             0       -0.138519   -1.901999    0.000000 >    10          1             0        0.824466   -3.180313    0.000000 >    11          1             0        1.945446   -0.919177    0.000000 >    12          1             0        3.398064   -0.242189    0.000000 >  --------------------------------------------------------------------- >  Rotational constants (GHZ):      3.6566956      1.7161673      1.1744164 >  ********************************************************************** >             Population analysis using the SCF density. >  ********************************************************************** >  Electronic spatial extent (au):  =   919.2008 >  Charge=     0.0000 electrons >  Dipole moment (field-independent basis, Debye): >     X=     1.8028    Y=    -0.6387    Z=     0.0000  Tot=     1.9126 >  Quadrupole moment (field-independent basis, Debye-Ang): >    XX=   -30.6350   YY=    -7.6894   ZZ=   -26.4884 >    XY=    -5.0915   XZ=     0.0000   YZ=     0.0000 >  Traceless Quadrupole moment (field-independent basis, Debye-Ang): >    XX=    -9.0307   YY=    13.9149   ZZ=    -4.8841 >    XY=    -5.0915   XZ=     0.0000   YZ=     0.0000 >  Octapole moment (field-independent basis, Debye-Ang**2): >   XXX=    53.7799  YYY=    -7.6173  ZZZ=     0.0000  XYY=     5.7536 >   XXY=    -2.5321  XXZ=     0.0000  XZZ=    -7.1177  YZZ=     1.2264 >   YYZ=     0.0000  XYZ=     0.0000 >  Hexadecapole moment (field-independent basis, Debye-Ang**3): >  XXXX=  -509.3830 YYYY=  -156.7525 ZZZZ=   -23.2511 XXXY=    30.6051 >  XXXZ=     0.0000 YYYX=    48.4794 YYYZ=     0.0000 ZZZX=     0.0000 >  ZZZY=     0.0000 XXYY=  -160.2397 XXZZ=   -90.8949 YYZZ=   -82.4570 >  XXYZ=     0.0000 YYXZ=     0.0000 ZZXY=    26.3538 >  Atom   7 needs variable   8=   0.9744477035 but is    0.9720898606 >  Input z-matrix variables are not compatible with final structure. > >  FAULTILY FAULTLESS, ICILY REGULAR, SPLENDIDLY NULL... >            MAUDE BY TENNYSON >  Error termination request processed by link 9999. >  Error termination via Lnk1e in C:\G03W\l9999.exe at Thu Nov 04 19:09:35 > 2010. Job cpu time:  0 days  1 hours 13 minutes 15.0 seconds. >  File lengths (MBytes):  RWF=     20 Int=      0 D2E=      0 Chk=     11 > Scr=      1 > >  Any insight would be very helpful. > > >  Thanks! From owner-chemistry@ccl.net Wed Jan 5 16:22:00 2011 From: "Olawale Lukman Olasunkanmi waleolasunkanmi#,#gmail.com" To: CCL Subject: CCL: help! Message-Id: <-43527-110105142427-28305-GYEzD94zrQ6QUxQqPA3vZg ~~ server.ccl.net> X-Original-From: "Olawale Lukman Olasunkanmi" Date: Wed, 5 Jan 2011 14:24:25 -0500 Sent to CCL by: "Olawale Lukman Olasunkanmi" [waleolasunkanmi]~[gmail.com] I am currently working on the prediction of thermodynamic stabilities of some novel diphenanthroline complexes of transition metals (including Ni2+, Pt2+, Fe2+). I intend to calculate enthalpy, entropy, free energy, homo and lumo energies, strain energy, dipole moment, standard heat of formation, standard free energy of formation, heat capacity. This is my Msc research and I am currently facing a challenge of getting the necessary software/CPU to run the calculation. I need someone to assist me with the calculation or give me a link to a e-lab or better still collaborate with me on the work. I also need your suggestions as regards what other parameters you think I may need to compute. Thank you. From owner-chemistry@ccl.net Wed Jan 5 16:57:00 2011 From: "Delwar Hossain hossaind2004+*+yahoo.com" To: CCL Subject: CCL:G: help Message-Id: <-43528-110105112530-20058-0ceWx6x8H6ey427xNxN6Ig^_^server.ccl.net> X-Original-From: Delwar Hossain Content-Type: multipart/alternative; boundary="0-851426031-1294244716=:3378" Date: Wed, 5 Jan 2011 08:25:16 -0800 (PST) MIME-Version: 1.0 Sent to CCL by: Delwar Hossain [hossaind2004 ~ yahoo.com] --0-851426031-1294244716=:3378 Content-Type: text/plain; charset=iso-8859-1 Content-Transfer-Encoding: quoted-printable Increase number of optimization step. If water molecule is oscillating back= and =0Aforth in a very shallow potential energy surface, using CalcFC (or = SCF=3DQC) may =0Ahelp.=0AThanks,=0ADelwar=0A=0A=0A=0A=0A=0A________________= ________________=0AFrom: "Bilel Mansouri bilelmansouri80-,-yahoo.fr" =0ATo: "Hossain, Delwar " =0ASent: Tue, January 4, 2011 11:51:53 AM=0ASubject: CCL:G: help=0A=0A=0A= =0A=0A=0A>=0A>=0A>=0A>=0A>>=0A>>=0A>>>=0A>>>=0A>>>>=0A>>>>HI=0A>>>>> I'm do= ing a (what I thought was simple) test job of=A0tow=A0water molecules whith= =0A>>>>>supermolecule methode=A0using B3LYP=0A>>>>and I use the following = input job =0A>>>># opt=3D(modredundant,maxcycles=3D999), Int(Grid=3DULTRAFI= N)=A0 B3LYP/6-311g=0A>>>>g counterpoise=3D2=0A>>>>I have the error message= =A0=A0and i use the keyword int=3Dgrid=3Dultrafine=0A>>>>=0A>>>>=0A>>>>=A0= =A0=A0=A0=A0 Item=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 Value=A0=A0=A0= =A0 Threshold=A0 Converged?=0A>>>>=A0Maximum Force=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0 0.000882=A0=A0=A0=A0 0.000450=A0=A0=A0=A0 NO =0A>>>>=A0RMS=A0=A0= =A0=A0 Force=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 0.000269=A0=A0=A0=A0 0.000300= =A0=A0=A0=A0 NO=0A>>>>Maximum Displacement=A0=A0=A0=A0 0.056470=A0=A0=A0=A0= 0.001800=A0=A0=A0=A0 NO =0A>>>>>=A0RMS=A0=A0=A0=A0 Displacement=A0=A0=A0= =A0 0.014132=A0=A0=A0=A0 0.001200=A0=A0=A0=A0 NO =0A>>>>>=A0Predicted chang= e in Energy=3D-1.659919D-03=0A>>>>>=A0Optimization stopped.=0A>>>>>=A0=A0= =A0 -- Number of steps exceeded,=A0 NStep=3D 100=0A>>>>>=A0=A0=A0 -- Flag r= eset to prevent archiving.=0A>>>>>=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 ----------------------------=0A>>>>= >=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0 ! Non-Optimized Parameters !=0A>>>>>=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 ! (Angstroms and Degrees)= =A0 !=0A>>>>>=A0--------------------------=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>------------------= --------=0A>>>>>=A0! Name=A0 Definition=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0 Value=A0=A0=A0=A0=A0=A0=A0=A0=A0 Derivative Info.