From owner-chemistry@ccl.net Tue Apr 1 04:54:00 2014 From: "Ichraf Oueslati ichraf.oueslati~!~obspm.fr" To: CCL Subject: CCL:G: Transition state-imaginary frequency-QST3? Message-Id: <-49882-140401043907-5554-M2HCwVEcpP+IeOo9J5DctA#server.ccl.net> X-Original-From: "Ichraf Oueslati" Date: Tue, 1 Apr 2014 04:39:06 -0400 Sent to CCL by: "Ichraf Oueslati" [ichraf.oueslati**obspm.fr] I am trying to locate a transition structure, using the QST3 approach on the Gaussian program (G09) opt=(calcfc,noeigentest,tight,qst3). I got one large imaginary frequency (about 500cm-1) and one small (less than 10cm-1). I visualized both of those frequencies with MOLDEN: the first one corresponds to the motion of the atom which will be eliminated from the reactant (it is an abstraction reaction). Can I consider that what I got to be a transition state (because I can neglect the small frequency) or a second-order saddle point? How to eliminate the other imaginary frequencies? Thank you in advance for your help P.S: I used the obtained geometry of this "transition state" and I reoptimized using opt=(calcfc,noeigentest,tight,ts). I found only one imaginary frequency. From owner-chemistry@ccl.net Tue Apr 1 08:37:00 2014 From: "lamees hegazy computationalchemist14|-|gmail.com" To: CCL Subject: CCL: Investigating the stability of a polymer condensation reaction Message-Id: <-49883-140331054401-28770-IugUI3rUP5BMFx/ti+kD9A]^[server.ccl.net> X-Original-From: lamees hegazy Content-Type: multipart/alternative; boundary=001a11c16520cf43ab04f5e3e3fb Date: Mon, 31 Mar 2014 05:43:55 -0400 MIME-Version: 1.0 Sent to CCL by: lamees hegazy [computationalchemist14+/-gmail.com] --001a11c16520cf43ab04f5e3e3fb Content-Type: text/plain; charset=ISO-8859-7 Content-Transfer-Encoding: quoted-printable I want to investigate the stability of a polymer condensation reaction qualitatively between phthalic anhydride, ethylene diamine and glycolic acid. I carried out energy optimization at the b3lyp/6-31G(d) level for the three reactants, frequency calculations indicated no imaginary frequencies. I then calculated HOMO and LUMO for each compound. The energy gap values indicate that the reaction is feasible. =C4E (HOMOEthlene diamine - LUMOPhthalic anhydride) =3D - 3.24 eV and =C4E (HOMOEthylene diamine - LUMOGlycolic acid) =3D -4.88 eV My question is: Are these HOMO and LUMO computations enough for studying the stability of the reaction? Do you suggest other set of calculations to qualitatively study the stability of this reaction? Thank you for your help. --001a11c16520cf43ab04f5e3e3fb Content-Type: text/html; charset=ISO-8859-7 Content-Transfer-Encoding: quoted-printable
I want to investigate the stability of a polymer cond= ensation reaction qualitatively between phthalic anhydride, ethylene diamin= e and glycolic acid.

