From owner-chemistry@ccl.net Wed Nov 5 07:34:01 2014 From: "Henrique Junior henriquecsj:+:gmail.com" To: CCL Subject: CCL: UV-vis in ORCA Message-Id: <-50703-141105050203-28565-yrhtZP1z/pBBSa4AE+cWiA===server.ccl.net> X-Original-From: Henrique Junior Content-Type: multipart/related; boundary=047d7bd6c44c779fa8050719aba5 Date: Wed, 5 Nov 2014 08:01:15 -0200 MIME-Version: 1.0 Sent to CCL by: Henrique Junior [henriquecsj(-)gmail.com] --047d7bd6c44c779fa8050719aba5 Content-Type: multipart/alternative; boundary=047d7bd6c44c779fa4050719aba4 --047d7bd6c44c779fa4050719aba4 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: quoted-printable Hi, my name is Henrique and I am an undergraduate student in Chemistry doing some theoretical research about Fe(II) in water as a requirement to finish my graduation. I=E2=80=99ve been using ORCA to perform some calculations and to generate U= V-vis spectra of [Fe(OH2)6]2+ and [Fe(OH2)6]3+. The result for [Fe(OH2)6]2+ is pretty much what I was expecting, but for [Fe(OH2)6]3+ it seems a little weird to me: Since the d5 Iron(III) have only spin forbidden transitions, I wasn=E2=80= =99t expecting it to have more intense Abs than iron(II) (see attachment). I wasn=E2=80=99t able to put my hands in any [Fe(OH2)6]3+ UV-vis spectra to= compare with my results and I=E2=80=99d like to read some opinions about this issue= : =C2=B7 Is there something wrong with my input? =C2=B7 Does this spectra (attached) look weird to you or there is a= good explanation for Fe(III) to have a more intense Abs than [image: Imagem inline 1]Fe(II)? Thank you for any advice and I am very sorry for my poor English. --------------------------------------------INPUT--------------------------= --------------------------------------------------- # =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D # Orca input file made in Gabedit # =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D ! RI Opt TightSCF BP86 ! PrintBasis Def2-TZVP Def2-TZVP/C %tddft nroots 8 # the number of excited states to be calculated. maxdim 30 # the maximum dimension of the expansion space in the Davidson procedure. # dcorr n # n=3D1-4. The meaning of the four algorithms # algorithm 1 Is perhaps the best for small systems. May use a # lot of disk space # algorithm 2 Stores less integrals # algorithm 3 Is good if the system is large and only a few # states are to be made. Safes disk and main memory. # algorithm 4 Uses only transformed RI integrals. May be the # fastest for large systems and a larger number of states # TammDanCoff true Tamm-Dancoff approximation for non-hybride # Triplets true : do triplets states # EWin -3,100 (orbital energy window in Eh) # Etol 1e-3 the required convergence of the energies of the excited states (in Eh) # Rtol 1e-5 required convergence on the norm of the residual vectors. # essential for metal edges. For ligand edges, the contributions are much smaller. end #tddft %output print[p_mos] 1 end #output %geom MaxIter 500 end %scf MaxIter 500 end * xyz 3 6 H -2.424829 -0.275250 0.279753 O -1.892119 -0.263000 -0.507137 H -2.224729 0.402440 -1.098897 H -0.919139 -0.831680 2.037573 H -0.592969 -2.430170 -0.174157 H -0.753899 0.722610 2.113113 O -0.385119 -0.088000 1.781863 O 0.240881 -1.977000 -0.121137 H -1.040679 2.169210 0.255553 H 0.720741 -2.264950 0.647723 Fe 0.008881 -0.041000 -0.127137 H -0.382459 0.048440 -2.580397 O -0.216119 1.897000 -0.131137 O 0.396881 -0.003000 -2.039137 H -0.141579 2.272920 -1.000737 H 1.024291 0.667680 -2.284267 O 1.909881 0.185000 0.245863 H 2.443031 -0.318650 -0.359427 H 2.165121 1.100290 0.221463 * --=20 *Henrique C. S. Junior* Qu=C3=ADmica Industrial - UFRRJ Centro de Processamento de Dados - PMP --047d7bd6c44c779fa4050719aba4 Content-Type: text/html; charset=UTF-8 Content-Transfer-Encoding: quoted-printable

Hi, my name is Henrique and I am an undergraduate student in Chemistry doing some theoretical research about Fe(II) in water as a requirement to finish my graduation.

I=E2=80=99ve been using ORCA to perform some calculations and to generate UV-vis spectra of [Fe(OH2)6]2+ and [Fe(OH2)6]3+.

The result for [Fe(OH2)6]2+ is pretty much what I was expecting, but for [Fe(OH2)6]3+ = it seems a little weird to me:

Since the d5 Iron(III) have only spin forbidden transitions, I wasn=E2=80=99t expecti= ng it to have more intense Abs than iron(II) (see attachment).

I wasn=E2=80=99t able to put my hands in any [Fe(OH2)6]3+ UV-vis spectra to compare with my results and I=E2=80=99d like to read some opinions about this issue:=

=C2= =B7=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 Is there something wrong with my input?

=C2= =B7=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 Does this spectra (attached) look weird to you or there is a good explanation fo= r Fe(III) to have a more intense Abs than 3D"Im=Fe(II)?

Thank you for any advice and I am very sorry for my poor English.


<= span lang=3D"EN-US">--------------------------------------------INPUT------= -----------------------------------------------------------------------

# =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=

# Orca input file made in Gabedit

# =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D= =3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D=3D

!=C2=A0 RI Opt =C2=A0 TightSCF =C2=A0BP86=C2=A0

! PrintBasis Def2-TZVP Def2-TZVP/C

%tddft=

=C2=A0 =C2=A0 =C2=A0nroots 8 # the number of exc= ited states to be calculated.

=C2=A0 =C2=A0 =C2= =A0maxdim 30 # the maximum dimension of the expansion space in the Davidson= procedure.

=C2=A0 =C2=A0 =C2=A0# dcorr n

=C2=A0 =C2=A0 =C2=A0# n=3D1-4. The meaning of the four a= lgorithms

=C2=A0 =C2=A0 =C2=A0# algorithm 1 Is pe= rhaps the best for small systems. May use a

=C2= =A0 =C2=A0 =C2=A0# =C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A0 lot of disk sp= ace

=C2=A0 =C2=A0 =C2=A0# algorithm 2 Stores less= integrals

=C2=A0 =C2=A0 =C2=A0# algorithm 3 Is g= ood if the system is large and only a few

=C2=A0 = =C2=A0 =C2=A0# =C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A0 states are to be m= ade. Safes disk and main memory.

=C2=A0 =C2=A0 = =C2=A0# algorithm 4 Uses only transformed RI integrals. May be the

=C2=A0 =C2=A0 =C2=A0# =C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A0 = =C2=A0 fastest for large systems and a larger number of states

=C2=A0 =C2=A0 =C2=A0# TammDanCoff true Tamm-Dancoff approxim= ation for non-hybride

=C2=A0 =C2=A0 =C2=A0# Tripl= ets true : do triplets states

=C2=A0 =C2=A0 =C2= =A0# EWin -3,100 =C2=A0(orbital energy window in Eh)

=C2=A0 =C2=A0 =C2=A0# Etol 1e-3 =C2=A0the required convergence of the e= nergies of the excited states (in Eh)

=C2=A0 =C2= =A0 =C2=A0# Rtol 1e-5 =C2=A0required convergence on the norm of the residua= l vectors.

=C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2= =A0 =C2=A0 =C2=A0 =C2=A0 =C2=A0# essential for metal edges. For ligand edge= s, the contributions are much smaller.

