From owner-chemistry@ccl.net Mon Sep 28 04:13:00 2015 From: "Jens Spanget-Larsen spanget _ ruc.dk" To: CCL Subject: CCL: SV: Fitting IRC data to a polynomial function Message-Id: <-51781-150928041220-18417-1W9+lCLSjd1b8fIfja2BJg{}server.ccl.net> X-Original-From: Jens Spanget-Larsen Content-Language: da-DK Content-Type: multipart/alternative; boundary="_000_A94E15A372E6194CA8719D62642F6744879B3585MBX1adrucdk_" Date: Mon, 28 Sep 2015 08:12:12 +0000 MIME-Version: 1.0 Sent to CCL by: Jens Spanget-Larsen [spanget~~ruc.dk] --_000_A94E15A372E6194CA8719D62642F6744879B3585MBX1adrucdk_ Content-Type: text/plain; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable Dear Fred; If your are investigating a symmetrical double minimum potential, you may c= onsider a simple quartic potential with a quadratic barrier. The numerical = solutions to the eigenvalue problem have been tabulated by Jaan Laane: http://dx.doi.org/10.13140/RG.2.1.3994.4161 Mvh, Jens >--< ------------------------------------------------------ JENS SPANGET-LARSEN Office: +45 4674 2710 Dept. of Science Fax: +45 4674 3011 Roskilde University Mobile: +45 2320 6246 P.O.Box 260 E-Mail: spanget.:.ruc.dk DK-4000 Roskilde, Denmark http://www.ruc.dk/~spanget ------------------------------------------------------ ________________________________ Fra: owner-chemistry+spanget=3D=3Druc.dk.:.ccl.net [owner-chemistry+spanget= =3D=3Druc.dk.:.ccl.net] p=E5 vegne af Fredrick Mutunga fredrick.mutunga..gmai= l.com [owner-chemistry.:.ccl.net] Sendt: 28. september 2015 01:49 Til: Jens Spanget-Larsen Emne: CCL: Fitting IRC data to a polynomial function Hello Fellow CCL Members, I want to fit an IRC data points attached to a polynomial form to get a pot= ential function which I intent to use in calculating WKB barrier penetratio= n integral. I have tried several simple polynomials forms up to 5th order i= ncluding some exponentials using Mathematica's NonLinearModelFit but non of= them seem to work! Does any of you guys have an idea what kind of form I should be trying? Thanks Fred --_000_A94E15A372E6194CA8719D62642F6744879B3585MBX1adrucdk_ Content-Type: text/html; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable

Dear Fred;

 

If your are investigating a symmetrical double minimum potential, you ma= y consider a simple quartic potential with a quadratic barrier. The numeric= al solutions to the eigenvalue problem have been tabulated by Jaan Laane:

 

http://dx.doi.or= g/10.13140/RG.2.1.3994.4161

 

Mvh, Jens >--<

 

  --------------= ----------------------------------------

  JENS SPANGET-LARSEN   &= nbsp;     Office:      +45= 4674 2710

  Dept. of Science   &nbs= p;        Fax:     &= nbsp;   +45 4674 3011

  Roskilde University   &= nbsp;     Mobile:      +45= 2320 6246

  P.O.Box 260    &nb= sp;            E-Mai= l:     spanget.:.ruc.dk

  DK-4000 Roskilde, Denmark   = http://www.ruc.dk/~spanget

  --------------------------------------= ----------------

 

Fra: owner-chemistry+spanget=3D=3Druc.= dk.:.ccl.net [owner-chemistry+spanget=3D=3Druc.dk.:.ccl.net] p=E5 vegne af = Fredrick Mutunga fredrick.mutunga..gmail.com [owner-chemistry.:.ccl.net]
Sendt: 28. september 2015 01:49
Til: Jens Spanget-Larsen
Emne: CCL: Fitting IRC data to a polynomial function

Hello  Fellow CCL Members,

I want to fit an IRC data points attached to a polynomial form to get a pot=
ential function which I intent to use in calculating WKB barrier penetratio=
n integral. I have tried several simple polynomials forms up to 5th order i=
ncluding some exponentials using Mathematica's NonLinearModelFit but non of=
 them seem to work!
Does any of you guys have an idea what kind of form I should be trying?

