From owner-chemistry@ccl.net Wed Aug 24 08:17:01 2016 From: "Per-Ola Norrby pon . chem.gu.se" To: CCL Subject: CCL: Proper analysis Message-Id: <-52355-160824080639-25833-IcFp0mYj7U8kLFUvkM4qqQ]=[server.ccl.net> X-Original-From: Per-Ola Norrby Content-ID: <45074F263ACF8A4CB141F6531A8AA021]=[chalmers.se> Content-Language: en-US Content-Transfer-Encoding: 8bit Content-Type: text/plain; charset="us-ascii" Date: Wed, 24 Aug 2016 12:06:31 +0000 MIME-Version: 1.0 Sent to CCL by: Per-Ola Norrby [pon() chem.gu.se] Dear Mins, Look for publications by Ken Houk, both long ago and recent. A very simple analysis is the difference in length of forming bonds at the TS. Per-Ola Sent from my iPhone > On 24 aug. 2016, at 01:09, Mins Hagh mhaghdadi2^-^yahoo.co.uk wrote: > > > Sent to CCL by: "Mins Hagh" [mhaghdadi2|yahoo.co.uk] > Dear everybody > Do you know what is proper analysis for asynchronous of concerted mechanism at Diels alder > reactions? How can calculate it? > Sincerely yours > Mina> > From owner-chemistry@ccl.net Wed Aug 24 10:28:01 2016 From: "Mina Haghdadi mhaghdadi2 . yahoo.co.uk" To: CCL Subject: CCL: Proper analysis Message-Id: <-52356-160824102604-31329-uz4sfQ+f6zU5Cv+8X5+xgg:_:server.ccl.net> X-Original-From: Mina Haghdadi Content-Transfer-Encoding: 7bit Content-Type: multipart/alternative; boundary=Apple-Mail-DE433A06-4BCE-4907-9C56-6E0C452345BD Date: Wed, 24 Aug 2016 19:01:40 +0430 Mime-Version: 1.0 (1.0) Sent to CCL by: Mina Haghdadi [mhaghdadi2,+,yahoo.co.uk] --Apple-Mail-DE433A06-4BCE-4907-9C56-6E0C452345BD Content-Type: text/plain; charset=us-ascii Content-Transfer-Encoding: quoted-printable Dear per-Ola Thank you so much for answering .It is correct but it is not true for two di= fferent bond forming e.g c-c and o-c. Is there another way to calculate asyn= chronous? Regards Sent from my iPhone > On 24 Aug 2016, at 16:36, Per-Ola Norrby pon . chem.gu.se wrote: >=20 >=20 > Sent to CCL by: Per-Ola Norrby [pon() chem.gu.se] > Dear Mins, >=20 > Look for publications by Ken Houk, both long ago and recent. A very simple= analysis is the difference in length of forming bonds at the TS.=20 >=20 > Per-Ola >=20 > Sent from my iPhone >=20 >> On 24 aug. 2016, at 01:09, Mins Hagh mhaghdadi2^-^yahoo.co.uk wrote: >>=20 >>=20 >> Sent to CCL by: "Mins Hagh" [mhaghdadi2|yahoo.co.uk] >> Dear everybody >> Do you know what is proper analysis for asynchronous of concerted mechani= sm at Diels alder=20 >> reactions? How can calculate it? >> Sincerely yours >> Mina> >=20 >=20 >=20 > -=3D This is automatically added to each message by the mailing script =3D= ->=20>=20>=20 > Subscribe/Unsubscribe:=20>=20>=20 > Job: http://www.ccl.net/jobs=20>=20>=20>=20>=20 >=20 --Apple-Mail-DE433A06-4BCE-4907-9C56-6E0C452345BD Content-Type: text/html; charset=utf-8 Content-Transfer-Encoding: quoted-printable
Dear pe= r-Ola
Thank you so much for answering .I= t is correct but it is not true for two different bond forming e.g c-c and o= -c. Is there another way to calculate asynchronous?
Regards


Sent f= rom my iPhone

On 24 Aug 2016, at 16:36, Per-Ola Norrby pon . <= a href=3D"http://chem.gu.se">chem.gu.se <owner-chemistry##ccl.net> wrote:


Sent to CCL by: Per-Ola Norrby [= pon() chem.gu.se]
Dear Min= s,

Look for publications by Ken Houk, both l= ong ago and recent. A very simple analysis is the difference in length of fo= rming bonds at the TS.

Per-Ola
<= span>
Sent from my iPhone

On 24 aug. 2016, at 01:09, Mins Hagh mhaghdadi2^-^<= a href=3D"http://yahoo.co.uk">yahoo.co.uk <owner-chemistry=3D-=3Dccl.net> wrote:

<= span>
Sent to CCL by:= "Mins  Hagh" [mhaghdadi2|yahoo.co.uk]
Dear everybody
Do you know what is prop= er analysis for asynchronous of concerted mechanism at Diels alder
reactions? How can calculate i= t?
Sincerely yours
Mina>




-=3D This is automatically ad= ded to each message by the mailing script =3D-
To recover th= e email address of the author of the message, please change
=

E-mail to subscribers:
CHEMISTRY##ccl.net or use:
    &nb= sp;http://www.cc= l.net/cgi-bin/ccl/send_ccl_message

E-ma= il to administrators: CHEMISTRY= -REQUEST##ccl.net or use
     <= a href=3D"http://www.ccl.net/cgi-bin/ccl/send_ccl_message">http://www.ccl.ne= t/cgi-bin/ccl/send_ccl_message

Subscrib= e/Unsubscribe:
     http://www.ccl.net/chemistry/sub= _unsub.shtml

Before posting, check wait= time at: http://www.ccl.net

Job: http://www.ccl= .net/jobs
Conferences: http://server.ccl.net/chemistry/annou= ncements/conferences/

Search Messages: <= a href=3D"http://www.ccl.net/chemistry/searchccl/index.shtml">http://www.ccl= .net/chemistry/searchccl/index.shtml

If= your mail bounces from CCL with 5.7.1 error, check:
 =     http://w= ww.ccl.net/spammers.txt