I carried out energy optimiz= ation at the b3lyp/6-31G(d) level for the three reactants, frequency calcul= ations indicated no imaginary frequencies. I then calculated HOMO and LUMO = for each compound.
 The energy gap values indicate that the reaction is feasible.

=C4E (HOMOEthlene= diamine – LUMOPhthalic anhydride= ) =3D - 3.24 eV and
=C4E (HOMOEthylene diamine – LUMOGlycolic acid) =3D -4.88= eV

<= br>
My question is: Are thes= e HOMO and LUMO computations enough for studying the stability of the react= ion?

Do you suggest other set of calculations to qualitatively study the stabili= ty of this reaction?

Thank you for your help.
--001a11c16520cf43ab04f5e3e3fb-- From owner-chemistry@ccl.net Tue Apr 1 09:12:00 2014 From: "Jan Halborg Jensen jhjensen .. chem.ku.dk" To: CCL Subject: CCL: Computational Chemistry Highlights: March issue Message-Id: <-49884-140401041511-3651-TdA+LrDU596r+QK4aypBYA[*]server.ccl.net> X-Original-From: Jan Halborg Jensen Content-Language: en-US Content-Type: multipart/alternative; boundary="_000_318851915CDC487C965AC12B60A12ACEkudk_" Date: Tue, 1 Apr 2014 08:13:34 +0000 MIME-Version: 1.0 Sent to CCL by: Jan Halborg Jensen [jhjensen ~~ chem.ku.dk] --_000_318851915CDC487C965AC12B60A12ACEkudk_ Content-Type: text/plain; charset="utf-8" Content-Transfer-Encoding: base64 VGhlIE1hcmNoIGlzc3VlIG9mIENvbXB1dGF0aW9uYWwgQ2hlbWlzdHJ5IEhpZ2hsaWdodHM8aHR0 cDovL3d3dy5jb21wY2hlbWhpZ2hsaWdodHMub3JnLzIwMTRfMDNfMDFfYXJjaGl2ZS5odG1sPiBp cyBvdXQuDQoNCkNDSCBpcyBhbiBvdmVybGF5IGpvdXJuYWw8aHR0cDovL2VuLndpa2lwZWRpYS5v cmcvd2lraS9PdmVybGF5X2pvdXJuYWw+IHRoYXQgaWRlbnRpZmllcyB0aGUgbW9zdCBpbXBvcnRh bnQgcGFwZXJzIGluIGNvbXB1dGF0aW9uYWwgYW5kIHRoZW9yZXRpY2FsIGNoZW1pc3RyeSBwdWJs aXNoZWQgaW4gdGhlIGxhc3QgMS0yIHllYXJzLiBDQ0ggaXMgbm90IGFmZmlsaWF0ZWQgd2l0aCBh bnkgcHVibGlzaGVyOiBpdCBpcyBhIGZyZWUgcmVzb3VyY2UgcnVuIGJ5IHNjaWVudGlzdHMgZm9y IHNjaWVudGlzdHMuIFlvdSBjYW4gcmVhZCBtb3JlIGFib3V0IGl0IGhlcmU8aHR0cDovL3Byb3Rl aW5zYW5kd2F2ZWZ1bmN0aW9ucy5ibG9nc3BvdC5jb20vMjAxMi8wMi9jb21wdXRhdGlvbmFsLWNo ZW1pc3RyeS1oaWdobGlnaHRzLW5ldy5odG1sPi4NCg0KVGFibGUgb2YgY29udGVudCBmb3IgdGhp cyBpc3N1ZSBmZWF0dXJlcyBjb250cmlidXRpb25zIGZyb20gQ0NIIGVkaXRvcnMgRGF2aWQgQm93 bGVyLCBFc3RlYmFuIFZvaHJpbmdlci1NYXJ0aW5leiwgRnJhbsOnb2lzLVhhdmllciBDb3VkZXJ0 LCBNYXJpbyBCYXJiYXR0aSwgSmFuIEplbnNlbiBhbmQgU3RldmVuIEJhY2hyYWNoOg0KDQpWYWxp ZGF0aW9uIENoYWxsZW5nZSBvZiBEZW5zaXR5LUZ1bmN0aW9uYWwgVGhlb3J5IGZvciBQZXB0aWRl c+KAlEV4YW1wbGUgb2YgQWMtUGhlLUFsYTUtTHlzSCs8aHR0cDovL3d3dy5jb21wY2hlbWhpZ2hs aWdodHMub3JnLzIwMTQvMDMvdmFsaWRhdGlvbi1jaGFsbGVuZ2Utb2YtZGVuc2l0eS5odG1sPg0K DQpJbmR1Y2VkLWZpdCBjYXRhbHlzaXMgb2YgY29yYW5udWxlbmUgYm93bC10by1ib3dsIGludmVy c2lvbjxodHRwOi8vd3d3LmNvbXBjaGVtaGlnaGxpZ2h0cy5vcmcvMjAxNC8wMy9pbmR1Y2VkLWZp dC1jYXRhbHlzaXMtb2YtY29yYW5udWxlbmUuaHRtbD4NCg0KQ29tcGFyaXNvbiBvZiBBYiBJbml0 aW8sIERGVCBhbmQgU2VtaWVtcGlyaWNhbCBRTS9NTSBhcHByb2FjaGVzIGZvciBkZXNjcmlwdGlv