Thanks

Fred
--_000_A94E15A372E6194CA8719D62642F6744879B3585MBX1adrucdk_-- From owner-chemistry@ccl.net Mon Sep 28 07:49:01 2015 From: "Mohan maruthi sena maruthi.sena],[gmail.com" To: CCL Subject: CCL:G: separate basis set of Li ion - Input error Message-Id: <-51782-150928013202-8942-6q54XbAhjGgBeRMKYwqxMA .. server.ccl.net> X-Original-From: Mohan maruthi sena Content-Type: multipart/mixed; boundary=001a114d719604f9cc0520c8044a Date: Mon, 28 Sep 2015 11:01:56 +0530 MIME-Version: 1.0 Sent to CCL by: Mohan maruthi sena [maruthi.sena:gmail.com] --001a114d719604f9cc0520c8044a Content-Type: multipart/alternative; boundary=001a114d719604f9c90520c80448 --001a114d719604f9c90520c80448 Content-Type: text/plain; charset=UTF-8 Hi all, I am trying to perform scan calculations for a Li2SiF6 system. I want to use different basis set for Li (5s4p2d as mentioned in the attached screen shot), using the key word gen as mentioned in the gaussian manual. The input file is as shown below, %nprocshared=12 %mem=16GB %chk=sif_b3pw91_c2v_scan_li.chk # opt=modredundant b3pw91/gen geom=connectivity symm=follow scan coordinate 0 1 F 0.00000000 1.72486459 -0.03772611 F 1.21837255 0.00000000 -1.25783532 F -1.21837255 0.00000000 -1.25783532 F 0.00000000 -1.72486459 -0.03772611 F -1.21900832 0.00000000 1.18238310 F 1.21900832 0.00000000 1.18238310 Si 0.00000000 0.00000000 -0.03772611 Li 0.00000000 0.00000000 -1.53771914 Li 0.00000000 0.00000000 2.39284425 1 7 1.0 2 7 1.0 3 7 1.0 4 7 1.0 5 7 1.0 6 7 1.0 7 8 9 B 7 8 S 40 0.200000 Li 0 S 1360.306 0.000844 0.0 0.0 0.0 0.0 204.1193 0.006491 0.0 0.0 0.0 0.0 46.45243 0.032691 0.0 0.0 0.0 0.0 13.10943 0.119676 0.0 0.0 0.0 0.0 4.189925 0.0 1.0 0.0 0.0 0.0 1.434060 0.0 0.0 1.0 0.0 0.0 0.509171 0.0 0.0 0.0 1.0 0.0 0.203668 0.0 0.0 0.0 0.0 1.0 P 10.0 0.150873 0.0 0.0 4.0 0.372952 0.0 0.0 1.6 0.0 1.0 0.0 0.3079 0.0 0.0 1.0 D 8.53815 0.277606 0.0 3.41526 0.785589 0.0 0.6573 0.0 1.0 **** Si F 0 6-311++G(2df) I am trying to use the basis set attached in the screen shot. When I use basis set downloaded from the EMSL website, this input works fine, but when i mention the basis set as mentioned in the screen shot, I got the following error, WANTED A FLOATING POINT NUMBER AS INPUT. FOUND A STRING AS INPUT. P 10.0 0.150873 0.0 0.0 Could some help me to understand the error in the input file. The link for the article in which the basis set is mentioned is, http://pubs.acs.org/doi/abs/10.1021/jp961417n Thanks & Regards, Mohan --001a114d719604f9c90520c80448 Content-Type: text/html; charset=UTF-8 Content-Transfer-Encoding: base64 PGRpdiBkaXI9Imx0ciI+PGRpdj5IaSBhbGwsPGJyPjwvZGl2PjxkaXY+wqDCoMKgwqDCoMKgwqDC oCBJIGFtIHRyeWluZyB0byBwZXJmb3JtIHNjYW4gDQpjYWxjdWxhdGlvbnMgZm9yIGEgTGkyU2lG NiBzeXN0ZW0uwqAgSSB3YW50IHRvIHVzZSBkaWZmZXJlbnQgYmFzaXMgc2V0IA0KZm9yIExpICg1 czRwMmQgYXMgbWVudGlvbmVkIGluIHRoZcKgIGF0dGFjaGVkIHNjcmVlbiBzaG90KSwgdXNpbmcg dGhlIGtleSB3b3JkDQogZ2VuIGFzIG1lbnRpb25lZCBpbiB0aGUgZ2F1c3NpYW4gbWFudWFsLiBU aGUgaW5wdXQgZmlsZcKgIGlzIGFzIHNob3duIA0KYmVsb3csPGJyPjxicj4lbnByb2NzaGFyZWQ9 MTI8YnI+JW1lbT0xNkdCPGJyPiVjaGs9c2lmX2IzcHc5MV9jMnZfc2Nhbl9saS5jaGs8YnI+IyBv cHQ9bW9kcmVkdW5kYW50IGIzcHc5MS9nZW7CoCBnZW9tPWNvbm5lY3Rpdml0eSBzeW1tPWZvbGxv dzxicj48YnI+c2NhbiBjb29yZGluYXRlPGJyPjxicj4wIDE8YnI+wqBGwqDCoMKgwqDCoMKgwqDC oMKgwqDCoMKgwqDCoMKgwqDCoCAwLjAwMDAwMDAwwqDCoMKgIDEuNzI0ODY0NTnCoMKgIC0wLjAz NzcyNjExPGJyPsKgRsKgwqDCoMKgwqDCoMKgwqDCoMKgwqDCoMKgwqDCoMKgwqAgMS4yMTgzNzI1 NcKgwqDCoCAwLjAwMDAwMDAwwqDCoCAtMS4yNTc4MzUzMjxicj7CoEbCoMKgwqDCoMKgwqDCoMKg wqDCoMKgwqDCoMKgwqDCoCAtMS4yMTgzNzI1NcKgwqDCoCAwLjAwMDAwMDAwwqDCoCAtMS4yNTc4 MzUzMjxicj7CoEbCoMKgwqDCoMKgwqDCoMKgwqDCoMKgwqDCoMKgwqDCoMKgIDAuMDAwMDAwMDDC oMKgIC0xLjcyNDg2NDU5wqDCoCAtMC4wMzc3MjYxMTxicj7CoEbCoMKgwqDCoMKgwqDCoMKgwqDC oMKgwqDCoMKgwqDCoCAtMS4yMTkwMDgzMsKgwqDCoCAwLjAwMDAwMDAwwqDCoMKgIDEuMTgyMzgz MTA8YnI+wqBGwqDCoMKgwqDCoMKgwqDCoMKgwqDCoMKgwqDCoMKgwqDCoCAxLjIxOTAwODMywqDC oMKgIDAuMDAwMDAwMDDCoMKgwqAgMS4xODIzODMxMDxicj7CoFNpwqDCoMKgwqDCoMKgwqDCoMKg wqDCoMKgwqDCoMKgwqAgMC4wMDAwMDAwMMKgwqDCoCAwLjAwMDAwMDAwwqDCoCAtMC4wMzc3MjYx MTxicj7CoExpwqDCoMKgwqDCoMKgwqDCoMKgwqDCoMKgwqDCoMKgwqAgMC4wMDAwMDAwMMKgwqDC oCAwLjAwMDAwMDAwwqDCoCAtMS41Mzc3MTkxNDxicj7CoExpwqDCoMKgwqDCoMKgwqDCoMKgwqDC oMKgwqDCoMKgwqAgMC4wMDAwMDAwMMKgwqDCoCAwLjAwMDAwMDAwwqDCoMKgIDIuMzkyODQ0MjU8 YnI+PGJyPsKgMSA3IDEuMDxicj7CoDIgNyAxLjA8YnI+wqAzIDcgMS4wPGJyPsKgNCA3IDEuMDxi cj7CoDUgNyAxLjA8YnI+wqA2IDcgMS4wPGJyPsKgNzxicj7CoDg8YnI+wqA5PGJyPjxicj5CIDcg OCBTIDQwIDAuMjAwMDAwPGJyPjxicj5MaSAwPGJyPlPCoMKgwqDCoMKgwqAgMTM2MC4zMDYgMC4w MDA4NDQgMC4wIDAuMCAwLjAgMC4wPGJyPsKgwqDCoMKgwqDCoMKgIDIwNC4xMTkzIDAuMDA2NDkx IDAuMCAwLjAgMC4wIDAuMDxicj7CoMKgwqDCoMKgwqDCoCA0Ni40NTI0MyAwLjAzMjY5MSAwLjAg MC4wIDAuMCAwLjA8YnI+wqDCoMKgwqDCoMKgwqAgMTMuMTA5NDMgMC4xMTk2NzYgMC4wIDAuMCAw LjAgMC4wPGJyPsKgwqDCoMKgwqDCoMKgIDQuMTg5OTI1IDAuMCAxLjAgMC4wIDAuMCAwLjA8YnI+ wqDCoMKgwqDCoMKgwqAgMS40MzQwNjAgMC4wIDAuMCAxLjAgMC4wIDAuMDxicj7CoMKgwqDCoMKg wqDCoCAwLjUwOTE3MSAwLjAgMC4wIDAuMCAxLjAgMC4wPGJyPsKgwqDCoMKgwqDCoMKgIDAuMjAz NjY4IDAuMCAwLjAgMC4wIDAuMCAxLjA8YnI+UMKgIDEwLjAgMC4xNTA4NzMgMC4wIDAuMDxicj7C oMKgIDQuMCAwLjM3Mjk1MiAwLjAgMC4wPGJyPsKgwqAgMS42IDAuMCAxLjAgMC4wPGJyPsKgwqAg MC4zMDc5IDAuMCAwLjAgMS4wPGJyPkTCoCA4LjUzODE1IDAuMjc3NjA2IDAuMDxicj7CoCAzLjQx NTI2IDAuNzg1NTg5IDAuMDxicj7CoCAwLjY1NzMgMC4wIDEuMDxicj4qKioqPGJyPlNpIEYgMDxi cj42LTMxMSsrRygyZGYpPGJyPjxicj48YnI+PC9kaXY+PGRpdj5JDQogYW0gdHJ5aW5nIHRvIHVz ZSB0aGUgYmFzaXMgc2V0wqAgYXR0YWNoZWQgaW4gdGhlIHNjcmVlbiBzaG90LiBXaGVuIEkgdXNl wqAgYmFzaXMgc2V0IGRvd25sb2FkZWQgZnJvbSB0aGUgRU1TTCB3ZWJzaXRlLCB0aGlzIA0KaW5w dXQgd29ya3MgZmluZSwgYnV0IHdoZW4gaSBtZW50aW9uIHRoZSBiYXNpcyBzZXQgYXMgbWVudGlv bmVkIGluIHRoZSBzY3JlZW4gc2hvdCwgSSBnb3QgdGhlIGZvbGxvd2luZyBlcnJvciwgV0FOVEVE IEEgRkxPQVRJTkcgUE9JTlQgDQpOVU1CRVIgQVMgSU5QVVQuPGJyPsKgIEZPVU5EIEEgU1RSSU5H