=C2=A0end = #tddft

%output

=C2=A0 = =C2=A0 =C2=A0print[p_mos] 1

=C2=A0end #output

=

%geom

MaxIter 500

end

%scf

MaxIter 500

end

* x= yz 3 =C2=A0 6

=C2=A0H =C2=A0-2.424829 -0.275250 0= .279753

=C2=A0O =C2=A0-1.892119 -0.263000 -0.5071= 37

=C2=A0H =C2=A0-2.224729 0.402440 -1.098897

=

=C2=A0H =C2=A0-0.919139 -0.831680 2.037573

=C2=A0H =C2=A0-0.592969 -2.430170 -0.174157

=C2=A0H =C2=A0-0.753899 0.722610 2.113113

=C2=A0O =C2=A0-0.385119 -0.088000 1.781863

= =C2=A0O =C2=A00.240881 -1.977000 -0.121137

=C2=A0= H =C2=A0-1.040679 2.169210 0.255553

=C2=A0H =C2= =A00.720741 -2.264950 0.647723

=C2=A0Fe =C2=A00.0= 08881 -0.041000 -0.127137

=C2=A0H =C2=A0-0.382459= 0.048440 -2.580397

=C2=A0O =C2=A0-0.216119 1.897= 000 -0.131137

=C2=A0O =C2=A00.396881 -0.003000 -2= .039137

=C2=A0H =C2=A0-0.141579 2.272920 -1.00073= 7

=C2=A0H =C2=A01.024291 0.667680 -2.284267

=C2=A0O =C2=A01.909881 0.185000 0.245863

=C2=A0H =C2=A02.443031 -0.318650 -0.359427

=C2=A0H =C2=A02.165121 1.100290 0.221463

*


--
Henrique C. S. Junior=
Qu=C3=ADmica Industrial - UFRRJ
Centro de Processamento de Dados= - PMP
--047d7bd6c44c779fa4050719aba4-- --047d7bd6c44c779fa8050719aba5 Content-Type: image/png; name="Fe2-Fe3-UV-vis.png" Content-Disposition: inline; filename="Fe2-Fe3-UV-vis.png" Content-Transfer-Encoding: base64 Content-ID: X-Attachment-Id: ii_1497f64458745d01 iVBORw0KGgoAAAANSUhEUgAAAlgAAAHgCAYAAAB5FxNZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz AAAN1wAADdcBQiibeAAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAANdEVY dFRpdGxlAEdudXBsb3TKJDfrAAAgAElEQVR4nOzdeVxU9f7H8dew7xCLIKi455Y7JqTghmhmelPS 0jTt3vS2/Ertampd263M9N60MpfrFppXLQ0Tl8yi0NBrRBfJLUETAUX2ZdjO7w8uJ8cBF5hxnJnP 8/Hw8Wi+55zvfGes+PA93/f5ahRFURBCCCGEEAZjY+oBCCGEEEJYGimwhBBCCCEMTAosIYQQQggD kwJLCCGEEMLApMASQgghhDAwKbCEEEIIIQxMCiwhhBBCCAOTAksIIYQQwsCkwBJCCCGEMDApsIQQ QgghDEwKLCGEEEIIA5MCSwghhBDCwKTAEkIIIYQwMCmwhBBCCCEMTAosIYQQQggDkwJLCCGEEMLA pMASQgghhDAwKbCEEEIIIQxMCiwhhBBCCAOTAksIIRopJyeHK1eu3NS5GRkZFBcX19vPpUuXDDk0 AK5cuUJOTo7Brm1Mf0JYCymwhBA6qqur0Wg0rFy5st5jH3zwAefPn8fW1pYPP/ywzn5qj2/fvv2W xzB16lRGjRp1y9fdrB9++AGNRlPvn8rKypvuq7y8nIEDB5KZmQnAyy+/TLNmzdTjMTExaDQaCgsL Afj++++ZOHFinX09++yzxMbGkpiYeN3xlZaW3vT4KioqGDx4MBcuXADgtddew9/fXz3+73//G41G oxaI//3vf9FoNPzwww8AXLx4kYEDB6LVatVrsrKyGDBgAGVlZTc9DiGsjZ2pByCEME/Nmzdn6NCh bNy4kaeeekrv+IYNG/D19WXkyJG33Pf9999PSUmJIYZ5Xf/85z9p166dXrutre1N9/HWW2/Ru3dv OnXqdFPnR0dH89577/HZZ58xbtw4tb26upp9+/axaNEitRh6//336dixo14fjo6ONz2+d999ly5d utC1a9ebvuZqnTt3JiQkhNdee40333wTgI4dO9K3b19eeeUV3n777Qb1K4SlkwJLCNFgTzzxBNHR 0Zw5c4Y2bdroHFu3bh2TJ0/G3t5e7zqtVoudnZ1OIaMoClqtFkdHR0aPHo2iKDrXZGVlkZOTQ7t2 7erssyFCQ0Pp3bv3dc9RFIXffvsNFxcXmjZtqnOsoKCAJUuWEB8ff9PvqdFoeP7553njjTd0Cqyj R48SEBBAUFCQWmD17duX0NDQG47v7NmzODk5ERgYqHOsuLiYxYsXs2/fvpseX11mzJhBaGgoc+bM wcPDA4CZM2cSEhLCiy++iJeXV6P6F8ISyS1CIUSDPfjgg/j6+vLpp5/qtB86dIiTJ0/yxBNP1Hld ZGQkU6ZM0Wlbv349gYGBlJeX8+STTzJ27FigpogZOnQoTZs2JTQ0FDc3N1577TXjfKBr7N27l2bN mtG5c2eCgoLo27cvp0+fVo9v3LiRwMDAW54dGjlyJKdOnVJvwwHExcUxbNiwW+rn66+/pkWLFnTs 2JHmzZsTEhLCyZMn1eMxMTF4e3vTq1evW+r3Wl26dCEoKEjn77ljx44EBwfr/d0LIWpIgSWEaDAH Bwcee+wxNm7cqNO+bt06+vXrx913313ndVOnTuXzzz/XWUu0YcMGHnnkEb3bXx9++CGnTp0iMzOT vLw8Vq5cyYIFC0hJSWn0+Ldt28bHH3+s86d2LdX58+cZPXo048aNIyMjg5SUFLy9vYmOjqa6uhqA xMREBgwYcMvv6+7uTo8ePTh69Kjatnv3bqKionTO+/zzz/XGl5GRAdQslh81ahR/+tOfuHDhAseP HycgIIAxY8ZQVVXVqPHVJSIiQme8tW1HjhwxSP9CWBq5RSiEaJQnnniCJUuW8OOPP3LvvfdSVlbG Z599xtKlS+u9Jjo6mmeffZYdO3Ywfvx4Lly4wDfffMPChQv1ztVoNBQVFXH06FEiIyOZNGkSw4YN o0mTJo0e+7p163BwcNBp69WrFwEBAaxatQpHR0fefPNNnJ2d8fb25r333qNz58788MMP9O/fn5SU FB566KEGvXeLFi3UIvHKlSukpKTQv39/nXM2bNigV3B269aNwMBA1qxZg62tLQsXLsTV1RVfX1/e f/992rdvz7fffsugQYNISUm55Vmx6433yy+/1Glr3rx5g0IMQlgDKbCEEDpsbGxwdnauM6lWmxpz c3NT2zp37sy9997Lxo0buffee9m5cyfV1dVER0cDNet3vvnmG/X8119/nZEjR/Lwww/z6aefMn78 eGJiYujYsSMhISF67/mXv/yFr7/+mhEjRuDh4cGIESOYOnUqQ4YM0Ts3PT1dJ33o4+PD119/Xe9n 3blzZ71rsE6ePElZWVmdi8xPnTpFv379SE1N1UkM3opmzZpx+PBhAPbt20f//v31iqnt27fXuwbr 5MmTaLVaOnfurNOu0Wg4deoUgwYN4vjx4/z5z39u0PjqGu/x48d12po3b05qaiqKoqDRaAzyPkJY CimwhBB62rVrx7lz5/Tas7KyAGjbtq1O+xNPPMH8+fNZsmQJ69at45FHHsHFxQWAnj176hQOQUFB QM1twoEDB5KTk8PGjRv11mTV8vb2Zu/evaSlpbF9+3b+/e9/M3ToUL744gsefPBBnXNdXV11Zmzc 3d0b8Olr2Nvb0759e9atW6d3LCgoCI1GQ3V1NQUFBQ3qv7CwUF3IHxcXp3d78GbG16ZNmzrXQNV+ x4qiNHh81yosLFRvjV7bJsWVEPqkwBJC6OnQoQN79uzhlVde0Zmt2rp1KzY2Nnprq8aPH8+MGTPY vn07+/btIyEhQT322GOP1fke9913H61ateLtt9/m+PHj9T4b6oMPPuDy5cu8+uqrzJw5k5kzZ6q3 wa4tsHx9fQ322ICuXbvy6aef4uvrq85SHT9+nBdffJGlS5fi5+dH06ZNSU1NbVD/J0+eVFOJe/bs Ye7cubc8vn/96194enrSqlUrtc8XXniB9957r9Hju954a504cUKvTQhRQwosIYSeN954g379+tGv Xz/GjBmDv78/R44cYe3atSxatEhv/ZO7uzvR0dHMmDGDTp063fDRB7WmTJnC/PnzGTFihM7DL6/W o0cPBg4ciIeHB6GhoSQkJHDmzBkiIyMb/Tmv58knn+T9999n1KhRzJo1CxcXFxYsWEBwcDCtW7cG UG8TNsSJEyeYPXs2P//8M46OjrRv3/6Wrn/iiSdYtGgRDz30ELNmzcLd3Z1XX32VgIAAta/GjK+u 8fbr1++GbUKIGpIiFELoadeuHV9//TUDBgzgq6++4t1336WsrIzVq1czc+bMOq/561//Srt27fjb 3/520+8zadIkwsPDeeaZZ3Ta7777bu655x6gpkjYuHEjR48e5dFHH2XXrl1s2rSpUYu3PT09iYiI uO4tRA8PD44ePUrXrl159dVXeeedd4iOjmb16tXqOaNHjyYpKUnnKeetWrXSWTfVpEkTIiIisLP7 4/fZc+fOkZ2dzYMPPsi3336r99R6Dw8PIiIi1GdO1cXNzY2jR4/Ss2dP3njjDd566y3+9Kc/8a9/ /UtnfMnJyTrr6YKDg7nvvvvU135+fkRERKjPFnN1dSUiIgJPT0/1nPLycn766SdGjx6ttlVUVOi1 CSH+oFGufZqfEEKIm1JdXU1ISAjTpk3jySefvOnrnn/+efLz83WKIWNQFIXQ0FAee+wxnn766Qb3 s2bNGj766CN1Cx+AtWvX8sEHH3DkyBFsbOR3dSGuJQWWEEI0Qnx8PH/+859JTU29qUIjJyeHzp07 89NPP92W9UuHDx9m4sSJnDhx4pa2AKpVXV1N586dWbVqlTrzpSgKnTt3ZsWKFXqPlhBC1JBfO4QQ ohH69+9PaGjodR8HcbWNGzfywgsv3LbF4X379mXgwIHs3bu3Qdfv37+f0NBQnduKBw4coE+fPlJc CXEdMoMlhBBCCGFgMoMlhBBCCGFgUmAJIYQQQhiYFFhCCCGEEAYmBZYQQgghhIFJgSWEEEIIYWBS YAkhhBBCGJgUWEIIIYQQBiYFlhBCCCGEgUmBJYQQQghhYFJgCSGEEEIYmBRYQgghhBAGJgXWLZBt G4UQQghxM8yuwEpLS2PKlCn4+PjQtm1bFi9efMNrVq1aRWhoKG5ubkRGRpKWlqZz/NixY0RHR+Ph 4UGXLl3YvHmzzvHMzEz+9Kc/4e7ujpeXF48++iiXLl0y5McSQgghhAUxqwJLURQmTZrE2bNn+fLL L5k8eTILFixgxYoV9V5z4MABZsyYwejRo9m9ezelpaWEh4ej1WoBKCkpITo6Wj138ODBTJ48mX37 9ql9vP7666SlpbF7927+/e9/c/ToUR577DHjflghhBBCmC2NYkb3vbZt28YjjzxCRkYGvr6+ALzy yits3ryZX3/9tc5runfvTkREBP/4xz+AmoLK39+fjz/+mAkTJvDOO++wdOlSfv/9d2xtbQGYOHEi ubm57Nq1i9LSUpo0acLKlSsZP348AB9//DFPPfUURUVFuLi43IZPLoQQQghzYlYzWCkpKfTq1Ust rgCioqI4ceIEOTk5eudXV1eTmppKVFSU2ubi4kK/fv1ISEhQ+xwyZIhaXNX2WXvc2dmZu+66iyNH jqjHU1NTadmypRRXQgghhKiTnakHcCvS09Px9/fXaastti5evIiPj4/OsczMTMrLy/Wu8fPz4+LF i2qfISEhen3m5eVRVlaGk5MTmzdv5tFHH1WLrPT0dD777DODfjYhhBBCWA6zKrCysrL0iih3d3cA 8vLy9M7PzMwEwMvLS++a8+fPq316enrW22dAQADHjh2joKAAb29vKioqKCgoIDU1lb59+95wzAMH DiQ7OxsHBwfs7e3V9oqKCsrLy3FwcMDf3x9vb28AysrKKCkpwcXFBScnJ/V8aZd2aZd2aZd2ab9x ++nTpwHdn7PX/vydOXOm0ddSm1WB5e3tTUFBgU5b7eumTZvqnV9bjF17TX5+vnp+fX3a2dnh5+fH 0aNHefbZZ9m9ezfDhg0DYPv27YwZM4Y+ffrQuXPn64754MGDuLm5YWtri43NH3dkq6urqaqqwtbW lpycHLWoKy8vR6vV4ujoiIODg3q+ubZXVFSQlpZGcHDwHTEeU7SXlpZSUFBA8+bN74jxmKK9tLSU yspKAgMD74jxmKL90qVL2NjY6Py/6k4cpzHbz58/j5OTE56ennfEeEzRnp6erv5CfSeMxxTtZ86c ITg4mOrqaqP0X3uH6uqfs1f//C0sLGT16tVSYF2tadOmnDlzRqctKysLGxsbmjdvrnd+QECAes7V srOz6d27t9pndna2Xp/NmjXD1taWvXv34u/vr7OOa/To0TRp0oTdu3ffsMCCmr9Ma3XmzBl69OjB qVOnTD0Uk1m+fDlr167VWcdnbebOnUtSUhK7d+829VBM5vHHHwdg7dq1Jh2HKfXt25fJkyfz17/+ 1dRDMZng4GDWrl3LwIEDTT0Uk/H09CQuLo5WrVqZ5P0HDBhwW97HrBa5Dxo0iMTERJ1nUMXGxtKp UyedaraWo6MjYWFhxMbGqm35+fnEx8fTo0cPtc+4uDgqKyt1+uzevTsA/v7+XLlyRWeW6+zZs1y6 dAk/Pz+Df0ZLc+1vGtbIy8tL7za1tfHx8dG7vW9t5DuAqqoqqqurTT0Mk6qurrb670BRFKv4Dsyq wIqKiqJbt26EhYWxZcsWnn32WZYsWcLy5cvVcxYuXMijjz6qvp43bx4ff/wx06ZNY9u2bYSGhhIW FsbYsWMBmDp1KjY2NoSGhrJz504eeeQR9uzZoz7AdNy4cbRo0YLhw4cTFxfHZ599xoQJE2jdurXa h6ifnZ0ddnZmNVFqcK6urri6upp6GCbl5uaGm5ubqYdhUu7u7upSAGvVtGnTOpdzWJO77rqLu+66 y9TDMClnZ2erSOGbVYEFsGfPHkJDQ3nxxRdJS0sjJiaG8PDwes8fMWIEMTExJCcnM3/+fB544AHW r1+PRqMBav6iExISCAoK4rnnngNg586dtG7dGqj5wfD999/TpUsXnnvuOV5++WW6dOlCfHy81f/Q FEKIW2FjY6OzFsYayXcAGo1G/RlsycxuasHHx4f169fXe3zu3Ll6bQ8//DAPP/xwvde0atWKL774 ot7jAQEBfPLJJ7c2UCGEEEJYLbMrsIR5KS8vp7y83NTDMKm8vLw6HyNiTa5cucKVK1dMPQyTquth yEIIyyUFljCqiooKnQCBNSouLqa4uNjUwzCpwsJCq07TgnWniWtlZmaqEXprlZubS25urqmHYVKl paWUlpaaehhGJwWWMCpJEUqKECRBB1j95wdJEYKkCMF6UoRSYAmj8vDwYMOGDaYehkl16dKFJUuW oKCgwfIXdtbl3nvvve46SGswcODA2/b8nTvV7NmzGTFihKmHYVJvvfUW/fv3N/UwTOqf//wnLVu2 NPUwjE6jKIpi6kFYMo1Gg3zFAuCdH97h/nb3c0+Te0w9FCGEsFq1v+gcPHjQqO9j3VlRIW6jYxeP MWrTKFMPQwiLUlZWpu4te62CggJOnz6NVqs16HvW9Uvz2bNnDbbetLCwkPT09Ft6f3HnkQJLGJVW q2X//v2mHoZJZWVlcfToUc7lnyM9P51qxfLXHlzr3Llz/PLLL6YehkmdPHmSkydPmnoYt11sbKz6 3KO//OUvQM1DV2vbrv1z9c4bN+OFF15g+/btOm2fffYZbdq0wdPTk3bt2uHh4cHEiRP1Ftj36dOH CRMm1NnvtcdOnTrF8OHDcXNzw93dnaFDh/Lf//5XPb5y5UreeustvX4OHjxInz59cHFxITIyki1b tgA1/z7UfuaIiAida+bMmUOHDh30tnFLTk5m4MCBuLq64uHhwciRI9WNjcWdRwosYVQVFRUkJSWZ ehgmlZuby+nTpzmXfw4NGi6XXDb1kG677Ozs6/5Gbg0yMjLIyMgw9TBM5vfff1d3yACYNGkSu3fv 1vtz77333nSfCQkJfPXVVzp7G86bN48JEyYwduxYkpOTSUtL45///CeHDh2id+/eDfo7KC4uZtiw YVRWVhIbG0tcXBwajYaoqCj1ESxz5szho48+0im6jhw5wpAhQxg5ciRJSUkMHDiQCRMm8Ntvv9Gm TRsuXrzItGnTdN4rNzeX9evX06FDB51dSq5cuUJUVBQeHh7s37+fzz//nLy8PIYPH05ZWZlOH9XV 