From owner-chemistry@ccl.net Mon Sep 11 01:21:00 2017 From: "Neese, Frank frank.neese() cec.mpg.de" To: CCL Subject: CCL: Correctly evaluating spin states of a cobalt trimer (using Single Points)? Message-Id: <-52993-170911011657-5282-6V33WQRkYFZ+97NsxI9hBw ~ server.ccl.net> X-Original-From: "Neese, Frank" Content-Language: en-US Content-Type: multipart/alternative; boundary="_000_9A3A7AD9F6204E1785BF5DE8F5C3B6FAcecmpgde_" Date: Mon, 11 Sep 2017 05:16:48 +0000 MIME-Version: 1.0 Sent to CCL by: "Neese, Frank" [frank.neese]-[cec.mpg.de] --_000_9A3A7AD9F6204E1785BF5DE8F5C3B6FAcecmpgde_ Content-Type: text/plain; charset="utf-8" Content-Transfer-Encoding: base64 RGVhciBIZW5yaXF1ZSwNCg0KSSBhbSBnbGFkIHRoYXQgaXQgbWF5IGhhdmUgaGVscGVkIGEgYml0 Lg0KDQpBcG9sb2dpZXMgZm9yIGdldHRpbmcgdGhlIG94aWRhdGlvbiBzdGF0ZSB3cm9uZyAoZW1i YXJhc3NpbmcpLiBJIHdhcyBhIGJpdCB0aXJlZCB5ZXN0ZXJkYXkgYW5kIG1pc3JlYWQgdGhlIG9y aWdpbmFsIHBvc3QuIElmIGl0IGlzIENvKElJKSBub3QgQ28oSUlJKSBteSBzcGluIHN0YXRlIGRp c2N1c3Npb24gbWFrZXMgbm8gc2Vuc2Ugb2YgY291cnNlLiBCdXQgdGhlIGdlbmVyYWwgcG9pbnRz IGFyZSB0aGUgc2FtZS4NCg0KT24gdGhlIHF1ZXN0aW9uIG9mIGZpeGVkIGdlb21ldHJ5IG9yIG5v dDogVGhlIFNRVUlEIG1lYXN1cmVtZW50IGlzIGRlZmluaXRlbHkgYWRpYWJhdGljIGFuZCBoZW5j ZSwgb25lIGlzIHN0dWR5aW5nIGVhY2ggc3BpbiBzdGF0ZSBpbiBpdHMgZXF1aWxpYnJpdW0gZ2Vv ZW10cnkuIEhvd2V2ZXIsIHRoZSBIZWlzZW5iZXJnIEhhbWlsdG9uaWFuLCB0aGF0IGlzIHVzdWFs bHkgdXNlZCB0byBwYXJhbWV0ZXJpemUgdGhlIGV4cGVyaW1lbnQgZG9lc27igJl0IGtub3cgYW55 dGhpbmcgYWJvdXQgZ2VvbWV0cnkuIFRoZSBIZWlzZW5iZXJnIHNwaW4gbGFkZGVyIGV4aXN0cyBh dCBmaXhlZCBnZW9tZXRyeSBhbmQgd2hlbiBvbmUgaXMgdXNpbmcgdGhlIGNvbW1vbiBzcGluIHBy b2plY3Rpb24gdGVjaG5pcXVlcywgb25lIGFzc3VtZXMgdGhlIHZhbGlkaXR5IG9mIGEgc3BpbiBs YWRkZXIuIElmIHRoZSBjb3VwbGluZyBpcyBzbWFsbOKAmWlzaCwgdGhlIGdlb21ldHJ5IGRlcGVu ZGVuY2UgaXMgYWxzbyBzbWFsbCBhbmQgdGhpbmdzIGZpdCB0b2dldGhlciByZWFzb25hYmx5IHdl bGwsIGJ1dCB0aGUgc2l0dWF0aW9uIG9uIGEgd2hvbGUgbWF5IG5vdCBiZSBjb25zaWRlcmVkIHRv