biBvZiBjYXRhbHl0aWMgbWVjaGFuaXNtIG9mIGhhaXJwaW4gcmlib3p5bWVzPGh0dHA6Ly93d3cu Y29tcGNoZW1oaWdobGlnaHRzLm9yZy8yMDE0LzAzL2NvbXBhcmlzb24tb2YtYWItaW5pdGlvLWRm dC1hbmQuaHRtbD4NCg0KRGlhbW9uZDogRWxlY3Ryb25pYyBHcm91bmQgU3RhdGUgb2YgQ2FyYm9u IGF0IFRlbXBlcmF0dXJlcyBBcHByb2FjaGluZyAwIEs8aHR0cDovL3d3dy5jb21wY2hlbWhpZ2hs aWdodHMub3JnLzIwMTQvMDMvZGlhbW9uZC1lbGVjdHJvbmljLWdyb3VuZC1zdGF0ZS1vZi5odG1s Pg0KDQpUaGUgViBzdGF0ZSBvZiBldGh5bGVuZTogdmFsZW5jZSBib25kIHRoZW9yeSB0YWtlcyB1 cCB0aGUgY2hhbGxlbmdlPGh0dHA6Ly93d3cuY29tcGNoZW1oaWdobGlnaHRzLm9yZy8yMDE0LzAz L3RoZS12LXN0YXRlLW9mLWV0aHlsZW5lLXZhbGVuY2UtYm9uZC5odG1sPg0KDQpCcmFuY2hpbmcg T3V0IGZyb20gdGhlIEJpc2Fib2x5bCBDYXRpb24uIFVuaWZ5aW5nIE1lY2hhbmlzdGljIFBhdGh3 YXlzIHRvIEJhcmJhdGVuZSwgQmF6emFuZW5lLCBDaGFtaWdyZW5lLCBDaGFtaXBpbmVuZSwgQ3Vt YWNyZW5lLCBDdXByZW5lbmUsIER1bm5pZW5lLCBJc29iYXp6YW5lbmUsIElzby3Osy1iaXNhYm9s ZW5lLCBJc29jaGFtaWdyZW5lLCBMYXVyZW5lLCBNaWNyb2Jpb3RlbmUsIFNlc3F1aXRodWplbmUs IFNlc3F1aXNhYmluZW5lLCBUaHVqb3BzZW5lLCBUcmljaG9kaWVuZSwgYW5kIFdpZGRyYWRpZW5l IFNlc3F1aXRlcnBlbmVzPGh0dHA6Ly93d3cuY29tcGNoZW1oaWdobGlnaHRzLm9yZy8yMDE0LzAz L2JyYW5jaGluZy1vdXQtZnJvbS1iaXNhYm9seWwtY2F0aW9uLmh0bWw+DQoNClByb3RlaW4gTk1S IFN0cnVjdHVyZXMgUmVmaW5lZCB3aXRoIFJvc2V0dGEgSGF2ZSBIaWdoZXIgQWNjdXJhY3kgUmVs YXRpdmUgdG8gQ29ycmVzcG9uZGluZyBYLXJheSBDcnlzdGFsIFN0cnVjdHVyZXM8aHR0cDovL3d3 dy5jb21wY2hlbWhpZ2hsaWdodHMub3JnLzIwMTQvMDMvcHJvdGVpbi1ubXItc3RydWN0dXJlcy1y ZWZpbmVkLXdpdGguaHRtbD4NCg0KQ29tcHV0YXRpb25hbCBTdHVkeSBvbiB0aGUgcEthIFNoaWZ0 cyBpbiBQcm9saW5lIEluZHVjZWQgYnkgSHlkcm9nZW4tQm9uZC1Eb25hdGluZyBDb2NhdGFseXN0 czxodHRwOi8vd3d3LmNvbXBjaGVtaGlnaGxpZ2h0cy5vcmcvMjAxNC8wMy9jb21wdXRhdGlvbmFs LXN0dWR5LW9uLXBrYS1zaGlmdHMtaW4uaHRtbD4NCg0KSW50ZXJlc3RlZCBpbiBtb3JlPyBUaGVy ZSBhcmUgbWFueSB3YXlzIHRvIHN1YnNjcmliZSB0byBDQ0ggdXBkYXRlczxodHRwOi8vd3d3LmNv bXBjaGVtaGlnaGxpZ2h0cy5vcmcvcC9nZXQtY2NoLXVwZGF0ZXMuaHRtbD4uDQoNCj0tPS09LT0t PS09LT0tPS09LT0tPS09LT0tPS09LT0tPS09LT0tPS09LT0tPS09LT0tPS09LT0tPS09LT0tPS09 LT0tPS09DQpKYW4gSC4gSmVuc2VuIFByb2Zlc3Nvcg0KRGVwYXJ0bWVudCBvZiBDaGVtaXN0cnkg amhqZW5zZW5AY2hlbS5rdS5kazxtYWlsdG86amhqZW5zZW5AY2hlbS5rdS5kaz4gICoqTkVXKioN ClVuaXZlcnNpdHkgb2YgQ29wZW5oYWdlbiBQaG9uZTogKzQ1IDM1IDMyIDAyIDM5DQpVbml2ZXJz aXRldHNwYXJrZW4gNSBGQVg6ICAgKzQ1IDM1IDMyIDAyIDE0DQoyMTAwIENvcGVuaGFnZW4gRGVu bWFyaw0KaHR0cDovL3Rpbnl1cmwuY29tL2poamVuc2VuDQpodHRwOi8vbW9sZWN1bGFybW9kZWxp bmdiYXNpY3MuYmxvZ3Nwb3QuY29tDQpodHRwOi8vcHJvdGVpbnNhbmR3YXZlZnVuY3Rpb25zLmJs b2dzcG90LmNvbS8NCmh0dHA6Ly9jb21wY2hlbWhpZ2hsaWdodHMub3JnOiBBIG5ldyBraW5kIG9m IGNoZW1pc3RyeSBqb3VybmFsDQo9LT0tPS09LT0tPS09LT0tPS09LT0tPS09LT0tPS09LT0tPS09 LT0tPS09LT0tPS09LT0tPS09LT0tPS09LT0tPS09LT0tPQ0KDQoNCgoK --_000_318851915CDC487C965AC12B60A12ACEkudk_ Content-Type: text/html; charset="utf-8" Content-ID: <00FB7514A0E70240AEBE085385A5AB6C!