1WRmZlJVVXXLn1UYkCKMytq/4oqKCiUpKcnUwzCp3NxcJfVkquLwuoPSYVkH5efMn009pNsuOztb SU9PN/UwTOrChQvKhQsXTD2M2+7LL79UAKWyslJtc3NzU15//fWbuj4rK0s5ceKEUlVVpXds2LBh yjvvvKO+TkpKUmxtbZWPP/5Y79xTp04pvr6+ykMPPaS2hYSEKI8++mid73v1sZ07dyqAkpycrB4/ c+aMotFolC+++EJt+9vf/qZMnDhRfT169Ghl/PjxOv0+/fTTyoYNG9TXM2bMUMLDw9XXb7/9thIe Hq7ExcUpvr6+SklJiaIoirJ27VpFo9Eo586dU889evSoAijfffedznucP39eAZTTp0/X+dmsXURE hBIREWH095EZLGFUdnZ2dOvWzdTDMCkvLy/cA9zxdfElyD2IrOIsUw/ptvPz86NFixamHoZJBQYG EhgYaOphmI20tDT69++Pv78/3bp1IzAwUOf24ZkzZ9izZ49OOvXDDz8kODhYvRV5tbZt2zJr1ix2 7Nihd+vtRgYPHszx48e5554/AiqFhYUoioKjo6PaNnbsWLZs2UJubi6KorBr1y5GjhyJoiicPHmS goICli1bxsSJE+t8n8rKSpYtW8a0adMYOnQoXl5e6s4lY8aMITU1lebNm6vnFxQUAOiMQdw55DEN QtwGxeXFuNq74uviy5VS636iuRAAiYmJfPzxxzptvXr1IiQkBEVRGDduHE5OTqSmpuLv7897773H 2LFjOX78OK1bt+bo0aMEBwfrxP1TU1O555576t3rr2fPnlRVVZGcnMyQIUMA+M9//sPzzz+vd+65 c+do164dAC4uLnTs2FE9pigKb7/9NkFBQdx3331qe58+fbC1tSU5OZmOHTtSUVFBXl4egYGBalH3 /PPP895779W5F9+2bdsoLS1lzJgxaDQapk+fzpIlS3jyySdxc3Pj7rvvVs+tqqpi0aJFtG/fnu7d uwPw66+/AjXrPqGmCK2oqACgXbt22Nra1vm9COOQAkuI26C4ohhXB1c8nTzJK7PubXOEAIiPjyc5 OVmn7ZlnniEkJITDhw+TmJjIgQMH6NChAwBvvvkmGzduZPXq1bz55pukpKTozYqeP39eZ5bpWq1a tQLQeZJ6cXExaWlpeufWlzysrq5m2rRpbN++nV27duHu7q5zvFmzZqSkpKgPF37ttdf4xz/+wfDh w4mJieHpp5+mY8eO/PnPf9br++TJk7zyyivqjNSUKVP4/vvvOXHihPo9QM3a1gkTJvDdd9/x9ddf 4+DgQGVlpU4RCBAVFaX+8+XLl2/8sNutW+GyGawRDQ+HTp1MPYobkgJLGJVWqyU+Pl79bdEaZWVl ceyXY7jau+Lp6El+WX695xZX1Mx0WZpz586Rn59/3R9+lq42Qdi+fXsTj+TOMGvWLF566aU6j9V+ V1OmTNFpv3TpknosJSWFZs2a6Rzv2rXrdRex1z7OoUmTJmpbeHg4n376qd65ffr00WurrKzk8ccf Z8eOHezatavO/681b96clJQUhg0bBsBDDz3EuHHjAJg+fTqbN29m06ZNdRZYL7/8ss5rb29vPv/8 c502rVZLdHQ0P/zwA/v371dDAXZ2dmrhmJGRQefOnTl27JhaVHp6etbzrVzlxAmo55EXd5TOnU09 gpsiBZYwqtoUoTUXWLm5uZw5dwZXx5oZrHxt3QXWgbMHOPT7Ieb3n3+bR2h82dnZZGZmWnWBVfuD XwqsG7O3t8fGxob169fj4eGhc6z2taIo6hqkWv369eP999+nuLgYV1f9X1T27duHq6srvXv3vuUx abVaxo8fz/fff8+BAwcICQmp87zatVm16+2ufa+ePXs2+AGXxcXFjBo1ihMnTvDdd9/R+ZpCo3bW rKioCKj5rm5pm675lvf/HlOSRe7CqJycnIiMjDT1MEwqICCA5m2a33AGa97X89jws2VuKxQcHEzX rl1NPQyTat++vRRXN6lr165UV1dz6tQpunfvTvfu3enUqRPvvvuu+tiXwMBAUlNTda6Ljo6moKCA 2bNn6+11l5SUxNKlS5k2bVqdxdeNjBs3jp9++omEhIR6iyuomX0LDAzEycmJvn37cuDAAZ3jcXFx 9O3b95bfv7q6mhEjRnDhwgUSEhL0iitx55EZLGFUkiL8X4rQ2x2XKy71zmBVK9UkZSbhYOvApZJL +Ln4mWCkxuPnZ1mfpyEkQXjzunTpwpgxY5g/fz7Z2dmEhoayYsUKvvnmG5YtWwbAfffdx0cffURZ WRlOTk4AtGzZktWrVzNlyhR++eUXxo0bh4+PD4mJiXz44Yf079+/zoeB3sjWrVvZsWMHo0aNYs2a NTrHHnzwQUJDQwHIzMwkPz9fXfj+6quvcv/999OyZUsiIyNZv349Fy5c0Hlu181atWoV3377LePH j+fDDz/UOTZu3Dh1oTvUrANT5GnvJicFlhC3gbrIvZ4ZrItFF2ni2oSm7k05cfkEfi2kIBGWq3// /gQHB1/3nJiYGN5++222bdvG2rVrGTZsGHFxcXh7ewMwfPhw7O3tSUxMJDw8XL1u/PjxdOvWjcWL F7Ns2TIqKioIDw9n9erVjB8/XidJ16tXL4KCgup8/6uP/fbbb0RERJCXl8ehQ4d0zrt6rVZiYiI+ Pj7qZs5Dhw5l3759LFy4kI0bNxISEkJcXFyDbpWfO3eOiIgILl68qPdEemtegnEnk82ejUw2exYA 7x96n98LfmdUh1H8/Zu/8+3j3+ocP/z7Yf6272+08mpFRMsInujxhIlGKoRhxcbGMnLkSCorKw3+ mIB58+bx66+/6m2VYyoRERGMGTOG//u//7vpa2bOnMl//vMfvv322xufLAxCNnsWFkH2IqxJEZ5K P3XdGaz0/HQC3QNp79OeUzmnTDBK45K9CK13L8Ja69atIyEhwaB9zps3jx9//PGO+F4PHTpEdnY2 Tz311E2dX1BQwNq1azl+/LiRRyZMRQosYVSyF2FNivDipYu42NeswSrQFuidc6X0Ct7O3rT3ac/J HNP/sDA02YvQevcibNKkCVFRUWzZsoXExESD9u3m5sbChQtZu3atQfttiDVr1rBkyRLs7G5u5U1h YSGbN28G6n4khDB/sgZLGJWkCGtShF5NvHC1d8XD0aPORe45JTkWXWAFBwfrPHvIGllrgrBPnz7E xcUZrf9JkyYZre9bsXLlyls6PygoyKjfizA9KbCEUUmKsCZFaO9iXzOD5Vj/DFaQRxCt7mpFWl7a 7R+kkUmKUFKEQlgbuUUoxG1QUlGCi70LdjZ22NvYU1JRonO89hahp6MnGo2m3oeRCiGEMA9SYAlx G9QWWECdz8LKLcvF27kmft7Moxm/F/x+28cohDkqKytTt8C5VkFBAadPn653X8GGqisZfvbsWSor Kw3Sf2FhodWvWbQEUmAJo5IUYU2K8OLli38UWHXcJswtzeUup7sACHIPIqPQshZDS4rQelOEsbGx aDQaNBoNf/nLXwBwd3dX2679Exsbe0v9v/DCC3qPafjss89o06YNnp6etGvXDg8PDyZOnKj3/Kg+ ffowYcKEOvu99tipU6cYPnw4bm5uuLu7M3ToUP773/+qx1euXFnnQ0wPHjxInz59cHFxITIyki1b tgA1/z7UfuaIiAida+bMmUOHDh3Izs7WaT958iTTp0+nSZMmtG7dmvnz5+s9sV7cOaTAEkYlKcKa FGFecZ5aYHk4eug9qiG3LJe7nGsKrGYezcguztbrx5xJitB6U4S1fv/9dxYvXqy+njRpErt379b7 U7t58c1ISEjgq6SLx0AAACAASURBVK++0nky+rx585gwYQJjx44lOTmZtLQ0/vnPf3Lo0CF69+7d oL+D4uJihg0bRmVlJbGxscTFxaHRaIiKiiIvLw+oKYo++ugjnaLryJEjDBkyhJEjR5KUlMTAgQOZ MGECv/32G23atOHixYtMmzZN571yc3NZv349HTp0YPny5TrHHn/8cTIyMtizZw+LFy/mk08+4e9/ /7veeKurq8nMzKSqquqWP6swHFnkLoxKUoQ1KUJbZ1tcHWr2P6vrUQ1Xz2C18GzBufxzt32cxiQp QutNEdYKCAjQedBou3btGDZs2A2vy87OJi8vj7Zt22Jjozsn8PrrrzN9+nQcHBwA+Pnnn3n33XdZ vny5TuEybdo0Bg8eTGhoKM8++yzbtm27pbEfOHCA3377jS+++EJ9CvtHH31E27Zt+fbbbxk1ahSe np489thjvPPOO2zYULOn6FtvvUV0dDQvv/wyUFP8ZWRkkJCQQOvWrQkICMDFxUXnvT755BN69erF vHnzmDhxIi+++CLOzs4cOXKEM2fOsGnTJoKDg+nRowfx8fF88cUXvPHGGzp9ZGRk0Lx5c06fPk2b Nm1u6bMKw5EZLGFUkiKsSRFWaarUGSx3B3e9AiuvLA8vp5pd71t4tuB8ft1rSsyVn58fLVq0MPUw TCowMFCShLcgLS2N/v374+/vT7du3QgMDNS5fXjmzBn27NnDww8/rLZ9+OGHBAcHq7cir9a2bVtm zZrFjh079G693cjgwYM5fvy4zhY3hYWFKIqCo6Oj2jZ27Fi2bNlCbm4uiqKwa9cuRo4ciaIonDx5 koKCApYtW8bEiRPrfJ/KykqWLVvGtGnTGDp0KF5eXqxfvx6AkJAQsrKy1C2GFEXhwIEDtG7d+pY+ i7h9ZAZLiNvg6kXurg6uFFcUq8cqqisoryrHzcENqCmwtqfeGVt/CGEsiYmJfPzxxzptvXr1IiQk BEVRGDduHE5OTqSmpuLv7897773H2LFjOX78OK1bt+bo0aMEBwfTsmVL9frU1FTuuecevZmuWj17 9qSqqork5GR1/77//Oc/PP/883rnnjt3jnbt2gHg4uJCx44d1WOKovD2228TFBSkbuwMNeu2bG1t SU5OpmPHjlRUVJCXl0dgYKBa1D3//PO89957aDQavffctm0bpaWljBkzBo1Gw/Tp01myZAlPPvmk zvnvvPMOW7ZsQavVsmTJErX9119/BWrWfUJNEVpRUQHUzBgaeqsicX1SYAlxG+gUWPauOo9pyC3N VWevANp6t+X0ldO3fYxC3E7x8fEkJyfrtD3zzDOEhIRw+PBhEhMTOXDgAB06dADgzTffZOPGjaxe vZo333yTlJQUvVnR8+fPX3cj5VatWgE165xqFRcXk5aWpndufcnD6upqpk2bxvbt29m1axfu7u46 x5s1a0ZKSgpeXjX/Tb/22mv84x//YPjw4cTExPD000/TsWNH/vznP+v1ffLkSV555RV1VmzKlCl8 //33nDhxQv0eoKaAcnd357fffmP//v20adOGyspKnSIQICoqSv3ny5cv4+PjU+93A7D1+FYul1y+ 7jl3gvDgcDr5dTL1MG5ICixhVFqtlvj4eKve7T0rK4tCbaHuDFb5HzNYVy9wBwj2CuZC4QUqqyux s7GM/0TPnTtHfn7+dX/4WbraBKG1r8WqNWvWLF566aU6j9V+V1OmTNFpv3TpknosJSWFZs2a6Rzv 2rXrdRex1z7O4er1gOHh4Xz66ad659a1fU1lZSWPP/44O3bsYNeuXXX+f6158+akpKSo68seeugh xo0bB8D06dPZvHkzmzZtqrPAql2rVcvb25vPP/9c77z3338fgOXLlzN9+nTuv/9+mjdvrhaOGRkZ dO7cmWPHjqlFpaenZx3fiK4TOSfMYnlC5yadTT2Em2IZ//cWd6zaFKE1F1hXcq9QUV2Bs50zAC72 Ljq3CK9efwVgq7GlmUcz0vPTaXOXZSxQzc7OJjMz06oLrNof/FJg3Zi9vT02NjasX78eDw8PnWO1 rxVFoaBAdy1jv379eP/99ykuLsbV1VWv33379uHq6krv3r1veUxarZbx48fz/fffc+DAAUJCQuo8 r3ZtVu16u2vfq2fPnhw8ePCW3//KlStkZmbSqdMfMzePPvoozz77LF9//TWPP/64OmtWVFQE1HxX tW03Y37/+bc8LlE/WeQujEpShODt5429rb362tX+mhmsqxKEtZq6NSU9z3IeaxAcHEzXrl1NPQyT at++vRRXN6lr165UV1dz6tQpunfvTvfu3enUqRPvvvuu+tiXwMBAUlNTda6Ljo6moKCA2bNn6z0f KikpiaVLlzJt2rQ6i68bGTduHD/99BMJCQn1FldQM/sWGBiIk5MTffv25cCBAzrH4+Li6Nu37y2/ /+bNm+nevTvnzv2RMI6Pj0dRFL2ZPHFnkBksYVSSIgRnN2ec7JzU164OrlwovKC+vvYWIUBzz+ac L7jzp+pvluxFKHsR3oouXbowZswY5s+fT3Z2NqGhoaxYsYJvvvmGZcuWAXDffffx0UcfUVZWhpNT zX9fLVu2ZPXq1UyZMoVffvmFcePG4ePjQ2JiIh9++CH9+/ev82GgN7J161Z27NjBqFGjWLNmjc6x Bx98kNDQUAAyMzPJz89XF76/+uqr3H///bRs2ZLIyEjWr1/PhQsXdJ7bdbPGjx/PwoULeeyxx5g9 ezbp6eksXryYQYMGMWjQIJ1zmzVrVufT5sXtZXYzWGlpaUyZMgUfHx/atm2r8+C6+qxatYrQ0FDc 3NyIjIzUW9B47NgxoqOj8fDwoEuXLmzevFk9tmHDBjp06FDnnw8++MDQH09YIG2VFkfbP6LcdS1y v3YGq7lHc7NYCyFEQ/Tv31993EB9YmJieOqpp9i2bRvTpk2jSZMmxMXF4e1ds6XU8OHDsbe3JzEx Uee68ePHc+zYMdq3b8+yZct46aWXyMvLY/Xq1cTFxek8VqFXr156C8PrOvbbb78RERFBXl4ehw4d 0vmTmZmpXpOYmIiPjw/9+/cHYOjQoezbt4/ExEQmT55MQUEBcXFxDbpV7u3tzXfffUdQUBBPP/00 K1asYPz48Xz55Zf1piaFaZnVDJaiKEyaNAkbGxu+/PJLvv76axYsWICbm5ve03BrHThwgBkzZvDS Sy/x7rvvMnfuXMLDwzl16hSOjo6UlJQQHR1Nz549OXDgABs2bGDy5Mn4+PgQGRlJjx499CK8CQkJ bNiwgbvvvvt2fGxh5rSVWhxsHdTXN1rkDjUzWD9n/nzbxijE7fTVV1/d8BwHBwf+/ve/1/mkcqh5 vtzMmTNZunQp4eHhOsc6duzIqlWrbvgeH3300U0dmz17NrNnz75hf4sXL+bvf/87dnZ//GgdOHAg AwcOvOG1N6NVq1bExMQYpC9hfGZVYG3fvp3Dhw+TkZGBr68vYWFhVFVVsWTJknoLrJkzZzJ16lTm zJkDwN69e/H392fr1q1MmDCBDz74gJKSEjZv3oytrS29e/cmJyeHpUuXEhkZSZcuXejSpYvaX1FR Ee+88w5PP/00Q4cOvS2f25xJihAysjLgqh0rXO1dKSovUl9fKb1CoLvu7SN/V3+yirNu1xCNTlKE kiJct24dHTp0ICwszGB9zps3j7vvvpuTJ0+a/Hs9dOgQ2dnZPPXUUzd1fkFBAdu3b+f48eNGHpkw FbOaV0xJSaFXr174+vqqbVFRUZw4cYKcnBy986urq0lNTdV5FoiLiwv9+vUjISFB7XPIkCE6D2CL iopSj19r1qxZODs7s2jRIkN9LIsmexHCpdxLUPnHa3dHdwrLC9XXdd0iDHALIKvIcgos2YvQevci bNKkCVFRUWzZskXvdl5jubm5sXDhQtauXWvQfhtizZo1LFmyRGf26noKCwvV5Sh1PRJCmD+zmsFK T0/H399fp6222Lp48aLeQ9QyMzMpLy/Xu8bPz0/dVT09PV0vEeLr60teXp7O4kmAn376iU8++YTY 2FicnZ0N9rksmaQIweMuDzxc/4iauzu4U6j9o8C6UnoFb2dvnWv83fzJLMrEUshehNY7c9WnTx/i 4uKM1v+kSZOM1vetWLly5S2dHxQUZNTvRZieWRVYWVlZekVU7VN0a3c0v1rt4sNrnwPi7u6uPnAu KytL7wFsV/cZEBCgtq9atYpWrVoxfPjwWxr33Llz8fLy0nmf/Px88vLy8PLyYvDgweqzUmp/y712 3zJzba9NEd4p4zFFu4OLA+4u7mp7+ql0ckv+eJL0ldIrVBVXcfToUbWf2luEd8L4DdV+9VO374Tx mKr9anfCeKRd2i2tvXYLpqt/zl798/f8+fM0b94cYzOrAsvb21vvwXK1r5s2bap3fm0xdu01+fn5 6vn19WlnZ6cTLS8rKyMmJoZ58+bdcmIjKSnpugVW585/PJW2qKiIzMxMvYfrSbv5tpc7laspwqKi IoquFOmswcoty8WxypHM7D/6cXNwQ1EULuVdMvn4pV3apV3azam9dllKfQVW7YNYjU4xI7Nnz1bC wsJ02r777jvFxsZG0Wq1eueXlZUpgLJ7926d9sjISGXu3LmKoijKQw89pEyaNEnn+Jo1a5SWLVvq tG3atElxdHRULl++fEtjNrOvWBjBvjP7lCHrh6ivi8qLFJc3XdTXgYsDld8Lfte7rsWSFsrZ3LO3 Y4hCCGE1IiIilIiICKO/j1ktch80aBCJiYlcunRJbYuNjaVTp044ODjone/o6EhYWBixsbFqW35+ PvHx8fTo0UPtMy4ujsrKSp0+u3fvrtPX4cOHueeee264WabQpdVq2b9/v6mHYVJZl7MoKypTX7va u6Kt1FKl1EQLr90qp5afix+XSi7ptZujc+fO8csvv5h6GCZ18uRJNUlorY4ePUpWluWENxoiPj5e 