RTFI: http://www.ccl.net/che= mistry/aboutccl/instructions/

= --Apple-Mail-DE433A06-4BCE-4907-9C56-6E0C452345BD-- From owner-chemistry@ccl.net Wed Aug 24 14:15:00 2016 From: "Per-Ola Norrby pon[]chem.gu.se" To: CCL Subject: CCL: Proper analysis Message-Id: <-52357-160824134834-23189-70BBs2rRWWfr8XfrM1JYMw|server.ccl.net> X-Original-From: Per-Ola Norrby Content-Language: en-US Content-Type: multipart/alternative; boundary="_000_929D6AC9D84847FCAFA039B7A3B901D3chemguse_" Date: Wed, 24 Aug 2016 17:48:24 +0000 MIME-Version: 1.0 Sent to CCL by: Per-Ola Norrby [pon,,chem.gu.se] --_000_929D6AC9D84847FCAFA039B7A3B901D3chemguse_ Content-Type: text/plain; charset="utf-8" Content-Transfer-Encoding: base64 WW91IGNhbiBkbyBpdCBtYW55IHdheXMuIFRoZSBsYXRlc3QgYnkgSG91ayBpcyB0aGF0IGhlIHVz ZXMgYSB0aW1lIGNyaXRlcmlvbiBpbiBNRCBzaW11bGF0aW9ucy4gSSdkIHNheSB0aGUgZWFzaWVz dCBpcyBzdGlsbCB0byBtZWFzdXJlIGJvbmQgbGVuZ3RocyBpbiB0aGUgVFMsIGFuZCBzY2FsZSB0 aGVtIHdpdGggdGhlIGxlbmd0aCBpbiB0aGUgcHJvZHVjdC4gWW91IGNvdWxkIGFsc28gY2hvb3Nl IG9uZSBvZiB0aGUgbWFueSB3YXlzIHRvIGNhbGN1bGF0ZSBib25kIG9yZGVyLCBhbmQgdXNlIHRo YXQuIFlvdSdyZSBmcmVlIHRvIGNob29zZSwgYXMgbG9uZyBhcyB5b3UgY2xlYXJseSBkZWZpbmUg eW91ciBjaG9pY2UuDQoNClBlci1PbGENCg0KU2VudCBmcm9tIG15IGlQaG9uZQ0KDQpPbiAyNCBh dWcuIDIwMTYsIGF0IDEyOjE1LCBNaW5hIEhhZ2hkYWRpIG1oYWdoZGFkaTIgLiB5YWhvby5jby51 azxodHRwOi8veWFob28uY28udWs+IDxvd25lci1jaGVtaXN0cnlAY2NsLm5ldDxtYWlsdG86b3du ZXItY2hlbWlzdHJ5QGNjbC5uZXQ+PiB3cm90ZToNCg0KRGVhciBwZXItT2xhDQpUaGFuayB5b3Ug c28gbXVjaCBmb3IgYW5zd2VyaW5nIC5JdCBpcyBjb3JyZWN0IGJ1dCBpdCBpcyBub3QgdHJ1ZSBm b3IgdHdvIGRpZmZlcmVudCBib25kIGZvcm1pbmcgZS5nIGMtYyBhbmQgby1jLiBJcyB0aGVyZSBh bm90aGVyIHdheSB0byBjYWxjdWxhdGUgYXN5bmNocm9ub3VzPw0KUmVnYXJkcw0KDQoNClNlbnQg ZnJvbSBteSBpUGhvbmUNCg0KT24gMjQgQXVnIDIwMTYsIGF0IDE2OjM2LCBQZXItT2xhIE5vcnJi eSBwb24gLiBjaGVtLmd1LnNlPGh0dHA6Ly9jaGVtLmd1LnNlPiA8b3duZXItY2hlbWlzdHJ5Xy5f Y2NsLm5ldDxtYWlsdG86b3duZXItY2hlbWlzdHJ5Xy5fY2NsLm5ldD4+IHdyb3RlOg0KDQoNClNl bnQgdG8gQ0NMIGJ5OiBQZXItT2xhIE5vcnJieSBbcG9uKCkgY2hlbS5ndS5zZTxodHRwOi8vY2hl bS5ndS5zZT5dDQpEZWFyIE1pbnMsDQoNCkxvb2sgZm9yIHB1YmxpY2F0aW9ucyBieSBLZW4gSG91 aywgYm90aCBsb25nIGFnbyBhbmQgcmVjZW50LiBBIHZlcnkgc2ltcGxlIGFuYWx5c2lzIGlzIHRo ZSBkaWZmZXJlbmNlIGluIGxlbmd0aCBvZiBmb3JtaW5nIGJvbmRzIGF0IHRoZSBUUy4NCg0KUGVy LU9sYQ0KDQpTZW50IGZyb20gbXkgaVBob25lDQoNCk9uIDI0IGF1Zy4gMjAxNiwgYXQgMDE6MDks IE1pbnMgSGFnaCBtaGFnaGRhZGkyXi1eeWFob28uY28udWs8aHR0cDovL3lhaG9vLmNvLnVrPiA8 b3duZXItY2hlbWlzdHJ5PS09Y2NsLm5ldDxodHRwOi8vY2NsLm5ldD4+IHdyb3RlOg0KDQoNClNl bnQgdG8gQ0NMIGJ5OiAiTWlucyAgSGFnaCIgW21oYWdoZGFkaTJ8eWFob28uY28udWs8aHR0cDov L3lhaG9vLmNvLnVrPl0NCkRlYXIgZXZlcnlib2R5DQpEbyB5b3Uga25vdyB3aGF0IGlzIHByb3Bl ciBhbmFseXNpcyBmb3IgYXN5bmNocm9ub3VzIG9mIGNvbmNlcnRlZCBtZWNoYW5pc20gYXQgRGll bHMgYWxkZXINCnJlYWN0aW9ucz8gSG93IGNhbiBjYWxjdWxhdGUgaXQ/DQpTaW5jZXJlbHkgeW91 cnMNCk1pbmE+DQoNCg0KDQoNCi09IFRoaXMgaXMgYXV0b21hdGljYWxseSBhZGRlZCB0byBlYWNo IG1lc3NhZ2UgYnkgdGhlIG1haWxpbmcgc2NyaXB0ID0tDQpUbyByZWNvdmVyIHRoZSBlbWFpbCBh ZGRyZXNzIG9mIHRoZSBhdXRob3Igb2YgdGhlIG1lc3NhZ2UsIHBsZWFzZSBjaGFuZ2UNCj1zcGFu Pg0KDQoNCkUtbWFpbCB0byBzdWJzY3JpYmVyczogQ0hFTUlTVFJZXy5fY2NsLm5ldDxtYWlsdG86 Q0hFTUlTVFJZXy5fY2NsLm5ldD4gb3IgdXNlOg0KICAgICBodHRwOi8vd3d3LmNjbC5uZXQvY2dp LWJpbi9jY2wvc2VuZF9jY2xfbWVzc2FnZQ0KDQpFLW1haWwgdG8gYWRtaW5pc3RyYXRvcnM6IENI RU1JU1RSWS1SRVFVRVNUXy5fY2NsLm5ldDxtYWlsdG86Q0hFTUlTVFJZLVJFUVVFU1RfLl9jY2wu bmV0PiBvciB1c2UNCiAgICAgaHR0cDovL3d3dy5jY2wubmV0L2NnaS1iaW4vY2NsL3NlbmRfY2Ns X21lc3NhZ2UNCg0KU3Vic2NyaWJlL1Vuc3Vic2NyaWJlOg0KICAgICBodHRwOi8vd3d3LmNjbC5u ZXQvY2hlbWlzdHJ5L3N1Yl91bnN1Yi5zaHRtbA0KDQpCZWZvcmUgcG9zdGluZywgY2hlY2sgd2Fp dCB0aW1lIGF0OiBodHRwOi8vd3d3LmNjbC5uZXQNCg0KSm9iOiBodHRwOi8vd3d3LmNjbC5uZXQv am9icw0KQ29uZmVyZW5jZXM6IGh0dHA6Ly9zZXJ2ZXIuY2NsLm5ldC9jaGVtaXN0cnkvYW5ub3Vu Y2VtZW50cy9jb25mZXJlbmNlcy8NCg0KU2VhcmNoIE1lc3NhZ2VzOiBodHRwOi8vd3d3LmNjbC5u ZXQvY2hlbWlzdHJ5L3NlYXJjaGNjbC9pbmRleC5zaHRtbA0KDQpJZiB5b3VyIG1haWwgYm91bmNl cyBmcm9tIENDTCB3aXRoIDUuNy4xIGVycm9yLCBjaGVjazoNCiAgICAgaHR0cDovL3d3dy5jY2wu bmV0L3NwYW1tZXJzLnR4dA0KDQpSVEZJOiBodHRwOi8vd3d3LmNjbC5uZXQvY2hlbWlzdHJ5L2Fi b3V0Y2NsL2luc3RydWN0aW9ucy8NCg0KDQo= --_000_929D6AC9D84847FCAFA039B7A3B901D3chemguse_ Content-Type: text/html; charset="utf-8" Content-ID: Content-Transfer-Encoding: base64 PGh0bWw+DQo8aGVhZD4NCjxtZXRhIGh0dHAtZXF1aXY9IkNvbnRlbnQtVHlwZSIgY29udGVudD0i dGV4dC9odG1sOyBjaGFyc2V0PXV0Zi04Ij4NCjwvaGVhZD4NCjxib2R5IGRpcj0iYXV0byI+DQo8 ZGl2PllvdSBjYW4gZG8gaXQgbWFueSB3YXlzLiBUaGUgbGF0ZXN0IGJ5IEhvdWsgaXMgdGhhdCBo ZSB1c2VzIGEgdGltZSBjcml0ZXJpb24gaW4gTUQgc2ltdWxhdGlvbnMuIEknZCBzYXkgdGhlIGVh c2llc3QgaXMgc3RpbGwgdG8gbWVhc3VyZSBib25kIGxlbmd0aHMgaW4gdGhlIFRTLCBhbmQgc2Nh bGUgdGhlbSB3aXRoIHRoZSBsZW5ndGggaW4gdGhlIHByb2R1Y3QuIFlvdSBjb3VsZCBhbHNvIGNo b29zZSBvbmUgb2YgdGhlIG1hbnkgd2F5cyB0bw0KIGNhbGN1bGF0ZSBib25kIG9yZGVyLCBhbmQg dXNlIHRoYXQuIFlvdSdyZSBmcmVlIHRvIGNob29zZSwgYXMgbG9uZyBhcyB5b3UgY2xlYXJseSBk ZWZpbmUgeW91ciBjaG9pY2UuPC9kaXY+DQo8ZGl2IGlkPSJBcHBsZU1haWxTaWduYXR1cmUiPjxi cj4NCjwvZGl2Pg0KPGRpdiBpZD0iQXBwbGVNYWlsU2lnbmF0dXJlIj5QZXItT2xhPGJyPg0KPGJy Pg0KU2VudCBmcm9tIG15IGlQaG9uZTwvZGl2Pg0KPGRpdj48YnI+DQpPbiAyNCBhdWcuIDIwMTYs IGF0IDEyOjE1LCBNaW5hIEhhZ2hkYWRpIG1oYWdoZGFkaTIgLiA8YSBocmVmPSJodHRwOi8veWFo b28uY28udWsiPg0KeWFob28uY28udWs8L2E+ICZsdDs8YSBocmVmPSJtYWlsdG86b3duZXItY2hl bWlzdHJ5QGNjbC5uZXQiPm93bmVyLWNoZW1pc3RyeUBjY2wubmV0PC9hPiZndDsgd3JvdGU6PGJy Pg0KPGJyPg0KPC9kaXY+DQo8YmxvY2txdW90ZSB0eXBlPSJjaXRlIj4NCjxkaXY+DQo8ZGl2Pg0K PGRpdiBzdHlsZT0iZGlyZWN0aW9uOiBsdHI7Ij5EZWFyIHBlci1PbGE8L2Rpdj4NCjxkaXYgc3R5 bGU9ImRpcmVjdGlvbjogbHRyOyI+VGhhbmsgeW91IHNvIG11Y2ggZm9yIGFuc3dlcmluZyAuSXQg aXMgY29ycmVjdCBidXQgaXQgaXMgbm90IHRydWUgZm9yIHR3byBkaWZmZXJlbnQgYm9uZCBmb3Jt aW5nIGUuZyBjLWMgYW5kIG8tYy4gSXMgdGhlcmUgYW5vdGhlciB3YXkgdG8gY2FsY3VsYXRlIGFz eW5jaHJvbm91cz88L2Rpdj4NCjxkaXYgc3R5bGU9ImRpcmVjdGlvbjogbHRyOyI+UmVnYXJkczwv ZGl2Pg0KPGRpdiBzdHlsZT0iZGlyZWN0aW9uOiBsdHI7Ij48YnI+DQo8L2Rpdj4NCjxicj4NClNl bnQgZnJvbSBteSBpUGhvbmU8L2Rpdj4NCjxkaXY+PGJyPg0KT24gMjQgQXVnIDIwMTYsIGF0IDE2 OjM2LCBQZXItT2xhIE5vcnJieSBwb24gLiA8YSBocmVmPSJodHRwOi8vY2hlbS5ndS5zZSI+Y2hl bS5ndS5zZTwvYT4gJmx0OzxhIGhyZWY9Im1haWx0bzpvd25lci1jaGVtaXN0cnlfLl9jY2wubmV0 Ij5vd25lci1jaGVtaXN0cnlfLl9jY2wubmV0PC9hPiZndDsgd3JvdGU6PGJyPg0KPGJyPg0KPC9k aXY+DQo8YmxvY2txdW90ZSB0eXBlPSJjaXRlIj4NCjxkaXY+PHNwYW4+PC9zcGFuPjxicj4NCjxz cGFuPlNlbnQgdG8gQ0NMIGJ5OiBQZXItT2xhIE5vcnJieSBbcG9uKCkgPGEgaHJlZj0iaHR0cDov L2NoZW0uZ3Uuc2UiPmNoZW0uZ3Uuc2U8L2E+XTwvc3Bhbj48YnI+DQo8c3Bhbj5EZWFyIE1pbnMs PC9zcGFuPjxicj4NCjxzcGFuPjwvc3Bhbj48YnI+DQo8c3Bhbj5Mb29rIGZvciBwdWJsaWNhdGlv bnMgYnkgS2VuIEhvdWssIGJvdGggbG9uZyBhZ28gYW5kIHJlY2VudC4gQSB2ZXJ5IHNpbXBsZSBh bmFseXNpcyBpcyB0aGUgZGlmZmVyZW5jZSBpbiBsZW5ndGggb2YgZm9ybWluZyBib25kcyBhdCB0 aGUgVFMuDQo8L3NwYW4+PGJyPg0KPHNwYW4+PC9zcGFuPjxicj4NCjxzcGFuPlBlci1PbGE8L3Nw YW4+PGJyPg0KPHNwYW4+PC9zcGFuPjxicj4NCjxzcGFuPlNlbnQgZnJvbSBteSBpUGhvbmU8L3Nw YW4+PGJyPg0KPHNwYW4+PC9zcGFuPjxicj4NCjxibG9ja3F1b3RlIHR5cGU9ImNpdGUiPjxzcGFu Pk9uIDI0IGF1Zy4gMjAxNiwgYXQgMDE6MDksIE1pbnMgSGFnaCBtaGFnaGRhZGkyXi1ePGEgaHJl Zj0iaHR0cDovL3lhaG9vLmNvLnVrIj55YWhvby5jby51azwvYT4gJmx0O293bmVyLWNoZW1pc3Ry eT0tPTxhIGhyZWY9Imh0dHA6Ly9jY2wubmV0Ij5jY2wubmV0PC9hPiZndDsgd3JvdGU6PC9zcGFu Pjxicj4NCjwvYmxvY2txdW90ZT4NCjxibG9ja3F1b3RlIHR5cGU9ImNpdGUiPjxzcGFuPjwvc3Bh bj48YnI+DQo8L2Jsb2NrcXVvdGU+DQo8YmxvY2txdW90ZSB0eXBlPSJjaXRlIj48c3Bhbj48L3Nw YW4+PGJyPg0KPC9ibG9ja3F1b3RlPg0KPGJsb2NrcXVvdGUgdHlwZT0iY2l0ZSI+PHNwYW4+U2Vu dCB0byBDQ0wgYnk6ICZxdW90O01pbnMgJm5ic3A7SGFnaCZxdW90OyBbbWhhZ2hkYWRpMnw8YSBo cmVmPSJodHRwOi8veWFob28uY28udWsiPnlhaG9vLmNvLnVrPC9hPl08L3NwYW4+PGJyPg0KPC9i bG9ja3F1b3RlPg0KPGJsb2NrcXVvdGUgdHlwZT0iY2l0ZSI+PHNwYW4+RGVhciBldmVyeWJvZHk8 L3NwYW4+PGJyPg0KPC9ibG9ja3F1b3RlPg0KPGJsb2NrcXVvdGUgdHlwZT0iY2l0ZSI+PHNwYW4+ RG8geW91IGtub3cgd2hhdCBpcyBwcm9wZXIgYW5hbHlzaXMgZm9yIGFzeW5jaHJvbm91cyBvZiBj b25jZXJ0ZWQgbWVjaGFuaXNtIGF0IERpZWxzIGFsZGVyDQo8L3NwYW4+PGJyPg0KPC9ibG9ja3F1 b3RlPg0KPGJsb2NrcXVvdGUgdHlwZT0iY2l0ZSI+PHNwYW4+cmVhY3Rpb25zPyBIb3cgY2FuIGNh bGN1bGF0ZSBpdD88L3NwYW4+PGJyPg0KPC9ibG9ja3F1b3RlPg0KPGJsb2NrcXVvdGUgdHlwZT0i Y2l0ZSI+PHNwYW4+U2luY2VyZWx5IHlvdXJzPC9zcGFuPjxicj4NCjwvYmxvY2txdW90ZT4NCjxi bG9ja3F1b3RlIHR5cGU9ImNpdGUiPjxzcGFuPk1pbmEmZ3Q7IDwvc3Bhbj48YnI+DQo8L2Jsb2Nr cXVvdGU+DQo8YmxvY2txdW90ZSB0eXBlPSJjaXRlIj48c3Bhbj48L3NwYW4+PGJyPg0KPC9ibG9j a3F1b3RlPg0KPHNwYW4+PC9zcGFuPjxicj4NCjxzcGFuPjwvc3Bhbj48YnI+DQo8c3Bhbj48L3Nw YW4+PGJyPg0KPHNwYW4+LT0gVGhpcyBpcyBhdXRvbWF0aWNhbGx5IGFkZGVkIHRvIGVhY2ggbWVz c2FnZSBieSB0aGUgbWFpbGluZyBzY3JpcHQgPS08L3NwYW4+PGJyPg0KPHNwYW4+VG8gcmVjb3Zl ciB0aGUgZW1haWwgYWRkcmVzcyBvZiB0aGUgYXV0aG9yIG9mIHRoZSBtZXNzYWdlLCBwbGVhc2Ug Y2hhbmdlPC9zcGFuPjxicj4NCjxzcGFuPj1zcGFuJmd0Ozxicj4NCjxzcGFuPCBzcGFuPSIiPjxi cj4NCjxzcGFuPjwvc3Bhbj48YnI+DQo8c3Bhbj5FLW1haWwgdG8gc3Vic2NyaWJlcnM6IDxhIGhy ZWY9Im1haWx0bzpDSEVNSVNUUllfLl9jY2wubmV0Ij5DSEVNSVNUUllfLl9jY2wubmV0PC9hPiBv ciB1c2U6PC9zcGFuPjxicj4NCjxzcGFuPiZuYnNwOyZuYnNwOyZuYnNwOyZuYnNwOyZuYnNwOzxh IGhyZWY9Imh0dHA6Ly93d3cuY2NsLm5ldC9jZ2ktYmluL2NjbC9zZW5kX2NjbF9tZXNzYWdlIj5o dHRwOi8vd3d3LmNjbC5uZXQvY2dpLWJpbi9jY2wvc2VuZF9jY2xfbWVzc2FnZTwvYT48L3NwYW4+ PGJyPg0KPHNwYW4+PC9zcGFuPjxicj4NCjxzcGFuPkUtbWFpbCB0byBhZG1pbmlzdHJhdG9yczog PGEgaHJlZj0ibWFpbHRvOkNIRU1JU1RSWS1SRVFVRVNUXy5fY2NsLm5ldCI+Q0hFTUlTVFJZLVJF UVVFU1RfLl9jY2wubmV0PC9hPiBvciB1c2U8L3NwYW4+PGJyPg0KPHNwYW4+Jm5ic3A7Jm5ic3A7 Jm5ic3A7Jm5ic3A7Jm5ic3A7PGEgaHJlZj0iaHR0cDovL3d3dy5jY2wubmV0L2NnaS1iaW4vY2Ns L3NlbmRfY2NsX21lc3NhZ2UiPmh0dHA6Ly93d3cuY2NsLm5ldC9jZ2ktYmluL2NjbC9zZW5kX2Nj bF9tZXNzYWdlPC9hPjwvc3Bhbj48YnI+DQo8c3Bhbj48L3NwYW4+PGJyPg0KPHNwYW4+U3Vic2Ny aWJlL1Vuc3Vic2NyaWJlOiA8L3NwYW4+PGJyPg0KPHNwYW4+Jm5ic3A7Jm5ic3A7Jm5ic3A7Jm5i c3A7Jm5ic3A7PGEgaHJlZj0iaHR0cDovL3d3dy5jY2wubmV0L2NoZW1pc3RyeS9zdWJfdW5zdWIu c2h0bWwiPmh0dHA6Ly93d3cuY2NsLm5ldC9jaGVtaXN0cnkvc3ViX3Vuc3ViLnNodG1sPC9hPjwv c3Bhbj48YnI+DQo8c3Bhbj48L3NwYW4+PGJyPg0KPHNwYW4+QmVmb3JlIHBvc3RpbmcsIGNoZWNr IHdhaXQgdGltZSBhdDogPGEgaHJlZj0iaHR0cDovL3d3dy5jY2wubmV0Ij5odHRwOi8vd3d3LmNj bC5uZXQ8L2E+PC9zcGFuPjxicj4NCjxzcGFuPjwvc3Bhbj48YnI+DQo8c3Bhbj5Kb2I6IDxhIGhy ZWY9Imh0dHA6Ly93d3cuY2NsLm5ldC9qb2JzIj5odHRwOi8vd3d3LmNjbC5uZXQvam9iczwvYT4g PC9zcGFuPjxicj4NCjxzcGFuPkNvbmZlcmVuY2VzOiA8YSBocmVmPSJodHRwOi8vc2VydmVyLmNj bC5uZXQvY2hlbWlzdHJ5L2Fubm91bmNlbWVudHMvY29uZmVyZW5jZXMvIj4NCmh0dHA6Ly9zZXJ2 ZXIuY2NsLm5ldC9jaGVtaXN0cnkvYW5ub3VuY2VtZW50cy9jb25mZXJlbmNlcy88L2E+PC9zcGFu Pjxicj4NCjxzcGFuPjwvc3Bhbj48YnI+DQo8c3Bhbj5TZWFyY2ggTWVzc2FnZXM6IDxhIGhyZWY9 Imh0dHA6Ly93d3cuY2NsLm5ldC9jaGVtaXN0cnkvc2VhcmNoY2NsL2luZGV4LnNodG1sIj4NCmh0 dHA6Ly93d3cuY2NsLm5ldC9jaGVtaXN0cnkvc2VhcmNoY2NsL2luZGV4LnNodG1sPC9hPjwvc3Bh bj48YnI+DQo8c3Bhbj48L3NwYW4+PGJyPg0KPHNwYW4+SWYgeW91ciBtYWlsIGJvdW5jZXMgZnJv bSBDQ0wgd2l0aCA1LjcuMSBlcnJvciwgY2hlY2s6PC9zcGFuPjxicj4NCjxzcGFuPiZuYnNwOyZu YnNwOyZuYnNwOyZuYnNwOyZuYnNwOzxhIGhyZWY9Imh0dHA6Ly93d3cuY2NsLm5ldC9zcGFtbWVy cy50eHQiPmh0dHA6Ly93d3cuY2NsLm5ldC9zcGFtbWVycy50eHQ8L2E+PC9zcGFuPjxicj4NCjxz cGFuPjwvc3Bhbj48YnI+DQo8c3Bhbj5SVEZJOiA8YSBocmVmPSJodHRwOi8vd3d3LmNjbC5uZXQv Y2hlbWlzdHJ5L2Fib3V0Y2NsL2luc3RydWN0aW9ucy8iPmh0dHA6Ly93d3cuY2NsLm5ldC9jaGVt aXN0cnkvYWJvdXRjY2wvaW5zdHJ1Y3Rpb25zLzwvYT48L3NwYW4+PGJyPg0KPHNwYW4+PC9zcGFu Pjxicj4NCjxzcGFuPjwvc3Bhbj48YnI+DQo8L3NwYW48Pjwvc3Bhbj48L2Rpdj4NCjwvYmxvY2tx dW90ZT4NCjwvZGl2Pg0KPC9ibG9ja3F1b3RlPg0KPC9ib2R5Pg0KPC9odG1sPg0K --_000_929D6AC9D84847FCAFA039B7A3B901D3chemguse_-- From owner-chemistry@ccl.net Wed Aug 24 14:50:00 2016 From: "Ankur Gupta ankkgupt**umail.iu.edu" To: CCL Subject: CCL:G: Constrained optimization and frequency calculation Message-Id: <-52358-160824140033-23962-TTv3DcpCgZwBb8M8qdVVzQ##server.ccl.net> X-Original-From: Ankur Gupta Content-Type: multipart/alternative; boundary=001a1141fc1c47db7e053ad50eef Date: Wed, 24 Aug 2016 14:00:24 -0400 MIME-Version: 1.0 Sent to CCL by: Ankur Gupta [ankkgupt__umail.iu.edu] --001a1141fc1c47db7e053ad50eef Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: quoted-printable Hello, Thank you Prof. Dr. M. Swart for answering my question. I found Baker's paper really helpful. It discusses constrained optimization thoroughly but it does not focus much on normal mode analysis. I am more concerned about the frequencies that we get from the Hessian after constrained optimization. The algorithm for constrained optimization has been implemented in most of the computational chemistry software. But I am not able to understand the frequencies that it shows after the constrained optimization. Thank you Ankur On Sat, Aug 20, 2016 at 5:03 AM, Marcel Swart marcel.swart/./icrea.cat < owner-chemistry _ ccl.net> wrote: > Dear Ankur, > > I would suggest to have a look at PQS (Baker, Pulay and co-workers) or > QUILD (Swart and co-workers). > Both use Baker=E2=80=99s elegant solution to constrained optimizations. > > Baker, "Constrained optimization in delocalized internal coordinates=E2= =80=9D > Journal of Computational Chemistry 18, 1079 (1997) > http://dx.doi.org/10.1002/(SICI)1096-987X(199706)18:8% > 3C1079::AID-JCC12%3E3.0.CO;2-8 > > PQS: > http://www.pqs-chem.com/capabilities.php > > QUILD: > http://www.marcelswart.eu/quild > https://www.scm.com/documentation/Quild/index/index > > Marcel > > On 19 Aug 2016, at 22:33, Ankur Kumar Gupta ankkgupt*indiana.edu < > owner-chemistry*ccl.net> wrote: > > > Sent to CCL by: "Ankur Kumar Gupta" [ankkgupt||indiana.edu] > Hello, > > I have been reading about constrained optimization. I have read several > papers related to the topic including the classic Reaction path Hamiltoni= an > for polyatomic molecules by Miller et al. This and other research article= s > describe what is known as 'projection operator' method to do optimization > keeping one or more internal coordinates constant. Theoretically, we shou= ld > get 3N-6 non-zero eigenvalues from the force constant matrix (for a > molecule having N nuclei) but if we apply m number of constraints in the > molecule, we should obtain 3N-6-m non-zero eigenvalues (frequencies). Als= o, > in cases where the constraint corresponds to a non-equilibrium geometry, > there will be coupling between rotational and vibrational motion due to > which the number of non-zero eigenvalues might change. But for the sake o= f > simplicity, we can talk about equilibrium geometries only. I use Gaussian > 09 and I observed that the number of non-zero eigenvalues did not change > after constrained optimization. ! > I know there are many computational chemistry softwares out there and I > would like to know if there is a software which can do constrained > optimization correctly and give me the right number and magnitude of > eigenvalues (frequencies) after the optimization. > > Thank you > Ankur > > > > -=3D This is automatically added to each message by the mailing script = =3D-> the strange characters on the top line to the * sign. You can also> > E-mail to subscribers: CHEMISTRY*ccl.net or use:> > E-mail to administrators: CHEMISTRY-REQUEST*ccl.net or use> > > > > _____________________________________ > Prof. Dr. Marcel Swart, FRSC > > ICREA Research Professor at > Institut de Qu=C3=ADmica Computacional i Cat=C3=A0lisi (IQCC) > Univ. Girona (Spain) > > COST Action CM1305 (ECOSTBio) chair > Girona Seminar 2016 organizer > IQCC director > RSC Advances associate editor > Young Academy of Europe member > > web > http://www.marcelswart.eu > vCard > addressbook://www.marcelswart.eu/MSwart.vcf > > > > > > > --001a1141fc1c47db7e053ad50eef Content-Type: text/html; charset=UTF-8 Content-Transfer-Encoding: quoted-printable
Hello,