IEFTIElOUFVULjxicj7CoFDCoCAxMC4wIDAuMTUwODczIDAuMCAwLjA8YnI+PGRpdj48YnI+PC9k aXY+PGRpdj5Db3VsZCBzb21lIGhlbHAgbWUgdG8gdW5kZXJzdGFuZCB0aGUgZXJyb3IgaW4gdGhl IGlucHV0IGZpbGUuwqAgVGhlIGxpbmvCoCBmb3IgdGhlIGFydGljbGUgaW4gd2hpY2ggdGhlIGJh c2lzIHNldCBpcyBtZW50aW9uZWTCoCBpcyzCoCA8YSBocmVmPSJodHRwOi8vcHVicy5hY3Mub3Jn L2RvaS9hYnMvMTAuMTAyMS9qcDk2MTQxN24iPmh0dHA6Ly9wdWJzLmFjcy5vcmcvZG9pL2Ficy8x MC4xMDIxL2pwOTYxNDE3bjwvYT48YnI+PGJyPjwvZGl2PjxkaXY+VGhhbmtzICZhbXA7IFJlZ2Fy ZHMsPGJyPjwvZGl2Pk1vaGFuPGJyPjwvZGl2Pjxicj48L2Rpdj4NCg== --001a114d719604f9c90520c80448-- --001a114d719604f9cc0520c8044a Content-Type: text/plain; charset=US-ASCII; name="sif_b3pw91_c2v_scan_li_gen.txt" Content-Disposition: attachment; filename="sif_b3pw91_c2v_scan_li_gen.txt" Content-Transfer-Encoding: base64 X-Attachment-Id: f_if3htb0v1 JW5wcm9jc2hhcmVkPTEyCiVtZW09MTZHQgolY2hrPXNpZl9iM3B3OTFfYzJ2X3NjYW5fbGkuY2hr CiMgb3B0PW1vZHJlZHVuZGFudCBiM3B3OTEvZ2VuIDVzIGdlb209Y29ubmVjdGl2aXR5IHN5bW09 Zm9sbG93CgpzY2FuIGNvb3JkaW5hdGUKCjAgMQogRiAgICAgICAgICAgICAgICAgIDAuMDAwMDAw MDAgICAgMS43MjQ4NjQ1OSAgIC0wLjAzNzcyNjExCiBGICAgICAgICAgICAgICAgICAgMS4yMTgz NzI1NSAgICAwLjAwMDAwMDAwICAgLTEuMjU3ODM1MzIKIEYgICAgICAgICAgICAgICAgIC0xLjIx ODM3MjU1ICAgIDAuMDAwMDAwMDAgICAtMS4yNTc4MzUzMgogRiAgICAgICAgICAgICAgICAgIDAu MDAwMDAwMDAgICAtMS43MjQ4NjQ1OSAgIC0wLjAzNzcyNjExCiBGICAgICAgICAgICAgICAgICAt MS4yMTkwMDgzMiAgICAwLjAwMDAwMDAwICAgIDEuMTgyMzgzMTAKIEYgICAgICAgICAgICAgICAg ICAxLjIxOTAwODMyICAgIDAuMDAwMDAwMDAgICAgMS4xODIzODMxMAogU2kgICAgICAgICAgICAg ICAgIDAuMDAwMDAwMDAgICAgMC4wMDAwMDAwMCAgIC0wLjAzNzcyNjExCiBMaSAgICAgICAgICAg ICAgICAgMC4wMDAwMDAwMCAgICAwLjAwMDAwMDAwICAgLTEuNTM3NzE5MTQKIExpICAgICAgICAg ICAgICAgICAwLjAwMDAwMDAwICAgIDAuMDAwMDAwMDAgICAgMi4zOTI4NDQyNQoKIDEgNyAxLjAK IDIgNyAxLjAKIDMgNyAxLjAKIDQgNyAxLjAKIDUgNyAxLjAKIDYgNyAxLjAKIDcKIDgKIDkKCkIg NyA4IFMgNDAgMC4yMDAwMDAKCkxpIDAKUyAJMTM2MC4zMDYgICAgICAgMC4wMDA4NDQgICAgMC4w ICAgIDAuMCAgICAwLjAgICAgMC4wCgkyMDQuMTE5MyAgICAgIDAuMDA2NDkxICAgIDAuMCAgICAw LjAgICAgMC4wICAgIDAuMAoJNDYuNDUyNDMgICAgIDAuMDMyNjkxICAgIDAuMCAgICAwLjAgICAg MC4wICAgIDAuMAoJMTMuMTA5NDMgICAgIDAuMTE5Njc2ICAgIDAuMCAgICAwLjAgICAgMC4wICAg IDAuMAoJNC4xODk5MjUgICAgMC4wICAgICAgICAgMS4wICAgIDAuMCAgICAwLjAgICAgMC4wCgkx LjQzNDA2MCAgICAwLjAgICAgICAgICAwLjAgICAgMS4wICAgIDAuMCAgICAwLjAKCTAuNTA5MTcx ICAgIDAuMCAgICAgICAgIDAuMCAgICAwLjAgICAgMS4wICAgIDAuMAoJMC4yMDM2NjggICAgMC4w ICAgICAgICAgMC4wICAgIDAuMCAgICAwLjAgICAgMS4wClAgIAkxMC4wICAgICAgICAgMC4xNTA4 NzMgICAgMC4wICAgIDAuMAoJNC4wICAgICAgICAgMC4zNzI5NTIgICAgMC4wICAgIDAuMAoJMS42 ICAgICAgICAgMC4wICAgICAgICAgMS4wICAgIDAuMAoJMC4zMDc5ICAgICAgMC4wICAgICAgICAg MC4wICAgIDEuMApEICAJOC41MzgxNSAgICAgMC4yNzc2MDYgICAgMC4wCgkzLjQxNTI2ICAgICAw Ljc4NTU4OSAgICAwLjAKCTAuNjU3MyAgICAgIDAuMCAgICAgICAgIDEuMAoqKioqClNpIEYgMAo2 LTMxMSsrRygyZGYpCioqKioKCgo= --001a114d719604f9cc0520c8044a Content-Type: image/png; name="basis_set_li.png" Content-Disposition: attachment; filename="basis_set_li.png" Content-Transfer-Encoding: base64 X-Attachment-Id: f_if3hshjp0 iVBORw0KGgoAAAANSUhEUgAAAYIAAAE1CAIAAABlV3ATAAAAAXNSR0IArs4c6QAAAAlwSFlzAAAP YQAAD2EBqD+naQAAAAd0SU1FB98JHAUWJB4zHeEAACAASURBVHja7Z15QBRH2vBrmOFGDjXgAQIj jIZ8YDCIooSo4BH1RbxNYlYhEo1mJRGzYlSiMdGgmzcmGIEoJEsMK4LKYVREQY0KgokHggoKDIgO jByDynDN9PdHbXr77ZoZRiNz8fz+2J1UV1dX1YwP3dX964dDURQCAADQHkYwBQAAQBgCAADCEAAA AIQhAAAgDAEAAEAYAgAAwhAAAACEIQAAIAwBAABAGAIAAMIQAAAAhCEAACAMAQAAQBgCAADCEAAA AIQhAAAMHh7+v3PnzpWUlNClHA6Hoihzc/P33nsPl3R0dBw9enTx4sV0nePHj1dWViKEeDwej8fj 8/mvv/66sbFxTk5ORUUFbmTcuHGvvfYauQuTSZMmvfLKK6xCqVT673//e/r06UOGDFFzJI8ePfrp p5+4XO7w4cODg4PLy8tPnjzZ3d09aNCgRYsWcblcVn2RSJSeno4/29vbL1y4UGGzzc3NycnJdXV1 QUFBU6dOpctzc3Pv3LljZma2fPlyXHLy5Mnq6uqVK1eq2XJLS8tnn322adOml156SWEFiUQSHx/f 0tKyZMkS5hQxD33+/PmrV692dXXNnj3b3d2dubuyL6jHmezo6Ni6dWtwcPC4ceNUVLt3715mZqaV lRWHw0EILVu2TJ3Gaaqqqn766af+/ftPnz59xIgR6u+o4gemZs8BnYOiKIqiVqxYsWnTJolEgn8Q f/zxx6+//uri4kL9yb///e9BgwZ1dHTQJTKZbOzYsQihgwcPCoVCCwsLT0/Px48fy2SyCRMmIIR2 795N/V/oXZKSkrq6uu7evRsSErJv3z5mndbW1oSEhMGDByOESkpKKLXBYfSPP/6gKOratWtmZmZF RUVtbW0DBw7cunUrWX/Pnj30JERGRipsUywWr1u3Ljo62sbGBiF07do1epNcLhcIBAMGDKBLgoKC EhIS1GxZLpfPnj0bIVRRUaGwglQqHTdu3KBBgxBCFhYWlZWVyg7d0tKCEDp69Kiy2WZ9QT3O5LVr 1xBCoaGhKurU1ta+9NJLDx8+pCjq7NmzZmZmUqlUYc3Gxsbt27eTw3d3d1+4cOHq1av9/PyoZ0HF D0ydngM6yH/OhhwdHTdu3Ij/rCGEjI2NZ8yY8be//Y3+5xQfHy8SiQ4fPvzWW2/953LOyGjgwIEI IUtLy2HDhnl4eFy5cqWgoGDKlCm4fOjQoewrwD93sbOz4/F4uNljx44x65ibm4eHh2dkZDx8+PA5 oqqdnR1CKDs7u729vbq6esyYMc7OzviPJ3kycuvWLfwZRz2SpqamnTt3cjicjo6OmJiYhw8fjho1 ij5hNDc3Z56L/fbbbykpKWq2vG/fPpFIpGIgGRkZv/zyi6ur6wcffJCQkHDq1KkVK1YoPLSNjQ15 rqf6C1I9h15eXr/99puHh4eKOtnZ2RKJRCaTIYTeeOONNWvWKDuxWrRoEflLePToUUVFxfjx4z/4 4AOJRPJs6wh/jotsVp2eA7q7NrRu3To6BtFs2LABf7h165aLiwtCiPl3nklXV9fDhw+HDh3q7e2t 5oG7urp++OEHBweHJUuW/J+rRB6Pw+GYmJgwC8PCwqZNm9bV1aVm4z4+Pviv4pdfftm/f//PP//8 4cOHy5cvj42NXbp0aXFxcUdHxw8//LBixYq4uDgTExMbG5vU1NSJEyd+8skny5cvf+WVV77//nuE kEAgwDGouLh4xowZU6ZMoSjqn//8p5eX17p1654+fUof8ejRo/7+/i+99BLZMuvQCKHi4mIzMzM3 Nze8r8JDL168mM/nczicmTNn4r8Tyg6t5mzTX9DTp08//vjj+Pj4+fPnb9q0SSaTsXq4f//+TZs2 /fTTT2TPaaysrDo7O0ePHh0bG9ve3v7555+bmppSFPXdd9+tX7/+gw8+yM/PRwjt2LHj9OnTxcXF u3fvZu6Of0jFxcWFhYXjx49PT09fvXr1Z5999vnnn+PQlpubi+fkH//4x8svv4xPc3qE7jn8w9bL izIafFHGuhrasmXL06dPhw8fjhD6/fff6XL8L2TVqlVTp07l8/mXL1/G5fhyIy0tjTz7wru8++67 48aNW7RokbKTNNwC3Q1nZ2cLCwuJRNLjRVlVVRX+z927d+Olinnz5kml0oiIiGnTpslkspMnT166 dKmwsNDS0hLPgLW1dXl5eWNjI0Lotdde6+jo+OSTTxBChYWFFEW1t7fPnTsXn4OkpaX9+uuvCKGE hIT29vahQ4fSV0ZTpkyJj4+nKIpsmXXox48ff/LJJ3K5/J133sEXZcoOjfn000/HjBnT1dWl7NAU RXG5XPKiTNkXFB8fb2xsfP/+/QMHDuDTLlYPy8vLEUIrVqxglTNbbm9vf+ONN/AwhwwZkpmZSVFU ZmYmQqiysvLgwYMDBgxob2+vra1FCC1dupS8pqPLz549ixA6ffp0W1sbl8v94osvcB1jY+MBAwak paWNGDHi3Llz5M+D/IHRPYfLHP2i5ztlbW1t3d3dFhYWK1euVHhC9Oabb/7666/Ozs4TJkxgXWEp