766Jtdm/f3+9m2lbErMqsKKioujWrRthYWFs2bKFZ599liVLlrB8+XL1nIULF/Loo4+qr+fNm8fH H3/MtGnT2LZtG6GhoYSFhTF27FgApk6dio2NDaGhoezcuZNHHnmEPXv26D3A9Pjx4zq38sTNkRQh XCm4QnlpuU6bq0PNoxoqqisoryrH1V5/6w4/Vz8uFVtGgSUpQutNEV7t9OnT6obE1iolJYWSkpIb n2jBkpKSqKioMPUwjM6sCiyAPXv2EBoayosvvkhaWhoxMTF6D5m72ogRI4iJiSE5OZn58+fzwAMP sH79ejQaDQDOzs4kJCQQFBTEc889B8DOnTtp3bq1Tj++vr5Wn4ZrCEkRgou7C018dBN0no6e5Jfl k1+Wj6dj3bvcW9IMluxFKHsRAoSEhOgEh6xReHi4XrDK2kRGRuok9C2VRlFkwyJj0mg0sieUlVv3 8zq+OfsNa0evVdt6rOjBmlFrcHdwZ9jGYZz+v9N6183aO4umbk15IeyF2zhaIYSwbAMGDADg4MGD Rn0fs0oRCmGOtJVaHO0cddp8XXy5XHKZquqqOtdfAXg7e5NbZt23U4QQwlxJgSWEkZVXlevsRQjg 4+zD5ZLLaNDg6VT37QJXe1eLWYMlhBDWxuzWYAnzIilCuJx3mdzLujNRtTNYeWV5etvk1HJzcNN5 XpY5kxShpAhBUoQgKUKQFKEQBiEpQigoLqAoX7dQqi2wckpz8HGp+9EfllRgSYpQUoQgKUKQFCFY T4pQbhEKo5IUITi6OBIcFKzT5uviS+rlVBxsHfBxtvwCS/YitN69CK8WEhJi9c8SlBSh9aQIpcAS RlW7F6E1s7G3wd9Xd8PxJq5NOJh2EEdbR4I8guq8ztXBleKK4tsxRKO7etspa3XtPoTWqE2bNqYe gsl16tTJ1EMwOWv5mSC3CIUwsroWuQe4BZBZlMnlkstWMYMlhBDWRmawhDCyugosfzd/MosycXVw rXcGSwosIYQwXzKDJYxKUoSQV5jHxd8v6rTVzmCdvnKaVl6t6rzOkgosSRFKihAkRQiSIgRJEQph EJIihKLSIr3HNHg6euJg68C5/HO08GxR53Wu9q4Ul1vGGixJEUqKECRFCJIiBEkRCmEQkiIEW0db 2gfqJ8hCm4eSVZSld/uwliXNYEmKUFKEIClCkBQhSIpQCIOQFCFgA80Dm+s1j7p7FEPbDK33Mgdb BxQUKqsrsbMx7/9UJUUoKUKQFCFIihCsJ0Vo3v/XFsIM1LXIHeDJXk/e8FpnO2dKK0txd3A3xtCE EEIYiazBEsLI6iuwboaTnROlFaUGHpEQQghjkwJLGJWkCGsWuaedTmvQtc72NTNY5k5ShJIiBEkR gqQIQVKEQhiEpAihRFtC1sWG/VBxtnO2iBksSRFKihAkRQiSIgRJEQphEJIiBOyga+euDbrUUmaw JEUoKUKQFCFIihAkRSiEQUiKEKqoonWL1g261tnOmbLKMgOP6PaTFKGkCEFShCApQrCeFKHcIhTC yLSVWhztHBt0rbO9ZdwiFEIIayMFlhBGVlZZhqNtAwssO8u4RSiEENZGCixhVJIihNKKUk6knGjQ tZYygyUpQkkRgqQIQVKEIClCIQxCUoRQVlHGhfQLDbrWUmawJEUoKUKQFCFIihAkRSiEQUiKEMqV cu7tfW+DrrWUGSxJEUqKECRFCJIiBEkRCmEQkiKseZJ7x3YdG3StpcxgSYpQUoQgKUKQFCFIilAI YQDVSjXVSnWDN2u2lBksIYSwNlJgCWFEZZVlONk1fCrcUmawhBDC2kiBJYzK2lOE2iot9jb2HD16 tEHXW8oMlqQIJUUIkiIESRGCpAiFMAhrTxFqK7XYa+w5ffp0g663lBksSRFKihAkRQiSIgRJEQph ENaeIiyrLMPFwYWQkJAGXW8pM1iSIpQUIUiKECRFCJIiFMIgrD1FqK3S4mzv3OD0lKXMYEmKUFKE IClCkBQhSIpQCGEAjdmHECxnBksIIayNFFhCGJEhUoQlFda9XkMIIcyRFFjCqCRFqEVTrWlcitAC bhFKilBShCApQpAUIUiKUAiDkBShFptqm8alCC3gFqGkCCVFCJIiBEkRgvWkCM2uwEpLS2PKlCn4 +PjQtm1bFi9efMNrVq1aRWhoKG5ubkRGRpKWlqZz/NixY0RHR+Ph4UGXLl3YvHmzzvGqqioWLFhA q1at8PX15cknn+TEiROG/FgWS1KEZXi4eDQuRWgBM1jBwcF07drV1MMwqfbt21t9kjAkJISAgABT D8OkJEVoPSlCsyqwFEVh0qRJnD17li+//JLJkyezYMECVqxYUe81Bw4cYMaMGYwePZrdu3dTWlpK eHi4Oj1ZUlJCdHS0eu7gwYOZPHky+/btU/uYNWsWK1asYMWKFezevZv09HSmTZtm3A9rIaw9RVhe VY6rk2uD01Mu9i4WMYPl5+dHixYtTD0MkwoMDLT6JGGbNm3w8vIy9TBMqlOnTjg7O5t6GCbVrVs3 7Ows/yEGZvUJt2/fzuHDh8nIyMDX15ewsDCqqqpYsmRJvQXPzJkzmTp1KnPmzAFg7969+Pv7s3Xr ViZMmMAHH3xASUkJmzdvxtbWlt69e5OTk8PSpUuJjIwkOzubTz75hO3btzN06FAAVq5cyfTp07lw 4QJBQUG37fML81NeVY6DrUODr7eUxzQIIYS1MasZrJSUFHr16oWvr6/aFhUVxYkTJ8jJydE7v7q6 mtTUVKKiotQ2FxcX+vXrR0JCgtrnkCFDsLW11emz9vj+/fuprq5m6NChlJSU8OuvvxIUFMRXX30l xZW4ocYWWI52jmgrLX8xqBBCWBqzKrDS09Px9/fXaastti5evKh3fmZmJuXl5XrX+Pn5qefX12de Xh5lZWVcuHCBNm3a8Morr+Dl5UWnTp0ICgpi7969hvxoFsvaU4QV1RVUaisbnCJ0sHVAW2X+BZak CCVFCJIiBEkRgvWkCM3qFmFWVpbeNgvu7u4A5OXl6Z2fmZkJoHfP393dnfPnz6t9Xrvg8Oo+L168 yKlTp0hISODo0aO4ubkxZ84cxo0bx4kTJ25q+4/ly5fj7u6Oh4eH2lZQUEBhYSHu7u706dOHDh06 AHD58mUuX76Mr6+vzkydubbXpgi7d+9+R4zndrdfyb+CUqlw+vRpevfufcv9FOYWoq3UqsfulM91 q+2ZmZkUFRVxzz333BHjMUV7cnIyLi4uOgvd78RxGrP9+PHj5OfnY2tre0eMxxTtKSkp+Pn5qUtd TD0eU7QnJSXRt29fCgsLjdL/F198Aej+nL36529WVpbexIoxmNUMlre3t17lX/u6adOmeufXFmPX XpOfn6+eX1+fdnZ2+Pn54e7uTkVFBW+88QZdu3aldevWLFq0iLy8POLi4m5q3GvXrr3un6sfY5CZ mUlSUpJaHJp7e22K8E4Zz+1uz8nLwdPNU00R3mo/Vy5dobK68o77XLfa7uDgoJMiNPV4TNFeVFSk /vJ2J4zHFO1BQUFkZGTcMeMxRXt4eDglJSV3zHhM0V6bIjRW/zf6mXvt9caiURRFuS3vZABz5szh +++/54cfflDb4uPjGTBgAKWlpTg46K510Wq1ODk5sXv3boYNG6a2Dx06lN69e/PWW28xZswY3Nzc WLdunXr8X//6F6+99hpnz57lk08+4a9//ate/76+vrz88ss899xz1x2zRqPBjL5iYWDvJbxHVnEW iyIXNbgPxzccKZxb2Ki1XEIIIWoMGDAAgIMHDxr1fcxqBmvQoEEkJiZy6dIltS02NpZOnTrpFVcA jo6OhIWFERsbq7bl5+cTHx9Pjx491D7j4uKorKzU6bN79+5AzW8bAN9++616/MiRI+Tk5HDvvfca 9gMKi9PYRe5Qsw6rvKrcQCMSQghxO5jVGqyoqCi6detGWFgYb775JvHx8axYsUJnEfXChQv55Zdf iImJAWDevHmMGjWKiooKhg4dyssvv0xYWBhjx44FYOrUqbzxxhuEhoby8ssvs2nTJvbs2UNycjIA HTp0YOLEiUyePJmlS5diY2PDG2+8wZAhQ+jdu/ft/xKEWTFEgeVo64i2SosbbgYalRBCCGMzqxks gD179hAaGsqLL75IWloaMTEx6ixTXUaMGEFMTAzJycnMnz+fBx54gPXr16PRaABwdnYmISGBoKAg 9Xbfzp07ad26tdrHmjVreOqpp3j77bdZsGABAwYMYPv27VbxoLTGkhRhBdoSbYNThGAZM1iSIpQU IUiKECRFCJIivGP5+Piwfv36eo/PnTtXr+3hhx/m4YcfrveaVq1aqamDutja2vLSSy/x0ksv3dpg hZoiHDJkiKmHYhLlVeVotBo1RdgQlvAsrOzsbDIzM9UUoTWq3YfQmrfLOX36NG5ubrclwXWnSklJ oV27djqpNmtTmyJ0dHQ09VCMyuwKLGFerH0vwoqqCgK8Aghp3rC9CMEyZrCCg4Nv6pEmlsyaC6ta ISEheo/asTayF6H17EUoBZYwKtmLsBxPN88G70UIf6zBMmd+fn6mHoLJWfs+hECj/juwFJ06dTL1 EEzOWn4mmN0aLCHMiaQIhRDCOkmBJYQRVVRXYG9j36g+HGwdzH4NlhBCWBspsIRRWXuKsLyqnNKi 0kalCB3tHM1+BktShJIiBEkRgqQIwXpShFJgCaOqTRFaq/KqcspLyzl9+nSD+7CEDZ+zs7NJT083 9TBMKiMjQ00SWqvTp0+Tm5tr6mGYVEpKCiUlJaYehkklJSVRUVFh6mEYnSxyF0Zl7SnC8qpymvg0 oXerhj+U1tHW/GewJEUoKUKQFCFIihAkRSiEQUiKsJy7PO5qVHrKEha5S4pQUoQgKUKQFCFIilAI YQDaSi2Odo17mJ69rT0VVZY/nS6EEJZECiwhjEhbpcXRtnEFliXMYAkhhLWRAksYlaQIyynKL2pU itDexp6KavOewZIUoaQIQVKEIClCkBShEAZh7SlCbaWWsqKyRqcIzX0GS1KEkiIESRGCpAhBUoRC GISkCMtp6t8UL1+vBvdhCWuwJEUoKUKQFCFIihAkRSiEQVh7ilBbpcXvLj9aeLZocB+WMIMlKUJJ EYKkCEFShCApQiGEAWgrtY3ei9AS1mAJIYS1kQJLCCMqrypv9GMaLGEGSwghrI0UWMKorD1FqK3S kp+T37gUoQWswZIUoaQIQVKEIClCkBShEAZh7SnC8qpyiguKJUUoKUJJESIpQpAUIUiKUAiDsOYU YbVSTbVSTVDTIJwcGp6YsYQ1WJIilBQhSIoQJEUIkiIUwiAsKkWYnw8//QTnz9f8mT4dvL3rPb28 qhwHWwe8vLzw8mr4YxosYQZLUoSSIgRJEYKkCMF6UoRSYAlxsx5/HNLToVMnyM2Fw4dhxw7QaOo8 3RDb5IBlrMESQghrIwWWEDfjwAH4+WdITQVHR6iogP79YfFieOGFOi8xxCMawDJmsIQQwtrIIndh VBaRIqyuhhkz4N13a4orAHt72Ly5pu3QoTovK6ssw9nemaysLNmLUFKEkiJEUoQgKUKQFKEQBmER KcJVq8DLC8aO1W1v2RI++QQmTICqKr3LSitLcbZzJjc3V1KEkiKUFCGSIgRJEYL1pAilwBJGZfYp woICWLAAli6t+/jo0dC0KcTF6R0qrSjF2d6ZgIAAQkJCGjwEe1t7sy+wgoOD6dq1q6mHYVLt27e3 +iRhSEgIAQEBph6GSUmKUFKEQhiE2acIV6+GQYOgR4/6z5kyBdasgREjdJprZ7AamyJ0tHVEW2ne 0+mSIpQUIUiKECRFCNaTIpQZLCGuJzYWoqOvf864cTWL4C9d0mmuncFqLEc7R7RV5l1gCSGEtZEC S4j6FBbCkSMwZMj1z3N3h1GjYMMGnebaGazGcrJzMvsZLCGEsDZSYAmjMusU4b59EBYGbm43Pnfq 1JrbhFepncFqbIrQ0db8Z7AkRSgpQpAUIUiKECRFKIRBmHWK8Kuv4IEHbu7c/v2hrAwSE9UmQ6UI He3Mfw2WRw9TUAAAIABJREFUpAglRQiSIgRJEYKkCIUwCLNNESrKrRVYGk3Nk97XrlWbDJUitIQZ LEkRSooQJEUIkiIESREKYRBmmyJMSqrZZ7Bly5u/ZtQoePBB9aXBUoQWMIMlKUJJEYKkCEFShCAp QiGs265dNz97Veuee2puE/7vdqDBUoQWMIMlhBDWRgosIerSkAILIDKyZnE8hksRWsIMlhBCWBuz K7DS0tKYMmUKPj4+tG3blsWLF9/wmlWrVhEaGoqbmxuRkZGkpaXpHD927BjR0dF4eHjQpUsXNm/e rHN87969dOjQQe/PpWueeyT0mWWK8MoVSEmB0NBbv3boUNi7FzBsirCssqzB198JJEUoKUKQFCFI ihAkRXhHUhSFSZMmcfbsWb788ksmT57MggULWLFiRb3XHDhwgBkzZjB69Gh2795NaWkp4eHh6l9u SUkJ0f97kOSBAwcYPHgwkydPZt//ZiEAEhIS0Gg0PP/88zp/XF1djfuBLYBZpggPHYKePcHW9tav HTIEDh6EqiqDpgjNfascSRFKihAkRQiSIgTrSRGa1SL37du3c/jwYTIyMvD19SUsLIyqqiqWLFnC tGnT6rxm5syZTJ06lTlz5gA1s1H+/v5s3bqVCRMm8MEHH1BSUsLmzZuxtbWld+/e5OTksHTpUjX9 9tNPPzFkyBCmT59+2z6rpTDLFOGhQzXPv2qIgABo0QISEymtKMXJzqnRKUINGnU/Qgdbhwb3Y0rB wcE0adLE1MMwKWtPEEJNitDHx8fUwzApSRFaT4rQrGawUlJS6NWrF76+vmpbVFQUJ06cICcnR+/8 6upqUlNTiYqKUttcXFzo168fCQkJap9DhgzB9qrZiqioKPU41BRYPXv2JD09nR07dnDhwgVjfDyL ZJYpwsYUWFBzm3DfPsoqy3C2r0kRNjY9Ze4L3f38/GjRooWph2FSgYGBVp8kbNOmTaMStZagU6dO ODs3fm2mOevWrRt2dmY1v9MgZlVgpaen4+/vr9NWW2xdvHhR7/zMzEzKy8v1rvHz81PPr6/PvLw8 ysrKuHz5MufPn+f111+nX79+PProo7Ru3ZqlS5ca8qOJO0VVVc32OA1Zf1XrfwvdSytrZrAMQRa6 CyGEeTGrEjIrK0tvetnd3R2AvLw8vfMzMzMB9H5jcnd35/z582qf107XXt1nTk4Offr04fnnn+eR Rx6hoKCABQsWMGvWLPr370+vXr1uOO7ly5fj7u6Oh4eH2lZQUEBhYSHu7u706dOHDh06AHD58mUu X76Mr6+vzkydtN+e9rz4eFx8fSlQFP5ovcV++vdHSUoiJ6cbFSW66wwaOk57jb3ODNad9r1Ju7RL u7TfKe1ffPEFoPtz9uqfv1lZWXoTK8ZgVjNY3t7eeumL2tdNmzbVO7+2GLv2mvz8fPX8+vq0s7PD z8+Pzp078+OPP/LII48A4OHhwUsvvYStrS1fffXVTY177dq11/1z9SLwzMxMkpKS1OLQ3NtrU4R3 ynhu1F7y9ddcCA5uXD/OzpR06kRB5nmKC4p1UoQNHacttjozWHfa93aj9v/+9786KUJTj8cU7d9/ /z0//fTTHTMeU7QnJCTw448/3jHjMUV7fHw8Z8+evWPGY4r22hShsfq/0c/ca683GsWMzJ49WwkL C9Np++677xQbGxtFq9XqnV9WVqYAyu7du3XaIyMjlblz5yqKoigPPfSQMmnSJJ3ja9asUVq2bKko iqIUFRUpZ86c0TleVVWlNGnSRJk9e/YNx2xmX7HBFRYWKosWLTL1MG7exImKsnJl4/tZsEAJ/XuQ knA+QUlNTVU2bdrUqO46LuuoHL90vPHjMpEjR44oX375pamHYVLffPON8s0335h6GCa1adMmJTU1 1dTDMKmPPvpIuXjxoqmHYVKLFi1SCgsLTfb+ERERSkREhNHfx6xmsAYNGkRiYqLO86diY2Pp1KkT Dg766SpHR0fCwsKIjY1V2/Lz84mPj6dHjx5qn3FxcVRWVur02b17dwC2bNlC27ZtdX77jo+PJzs7 m3vvvdfgn9HSmF2KsLEL3Gv1709pcZ5BUoRg/muwZC9C2YsQZC9CkBQhWE+K0OymV3r16qW0bdtW +eyzz5RnnnlGsbe3V7799lv1+FtvvaU88sgj6uvY2FjF1tZWefLJJ5WtW7cqHTt2VAYNGqRUV1cr iqIoJSUlSkBAgNK7d29lx44dyvjx4xVXV1d11io3N1dp2bKlEhISonz++efK8uXLldatWyv9+vVT qqqqbjheM/yKrVdWlqLcdZei/O/fjUYpLlY6/J+Nkvp7UuP7UhSlz8o+yo+//2iQvoQQwprJDFY9 9uzZQ2hoKC+++CJpaWnExMQQHh5e7/kjRowgJiaG5ORk5s+fzwMPPMD69evRaDQAODs7k5CQQFBQ EM899xwAO3fupHXr1kDNAvmDBw/SsWNHZs6cycqVKxk3bhz79+/Hxsbsvj5xPYcOQd++8L9/NxrF xYVSZ3ucUk40vi/AwdbB7B82KoQQ1kSjKIpi6kFYMo1Gg3zFZuLFF8HNDV56ySDdBbzixs92z+D/ 0tuN7mvw+sHM7z+fQa0GGWBkQghhvQYMGADAwYMHjfo+MgUjjMqs9iI8cqRmBstAyuzAKeFIo/ci