Thank you Prof. Dr. M. = Swart for answering my question. I found Baker's paper really helpful. = It discusses constrained optimization thoroughly but it does not focus much= on normal mode analysis. I am more concerned about the frequencies that we= get from the Hessian after constrained optimization. The algorithm for con= strained optimization has been implemented in most of the computational che= mistry software. But I am not able to understand the frequencies that it sh= ows after the constrained optimization.

Thank you
Ank= ur

On Sa= t, Aug 20, 2016 at 5:03 AM, Marcel Swart marcel.swart/./icrea.cat <owner-chemistry _ ccl.net> wrot= e:
De= ar Ankur,

I would suggest to have a look at PQS (Baker, = Pulay and co-workers) or QUILD (Swart and co-workers).
Both use B= aker=E2=80=99s elegant solution to constrained optimizations.
Baker, "Constrained optimization in delocalized internal c= oordinates=E2=80=9D
Journal of Computational Chemistry 18, 1079 (= 1997)

PQS:

QUILD:

Marcel

On 19 Aug 2016, at 22:33, Ankur Kumar Gupta ankkg= upt*indiana.edu <owner-chemistry*= ccl.net> wrote:


Sent to CCL by: "Ankur K= umar Gupta" [ankkgupt||indiana.edu]
Hello,

I have been reading about constrained o= ptimization. I have read several papers related to the topic including the = classic Reaction path Hamiltonian for polyatomic molecules by Miller et al.= This and other research articles describe what is known as 'projection= operator' method to do optimization keeping one or more internal coord= inates constant. Theoretically, we should get 3N-6 non-zero eigenvalues fro= m the force constant matrix (for a molecule having N nuclei) but if we appl= y m number of constraints in the molecule, we should obtain 3N-6-m non-zero= eigenvalues (frequencies). Also, in cases where the constraint corresponds= to a non-equilibrium geometry, there will be coupling between rotational a= nd vibrational motion due to which the number of non-zero eigenvalues might= change. But for the sake of simplicity, we can talk about equilibrium geom= etries only. I use Gaussian 09 and I observed that the number of non-zero e= igenvalues did not change after constrained optimization. !
I know ther= e are many computational chemistry softwares out there and I would like to = know if there is a software which can do constrained optimization correctly= and give me the right number and magnitude of eigenvalues (frequencies) af= ter the optimization.

Thank you
Ankur



-=3D This is= automatically added to each message by the mailing script =3D-
To recov= er the email address of the author of the message, please change
the str= ange characters on the top line to the * sign. You can also
look up the = X-Original-From: line in the mail header.

E-mail to subscribers: CHEMISTRY*ccl.net o= r use:
=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0http://www.ccl.net/cgi-bin= /ccl/send_ccl_message

E-mail to administrators: CHEMISTRY-REQUEST*ccl.net or use
=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0
http://www.ccl.net/cgi-b= in/ccl/send_ccl_message

=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0http://= www.ccl.net/chemistry/sub_unsub.shtml

Before posting, check= wait time at: http://www.= ccl.net

Job: http://www.ccl.net/jobs
Conferences: http://server= .ccl.net/chemistry/announcements/conferences/

Search M= essages: http://www.ccl.net/chemistry/searchccl/index.shtml<= br> =C2=A0=C2= =A0=C2=A0=C2=A0=C2=A0http://www.ccl.net/spammers.txt

RTFI: http:/= /www.ccl.net/chemistry/aboutccl/instructions/




_= ____________________________________
Prof. Dr. Marcel Swart, FRSC
ICREA Research Professor at
Institut de Qu=C3=ADmica Computacional= i Cat=C3=A0lisi (IQCC)
Univ. Girona (Spain)

COST Action CM1305 (= ECOSTBio) chair
Girona Seminar 2016 organizer
IQCC di= rector
RSC Advances associate editor
= Young Academy of Europe member