Y+7cufHx8cwrC9VcuXKloqLC2tpazfoNDQ3Z2dnR0dGurq6HDx/+xz/+YWNjk5OT89prr1EU5efn N3bs2MePHwuFws2bNz99+vSHH34wMjJCCLm4uJiYmOBzutzcXISQqalpenp6SkoKh8P55ptvDh8+ jBDy9fU1NTXFlwb4EuP8+fNz5sxBCJEtsw791Vdfvfnmm6WlpXhN5969e8oOjRCqqanJy8vLzs7m 8XgKD60OrC9oxowZMTExUqm0oKAAr8GzekifF7PKmW2ampqePn16z549Tk5ODx48WLBggVAoPHLk CELowIED+fn53d3dd+7cUad7ycnJ+ArL3Ny8f//+9LmMkZGRu7v7/Pnzb9++HRAQoE5T5Bk9oE8X ZSo4dOiQVCr94osvHj9+bGJikpKS8ujRI/b9Nh5vxowZ3d3dSUlJys6WWSWjRo2aNWsW85+cCgYO HKj+LTOE0Pbt269fv75x48Zz586ZmJicOHHi008//eSTT27fvv3mm2+eOnUK/2SHDRv2+eeff/LJ J+3t7czd8WmUXC6nf9xvvfXWjBkzTE1NW1tb6QrMdRx/f397e3u6PrNl1qHPnj07efJkT09PfHaD z4kUHrq9vT0mJiYrK8vBweH8+fMKD63uDVHGF2Rqapqfnx8TE/Pqq6/ireTkqC7HJ2VcLnf16tUV FRVr1qzp7Oy8cOFCW1sbPv3EN/i8vLzU6RveC8diLpfLvN5UuOal5g8M0OMwhK/M6X+BFEVdunTp n//856ZNm7Zu3Tpv3jy89kFvpf8XryiPHj2aVY4QunHjxsmTJ8ld5s2bV1NT891335Hd6u7upjuD EFq4cOGECRM6OzvVXwrBh3Bycho8eLCrq2tsbGxMTExFRcWwYcNKSkr27t0bFhZWV1eHV7Xpe+r4 EPg+t7+/f1xc3ObNm3Ghqanp+++/jwcoFAopimpra8NHOXTo0IIFC3ALZMusQ+/fv7+4uLi4uHjS pEkIoR9//FHhoeVy+dKlS+/du/f3v/999uzZ3377rcJD93jFTX5BGzduzM7OXrNmDb5LgBBi9ZBu mVXObPnWrVv4OzU1Nf373/+OEHJ3d/f19UUI4TPiioqK+vp6+kd1//595tfH7FhQUBBCqLW1VS6X SyQSegUdn673OC7mDwyS7un92lBHR0dsbCz+YxseHn7v3j2KorZt2/bKK69cvHiRoqjbt2//z//8 D0LI1tb24sWLGRkZDg4OOJps3br11Vdf3bZtW1dXV3Z2Nr49NHv27L1793700Uf9+vWLioqiKCoj IwPfgZ4zZ05cXNy6dev69+///vvvM68SJRJJYmIivuEVHh5+8+ZNiqIEAoGNjU1ra6uaa0PV1dVe Xl5bt26Nj4/39PS8ffv24sWLN23alJmZ6evrW11d/fXXX3O5XGtr6w8//PDIkSMURTU3NyOEXn75 5XXr1g0cODA8PFwul3/00UcIoQkTJnz11VdJSUn47virr77q4eGxevVqZ2fnwYMHp6SkmJqa1tfX 426QLbMOTXd43rx5+J+rwkNHRkYyv6ZNmzaRhz516pSKtSFlX9CuXbvwUtTHH3+MEAoODl64cCGz h3g52cfH580331TYc4qiPv74Y09Pz3/961+XL1/+29/+tmXLFoqinjx5MnHiRCMjozfeeGP79u1y ubyzs5PP51tZWUVHR5NPS4wcObKwsLC7u3vZsmUrVqz4/vvvx44di2cyJycHITRgwADWqhBFUSp+ YHTPW1paYMFFj0B60cvHjx83NTWp89wQ/XyNXC6vqampqamRy+U4fHR0dNy9e7e9vR1XaGtra25u xlvpMDRv3jyJRFJXV0c3W1dXV1FR0d3dTZfgVQ+pVIrDYnNzc3FxMbMnrJbJQ7NQdmgS1qH/u8Jn ZKRwiVoZ1dXVeL2/qqqqra1NWQ9V9PzBgwdyuby8vLywsJD51cjl8srKyoaGBuYDUEKhkJ4NZYhE osrKyh6rAQYJx2DOY8vLy2fMmLFo0aKxY8cGBwc/6+6PHj166aWXpk2bRl8/aoy/cujz588XFRXF x8fHxcX1+EAQAOgmhhOG/iJpaWkXL140MjJavHgxXuPoC4cGAAhDAAAAYNgDAKBteAihK1eu7Ny5 E+YCAAyYqKgo/MwHXJQBAADARRkAABCGAAAAIAwBAABhCOhLUBRFvyuK/kwLgyQqNgEQhgDgmSkt Lf3+++9DQkJSUlLoz0lJSfb29k+ePCHrt7e3K9sEGCpwpwzoXd56661PPvnk5Zdfpijqvffeoz8/ ffpUWS4AsVisbBOLrKys5xB3AF2Du2XLFpgFQH1aWlqysrKqqqr4fL6RkVFTU9OxY8fKysrwa9sQ QiKR6NChQy0tLa6urgUFBQkJCQ4ODpaWlnV1dfRnJyenkpISW1tbvAuzTQ6HQ29iNtXe3n7u3Dlr a+vU1NT+/fvb2tqmpKRERUXx+XyBQFBcXHz9+vXu7m414xcAF2WAvvLgwYNPP/00ODi4oKDg008/ ra2tDQ8PnzVrlouLy4QJE1pbW+/evZucnLxw4cKvvvpq3759Hh4eFhYWHh4ebm5uzM+XL18ODAzE 759ktUlvYjWVm5s7d+7cX3/9tb29Hb8wz8XFxczMbNy4cefOnSsqKpoyZcrRo0fhO9JHeDAFgPp8 8803ISEhZmZm69evb2pq+v777ydMmGBubj5mzBg+n3/gwIE7d+70798/PT3d09OzurraxsbG2NjY 1ta2X79+CCH687hx4+j32LLadHFxwZtiY2OZTc2fP5/D4SxdulQmk61evRohZG1tzePxBg4cKJVK ExMTAwIC8HuKAQhDgCFTUVExffp0HAKsra3r6upsbW3xJnd39/r6+urq6gULFvj7+/fYFP3eaFab 9CZWU/jUCSHE5XJZC5rTpk2rqqp64403IiMjN27cCF8TXJQBhsyIESP27duHX06Wk5MzduzY3377 DW+qr68PCAjg8/n4NZUUReHUtcx3uSr8zGqT3sRqirkjHcjwrf2LFy+uXLny5s2bCQkJcIsNwpBG ycrKgu9Pw0RGRpaVlb388ssLFiwYMWLE+++/b21tHRsbm56eLhAIAgMD165de/78+TFjxrz11lse Hh7Xr1+vrq7Ozc2VSCTMz1euXBGLxadPnybbpDexmiooKGhra7tx4wYOfIWFhcOGDWtoaNi+ffvl y5e//fbbBw8ezJkzh87OBOgRL+aGvUgkOn78uKur66RJk0pLS6uqqpydnbu7u+vr6wMDAxFCly5d 4vP5OTk5AQEBAoEAIdTU1HTmzBmE0IwZM7hc7sWLF0eNGpWdnT158mRnZ2dWmwih9vZ2Zp2LFy9G R0fv3r0br1YCGkMul4tEokGDBuFcGgihxsZGExMTvPqDEJLJZGKx2N7enq7wHG2q2VRra6uJiYmx sbFcLm9qarK3t4ccQX30bIh1R0MgEOzcufP333+/ePGis7OzsbFxcnJySEjIyZMnOzo6xo0bV1lZ ybrDcvjwYdZNEFabCCHWjRL6Lgl8hZr+xRgZDRkyhBkXBgwYQMcgvHZDBpRnbVPNpqytrc3MzLhc rrGxsYODA8Sgvns2FBER0b9/f2dn55s3b5qamn755ZcVFRVTp06Njo4ODQ1FCNXW1vr7+wuFQoTQ u++++//+3/9rbm62t7dfu3YtQmju3Lmvvfbarl27WlpaZDIZ/stGttnc3Ozq6krXuXHjxpIlS9TM KQwAgC7zAu6UkTdHhg8f7u7ufv78eRyGOBwO/WdKIBB0dHSw7rA0NDTQf/1wWCTbpFsgb5QAANDX L8rImyOJiYl79uy5fPkyneqTDhxVVVWTJ09m3WF5/fXXWdUU3nBh1qHvkgAAAGdDaO3atZMmTRoz Zoybm1t0dHROTs4ff/wRHh6+atWqsLCwEydO2NnZNTc3//DDD8bGxs7Ozv7+/r6+vhcvXoyNjR08 eLBAILCwsMA3QfCzIYWFhaw2EUL0jRL60Vt8l2TlypX9+/fX8KyVlpbiJKgAoCPY2tr6+Pjoaedf zJ0y1Xc07t+/7+/vX1JSIpPJ6GsxRNxheaY20Z93SczMzDQ/a8ePH2clUwYA7TJ06NAlS5b06TCk GqFQOGHChPv378NvBQAAEk08vlhUVDR//vy8vDyYbgAAtHM2BAAAoOWzIQAAAAhDAADoLpC1FQD6 BJs2bfLy8tLNvsHaEAAAcFEGAACEIQAAAAhDAABAGAIMFLlcrroCRVG4Dv0BACAMAc9JQkLC6tWr d+zYERYWlpmZiRBKTk5W/Xb6ixcvCgSCyspK+gNMI6B5IDOHgSAWi7dt21ZbW8vhcM6cOXPr1i2E kJ+f3/bt21XsNWHCBPwiJ/oDAMDZEPCcUBQlEomys7MRQoGBgfj1uDiy1NTUJCYmVldX45oikSgp KSk/P/8/v4A/X2BAvsmguLj4+PHjOKIBAIQhoAfs7e03b94cEhKyYsWKxsZG+tUzzc3NWCqeNm0a UvSSb2VAKlQAwhDwzHz22Wdnz569cOGCl5fXnTt3cKGdnd2yZcvCwsJqamo6OztjY2OlUimdClVF azgV6u3btyEVKtDbwNqQgVBbW+vk5BQQEFBcXDx9+vQNGzYcOXKE3srhcLhcrlwuVz+rKqRCBeBs CHg2Tp8+XVRUhBCysLAIDg7u7u5GirKk9viSbxpIhQrA2RDwbLi6ukZGRi5fvtzU1DQzM3PPnj0I oQsXLohEotLS0paWlra2tkuXLrFe8n316lWRSJSfny+RSPAHPp+P16orKiquXLni7+8PqVCB3gbU VgOho6ODw+FIpdL6+npXV1djY2NlNdXMqiqTySAVKgBhCACAPgGsDQEAYIhhiKKoF5jL8MW2BgCA rqHuErVEItm9e7elpeW6detwaPj666/z8vIePHiQlJQ0evRoXO33338/evTo2LFjJ02aZGVllZSU 1N7e/vTpUw8Pj5kzZzIjC7k7WZnVmk5NnLKhKdykTsnevXvt7OxEIpGDg8Pbb79Nt/bFF1/w+XzV JdodHfTB4PvQ61DqUV9fv379+o0bN+L/LC4uvnv3LkVRCQkJS5YswYUZGRkzZ86USqX4P0tLSwMD A/G5zKhRo+rr6+nWyN3JyqzWdAoVQyM3qVNSUlKyaNEi7LiPHj2abq2oqMjX1/fnn39WUaLd0UEf DL4PGkDdizJ7e3vm+YiPj8/w4cMRQiYmJpMnT0YINTQ0hIaGxsbG0vdfUlJSsNlkZGTk5eXFfJqO 3J1VOT4+ntWaTqFiaOQmdUpMTEzy8/NramoaGhoGDx6Mm3ry5MmVK1f8/PzoxskSrY8O+mDwfdDp taGurq5Dhw59++233t7eCKG0tDQrK6usrKz58+fPnTu3s7OzrKzMwcEBV3ZwcCgrK1OxO6vy1q1b Wa3p1KypGBq5SZ0SgUAQFRXl6+u7fv36lJQUvCkxMTE0NJR5XLJE66ODPhh8H3Q6DFEU5e3tHRQU NGvWLJlMVl5evnjx4oiIiMzMzJqamtTUVJlMRp/LYJNAxe5kZVZrOjVrKoZGblKnBCHk5OQUHh6e kZGxf/9+hNCJEycmTpxoZmZGt0yW6MLooA8G3wcdWqImMTExcXd337lz55EjRyQSiZWVFRYIOBzO