BLC3sTfrGSzZi1D2IgTZixBkL0KQvQj/n73zDo+qSh/wm04qoQRCgIQOBiQWoiEgoYpSFFF0sYGI HVxZ1P2pq+K6thVRUREWCypKsQCCFZBIqAISQu+QCElIIT2Ten9/XDIS0ybJvXPnZr73efLEOffe c76JwHw557znEwRNMFUtwvh4uCA/aEEhJXhv20lWenqjahGCukRYUm7e2l1Si1BqEYLUIgSpRQhS i1AQNME0FuHp0+DjAxrVSStXyiktL8WzYydCzp3DvZEWodn3YEktQqlFCFKLEMQiBOexCCXBEnTF NLUINZ69KigpwNvdGwYNwn/3bvyHDGlUf2ZPsIKCgowOwXCcvQ4h0OianE2B8PBwo0MwHFN8JmiA LBEKAsDu3XDh7DMtKCgpwMfDBwYNgri4Rvdn9gRLEATB2ZAESxBAvwRr4EDYtKnR/UmCJQiCYC4k wRJ0xTQWoV4JVrt2lHl7s++bbxrVn4ebWIRmRyxCsQhBLEIQi1AQNMEUFmFGBuTkQOfOmnVpTbCA /IgI8teubVR/nm6elJSZ17oRi1AsQhCLEMQiBLEIBUETTGERxsdD377anOB+gYsTLI+YGC5p5DlY Zl8iFItQLEIQixDEIgSxCAVBE0xhEe7eralBCJUTLO9hw/BetKhR/Zk9wRKLUCxCEIsQxCIEsQgF wXnQeP8VVE6w6NsXkpIgK6vB/Zk9wRIEQXA2JMEShPh4fRMsNzeIjIRt2xrcnyRYgiAI5kISLEFX HN4iLCyEEyegd29Nuy0oKcDX0xeA1NRUkjt3hi1bGtyf1CI0P2IRikUIYhGCWISCoAkObxEmJECP HuDpqWm3OUU5BHgFAHD+/HmOtG7dqARLahGaH7EIxSIEsQhBLEJB0ASHtwh1WB4EyLJk0dxLNYWC g4PxuvVWmDcPysrUJcN6YvYlQrEIxSIEsQhBLEIQi1AQNMHhLcK9e9VN6BqTXZRNW7+2AAQGBhJ4 +eXQsaM6XgMSOrMnWGIRikUIYhGCWIQgFqEgOAf79kGfPpp3m23JJrBZYOXG6OgGLxN6unlSVNr0 9ywIgiA0FSTBEpybvXt1SbAuXiK00sgEy8wzWIIgCM6GJFiCrji0RZicDIoC7dtr3nV20Z8zWKmp qezcuROiohp8VIOXu5epEyyxCMUiBLEIQSxCEItQEDTBoS1CnZYH4cIMVjN1Buv8+fMcO3YMevaE zExIT693f2afwRKLUCxCEIsQxCIEsQgFQRMc2iLcuxcuvVSXrrMt2ZUswsjISLXW4VVXqbNYY8bU qz+zJ1hiEYpFCGIRgliEIBahIGiCQ1uE+/apJ6zrQJYly7pEGBgYSGDghQ3vFcuETpZgiUUoFiGI RQhiEYJYhILQ9NFpg3u5Uk5ecZ71oNFKNHAfltkTLEEQBGdDEizBOSkvhwMHdEmwcopy8PP0w9Wl mr9eV18NO3eq49cDSbAEQRDMhSRYgq44rEV48iS0aKF+aczFy4NwkUUI6njBwWpyVw/MnmCJRSgW IYhFCGIRgliEgqAJDmsR6rQ8CFUTLKtFWEEDlgnNnmCJRSgWIYhFCGIRgliEgqAJDmsR7tunm0H4 1wTLahFWUJFgTZ1qc59mT7DEIhSLEMQiBLEIQSxCQdAEh7UI9+6FUaN06fq85XylBKuSRQhqgvXu u/Xq0+wJlliEYhGCWIQgFiGIRViFM2fOMG/ePAByc3O57bbb6Nu3L6+99ppuwQmCbug4g5VekE5r n9Y133DppZCYCPXYh+Hp5klRWdPfsyAIgtBUsCnBKikpYdSoUcyePRuA559/nrVr1zJkyBBee+01 Fi9erGuQgqApxcVw/Dhccoku3acXpBPkW8uMjZsbXHEF/PabzX2afQZLEATB2bApwUpISODEiRPs 2bMHgC+//JL777+ft99+m+nTp/P999/rGqRgXhzSIjxyBEJDwdtbl+7T8tMqzWBVsggrqOdGdy83 qUVodsQiFIsQxCIEsQgrcerUKXr16oW/vz+7du3ijz/+4Oabbwagffv25OXl6RqkYF4c0iLcv183 gxAgraByglXFIoR6J1juru6UK+WUK/U7P8tREItQLEIQixDEIgSxCCvRs2dP9u7dy8mTJ/nwww8J DQ0lMjKSvLw8li5dyvjx4/WOUzApDmkR6pxgpeSl0DGgo/V1FYsQ1ATrvvvq1a+XmxdFZUV4u+sz 86YnYhGKRQhiEYJYhCAWYSX69OnDmDFj6NKlCwAffPABANHR0VgsFm688Ub9IhRMjUNahPv2wW23 6db9qaxThAWGWV9XsQhBPWzU1xeOHYNu3Wzqt5l7MyylFlMmWGIRikUIYhGCWIQgFmEVli1bxpYt Wzhy5Aj33nsvAG+++SYHDhygY8eOdTytHadOneKee+6hVatWdOvWjTfeeKPOZz744AP69++Pn58f I0aM4NSpU5Wu//7770yYMIGAgAD69OnD0qVLa+xr/vz5uLi4oChKY9+KYBQ6zmCVK+UkZSfRIaBD 3TfXc5mwIsESBEEQHB+bEyw3Nzd69+7Nvn37mDt3LsuWLaNTp064u9vvKC1FUbj77rs5efIkq1ev ZtKkSTz//PMsWLCgxmd++eUXZsyYwbhx4/jhhx8oLCxk0KBB1g12BQUFTJgwwXrvsGHDmDRpEmvX rq3S1+HDh5k5c6Y+b06wDxaLekSCTss1STlJtPJphZebV903S4IlCILQdFFsZM2aNUrLli0VQAkI CFAAxc3NTXn00Udt7aLRfPXVV4qHh4eSlpZmbXv++eeVnj171vhMREREpRjz8/MVPz8/ZfHixYqi KMqrr76qBAcHK6WlpdZ77rjjDmXUqFGV+ikuLlb69eunDBs2TAGU8vJym2Kux4+4SWKxWJS1a9ca Hcaf7N6tKH366Nb90n1LlZuX3VypLSUlRdmxY0fVm7dtU5Qrr7S570vevUQ5kHagsSEawunTp5WE hASjwzCUw4cPK4cPHzY6DEPZsWOHkpKSYnQYhrJx40YlOzvb6DAMZe3atYrFYjFs/JiYGCUmJkb3 cWyawcrKyuKOO+5gwoQJ7N69m6ysLM6cOcPChQtZuHChdU+W3uzfv58rr7yS1q3/NLRGjhzJ4cOH ycjIqHJ/eXk5Bw8eZOTIkdY2Hx8fBg4cyJYtW6x9Dh8+HDc3t0p9VlyvYNasWQQEBDB9+nSt31aT xuEswv37oXdv3bqPOx1HdMfoSm3VWoQAl18Ohw9Dfr5NfXu5e5l2BkssQrEIQSxCEIsQnMcitCnB 2rp1K82aNeOtt97isssuw8XFhZCQEO655x4efPBBVq1apXecAJw+fZq2bdtWaqtItpKTk6vcn5KS QnFxcZVngoKCrPfX1GdWVhYWi/phtmnTJubPn8+iRYtwcXHR7P04Aw5nEe7bp6tBuP7keoZ1GVap rVqLEMDTEyIiYMcOm/pu5t6MolJznh0TFhZG3759jQ7DUHr06OH0JmFkZCTBwcFGh2EoYhGKRViJ oKAgLBYLFoulyg8lNDS02tkjPUhNTa2i+Pr7+wPqLNtfSUlJAahicPn7+5OUlGTt869/2C/u08fH h7vuuou33nqLjh07snv37nrH/d577+Hv709AQIC1LScnh9zcXPz9/bnqqqvo1asXAOnp6aSnp9O6 detKM3Vmba+wCB0lHvbvhylTdOk/3yOfnKIcItpWfb8Vfwar9BMdDVu2kN6nT539X7wHy2F+nvVo Dw0Ndah47N2ek5NTqc3oeIxob968OSkpKZSWljpEPEa0h4eHk56ezunTpx0iHiPaKyxCvfpfuXIl UPlz9uLP39TU1CoTK3pQ4wxWeXk5WVlZZGVl0bVrV6Kjo5kyZQpr166lqKiIlJQUvv76a+bOnWu3 jd8tW7ascgJuxet27dpVub8iGfvrM9nZ2db7a+rT3d2doKAgpk+fTt++fZkwYQIWi8U6rWmxWCgr K7Mp7kWLFtX6dfESWkpKCvHx8dbkUNo1br9gEOrR/4/HfmRElxH16+dCgmXL/RcnWA7z85R2aZd2 aXew9ro+c//6vG7UtDnr8OHDClDtl7u7u/W/XV1dlUceeUT3zWKKoihPPvmkEh0dXalt48aNiqur q1JUVFTlfovFogDKDz/8UKl9xIgRylNPPaUoiqKMHz9eufvuuytd/+ijj5ROnTopiqIo3t7eNf4c Xn755TpjruVHLNib/HxF8fVVlLIyXbq/ZfktyuKExfV7KCVFUVq2VBQbpIlxS8cpKw6uaGB0giAI gqLYb5N7jUuEHTp04IcffrApSbPXOVhDhw5lzpw5pKWlWQ8uXLNmDeHh4Xh6ela538vLi+joaNas WcN1110HqLNXcXFx3HfhFO2hQ4fy73//m9LSUuuRE2vWrOGyyy4DYNu2bZSX/1me5Ndff+Wxxx7j 999/p3379rq+36ZAUVERcXFxDB8+3OhQ4MAB6NkTXG0+naRe/HrqV9667q0q7ampqSQlJdGvX7+q D7VtC4GB6mb3C8vENWHmYxoSExPJzs7m0ksvNToUw6ioQ+jM+7B27txJx44d7bI846jExcURERFR acnK2Vi3bh3XXHMNXl42HGdjYmpMsHx8fKxJSU2UlpaycuVKtmzZQm8dzawKRo4cSUREBNHR0bz0 0kvExcWxYMGCSsWEX3nlFfbu3csXX3wBwNNPP82NN95ISUkJ1157Lc8++yzR0dHccsstAEyZMoX/ /Oc/9O/fn2effZYlS5bw008/kZCQAFBlY25iYiKAdbO/UDsVFqFDJFg6HjCaXZSNpdRCe/+qSXeF RVhtggXWZcKmnGCdO3eOlJQUp06wKgxCZ06wjh07hp+fn1MnWPv376d79+5OnWDFx8cTFRXV5BOs Bv0qn5SUxHPPPUdoaCgTJkxg3759WsdVIz/99BP9+/fn//7v/zh16hRffPEFgwYNqvH+0aNH88UX X5CQkMAzzzzDmDFj+PTTT63Jkbe3N1u2bKF9+/b8/e9/B+Dbb7+1lgX6K61btyYmJkb7N9ZEcSiL UEeD8HjmcXq0qv6Ds0aLsIKKBKsOzJxgiUUoFiGIRQhiEYLzWIQuimJbzRdFUfj55595//33WbNm DR4eHtx0001MmTKFYcOGyWxODUhZHQdi1CiYPh2uv17zrpfvX86XB77kywlf1v/hPXtg4kR1CbMW Zvw0g7DmYTwW9VgDoxQEQRAGDx4MQGxsrK7j1HlMQ3p6Oh999BELFizgxIkT9OvXj5YtWzJnzhzu vPNOXYMTBE3RcQYrOS+ZYL8G/mbepw+cOQPnz0OLFjXeZuYZLEEQBGejxiXC7Oxs7rzzTjp06MDc uXMZN24ce/fuZceOHXTo0KHSyeeC4PBkZUFODugkZKTmpTY8wXJzg8hI2Lq11tu83LwoKjPnQaOC IAjORo0JVmpqKp9//jljxoxh7dq1vPHGG/TR8QRsoWlSVFRUSUIwjH37dC2Rk5KXUmOClZqays6d O2vvYMAA2Ly51lu83L1Me5J7YmIie/fuNToMQzly5IjVJHRWdu7cSWpqqtFhGEpcXFyVsxedjXXr 1lFUZM5/y+pDjQlWWFgY8+fPJzExkfDwcC699FLeeOMNp//LIdQPh6lFmJAAOhpsqfmptPWt3oyq sRbhxVxzDWzaVOstZp7BklqEUosQpBYhSC1CkFqEeHl58cADD/Dbb7+xd+9eRowYwWuvvUaHDh04 cOAA8fHx5NtYpFZwXhzGIty7V9cahOkF6bT2aV3ttTotQoCoKPj9dygurvEWM89giUUoFiGIRQhi EYLzWIQ2HdPQp08f5syZw5kzZ1i6dCnDhg3jjTfeoG3bttx555389ttvescpmJSKWoSGo3OClZaf RpBvULXXAgMD6dq1a+0d+Pmp52Dt2lXjLWaewQoKCqpUi9AZCQkJISQkxOgwDKVr165VasM6G+Hh 4Xh7exsdhqFERERYD/ZuytTrHCwPDw9uvvlmvvvuOxITE3nmmWfYvn07H374oV7xCYI27Nun6xJh bTNYNjNwIMTF1XjZzDNYgiAIzkaDa4aEhITw1FNPcfToUWbNmqVhSIKgMYmJ4O0NF4p/a01RWRFF ZUU092rktH8d+7DMPIMlCILgbGhSlK1du3ZadCM0QRzCIty719DZK5ssQlBnsLZsgRoOpjXzDJZY hGIRgliEIBYhiEUoCJrgEBahgRvcwUaLEKBNG3WW7eDBai+beQZLLEKxCEEsQhCLEJzHImz6u8wE Q3EIi3DvXhg2TLfu0/LTCPKpfoM72GgRVjBwoLpMGB5e5ZKZZ7DCwsJo06aN0WEYirMbhKBahK10 Wqo3C2IRikUoCJrgEBahzkuE5y3naeFdc4kbmyzCCmrZh2XmGSyxCMUiBLEIQSxCEItQEJoGpaVw 9Gi1M0JakVech7+nvzadXXMNbNhQ7SUzz2AJgiA4G5JgCU2bI0cgJAR8fXUbIrcoFz9PP20669pV TQqr2a9k5hksQRAEZ0MSLEFXDLcIdV4ehAszWF41z2DZbBFWcM011Z6HZeYZLLEIxSIEsQhBLEIQ i1AQNMFwi1BngxAgt7j2GSybLcIKakqwTDyDJRahWIQgFiGIRQjOYxFKgiXoiuEWob1msGrZg1Uv ixBqncGylFoaEqLhSC1CqUUIUosQxCIE57EIm/42fsFQDLcIdS6RA3XvwQoMDKyfOdW3L5w9C+np 0PrP87WauTcz7RJhUFDNx1g4C85uEAK227RNmHAdhRuzYLhZbidkBktouuTlqYmKzrMGde3Bqjeu rtC/f5XjGpq5NzPtDJYgCIKzIQmW0HTZvx969gSdz1vJKcrR7piGCqo5D8vTzZPismJtxxEEQRB0 QRIsQVcMtQjtsP8KILsom+bNat5TUW+LEKrdh+WCC55unqbc6C4WoViEIBYhiEUIYhEKgiYYahHa K8GyZNPcq+YEq94WIcBVV6kzcPn5lZrNutFdLEKxCEEsQhCLEJzHIpRN7oKuGGoR7tsH112n+zA5 RTkEeAXUeL3eFiGAlxdcfjls21apjqJ1o7tXQ6M1BqlFKLUIQWoRgliEIBahIGiCoRahgywR1tsi rKBimfAvCZYZZ7DEIhSLEMQiBLEIQSxCQTA3qalQUgIdOug6TGl5KcVlxfh66FCK55pr4NdfKzV5 uZlziVAQBMHZkARLaJrYafaqruXBRjFoEOzcCRft12jm3syUm9wFQRCcDUmwBF0xzCK0Q4kcUJcH 60qwGmQRglqg+oorKtmEZl0iFItQLEIQixDEIgSxCAVBEwyzCO04g1WbQQgNtAgrGD4cLkpQxSI0 L2IRikUIYhGCWISCoAmGWYT79sGUKboPk1ech69n7fuvGmQRVjB8ODz8sPWlWcvliEUoFiGIRQhi EYJYhIKgCYZYhOXlcOCAXWaw8ovz69zg3mCLECAyEk6dgrQ0CAoy7RKhWIRiEYJYhCAWIYhFKAjm 5dgxaNsW7PBbYn5Jfp0zWI3C3V3d7P7LL4A6g1VYWqjfeIIgCIImSIIlND1+/x369bPLULbMYDWa 4cNh7VoAfD18KShx7v0bgiAIZkASLEFXDLEIf/8drrzSLkPZMoPVYIuwghEjrBvdfTx8yC/Or+MB x0MsQrEIQSxCEIsQxCIUBE0wxCL8/Xf1eAM7YMsMVqMsQoBevaC0FI4dw9fTnDNYYhGKRQhiEYJY hCAWocNSUFDAl19+yapVq2jZsiVTpkwhOjq61mcSEhJYsmQJCQkJREdH8/jjj+Pl9Wcxt8zMTJYs WcKPP/5IWFgYjzzyCJdccon1elFREWvWrOHLL7/Ey8uL8ePHc+ONN+r2HpsShliEdkywCkoK9LUI K7iwTOhziY8pEyyxCMUiBLEIQSxCcB6L0HQzWDNmzGDmzJn069ePkydPMnToUDZs2FDj/SdOnKB/ //7Ex8cTFRXF7NmzGTNmTKV7br31Vl5//XViYmLYvHkzAwcO5NChQ9brM2fO5PHHH+fKK6+kTZs2 3HHHHcyfP1+399iUsLtFePKkurm9ZUu7DJdfYptF2Gh7atQo+O47dYmwxHxLhEFBQYSGhhodhqGE hIQ4vUnYtWvXhhu1TYTw8HC8vb2NDsNQIiIicHc33fxOvXFRFEUxOghb2bJlCwMHDuTAgQP06tUL gHvvvZcTJ07UmGRdf/31+Pv7s3z5ckDdC9KlSxfWrl3LkCFD+Oyzz3jwwQdJTk4mICCA8vJyhg0b Rrdu3Vi4cCFHjx4lPDycNWvWMHLkSAAee+wxfv75Zw4cOFBnzC4uLpjoR2x+vv4avvhC/W4HHv3h UbrRQPGMAAAgAElEQVS36s70q6brO1B2NoSG8u73szicc4J3rn9H3/EEQRCaKIMHDwYgNjZW13FM NYO1adMmevfubU2uACZOnEhsbCx5eXk1PjNhwgTr69DQUKKjo1m9ejWgbji89tprCQhQy524urpy 2223sWbNGgC6dOlCQkKCNbkCdUnR1dVUPzrnwY7Lg2DbDJYmNG8Ol1+Oz/HTptzkLgiC4GyYKks4 ffo0HTt2rNTWvn17AJKTk6vcn5GRQV5eXrXPVGw2ranPc+fOUVpaipubm3U/1rZt23jqqaf45ptv mDVrllZvq0ljd4tw1y77JljF+fh4+NR6T6MtwgpGj8Y3/oAp92CJRSgWIYhFCGIRgvNYhKZaBE1K SqJ169aV2irW81NTU+nevXuV+4Eqz7Ro0cK6xyopKYkBAwZU6bO8vJz09HSCg4Ot7c899xy//fYb