=!alumni.ku.dk> Content-Transfer-Encoding: base64 PGh0bWw+DQo8aGVhZD4NCjxtZXRhIGh0dHAtZXF1aXY9IkNvbnRlbnQtVHlwZSIgY29udGVudD0i dGV4dC9odG1sOyBjaGFyc2V0PXV0Zi04Ij4NCjwvaGVhZD4NCjxib2R5IHN0eWxlPSJ3b3JkLXdy YXA6IGJyZWFrLXdvcmQ7IC13ZWJraXQtbmJzcC1tb2RlOiBzcGFjZTsgLXdlYmtpdC1saW5lLWJy ZWFrOiBhZnRlci13aGl0ZS1zcGFjZTsgIj4NCjxkaXYgc3R5bGU9Im1hcmdpbjogMHB4OyBmb250 LWZhbWlseTogVGltZXM7IHRleHQtYWxpZ246IGxlZnQ7ICI+VGhlIE1hcmNoIGlzc3VlIG9mJm5i c3A7PGEgZGF0YS1ibG9nZ2VyLWVzY2FwZWQtdGFyZ2V0PSJfYmxhbmsiIGhyZWY9Imh0dHA6Ly93 d3cuY29tcGNoZW1oaWdobGlnaHRzLm9yZy8yMDE0XzAzXzAxX2FyY2hpdmUuaHRtbCI+Q29tcHV0 YXRpb25hbCBDaGVtaXN0cnkgSGlnaGxpZ2h0czwvYT4mbmJzcDtpcyBvdXQuPC9kaXY+DQo8ZGl2 IHN0eWxlPSJtYXJnaW46IDBweDsgZm9udC1mYW1pbHk6IFRpbWVzOyB0ZXh0LWFsaWduOiBsZWZ0 OyAiPjxicj4NCjwvZGl2Pg0KPGRpdiBzdHlsZT0ibWFyZ2luOiAwcHg7IGZvbnQtZmFtaWx5OiBU aW1lczsgdGV4dC1hbGlnbjogbGVmdDsgIj5DQ0ggaXMgYW4mbmJzcDs8YSBocmVmPSJodHRwOi8v ZW4ud2lraXBlZGlhLm9yZy93aWtpL092ZXJsYXlfam91cm5hbCI+b3ZlcmxheSBqb3VybmFsPC9h PiZuYnNwO3RoYXQgaWRlbnRpZmllcyB0aGUgbW9zdCBpbXBvcnRhbnQgcGFwZXJzIGluIGNvbXB1 dGF0aW9uYWwgYW5kIHRoZW9yZXRpY2FsIGNoZW1pc3RyeSBwdWJsaXNoZWQgaW4gdGhlIGxhc3QN CiAxLTIgeWVhcnMuIENDSCBpcyBub3QgYWZmaWxpYXRlZCB3aXRoIGFueSBwdWJsaXNoZXI6IGl0 IGlzIGEgZnJlZSByZXNvdXJjZSBydW4gYnkgc2NpZW50aXN0cyBmb3Igc2NpZW50aXN0cy4mbmJz cDs8YSBocmVmPSJodHRwOi8vcHJvdGVpbnNhbmR3YXZlZnVuY3Rpb25zLmJsb2dzcG90LmNvbS8y MDEyLzAyL2NvbXB1dGF0aW9uYWwtY2hlbWlzdHJ5LWhpZ2hsaWdodHMtbmV3Lmh0bWwiPllvdSBj YW4gcmVhZCBtb3JlIGFib3V0IGl0IGhlcmU8L2E+LjwvZGl2Pg0KPGRpdiBzdHlsZT0ibWFyZ2lu OiAwcHg7IGZvbnQtZmFtaWx5OiBUaW1lczsgdGV4dC1hbGlnbjogbGVmdDsgIj48YnI+DQo8L2Rp dj4NCjxkaXYgc3R5bGU9Im1hcmdpbjogMHB4OyBmb250LWZhbWlseTogVGltZXM7IHRleHQtYWxp Z246IGxlZnQ7ICI+VGFibGUgb2YgY29udGVudCBmb3IgdGhpcyBpc3N1ZSBmZWF0dXJlcyBjb250 cmlidXRpb25zIGZyb20gQ0NIIGVkaXRvcnMgRGF2aWQgQm93bGVyLCBFc3RlYmFuIFZvaHJpbmdl ci1NYXJ0aW5leiwgRnJhbsOnb2lzLVhhdmllciBDb3VkZXJ0LCBNYXJpbyBCYXJiYXR0aSwgSmFu IEplbnNlbiBhbmQgU3RldmVuIEJhY2hyYWNoOjwvZGl2Pg0KPGRpdiBzdHlsZT0ibWFyZ2luOiAw cHg7IGZvbnQtZmFtaWx5OiBUaW1lczsgdGV4dC1hbGlnbjogbGVmdDsgIj48YnI+DQo8L2Rpdj4N CjxkaXYgc3R5bGU9Im1hcmdpbjogMHB4OyBmb250LWZhbWlseTogVGltZXM7IHRleHQtYWxpZ246 IGxlZnQ7ICI+PGEgaHJlZj0iaHR0cDovL3d3dy5jb21wY2hlbWhpZ2hsaWdodHMub3JnLzIwMTQv MDMvdmFsaWRhdGlvbi1jaGFsbGVuZ2Utb2YtZGVuc2l0eS5odG1sIj5WYWxpZGF0aW9uIENoYWxs ZW5nZSBvZiBEZW5zaXR5LUZ1bmN0aW9uYWwgVGhlb3J5IGZvciBQZXB0aWRlc+KAlEV4YW1wbGUg b2YgQWMtUGhlLUFsYTUtTHlzSCYjNDM7PC9hPjwvZGl2Pg0KPGRpdiBzdHlsZT0ibWFyZ2luOiAw cHg7IGZvbnQtZmFtaWx5OiBUaW1lczsgdGV4dC1hbGlnbjogbGVmdDsgIj48YnI+DQo8L2Rpdj4N CjxkaXYgc3R5bGU9ImZvbnQtZmFtaWx5OiBUaW1lczsgdGV4dC1hbGlnbjogbGVmdDsgIj4NCjxk aXYgc3R5bGU9Im1hcmdpbjogMHB4OyAiPjxhIGhyZWY9Imh0dHA6Ly93d3cuY29tcGNoZW1oaWdo bGlnaHRzLm9yZy8yMDE0LzAzL2luZHVjZWQtZml0LWNhdGFseXNpcy1vZi1jb3Jhbm51bGVuZS5o dG1sIj5JbmR1Y2VkLWZpdCBjYXRhbHlzaXMgb2YgY29yYW5udWxlbmUgYm93bC10by1ib3dsIGlu dmVyc2lvbjwvYT48L2Rpdj4NCjwvZGl2Pg0KPGRpdiBzdHlsZT0iZm9udC1mYW1pbHk6IFRpbWVz