uHHjKisr3dzcmpubceXm5uYRI0ao2J1V2czMDD8yR7emU7OmYmjkJlNT0x5LSkpK0tLSUlNT33nn HT8/vzlz5sTExOCIc+vWrby8vCdPnhw8eJBV0kvS6TONThdmGPrQq33QrbMhhQ86UhQlEAjs7OyC goKuXr2KC1tbWz09PYODg69du4ZLrl+/HhwcjBASiUQKd2dV/u6771it6dSsqRgauUmdEqFQiEPM yJEj/f39m5qacnJyMjIyMjIy5syZ89FHH7333ntkiS6MDvpg8H3QANwtW7aoU08oFMbHx4vFYj8/ P1tb24MHD0ZGRpqbm1+6dCksLMzBwcHFxaW4uFgoFD569KiysnLt2rUuLi4FBQWdnZ0FBQWOjo7B wcEPHz4cNmxYRERERkYGa3dnZ2dm5TVr1rBa06m1alZvmUMTCASsTWRlsmTYsGEHDhzg8XjV1dV1 dXXh4eHGxsY8Ho/H450+fXro0KHe3t68P6FLdGF00AeD74MGeE6Zg6KoqqoqMzOzIUOGMMtFIlF3 d7ejoyNdUldXx+Px6LU0iURiY2OjbHdWZbI1nULh0BRuUqeEoiihUMjj8XRkvM80OuiDwfdBF8MQ AACAFtaGAAAAIAwBAABhCHjRgLgLALzn/scTHR194MABa2vruLi48ePHI+WinUIVk+XKskooioqJ iXF0dCwrK5s+fXpAQIAymVZb/EW1FSkRd+m5ImdA4aTpwuigD6C2voC/xs9BRkZGcXGxXC7ftWuX u7u7CtFOmYrJcmVZJb/88suaNWsoinry5ImTk1Nra6tCmVZP1VZSAybnipwBhZMGSif0oQ+prSy8 vLx8fHw4HE54eDh+mEqhaKdCxWS5sqySM2fOODk5IYQsLS0HDRp05swZ0obVIn9RbSU1YHKuyBlQ OGlaHx30AdRWra0Nubq64g+3b99euHAhUiLaPbeKaWNjU1FRgT9bWVnhh9ZZNqwW+YtqK6kBk3Ol cAZ0cHTQB1BbtbY2RF/QpaamxsTEIEWi3V9RMVetWjVlypS4uDhzc/M7d+7gqMe0YYVCIZfL1das /UW1ldaA16xZM2bMmNTU1IEDB7LmSuEM6ODooA+gtmo5DKWkpKxatWrAgAFIkWhHypnqq5hubm43 b968e/cul8vl8Xg4vR/Lhu3fv7+2Zu0vqq2NjY0sDTgxMZGcK3IGdHB00AdQW7V2UYYQOnbsmLe3 t5ubm1wuv3btGinaKVQxmWor+QA3s8TS0tLDwyMqKio+Pp7H4zHrYBtWi7P2F9VWUgNWOFcKZ0AD T72D0gl90I+zoYyMjKVLl/br1w8h1N7efuHChVGjRh09ejQrK6upqSkkJMTNze2/x+DxTExMjI2N sZX36NEjGxsboVBYUFCAZU4XFxeEELNk2LBhRUVFycnJERERU6ZMQQgdPHjwxx9/DA8Pb25u3rVr l3YzZwUEBLAGSw+N3DR8+HCy5MiRI3FxcS4uLhYWFrNnz6YvMOm5ksvlrBlgTRGeNK2PDvpg8H3Q AC/YKetRtGNaeSoQi8WPHz92dXWlw40yG1aL/EW1VbW4S86ALo8O+mDwfdCnMAQAAKC5tSEAAAAI QwAAQBhSm2cSOPu47QmyK9DXePFrQyyRVXXmVWbl2traOXPmIISsrKxOnjz55ZdfstRZ1i7alV3V Fw7JfioUg1lzZWlpCWor9AGB2vocsERW1ZlXWZVjYmLKy8urqqpwylaWOkvuokXZ9ZmEQ7KfCkfH mitQW6EPoLY+Dyw5U6HAqaxyS0tLbGzshg0brl27Zm9vT6qz5C5alF2fSTgk+0mOjpwrUFuhDwjU 1ueAJWcqFDiVVTY1NT106NCoUaNCQ0N37NhBqrNIkSirLdn1WYVDVj/J0ZFzBWor9AFB1tZnhRRZ yTyuKiqbm5v7+flt3rz5/PnzO3fuxCtWTHVWoSjLSv2qsVl7VuFQYT+ZoyPnatWqVadOnYqLi/vp p59AbYU+IFBb1YEUWck8rioq09arp6enk5OTXC7ncrlMdVbhLtqSXZ9VOFTYT+boyLl69913QW2F PvQRtfWFLVG3t7dLpVKpVBoREZGYmNjZ2ZmXlzdlyhS89d133z18+DBFUQ8fPlRYmW6nra1t3rx5 FEVlZ2eXlpbiFbirV6+q2EUmk02fPl0ul2tsRe3s2bO4kxRFjR07tqKigh6awk1kP1mjUzhXFEV1 dnbOnDnz+PHjdCOff/55by9RP9/ooA+G2gcN8MLOhkxNTf9zfvWnnDlx4kSWwMlUW1mVt27dmpub GxERcf/+/d27d5PqLNm+FmXXZxIOyX6SoyPnCtRW6AMCtfVFwRI4lamtFEXdu3fP0tJy8ODB6p/H aVd2VVM4VL+fzLkCtRX6oFN90O8wBAAAoBpwygAAgDAEAACEIUCnUEdtBf0VMCR4L7AtlnipWj0l LU2mpzdjxgxS7MTovtqqOiEtnhmFo2OqrZWVlWFhYczDeXl5oZ5UYQ2MDrTSPtgHTfztfVGwxEvV 6imrMsvT++abb0ixUy/U1h4T0irTVllqa2Ji4r1798RisVgsDgwM7Orq6lEVBqUT+gBqK1u8VK2e siqzPL2PP/6YFDv1Qm1FPSWkRYq0VVJtDQ0N5fP5AwcOfPr0qYuLC4/HU60Ka2Z0oJX2wT7o/dqQ +uopy9NDCJFip16orepAaquk2ko/LpSenj537lzUkyqsmdGBVtoH+6D3YUh99ZTl6U2bNo0lduqL 2qoOpLaqQgPOzc0NDAxEKlVhjY0OcKVBDQAAH5hJREFUtNI+2Ac9W6ImUV89ZXl6U6dOPXz4MFPs DAoK0gu1Vc3dWdpqbm6uQg24pqbG3t4eiywqVGGNjQ600j7YB/07G1L4TDYzz6qyrK1kCkpWzlKF eU3J9jWDilyayuaBVcIaHZnHlXVFhhBSVkeTo4OMqZC1VdfPhljiJal0qsjayvL0+Hx+YWEhU+zU F7W1x4S0Li4upLZKqq34QCdOnMjKysKfldXR5OhAKwW1tTfoRadModKpOmsr7empI3bqstqqGmWj I/O4NjY24hcSqaij+dGBVtoH+6CvYQgAAEALa0MAAAAQhgAAgDCkG4D8CQD6Ak8Dx2DlccWQ/ufe vXvt7OxEIpGDg8Nbb73Fkj9JHVRh7lNm6tecnBwul9tLgzJs4VBFeljQSvtgHzRx1tCrsFKzKrM9 S0pKFi1aRFGUXC4fPXo0KX+SJQpznzJTvxq2/NmrKEsPC1opqK26rraSsGRUJizb08TEJD8/v6am pqGhYfDgwaT8SZaQuU9ZqV97b1wGLxwqSw8LWmkf7IPerw2RMqoyBAJBVFSUr6/v+vXrU1JSSPmT LCFzn7JSv/beuPqIcPhMAze8GYY+GMLakEIZVQVOTk7h4eGxsbFeXl6rVq2aMmVKXFycubk5lj9f f/11Vgl9UUnnPsWpX/38/EJCQgICAqKionrp0eo+Ihw+08ANb4ahD4YQhlSkZiUpKSlJS0tLTU19 5513/Pz85syZw5I/eTyewiymzNynNMzUr70xtL6SS/NZBm54Mwx9MISLMoUyqjL/UygU4pg1cuRI f3//pqYmlvyJCB0UIXTs2DFvb283Nze5XE5rfgghqVQqEAh67zZZXxAOWY/Xg1YKaqteng2RMqoK /zMoKGjfvn1paWkWFhaDBw8eNWoUS20ldVAy9ykr9WvvDc3ghUPWtwNaKaitvYqmnTIV/idFUUKh kMfjOTo6kvKnmrLrs6Z+/SsYvHCo7IsDrbQP9sGgwhAAAIDm1oYAAAAgDAEAAGFIU4DICgD6S++q rSoMSUyPKViZWqxCkY+VxRSEQ4MZHei1feGX9t/zCM0bkmqmYGVWUCjysbKYgnBoSKMDvRbU1heD MkMSqZGClVWBFPnILKYgHBrS6ECvRaC29jY9pmBlVSBFPjKLKQiHfWF0oLYazC9Ny2GoxxSsx44d Y1UgRT4yiykIh31hdKC2GswvTUNL1MpQaL0yU7B++umnOO0PXYEU+RobG1lZTEE47AujA7XVYH5p mjsbUmhI9piCtaioiFWBFPnILKYgHBrY6ECvBbX1BaDMkKSNGGUpWOnLMboCKfINHz6clcXUyMgI hEODGR3otQjU1l5CmdqqZgpWUuQjs5iCcGioowO11SB/aQjUVgAADH9tCAAAQNfDEOhgANDH6d0l ahXOC5nXkFl5xowZrOSIiJCMbty4ERYWxjyWl5dXjxabBoYGTpnB9AG8Ns2djGhehyHzGrIqf/PN N6zkiKRklJiYeO/ePbFYLBaLAwMDu7q6erTYwPQBlwq8tr7llKlwXsi8hqzKH3/8MSs5IiIko9DQ UD6fP3DgwKdPn7q4uOCX5Kuw2DQzNHDKDGmGwWvT+7UhFc4LmdeQVRkhxEqOSLZPv5Q6PT197ty5 mpw1cMpQ33apYB70Zm1IhfNC5jVkVZ42bdqpU6fI5IgKyc3N/fDDDzU5a+CUob7tUsE86M3ZEMt5 4fP5ZB06ryGr8tSpU2/evDl+/HgfHx9mckSSmpoae3t7OhmRZlAxNHVGrePowuh0fIZhHvQmDKnQ YWjovIZkZTI5IiIkI4VXZBp4IBOcMtRnXCrw2jQAd8uWLb3UtLOzc0FBQWdnZ0FBgaOjY3BwMNZh IiIiYmJiNm3a1K9fv7y8vMjISGtra1blWbNmXb58OSYmZtmyZdOmTcMNCoXC+Ph4sVjs5+dna2uL C6Ojozdv3mxsbKyijiaHJhAIWJv07jehC6PTkRlm/Zz67Dz0Nr0ucyjUYZTlNaQrq5McEdPY2MhK YK8xwCnrgzMM86CXYQgAAEBra0MAAAAQhgAAgDDUO5A2LPixAKC/aEdtpSgqOjr6wIED1tbWcXFx 48ePZ1WeMWOGwuyJrOSIZMnevXvt7OxEIpGDgwNOsqjhoSFQW6EPLxRd0Gs1cWaheSsvIyOjuLhY Lpfv2rXL3d2drPzrr7+S2RNZyRHJkpKSkkWLFlEUJZfLR48eDWorqK2g14LaqlS98/Ly8vHx4XA4 4eHh+FksVuWamhpW9kQyOSJZYmJikp+fX1NT09DQwHoUQGNDA7UV+vBi0bpeq99rQyrUO9oRu337 9sKFCxVWZmVPJJMjkiUCgSAqKsrX13f9+vUpKSlaGRqordAHrX9NEIb+S4/qHUVRqampMTExCisz syfKZDIyOSJZghBycnIKDw/PyMjYv3+/VoYGaiv0QetfE4Sh/9KjepeSkrJq1Sr8DDRZmc6eaGpq KpFIrKys8BPVdHJEsqSkpCQtLW3btm2FhYXbtm2rqqrS/NBAbYU+aP1rgjD0X1SrrceOHfP29nZz c5PL5deuXVPm6eHsiXZ2dmRyRLJEKBTiBGcjR4709/dvamrS/NBAbYU+vHC0q9dqAO2orSdPnnz3 3XcPHTr0v//7vzt27Hj//fdfe+01ZuW2trbIyEhzc/NLly6FhYU5ODi4uLgUFxcLhcJHjx5VVlau XbvW1dWVVeLi4nLgwAGcYK+uri48PLxHJe2FDw3UVujDi0Xreq0G0I7a2mNlZdkTyeSIrBKKooRC IY/HY9bR/NBAbYU+9B6gtgIAAOjP2hAAAACEIQAAIAwBAABAGAIAAMIQAAAAhCEAACAMAQAAQBgC