=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0------------------------------= --------------------------------------------------=0A>>>>>=0A>>>>>=A0! R1= =A0=A0=A0 R(1,3)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 3.9996= =A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0 -0.0023=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! R2=A0=A0=A0 R(1,5)=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 1.003=A0=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX = =3D=A0=A0=A0 0.0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!= =0A>>>>>=A0! R3=A0=A0=A0 R(1,6)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0 1.003=A0=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! R4=A0=A0=A0 R= (1,7)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 2.9817=A0=A0=A0=A0= =A0=A0=A0=A0 -DE/DX =3D=A0=A0 -0.0009=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0 =0A>>>>>!=0A>>>>>=A0! R5=A0=A0=A0 R(1,9)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0 3.0732=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0 -0.00= 1=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! R6=A0=A0= =A0 R(2,4)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 3.9997=A0=A0= =A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0 -0.0029=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! R7=A0=A0=A0 R(2,7)=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0 0.9737=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0= =A0 0.0004=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! R8= =A0=A0=A0 R(2,8)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 0.9697= =A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.0007=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! R9=A0=A0=A0 R(3,9)=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 0.9722=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D= =A0=A0 -0.0013=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0!= R10=A0=A0 R(3,10)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 0.9664= =A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0 -0.0001=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! R11=A0=A0 R(3,11)=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 1.7428=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0= =A0=A0 0.0002=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! = R12=A0=A0 R(4,8)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 4.4728= =A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0 -0.0008=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! R13=A0=A0 R(4,11)=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 0.981=A0=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D= =A0=A0=A0 0.0003=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>= =A0! R14=A0=A0 R(4,12)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 0.96= 59=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! A1=A0=A0=A0 A(3,1,5)=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 99.0096=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX= =3D=A0=A0=A0 0.0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!= =0A>>>>>=A0! A2=A0=A0=A0 A(3,1,6)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= 99.0096=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! A3=A0=A0=A0 A(3,1,7)= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 68.5648=A0=A0=A0=A0=A0=A0=A0=A0 = -DE/DX =3D=A0=A0=A0 0.0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A= >>>>>!=0A>>>>>=A0! A4=A0=A0=A0 A(5,1,6)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0 104.9845=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0 -0.0007=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! A5=A0=A0=A0 A(5,1,7)=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 60.6293=A0=A0=A0=A0=A0=A0=A0=A0 -DE= /DX =3D=A0=A0 -0.0003=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>= >>>=A0! A6=A0=A0=A0 A(5,1,9)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 101.859= =A0=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.0001=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! A7=A0=A0=A0 A(6,1,7)=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 60.6293=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D= =A0=A0 -0.0003=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0!= A8=A0=A0=A0 A(6,1,9)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 101.859=A0=A0= =A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.0001=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! A9=A0=A0=A0 A(7,1,9)=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0 73.3866=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0= =A0 0.0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>= =A0! A10=A0=A0 A(4,2,7)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 3.2523= =A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.001=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! A11=A0=A0 A(7,2,8)=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0 110.0485=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0= =A0 0.0001=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! A12= =A0=A0 A(1,3,10)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 126.5996=A0=A0=A0=A0= =A0=A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.0001=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0 =0A>>>>>!=0A>>>>>=A0! A13=A0=A0 A(1,3,11)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0 96.7028=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0 -0.0001=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! A14=A0=A0 A(9,3,10)=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 111.1913=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX = =3D=A0=A0 -0.0001=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>= =A0! A15=A0=A0 A(9,3,11)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 112.1111=A0=A0= =A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.0001=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! A16=A0=A0 A(10,3,11)=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0 136.6976=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! A17=A0=A0 = A(2,4,11)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 95.2594=A0=A0=A0=A0=A0=A0= =A0=A0 -DE/DX =3D=A0=A0 -0.0002=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>= >>>>!=0A>>>>>=A0! A18=A0=A0 A(2,4,12)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 1= 54.9369=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0 -0.0001=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! A19=A0=A0 A(8,4,11)=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0 106.7444=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0 = -0.0002=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! A20=A0= =A0 A(8,4,12)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 143.4519=A0=A0=A0=A0=A0= =A0=A0=A0 -DE/DX =3D=A0=A0 -0.0001=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 = =0A>>>>>!