OyB0ZXh0LWFsaWduOiBsZWZ0OyAiPg0KPGRpdiBzdHlsZT0ibWFyZ2luOiAwcHg7ICI+PGJyPg0K PC9kaXY+DQo8L2Rpdj4NCjxkaXYgc3R5bGU9ImZvbnQtZmFtaWx5OiBUaW1lczsgdGV4dC1hbGln bjogbGVmdDsgIj4NCjxkaXYgc3R5bGU9Im1hcmdpbjogMHB4OyAiPjxhIGhyZWY9Imh0dHA6Ly93 d3cuY29tcGNoZW1oaWdobGlnaHRzLm9yZy8yMDE0LzAzL2NvbXBhcmlzb24tb2YtYWItaW5pdGlv LWRmdC1hbmQuaHRtbCI+Q29tcGFyaXNvbiBvZiBBYiBJbml0aW8sIERGVCBhbmQgU2VtaWVtcGly aWNhbCBRTS9NTSBhcHByb2FjaGVzIGZvciBkZXNjcmlwdGlvbiBvZiBjYXRhbHl0aWMgbWVjaGFu aXNtIG9mIGhhaXJwaW4gcmlib3p5bWVzPC9hPjwvZGl2Pg0KPC9kaXY+DQo8ZGl2IHN0eWxlPSJm b250LWZhbWlseTogVGltZXM7IHRleHQtYWxpZ246IGxlZnQ7ICI+DQo8ZGl2IHN0eWxlPSJtYXJn aW46IDBweDsgIj48YnI+DQo8L2Rpdj4NCjwvZGl2Pg0KPGRpdiBzdHlsZT0iZm9udC1mYW1pbHk6 IFRpbWVzOyB0ZXh0LWFsaWduOiBsZWZ0OyAiPg0KPGRpdiBzdHlsZT0ibWFyZ2luOiAwcHg7ICI+ PGEgaHJlZj0iaHR0cDovL3d3dy5jb21wY2hlbWhpZ2hsaWdodHMub3JnLzIwMTQvMDMvZGlhbW9u ZC1lbGVjdHJvbmljLWdyb3VuZC1zdGF0ZS1vZi5odG1sIj5EaWFtb25kOiBFbGVjdHJvbmljIEdy b3VuZCBTdGF0ZSBvZiBDYXJib24gYXQgVGVtcGVyYXR1cmVzIEFwcHJvYWNoaW5nIDAgSzwvYT48 L2Rpdj4NCjwvZGl2Pg0KPGRpdiBzdHlsZT0iZm9udC1mYW1pbHk6IFRpbWVzOyB0ZXh0LWFsaWdu OiBsZWZ0OyAiPg0KPGRpdiBzdHlsZT0ibWFyZ2luOiAwcHg7ICI+PGJyPg0KPC9kaXY+DQo8L2Rp dj4NCjxkaXYgc3R5bGU9ImZvbnQtZmFtaWx5OiBUaW1lczsgdGV4dC1hbGlnbjogbGVmdDsgIj4N CjxkaXYgc3R5bGU9Im1hcmdpbjogMHB4OyAiPjxhIGhyZWY9Imh0dHA6Ly93d3cuY29tcGNoZW1o aWdobGlnaHRzLm9yZy8yMDE0LzAzL3RoZS12LXN0YXRlLW9mLWV0aHlsZW5lLXZhbGVuY2UtYm9u ZC5odG1sIj5UaGUgViBzdGF0ZSBvZiBldGh5bGVuZTogdmFsZW5jZSBib25kIHRoZW9yeSB0YWtl cyB1cCB0aGUgY2hhbGxlbmdlPC9hPjwvZGl2Pg0KPC9kaXY+DQo8ZGl2IHN0eWxlPSJmb250LWZh bWlseTogVGltZXM7IHRleHQtYWxpZ246IGxlZnQ7ICI+DQo8ZGl2IHN0eWxlPSJtYXJnaW46IDBw eDsgIj48YnI+DQo8L2Rpdj4NCjwvZGl2Pg0KPGRpdiBzdHlsZT0iZm9udC1mYW1pbHk6IFRpbWVz OyB0ZXh0LWFsaWduOiBsZWZ0OyAiPg0KPGRpdiBzdHlsZT0ibWFyZ2luOiAwcHg7ICI+PGEgaHJl Zj0iaHR0cDovL3d3dy5jb21wY2hlbWhpZ2hsaWdodHMub3JnLzIwMTQvMDMvYnJhbmNoaW5nLW91 dC1mcm9tLWJpc2Fib2x5bC1jYXRpb24uaHRtbCI+QnJhbmNoaW5nIE91dCBmcm9tIHRoZSBCaXNh Ym9seWwgQ2F0aW9uLiBVbmlmeWluZyBNZWNoYW5pc3RpYyBQYXRod2F5cyB0byBCYXJiYXRlbmUs IEJhenphbmVuZSwgQ2hhbWlncmVuZSwgQ2hhbWlwaW5lbmUsIEN1bWFjcmVuZSwgQ3VwcmVuZW5l LA0KIER1bm5pZW5lLCBJc29iYXp6YW5lbmUsIElzby3Osy1iaXNhYm9sZW5lLCBJc29jaGFtaWdy ZW5lLCBMYXVyZW5lLCBNaWNyb2Jpb3RlbmUsIFNlc3F1aXRodWplbmUsIFNlc3F1aXNhYmluZW5l LCBUaHVqb3BzZW5lLCBUcmljaG9kaWVuZSwgYW5kIFdpZGRyYWRpZW5lIFNlc3F1aXRlcnBlbmVz PC9hPjwvZGl2Pg0KPC9kaXY+DQo8ZGl2IHN0eWxlPSJmb250LWZhbWlseTogVGltZXM7IHRleHQt YWxpZ246IGxlZnQ7ICI+DQo8ZGl2IHN0eWxlPSJtYXJnaW46IDBweDsgIj48YnI+DQo8L2Rpdj4N CjwvZGl2Pg0KPGRpdiBzdHlsZT0iZm9udC1mYW1pbHk6IFRpbWVzOyB0ZXh0LWFsaWduOiBsZWZ0 OyAiPg0KPGRpdiBzdHlsZT0ibWFyZ2luOiAwcHg7ICI+PGEgaHJlZj0iaHR0cDovL3d3dy5jb21w Y2hlbWhpZ2hsaWdodHMub3JnLzIwMTQvMDMvcHJvdGVpbi1ubXItc3RydWN0dXJlcy1yZWZpbmVk LXdpdGguaHRtbCI+UHJvdGVpbiBOTVIgU3RydWN0dXJlcyBSZWZpbmVkIHdpdGggUm9zZXR0YSBI YXZlIEhpZ2hlciBBY2N1cmFjeSBSZWxhdGl2ZSB0byBDb3JyZXNwb25kaW5nIFgtcmF5IENyeXN0 