--001a1141fc1c47db7e053ad50eef-- From owner-chemistry@ccl.net Wed Aug 24 15:48:01 2016 From: "Frank Jensen frj===chem.au.dk" To: CCL Subject: CCL: Constrained optimization and frequency calculation Message-Id: <-52359-160824152758-20350-zBwu9uFTZ/6Mv1OkQ6Z9qw|server.ccl.net> X-Original-From: Frank Jensen Content-Language: en-US Content-Type: multipart/alternative; boundary="_000_31dc0146fe8645058578e68cd9d88f15Exch04uniaudk_" Date: Wed, 24 Aug 2016 19:27:48 +0000 MIME-Version: 1.0 Sent to CCL by: Frank Jensen [frj*|*chem.au.dk] --_000_31dc0146fe8645058578e68cd9d88f15Exch04uniaudk_ Content-Type: text/plain; charset="utf-8" Content-Transfer-Encoding: base64 R2F1c3NpYW4gYnkgZGVmYXVsdCBhc3N1bWVzIHRoYXQgdGhlIGZyZXF1ZW5jeSBhbmFseXNpcyBp cyBkb25lIGF0IGEgc3RhdGlvbmFyeSBwb2ludCwgYW5kIHByb2plY3RzIG91dCB0aGUgVCtSIHRv IGdldCAzTi02IGZyZXF1ZW5jaWVzLg0KSWYgeW91IGFyZSBhdCBhIG5vbi1zdGF0aW9uYXJ5IHBv aW50LCB1c2UgRnJlcT1Qcm9qZWN0ZWQgdG8gYWxzbyBwcm9qZWN0IG91dCB0aGUgZ3JhZGllbnQs IGFuZCB0aHVzIGdldCAzTi03IGZyZXF1ZW5jaWVzLg0KTm90ZSB0aGF0IHRoaXMgcHJvdmlkZXMg M04tNyBmcmVxdWVuY2llcywgcmVnYXJkbGVzcyBvZiB0aGUgbnVtYmVyIG9mIGdlb21ldHJ5IGNv bnN0cmFpbnRzIGltcG9zZWQsIHNpbmNlIHRoZSBub24temVybyBncmFkaWVudCBpcyBzdGlsbCBv bmx5IGEgb25lLWRpbWVuc2lvbmFsIHF1YW50aXR5Lg0KDQpGcmFuaw0KDQpGcmFuayBKZW5zZW4N CkFzc29jLiBQcm9mLiwgVmljZS1DaGFpcg0KRGVwdC4gb2YgQ2hlbWlzdHJ5DQpBYXJodXMgVW5p dmVyc2l0eQ0KaHR0cDovL29sZC5jaGVtLmF1LmRrL35mcmoNCg0KRnJvbTogb3duZXItY2hlbWlz dHJ5K2Zyaj09Y2hlbS5hdS5ka0BjY2wubmV0IFttYWlsdG86b3duZXItY2hlbWlzdHJ5K2Zyaj09 Y2hlbS5hdS5ka0BjY2wubmV0XSBPbiBCZWhhbGYgT2YgQW5rdXIgR3VwdGEgYW5ra2d1cHQqKnVt YWlsLml1LmVkdQ0KU2VudDogMjQuIGF1Z3VzdCAyMDE2IDIwOjAwDQpUbzogRnJhbmsgSmVuc2Vu DQpTdWJqZWN0OiBDQ0w6RzogQ29uc3RyYWluZWQgb3B0aW1pemF0aW9uIGFuZCBmcmVxdWVuY3kg Y2FsY3VsYXRpb24NCg0KSGVsbG8sDQpUaGFuayB5b3UgUHJvZi4gRHIuIE0uIFN3YXJ0IGZvciBh bnN3ZXJpbmcgbXkgcXVlc3Rpb24uIEkgZm91bmQgQmFrZXIncyBwYXBlciByZWFsbHkgaGVscGZ1 bC4gSXQgZGlzY3Vzc2VzIGNvbnN0cmFpbmVkIG9wdGltaXphdGlvbiB0aG9yb3VnaGx5IGJ1dCBp dCBkb2VzIG5vdCBmb2N1cyBtdWNoIG9uIG5vcm1hbCBtb2RlIGFuYWx5c2lzLiBJIGFtIG1vcmUg Y29uY2VybmVkIGFib3V0IHRoZSBmcmVxdWVuY2llcyB0aGF0IHdlIGdldCBmcm9tIHRoZSBIZXNz aWFuIGFmdGVyIGNvbnN0cmFpbmVkIG9wdGltaXphdGlvbi4gVGhlIGFsZ29yaXRobSBmb3IgY29u c3RyYWluZWQgb3B0aW1pemF0aW9uIGhhcyBiZWVuIGltcGxlbWVudGVkIGluIG1vc3Qgb2YgdGhl IGNvbXB1dGF0aW9uYWwgY2hlbWlzdHJ5IHNvZnR3YXJlLiBCdXQgSSBhbSBub3QgYWJsZSB0byB1 bmRlcnN0YW5kIHRoZSBmcmVxdWVuY2llcyB0aGF0IGl0IHNob3dzIGFmdGVyIHRoZSBjb25zdHJh aW5lZCBvcHRpbWl6YXRpb24uDQpUaGFuayB5b3UNCkFua3VyDQoNCk9uIFNhdCwgQXVnIDIwLCAy MDE2IGF0IDU6MDMgQU0sIE1hcmNlbCBTd2FydCBtYXJjZWwuc3dhcnQvLi9pY3JlYS5jYXQ8aHR0 cDovL2ljcmVhLmNhdD4gPG93bmVyLWNoZW1pc3RyeVstXWNjbC5uZXQ8bWFpbHRvOm93bmVyLWNo ZW1pc3RyeVstXWNjbC5uZXQ+PiB3cm90ZToNCkRlYXIgQW5rdXIsDQoNCkkgd291bGQgc3VnZ2Vz dCB0byBoYXZlIGEgbG9vayBhdCBQUVMgKEJha2VyLCBQdWxheSBhbmQgY28td29ya2Vycykgb3Ig UVVJTEQgKFN3YXJ0IGFuZCBjby13b3JrZXJzKS4NCkJvdGggdXNlIEJha2Vy4oCZcyBlbGVnYW50 IHNvbHV0aW9uIHRvIGNvbnN0cmFpbmVkIG9wdGltaXphdGlvbnMuDQoNCkJha2VyLCAiQ29uc3Ry YWluZWQgb3B0aW1pemF0aW9uIGluIGRlbG9jYWxpemVkIGludGVybmFsIGNvb3JkaW5hdGVz4oCd DQpKb3VybmFsIG9mIENvbXB1dGF0aW9uYWwgQ2hlbWlzdHJ5IDE4LCAxMDc5ICgxOTk3KQ0KaHR0 cDovL2R4LmRvaS5vcmcvMTAuMTAwMi8oU0lDSSkxMDk2LTk4N1goMTk5NzA2KTE4OjglM0MxMDc5 OjpBSUQtSkNDMTIlM0UzLjAuQ087Mi04DQoNClBRUzoNCmh0dHA6Ly93d3cucHFzLWNoZW0uY29t L2NhcGFiaWxpdGllcy5waHANCg0KUVVJTEQ6DQpodHRwOi8vd3d3Lm1hcmNlbHN3YXJ0LmV1L3F1 aWxkDQpodHRwczovL3d3dy5zY20uY29tL2RvY3VtZW50YXRpb24vUXVpbGQvaW5kZXgvaW5kZXgN Cg0KTWFyY2VsDQoNCk9uIDE5IEF1ZyAyMDE2LCBhdCAyMjozMywgQW5rdXIgS3VtYXIgR3VwdGEg YW5ra2d1cHQqaW5kaWFuYS5lZHU8aHR0cDovL2luZGlhbmEuZWR1PiA8b3duZXItY2hlbWlzdHJ5 KmNjbC5uZXQ8bWFpbHRvOm93bmVyLWNoZW1pc3RyeSpjY2wubmV0Pj4gd3JvdGU6DQoNCg0KU2Vu dCB0byBDQ0wgYnk6ICJBbmt1ciBLdW1hciBHdXB0YSIgW2Fua2tndXB0fHxpbmRpYW5hLmVkdTxo dHRwOi8vaW5kaWFuYS5lZHU+XQ0KSGVsbG8sDQoNCkkgaGF2ZSBiZWVuIHJlYWRpbmcgYWJvdXQg Y29uc3RyYWluZWQgb3B0aW1pemF0aW9uLiBJIGhhdmUgcmVhZCBzZXZlcmFsIHBhcGVycyByZWxh dGVkIHRvIHRoZSB0b3BpYyBpbmNsdWRpbmcgdGhlIGNsYXNzaWMgUmVhY3Rpb24gcGF0aCBIYW1p bHRvbmlhbiBmb3IgcG9seWF0b21pYyBtb2xlY3VsZXMgYnkgTWlsbGVyIGV0IGFsLiBUaGlzIGFu ZCBvdGhlciByZXNlYXJjaCBhcnRpY2xlcyBkZXNjcmliZSB3aGF0IGlzIGtub3duIGFzICdwcm9q ZWN0aW9uIG9wZXJhdG9yJyBtZXRob2QgdG8gZG8gb3B0aW1pemF0aW9uIGtlZXBpbmcgb25lIG9y IG1vcmUgaW50ZXJuYWwgY29vcmRpbmF0ZXMgY29uc3RhbnQuIFRoZW9yZXRpY2FsbHksIHdlIHNo b3VsZCBnZXQgM04tNiBub24temVybyBlaWdlbnZhbHVlcyBmcm9tIHRoZSBmb3JjZSBjb25zdGFu dCBtYXRyaXggKGZvciBhIG1vbGVjdWxlIGhhdmluZyBOIG51Y2xlaSkgYnV0IGlmIHdlIGFwcGx5 IG0gbnVtYmVyIG9mIGNvbnN0cmFpbnRzIGluIHRoZSBtb2xlY3VsZSwgd2Ugc2hvdWxkIG9idGFp biAzTi02LW0gbm9uLXplcm8gZWlnZW52YWx1ZXMgKGZyZXF1ZW5jaWVzKS4gQWxzbywgaW4gY2Fz ZXMgd2hlcmUgdGhlIGNvbnN0cmFpbnQgY29ycmVzcG9uZHMgdG8gYSBub24tZXF1aWxpYnJpdW0g Z2VvbWV0cnksIHRoZXJlIHdpbGwgYmUgY291cGxpbmcgYmV0d2VlbiByb3RhdGlvbmFsIGFuZCB2 aWJyYXRpb25hbCBtb3Rpb24gZHVlIHRvIHdoaWNoIHRoZSBudW1iZXIgb2Ygbm9uLXplcm8gZWln ZW52YWx1ZXMgbWlnaHQgY2hhbmdlLiBCdXQgZm9yIHRoZSBzYWtlIG9mIHNpbXBsaWNpdHksIHdl IGNhbiB0YWxrIGFib3V0IGVxdWlsaWJyaXVtIGdlb21ldHJpZXMgb25seS4gSSB1c2UgR2F1c3Np YW4gMDkgYW5kIEkgb2JzZXJ2ZWQgdGhhdCB0aGUgbnVtYmVyIG9mIG5vbi16ZXJvIGVpZ2VudmFs dWVzIGRpZCBub3QgY2hhbmdlIGFmdGVyIGNvbnN0cmFpbmVkIG9wdGltaXphdGlvbi4gIQ0KSSBr bm93IHRoZXJlIGFyZSBtYW55IGNvbXB1dGF0aW9uYWwgY2hlbWlzdHJ5IHNvZnR3YXJlcyBvdXQg dGhlcmUgYW5kIEkgd291bGQgbGlrZSB0byBrbm93IGlmIHRoZXJlIGlzIGEgc29mdHdhcmUgd2hp Y2ggY2FuIGRvIGNvbnN0cmFpbmVkIG9wdGltaXphdGlvbiBjb3JyZWN0bHkgYW5kIGdpdmUgbWUg dGhlIHJpZ2h0IG51bWJlciBhbmQgbWFnbml0dWRlIG9mIGVpZ2VudmFsdWVzIChmcmVxdWVuY2ll cykgYWZ0ZXIgdGhlIG9wdGltaXphdGlvbi4NCg0KVGhhbmsgeW91DQpBbmt1cg0KDQoNCg0KLT0g VGhpcyBpcyBhdXRvbWF0aWNhbGx5IGFkZGVkIHRvIGVhY2ggbWVzc2FnZSBieSB0aGUgbWFpbGlu ZyBzY3JpcHQgPS0NClRvIHJlY292ZXIgdGhlIGVtYWlsIGFkZHJlc3Mgb2YgdGhlIGF1dGhvciBv ZiB0aGUgbWVzc2FnZSwgcGxlYXNlIGNoYW5nZQ0KdGhlIHN0cmFuZ2UgY2hhcmFjdGVycyBvbiB0 aGUgdG9wIGxpbmUgdG8gdGhlICogc2lnbi4gWW91IGNhbiBhbHNvDQpsb29rIHVwIHRoZSBYLU9y aWdpbmFsLUZyb206IGxpbmUgaW4gdGhlIG1haWwgaGVhZGVyLg0KDQpFLW1haWwgdG8gc3Vic2Ny aWJlcnM6IENIRU1JU1RSWSpjY2wubmV0PG1haWx0bzpDSEVNSVNUUlkqY2NsLm5ldD4gb3IgdXNl Og0KICAgICBodHRwOi8vd3d3LmNjbC5uZXQvY2dpLWJpbi9jY2wvc2VuZF9jY2xfbWVzc2FnZQ0K DQpFLW1haWwgdG8gYWRtaW5pc3RyYXRvcnM6IENIRU1JU1RSWS1SRVFVRVNUKmNjbC5uZXQ8bWFp bHRvOkNIRU1JU1RSWS1SRVFVRVNUKmNjbC5uZXQ+IG9yIHVzZQ0KICAgICBodHRwOi8vd3d3LmNj bC5uZXQvY2dpLWJpbi9jY2wvc2VuZF9jY2xfbWVzc2FnZQ0KDQogICAgIGh0dHA6Ly93d3cuY2Ns Lm5ldC9jaGVtaXN0cnkvc3ViX3Vuc3ViLnNodG1sDQoNCkJlZm9yZSBwb3N0aW5nLCBjaGVjayB3 