=0A>>>>>=A0! A21=A0=A0 A(11,4,12)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= 109.8037=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.0003=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! A22=A0=A0 L(1,7,2,4,-1)=A0= =A0=A0=A0=A0=A0=A0=A0 285.8641=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0 -0.= 0011=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! A23=A0=A0= L(3,11,4,2,-1)=A0=A0=A0=A0=A0=A0=A0 168.2659=A0=A0=A0=A0=A0=A0=A0=A0 -DE/D= X =3D=A0=A0 -0.0003=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>= >=A0! A24=A0=A0 L(1,7,2,4,-2)=A0=A0=A0=A0=A0=A0=A0=A0 180.0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! A25=A0=A0 L(3,11,4,2,-2)=A0=A0=A0=A0= =A0=A0=A0 180.0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.0=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! D1=A0= =A0=A0 D(3,1,2,4)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 0.0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! D2=A0=A0=A0 D(3,1,2,8)=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0 180.0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0= =A0 0.0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>= =A0! D3=A0=A0=A0 D(5,1,2,4)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 102.9058=A0=A0= =A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.0001=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! D4=A0=A0=A0 D(5,1,2,8)=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0 -77.0942=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.0001=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! D5=A0=A0=A0 D(6,= 1,2,4)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 -102.9058=A0=A0=A0=A0=A0=A0=A0=A0 -DE/= DX =3D=A0=A0 -0.0001=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>= >>=A0! D6=A0=A0=A0 D(6,1,2,8)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 77.0942= =A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0 -0.0001=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! D7=A0=A0=A0 D(9,1,2,4)=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0 0.0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0= =A0=A0 0.0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>= >=A0! D8=A0=A0=A0 D(9,1,2,8)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 180.0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! D9=A0=A0=A0 D(5,1,3,10)=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0 126.5651=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0= =A0=A0 0.0004=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! = D10=A0=A0 D(5,1,3,11)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 -53.4349=A0=A0=A0=A0=A0= =A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.0004=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =0A>>>>>!=0A>>>>>=A0! D11=A0=A0 D(6,1,3,10)=A0=A0=A0=A0=A0=A0=A0=A0=A0 -12= 6.5651=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0 -0.0004=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! D12=A0=A0 D(6,1,3,11)=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0 53.4349=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0 -= 0.0004=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! D13=A0= =A0 D(7,1,3,10)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 180.0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0 =0A>>>>>!=0A>>>>>=A0! D14=A0=A0 D(7,1,3,11)=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0 0.0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.0= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! D15= =A0=A0 D(7,2,4,11)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 180.0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! D16=A0=A0 D(7,2,4,12)=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0 0.0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.= 0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! D17= =A0=A0 D(1,3,4,2)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 0.0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! D18=A0=A0 D(1,3,4,8)=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0 0.0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0= =A0=A0 0.0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>= >=A0! D19=A0=A0 D(1,3,4,12)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 180.0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! D20=A0=A0 D(9,3,4,2)=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0 0.0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D= =A0=A0=A0 0.0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>= >>>>=A0! D21=A0=A0 D(9,3,4,8)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 0.0=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! D22=A0=A0 D(9,3,4,12)=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0 180.0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX = =3D=A0=A0=A0 0.0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!= =0A>>>>>=A0! D23=A0=A0 D(10,3,4,2)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 180.0=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0! D24=A0=A0 D(10,3,4,8)=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0 180.0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX = =3D=A0=A0=A0 0.0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!= =0A>>>>>=A0! D25=A0=A0 D(10,3,4,12)=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 0.0=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 -DE/DX =3D=A0=A0=A0 0.0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>!