AADCEKBxerSu8SvimB8AAMIQ8JwkJCSsXr16x44dYWFhmZmZCKHk5GQVSbcRQhcvXhQIBJWVlfQH mEZAK/BgCgwAsVi8bdu22tpaDodz5syZW7duIYT8/Py2b9+uYq8JEyZg9Zf+AABwNgQ8JxRFiUSi 7OxshFBgYCB+NyiOLDU1NYmJidXV1bimSCRKSkrKz8//z9f/53uz6A80XV1d586dq62t3b9/f3l5 OUwyAGEIUIW9vf3mzZtDQkJWrFjR2Njo4+ODy5ubm/Py8hBC06ZNQwjdvXs3OTl54cKFX3311b59 +1S3mZycHBIScvLkyY6ODvxWOZhnAMIQoIrPPvvs7NmzFy5c8PLyunPnDi60s7NbtmxZWFhYTU1N Z2dnbGysVCpNT0/39PSkz4+UMXXqVGtr6/Dw8NWrV8+cOTMtLQ0mGeglYG3IEKitrXVycgoICCgu Lp4+ffqGDRuYeRo4HA5+V3F1dfWCBQtUr1sz96IXjAQCQUdHB8wzAGdDgFJOnz5dVFSEELKwsAgO Du7u7kZ/ZqDDFfBnPp+flJSEP6enpyPG20UVvnaKLqyqqsJpmgAAzoYAxbi6ukZGRi5fvtzU1DQz M3PPnj0IoQsXLohEotLS0paWlra2tkuXLq1du3bSpEljxoxxc3OLjo6+evWqSCTKz8+XSCT4A5/P Z65VNzc3//DDD8bGxs7OzmqeQwHAcwBvXzQEOjo6OByOVCqtr693dXU1NjZWVlMmk4nFYnt7e/LW GIv79+/7+/uXlJTIZDJbW1uYZADOhgBVmJqaIoRMTExUvOcbw+VyBw0apE6bMpmsu7u7X79+ML1A bwNrQ4BiioqK5s+fj+/3AwBclAEAAGdDwAuCoiiZTAbzAABMXuTakEQi2b17t6Wl5bp163BJUlJS e3v706dPPTw8Zs6cyaysYpNeoKL/5DzU1tbOmTMHIWRlZZWTk8Plcsnd9+7da2dnJxKJHBwc3n77 7Rs3boSFhTEP5+np+fXXX+fl5T148CApKWn06NFaGZ3GvjgD/vEACv4+vyjq6+vXr1+/ceNG/J+l paWBgYH47/+oUaPq6+vpmio26QWq+8+aB4qiYmJiysvLq6qqcE1y95KSkkWLFuG3bYwePZqiqMTE xHv37onFYrFYHBgY2NXVVVxcfPfuXYqiEhISlixZopXRaeyLM+AfD0DyIi/K7O3trays6P9MSUnB jqWRkZGXlxfzuV4Vm/QC1f1nzUNLS0tsbOyGDRuuXbtmb2+vcHcTE5P8/PyampqGhobBgwcjhEJD Q/l8/sCBA58+feri4sLj8Xx8fIYPH44QMjEx6dWHCXXhizPgHw+g0bWhsrIyOqetg4NDWVmZOpv0 gmfqv6mp6aFDh0aNGhUaGrpjxw6FuwsEgqioKF9f3/Xr16ekpKA//XiEUHp6+ty5c/Hnrq6uQ4cO ffvtt97e3ob9xRnwjwfQaBiSyWT0M3LYaVJnk17wTP03Nzf38/PbvHnz+fPnd+7cia8myN2dnJzC w8MzMjL279/P3D03NzcwMJC+gvb29g4KCpo1a1bvLXXrwhdnwD8eQKNhyM3Nrbm5GX9ubm7m8/nq bNILnq//np6eTk5Ocrmc3L2kpCQtLW3btm2FhYXbtm2rqqrCW2tqauzt7fHTifhyzN3dfefOnaam phKJxIC/OAP+8QC9HoaYTyEFBwdfu3YNf75+/XpwcDBCSCQSKdukR6gYGjkPNFKpVCAQcLlccneh UGhmZoYQGjlypL+/f1NTE3lFxmxcIBDY2dlpfnQa++IM+McDkHC3bNnyotoSCoXx8fFisdjPz8/W 1tbZ2bmgoKCzs7OgoMDR0TE4OPjhw4fDhg2LiIgQCASsTfo1ayqGZmZmxpqHrVu3btq0qV+/fnl5 eZGRkdbW1uTuw4YNO3DgAI/Hq66urqurCw8Px2tD0dHRmzdvxo7YwYMHIyMjzc3NL126FBYWRq+P aHJ0GvviDPjHA5D0+lPUdXV1PB6P/jcjkUho74m1Se9QMTTWycu9e/csLS3xLTBlu1MUJRQKeTye o6MjXaexsXHAgAF0haqqKjMzsyFDhmh3dBr74gz4xwNoNAwBAABodG0IAAAAwpABAiYaYNho4n1D X3zxBZ/Pf/vtt5mFhuqUURTFMr8U2mHR0dEHDhywtraOi4sbP348Fj4cHR3LysqmT58eEBCACBPN yMiItZfmR4fAKQN66S9tr1JUVOTr6/vzzz+r72TptVNGml+kHZaRkVFcXCyXy3ft2uXu7k5R1C+/ /LJmzRqKop48eeLk5NTa2kqaaORe4JSBUwZOWc88efLkypUrfn5+rHIDdspI84u0w7y8vHx8fDgc Tnh4OH4W5syZM05OTgghS0vLQYMGnTlzhjTRyL00PzpwygD9WxtKTEwMDQ0lyw3bKWOZX6Qd5urq iktu3769cOFChJCNjU1FRQUutLKyam5uJk00ci/Njw6cMkDP1oZOnDgxceJE/HAwC8N2ypjml1Ao 5HK5uDw3N/fDDz9kVktNTY2JiUEIrVq1asqUKXFxcebm5nfu3HF1dcUmmp+fX0hISEBAQFRUFA5n zL00PzpwygA9C0MxMTE4Bt26dSsvL+/JkycrV67Em1ha0IgRI/Rr1lT3nza/jhw5IpFI+vfvjwg7 DF9crFq1Cj+d6ObmdvPmzbt373K5XB6Px8zGQ5toOJwx99L86DT2xelCHwBDWKJub2+XSqVSqTQi IiIxMbGzs5OiqIcPH1IUdfbs2Xnz5uFqY8eOraio0K8VNYX9x0Ojkclk06dPl8vl+D+//vrro0eP 0luzs7NLS0txtatXr+LCzs7OmTNnHj9+nNlOW1sbfSyFe2lydBr74nShD4DG6MWzIfovP4/HMzEx MTY2xlrQo0ePAgICjh49mpWV1dTUFBIS4ubmpl+xm+w/PbQTJ078+OOP4eHhzc3Nu3btoheGTpw4 kZWVhT9nZGQsXboU595pb2+/cOGCXC4vKipKTk6OiIiYMmUKQmjr1q25ubkRERH379/fvXu3wr00 PzqNfXG60AdAY2ha5jB4p0yZ+cW0w0jEYvHjx49dXV3psKXMRNPu6DT8xYFTBmEIAABAE4DMAQAA hCEAACAMaRfwNgGgj9O7aiuZOJDJ77//fvTo0bFjx06aNImZUUcvMGzxUsUXB2oroGdhqKOjQyqV dnV1kZsyMzP37duXnp6u8DFrHaesrCwlJeX06dM4u+GYMWOw9qV6kx6h7IvT2OgMfoYBzV2UsRIH 0jQ0NISGhsbGxtJP5esXBi9eKvviQG0F9C8MKSMtLc3KyiorK2v+/Plz587t7OzUu7OhvilegtoK GE4YKi8vX7x4cURERGZmZk1NTWpqqn7NWp8VL0FtBQwnDFlZWeHHhTkczrhx4yorK/Vr1vpsMj9I lwjoZRhiPaWN39cVFBR09epVXNLa2urp6alfs9YXkvkp/OIgXSLQG/TunTKhUFhQUICzALq4uNB2 4sSJE48cORIXF+fi4mJhYTF79mz9mjWDFy+VfXGgtgK9gTbVVpFI1N3dzcwOqF/0KfES1FbAcMIQ AAAAC3DKAACAMAQAAIQhAAAALdK7d8rUT23Kquzk5ERmOiXzmmoRwxYvdWF0uqDXAhpCR1Kbsirv 2LGDlelUYV5THczaagA5RXVkdPX19evXr9+4caP63QMgayubZ0ptyqpsY2PDynRK5jXVYuw2bPFS R0andb0WMIS1oWdKbcqqfOvWLfyZznRK5jXV4qwZtnip46MDtRXWhp6BZ0ptqqwynemUzGuqxVkz bPFSx0cHaiucDT0DqhVEOrWpqampRCJRWJmZ6RTnNR0/fryPjw8rr6nmMWzxUsdHB2orhKFnQIWd yDwnEggEdnZ2CivTV2QYS0tLDw+PqKio+Ph4Ho+nxVkzbPFSd0anXb0W0BjcLVu29FLTzs7OBQUF nZ2dBQUFjo6OwcHB2E6MiIjIyMiIjIw0Nze/dOlSWFiYg4MDWRkhFB0dvXnzZmNjY4SQXC6/fPly TEzMsmXLpk2bpt1ZUzE0gUBADkS/0JHRCYXC+Ph4sVjs5+dna2trSDMMsOh1p+yZUpuyKjMznZJ5 TbWOYYuXOjg6UFshDAEAAOjb2hAAAACEIQAAIAwBAABAGAIAAMIQAAAAhCEAACAMAQAAQBjqi/So fVIUhevQH56vHQCAMASghISE1atX79ixIywsLDMzEyGUnJysWgC+ePGiQCCorKykPyislpOTM3To UJhhoPfgwRQYAGKxeNu2bbW1tRwO58yZM/htTX5+ftu3b1ex14QJE7AZQ39QyNSpU1lCMgDA2RCg 4NpKJBJlZ2cjhAIDA/HLCXFkqampSUxMrK6uxjVFIlFSUlJ+fv5/vv4/X9xDf2DS1NR08ODBwsJC mGEAwhDQA/b29ps3bw4JCVmxYkVjY6OPjw8ub25uzsvLQwjhdxLcvXs3OTl54cKFX3311b59+1S3 2dDQsHLlyuDgYKlUCjMMQBgCeuazzz47e/bshQsXvLy87ty5gwvt7OyWLVsWFhZWU1PT2dkZGxsr lUrT09M9PT3p8yNl7NmzZ/LkyRYWFpMmTYLpBXoVWBsyBGpra52cnAICAoqLi6dPn75hwwbmi+I5 HA5+WWp1dfWCBQvUfHFlWVmZQCCgL+4AAM6GAFWcPn26qKgIIWRhYREcHNzd3Y3+TP2EK+DPfD4/ KSkJf05PT0eM1xuS73txcXHBS0j0HX2YZwDOhgCluLq6RkZGLl++3NTUNDMzc8+ePQihCxcuiESi 0tLSlpaWtra2S5curV27dtKkSWPGjHFzc4uOjr569apIJMrPz5dIJPgDn8+n16rXrl0bFBQUGho6 cuRIW1vbEydOzJgxA6Ya6A3gtWeGQEdHB4fDkUql9fX1rq6u+LW5CpHJZGKx2N7eXuGtMbJyfX39 oEGDurq6cGICAIAwBACAAQJrQwAAQBgCAADCkHahKEomk+lCIzqCOmMxpPECQO/eKdu7d6+dnZ1I JHJwcHj77beZm2pra+fMmYMQsrKyysnJMTIy+vrrr/Py8h48eJCUlDR69GhyX4lEsnv3bktLy3Xr 1ilshMvlamzikpKS2tvbnz596uHhMXPmTGaAiI6OPnDggLW1dVxc3Pjx42/cuBEWFsbcESHEKvHy 8kII/f7770ePHh07duykSZOsrKwUHoJVR8OjU70JAJ7/b28vUVJSsmjRIvwGidGjR7O2xsTElJeX V1VV1dfXUxRVXFx89+5diqISEhKWLFmicN/6+vr169dv3LhRWSMao7S0NDAwEJ+SjBo1inn0jIyM 4uJiuVy+a9cud3d3iqISExPv3bsnFovFYnFgYGBXVxdZgnecOXOmVCpVcQhWHc2PTsUmAHhuevGi zMTEJD8/v6ampqGhYfDgwcxNLS0tsbGxGzZsuHbtmr29PULIx8dn+PDheK/Jkycr3Nfe3p75959s RGOkpKRgfdTIyMjLy4v5yLKXl5ePjw+HwwkPD8diemhoKJ/PHzhw4NOnT11cXHg8HlnS0NAQGhoa GxtL30cnD0HW0fzoVGwCAF1cGxIIBFFRUb6+vuvXr09JSWFuMjU1PXTo0KhRo0JDQ3fs2IELu7q6 Dh069O2333p7e6vYV3UjmqGsrIzOF+rg4FBWVkZvcnV1xR9u3769cOFCxJAh0tPT586dq7AkLS3N