YWl0IHRpbWUgYXQ6IGh0dHA6Ly93d3cuY2NsLm5ldA0KDQpKb2I6IGh0dHA6Ly93d3cuY2NsLm5l dC9qb2JzDQpDb25mZXJlbmNlczogaHR0cDovL3NlcnZlci5jY2wubmV0L2NoZW1pc3RyeS9hbm5v dW5jZW1lbnRzL2NvbmZlcmVuY2VzLw0KDQpTZWFyY2ggTWVzc2FnZXM6IGh0dHA6Ly93d3cuY2Ns Lm5ldC9jaGVtaXN0cnkvc2VhcmNoY2NsL2luZGV4LnNodG1sDQo8YnINCiAgICAgaHR0cDovL3d3 dy5jY2wubmV0L3NwYW1tZXJzLnR4dA0KDQpSVEZJOiBodHRwOi8vd3d3LmNjbC5uZXQvY2hlbWlz dHJ5L2Fib3V0Y2NsL2luc3RydWN0aW9ucy8NCg0KDQoNCl9fX19fX19fX19fX19fX19fX19fX19f X19fX19fX19fX19fX18NClByb2YuIERyLiBNYXJjZWwgU3dhcnQsIEZSU0MNCg0KSUNSRUEgUmVz ZWFyY2ggUHJvZmVzc29yIGF0DQpJbnN0aXR1dCBkZSBRdcOtbWljYSBDb21wdXRhY2lvbmFsIGkg Q2F0w6BsaXNpIChJUUNDKQ0KVW5pdi4gR2lyb25hIChTcGFpbikNCg0KQ09TVCBBY3Rpb24gQ00x MzA1IChFQ09TVEJpbykgY2hhaXINCkdpcm9uYSBTZW1pbmFyIDIwMTYgb3JnYW5pemVyDQpJUUND IGRpcmVjdG9yDQpSU0MgQWR2YW5jZXMgYXNzb2NpYXRlIGVkaXRvcg0KWW91bmcgQWNhZGVteSBv ZiBFdXJvcGUgbWVtYmVyDQoNCndlYg0KaHR0cDovL3d3dy5tYXJjZWxzd2FydC5ldQ0KdkNhcmQN CmFkZHJlc3Nib29rOi8vd3d3Lm1hcmNlbHN3YXJ0LmV1L01Td2FydC52Y2Y8aHR0cDovL3d3dy5t YXJjZWxzd2FydC5ldS9NU3dhcnQudmNmPg0KDQoNCg0KDQoNCg0K --_000_31dc0146fe8645058578e68cd9d88f15Exch04uniaudk_ Content-Type: text/html; charset="utf-8" Content-Transfer-Encoding: base64 PGh0bWwgeG1sbnM6dj0idXJuOnNjaGVtYXMtbWljcm9zb2Z0LWNvbTp2bWwiIHhtbG5zOm89InVy bjpzY2hlbWFzLW1pY3Jvc29mdC1jb206b2ZmaWNlOm9mZmljZSIgeG1sbnM6dz0idXJuOnNjaGVt YXMtbWljcm9zb2Z0LWNvbTpvZmZpY2U6d29yZCIgeG1sbnM6bT0iaHR0cDovL3NjaGVtYXMubWlj cm9zb2Z0LmNvbS9vZmZpY2UvMjAwNC8xMi9vbW1sIiB4bWxucz0iaHR0cDovL3d3dy53My5vcmcv VFIvUkVDLWh0bWw0MCI+DQo8aGVhZD4NCjxtZXRhIGh0dHAtZXF1aXY9IkNvbnRlbnQtVHlwZSIg Y29udGVudD0idGV4dC9odG1sOyBjaGFyc2V0PXV0Zi04Ij4NCjxtZXRhIG5hbWU9IkdlbmVyYXRv ciIgY29udGVudD0iTWljcm9zb2Z0IFdvcmQgMTQgKGZpbHRlcmVkIG1lZGl1bSkiPg0KPHN0eWxl PjwhLS0NCi8qIEZvbnQgRGVmaW5pdGlvbnMgKi8NCkBmb250LWZhY2UNCgl7Zm9udC1mYW1pbHk6 Q2FsaWJyaTsNCglwYW5vc2UtMToyIDE1IDUgMiAyIDIgNCAzIDIgNDt9DQpAZm9udC1mYWNlDQoJ e2ZvbnQtZmFtaWx5OlRhaG9tYTsNCglwYW5vc2UtMToyIDExIDYgNCAzIDUgNCA0IDIgNDt9DQov KiBTdHlsZSBEZWZpbml0aW9ucyAqLw0KcC5Nc29Ob3JtYWwsIGxpLk1zb05vcm1hbCwgZGl2Lk1z b05vcm1hbA0KCXttYXJnaW46MGNtOw0KCW1hcmdpbi1ib3R0b206LjAwMDFwdDsNCglmb250LXNp emU6MTIuMHB0Ow0KCWZvbnQtZmFtaWx5OiJUaW1lcyBOZXcgUm9tYW4iLCJzZXJpZiI7fQ0KYTps aW5rLCBzcGFuLk1zb0h5cGVybGluaw0KCXttc28tc3R5bGUtcHJpb3JpdHk6OTk7DQoJY29sb3I6 Ymx1ZTsNCgl0ZXh0LWRlY29yYXRpb246dW5kZXJsaW5lO30NCmE6dmlzaXRlZCwgc3Bhbi5Nc29I eXBlcmxpbmtGb2xsb3dlZA0KCXttc28tc3R5bGUtcHJpb3JpdHk6OTk7DQoJY29sb3I6cHVycGxl Ow0KCXRleHQtZGVjb3JhdGlvbjp1bmRlcmxpbmU7fQ0Kc3Bhbi5FbWFpbFN0eWxlMTcNCgl7bXNv LXN0eWxlLXR5cGU6cGVyc29uYWwtcmVwbHk7DQoJZm9udC1mYW1pbHk6IkNhbGlicmkiLCJzYW5z LXNlcmlmIjsNCgljb2xvcjojMUY0OTdEO30NCi5Nc29DaHBEZWZhdWx0DQoJe21zby1zdHlsZS10 eXBlOmV4cG9ydC1vbmx5Ow0KCWZvbnQtZmFtaWx5OiJDYWxpYnJpIiwic2Fucy1zZXJpZiI7fQ0K QHBhZ2UgV29yZFNlY3Rpb24xDQoJe3NpemU6NjEyLjBwdCA3OTIuMHB0Ow0KCW1hcmdpbjozLjBj bSAyLjBjbSAzLjBjbSAyLjBjbTt9DQpkaXYuV29yZFNlY3Rpb24xDQoJe3BhZ2U6V29yZFNlY3Rp b24xO30NCi0tPjwvc3R5bGU+PCEtLVtpZiBndGUgbXNvIDldPjx4bWw+DQo8bzpzaGFwZWRlZmF1 bHRzIHY6ZXh0PSJlZGl0IiBzcGlkbWF4PSIxMDI2IiAvPg0KPC94bWw+PCFbZW5kaWZdLS0+PCEt LVtpZiBndGUgbXNvIDldPjx4bWw+DQo8bzpzaGFwZWxheW91dCB2OmV4dD0iZWRpdCI+DQo8bzpp ZG1hcCB2OmV4dD0iZWRpdCIgZGF0YT0iMSIgLz4NCjwvbzpzaGFwZWxheW91dD48L3htbD48IVtl bmRpZl0tLT4NCjwvaGVhZD4NCjxib2R5IGxhbmc9IkVOLVVTIiBsaW5rPSJibHVlIiB2bGluaz0i cHVycGxlIj4NCjxkaXYgY2xhc3M9IldvcmRTZWN0aW9uMSI+DQo8cCBjbGFzcz0iTXNvTm9ybWFs Ij48c3BhbiBzdHlsZT0iZm9udC1zaXplOjExLjBwdDtmb250LWZhbWlseTomcXVvdDtDYWxpYnJp JnF1b3Q7LCZxdW90O3NhbnMtc2VyaWYmcXVvdDs7Y29sb3I6IzFGNDk3RCI+R2F1c3NpYW4gYnkg ZGVmYXVsdCBhc3N1bWVzIHRoYXQgdGhlIGZyZXF1ZW5jeSBhbmFseXNpcyBpcyBkb25lIGF0IGEg c3RhdGlvbmFyeSBwb2ludCwgYW5kIHByb2plY3RzIG91dCB0aGUgVCYjNDM7UiB0byBnZXQgM04t NiBmcmVxdWVuY2llcy48bzpwPjwvbzpwPjwvc3Bhbj48L3A+DQo8cCBjbGFzcz0iTXNvTm9ybWFs Ij48c3BhbiBzdHlsZT0iZm9udC1zaXplOjExLjBwdDtmb250LWZhbWlseTomcXVvdDtDYWxpYnJp JnF1b3Q7LCZxdW90O3NhbnMtc2VyaWYmcXVvdDs7Y29sb3I6IzFGNDk3RCI+SWYgeW91IGFyZSBh dCBhIG5vbi1zdGF0aW9uYXJ5IHBvaW50LCB1c2UgRnJlcT1Qcm9qZWN0ZWQgdG8gYWxzbyBwcm9q ZWN0IG91dCB0aGUgZ3JhZGllbnQsIGFuZCB0aHVzIGdldCAzTi03IGZyZXF1ZW5jaWVzLjxvOnA+ PC9vOnA+PC9zcGFuPjwvcD4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxzcGFuIHN0eWxlPSJmb250 LXNpemU6MTEuMHB0O2ZvbnQtZmFtaWx5OiZxdW90O0NhbGlicmkmcXVvdDssJnF1b3Q7c2Fucy1z ZXJpZiZxdW90Oztjb2xvcjojMUY0OTdEIj5Ob3RlIHRoYXQgdGhpcyBwcm92aWRlcyAzTi03IGZy ZXF1ZW5jaWVzLCByZWdhcmRsZXNzIG9mIHRoZSBudW1iZXIgb2YgZ2VvbWV0cnkgY29uc3RyYWlu dHMgaW1wb3NlZCwgc2luY2UgdGhlIG5vbi16ZXJvIGdyYWRpZW50IGlzIHN0aWxsIG9ubHkgYSBv bmUtZGltZW5zaW9uYWwNCiBxdWFudGl0eS48bzpwPjwvbzpwPjwvc3Bhbj48L3A+DQo8cCBjbGFz cz0iTXNvTm9ybWFsIj48c3BhbiBzdHlsZT0iZm9udC1zaXplOjExLjBwdDtmb250LWZhbWlseTom cXVvdDtDYWxpYnJpJnF1b3Q7LCZxdW90O3NhbnMtc2VyaWYmcXVvdDs7Y29sb3I6IzFGNDk3RCI+ PG86cD4mbmJzcDs8L286cD48L3NwYW4+PC9wPg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+PHNwYW4g c3R5bGU9ImZvbnQtc2l6ZToxMS4wcHQ7Zm9udC1mYW1pbHk6JnF1b3Q7Q2FsaWJyaSZxdW90Oywm cXVvdDtzYW5zLXNlcmlmJnF1b3Q7O2NvbG9yOiMxRjQ5N0QiPkZyYW5rPG86cD48L286cD48L3Nw YW4+PC9wPg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+PHNwYW4gc3R5bGU9ImZvbnQtc2l6ZToxMS4w cHQ7Zm9udC1mYW1pbHk6JnF1b3Q7Q2FsaWJyaSZxdW90OywmcXVvdDtzYW5zLXNlcmlmJnF1b3Q7 O2NvbG9yOiMxRjQ5N0QiPjxvOnA+Jm5ic3A7PC9vOnA+PC9zcGFuPjwvcD4NCjxwIGNsYXNzPSJN c29Ob3JtYWwiPjxzcGFuIHN0eWxlPSJmb250LXNpemU6MTEuMHB0O2ZvbnQtZmFtaWx5OiZxdW90 O0NhbGlicmkmcXVvdDssJnF1b3Q7c2Fucy1zZXJpZiZxdW90Oztjb2xvcjojMUY0OTdEIj5GcmFu ayBKZW5zZW48bzpwPjwvbzpwPjwvc3Bhbj48L3A+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj48c3Bh biBzdHlsZT0iZm9udC1zaXplOjExLjBwdDtmb250LWZhbWlseTomcXVvdDtDYWxpYnJpJnF1b3Q7 LCZxdW90O3NhbnMtc2VyaWYmcXVvdDs7Y29sb3I6IzFGNDk3RCI+QXNzb2MuIFByb2YuLCBWaWNl LUNoYWlyPG86cD48L286cD48L3NwYW4+PC9wPg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+PHNwYW4g c3R5bGU9ImZvbnQtc2l6ZToxMS4wcHQ7Zm9udC1mYW1pbHk6JnF1b3Q7Q2FsaWJyaSZxdW90Oywm cXVvdDtzYW5zLXNlcmlmJnF1b3Q7O2NvbG9yOiMxRjQ5N0QiPkRlcHQuIG9mIENoZW1pc3RyeTxv OnA+PC9vOnA+PC9zcGFuPjwvcD4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxzcGFuIHN0eWxlPSJm b250LXNpemU6MTEuMHB0O2ZvbnQtZmFtaWx5OiZxdW90O0NhbGlicmkmcXVvdDssJnF1b3Q7c2Fu cy1zZXJpZiZxdW90Oztjb2xvcjojMUY0OTdEIj5BYXJodXMgVW5pdmVyc2l0eTxvOnA+PC9vOnA+ PC9zcGFuPjwvcD4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxzcGFuIHN0eWxlPSJmb250LXNpemU6 MTEuMHB0O2ZvbnQtZmFtaWx5OiZxdW90O0NhbGlicmkmcXVvdDssJnF1b3Q7c2Fucy1zZXJpZiZx