=0A>>>>>=A0---------------------------= -----------------------------------------------------=0A>>>>>=0A>>>>>=A0Gra= dGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad=0A>>>= >>=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0 Input orientation:=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0 =0A>>>>>=A0---------------------------------------= ------------------------------=0A>>>>>=A0Center=A0=A0=A0=A0 Atomic=A0=A0=A0= =A0 Atomic=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 Coordinates (Angstroms)= =0A>>>>>=A0Number=A0=A0=A0=A0 Number=A0=A0=A0=A0=A0 Type=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0 X=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 Y=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0 Z=0A>>>>>=A0--------------------------------------------------= -------------------=0A>>>>>=A0=A0=A0 1=A0=A0=A0=A0=A0=A0=A0=A0=A0 8=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 0=A0=A0=A0=A0=A0=A0=A0 0.184505=A0=A0=A0 0.0= 00000=A0=A0=A0 0.154984=0A>>>>>=A0=A0=A0 2=A0=A0=A0=A0=A0=A0=A0=A0=A0 8=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 0=A0=A0=A0=A0=A0=A0=A0 0.033034=A0=A0=A0 = 0.000000=A0=A0=A0 2.881640=0A>>>>>=A0=A0=A0 3=A0=A0=A0=A0=A0=A0=A0=A0=A0 8= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 0=A0=A0=A0=A0=A0=A0=A0 4.161469=A0=A0= =A0 0.000000=A0=A0=A0 0.583652=0A>>>>>=A0=A0=A0 4=A0=A0=A0=A0=A0=A0=A0=A0= =A0 8=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 0=A0=A0=A0=A0=A0=A0=A0 4.011921= =A0=A0=A0 0.000000=A0=A0=A0 3.292071=0A>>>>>=A0=A0=A0 5=A0=A0=A0=A0=A0=A0= =A0=A0=A0 1=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 0=A0=A0=A0=A0=A0=A0 -0.0327= 03=A0=A0 -0.765799=A0=A0=A0 0.712955=0A>>>>>=A0=A0=A0 6=A0=A0=A0=A0=A0=A0= =A0=A0=A0 1=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 0=A0=A0=A0=A0=A0=A0 -0.0327= 03=A0=A0=A0 0.765799=A0=A0=A0 0.712955=0A>>>>>=A0=A0=A0 7=A0=A0=A0=A0=A0=A0= =A0=A0=A0 1=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 0=A0=A0=A0=A0=A0=A0=A0 0.99= 5253=A0=A0=A0 0.000000=A0=A0=A0 3.035531=0A>>>>>=A0=A0=A0 8=A0=A0=A0=A0=A0= =A0=A0=A0=A0 1=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 0=A0=A0=A0=A0=A0=A0 -0.4= 38867=A0=A0=A0 0.000000=A0=A0=A0 3.727326=0A>>>>>=A0=A0=A0 9=A0=A0=A0=A0=A0= =A0=A0=A0=A0 1=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 0=A0=A0=A0=A0=A0=A0=A0 3= .261177=A0=A0=A0 0.000000=A0=A0=A0 0.215677=0A>>>>>=A0=A0 10=A0=A0=A0=A0=A0= =A0=A0=A0=A0 1=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 0=A0=A0=A0=A0=A0=A0=A0 4= .826475=A0=A0=A0 0.000000=A0=A0 -0.117892=0A>>>>>=A0=A0 11=A0=A0=A0=A0=A0= =A0=A0=A0=A0 1=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 0=A0=A0=A0=A0=A0=A0=A0 4= .189967=A0=A0=A0 0.000000=A0=A0=A0 2.324276=0A>>>>>=A0=A0 12=A0=A0=A0=A0=A0= =A0=A0=A0=A0 1=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 0=A0=A0=A0=A0=A0=A0=A0 4= .842678=A0=A0=A0 0.000000=A0=A0=A0 3.787965=0A>>>>>=A0---------------------= ------------------------------------------------=0A>>>>>=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 Distance matrix (angstroms):=0A>>>>= >=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 1=A0=A0=A0=A0=A0= =A0=A0=A0=A0 2=A0=A0=A0=A0=A0=A0=A0=A0=A0 3=A0=A0=A0=A0=A0=A0=A0=A0=A0 4=A0= =A0=A0=A0=A0=A0=A0=A0=A0 5=0A>>>>>=A0=A0=A0=A0 1=A0 O=A0=A0=A0 0.000000=0A>= >>>>=A0=A0=A0=A0 2=A0 O=A0=A0=A0 2.730860=A0=A0 0.000000=0A>>>>>=A0=A0=A0= =A0 3=A0 O=A0=A0=A0 4.000000=A0=A0 4.724906=A0=A0 0.000000=0A>>>>>=A0=A0=A0= =A0 4=A0 O=A0=A0=A0 4.948780=A0=A0 4.000000=A0=A0 2.712545=A0=A0 0.000000= =0A>>>>>=A0=A0=A0=A0 5=A0 H=A0=A0=A0 0.972090=A0=A0 2.300862=A0=A0 4.265472= =A0=A0 4.857702=A0=A0 0.000000=0A>>>>>=A0=A0=A0=A0 6=A0 H=A0=A0=A0 0.972090= =A0=A0 2.300862=A0=A0 4.265472=A0=A0 4.857702=A0=A0 1.531598=0A>>>>>=A0=A0= =A0=A0 7=A0 H=A0=A0=A0 2.992467=A0=A0 0.974448=A0=A0 4.004577=A0=A0 3.02755= 7=A0=A0 2.652829=0A>>>>>=A0=A0=A0=A0 8=A0 H=A0=A0=A0 3.626323=A0=A0 0.96843= 9=A0=A0 5.571875=A0=A0 4.472020=A0=A0 3.136535=0A>>>>>=A0=A0=A0=A0 9=A0 H= =A0=A0=A0 3.077270=A0=A0 4.186678=A0=A0 0.972590=A0=A0 3.166673=A0=A0 3.418= 096=0A>>>>>=A0=A0=A0 10=A0 H=A0=A0=A0 4.649983=A0=A0 5.654580=A0=A0 0.96664= 1=A0=A0 3.505901=A0=A0 4.988824=0A>>>>>=A0=A0=A0 11=A0 H=A0=A0=A0 4.555168= =A0=A0 4.194133=A0=A0 1.740858=A0=A0 0.984036=A0=A0 4.584076=0A>>>>>=A0=A0= =A0 12=A0 H=A0=A0=A0 5.907378=A0=A0 4.894293=A0=A0 3.275922=A0=A0 0.967506= =A0=A0 5.814764=0A>>>>>=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0 6=A0=A0=A0=A0=A0=A0=A0=A0=A0 7=A0=A0=A0=A0=A0=A0=A0=A0=A0 8=A0=A0=A0= =A0=A0=A0=A0=A0=A0 9=A0=A0=A0=A0=A0=A0=A0=A0 10=0A>>>>>=A0=A0=A0=A0 6=A0 H= =A0=A0=A0 0.000000=0A>>>>>=A0=A0=A0=A0 7=A0 H=A0=A0=A0 2.652829=A0=A0 0.000= 000=0A>>>>>=A0=A0=A0=A0 8=A0 H=A0=A0=A0 3.136535=A0=A0 1.592257=A0=A0 0.000= 000=0A>>>>>=A0=A0=A0=A0 9=A0 H=A0=A0=A0 3.418096=A0=A0 3.617456=A0=A0 5.101= 177=A0=A0 0.000000=0A>>>>>=A0=A0=A0 10=A0 H=A0=A0=A0 4.988824=A0=A0 4.96209= 0=A0=A0 6.519933=A0=A0 1.600445=A0=A0 0.000000=0A>>>>>=A0=A0=A0 11=A0 H=A0= =A0=A0 4.584076=A0=A0 3.272932=A0=A0 4.836802=A0=A0 2.304093=A0=A0 2.523753= =0A>>>>>=A0=A0=A0 12=A0 H=A0=A0=A0 5.814764=A0=A0 3.920311=A0=A0 5.281894= =A0=A0 3.906711=A0=A0 3.905890=0A>>>>>=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0 11=A0=A0=A0=A0=A0=A0=A0=A0 12=0A>>>>>=A0=A0=A0 11=A0 H= =A0=A0=A0 0.000000=0A>>>>>=A0=A0=A0 12=A0 H=A0=A0=A0 1.602627=A0=A0 0.00000= 0=0A>>>>>=A0Stoichiometry=A0=A0=A0 H8O4=0A>>>>>=A0Framework group=A0 CS[SG(= H6O4),X(H2)]=0A>>>>>=A0Deg. of freedom=A0=A0=A0 20=0A>>>>>=A0Full point gro= up=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 CS=0A>>>>>=A0Largest Abe= lian subgroup=A0=A0=A0=A0=A0=A0=A0=A0 CS=A0=A0=A0=A0=A0 NOp=A0=A0 2=0A>>>>>= =A0Largest concise Abelian subgroup CS=A0=A0=A0=A0=A0 NOp=A0=A0 2=0A>>>>>= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 St= andard orientation:=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0 =0A>>>>>=A0---------------------------------------------= ------------------------=0A>>>>>=A0Center=A0=A0=A0=A0 Atomic=A0=A0=A0=A0 At= omic=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 Coordinates (Angstroms)=0A>>>>>= =A0Number=A0=A0=A0=A0 Number=A0=A0=A0=A0=A0 Type=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0=A0=A0=A0 X=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 Y=A0=A0=A0=A0=A0=A0=A0=A0=A0= =A0 Z=0A>>>>>=A0-----------------------------------------------------------= ----------=0A>>>>>=A0=A0=A0 1=A0=A0=A0=A0=A0=A0=A0=A0=A0 8=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0 0=A0=A0=A0=A0=A0=A0 -2.501070=A0=A0=A0 0.069787=A0=A0= =A0 0.000000=0A>>>>>=A0=A0=A0 2=A0=A0=A0=A0=A0=A0=A0=A0=A0 8=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0 0=A0=A0=A0=A0=A0=A0 -0.827351=A0=A0=A0 2.227623=A0=A0= =A0 0.000000=0A>>>>>=A0=A0=A0 3=A0=A0=A0=A0=A0=A0=A0=A0=A0 8=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0 0=A0=A0=A0=A0=A0=A0=A0 0.782472=A0=A0 -2.214584=A0=A0= =A0 0.000000=0A>>>>>=A0=A0=A0 4=A0=A0=A0=A0=A0=A0=A0=A0=A0 8=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0 