YWwgU3RydWN0dXJlczwvYT48L2Rpdj4NCjwvZGl2Pg0KPGRpdiBzdHlsZT0iZm9udC1mYW1pbHk6 IFRpbWVzOyB0ZXh0LWFsaWduOiBsZWZ0OyAiPg0KPGRpdiBzdHlsZT0ibWFyZ2luOiAwcHg7ICI+ PGJyPg0KPC9kaXY+DQo8L2Rpdj4NCjxkaXYgc3R5bGU9ImZvbnQtZmFtaWx5OiBUaW1lczsgdGV4 dC1hbGlnbjogbGVmdDsgIj4NCjxkaXYgc3R5bGU9Im1hcmdpbjogMHB4OyAiPjxhIGhyZWY9Imh0 dHA6Ly93d3cuY29tcGNoZW1oaWdobGlnaHRzLm9yZy8yMDE0LzAzL2NvbXB1dGF0aW9uYWwtc3R1 ZHktb24tcGthLXNoaWZ0cy1pbi5odG1sIj5Db21wdXRhdGlvbmFsIFN0dWR5IG9uIHRoZSBwS2Eg U2hpZnRzIGluIFByb2xpbmUgSW5kdWNlZCBieSBIeWRyb2dlbi1Cb25kLURvbmF0aW5nIENvY2F0 YWx5c3RzPC9hPjwvZGl2Pg0KPGRpdj48L2Rpdj4NCjxkaXY+DQo8ZGl2IHN0eWxlPSJtYXJnaW46 IDBweDsgIj48YnI+DQo8L2Rpdj4NCjwvZGl2Pg0KPGRpdj4NCjxkaXYgc3R5bGU9Im1hcmdpbjog MHB4OyAiPkludGVyZXN0ZWQgaW4gbW9yZT8mbmJzcDs8YSBocmVmPSJodHRwOi8vd3d3LmNvbXBj aGVtaGlnaGxpZ2h0cy5vcmcvcC9nZXQtY2NoLXVwZGF0ZXMuaHRtbCI+VGhlcmUgYXJlIG1hbnkg d2F5cyB0byBzdWJzY3JpYmUgdG8gQ0NIIHVwZGF0ZXM8L2E+LjwvZGl2Pg0KPC9kaXY+DQo8ZGl2 IHN0eWxlPSJtYXJnaW46IDBweDsgIj48YnI+DQo8L2Rpdj4NCjwvZGl2Pg0KPGRpdiBhcHBsZS1j b250ZW50LWVkaXRlZD0idHJ1ZSI+PHNwYW4gY2xhc3M9IkFwcGxlLXN0eWxlLXNwYW4iIHN0eWxl PSJib3JkZXItY29sbGFwc2U6IHNlcGFyYXRlOyBib3JkZXItc3BhY2luZzogMHB4OyAiPjxzcGFu IGNsYXNzPSJBcHBsZS1zdHlsZS1zcGFuIiBzdHlsZT0iYm9yZGVyLWNvbGxhcHNlOiBzZXBhcmF0 ZTsgY29sb3I6IHJnYigwLCAwLCAwKTsgZm9udC1mYW1pbHk6IEhlbHZldGljYTsgZm9udC1zdHls ZTogbm9ybWFsOyBmb250LXZhcmlhbnQ6IG5vcm1hbDsgZm9udC13ZWlnaHQ6IG5vcm1hbDsgbGV0 dGVyLXNwYWNpbmc6IG5vcm1hbDsgbGluZS1oZWlnaHQ6IG5vcm1hbDsgb3JwaGFuczogMjsgdGV4 dC1hbGlnbjogLXdlYmtpdC1hdXRvOyB0ZXh0LWluZGVudDogMHB4OyB0ZXh0LXRyYW5zZm9ybTog bm9uZTsgd2hpdGUtc3BhY2U6IG5vcm1hbDsgd2lkb3dzOiAyOyB3b3JkLXNwYWNpbmc6IDBweDsg LXdlYmtpdC1ib3JkZXItaG9yaXpvbnRhbC1zcGFjaW5nOiAwcHg7IC13ZWJraXQtYm9yZGVyLXZl cnRpY2FsLXNwYWNpbmc6IDBweDsgLXdlYmtpdC10ZXh0LWRlY29yYXRpb25zLWluLWVmZmVjdDog bm9uZTsgLXdlYmtpdC10ZXh0LXNpemUtYWRqdXN0OiBhdXRvOyAtd2Via2l0LXRleHQtc3Ryb2tl LXdpZHRoOiAwcHg7IGZvbnQtc2l6ZTogbWVkaXVtOyAiPg0KPGRpdiBzdHlsZT0id29yZC13cmFw OiBicmVhay13b3JkOyAtd2Via2l0LW5ic3AtbW9kZTogc3BhY2U7IC13ZWJraXQtbGluZS1icmVh azogYWZ0ZXItd2hpdGUtc3BhY2U7ICI+DQo8c3BhbiBjbGFzcz0iQXBwbGUtc3R5bGUtc3BhbiIg c3R5bGU9ImJvcmRlci1jb2xsYXBzZTogc2VwYXJhdGU7IGNvbG9yOiByZ2IoMCwgMCwgMCk7IGZv bnQtZmFtaWx5OiBIZWx2ZXRpY2E7IGZvbnQtc3R5bGU6IG5vcm1hbDsgZm9udC12YXJpYW50OiBu b3JtYWw7IGZvbnQtd2VpZ2h0OiBub3JtYWw7IGxldHRlci1zcGFjaW5nOiBub3JtYWw7IGxpbmUt aGVpZ2h0OiBub3JtYWw7IG9ycGhhbnM6IDI7IHRleHQtYWxpZ246IC13ZWJraXQtYXV0bzsgdGV4 dC1pbmRlbnQ6IDBweDsgdGV4dC10cmFuc2Zvcm06IG5vbmU7IHdoaXRlLXNwYWNlOiBub3JtYWw7 IHdpZG93czogMjsgd29yZC1zcGFjaW5nOiAwcHg7IC13ZWJraXQtYm9yZGVyLWhvcml6b250YWwt c3BhY2luZzogMHB4OyAtd2Via2l0LWJvcmRlci12ZXJ0aWNhbC1zcGFjaW5nOiAwcHg7IC13ZWJr aXQtdGV4dC1kZWNvcmF0aW9ucy1pbi1lZmZlY3Q6IG5vbmU7IC13ZWJraXQtdGV4dC1zaXplLWFk anVzdDogYXV0bzsgLXdlYmtpdC10ZXh0LXN0cm9rZS13aWR0aDogMHB4OyBmb250LXNpemU6IG1l