ISEhhIWF2Rz3+vXr8fb2xsfnzw/igoICCgsL8fb2pkuXLtZx8vLyyMvLw8/PDz8/P+v9Zm2vsAij oqLsMm7bXbtwueiIBr3fb3ZhNsX5xdZr1d1fYRH269evceOOHo3PA7PJj7zKYf7/2tqelJTE+fPn ufTC6fpGx2NE+5EjR/D09Ky02d0R49Sz/fDhw5SWluLr6+sQ8RjRvn//ftq3b09BQYFDxGNEe8Vn QklJiW79Q+XP2Ys/f3NycqyrVnpiqhksHx8fLJbKZUIKC9VTrVu0aFHt/UC1z1TcX1OfLi4uVTZj /vzzzyQnJzN27FiioqJsVq4nT55c69fKlSut9x46dIiVK1dW2mRv5vYKi9Ae4679+GNKXFzgIltN 73EzsjPYvX13rfdfbBE2atzwcHzLXCk4n+Yw/39tbS8pKaFv374OE48R7SdPnsTNzc1h4jGivWXL luzatcth4jGifdCgQaSkpDhMPEa0V1iEevVf12fuX5/XC1Ntcp8xYwYJCQmsX7/e2rZz504iIyPJ zc2tlNEC5ObmEhAQQGxsLDExMdb2G264gW7dujFnzhzGjh1LSEgICxYssF5funQpM2bMqHbZEdQ9 WO3atePdd9/lvvvuqzVm2eRuR1atgg8/hG+/tduQUR9E8dZ1bxHVIcou422bMYEZLX9j67POfaaU IAhCQ5FN7tUQERHBzp07K804bdy4keDg4CrJFYC/vz+dO3cmLi7O2lZaWsq2bdvo1q2btc+Lr1f0 WXH9888/p02bNqSnp1uvp6WlUVxcjIeHh6bvT2gkdt7gDnaoRfgXfAYOoSAnw27jCYIgCA3DVAnW xIkT8fHxYfLkyZw9e5avv/6a2bNn88ILL1jvWbFiBXPnzrW+/sc//sHcuXNZsmQJqampTJ06FX9/ fyZNmgTAI488wvHjx5kxYwaZmZksWLCAxYsXWzexx8TEYLFYeOKJJ0hPT+fo0aP885//JDg4uMp5 WoLB2LFETgUFJQX2sQgv4B09iMKSQnDy07AFQRAcHsVkbN26VQkNDVXc3NyUFi1aKNOmTVPKy8ut 1++66y6lS5cu1tfFxcXKww8/rLi5uSnu7u5KZGSksmnTpkp9rlixQmnRooXi5uamtGvXTnnllVcq XV+3bp3SqVMnxd3dXXFxcVGuuOIKZffu3TbFa8IfsaZYLBZl7dq19hmsbVtFOXvWPmNVDPl6WyUl L6XWe1JSUpQdO3ZoMl5idqLS4elmivLFF5r0Zy9Onz6tJCQkGB2GoRw+fFg5fPiw0WEYyo4dO5SU lNr/vjR1Nm7cqGRnZxsdhqGsXbtWsVgsho0fExOjxMTE6D6OqSxCgKioqFprmn366aeVXnt4ePDe e+/x3nvv1fjMuHHjGDduXI3Xhw0bxsmTJ+sfrGC1CIcPH67vQKdOgacntGun7zh/Ib+k7mMaLrYI G4u3uzeWZu7w3XcwcWKj+7MX586dIyUlxWoROiMVUowzl8w5duwYfn5+tG3b1uhQDGP//v10797d Lhabo1JhEV5csq4pYroESzAXdqtFuG0bXH21/uP8hcKSwjqXCDWpRXiBZu7NKHQthx9/hPJyMMmB t1KL0LkTqwqkFqHUIgTnqUUoCZagK3arRWhAglVQUoCXuxeuLrUnOYGBgZrVX/P28MZSVgQhXdX3 XEehc0chKCjI6BAMx9nrEAKNr8nZBAgPDzc6BMOxa31aAzHHr7+CUBcGJFg5RTn4e/rbdUw3Fzdc XFwoGX29ukwoCIIgOCSSYAnmp6gI9u61u0GYW5xLgJf991F4u3tjuX6EXc/7EgRBEOqHJFiCrtil FuHu3dCjB/jUvtlca3KLcvH3qnsGS7NahBfw9vCm8PI+kJ4Ox49r1q+eSC1CqUUIUosQpBYhOE8t QkmwBF2psAh1Zft2Qza427pEWGERakUz92YUlhfBjTfCihWa9asn586dq9X+dQbOnj1rc3mtpsqx Y8c47+RnuO3fv5+CAvMVbNeS+Ph4SkpKjA5DdyTBEnTFLhahQQahrUuEWlqEcGGJsNQCN90EF9Wx dGTCwsIq1SJ0Rnr06OH0JmFkZKS1sL2zIhahWISCoAl2sQi3bYNnn9V3jGqwdYlQS4sQLsxglRTC 0KFw++2QmgoOfq6QWIRiEYJYhCAWIYhFKAjmIDUVMjPhkkvsPrQRFiGAr6cvBSUF4OEB118vm90F QRAcEEmwBHOzbRtERoKLi92HNsoi9PHwIb8kX30xfrxplgkFQRCcCUmwBF3R3SI0aIM7GGcR+npc mMECdQZr61bIytKsfz0Qi1AsQhCLEMQiBLEIBUETdLcIN22CAQP0678W8kvy6yyTA9pbhD4ePuQX X5jB8vaG4cNh1SrN+tcDsQjFIgSxCEEsQhCLUBA0QVeLsLgYdu0yLMHKK87D17PuBEtri9C6B6uC W26B5cs1618PxCIUixDEIgSxCEEsQkHQBF0twh07oHt3MOgfq/xi22awtLYIK+3BAhg1Cu6/X10m 1HAcLRGLUCxCEIsQxCIEsQgFwfHZtAkGDTJs+PySfPw8/ew+bqU9WAB+fuqRDQ6+TCgIguBMSIIl mJe4OLjmGsOGt3WJUGsq7cGqwATLhIIgCM6EJFiCruhmESoKbNliaIJl6xKh5hbhX/dgAYwZoyac DmoTikUoFiGIRQhiEYJYhIKgCbpZhPv2QatWYOCGWVuXCLW2CH09fMkrzqvcGBAAQ4Y47KGjYhGK RQhiEYJYhCAWoSBogm4W4aZNhs5egXEWYYBXADlF1fwGPHkyfPyxZuNoiViEYhGCWIQgFiGIRSgI mqCbRRgXB9deq32/9cAoi7DGBGvMGHjwQTh5Ejp31mw8LRCLUCxCEIsQxCIEsQgFwbFxkBksIyzC GhMsDw+YOBE++cTuMQmCIAiVkQRLMB+nT0NpKRj427CCQmFpoSEWYY0JFsA998CiRaoEIAiCIBiG JFiCruhiEW7YYOj5V6AuD3q7e+NC3UWmtbYImzdrXnOCFREBLVuqPyMHQixCsQhBLEIQixDEIhQE TdDFIly3Tq2/ZyB5xXk2FXoG7S3CAK8Asouya77hnnscbrO7WIRiEYJYhCAWIYhFKAiaoItFuH49 DBumbZ/1pD77r7S2CP09/cktyq35httvh9WrHepMLLEIxSIEsQhBLEIQi1AQNEFzi3D/fvDxMdyS q0+CpbVF6O7qjpe7F/klNViMrVrByJHw6afw6KOajdsYxCIUixDEIgSxCEEsQkFwTBxg9gogtzjX EIOwglo3ugM88AAsWGC/gARBEIRKSIIlmAsH2H8Fxh3RUEGdy4RDhkBJiXqchSAIgmB3JMESdEVT i7C0FDZuhKFDtemvEeQU5RDgFWDTvVpbhAD+Xv7kFteSYLm4wP33w/z5mo7bUMQiFIsQxCIEsQhB LEJB0ARNLcIdO9S9V61ba9NfI8iyZNHcy7aNqlpbhGDDDBaopXNWr4aMDE3HbghiEYpFCGIRgliE IBahIGiCphahg+y/AjXBCmxm28Z1rS1CsGEGC9REdPRohzjZXSxCsQhBLEIQixDEIhQETdDUIly3 Dv7v/7Tpq5HUJ8HS2iIEG2ewQLUI77wTHnsMXI37fUosQrEIQSxCEIsQxCIUBMciLw927TK8/mAF 9Umw9MCmGSyAqCho2xZWrtQ/KEEQBMGKJFiCOVi3Tk0WfO1f+686DE+wbJ3BApg5E954Q9+ABEEQ hEqYLsEqKCjgk08+Yfz48UydOpUtW7bU+UxCQgJPPfUUo0eP5qWXXqpiL2RmZvLee+8xduxYpk2b xsGDBytdLyws5NVXX2X06NGMHj2aV155xek3KdqKZhbhDz/AqFGN70cj6pNg6WERBngF2DaDBTBu HKSkwNatmsZQH8QiFIsQxCIEsQhBLEKHZcaMGcycOZN+/fpx8uRJhg4dyoZaCtueOHGC/v37Ex8f T1RUFLNnz2bMmDGV7rn11lt5/fXXiYmJYfPmzQwcOJBDhw4BUF5eztixY3n//fe56qqriIqKYv78 +YwYMYKysjJd32tTQDOL0MQJlh4WYYBXANmWWuoRXoyrq7oHy8BZLLEIxSIEsQhBLEJwHosQxURs 3rxZcXFxUQ4ePGhtmzJlijJ48OAan7nuuuuUCRMmWF+fPn1acXNzU3755RdFURTl008/VXx8fJTs 7GxFURSlrKxMGTx4sDJ16lRFURQlNjZWAaz3K4qi/PrrrwqgbNiwoc6YTfYj1pySkhIlPj6+cZ3s 26coXbpoE5BGhL8Xruw7t8+me8+fP68cO3ZM0/E//P1D5Z6V99j+QF6eorRurSjHj2sah62cO3dO OX36tCFjOwpnzpxRzpw5Y3QYhnLs2DHl/PnzRodhKPv371cKCgqMDsNQ4uPjlZKSEsPGj4mJUWJi YnQfx1QzWJs2baJ379706tXL2jZx4kRiY2PJy8ur8ZkJEyZYX4eGhhIdHc3q1asBdbr22muvJSBA PTTS1dWV2267jTVr1gDQvn175s2bR0xMjLWPLl26AJDlQMV0HRVNLMLvv4frr9cmII3ILcrF39Pf pnsDAwM1t6eaN2tOdpGNM1ig7l176CF46SVN47CVoKAgQkNDDRnbUQgJCXF6k7Br166aG7VmIzw8 HG9vb6PDMJSIiAjc3Zv+IQamSrBOnz5Nx44dK7W1b98egOTk5Cr3Z2RkkJeXV+0zFVP1NfV57tw5 SktL6datGw899BCuFynu//vf//D29iYqKkqT9yXUgYMtD4Jai9Dfy7YESw/qrEVYHf/4B3z7LWi8 XCkIgiBUxVQpZFJSEq3/cop3xW9DqampdO/evcr9QJVnWrRoYd1jlZSUxIABA6r0WV5eTnp6epVD 8T7++GNeeukl5syZY/OBeevXr8fb2xsfHx9rW0FBAYWFhXh7e9OlSxdrX3l5eeTl5eHn54ef35+1 7py13R/w3bVLra3nAPFUtFfMYBkVj2e5J+m56dZrNvVjsdDywQfx/Pe/4dNPHernKe3SLu3SrlV7 xb7fiz9nL/78zcnJsa5a6YmpZrB8fHywWCyV2goLCwE1aarufqDaZyrur6lPFxeXKlPZ8+bNY+rU qbz44ov8/e9/tznuyZMn1/q18qIzig4dOsTKlSutCaDZ2ysswob2k7J4MQwYABem1B3hfRWWFuLh 5oG7q7tN919sEWoVT9ofaSSfT653P/tHjICffoLDh+36c9uyZUsli9AR/j/au33ZsmVs3LjRYeIx ov2nn37iq6++cph4jGiPi4sjPj7eYeIxor3CItSr/7o+c//6vG7ovstLQx577DFl6NChldp27Nih AEpubm6V+3NychRAiY2NrdQ+duxYZcaMGYqiKMqYMWOU+++/v9L1JUuWKMHBwZXa/vvf/ypubm7K /Pnz6xWzyX7EmpObm6u8/vrrDe9gyhRFee897QLSgNS8VCXov0E233/w4EFlyZIlmsZwNvesEjw7 uO4bq+PVVxVl4kRN46mLHTt2KKtXr7brmI7Ghg0bbBJjmjJLliypJCk5I++//76SnJxsdBiG8vrr r1f7mW0vZJN7NURERLBz585KM04bN24kODi40nRhBf7+/nTu3Jm4uDhrW2lpKdu2baNbt27WPi++ XtFnxXWAF198keeee44vv/ySBx54QOu31aRpVC3CkhJ1z9D48doG1Ujqu/9Kj1qELb1bklmY2bCH p0+HX3+F3bs1jak2pBah1CIEqUUIUosQnKcWoammVywWixIcHKzcdtttypkzZ5SvvvpKadeunbJg wQLrPd98843y9ttvW1+/8847SlBQkPLFF18oKSkpyqRJk5QuXbooeXl5iqIoytmzZxVPT0/lscce UzIyMpT58+cr/v7+yrp16xRFUX/zdnV1VR566CHlhx9+qPSVmJhYZ8wm+xE7Fj/8oCiDBhkdRRV2 J+9WIt6PMDoMxe9lPyXbkt2wh//3P0UZMkTbgARBEEyAvWawTPfpv3XrViU0NFRxc3NTWrRooUyb Nk0pLy+3Xr/rrruULhedmVRcXKw8/PDDipubm+Lu7q5ERkYqmzZtqtTnihUrlBYtWihubm5Ku3bt lFdeecV67d5771WAar/mzZtXZ7ySYDWCKVMU5Z13jI6iChtOblBiPo4xOgyl01udlBPnTzTs4dJS RenTR1FWrdI2KEEQBAfHXgmWi6IoinHzZ00fFxcX5EfcAEpKICQE9uxRvzsQqw6v4qPdH7Hqb6sM jSNyYSTzRs8jMqSBy48//QSPPgr79oGHh7bBCYIgOCiDBw8GIDY2VtdxTLUHSzAfDa5FuH499Orl cMkV1L/Qsx61CAFaebcivSC94R2MHAmdO8P772sXVA1ILUKpRQhSixCkFiFILUJB0IQG1yL88ku4 6AR+RyLbkk1zL9s3qepRixCgtU9rMgoyGtfJnDnwn/+Azh96UotQahGC1CIEqUUIzlOLUBIsQVca ZBGWlMCqVXDzzfoE1UjqO4Olh0UI0MqnFRmFjUywwsPhnnvg8ce1CaoGxCIUixDEIgSxCMF5LEJT neQumI8G1SL87ju45BK4UAbJ0cguyibE3/aly8DAQF3qrzXqqIaLee45NdGKjYULexO0JigoSJd+ zYSz1yEENK/JaUbCw8ONDsFwGl2f1iTIDJbgeHz8MUyaZHQUNZJZmEmLZlUrB9gbzRIsX1948014 +GF19lAQBEFoNJJgCY7FuXPqTMqttxodSY2k5acR5Gv8jIxmCRaoh7l26gRvvKFNf4IgCE6OJFiC rtTbIvz8c7jhBrBDIc6Gci7/HG1829h8v14WoaYJFsA778Ds2aCD6SYWoViEIBYhiEUIYhEKgibU 2yJctAgmT9YrHE1IK0gjyMf2GSy9LELNE6yuXWHWLLjrLigt1a5fxCIEsQhBLEIQixDEIhQETaiX Rbh7N2RlwdCh+gbVSOq7RKiXRah5ggUwbRq0bAkvv6xpt2IRikUIYhGCWIQgFqEgaEK9LMJFi9TN 7S4uusbUGApKCihTyvD3tL3Ys8NbhH/lo4/giivg+utBo8RQLEKxCEEsQhCLEMQiFAT7YrHAF184 /PJgekE6rX1aGx0GAIHNAsm2ZFOulGvbcbt26n6s22+HvDxt+xYEQXASJMESHIOlS+HKK6FLF6Mj qZWMwgyHSbDcXNzw9/Inuyhb+85vuQUGDVKPbhAEQRDqjSRYgq7YbBG++y488oj+ATWS9IJ0Wnm3 qtczelmEoC4TNrpcTk3MnQvbt8PixY3uSixCsQhBLEIQixDEIhQETbDJIty2DTIyYPRo+wTVCDIK MmjlU78ESy+LECDIJ4i0gjRd+sbXF5Ysgcceg+PHG9WVWIRiEYJYhCAWITiPRSib3AVdsckifO89 eOghcHX8fL8hS4R6WYQA7QPacybnjC59A+pm99deg3Hj1ETY17dB3YSFhdGmje1nhzVFnN0gBNUi bNWqfr+gNDXEIhSLUBA0oU6L8Nw5WL0a3nrLfkE1goyCjHovEeplEQK092/PHzl/6NK3lXvvhd9+ U4tCL1/eoC7EIhSLEMQiBLEIQSxCQbAPCxfCTTeBSX6rTStwjDI5FbQPaM+ZXB1nsCp45x1ITIT/ /lf/sQRBEJoAkmAJxlFUBPPmwcyZRkdiM2n5aQ5jEQJ0COig7xJhBZ6e8PXX6sb3H3/UfzxBEAST IwmWoCu1WoQffwz9+kGfPvYNqhHUt0wO6GsRtvNrR3Jesi59V6F9e/jyS/WssqNH6/WoWIRiEYJY hCAWIYhFKAiaUKNFWFamLjc99ZT9g2oE9S2TA/pahG392pKSl6JL39XSvz+8+irceCPU40NCLEKx CEEsQhCLEMQiFARNqNEiXLoUwsIgKsr+QTWChsxg6WkRBvsFk5pn5xmByZMhIQHuuANWrbLJ/hSL UCxCEIsQxCIE57EIXRRFUYwOoinj4uKC/Ij/gqLApZfCnDlw7bVGR2MzJeUl+L3sR8EzBbi5uBkd DgAKCl4vepH3dB6ebp72G7isDEaNgogI2fguCIKpGDx4MACxsbG6jiNLhIL9WbkSvLxMlVwBnMk5 Q1vftg6TXAG44GL/ZUIANzd1FnLFCvj0U/uOLQiCYAIkwRLsS3k5/Otf8PzzRkdSb5JykujYvKPR YVQhxD/EPkc1/JUWLdQlwscfh61b7T++IAiCAyMJlqArVSzCzz6DwEC44QbjgmogidmJdAyof4Kl p0UI6mGjdjmqoTrCw+HDD+HmmyGl5lk0sQjFIgSxCEEsQhCLUBA0oZJFWFwMs2apFpoJOZNzhg4B Her9nJ4WIdjxsNGaGDsWHnwQ/vY3dW9WNYhFKBYhiEUIYhGC81iEkmAJulLJIlywAHr3hmuuMTao BnI29ywh/vUvd6KnRQjqYaNJ2Um69W8Tzz4L3t7w9NPVXg4LC6Nv3752Dsqx6NGjh9ObhJGRkQQH BxsdhqGIReg8FqEc0yDoirUWYV4evPIK/PST0SE1mLO5Z4nqUP9jJfSsRQjQrWU3tiRt0a1/m3Bx gcWL4corYcCAKkvAUotQahGC1CIEqUUIUotQELTl5ZfhuuvU4xlMSkNnsPSme8vuHM2o38nqutCq FSxbBvfdV++T3gVBEJoaMoMl6M/p0/C//4HJNzmfyT3jkAlWt5bdOHH+BOVKOa4uBv/OdPXV8NJL 