0=A0=A0=A0=A0=A0=A0=A0 2.445684=A0=A0 -0.071777=A0=A0= =A0 0.000000=0A>>>>>=A0=A0=A0 5=A0=A0=A0=A0=A0=A0=A0=A0=A0 1=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0 0=A0=A0=A0=A0=A0=A0 -2.299150=A0=A0=A0 0.633470=A0=A0= =A0 0.765799=0A>>>>>=A0=A0=A0 6=A0=A0=A0=A0=A0=A0=A0=A0=A0 1=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0 0=A0=A0=A0=A0=A0=A0 -2.299150=A0=A0=A0 0.633470=A0=A0= -0.765799=0A>>>>>=A0=A0=A0 7=A0=A0=A0=A0=A0=A0=A0=A0=A0 1=A0=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0 0=A0=A0=A0=A0=A0=A0=A0 0.000000=A0=A0=A0 1.712804=A0= =A0=A0 0.000000=0A>>>>>=A0=A0=A0 8=A0=A0=A0=A0=A0=A0=A0=A0=A0 1=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0 0=A0=A0=A0=A0=A0=A0 -0.629035=A0=A0=A0 3.175540=A0= =A0=A0 0.000000=0A>>>>>=A0=A0=A0 9=A0=A0=A0=A0=A0=A0=A0=A0=A0 1=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0 0=A0=A0=A0=A0=A0=A0 -0.138519=A0=A0 -1.901999=A0= =A0=A0 0.000000=0A>>>>>=A0=A0 10=A0=A0=A0=A0=A0=A0=A0=A0=A0 1=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0 0=A0=A0=A0=A0=A0=A0=A0 0.824466=A0=A0 -3.180313=A0= =A0=A0 0.000000=0A>>>>>=A0=A0 11=A0=A0=A0=A0=A0=A0=A0=A0=A0 1=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0 0=A0=A0=A0=A0=A0=A0=A0 1.945446=A0=A0 -0.919177=A0= =A0=A0 0.000000=0A>>>>>=A0=A0 12=A0=A0=A0=A0=A0=A0=A0=A0=A0 1=A0=A0=A0=A0= =A0=A0=A0=A0=A0=A0=A0=A0 0=A0=A0=A0=A0=A0=A0=A0 3.398064=A0=A0 -0.242189=A0= =A0=A0 0.000000=0A>>>>>=A0-------------------------------------------------= --------------------=0A>>>>>=A0Rotational constants (GHZ):=A0=A0=A0=A0=A0 3= .6566956=A0=A0=A0=A0=A0 1.7161673=A0=A0=A0=A0=A0 1.1744164=0A>>>>>=A0******= ****************************************************************=0A>>>>>=A0= =A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 Population analysis using the SCF density.= =0A>>>>>=A0****************************************************************= ******=0A>>>>>=A0Electronic spatial extent (au):=A0 =3D=A0=A0 919.200= 8=0A>>>>>=A0Charge=3D=A0=A0=A0=A0 0.0000 electrons=0A>>>>>=A0Dipole moment = (field-independent basis, Debye):=0A>>>>>=A0=A0=A0 X=3D=A0=A0=A0=A0 1.8028= =A0=A0=A0 Y=3D=A0=A0=A0 -0.6387=A0=A0=A0 Z=3D=A0=A0=A0=A0 0.0000=A0 Tot=3D= =A0=A0=A0=A0 1.9126=0A>>>>>=A0Quadrupole moment (field-independent basis, D= ebye-Ang):=0A>>>>>=A0=A0 XX=3D=A0=A0 -30.6350=A0=A0 YY=3D=A0=A0=A0 -7.6894= =A0=A0 ZZ=3D=A0=A0 -26.4884=0A>>>>>=A0=A0 XY=3D=A0=A0=A0 -5.0915=A0=A0 XZ= =3D=A0=A0=A0=A0 0.0000=A0=A0 YZ=3D=A0=A0=A0=A0 0.0000=0A>>>>>=A0Traceless Q= uadrupole moment (field-independent basis, Debye-Ang):=0A>>>>>=A0=A0 XX=3D= =A0=A0=A0 -9.0307=A0=A0 YY=3D=A0=A0=A0 13.9149=A0=A0 ZZ=3D=A0=A0=A0 -4.8841= =0A>>>>>=A0=A0 XY=3D=A0=A0=A0 -5.0915=A0=A0 XZ=3D=A0=A0=A0=A0 0.0000=A0=A0 = YZ=3D=A0=A0=A0=A0 0.0000=0A>>>>>=A0Octapole moment (field-independent basis= , Debye-Ang**2):=0A>>>>>=A0 XXX=3D=A0=A0=A0 53.7799=A0 YYY=3D=A0=A0=A0 -7.6= 173=A0 ZZZ=3D=A0=A0=A0=A0 0.0000=A0 XYY=3D=A0=A0=A0=A0 5.7536=0A>>>>>=A0 XX= Y=3D=A0=A0=A0 -2.5321=A0 XXZ=3D=A0=A0=A0=A0 0.0000=A0 XZZ=3D=A0=A0=A0 -7.11= 77=A0 YZZ=3D=A0=A0=A0=A0 1.2264=0A>>>>>=A0 YYZ=3D=A0=A0=A0=A0 0.0000=A0 XYZ= =3D=A0=A0=A0=A0 0.0000=0A>>>>>=A0Hexadecapole moment (field-independent bas= is, Debye-Ang**3):=0A>>>>>=A0XXXX=3D=A0 -509.3830 YYYY=3D=A0 -156.7525 ZZZZ= =3D=A0=A0 -23.2511 XXXY=3D=A0=A0=A0 30.6051=0A>>>>>=A0XXXZ=3D=A0=A0=A0=A0 0= .0000 YYYX=3D=A0=A0=A0 48.4794 YYYZ=3D=A0=A0=A0=A0 0.0000 ZZZX=3D=A0=A0=A0= =A0 0.0000=0A>>>>>=A0ZZZY=3D=A0=A0=A0=A0 0.0000 XXYY=3D=A0 -160.2397 XXZZ= =3D=A0=A0 -90.8949 YYZZ=3D=A0=A0 -82.4570=0A>>>>>=A0XXYZ=3D=A0=A0=A0=A0 0.0= 000 YYXZ=3D=A0=A0=A0=A0 0.0000 ZZXY=3D=A0=A0=A0 26.3538=0A>>>>>=A0Atom=A0= =A0 7 needs variable=A0=A0 8=3D=A0=A0 0.9744477035 but is=A0=A0=A0 0.972089= 8606=0A>>>>>=A0Input z-matrix variables are not compatible with final struc= ture.=0A>>>>>=0A>>>>>=A0FAULTILY FAULTLESS, ICILY REGULAR, SPLENDIDLY NULL.= ..=0A>>>>>=A0=A0=A0=A0=A0=A0=A0=A0=A0=A0 MAUDE BY TENNYSON=0A>>>>>=A0Error = termination request processed by link 9999.=0A>>>>>=A0Error termination via= Lnk1e in C:\G03W\l9999.exe at Thu Nov 04 19:09:35 =0A>>2010.=0A>>>>>=A0Job= cpu time:=A0 0 days=A0 1 hours 13 minutes 15.0 seconds.=0A>>>>>=A0File len= gths (MBytes):=A0 RWF=3D=A0=A0=A0=A0 20 Int=3D=A0=A0=A0=A0=A0 0 D2E=3D=A0= =A0=A0=A0=A0 0 Chk=3D=A0=A0=A0=A0 11 =0A>>>>>Scr=3D=A0=A0=A0=A0=A0 1=0A>>>>= >=0A>>>>>=A0Any insight would be very helpful.=0A>>>>>=0A>>>>>=0A>>>>>=A0Th= anks!=0A>>>>>=0A>>>>> =0A>>>> =0A>>> =0A>> =0A> =0A=0A=0A=0A --0-851426031-1294244716=:3378 Content-Type: text/html; charset=iso-8859-1 Content-Transfer-Encoding: quoted-printable
=0A
Increase number of optimization step. If water= molecule is oscillating back and forth in a very shallow potential energy = surface, using CalcFC (or SCF=3DQC) may help.
=0A
Thanks,
=0A=
Delwar

=0A

=0A
=0A
=0AFrom= : "Bilel Mansouri bilelmansouri80-,-yahoo.fr" <owner-chemistr= y.^_^.ccl.net>
To: "Hossa= in, Delwar " <hossaind2004.^_^.yahoo.com>
Sent: Tue, January 4, 2011 11:51:53 AM
Subject: CCL:G: help
<= BR>=0A=0A=0A= =0A

=0A

=0A
=0A=0A=0A= =0A

=0A
=0A
=0A=0A= =0A=0A

=0A

=0A
=0A=0A=0A=0A
=0A
= =0A
=0A=0A=0A=0A
=0A


HI
> I'm doing a (what I thought was simple) test jo= b of tow water molecules whith supermolecule methode using B= 3LYP
=0A
and I use the following input job
=0A
# opt=3D(modredundant,maxcycles=3D999), In= t(Grid=3DULTRAFIN)  B3LYP/6-311g
=0A
g counterpoise=3D2
I have the error mess= age  and i use the keyword int=3Dgrid=3Dultrafine
=0A
&n= bsp;
=0A
 
=0A
      Item&n= bsp;            = ;  Value     Threshold  Converged?
 M= aximum Force          &nb= sp; 0.000882     0.000450     NO  RMS     Force     &nbs= p;      0.000269     0.000300&= nbsp;    NO
=0A
=0A
=0A
=0A
= Maximum Displacement     0.056470   &nbs= p; 0.001800     NO
 RMS    = ; Displacement     0.014132     0.0= 01200     NO
 Predicted change in Energy=3D-1.= 659919D-03
 Optimization stopped.
    -- Number o= f steps exceeded,  NStep=3D 100
    -- Flag reset to= prevent archiving.
        &nbs= p;            &= nbsp;     ----------------------------
  &= nbsp;           &nbs= p;            ! Non-= Optimized Parameters !
           &nb= sp;            =    ! (Angstroms and Degrees)  !
 -------------------= -------           &n= bsp;            = ;    --------------------------
 ! Name  Defini= tion            = ;  Value          Derivat= ive Info.           =      !