ZGl1bTsgIj4NCjxkaXYgc3R5bGU9IndvcmQtd3JhcDogYnJlYWstd29yZDsgLXdlYmtpdC1uYnNw LW1vZGU6IHNwYWNlOyAtd2Via2l0LWxpbmUtYnJlYWs6IGFmdGVyLXdoaXRlLXNwYWNlOyAiPg0K PHNwYW4gY2xhc3M9IkFwcGxlLXN0eWxlLXNwYW4iIHN0eWxlPSJib3JkZXItY29sbGFwc2U6IHNl cGFyYXRlOyBjb2xvcjogcmdiKDAsIDAsIDApOyBmb250LWZhbWlseTogSGVsdmV0aWNhOyBmb250 LXN0eWxlOiBub3JtYWw7IGZvbnQtdmFyaWFudDogbm9ybWFsOyBmb250LXdlaWdodDogbm9ybWFs OyBsZXR0ZXItc3BhY2luZzogbm9ybWFsOyBsaW5lLWhlaWdodDogbm9ybWFsOyBvcnBoYW5zOiAy OyB0ZXh0LWFsaWduOiAtd2Via2l0LWF1dG87IHRleHQtaW5kZW50OiAwcHg7IHRleHQtdHJhbnNm b3JtOiBub25lOyB3aGl0ZS1zcGFjZTogbm9ybWFsOyB3aWRvd3M6IDI7IHdvcmQtc3BhY2luZzog MHB4OyAtd2Via2l0LWJvcmRlci1ob3Jpem9udGFsLXNwYWNpbmc6IDBweDsgLXdlYmtpdC1ib3Jk ZXItdmVydGljYWwtc3BhY2luZzogMHB4OyAtd2Via2l0LXRleHQtZGVjb3JhdGlvbnMtaW4tZWZm ZWN0OiBub25lOyAtd2Via2l0LXRleHQtc2l6ZS1hZGp1c3Q6IGF1dG87IC13ZWJraXQtdGV4dC1z dHJva2Utd2lkdGg6IDBweDsgZm9udC1zaXplOiBtZWRpdW07ICI+DQo8ZGl2IHN0eWxlPSJ3b3Jk LXdyYXA6IGJyZWFrLXdvcmQ7IC13ZWJraXQtbmJzcC1tb2RlOiBzcGFjZTsgLXdlYmtpdC1saW5l LWJyZWFrOiBhZnRlci13aGl0ZS1zcGFjZTsgIj4NCjxzcGFuIGNsYXNzPSJBcHBsZS1zdHlsZS1z cGFuIiBzdHlsZT0iYm9yZGVyLWNvbGxhcHNlOiBzZXBhcmF0ZTsgY29sb3I6IHJnYigwLCAwLCAw KTsgZm9udC1mYW1pbHk6IEhlbHZldGljYTsgZm9udC1zdHlsZTogbm9ybWFsOyBmb250LXZhcmlh bnQ6IG5vcm1hbDsgZm9udC13ZWlnaHQ6IG5vcm1hbDsgbGV0dGVyLXNwYWNpbmc6IG5vcm1hbDsg bGluZS1oZWlnaHQ6IG5vcm1hbDsgb3JwaGFuczogMjsgdGV4dC1hbGlnbjogLXdlYmtpdC1hdXRv OyB0ZXh0LWluZGVudDogMHB4OyB0ZXh0LXRyYW5zZm9ybTogbm9uZTsgd2hpdGUtc3BhY2U6IG5v cm1hbDsgd2lkb3dzOiAyOyB3b3JkLXNwYWNpbmc6IDBweDsgLXdlYmtpdC1ib3JkZXItaG9yaXpv bnRhbC1zcGFjaW5nOiAwcHg7IC13ZWJraXQtYm9yZGVyLXZlcnRpY2FsLXNwYWNpbmc6IDBweDsg LXdlYmtpdC10ZXh0LWRlY29yYXRpb25zLWluLWVmZmVjdDogbm9uZTsgLXdlYmtpdC10ZXh0LXNp emUtYWRqdXN0OiBhdXRvOyAtd2Via2l0LXRleHQtc3Ryb2tlLXdpZHRoOiAwcHg7IGZvbnQtc2l6 ZTogbWVkaXVtOyAiPg0KPGRpdiBzdHlsZT0id29yZC13cmFwOiBicmVhay13b3JkOyAtd2Via2l0 LW5ic3AtbW9kZTogc3BhY2U7IC13ZWJraXQtbGluZS1icmVhazogYWZ0ZXItd2hpdGUtc3BhY2U7 ICI+DQo8c3BhbiBjbGFzcz0iQXBwbGUtc3R5bGUtc3BhbiIgc3R5bGU9ImJvcmRlci1jb2xsYXBz ZTogc2VwYXJhdGU7IGNvbG9yOiByZ2IoMCwgMCwgMCk7IGZvbnQtZmFtaWx5OiBIZWx2ZXRpY2E7 IGZvbnQtc3R5bGU6IG5vcm1hbDsgZm9udC12YXJpYW50OiBub3JtYWw7IGZvbnQtd2VpZ2h0OiBu b3JtYWw7IGxldHRlci1zcGFjaW5nOiBub3JtYWw7IGxpbmUtaGVpZ2h0OiBub3JtYWw7IG9ycGhh bnM6IDI7IHRleHQtaW5kZW50OiAwcHg7IHRleHQtdHJhbnNmb3JtOiBub25lOyB3aGl0ZS1zcGFj ZTogbm9ybWFsOyB3aWRvd3M6IDI7IHdvcmQtc3BhY2luZzogMHB4OyAtd2Via2l0LWJvcmRlci1o b3Jpem9udGFsLXNwYWNpbmc6IDBweDsgLXdlYmtpdC1ib3JkZXItdmVydGljYWwtc3BhY2luZzog MHB4OyAtd2Via2l0LXRleHQtZGVjb3JhdGlvbnMtaW4tZWZmZWN0OiBub25lOyAtd2Via2l0LXRl eHQtc2l6ZS1hZGp1c3Q6IGF1dG87IC13ZWJraXQtdGV4dC1zdHJva2Utd2lkdGg6IDBweDsgZm9u dC1zaXplOiBtZWRpdW07ICI+DQo8ZGl2IHN0eWxlPSJ3b3JkLXdyYXA6IGJyZWFrLXdvcmQ7IC13 ZWJraXQtbmJzcC1tb2RlOiBzcGFjZTsgLXdlYmtpdC1saW5lLWJyZWFrOiBhZnRlci13aGl0ZS1z cGFjZTsgIj4NCj0tPS09LT0tPS09LT0tPS09LT0tPS09LT0tPS09LT0tPS09LT0tPS09LT0tPS09 