ysoqKytr/vz5c+fO7ezsJA9B1tH86FRsAgAdXaJ2cnIKDw/PyMjYv38/s9zc3NzPz2/z5s3nz5/f uXMnfnaJoihvb++goKBZs2bJZDJl+6puRDPIZDL6lATrWuSlbmpqakxMDLMwNzc3MDBQYUl5efni xYsjIiIyMzNrampSU1PJQ5B1ND+6HgcOALoVhkpKStLS0rZt21ZYWLht27aqqiqyjqenp5OTE/41 m5iYuLu779y509TU9MKFCz3uq7ARzeDm5tbc3Iw/Nzc38/l88rpm1apVAwYMoEtqamrs7e2ZzyIz S6ysrPApEofDGTduXGVlJXkIso7mR9fjwAFAt8KQUCg0MzNDCI0cOdLf37+pqQkhxHqPn1QqFQgE zDtcFEUJBILW1lZyX6REsCQb6W2Cg4OvXbuGP1+/fj04OJg5tGPHjnl7e7u5ucnlcroaff1FwywJ Cgq6evUq/tza2urp6Ukegqyj+dEp3AQAf5FevGEfFBS0b9++tLQ0CwuLwYMHe3t7P3z4cNiwYY8e Pdq9e3dubm5ERMT9+/d3796NEDp48OCPP/4YHh7e3Ny8a9cuNze3/fv3M/fFca2goIDH41VXV7u4 uGzdupXViMYICAg4evRoVlZWU1NTSEiIm5sbPbT8/PylS5f269cPIdTe3n7hwgW8y4kTJ7KyspiN MEsmTpx45MiRuLg4FxcXCwuL2bNnGxkZsQ4xfPhwVh3Nj47cBP+EgL9O7zplFEUJhUIej+fo6IhL JBKJjY0NRVH37t2ztLSk74JRFFVVVWVmZjZkyBBl+5KNsxrRMHV1dTwej16yxUNTVrmxsZF5jaaw RCQSdXd3M8fLOoTCOpofHdkrANDdMAQAAKDNtSEAAAAIQwAAQBh6ERi26kn2HLRVoK/B69V/YCxb lazzxRdf8Pl8heYq6b6ylFHcgmZUTxJlhicpsnp5eZGaLinlkiWsvbBD5+joWFZWNn369ICAAM2P DoHaCvRSsOglWLYqWaGoqMjX1/fnn39WaK6ytFVSGdWY6vlM8ieprSrUdEkpl1VC7vXLL7+sWbOG oqgnT544OTm1traC2gqA2toDLFuVtfXJkydXrlzx8/OjS5jmKqmtksqoxlRPEhWGJ6mtkpouOTqy hNzrzJkzTk5OCCFLS8tBgwadOXNG86MDtRXQv7Uhpq3K2pSYmBgaGqpsR1JbJZVRjameJCoMT1Jb JTVdcnRkCbmXjY1NRUUFbtzKyoqWKjQ5OlBbAf0LQyxblS4/ceLExIkTsa6hEGXaKlMZ1ZjqSaKO 4ckUWVmaLjk6heNl7bVq1apTp07FxcX99NNPd+7coeOyJkcHaiugZ0vUiGGrHjlyRCKR9O/fH5fH xMTgGHTr1q28vLwnT56sXLlSYQu0toqVMaYyamVlhfMC9rbqScIyPEeMGMGqwNRWseKbmpr6zjvv +Pn5zZkzh44grNExS/CbPZh7ubm53bx58+7du1wul8fjqZl89cWOrseBA4DOnQ3RpzACgcDOzg79 aUjm5ORkZGRkZGTMmTPno48+eu+99+iarH2Z2ipLGdWY6kmiWm1F/1dbVaj4kqNjlSjcy9LS0sPD IyoqKj4+nsfjaX50oLYCenY2xLJVORwObUjSdhJewcXp/Zjm6r/+9S+WtpqRkcFSRkkdVGOzpkL+ xENjaquk4ktKuWQJuZdcLi8qKkpOTo6IiJgyZYpWRgdqK9Ab9KJTRtqqqCf/k7mvmtqqxlRPEhXy J0tbZWm6Cs1ecrysvcRi8ePHj11dXelVcG2NDtRWQG/CEAAAgK6sDQEAAEAYAgAAwpBywO0EgD5O 7z43pFqDZFmpTLdz165dH3zwAbMdT0/PHkVZTWLY8ieZINeQRgfoHFrxPxVaqUy3kxREexRldURt NQz5k0yQC2oroJdqqwoNkrRSWW4nKYiqFmU1jMHLn6wEuQY2OqAPrQ2p0CBJK5XldpKCKFIpymqY Pit/gtoK6FkYUqFBklaqMpeVKYgqE2U1T5+VP0FtBfQsDKnI8KkiASkzBSsr0ykzratEItHirPXZ vKaQtRXQszCkwpBUYaUybU8y0yn6v6KstugL8ifr8XpQW4Heoxdv2KswJEkrVWEKVqYgSoqyWpw1 g5c/WQlyQW0FepVed8pUGJJMK1Wh28kURBWKstqlT8mfoLYCehyGAAAAVANOGQAAEIYAAIAwBAAA AGEIAAAIQwAAABCGAACAMAQAAKAF/j+zU3TFcyKBxwAAAABJRU5ErkJggg== --001a114d719604f9cc0520c8044a-- From owner-chemistry@ccl.net Mon Sep 28 10:08:01 2015 From: "Xing Yin xiy726*|*gmail.com" To: CCL Subject: CCL: constrained DFT and diabatic states Message-Id: <-51783-150928100050-3570-RX/dQVlgs66aSETDwoF65g-,-server.ccl.net> X-Original-From: Xing Yin Content-Transfer-Encoding: 7bit Content-Type: text/plain; charset=utf-8; format=flowed Date: Mon, 28 Sep 2015 10:00:43 -0400 MIME-Version: 1.0 Sent to CCL by: Xing Yin [xiy726=-=gmail.com] Dear all, I'm learning constrained DFT to study electron transfer transitions now. I know that the results calculated by cDFT are usually called diabatic states. However, the diabatic states are usually defined as the states without vibronic couplings in non-adiabatic dynamics. Is there any rigorous proof that the diabatic states constructed by cDFT methods do no have (or only have minimal) vibornic couplings between them? -- Best wishes, Xing From owner-chemistry@ccl.net Mon Sep 28 11:46:01 2015 From: "Fredrick Mutunga fredrick.mutunga(0)gmail.com" To: CCL Subject: CCL: SV: Fitting IRC data to a polynomial function Message-Id: <-51784-150928114323-24790-iM9bJ+Tcx8fz3SgFPJj/4A%a%server.ccl.net> X-Original-From: Fredrick Mutunga Content-Type: multipart/alternative; boundary=001a113eca2e4e94e60520d08ee5 Date: Mon, 28 Sep 2015 09:43:16 -0600 MIME-Version: 1.0 Sent to CCL by: Fredrick Mutunga [fredrick.mutunga*_*gmail.com] --001a113eca2e4e94e60520d08ee5 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: quoted-printable Dear Jens, It looks like asymmetric double minimum. I have tried to fit it to a simple quartic potential but the fit isn't good. Thanks, Fred On Mon, Sep 28, 2015 at 2:12 AM, Jens Spanget-Larsen spanget _ ruc.dk < owner-chemistry]~[ccl.net> wrote: > Dear Fred; > > > > If your are investigating a symmetrical double minimum potential, you may > consider a simple quartic potential with a quadratic barrier. The numeric= al > solutions to the eigenvalue problem have been tabulated by Jaan Laane: > > > > http://dx.doi.org/10.13140/RG.2.1.3994.4161 > > > > Mvh, Jens >--< > > > > ------------------------------------------------------ > > JENS SPANGET-LARSEN Office: +45 4674 2710 > > Dept. of Science Fax: +45 4674 3011 > > Roskilde University Mobile: +45 2320 6246 > > P.O.Box 260 E-Mail: spanget * ruc.dk > > DK-4000 Roskilde, Denmark http://www.ruc.dk/~spanget > > ------------------------------------------------------ > > > ------------------------------ > *Fra:* owner-chemistry+spanget=3D=3Druc.dk * ccl.net > [owner-chemistry+spanget=3D=3Druc.dk * ccl.net] p=C3=A5 vegne af Fredrick= Mutunga > fredrick.mutunga..gmail.com [owner-chemistry * ccl.net] > *Sendt:* 28. september 2015 01:49 > *Til:* Jens Spanget-Larsen > *Emne:* CCL: Fitting IRC data to a polynomial function > > Hello Fellow CCL Members, > > I want to fit an IRC data points attached to a polynomial form to get a p= otential function which I intent to use in calculating WKB barrier penetrat= ion integral. I have tried several simple polynomials forms up to 5th order= including some exponentials using Mathematica's NonLinearModelFit but non = of them seem to work! > Does any of you guys have an idea what kind of form I should be trying? > > Thanks > > Fred > > --001a113eca2e4e94e60520d08ee5 Content-Type: text/html; charset=UTF-8 Content-Transfer-Encoding: quoted-printable
Dear Jens,