 ---------------------------------------= -----------------------------------------
 ! R1    R= (1,3)           &nbs= p;      3.9996         -DE/DX =3D &nb= sp; -0.0023          &nbs= p;   !
 ! R2    R(1,5)   &n= bsp;            = ;  1.003          -DE/DX = =3D    0.0        &n= bsp;        !
 ! R3  &= nbsp; R(1,6)          &nb= sp;       1.003     =      -DE/DX =3D    0.0   =             &nb= sp; !
 ! R4    R(1,7)     &= nbsp;            2.9817         -DE/DX =3D &nb= sp; -0.0009          &nbs= p;   !
 ! R5    R(1,9)   &n= bsp;            = ;  3.0732         -DE/DX =3D&n= bsp;  -0.001         &nbs= p;     !
 ! R6    R(2,4) &n= bsp;            = ;    3.9997         = -DE/DX =3D   -0.0029       &nb= sp;      !
 ! R7    R(2,7)&= nbsp;           &nbs= p;     0.9737         -DE/DX =3D &nb= sp;  0.0004          = ;    !
 ! R8    R(2,8)  &nb= sp;            =    0.9697         -DE/DX = =3D    0.0007        = ;      !
 ! R9    R(3,9)&nb= sp;            =      0.9722       &n= bsp; -DE/DX =3D   -0.0013      &nbs= p;       !
 ! R10   R(3,10)=             &nb= sp;    0.9664         -DE/DX =3D &nb= sp; -0.0001          &nbs= p;   !
 ! R11   R(3,11)    =              1.= 7428         -DE/DX =3D  =   0.0002          &n= bsp;   !
 ! R12   R(4,8)    = ;            &n= bsp; 4.4728         -DE/DX =3D = ;  -0.0008          =     !
 ! R13   R(4,11)   &n= bsp;            = ; 0.981          -DE/DX =3D    0.0003       &nbs= p;      !
 ! R14   R(4,12) =             &nb= sp;   0.9659         -DE/= DX =3D    0.0        = ;         !
 ! A1 &nbs= p;  A(3,1,5)         &nbs= p;     99.0096       = ;  -DE/DX =3D    0.0      = ;           !
 ! = A2    A(3,1,6)       &nbs= p;       99.0096     = ;    -DE/DX =3D    0.0            = ;     !
 ! A3    A(3,1,7) &= nbsp;           &nbs= p; 68.5648         -DE/DX =3D =    0.0          = ;       !
 ! A4    A(5= ,1,6)           &nbs= p;  104.9845         -DE/DX = =3D   -0.0007        &nbs= p;     !
 ! A5    A(5,1,7) =             &nb= sp; 60.6293         -DE/DX =3D = ;  -0.0003           &= nbsp;  !
 ! A6    A(5,1,9)   &nb= sp;          101.859 &nbs= p;        -DE/DX =3D    0= .0001           &nbs= p;  !
 ! A7    A(6,1,7)    =            60.6293 &= nbsp;       -DE/DX =3D   -0.0003&nb= sp;            = !
 ! A8    A(6,1,9)     &n= bsp;        101.859   &nb= sp;      -DE/DX =3D    0.0001 =              !
 ! A9    A(7,1,9)     &n= bsp;         73.3866  &nb= sp;      -DE/DX =3D    0.0 &nb= sp;            =    !
 ! A10   A(4,2,7)    &= nbsp;           3.2523&nb= sp;        -DE/DX =3D    = 0.001           &nbs= p;   !
 ! A11   A(7,2,8)    = ;          110.0485  = ;       -DE/DX =3D    0.0001&n= bsp;            = ; !
 ! A12   A(1,3,10)           = ;  126.5996         -DE/DX =3D=     0.0001        &n= bsp;     !
 ! A13   A(1,3,11) &n= bsp;            96.7= 028         -DE/DX =3D   = -0.0001           &n= bsp;  !
 ! A14   A(9,3,10)    &n= bsp;        111.1913   &n= bsp;     -DE/DX =3D   -0.0001  &nbs= p;           !
 != A15   A(9,3,11)        &= nbsp;    112.1111         -DE/DX =3D &= nbsp;  0.0001         &nb= sp;    !
 ! A16   A(10,3,11)  &n= bsp;         136.6976  &n= bsp;      -DE/DX =3D    0.0 &n= bsp;            = ;   !
 ! A17   A(2,4,11)    = ;          95.2594  =        -DE/DX =3D   -0.0002 &n= bsp;            ! ! A18   A(2,4,12)       = ;      154.9369      = ;   -DE/DX =3D   -0.0001           &= nbsp;  !
 ! A19   A(8,4,11)    &= nbsp;        106.7444   &= nbsp;     -DE/DX =3D   -0.0002  &nb= sp;           !
 = ! A20   A(8,4,12)        =      143.4519       =   -DE/DX =3D   -0.0001      &n= bsp;       !
 ! A21   A(11,= 4,12)            109= .8037         -DE/DX =3D  = ;  0.0003          &= nbsp;   !
 ! A22   L(1,7,2,4,-1)         285.8641&nbs= p;        -DE/DX =3D   -0.0011=             &nb= sp; !
 ! A23   L(3,11,4,2,-1)    &nbs= p;   168.2659         -DE= /DX =3D   -0.0003        =       !
 ! A24   L(1,7,2,4,-2)&n= bsp;        180.0    = ;        -DE/DX =3D    0.= 0            &n= bsp;    !
 ! A25   L(3,11,4,2,-2) &nb= sp;      180.0      =       -DE/DX =3D    0.0            = ;     !
 ! D1    D(3,1,2,4) = ;             0= .0            -DE/DX= =3D    0.0        &= nbsp;        !
 ! D2  =   D(3,1,2,8)         &nbs= p;  180.0          &= nbsp; -DE/DX =3D    0.0      &= nbsp;          !
 ! D3=     D(5,1,2,4)       &nbs= p;    102.9058       &nbs= p; -DE/DX =3D    0.0001           &n= bsp;  !
 ! D4    D(5,1,2,8)   &n= bsp;        -77.0942   &n= bsp;     -DE/DX =3D    0.0001  = ;            !
&n= bsp;! D5    D(6,1,2,4)      &n= bsp;    -102.9058       &= nbsp; -DE/DX =3D   -0.0001      &nb= sp;       !
 ! D6    D= (6,1,2,8)           =   77.0942         -DE/DX =3D&n= bsp;  -0.0001         &nb= sp;    !
 ! D7    D(9,1,2,4)          &nbs= p;   0.0         &nb= sp;  -DE/DX =3D    0.0     &nb= sp;           !
 = ! D8    D(9,1,2,8)       =      180.0       &nb= sp;    -DE/DX =3D    0.0   &nb= sp;            = !
 ! D9    D(5,1,3,10)     = ;      126.5651      = ;   -DE/DX =3D    0.0004    &n= bsp;         !
 ! D10 =   D(5,1,3,11)           -5= 3.4349         -DE/DX =3D &nbs= p;  0.0004          =     !
 ! D11   D(6,1,3,10)  &nbs= p;       -126.5651    &nb= sp;    -DE/DX =3D   -0.0004    = ;          !
 ! D12&nb= sp;  D(6,1,3,11)         =    53.4349         -DE/DX= =3D   -0.0004        &nb= sp;     !