6gzW9u0QEGBsPIIgCAYhM1iCrhQVFZE6aRL8/e/Qrp3R4TSK5Nxk2ge0r/dzeluEPh4+NG/W3H41 Ceti6lQYPhwmTlSP5UAsQhCLEMQiBLEIQSxCQdCE8rg4fPbsUc9KMjHpBen4ePjg7e5d72f1tggB OgV24nSWA1l6b74JFgs88wwgFiGIRQhiEYJYhOA8FqEsEQr6UVpKsyefJPH//g9/7/onJo7EHzl/ NPiQUb0tQlATrFNZp4juGK3rODbj7g7Ll0O/fnDllYTFxEgtQic3CEFqEYJYhCAWoSA0nv/+F5f2 7Qn75z+NjqTRHM08yiWtL2nQs3pbhACdAztzKuuUrmPUm1at1FI6115L0C+/QJ8+RkdkKGIRikUI YhGCWIQOS0FBAZ988gnjx49n6tSpbNlSt56ekJDAU089xejRo3nppZeqrP1mZmby3nvvMXbsWKZN m8bBgwdr7Ouxxx5j6dKljX4fTZ4DB+Dtt2H+fKMj0YTD6Yfp2bqn0WHUSJcWXRwvwQK47DJ1ufCm myAry+hoBEEQ7IbpEqwZM2Ywc+ZM+vXrx8mTJxk6dCgbNmyo8f4TJ07Qv39/4uPjiYqKYvbs2YwZ M6bSPbfeeiuvv/46MTExbN68mYEDB3Lo0KFK9yiKwgsvvMDbb79NcrKDbCZ2VMrKYMoUePFFaF// TeGOyOGMw/Rs5bgJVteWXR0zwQK44w4YMwZuv9266V0QBKGpY6oEa8uWLSxcuJBNmzbx9NNPs379 eu644w7+/e9/1/jMI488wujRo/nhhx949tln2bNnDxs2bLAmZZ999hlbt24lISGBxx9/nF27dtG3 b1/eeOMNax/Hjx9nyJAhvP322/j5+en+Pk3Piy+qev5991WtRWhSjmcep2vLhi1v6G0RgnpUw7FM fTfSN4bE6dPJT0uD554zOhTDEItQLEIQixDEInRINm3aRO/evenVq5e1beLEicTGxpKXl1fjMxMm TLC+Dg0NJTo6mtWrVwPqH/Zrr72WgAvn9bi6unLbbbexZs0a6zMfffQRLVq0ID4+Xk6krot16+CD D9RTvV1cKtciNDHHMo/RKbBTg561h0UY2jyUc/nnKCpzzH+0zmVmsuWxx+CTT9R9WU6IWIRiEYJY hCAWoUNy+vRpOnasbHK1v7AElZycTPfu3Stdy8jIIC8vr9pnKv6hO336ND179qxy/dy5c5SWluLu 7s6//vUvvE1uwdmF5GS4+241ubpgjFWqRWhScotzyS/Jp61v2wY9bw+L0AUXurTowtGMo/Rp43ib ycPCwlSL8Kuv1ENIe/YEJ9vsKxahWIQgFiGIReiQJCUl0bp160ptFXZWampqlQQrKUktgPvXZ1q0 aGHdY5WUlMSAAQOq9FleXk56ejrBwcGNTq6OHz+Op6cnHh4e1raSkhKKi4vx9PSkRYsW1qXH4uJi a7unp6f1fodvLyuDiRMpu+ceCq+6Cs8L1ypqETpMnA1oP5Z5jM6BncnLy2tQPxdbhHrG2bdtX3b8 sYNOPp0c4ud2cXvz5s3V2d/QUHjrLZQxYyj45Rc8QkIcKk492wMCAiq1GR2PEe0dO3asdM3oeIxo Dw8Pp7i4uMH/njSF9gqLUK/+U1JSgMqfsxd//hYVFeHl5YXeuM2aNWuW7qNoxKpVqygpKam05JeW lsbcuXOZOXNmlXN2cnJyePfdd7n//vsrXfvqq6+sS4Eff/wxYWFhDBs2zHr98OHDfP7557z44ou4 u1fOQd9++22uvvpq+vfvb1PML7zwAh9//DELFy5k4cKFzJ8/n/nz5zNv3jzmzZvHwoUL8fb2Jvwv 99sAACAASURBVDpaPb9o+/btrFixAjc3t0ozbw7f/s9/Qmoq2++7jxUrVxofj4btv576lQOJB8jZ muMQ8dTUnpidyIZ9G0iOS3aIeGpsv/RS/ti3j6Lnn+dwv3506NTJMeOUdmmXdlO2d+vWrcrn7MWf v8ePHyc0NJTJkyejJy6Koii6jqAhM2bMICEhgfXr11vbdu7cSWRkJLm5uVU2oOfm5hIQEEBsbCwx MTHW9htuuIFu3boxZ84cxo4dS0hICAsWLLBeX7p0KTNmzKjWFuzSpQvTp09nxowZNsXs4uKCiX7E DePLL+GJJ2DnTvjLbGFT4IVfX8BSauGVYa8YHUqtxJ6K5fnY5/l18q9Gh2Ibd92lfv/sM2PjEATB qRg8eDAAsbGxuo5jqk3uERER7Ny5E4vFYm3buHEjwcHB1dp9/v7+dO7cmbi4OGtbaWkp27Zto1u3 btY+L75e0WfFdaEODhyARx6Bb76pNrlqChbhwbSDDT5kFOxjEQKEB4WzN9Ux6/1VW4vwgw/gxAn4 z3+MCcrOiEUoFiGIRQhiETokEydOxMfHh8mTJ3P27Fm+/vprZs+ezQsvvGC9Z8WKFcydO9f6+h// +Adz585lyZIlpKamMnXqVPz9/Zk0aRKgHuNw/PhxZsyYQWZmJgsWLGDx4sWYaOXUOM6ehbFjYc4c uOKKam9pChbhwfSDhAc1fEO2PSxCgDa+bXBzdeOPnD90H6u+VFuL0MsLVq6Ejz5Sy+o0ccQiFIsQ xCIEsQgdEi8vL1asWMFtt91GaGgoAQEB3HHHHdx3333We1asWMHmzZt59NFHAXjggQc4ePAgd911 Fy4uLlx++eV8+umn+Pr6AtCuXTuWLVvGlClTeOedd2jTpg1PP/10pT1ZQjVkZMCIEfDAA3DnnTXe ZnaLsLS8lJPnT3JJUMNnsOxhEVYQ0TaC+JR4OgR0sMt4tmK1CP9KUBB8+y0MG6ZugI+Ksn9wdkIs QrEIQSxCcB6L0FR7sC4mMTGRkJCQKpvQa6KgoIDs7GzatWtX7fXy8nKSkpIIDQ3FxcVFszib5B6s vDwYOhSGDIHXXjM6Gl3ZlbyLe1fdS/yD5piFm/nzTFo0a8G/Bv3L6FDqx08/waRJsHYtXHqp0dEI gtCEkT1YdRAaGmpzcgXg4+NTY3IF6gGjYWFhmiZXTRKLBcaNg4iIJp9cAWxO3ExUB/PMqvTv0J9N iZuMDqP+jBwJ774L118Px48bHY0gCEKjMW2CJRhAUZFatLdtW7jIumzKxKfEc0W76veXOSIxnWLY nLSZ0vJSo0OpP7fcAi+8AMOHw6lTRkcjCILQKCTBEmyjqEj9APT1hU8/BVfb/uiY3SLUIsGyl0UI EOQTRIeADuw7t88u49lKtRZhddx7Lzz5pLoE3cSSLLEIxSIEsQhBLEJB+JO8PBg9Gjw9YckScHOz +VEzW4QFJQUczTxK37Z9G9WPvSzCCqI7RrP9zHa7jWcL1VqENfHQQ+q5ak0syRKLUCxCEIsQnMci lARLqJ3MTNXw6txZVekvKjdgC2a2CH878xuXtrkUTzfPum+uBXtahAADOg4g7nRc3TfakbCwMPr2 rUei+tBDanWAmBi4UNbK7PTo0cPpTcLIyEiCg4ONDsNQxCIUi1DQCFNbhEePqoV5x42DVxz7FHM9 eGLtE/h7+vNczHNGh1IvTmadJPrDaM784wyuLib/HWrpUpg5E1atgn79jI5GEIQmgFiEgrGsWweD BqlLNU6YXAGsO7GOa7tea3QY9aZzYGda+7Rm2x/bjA6l8fztb+pBpGPHwnffGR2NIAiCzUiCJVSm vFxNqCZPhq+/hilTjI7IELIsWRzPPE6/EHPOmozqPoofj/1odBjaMHKkWopp6lT1KAdBEAQTIAmW 8CepqXDddfDzz/DbbxAd3eguzWoRbjy9keiO0bi7Nr7YgT0twgpGdh3JT8d/suuYtWGzRVgT/fvD li0wbx5Mnw4m3CArFqFYhCAWIYhFKDgb338PV14JAwfC+vUQEqJJt2a1CL8/+j0ju43UpC97W4QA g8IGcSzzGMl5yXYdtybqZRHWROfOsHWrehDpkCGQ7BjvzVbEIhSLEMQiBLEIBWchO1tdBnz0Ufj8 c3juOZvPuLIFM1qEpeWlfH3wa27rfZsm/dnbIgRwd3VnXK9xLNu3zK7j1kS9LcKaaN4c1qxRDyON jIRff218n3ZCLEKxCEEsQnAei1ASLGdm+XK45BIIDISEBFWJ1xh3d3ciIiI071dPYk/F0qNVD0L8 tZnFCwwMpGvXrpr0VR/u7HsnS/Ytsfu41REUFERoaKg2nbm6wqxZ8MEHMHEiPPsslJVp07eOhISE EKLRzLBZ6dq1K4GBgUaHYSjh4eF4e3sbHYahRERE1KvUnVmRBMsZSUxUj1944QU1yZozB3x8jI7K Yfjm4Dfc1Osmo8NoNDFhMSRmJ3L8fBOt7XfddfD777Btm/rLwcmTRkckCIJgRRIsZ6K4WDUEr7wS rr4adu9W91wJVvKK81i+fzm39r7V6FAajauLK3f2vZP/7fqf0aHoR3Aw/PST+gtDZCTMnm2K2SxB EJo+kmA5C6tXQ0SEamLt2AHPPKOWvtEZs1mEixMWM6zLMEKba7SchTEWYQXTrprGh79/SEGJsZtq G20R1oarq1q/cPt2Ndm64gr1u4MhFqFYhCAWIYhFKDQV1q6FqCh46il47TU10erUyW7Dm80i/Czh M+6OuFvTPo2wCCsIax7GwNCBLN+/3JDxK9DEIqyLrl3VP++zZqlHOVx3HexznKLXYhGKRQhiEYJY hILZWbNGTawefRSmTVM3sd9wg93DMJNFuPWPrfyR8wfXdbtO036NsAgv5h/9/8HLcS9TUm7cP2ia WYS2cNNNsH8/jBql1tG8/35ISbHP2LUgFqFYhCAWITiPRSi1CHXGrrUIi4thyRJ4801wc4Onn1Y/ bDQ8dqEpM/zT4dwdcbfmM1iOwPWfX8+YHmN4JPIRo0OxL1lZ6r7Djz5SE60ZM6B1a6OjEgTBQKQW oWA76enwn/+oS3/LlsHrr8OuXXDzzZJc2cjOszs5knGEv/X5m9Gh6MLzMc/zxpY3KC4rNjoU+xIY qC6N79wJ589Dr15q8ejERKMjEwShiSOfvmZmxw647z7o2ROSktQT2L//HkyyJOcoKChM+34a/x7y bzzd9N/4bwRRHaK4LPgyXtz4otGhGENYmFpmZ98+td5mRATcc49D7dESBKFpIQmW2Th5Up2hioiA v/1NLR9y5AgsWKAeGupgmMEi/GzPZ7i7ujPpskm69G+kRXgx7456l/d3vM+prFN2H1tXi7A+BAer S+jHj0O3bjB6NAwapC6tWyy6Di0WoViEIBYhiEUoOBLHj8Orr0K/fur5VcePw9tvw7Fj6j6rVq2M jrBGHN0iPJl1kifWPsE7o97BBRddxjDSIryYEP8QZg2exfhl4+2+4d0uFmF9aNlSPark5En1iIfF i9X6m/fdB3FxoMO+SbEIxSIEsQjBeSxC2eSuMw3e5H76tLqfatkydb/ITTfBhAkwdKi6gd0klJaW sn//focsl6OgcMOSG4juGM1TA5/SbZysrCwyMjIMKZdTHTcuvZEerXrw+ojX7TZmWloahYWF2pXL 0YOkJPjsM7UmZ26uuodxwgTo3x9cGp98VyRXzlwu5/jx47Rq1cqpy+UcOHCAzp07O3W5nD179tC7 d2/DyuXYa5O7JFg6Y3OClZcHsbHwyy+wYYOqld94I9xyCwweDE5Qt8meKCg8tOYhDqYfZP3d63F3 dZ6fb3pBOkM+GcLNl9zMrMGzjA7HMdm/X/3l5quv1L+bEyaofx+jo+XvoiCYHEmwmgi1JlhHjqgH I65ZA5s3q6U+hgxRZ6miosQA1IkypYwpq6aQlJ3E6ttX4+vha3RIdietII0hi4ZwS/gtkmTVxcGD aqL1zTfqzPKIETBypHqQqRPPRgmCWZEEq4lgTbDKytTfirduVb82bFDbhg9XN9pedx34+xsdbpOn tLyUO765g2xLNiv+tgJvd+edpj+Xf44hnwxhQvgESbJsJTkZfvxR/Vq/Htq2VX8hGjpUresZFGR0 hIIg1IGcg9WUGDZM3VQ7caJ6tMLAgWqttD/+gEWL1OWHJppcOZJFWFxWzC3Lb6GotIhvJ35rt+TK USzCv9LGtw2/TPqF5fuXMyt2lq5jOYxF2FjatVOPd1i2DM6dg08+gdBQ+OAD9biUbt3gzjvhvffU s+hKS62PikUoFiGIRQhiEQpaMnMmnDqlzmB98AFMnaoeeOgEOIpFWFhayA1LbsDL3Yuvbv3Krudd OYpFWB1tfduyYfIGlu1fxv2r7ye7KFuXcRzOItQCV1fV7H3iCfjuO8jIUJf7hw+H+Hg10QoMVGe3 nn2WkqVLOb9rl9FRG4pYhGIRgliEgkbYtVSOA+IIFmHsqVhm/DSDvm378tGNH+HmYl8L09EswurI Kcrh6fVPs+LQCt4c+Sa39r5V0/5NYRHqQWYmbN8O27Zh2bQJj337cCsqUs+xu+wyuPRSdearZ09o 08boaHVHLEKxCEEsQkEjnD3BMpJD6Yd4cu2THEw/yKvDX+XmS242OiSHZ/uZ7dy/+n7a+7dn3uh5 dArsZHRITY/UVHWGa88e9ST5w4dV4QWgRw812ar4XrHs6ONjbMyC0ISQBKuJIAmW/UkrSGNW7Cy+ OfgNTw18iociH8LD1cPosExDaXkpb2x9g9lbZvNE9BM8HPkwfp5+RofV9ElL+zPZOnpUPVD46FH1 QOEWLdSkq0cP6N5dLf0TGgodO6ozXxqc0yUIzoIkWE0EZ0+wcnJyeOmll3jttdd0H+tc/jk+3P0h b217i8mXTebpa56muVdz3cetiz179rB161YefPBBo0OpFyfOn+CJtU/wy8lfuKnXTdx7xb0M6Dig QX3FxcWRlJTE7bffrnGU5mHNmjUAjBkzpv4PnzmjJl+HDqnfT51SD0ZNTFQPRQ0Ohg4d1IQrNPTP 5Cs0VG1v3dohkrD58+fTv39/hzx42F689NJLTJo0iQ4dOhgdimH885//5JlnniEgIMCQ8SXBaiI4 e4KVmJjIZZddRmZmpi79H0o/xKrDq/j28LfsP7efmy65iRcGv0Boc8fZ67No0SIWLVqk+19mvUjJ S+HTPZ/y0e6PcHFxYcrlU7g74m7a+ra1uY+XX36Z+Ph4li9frmOkjs306dMBeOedd7TtuKgIzp5V reTExD8Tr8RE9ViJM2cgO1s9UqJ1a/UoiXbtoH179RyvoCD1q3Vr1XZu2RK8vLSN8QKDBw9m8uTJ TJ48WZf+zUD37t1ZtGgRAwY07JeVpkDLli2Jj483bE+mvRIsOZJY0JWSkhJKL1LVG0uZUsaWpC18 e/hbVh1apdqBPW/guZjnGNJpiF3tQFvJz88nPz/f6DAaTLBfME8OeJInBzzJ5qTNfPj7h/R6txcD QwcypNMQBoYO5PJ2l9e6DJubm0tubq4do3Y8dHv/Xl5q0ffOnWu+x2JRk630dHUp8uxZ9WvPHvV1 Wpp6LTMTzp8Hb291GbJjRzXxatVKNSK9vdWv5s3/TMwqkjIbZiPM/ndBCywWCxadC4s7OqWlpU5h EUqCZSOrV6/m66+/prCwkJtvvplbb9XWsmqqeHl54enZsKSntLyUIxlH2HtuLwmpCexN3cvWP7bS MaAjN/S8gWUTlnF58OUaR6w9gYGBTcaaGtBxAAM6DmDu9XP58diPbErcxCPfP8KRjCNc0e4KBoYO ZEDHAfTv2L/S8myrVq1o5cBFye2Boe+/WbO6k7CLycz8czasIvHKzoacHCgsVJOwimQtM1P9ys9X x/lrAhYQAH5+4OfH3zMz6b1pk7pceaGtxi9vb4dY1tQaX19f/Pyce0+jp6cnXjrNkjoSkmDZwAcf fMC0adN4+OGHOX/+PBMnTiQ5OZm///3vRofm8Li7u9uk4ibnJVuTqIqE6nD6YTo270jftn3p27Yv 915xL++PeZ/2/u3tELl2+Pr64uvbtMrx+Hn6cUv4LdwSfgsA+SX5bP9jO5uTNvPmtjeZ+PVEOgR0 oEerHnQO7MwZ1zPktMrhUPohOgV2opl7M4Pfgf3xN9NhwhWzUpddZvsz5eXqTFlhIWRlqQexpqer SVleHuTn4+bpiZ/FotqTeXmVv/LzK7+2WFR7srYkzNe35vZmzap+eXtXfm3AMQHNmjVziuSiNmz9 XDA7Tf8dNpKMjAwef/xxFi5cyF133QXA1Vdfzb/+9S8eeOABmjVzvg+K+lBUVkRZQBmbEjdxNvcs Z3LPqN9z1O8Vbc3cm1kTqUFhg5h21TR6B/XGx0P0dDPg6+HL0M5DGdp5KADlSjkH0g5wLPMYJ86f YGfZTk74nmDc0nGczj5NS++WdGnRhc6BnekU2Im2fm1p49uGIJ8g2vi2oY1vG1p6t8TVRc5CNg2u rmpC5OOjLilWc+7bso0b8Z40ie7jxtXdX3l51aTrr68v/kpP//N6fr6aoFV8FRZWfl3xpSg1J191 JWe2XmvWDDw91WTOw4PgkhI8MjLUeD081K8L15rijJ0zIwlWHezdu5fc3FzGjx9vbZs4cSIPPfQQ W7duZciQIQZGpy+l5aXkFeeRW5yrfi/Ktb6++L8rrlX89/nC89bEKa84j7Ibynhy7ZOE+IfQPqA9 If4h9G3bV33tr74O8DLGJhH0wdXFlT5t+tCnTR8AfPb4EH88nvkvz0dB4UzOGU6cP8GJ8yc4nX2a /ef2/397dx4V1Xn+Afw7c2eBQXZHAdkEj1aMEKPULcUlRiwYEdygNRw9tkisUaPBrTFGojUSYqQm