dW90Oztjb2xvcjojMUY0OTdEIj48YSBocmVmPSJodHRwOi8vb2xkLmNoZW0uYXUuZGsvfmZyaiI+ aHR0cDovL29sZC5jaGVtLmF1LmRrL35mcmo8L2E+PG86cD48L286cD48L3NwYW4+PC9wPg0KPHAg Y2xhc3M9Ik1zb05vcm1hbCI+PHNwYW4gc3R5bGU9ImZvbnQtc2l6ZToxMS4wcHQ7Zm9udC1mYW1p bHk6JnF1b3Q7Q2FsaWJyaSZxdW90OywmcXVvdDtzYW5zLXNlcmlmJnF1b3Q7O2NvbG9yOiMxRjQ5 N0QiPjxvOnA+Jm5ic3A7PC9vOnA+PC9zcGFuPjwvcD4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxi PjxzcGFuIHN0eWxlPSJmb250LXNpemU6MTAuMHB0O2ZvbnQtZmFtaWx5OiZxdW90O1RhaG9tYSZx dW90OywmcXVvdDtzYW5zLXNlcmlmJnF1b3Q7Ij5Gcm9tOjwvc3Bhbj48L2I+PHNwYW4gc3R5bGU9 ImZvbnQtc2l6ZToxMC4wcHQ7Zm9udC1mYW1pbHk6JnF1b3Q7VGFob21hJnF1b3Q7LCZxdW90O3Nh bnMtc2VyaWYmcXVvdDsiPiBvd25lci1jaGVtaXN0cnkmIzQzO2Zyaj09Y2hlbS5hdS5ka0BjY2wu bmV0IFttYWlsdG86b3duZXItY2hlbWlzdHJ5JiM0Mztmcmo9PWNoZW0uYXUuZGtAY2NsLm5ldF0N CjxiPk9uIEJlaGFsZiBPZiA8L2I+QW5rdXIgR3VwdGEgYW5ra2d1cHQqKnVtYWlsLml1LmVkdTxi cj4NCjxiPlNlbnQ6PC9iPiAyNC4gYXVndXN0IDIwMTYgMjA6MDA8YnI+DQo8Yj5Ubzo8L2I+IEZy YW5rIEplbnNlbjxicj4NCjxiPlN1YmplY3Q6PC9iPiBDQ0w6RzogQ29uc3RyYWluZWQgb3B0aW1p emF0aW9uIGFuZCBmcmVxdWVuY3kgY2FsY3VsYXRpb248bzpwPjwvbzpwPjwvc3Bhbj48L3A+DQo8 cCBjbGFzcz0iTXNvTm9ybWFsIj48bzpwPiZuYnNwOzwvbzpwPjwvcD4NCjxkaXY+DQo8ZGl2Pg0K PGRpdj4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIiBzdHlsZT0ibWFyZ2luLWJvdHRvbTox Mi4wcHQiPkhlbGxvLDxvOnA+PC9vOnA+PC9wPg0KPC9kaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFs IiBzdHlsZT0ibWFyZ2luLWJvdHRvbToxMi4wcHQiPlRoYW5rIHlvdSBQcm9mLiBEci4gTS4gU3dh cnQgZm9yIGFuc3dlcmluZyBteSBxdWVzdGlvbi4gSSBmb3VuZCBCYWtlcidzIHBhcGVyIHJlYWxs eSBoZWxwZnVsLiBJdCBkaXNjdXNzZXMgY29uc3RyYWluZWQgb3B0aW1pemF0aW9uIHRob3JvdWdo bHkgYnV0IGl0IGRvZXMgbm90IGZvY3VzIG11Y2ggb24gbm9ybWFsIG1vZGUgYW5hbHlzaXMuIEkg YW0gbW9yZSBjb25jZXJuZWQNCiBhYm91dCB0aGUgZnJlcXVlbmNpZXMgdGhhdCB3ZSBnZXQgZnJv bSB0aGUgSGVzc2lhbiBhZnRlciBjb25zdHJhaW5lZCBvcHRpbWl6YXRpb24uIFRoZSBhbGdvcml0 aG0gZm9yIGNvbnN0cmFpbmVkIG9wdGltaXphdGlvbiBoYXMgYmVlbiBpbXBsZW1lbnRlZCBpbiBt b3N0IG9mIHRoZSBjb21wdXRhdGlvbmFsIGNoZW1pc3RyeSBzb2Z0d2FyZS4gQnV0IEkgYW0gbm90 IGFibGUgdG8gdW5kZXJzdGFuZCB0aGUgZnJlcXVlbmNpZXMgdGhhdCBpdCBzaG93cw0KIGFmdGVy IHRoZSBjb25zdHJhaW5lZCBvcHRpbWl6YXRpb24uPG86cD48L286cD48L3A+DQo8L2Rpdj4NCjxw IGNsYXNzPSJNc29Ob3JtYWwiPlRoYW5rIHlvdTxvOnA+PC9vOnA+PC9wPg0KPC9kaXY+DQo8cCBj bGFzcz0iTXNvTm9ybWFsIj5Bbmt1cjxvOnA+PC9vOnA+PC9wPg0KPC9kaXY+DQo8ZGl2Pg0KPHAg Y2xhc3M9Ik1zb05vcm1hbCI+PG86cD4mbmJzcDs8L286cD48L3A+DQo8ZGl2Pg0KPHAgY2xhc3M9 Ik1zb05vcm1hbCI+T24gU2F0LCBBdWcgMjAsIDIwMTYgYXQgNTowMyBBTSwgTWFyY2VsIFN3YXJ0 IG1hcmNlbC5zd2FydC8uLzxhIGhyZWY9Imh0dHA6Ly9pY3JlYS5jYXQiPmljcmVhLmNhdDwvYT4g Jmx0OzxhIGhyZWY9Im1haWx0bzpvd25lci1jaGVtaXN0cnlbLV1jY2wubmV0IiB0YXJnZXQ9Il9i bGFuayI+b3duZXItY2hlbWlzdHJ5Wy1dY2NsLm5ldDwvYT4mZ3Q7IHdyb3RlOjxvOnA+PC9vOnA+ PC9wPg0KPGRpdj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPkRlYXIgQW5rdXIsPG86cD48L286cD48 L3A+DQo8ZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+PG86cD4mbmJzcDs8L286cD48L3A+DQo8 L2Rpdj4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj5JIHdvdWxkIHN1Z2dlc3QgdG8gaGF2 ZSBhIGxvb2sgYXQgUFFTIChCYWtlciwgUHVsYXkgYW5kIGNvLXdvcmtlcnMpIG9yIFFVSUxEIChT d2FydCBhbmQgY28td29ya2VycykuPG86cD48L286cD48L3A+DQo8L2Rpdj4NCjxkaXY+DQo8cCBj bGFzcz0iTXNvTm9ybWFsIj5Cb3RoIHVzZSBCYWtlcuKAmXMgZWxlZ2FudCBzb2x1dGlvbiB0byBj b25zdHJhaW5lZCBvcHRpbWl6YXRpb25zLjxvOnA+PC9vOnA+PC9wPg0KPC9kaXY+DQo8ZGl2Pg0K PHAgY2xhc3M9Ik1zb05vcm1hbCI+PG86cD4mbmJzcDs8L286cD48L3A+DQo8L2Rpdj4NCjxkaXY+ DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj5CYWtlciwgJnF1b3Q7Q29uc3RyYWluZWQgb3B0aW1pemF0 aW9uIGluIGRlbG9jYWxpemVkIGludGVybmFsIGNvb3JkaW5hdGVz4oCdPG86cD48L286cD48L3A+ DQo8L2Rpdj4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj5Kb3VybmFsIG9mIENvbXB1dGF0 aW9uYWwgQ2hlbWlzdHJ5IDE4LCAxMDc5ICgxOTk3KTxvOnA+PC9vOnA+PC9wPg0KPC9kaXY+DQo8 ZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+PGEgaHJlZj0iaHR0cDovL2R4LmRvaS5vcmcvMTAu MTAwMi8oU0lDSSkxMDk2LTk4N1goMTk5NzA2KTE4OjglM0MxMDc5OjpBSUQtSkNDMTIlM0UzLjAu Q087Mi04IiB0YXJnZXQ9Il9ibGFuayI+aHR0cDovL2R4LmRvaS5vcmcvMTAuMTAwMi8oU0lDSSkx MDk2LTk4N1goMTk5NzA2KTE4OjglM0MxMDc5OjpBSUQtSkNDMTIlM0UzLjAuQ087Mi04PC9hPjxv OnA+PC9vOnA+PC9wPg0KPC9kaXY+DQo8ZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+PG86cD4m bmJzcDs8L286cD48L3A+DQo8L2Rpdj4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj5QUVM6 PG86cD48L286cD48L3A+DQo8L2Rpdj4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj48YSBo cmVmPSJodHRwOi8vd3d3LnBxcy1jaGVtLmNvbS9jYXBhYmlsaXRpZXMucGhwIiB0YXJnZXQ9Il9i bGFuayI+aHR0cDovL3d3dy5wcXMtY2hlbS5jb20vY2FwYWJpbGl0aWVzLnBocDwvYT48bzpwPjwv bzpwPjwvcD4NCjwvZGl2Pg0KPGRpdj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxvOnA+Jm5ic3A7 PC9vOnA+PC9wPg0KPC9kaXY+DQo8ZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+UVVJTEQ6PG86 cD48L286cD48L3A+DQo8L2Rpdj4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj48YSBocmVm PSJodHRwOi8vd3d3Lm1hcmNlbHN3YXJ0LmV1L3F1aWxkIiB0YXJnZXQ9Il9ibGFuayI+aHR0cDov L3d3dy5tYXJjZWxzd2FydC5ldS9xdWlsZDwvYT48bzpwPjwvbzpwPjwvcD4NCjwvZGl2Pg0KPGRp dj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxhIGhyZWY9Imh0dHBzOi8vd3d3LnNjbS5jb20vZG9j dW1lbnRhdGlvbi9RdWlsZC9pbmRleC9pbmRleCIgdGFyZ2V0PSJfYmxhbmsiPmh0dHBzOi8vd3d3 LnNjbS5jb20vZG9jdW1lbnRhdGlvbi9RdWlsZC9pbmRleC9pbmRleDwvYT48bzpwPjwvbzpwPjwv cD4NCjwvZGl2Pg0KPGRpdj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxvOnA+Jm5ic3A7PC9vOnA+ PC9wPg0KPC9kaXY+DQo8ZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+TWFyY2VsPG86cD48L286 cD48L3A+DQo8L2Rpdj4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj48bzpwPiZuYnNwOzwv bzpwPjwvcD4NCjxkaXY+DQo8YmxvY2txdW90ZSBzdHlsZT0ibWFyZ2luLXRvcDo1LjBwdDttYXJn aW4tYm90dG9tOjUuMHB0Ij4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj5PbiAxOSBBdWcg MjAxNiwgYXQgMjI6MzMsIEFua3VyIEt1bWFyIEd1cHRhIGFua2tndXB0KjxhIGhyZWY9Imh0dHA6 Ly9pbmRpYW5hLmVkdSIgdGFyZ2V0PSJfYmxhbmsiPmluZGlhbmEuZWR1PC9hPiAmbHQ7PGEgaHJl Zj0ibWFpbHRvOm93bmVyLWNoZW1pc3RyeSpjY2wubmV0IiB0YXJnZXQ9Il9ibGFuayI+b3duZXIt Y2hlbWlzdHJ5KmNjbC5uZXQ8L2E+Jmd0OyB3cm90ZTo8bzpwPjwvbzpwPjwvcD4NCjwvZGl2Pg0K PHAgY2xhc3M9Ik1zb05vcm1hbCI+PG86cD4mbmJzcDs8L286cD48L3A+DQo8ZGl2Pg0KPGRpdj4N CjxwIGNsYXNzPSJNc29Ob3JtYWwiIHN0eWxlPSJtYXJnaW4tYm90dG9tOjEyLjBwdCI+PGJyPg0K U2VudCB0byBDQ0wgYnk6ICZxdW90O0Fua3VyIEt1bWFyIEd1cHRhJnF1b3Q7IFthbmtrZ3VwdHx8 PGEgaHJlZj0iaHR0cDovL2luZGlhbmEuZWR1IiB0YXJnZXQ9Il9ibGFuayI+aW5kaWFuYS5lZHU8 L2E+XTxicj4NCkhlbGxvLDxicj4NCjxicj4NCkkgaGF2ZSBiZWVuIHJlYWRpbmcgYWJvdXQgY29u c3RyYWluZWQgb3B0aW1pemF0aW9uLiBJIGhhdmUgcmVhZCBzZXZlcmFsIHBhcGVycyByZWxhdGVk