 ! D13   D(7,1,3,10) &= nbsp;         180.0  &nbs= p;         -DE/DX =3D    0.0        &= nbsp;        !
 ! D14  = ; D(7,1,3,11)          &n= bsp;  0.0          &= nbsp; -DE/DX =3D    0.0      &= nbsp;          !
 ! D1= 5   D(7,2,4,11)        &n= bsp;  180.0          = ;  -DE/DX =3D    0.0      = ;           !
 ! = D16   D(7,2,4,12)        =      0.0        = ;    -DE/DX =3D    0.0            = ;     !
 ! D17   D(1,3,4,2) &nbs= p;            0.0&nb= sp;           -DE/DX =3D&= nbsp;   0.0         =         !
 ! D18   D(1= ,3,4,8)           &n= bsp;  0.0          &= nbsp; -DE/DX =3D    0.0      &= nbsp;          !
 ! D1= 9   D(1,3,4,12)        &n= bsp;  180.0          = ;  -DE/DX =3D    0.0            = ;     !
 ! D20   D(9,3,4,2) &nbs= p;            0.0&nb= sp;           -DE/DX =3D&= nbsp;   0.0         =         !
 ! D21   D(9= ,3,4,8)           &n= bsp;  0.0          &= nbsp; -DE/DX =3D    0.0      &= nbsp;          !
 ! D2= 2   D(9,3,4,12)        &n= bsp;  180.0          = ;  -DE/DX =3D    0.0            = ;     !
 ! D23   D(10,3,4,2) &nb= sp;         180.0   =          -DE/DX =3D  &nbs= p; 0.0           &nb= sp;     !
 ! D24   D(10,3,4,8) &= nbsp;         180.0  &nbs= p;         -DE/DX =3D  &n= bsp; 0.0           &= nbsp;     !
 ! D25   D(10,3,4,12)&nbs= p;           0.0 &nb= sp;          -DE/DX =3D &= nbsp;  0.0            = ;     !
 --------------------------------------= ------------------------------------------
 GradGradGradGradGradGra= dGradGradGradGradGradGradGradGradGradGradGradGrad
=0A
  =             &nb= sp;           Input orien= tation:           &n= bsp;            = ; 
 ---------------------------------------------------------= ------------
 Center     Atomic  &nbs= p;  Atomic          =     Coordinates (Angstroms)
 Number   = ;  Number      Type    &n= bsp;         X   &nb= sp;       Y     &nbs= p;     Z
 ---------------------------------------------------------------= ------
    1       &nb= sp;  8          &nbs= p;  0        0.184505  &n= bsp; 0.000000    0.154984
    2  = ;        8     =         0     &= nbsp;  0.033034    0.000000    2.881640<= BR>    3        &nbs= p; 8            = ; 0        4.161469    0.= 000000    0.583652
    4   =        8             = 0        4.011921    0.00= 0000    3.292071
    5   &n= bsp;      1      &nb= sp;      0       -0.= 032703   -0.765799    0.712955
  &nbs= p; 6          1  &nb= sp;          0  &nbs= p;    -0.032703    0.765799   = 0.712955
    7       =    1          &= nbsp;  0        0.995253  = ;  0.000000    3.035531
    8          1   = ;          0   =     -0.438867    0.000000    3= .727326
    9       &n= bsp;  1          &nb= sp;  0        3.261177  &= nbsp; 0.000000    0.215677
   10  &nb= sp;       1     &nbs= p;       0      = ;  4.826475    0.000000   -0.117892
 =   11          1 &nbs= p;           0  = ;      4.189967    0.000000    2.324276
   12   &n= bsp;      1      &nb= sp;      0      &nbs= p; 4.842678    0.000000    3.787965
 = ---------------------------------------------------------------------
&n= bsp;            = ;       Distance matrix (angstroms):
 = ;            &n= bsp;      1      &nb= sp;   2          3&n= bsp;         4   &nb= sp;      5
     1  O&n= bsp;   0.000000
     2  O    2.730860   0.000000
   &nb= sp; 3  O    4.000000   4.724906   0= .000000
     4  O    4.948780&nb= sp;  4.000000   2.712545   0.000000
  = ;   5  H    0.972090   2.300862&nbs= p;  4.265472   4.857702   0.000000
  =    6  H    0.972090   2.300862 = ;  4.265472   4.857702   1.531598
  &= nbsp;  7  H    2.992467   0.974448 =   4.004577   3.027557   2.652829
  &n= bsp;  8  H    3.626323   0.968439 &= nbsp; 5.571875   4.472020   3.136535
  &nb= sp;  9  H    3.077270   4.186678   0.972590   3.166673   3.418096    10  H    4.649983   5.654= 580   0.966641   3.505901   4.988824
 = ;   11  H    4.555168   4.194133&nb= sp;  1.740858   0.984036   4.584076
  = ;  12  H    5.907378   4.894293 &nb= sp; 3.275922   0.967506   5.814764
   = ;            &n= bsp;    6        &nb= sp; 7          8  &n= bsp;       9     &nb= sp;   10
     6  H    = 0.000000
     7  H    2.652829   0.000000
     8  H &= nbsp;  3.136535   1.592257   0.000000
 &nb= sp;   9  H    3.418096   3.617456&n= bsp;  5.101177   0.000000
    10  H&n= bsp;   4.988824   4.962090   6.519933 &n= bsp; 1.600445   0.000000
    11  H &n= bsp;  4.584076   3.272932   4.836802   2= .304093   2.523753
    12  H  &n= bsp; 5.814764   3.920311   5.281894   3.90671= 1   3.905890
        &= nbsp;          11  &= nbsp;      12
    11  H&nbs= p;   0.000000
    12  H    1.602627   0.000000
 Stoichiometry&n= bsp;   H8O4
 Framework group  CS[SG(H6O4),X(H2)]
=  Deg. of freedom    20
 Full point group &= nbsp;           &nbs= p;   CS
 Largest Abelian subgroup    =      CS      NOp   2=
 Largest concise Abelian subgroup CS     = NOp   2
         = ;            &n= bsp;   Standard orientation:      &= nbsp;           &nbs= p;     
 ----------------------------------------------------------------= -----
 Center     Atomic    = ; Atomic           &= nbsp;  Coordinates (Angstroms)
 Number    = Number      Type     &nb= sp;        X    &nbs= p;      Y       = ;    Z
 --------------------------------------------= -------------------------
    1    &n= bsp;     8       &nb= sp;     0       -2.501070=     0.069787    0.000000
   = ; 2          8             = 0       -0.827351    2.227623&= nbsp;   0.000000
    3    &= nbsp;     8       &n= bsp;     0        0.= 782472   -2.214584    0.000000
  &nbs= p; 4          8  &nb= sp;          0  &nbs= p;     2.445684   -0.071777   = 0.000000
    5       =    1          &= nbsp;  0       -2.299150  &nbs= p; 0.633470    0.765799
    6          1   = ;          0   =     -2.299150    0.633470   -0.7657= 99
    7        &= nbsp; 1           &n= bsp; 0        0.000000   = 1.712804    0.000000
    8  &nb= sp;       1     &nbs= p;       0      = ; -0.629035    3.175540    0.000000
 =    9          1 = ;            0 =       -0.138519   -1.901999    0.000000
   10   &= nbsp;      1      &n= bsp;      0      &nb= sp; 0.824466   -3.180313    0.000000
 &nbs= p; 11          1  &n= bsp;          0  &nb= sp;     1.945446   -0.919177   = ; 0.000000
   12       &nbs= p;  1           = ;  0        3.398064   -0= .242189    0.000000
 -------------------------------= --------------------------------------
 Rotational constants (GHZ):=       3.6566956      1.7161673    &= nbsp; 1.1744164
=0A
 ****************************************= ******************************
=0A
     &= nbsp;      Population analysis using the SCF densi= ty.