LkeO/mIjTdNTa1QakzTWOAStpJhSlZoDAWQRkBlZFYaZeX5/EK6OA64zDKTPhzMH7vvee8/7PvPO yzNzl8E/Wv6BG7duoLalFrUttWhsa4SnoyfUTneSrgFOA5A0Ogkj1CPs3ENmc1Jpx1eI2fKTP6Ox ++TrQclZa+udxO5+27a1AXp9x9cmtbfj/8rL4blgQUcy1d5+52EwdPT57oTr3r8fpe5x9iOTAYJg 24dUioEmE6SdCWZ36/0Ikk1OsB6gtLQUHh4eZod4XF1d4eTkhKqqqsfeL4FgMBksHu3Gdssyk2XZ 3eu2m9rRZmhDq6EVbcYffv+wfHfZw5a3GlrRpG+CwWRAP0U/9FP0g7PCueO30llcvvtvXxdfcdnd wR3ezt4Y5DwILXUtGPX0KOTqcq3xdPRJ9fX1qK+vt3cz7Eqn04lXkkogga+LL3xdfBERENHtNgaT AXW36sSEqzP5kkn75rSl1Wrt3QS763WvBUG4c1ixh/zsflcRGo13kq17k6+u/n6SuvZ24NYt8zqD oaMNNn58rtXC84cr+bpdr/P5eZKHTNblY+SlS/jPU0/Z/LnumzNVDyovL0f//v0tyt3d3VFbW/tQ +3Dd4AojjDDSnQcRQZAIkEqlkElkkEllECSC+FuQChZlUkghE2SQS+ViufSHHwe5A5SCEgqZAkpB CdkPP45yRzgoHOAmdYNSUEIKKQRBgMpRBUelY8c2UgWkJIWUpFApVOjn0A8qmQpKQQmDwQC9Xg+F QmF2zLzbcr0B+mY9jI1GVMmqUF5eDr1ej/z8/Efbz4+o/LvvvkNdXR0KCgp6RXvsUV5UVISqqioU FBQ81n48DB7op++HYYphaKtsQ0Hl4+3HnuUlJSWQSqViDOzdHnuU37hxA1euXEF+fn6vaI89ypua mlBQUABBEB5/Pz88DHJ5R7mLi9379SjlEyZMwJ8++ADe3t7dr9/WBoUgQC4IYtJl1OvR3tYGuSBA BkBCBBiNMOj1MLS2dpRLJKjXagGjEdTeDkNbG+QABAASkwkwGFBYWIiewPfBeoB33nkH7733HkpK SszK+/fvj/T09Afez0UqlYJwV4i7iLZEIoHkro9Dichsua+Xdy73lvbYo7y7v3tbO21V3unHPM4f phyARV1vbKetyruLQW9rpy3Lu3s99LZ22rLc1vOhyWSyqL/XzJkzceLEiQeu9yT4E6wH8Pb2tvho 32Qy4ebNmwgICHjg9g/zRDPGGGPsx4Uv0XmAsLAwNDU14d///rdYlpubC5PJhOAurpJhjDHGGOND hA8hMjISDQ0N2LdvH/R6PZKTkzF69GgcOHDA3k1jjDHGWC/ECdZDKC8vx/z583HhwgUolUpMnz4d H3zwAVxd7f9FwowxxhjrfTjBegQ1NTX8NQeMMcYYeyBOsBhjjDHGrIxPcmeMMcYYszJOsBhjjDHG rIwTLMYYY4wxK+MEizHGGGPMyjjBYowxxhizMk6wbKSsrAzbt29HVFQU1q5dixs3bti7SVbV1taG tLQ0zJw5E1FRUdi6dStaWlrM1rl69So2b96MqKgovP7662hubjarb2pqQmZmJmJiYrB06VLk5+f3 ZBes6vDhw1i8eLFF+ddff40VK1YgJiYGv//973HvRbuVlZV4++23ERUVhTVr1qCqqqqnmmwVRIR9 +/YhLi4OSUlJOH36tEUfP//8cyQlJWHOnDk4dOiQxT6Ki4vx5ptvIioqChs3bkR9fX1PNd8qKioq sGzZMjz33HNYvHixxTgmIhw7dgyJiYlISEjAX/7yF4t9XLp0Cb/97W8RHR2N1NRU3L59u6ea/0QO Hz6MtWvXWpTfuHEDGRkZiI6OxsqVK1FcXGxWbzKZcPToUSxcuBC/+MUv8Mknn1jso6CgAOvXr0d0 dDS2bduGtrY2m/XjSezcuRNpaWkW5Xl5eUhMTMTUqVOxaNEinD9/3qy+ra0NWVlZmD9/PhYtWoTT p09b7OP8+fNYtWoVZs2ahV27dvXar17buHEjDh482G29Xq/H/Pnzcfz4cbPy5uZmHDx4ELNnz0ZS UhLy8vIstv3yyy+RnJyMuLg4ZGZmWr3tNkXM6pqbmykwMJBGjRpFb7/9Nvn5+dHQoUOpvr7e3k2z CpPJRDNmzCBfX1/atGkTbd26lQIDAyk8PJza29uJiKi6upo8PDwoIiKCtm/fTmq12qyeiGjevHnk 5eVFO3bsoPHjx1O/fv3owoUL9urWY7t69SqpVCoaMWKEWXlubi4JgkAJCQm0bt06cnBwoCVLloj1 ra2tNHz4cHrqqacoPT2dgoKCKCAggGpra3u6C48tPj6e/P39aefOnbRq1SpycnKiI0eOiPVHjx4l mUxGS5cupWXLlpFMJqNNmzaJ9Tqdjry9vWns2LG0Y8cO8vb2ppEjR9KtW7fs0Z1HZjKZaNiwYTRx 4kTas2cPxcTEkFwuNxvH77//Pjk4ONCrr75KCxcuJKlUSnv27BHry8rKyNnZmZ5//nnaunUrubu7 06RJk8hkMtmjSw/ts88+I4VCQbNmzTIrNxqNNG7cOBoyZAilp6dTSEgIDRw4kEpKSsR1du7cSY6O jrRu3TpKSEggqVRKmZmZYn1xcTGpVCqaMWMGpaamkqurK02bNq2nuvbQPvzwQ5JIJLR06VKz8tOn T5NMJqPY2Fjat28fzZkzhyQSCWVnZ4vrpKSkkKurK23ZsoWioqJIJpPR8ePHxfq8vDySyWQ0f/58 2rBhAzk6OtKLL77YY317WO+88w4BoC1btnS7ztq1awkA7d2716z8l7/8JQ0YMIC2b99Ozz77LKlU KsrNzRXrT548SYIg0K9+9StasWIFyeVyWrdunc36Ym2cYNlASkoKhYSEiBPkrVu3yMfHhzIyMuzc MuvIzc0lAHTq1Cmx7Pz58wSAPvvsMyLqeOFMnTpVrNdqtaRSqejPf/4zERFlZ2eTIAhUWVkprhMX F0dxcXE91Avr0Ov1NGbMGAoKCrJIsIYPH04pKSnick5ODkkkEioqKiIiotTUVAoICCCDwUBERG1t bTRkyBDatm1bz3XgCVy4cIEUCgX961//EsvefPNNGjt2LBF1jHsvLy969913xfqPP/6YHB0dSafT ERFRcnIy/fSnPxXrGxsbyd3dnQ4ePNhDvXgyp06dIgcHB6qrqyOijoQrODiYFi9eTEQdbzT69etH H330kbhNRkYGDRw4kPR6PRERxcTEUExMjFhfWVlJcrnc7PXVmzQ1NVFycjLJZDLy8fGxSLDef/99 cnd3p9u3bxMRkcFgoPDwcHrllVeIiKiiooJUKhX99a9/FbdJS0sjX19f8bUwY8YMmjdvnlhfVlZG giDQ6dOnbd29h3Ljxg1asGABKZVKUqvVFgnW5MmTKSIiwqxsypQpNGnSJCIiKigoIEEQ6Pz582L9 K6+8Qs8884y4HBoaSitXrhSXL1y4QACosLDQBj16dNeuXaPIyEhydnYWE8WunDlzhgYOHEjOzs5m CdYXX3xBUqmUSktLxbL4+HiKjo4moo750NfXl3bs2CHWf/LJJ6RUKvvMm1A+RGgDGo0Gc+bMgUQi AQA4Ojpi9uzZOHnypJ1bZh0DBw7Enj17MG3aNLEsMDAQUqlUPLyTk5ODefPmifUeHh6YPn06Tpw4 AaAjRhMmTICPj4+4zoIFC3Dy5EmLQ0y92ZYtW+Dq6mpxeLCurg6FhYVmMZg4cSJ8fX2RnZ0NoCMG sbGxEAQBAKBQKBAXFyfGqLc7dOgQJk6ciGeeeUYse+2118RDIUVFRaiursbcuXPF+tmzZwPo+Ngf 6IjB3fXOzs6YOXNmn3mtNDQ0wGAwoL29HQAgkUigUCjg5OQEAPj222/R1taGmJgYcZuEhATU1NSI h0M0Go3ZOPHx8UFERESvHQe5ubn45z//iS+//BKRkZEW9RqNBjNnzoSDgwMAQBAEzJs3T3xO8/Pz QUSIjo4Wt0lISEBFRQUuXrwIwHL+8Pf3x4QJE3rNuMjOzkZVVRXOnz+P0aNHW9QnJydjx44dZmXB wcHi/JibmwsfHx+MHTtWrE9ISEB+fj6qqqrQ1NSEgoICsxiEh4cjODi418TgyJEjEAQBC8UMMQAA DVdJREFUFy9eREBAQJfrNDQ0IDExEXv37hVfE51ycnIQHh5utm18fDxOnToFg8GAkpISVFRUmM0P 0dHRUCgU+OKLL2zTKSvjBMsGysrK4OfnZ1Y2aNCgPnd+TXeCgoLw0ksviYkBAGRmZkIul2P8+PEw Go2oqKi4bwy6ipGvry/0ej20Wq3tO2EFOTk52Lt3Lw4dOiQm053KysoA4IEx8Pf377a+tysrK8PQ oUPx1ltvISQkBIMHD8a6devEc2XKysogCIJZEi2Xy6FWq+87DvpSDKKjozFlyhTExMRgz549mDt3 LvR6PZYvXw6go39qtVpMNgBArVZDLpeL/0h1Ol2fikFERATy8/MRERHRZf2DntPS0lJ4eXlBLpeL 9T4+PpBIJKiqqoJWq0Vzc3Ovjsn8+fNx9uxZPP30013WL1iwAOPGjROX6+vr8ac//QlTpkwB0H2M AKCqqgqlpaUA7j9/2NvKlSuRnZ2N4ODgbtdZtmwZpkyZgtjYWIu60tLSLvtnNBpRU1PT5RwqCAK8 vLx6TQweRGbvBvzYtLe3o7q6Gv379zcrd3NzQ01NjZ1aZVtHjhzB5s2bsX37dvj5+aG8vBxGo9Ei Bu7u7qitrQXQ8QXad3/yAXTECOj4zsd7t+1tGhsb8eKLLyIjI8NikgA6+gfggTHw9PS0qO8r46Sy shIXL15EcHAwUlNTcfnyZWRkZKC+vh779+/HtWvX4O7uDqnU/H1cZx/r6+vR3Nzcp18rKpUKMTEx WLlyJW7evIni4mIsWbJEfFdeXl7e5Vju7OP9xklRUZHtO/AY7k4Wu9JVn93c3NDS0oKWlpYux71U KoWLi8t9Y+Lm5oarV69aoQdPztHR8aHX1el0iIyMhIeHB7Zs2QKg+xgBHfNf5xu2+80f9vagGGRl ZSEnJwf/+c9/uqwvLy/H0KFDzcrc3d0BALW1tSgvL4eLi4tZIg70rfmBP8GyMrlcDoVCgdbWVrPy 27dvi4PnxyQzMxOJiYl47bXXkJKSAqDjnw6A+8ZApVJ1WQ+gT8Tp5ZdfxpgxY7Bw4cIu658kBn2h /0DHP0WdToeTJ09i7ty52Lx5M9asWYPMzEw0NTXBycnJon/AnT52TtD3rtPa2tpnYrBt2zZs2LAB eXl5+O6771BSUoK8vDzEx8cD6Po5Bu7EoPOwyb1XDfalcXCvrvrc2toKpVIJlUr1wHHR3WunL42L TrW1tZg8eTIaGhrw1VdfwcXFBcCD57+HmT96s2vXrmH58uX44IMPxD7f62FicL9x0hdwgmUDXl5e Foe5dDodAgMD7dMgG8nIyEBycjJ27dqFN954Qyz39PSEQqGwiIFWqxXf2Xt7e3cZI6VSCW9vb5u3 /Ulcu3YNhw8fxuXLlzFu3DiMGzcO+/fvx/fff49x48YhJydH7MP9YuDl5QWdTmdW35fGyaBBgzBh wgS4urqKZT//+c9hMplQUlICLy8vNDc3Q6/Xm22n1WoRGBgIpVIJDw+PLmPUV2Jw9OhRxMfHY9So UQA6zhVavXo1Pv30UzQ1NXU5zvV6PZqbmxEYGAgvLy8AsBgHfSkG9+qqz1qtFv7+/pBIJF2O+85x EhgYeN/XTl+KSUVFBSIiIiCTyZCTk2N2rlF38x+AB8agu/OdepPdu3ejtbUV69evF+dIrVaLtLQ0 8XBhd+NEEAT4+vrC29sber3e4vY/fWmO5ATLBsLCwqDRaMzKzp49iyFDhtipRdaXlpaGdevWISsr Cy+//LJFfWhoqEUMNBqNGIOwsDDk5uaa3dfl7NmzCAoKsjifqbdxdXXFu+++i6SkJMTHxyM+Ph4j R46Eq6sr4uPjMWjQIAQFBcHZ2dksBp0nvt8dg7Nnz5rtuy+Nk5EjR6KoqMjsooS8vDwolUoMGzYM I0aMgCAIZjEoLCyEVqs1i0FX4+R+53X0JiaTCQqFwqzs1q1baG9vBxEhLCwMWq0WhYWFYr1Go4FE IkFQUJAYq7vHgclkQm5ubp8ZB/fq7jm9+zmvqqoyuzeWRqOBVCoVXzeDBw8224fBYMC5c+f6TEzK y8vx7LPPws/PD1999RUGDBhgVh8WFoZLly6Z3fPt7NmzcHJygre3NwICAuDm5mYWg/r6ely6dKlP xOCFF17A7373O3F+jI+Ph4ODA8aMGYMXXngBQEcMzp07B4PBIG6n0WgQEBAAmUyG4cOHQy6Xm702 iouLUVVV1SdiAIDvg2ULZ86cIaVSSenp6XTz5k16/fXXqV+/fvT999/bu2lW8e2335IgCPTrX/+a Pv30U7NH5yW3WVlZ5OLiQgcOHKC6ujpavnw5DRw4kLRaLRERNTQ0kKurKy1ZsoRqamro8OHD5Onp SR9//LE9u/bYtm7danGbhjVr1lBQUBCdOnWKiouLKSoqisaPH09Go5GIiL755huSyWS0bds2unnz Jm3bto2cnJzoypUr9ujCI7t+/To5OjrS6tWrqaWlhb755hsaOXIkxcfHi+skJCRQaGgo5ebmUkFB AU2cOJFmz54t1p84cYJUKhW99957pNPpKCUlhdzc3KiqqsoeXXpk6enp5OTkRH/729/IaDSSRqOh YcOGmd26YPLkyTRx4kQqKCig3NxcCg0NpWXLlon1+/fvJ09PTzp8+DDV1NTQkiVLyN/fnxobG+3R pUeyePFii9s0FBcXkyAItHHjRtLpdLRr1y5ycnKic+fOieuMHz+eJk2aRJcvXyaNRkMhISG0atUq sX737t2kVqspKyuLqqurKTExkYKCgqilpaXH+vawZsyYYXGbhlmzZpFaraZjx46ZzY+dt5kwGAwU HBxMs2bNotLSUsrOzqaAgABKS0sT97FhwwYKCAig7OxsKi0tpVmzZtGYMWPEW1n0JqGhofe9DxYR kZeXl9ltGpqbm8nDw4MSExOpurqasrKySK1W04cffiius2jRIhoxYgRpNBq6fPkyRUREUFRUlM36 YW2cYNlIeno6KZVKEgSBhg4dSn/84x/t3SSrWbZsGQHo8tF5zyOj0Ujr168nmUxGMpmMQkNDLe7r 8/e//528vLxIEARSq9W0fv16e3THKrpKsBobG8UbDCoUCpo0aRL997//NVtn7969pFKpSBAECgoK 6jP3f+qk0Who8ODBpFAoSKFQUGxsrNlNQmtra+m5554jiURCDg4OFBkZSdevXzfbR2pqKikUChIE gUJCQujYsWM93Y3HZjQaadOmTeTg4EBKpZIkEgnNmTOHbty4Ia5TUlJCY8aMIUEQSKVSUWxsLDU1 NYn17e3ttGLFChIEgWQyGY0ePZrOnDljj+48sq4SLKI7b7AEQSA/Pz/atWuXWX1RURGNGjVKjMnc uXPNkie9Xk8vvfSSGJPw8HD6+uuvbd6fx3FvglVeXt7t/DhgwABxvYsXL9KQIUNIEARycXGhJUuW mCVPzc3NtGDBAnH++NnPfkaXLl3q0b49rMdJsIg6Pozw8fEhQRDI09OTXn31VbP6uro6ioyMFOeP 559/nsrLy63efluREPWhmw71Me3t7bh+/brFpfj/S1pbW6HVasVLkO9FRLh27Rp8fX3NbvvwY9LQ 0ID29vZur4w0GAyorKzsE+dWdKeystLs5Nx7dZ5b0Xml1L30ej1qa2vh6+try2bajMFgQGlpKby9 vS3u99Opuroazs7O3dbfvn0b9fX1vf4cxIfVebuWznOvunL9+nW4urp2O25u3bqFhoaGH01MulJR UYEBAwZYHGru1NjYiLa2NqjV6h5uWc8pKyu77/8AnU4HiUTSZ05u78QJFmOMMcaYlfFJ7owxxhhj VsYJFmOMMcaYlXGCxRhjjDFmZZxgMcYYY4xZGSdYjDHGGGNWxgkWY4wxxpiVcYLFGGOMMWZlnGAx xhhjjFkZJ1iMMcYYY1bGCRZjjDHGmJVxgsUYY4wxZmWcYDHGGGOMWRknWIwxxhhjVsYJFmOMMcaY lXGCxRhjjDFmZZxgMcYYY4xZGSdYjDHGGGNWxgkWY+x/3vLly/GHP/wBq1evRlBQEEJCQrBz504Q EQDg+PHjSE5OxkcffYTw8HAEBwdjy5YtaG1txdKlS+Hn54fY2FicO3fOzj1hjPUWnGAxxv7nXbly Bb/5zW+g0+mwd+9exMXFYc2aNThx4gQAoKamBkeOHMHu3buRmpqKxYsX44033kBYWBhkMhkOHjwI vV6PlJQUO/eEMdZbSKjzLRpjjP2Pmjp1KgoKClBbWwuptON9509+8hPMnj0bb731Fg4cOICkpCRc vXoVQ4cOBQD4+/vDyckJhYWFAACNRoPJkyejtrYWnp6edusLY6x34E+wGGMMwPTp08XkCgC8vb1x +/ZtcVmpVGLIkCHisp+fH6ZNmyYuu7m5wWQyoaGhoWcazBjr1TjBYowxAGq12mxZIpGYLbu4uJgl YADg6Oho83YxxvomTrAYY4wxxqyMEyzGGGOMMSvjBIsxxhhjzMr4KkLGGGOMMSvjT7AYY4wxxqyM EyzGGGOMMSvjBIsxxhhjzMo4wWKMMcYYszJOsBhjjDHGrIwTLMYYY4wxK+MEizHGGGPMyv4fn4ia XaZYrNMAAAAASUVORK5CYII= --047d7bd6c44c779fa8050719aba5--