LT0tPS09LT0tPS09LT0tPS09LT0tPS09PGJyPg0KSmFuIEguIEplbnNlbjxzcGFuIGNsYXNzPSJB cHBsZS10YWItc3BhbiIgc3R5bGU9IndoaXRlLXNwYWNlOiBwcmU7ICI+IDwvc3Bhbj5Qcm9mZXNz b3I8YnI+DQpEZXBhcnRtZW50IG9mIENoZW1pc3RyeTxzcGFuIGNsYXNzPSJBcHBsZS10YWItc3Bh biIgc3R5bGU9IndoaXRlLXNwYWNlOiBwcmU7ICI+IDwvc3Bhbj4NCjxhIGhyZWY9Im1haWx0bzpq aGplbnNlbkBjaGVtLmt1LmRrIj5qaGplbnNlbkBjaGVtLmt1LmRrPC9hPiAmbmJzcDsqKk5FVyoq Jm5ic3A7PGJyPg0KVW5pdmVyc2l0eSBvZiBDb3BlbmhhZ2VuPHNwYW4gY2xhc3M9IkFwcGxlLXRh Yi1zcGFuIiBzdHlsZT0id2hpdGUtc3BhY2U6IHByZTsgIj4gPC9zcGFuPg0KUGhvbmU6ICYjNDM7 NDUgMzUgMzIgMDIgMzk8YnI+DQpVbml2ZXJzaXRldHNwYXJrZW4gNTxzcGFuIGNsYXNzPSJBcHBs ZS10YWItc3BhbiIgc3R5bGU9IndoaXRlLXNwYWNlOiBwcmU7ICI+IDwvc3Bhbj4NCkZBWDogJm5i c3A7ICYjNDM7NDUgMzUgMzIgMDIgMTQ8YnI+DQoyMTAwIENvcGVuaGFnZW48c3BhbiBjbGFzcz0i QXBwbGUtdGFiLXNwYW4iIHN0eWxlPSJ3aGl0ZS1zcGFjZTogcHJlOyAiPiA8L3NwYW4+RGVubWFy azxicj4NCjxhIGhyZWY9Imh0dHA6Ly90aW55dXJsLmNvbS9qaGplbnNlbiI+aHR0cDovL3Rpbnl1 cmwuY29tL2poamVuc2VuPC9hPjxicj4NCmh0dHA6Ly9tb2xlY3VsYXJtb2RlbGluZ2Jhc2ljcy5i bG9nc3BvdC5jb208YnI+DQpodHRwOi8vcHJvdGVpbnNhbmR3YXZlZnVuY3Rpb25zLmJsb2dzcG90 LmNvbS88c3BhbiBjbGFzcz0iQXBwbGUtdGFiLXNwYW4iIHN0eWxlPSJ3aGl0ZS1zcGFjZTogcHJl OyAiPg0KPC9zcGFuPjxzcGFuIGNsYXNzPSJBcHBsZS10YWItc3BhbiIgc3R5bGU9IndoaXRlLXNw YWNlOiBwcmU7ICI+PC9zcGFuPjxicj4NCmh0dHA6Ly9jb21wY2hlbWhpZ2hsaWdodHMub3JnOiBB IG5ldyBraW5kIG9mIGNoZW1pc3RyeSBqb3VybmFsPHNwYW4gY2xhc3M9IkFwcGxlLXRhYi1zcGFu IiBzdHlsZT0id2hpdGUtc3BhY2U6IHByZTsgIj4NCjwvc3Bhbj48YnI+DQo9LT0tPS09LT0tPS09 LT0tPS09LT0tPS09LT0tPS09LT0tPS09LT0tPS09LT0tPS09LT0tPS09LT0tPS09LT0tPS09LT0t PTxicj4NCjxicj4NCjwvZGl2Pg0KPC9zcGFuPjwvZGl2Pg0KPC9zcGFuPjwvZGl2Pg0KPC9zcGFu PjwvZGl2Pg0KPC9zcGFuPjwvZGl2Pg0KPC9zcGFuPjwvc3Bhbj48L2Rpdj4NCjxicj4NCjxiciBj bGVhcj1hbGw+IAo8L2JvZHk+DQo8L2h0bWw+DQoK --_000_318851915CDC487C965AC12B60A12ACEkudk_-- From owner-chemistry@ccl.net Tue Apr 1 09:46:00 2014 From: "Rina Dao rina.dao!^!gmail.com" To: CCL Subject: CCL: SOMO calculation Message-Id: <-49885-140401025809-4505-qg8k9Ry9dySwVVTKSBKMWA^server.ccl.net> X-Original-From: Rina Dao Content-Type: text/plain; charset=ISO-8859-1 Date: Tue, 1 Apr 2014 14:58:04 +0800 MIME-Version: 1.0 Sent to CCL by: Rina Dao [rina.dao-x-gmail.com] Hi, fellows ! species that have non-zero spin have an isolated alpha orbital(by definition), eg. radicals. So in unrestricted calculation, the alpha and beta orbitals are not degenerate. The highest occupied orbital of alpha spin might have higher or lower energy than the LUMO of beta spin. (see for eg. Angew.Chem.Int.Ed.2014,53,798-803 for a Fe=O case) How do I define the HOMO or LUMO of such species ? When a radical react with a spin neutral compound, and suppose that, the beta-LUMO and the HOMO of the spin neutral compound have the best energy match, can I conclude that they two are the reacting orbitals ? thanks for any kind of suggestion~ best luck ~