It looks like=C2=A0 asym= metric=C2=A0 double minimum. I have tried to fit it to a simple quartic=C2= =A0 potential but the fit isn't good.

Thanks,

=
Fred

On Mon, Sep 28, 2015 at 2:12 AM, Jens Spanget-Larsen spanget _ ruc.dk <owner-chemistry]~[ccl.net> wrote:

Dear Fred;

=C2=A0

If your are investigating a symmetrical double minimum potential, you ma= y consider a simple quartic potential with a quadratic barrier. The numeric= al solutions to the eigenvalue problem have been tabulated by Jaan Laane:

=C2=A0

http://dx.doi.org/10.13140/RG.2.1.3994.4161

=C2=A0

Mvh, Jens >--<

=C2=A0

=C2=A0 --------------= ----------------------------------------

=C2=A0 JENS SPANGET-LARSEN=C2=A0=C2=A0=C2=A0= =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 Office:=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 +45 4= 674 2710

=C2=A0 Dept. of Science=C2=A0=C2=A0=C2=A0=C2= =A0=C2=A0 =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 Fax:=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0= =C2=A0=C2=A0=C2=A0 +45 4674 3011

=C2=A0 Roskilde University=C2=A0=C2=A0=C2=A0= =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 Mobile:=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 +45 2= 320 6246

=C2=A0 P.O.Box 260=C2=A0=C2=A0=C2=A0=C2=A0=C2= =A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0 E-Mai= l:=C2=A0=C2=A0=C2=A0=C2=A0 spanget * ruc.dk

=C2=A0 DK-4000 Roskilde, Denmark=C2=A0=C2=A0 = http://www.ruc.dk/~spanget

=C2=A0 --------------------------------------= ----------------

=C2=A0


Fra: owner-chemistry+spanget=3D=3Druc.dk * = ccl.net [owner-chemistry+spanget=3D=3Druc.dk * ccl.n= et] p=C3=A5 vegne af Fredrick Mutunga fredrick.mutunga..gmail.com [owner-chemistry * ccl.net]
Sendt: 28. september 2015 01:49
Til: Jens Spanget-Larsen
Emne: CCL: Fitting IRC data to a polynomial function

Hello  Fellow CCL Members,

I want to fit an IRC data points attached to a polynomial form to get a pot=
ential function which I intent to use in calculating WKB barrier penetratio=
n integral. I have tried several simple polynomials forms up to 5th order i=
ncluding some exponentials using Mathematica's NonLinearModelFit but no=
n of them seem to work!
Does any of you guys have an idea what kind of form I should be trying?

Thanks

Fred

--001a113eca2e4e94e60520d08ee5-- From owner-chemistry@ccl.net Mon Sep 28 16:42:01 2015 From: "Thomas Manz tmanz],[nmsu.edu" To: CCL Subject: CCL:G: two-electron range-separated Coulomb and exchange integrals Message-Id: <-51785-150928163958-8852-/8atZjQvhEPx5Ie8fjWWZg+/-server.ccl.net> X-Original-From: Thomas Manz Content-Type: multipart/alternative; boundary=001a11473bb2c5e9480520d4b2c0 Date: Mon, 28 Sep 2015 14:39:47 -0600 MIME-Version: 1.0 Sent to CCL by: Thomas Manz [tmanz]![nmsu.edu] --001a11473bb2c5e9480520d4b2c0 Content-Type: text/plain; charset=UTF-8 Hi, The range-separated Coulomb integral 1/r = erf(k*r)/r + (1-erf(k*r))/r arises in range-separated hybrid functionals. There are many papers about functionals that use this kind of range-separation. My question is regarding the 2-electron integral terms (i.e., exchange and Coulomb integrals) using this type of range separation. Does anyone know where the analytic forms for this have been published? They should be of the form where <> means integrate over positions r1 and r2 and g1, g2, g3, g4 are Gaussian basis sets. We are actually trying to do the analogous Coulomb/exchange integrals for electrons confined to a plane (i.e., two-dimensional Gaussians), but we maybe could figure out how to do this by looking at the three-dimensional case. I would be grateful if anyone could provide references on the mathematical derivations of the analytic integrals for the three-dimensional case. Sincerely, Tom Manz --001a11473bb2c5e9480520d4b2c0 Content-Type: text/html; charset=UTF-8 Content-Transfer-Encoding: quoted-printable
Hi,

The range-separated Coulomb integra= l

1/r =3D erf(k*r)/r + (1-erf(k*r))/r
arises in range-separated hybrid functionals.
There = are many papers about functionals that use this kind of range-separation.
My question is regarding the 2-electron integral terms (i.e., exch= ange and Coulomb integrals)
using this type of range separation. = Does anyone know where the analytic forms for this have been published?

They should be of the form=C2=A0
<g1(r1)= *g2(r1)*(erf(k*r)/r)*g3(r2)*g4(r1)>
where <> means integ= rate over positions r1 and r2 and g1, g2, g3, g4 are Gaussian basis sets.

We are actually trying to do the analogous Coulomb/= exchange integrals for electrons confined to a plane (i.e., two-dimensional= Gaussians), but we maybe could figure out how to do this by looking at the= three-dimensional case.

I would be grateful if an= yone could provide references on the mathematical derivations of the analyt= ic integrals for the three-dimensional case.

= Sincerely,


Tom Manz

--001a11473bb2c5e9480520d4b2c0-- From owner-chemistry@ccl.net Mon Sep 28 19:46:01 2015 From: "Susi Lehtola susi.lehtola]=[alumni.helsinki.fi" To: CCL Subject: CCL:G: two-electron range-separated Coulomb and exchange integrals Message-Id: <-51786-150928181534-8333-Qi57K9xbAC+fi1kKRkRLfw^-^server.ccl.net> X-Original-From: Susi Lehtola Content-Transfer-Encoding: 7bit Content-Type: text/plain; charset=utf-8; format=flowed Date: Mon, 28 Sep 2015 15:15:18 -0700 MIME-Version: 1.0 Sent to CCL by: Susi Lehtola [susi.lehtola%alumni.helsinki.fi] On 09/28/2015 01:39 PM, Thomas Manz tmanz],[nmsu.edu wrote: > Hi, > > The range-separated Coulomb integral > > 1/r = erf(k*r)/r + (1-erf(k*r))/r > > arises in range-separated hybrid functionals. > There are many papers about functionals that use this kind of > range-separation. > My question is regarding the 2-electron integral terms (i.e., exchange > and Coulomb integrals) > using this type of range separation. Does anyone know where the analytic > forms for this have been published? Range-separation is not used for Coulomb integrals. It's only used for the exchange integrals. > They should be of the form > > where <> means integrate over positions r1 and r2 and g1, g2, g3, g4 are > Gaussian basis sets. > > We are actually trying to do the analogous Coulomb/exchange integrals > for electrons confined to a plane (i.e., two-dimensional Gaussians), but > we maybe could figure out how to do this by looking at the > three-dimensional case. > > I would be grateful if anyone could provide references on the > mathematical derivations of the analytic integrals for the > three-dimensional case. Implementations in Q-Chem and Gaussian are documented AFAIK in Adamson, Dombroski, Gill; JCC 9, 921 (1999) and Heyd, Scuseria, Ernzerhof; JCP 118, 8207 (2003) Both are based on a trivial modification of the PRISM algorithm for range-separated functionals. The only change is that the recursion relations are modified a tiny bit. Obara-Saika recursion relations can also be modified in the same manner: just by a small change to the (00|00)^m auxiliary integrals, where you get a second Boys function term with a slightly different prefactor. -- ----------------------------------------------------------------------- Mr. Susi Lehtola, PhD Chemist Postdoctoral Fellow susi.lehtola#alumni.helsinki.fi Lawrence Berkeley National Laboratory http://www.helsinki.fi/~jzlehtol USA -----------------------------------------------------------------------