=0A
 ****************************************************= ******************
=0A
 Electronic spatial extent (au): = <R**2>=3D   919.2008
 Charge=3D   &= nbsp; 0.0000 electrons
 Dipole moment (field-independent basis, Deb= ye):
    X=3D     1.8028  &= nbsp; Y=3D    -0.6387    Z=3D  &nbs= p;  0.0000  Tot=3D     1.9126
 Quadru= pole moment (field-independent basis, Debye-Ang):
   XX=3D&nbs= p;  -30.6350   YY=3D    -7.6894   Z= Z=3D   -26.4884
   XY=3D    -5.0915&n= bsp;  XZ=3D     0.0000   YZ=3D &nbs= p;   0.0000
 Traceless Quadrupole moment (field-independe= nt basis, Debye-Ang):
   XX=3D    -9.0307 =   YY=3D    13.9149   ZZ=3D    = -4.8841
   XY=3D    -5.0915   XZ=3D     0.0000   YZ=3D=      0.0000
 Octapole moment (field-independent= basis, Debye-Ang**2):
  XXX=3D    53.7799  YYY= =3D    -7.6173  ZZZ=3D     0.0000&n= bsp; XYY=3D     5.7536
  XXY=3D  &nbs= p; -2.5321  XXZ=3D     0.0000  XZZ=3D &n= bsp;  -7.1177  YZZ=3D     1.2264
  YY= Z=3D     0.0000  XYZ=3D     0.= 0000
 Hexadecapole moment (field-independent basis, Debye-Ang**3):<= BR> XXXX=3D  -509.3830 YYYY=3D  -156.7525 ZZZZ=3D  = ; -23.2511 XXXY=3D    30.6051
 XXXZ=3D  &n= bsp;  0.0000 YYYX=3D    48.4794 YYYZ=3D  &nbs= p;  0.0000 ZZZX=3D     0.0000
 ZZZY=3D&nbs= p;    0.0000 XXYY=3D  -160.2397 XXZZ=3D   -90.8949 YYZZ=3D   -= 82.4570
 XXYZ=3D     0.0000 YYXZ=3D  =    0.0000 ZZXY=3D    26.3538
 Atom &n= bsp; 7 needs variable   8=3D   0.9744477035 but is = ;   0.9720898606
 Input z-matrix variables are not compat= ible with final structure.
=0A

 FAULTILY FAULTLESS, ICILY= REGULAR, SPLENDIDLY NULL...
       &= nbsp;   MAUDE BY TENNYSON
 Error termination request proc= essed by link 9999.
 Error termination via Lnk1e in C:\G03W\l9999.e= xe at Thu Nov 04 19:09:35 2010.
 Job cpu time:  0 days  1= hours 13 minutes 15.0 seconds.
 File lengths (MBytes):  RWF= =3D     20 Int=3D      0 D2E= =3D      0 Chk=3D     11 Scr= =3D      1
=0A
 Any insight woul= d be very helpful.

=0A
 Thanks!







=0A=0A --0-851426031-1294244716=:3378-- From owner-chemistry@ccl.net Wed Jan 5 17:32:00 2011 From: "Wojciech Kolodziejczyk dziecial|icnanotox.org" To: CCL Subject: CCL:G: about .chk file Message-Id: <-43529-110105172522-24389-0d2i9B2IQ+n82GbE9nGxKA:server.ccl.net> X-Original-From: Wojciech Kolodziejczyk Content-Transfer-Encoding: 8bit Content-Type: text/plain; charset=ISO-8859-1 Date: Wed, 5 Jan 2011 23:24:57 +0100 MIME-Version: 1.0 Sent to CCL by: Wojciech Kolodziejczyk [dziecial===icnanotox.org] Hello you have to change it into fchk file at machine you use for your calculation. Use formchk and make .fchk file formchk file.chk file.fchk and then in windows you have to change it again into .chk file with unfchk program unfchk file.fchk file.chk You can find these programs in gaussian folder W. 2011/1/4 marutheeswaran srinivasan maruthees.waran[*]gmail.com : > > Dear all, >               i done calculation  g03 in Linux cluster, but the problem is > .chk file is not read in windows gaussview. please any one give solution for > this problem. > -- > Marutheeswaran S. > Research Scholar, > Chemical Information Sciences, > Department of Chemistry, > Pondicherry University, > Pondicherry, INDIA 605014. > Ph:+91-9884730424 > > From owner-chemistry@ccl.net Wed Jan 5 20:28:00 2011 From: "Andrew Dalke dalke_._dalkescientific.com" To: CCL Subject: CCL: PyMCS - still available? Message-Id: <-43530-110105170102-16908-kEJd5ZsaOPQsBwoekLX4eg/a\server.ccl.net> X-Original-From: Andrew Dalke Content-Transfer-Encoding: 7bit Content-Type: text/plain; charset=us-ascii Date: Wed, 5 Jan 2011 23:00:48 +0100 Mime-Version: 1.0 (Apple Message framework v1082) Sent to CCL by: Andrew Dalke [dalke|*|dalkescientific.com] I'll have to find it first. Andrew dalke__dalkescientific.com On Jan 5, 2011, at 9:35 AM, Vladimir Chupakhin chupvl * gmail.com wrote: > > Sent to CCL by: Vladimir Chupakhin [chupvl~!~gmail.com] > Hello, > > No, the archive seems to be lost for the society :) > Would You be so kind to upload it somewhere? > > -- > Vladimir Chupakhin, > Postdoc at joint project between > Chemoinformatics laboratory and > Structural Chemogenomics group > University of Strasbourg, Strasbourg, France From owner-chemistry@ccl.net Wed Jan 5 22:21:00 2011 From: "Adam Mark Vogt aavogt : ymail.com" To: CCL Subject: CCL: Metalloorganic modeling Message-Id: <-43531-110105221053-13673-kgBx8B6zsRtV6EJ+VX4H7Q * server.ccl.net> X-Original-From: "Adam Mark Vogt" Date: Wed, 5 Jan 2011 22:10:51 -0500 Sent to CCL by: "Adam Mark Vogt" [aavogt[A]ymail.com] I was trying to obtain electrotopologic descriptors for a 3D-QSAR model of a set of organopalladates, and it showed that nothing of the available forcefields (at least that I know of) are not parametrized for transition metals (in my case; palladium). So, I tried to conduct semi-empirical as well as ab initio calculations to calculate point charges using hyperchem, yet regardless of the basis set or method, an error message about the atomic number being not supported always comes out. My questions is, is there some method to successfully simulate the electronic environment at the metal core and its surrounding? Thanks in Advance, Adam Vogt.