IHRvIHRoZSB0b3BpYyBpbmNsdWRpbmcgdGhlIGNsYXNzaWMgUmVhY3Rpb24gcGF0aCBIYW1pbHRv bmlhbiBmb3IgcG9seWF0b21pYyBtb2xlY3VsZXMgYnkgTWlsbGVyIGV0IGFsLiBUaGlzIGFuZCBv dGhlciByZXNlYXJjaCBhcnRpY2xlcyBkZXNjcmliZSB3aGF0IGlzIGtub3duIGFzICdwcm9qZWN0 aW9uDQogb3BlcmF0b3InIG1ldGhvZCB0byBkbyBvcHRpbWl6YXRpb24ga2VlcGluZyBvbmUgb3Ig bW9yZSBpbnRlcm5hbCBjb29yZGluYXRlcyBjb25zdGFudC4gVGhlb3JldGljYWxseSwgd2Ugc2hv dWxkIGdldCAzTi02IG5vbi16ZXJvIGVpZ2VudmFsdWVzIGZyb20gdGhlIGZvcmNlIGNvbnN0YW50 IG1hdHJpeCAoZm9yIGEgbW9sZWN1bGUgaGF2aW5nIE4gbnVjbGVpKSBidXQgaWYgd2UgYXBwbHkg bSBudW1iZXIgb2YgY29uc3RyYWludHMgaW4gdGhlIG1vbGVjdWxlLA0KIHdlIHNob3VsZCBvYnRh aW4gM04tNi1tIG5vbi16ZXJvIGVpZ2VudmFsdWVzIChmcmVxdWVuY2llcykuIEFsc28sIGluIGNh c2VzIHdoZXJlIHRoZSBjb25zdHJhaW50IGNvcnJlc3BvbmRzIHRvIGEgbm9uLWVxdWlsaWJyaXVt IGdlb21ldHJ5LCB0aGVyZSB3aWxsIGJlIGNvdXBsaW5nIGJldHdlZW4gcm90YXRpb25hbCBhbmQg dmlicmF0aW9uYWwgbW90aW9uIGR1ZSB0byB3aGljaCB0aGUgbnVtYmVyIG9mIG5vbi16ZXJvIGVp Z2VudmFsdWVzIG1pZ2h0DQogY2hhbmdlLiBCdXQgZm9yIHRoZSBzYWtlIG9mIHNpbXBsaWNpdHks IHdlIGNhbiB0YWxrIGFib3V0IGVxdWlsaWJyaXVtIGdlb21ldHJpZXMgb25seS4gSSB1c2UgR2F1 c3NpYW4gMDkgYW5kIEkgb2JzZXJ2ZWQgdGhhdCB0aGUgbnVtYmVyIG9mIG5vbi16ZXJvIGVpZ2Vu dmFsdWVzIGRpZCBub3QgY2hhbmdlIGFmdGVyIGNvbnN0cmFpbmVkIG9wdGltaXphdGlvbi4gITxi cj4NCkkga25vdyB0aGVyZSBhcmUgbWFueSBjb21wdXRhdGlvbmFsIGNoZW1pc3RyeSBzb2Z0d2Fy ZXMgb3V0IHRoZXJlIGFuZCBJIHdvdWxkIGxpa2UgdG8ga25vdyBpZiB0aGVyZSBpcyBhIHNvZnR3 YXJlIHdoaWNoIGNhbiBkbyBjb25zdHJhaW5lZCBvcHRpbWl6YXRpb24gY29ycmVjdGx5IGFuZCBn aXZlIG1lIHRoZSByaWdodCBudW1iZXIgYW5kIG1hZ25pdHVkZSBvZiBlaWdlbnZhbHVlcyAoZnJl cXVlbmNpZXMpIGFmdGVyIHRoZSBvcHRpbWl6YXRpb24uPGJyPg0KPGJyPg0KVGhhbmsgeW91PGJy Pg0KQW5rdXI8YnI+DQo8YnI+DQo8YnI+DQo8YnI+DQotPSBUaGlzIGlzIGF1dG9tYXRpY2FsbHkg YWRkZWQgdG8gZWFjaCBtZXNzYWdlIGJ5IHRoZSBtYWlsaW5nIHNjcmlwdCA9LTxicj4NClRvIHJl Y292ZXIgdGhlIGVtYWlsIGFkZHJlc3Mgb2YgdGhlIGF1dGhvciBvZiB0aGUgbWVzc2FnZSwgcGxl YXNlIGNoYW5nZTxicj4NCnRoZSBzdHJhbmdlIGNoYXJhY3RlcnMgb24gdGhlIHRvcCBsaW5lIHRv IHRoZSAqIHNpZ24uIFlvdSBjYW4gYWxzbzxicj4NCmxvb2sgdXAgdGhlIFgtT3JpZ2luYWwtRnJv bTogbGluZSBpbiB0aGUgbWFpbCBoZWFkZXIuPGJyPg0KPGJyPg0KRS1tYWlsIHRvIHN1YnNjcmli ZXJzOiA8YSBocmVmPSJtYWlsdG86Q0hFTUlTVFJZKmNjbC5uZXQiIHRhcmdldD0iX2JsYW5rIj5D SEVNSVNUUlkqY2NsLm5ldDwvYT4gb3IgdXNlOjxicj4NCiZuYnNwOyZuYnNwOyZuYnNwOyZuYnNw OyZuYnNwOzxhIGhyZWY9Imh0dHA6Ly93d3cuY2NsLm5ldC9jZ2ktYmluL2NjbC9zZW5kX2NjbF9t ZXNzYWdlIiB0YXJnZXQ9Il9ibGFuayI+aHR0cDovL3d3dy5jY2wubmV0L2NnaS1iaW4vY2NsL3Nl bmRfY2NsX21lc3NhZ2U8L2E+PGJyPg0KPGJyPg0KRS1tYWlsIHRvIGFkbWluaXN0cmF0b3JzOiA8 YSBocmVmPSJtYWlsdG86Q0hFTUlTVFJZLVJFUVVFU1QqY2NsLm5ldCIgdGFyZ2V0PSJfYmxhbmsi Pg0KQ0hFTUlTVFJZLVJFUVVFU1QqY2NsLm5ldDwvYT4gb3IgdXNlPGJyPg0KJm5ic3A7Jm5ic3A7 Jm5ic3A7Jm5ic3A7Jm5ic3A7PGEgaHJlZj0iaHR0cDovL3d3dy5jY2wubmV0L2NnaS1iaW4vY2Ns L3NlbmRfY2NsX21lc3NhZ2UiIHRhcmdldD0iX2JsYW5rIj5odHRwOi8vd3d3LmNjbC5uZXQvY2dp LWJpbi9jY2wvc2VuZF9jY2xfbWVzc2FnZTwvYT48YnI+DQo8YnI+DQombmJzcDsmbmJzcDsmbmJz cDsmbmJzcDsmbmJzcDs8YSBocmVmPSJodHRwOi8vd3d3LmNjbC5uZXQvY2hlbWlzdHJ5L3N1Yl91 bnN1Yi5zaHRtbCIgdGFyZ2V0PSJfYmxhbmsiPmh0dHA6Ly93d3cuY2NsLm5ldC9jaGVtaXN0cnkv c3ViX3Vuc3ViLnNodG1sPC9hPjxicj4NCjxicj4NCkJlZm9yZSBwb3N0aW5nLCBjaGVjayB3YWl0 IHRpbWUgYXQ6IDxhIGhyZWY9Imh0dHA6Ly93d3cuY2NsLm5ldCIgdGFyZ2V0PSJfYmxhbmsiPg0K aHR0cDovL3d3dy5jY2wubmV0PC9hPjxicj4NCjxicj4NCkpvYjogPGEgaHJlZj0iaHR0cDovL3d3 dy5jY2wubmV0L2pvYnMiIHRhcmdldD0iX2JsYW5rIj5odHRwOi8vd3d3LmNjbC5uZXQvam9iczwv YT4NCjxicj4NCkNvbmZlcmVuY2VzOiA8YSBocmVmPSJodHRwOi8vc2VydmVyLmNjbC5uZXQvY2hl bWlzdHJ5L2Fubm91bmNlbWVudHMvY29uZmVyZW5jZXMvIiB0YXJnZXQ9Il9ibGFuayI+DQpodHRw Oi8vc2VydmVyLmNjbC5uZXQvY2hlbWlzdHJ5L2Fubm91bmNlbWVudHMvY29uZmVyZW5jZXMvPC9h Pjxicj4NCjxicj4NClNlYXJjaCBNZXNzYWdlczogPGEgaHJlZj0iaHR0cDovL3d3dy5jY2wubmV0 L2NoZW1pc3RyeS9zZWFyY2hjY2wvaW5kZXguc2h0bWwiIHRhcmdldD0iX2JsYW5rIj4NCmh0dHA6 Ly93d3cuY2NsLm5ldC9jaGVtaXN0cnkvc2VhcmNoY2NsL2luZGV4LnNodG1sPC9hPjxicj4NCiZs dDticjxicj4NCiZuYnNwOyZuYnNwOyZuYnNwOyZuYnNwOyZuYnNwOzxhIGhyZWY9Imh0dHA6Ly93 d3cuY2NsLm5ldC9zcGFtbWVycy50eHQiIHRhcmdldD0iX2JsYW5rIj5odHRwOi8vd3d3LmNjbC5u ZXQvc3BhbW1lcnMudHh0PC9hPjxicj4NCjxicj4NClJURkk6IDxhIGhyZWY9Imh0dHA6Ly93d3cu Y2NsLm5ldC9jaGVtaXN0cnkvYWJvdXRjY2wvaW5zdHJ1Y3Rpb25zLyIgdGFyZ2V0PSJfYmxhbmsi Pg0KaHR0cDovL3d3dy5jY2wubmV0L2NoZW1pc3RyeS9hYm91dGNjbC9pbnN0cnVjdGlvbnMvPC9h Pjxicj4NCjxicj4NCjxvOnA+PC9vOnA+PC9wPg0KPC9kaXY+DQo8L2Rpdj4NCjwvYmxvY2txdW90 ZT4NCjwvZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+PG86cD4mbmJzcDs8L286cD48L3A+DQo8 ZGl2Pg0KPGRpdj4NCjxkaXY+DQo8ZGl2Pg0KPGRpdj4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9y bWFsIj48c3BhbiBzdHlsZT0iY29sb3I6YmxhY2siPjxicj4NCl9fX19fX19fX19fX19fX19fX19f X19fX19fX19fX19fX19fX188YnI+DQpQcm9mLiBEci4gTWFyY2VsIFN3YXJ0LCBGUlNDPGJyPg0K PGJyPg0KSUNSRUEgUmVzZWFyY2ggUHJvZmVzc29yIGF0PGJyPg0KSW5zdGl0dXQgZGUgUXXDrW1p Y2EgQ29tcHV0YWNpb25hbCBpIENhdMOgbGlzaSAoSVFDQyk8YnI+DQpVbml2LiBHaXJvbmEgKFNw YWluKTxicj4NCjxicj4NCkNPU1QgQWN0aW9uIENNMTMwNSAoRUNPU1RCaW8pIGNoYWlyPGJyPg0K R2lyb25hIFNlbWluYXIgMjAxNiBvcmdhbml6ZXI8bzpwPjwvbzpwPjwvc3Bhbj48L3A+DQo8L2Rp dj4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj48c3BhbiBzdHlsZT0iY29sb3I6YmxhY2si PklRQ0MgZGlyZWN0b3I8bzpwPjwvbzpwPjwvc3Bhbj48L3A+DQo8L2Rpdj4NCjxkaXY+DQo8cCBj bGFzcz0iTXNvTm9ybWFsIj48c3BhbiBzdHlsZT0iY29sb3I6YmxhY2siPlJTQyBBZHZhbmNlcyBh c3NvY2lhdGUgZWRpdG9yPG86cD48L286cD48L3NwYW4+PC9wPg0KPC9kaXY+DQo8ZGl2Pg0KPHAg Y2xhc3M9Ik1zb05vcm1hbCI+PHNwYW4gc3R5bGU9ImNvbG9yOmJsYWNrIj5Zb3VuZyBBY2FkZW15 IG9mIEV1cm9wZSBtZW1iZXI8bzpwPjwvbzpwPjwvc3Bhbj48L3A+DQo8L2Rpdj4NCjxkaXY+DQo8 cCBjbGFzcz0iTXNvTm9ybWFsIj48c3BhbiBzdHlsZT0iY29sb3I6YmxhY2siPjxvOnA+Jm5ic3A7 PC9vOnA+PC9zcGFuPjwvcD4NCjwvZGl2Pg0KPGRpdj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiIHN0 eWxlPSJtYXJnaW4tYm90dG9tOjEyLjBwdCI+PHNwYW4gc3R5bGU9ImNvbG9yOmJsYWNrIj53ZWI8 YnI+DQo8YSBocmVmPSJodHRwOi8vd3d3Lm1hcmNlbHN3YXJ0LmV1IiB0YXJnZXQ9Il9ibGFuayI+ aHR0cDovL3d3dy5tYXJjZWxzd2FydC5ldTwvYT48YnI+DQp2Q2FyZDxicj4NCmFkZHJlc3Nib29r Oi8vPGEgaHJlZj0iaHR0cDovL3d3dy5tYXJjZWxzd2FydC5ldS9NU3dhcnQudmNmIiB0YXJnZXQ9 Il9ibGFuayI+d3d3Lm1hcmNlbHN3YXJ0LmV1L01Td2FydC52Y2Y8L2E+PGJyPg0KPGJyPg0KPGJy Pg0KPGJyPg0KPGJyPg0KPG86cD48L286cD48L3NwYW4+PC9wPg0KPC9kaXY+DQo8L2Rpdj4NCjwv ZGl2Pg0KPC9kaXY+DQo8L2Rpdj4NCjwvZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+PG86cD4m bmJzcDs8L286cD48L3A+DQo8L2Rpdj4NCjwvZGl2Pg0KPC9kaXY+DQo8cCBjbGFzcz0iTXNvTm9y bWFsIj48bzpwPiZuYnNwOzwvbzpwPjwvcD4NCjwvZGl2Pg0KPC9kaXY+DQo8L2JvZHk+DQo8L2h0 bWw+DQo= --_000_31dc0146fe8645058578e68cd9d88f15Exch04uniaudk_--