IGJlIGVudGlyZWx5IHNhdGlzZmFjdG9yeS4NCg0KR29vZCBsdWNrIQ0KDQpBbSAxMC4wOS4yMDE3 IHVtIDIyOjAyIHNjaHJpZWIgSGVucmlxdWUgQy4gUy4gSnVuaW9yIGhlbnJpcXVlY3NqfCx8Z21h aWwuY29tPGh0dHA6Ly9nbWFpbC5jb20+IDxvd25lci1jaGVtaXN0cnlAY2NsLm5ldDxtYWlsdG86 b3duZXItY2hlbWlzdHJ5QGNjbC5uZXQ+PjoNCg0KRGVhciBQcm9mZXNzb3IgTmVlc2UsIHRoYW5r IHlvdSBmb3IgeW91ciBraW5kIHJlcGx5IGFuZCBwb2ludGluZyBtZSB0byB5b3VyIHJldmlldzsg dGhhdCB3YXMgcmVhbGx5IGhlbHBmdWwuDQoNCkFsbCB0aGUgYmVzdC4NCg0KT24gU3VuLCBTZXAg MTAsIDIwMTcgYXQgMTo0MyBQTSwgTmVlc2UsIEZyYW5rIGZyYW5rLm5lZXNlICogY2VjLm1wZy5k ZTxodHRwOi8vY2VjLm1wZy5kZS8+IDxvd25lci1jaGVtaXN0cnkvYVxjY2wubmV0PG1haWx0bzpv d25lci1jaGVtaXN0cnkvYVxjY2wubmV0Pj4gd3JvdGU6DQpEZWFyIEhlbnJpcXVlLA0KDQpUaGlz IGlzIHRoZSBraW5kIG9mIHByb2JsZW0gd2hlcmUgeW91IGhhdmUgdG8gcGF5IGF0dGVudGlvbiB0 byB0aGUgYWN0dWFsIGVsZWN0cm9uaWMgc3RydWN0dXJlIGFuZCBub3QganVzdCBydW4gY2FsY3Vs YXRpb25zLg0KDQpZb3UgaGF2ZSB0byBwYXkgYXR0ZW50aW9uIHRvIHNwaW4gY291cGxpbmcuIENv KElJSSkgaXMgZDYgc3lzdGVtLiBEZXBlbmRpbmcgb24gdGhlIGNvb3JkaW5hdGlvbiBlbnZpcm9u bWVudCwgdGhlIG1vc3QgbGlrZWx5IGxvY2FsIHNwaW4gc3RhdGVzIGFyZSBTbD0wIG9yIDEuIFRo ZSB0aHJlZSBsb2NhbCBzcGlucyAtIGlmIHRoZXJlIGFyZSBhbnkgLSBjb3VsZCBjb3VwbGUgdG8g U3Q9MywyLDEgb3IgcGVyaGFwcyAwLiBJbiBhIHRyaWFuZ2xlIHNwaW4gZnJ1c3RyYXRpb24gb2Nj dXJzIGFuZCB0aGUgY291cGxpbmcgaXMgbW9zdCBsaWtlbHkgYW50aWZlcnJvbWFnbmV0aWMgd2hp Y2ggd291bGQgbGVhdmUgU3Q9MSBtb3N0IGxpa2VseSAoaWYgU2w9MSksIGJ1dCBpdCBjb3VsZCB3 ZWxsIGJlIG1vcmUgY29tcGxpY2F0ZWQgaWYgdGhlcmUgaXMgYW55IG9yYml0YWwgZGVnZW5lcmFj eS4NCg0KVGhlIHBvaW50IGlzIHRoYXQgdGhlIGxvd2VyIHNwaW4gc3RhdGVzIGFyZSBub3Qgc2lu Z2xlIGRldGVybWluYW50cyBhbmQgaGVuY2UganVzdCBlbnRlcmluZyBhIGdpdmVuIG11bHRpcGxp Y2l0eSBpbiBhIERGVCBwcm9ncmFtIGFuZCBydW4gd2l0aCBpdCBpcyBpbmNvcnJlY3QuIFlvdSBv YnRhaW4gYnJva2VuIHN5bW1ldHJ5IGRldGVybWluYW50cyB0aGF0IGFyZSBlaWdlbmZ1bmN0aW9u cyB0byBTeiBidXQgbm90IFMqKjIuIFNwaW4gcHJvamVjdGlvbiB0ZWNobmlxdWVzIG11c3QgdGhl biBiZSBhcHBsaWVkIHRvIGVzdGltYXRlIHNwaW4gc3RhdGUgZW5lcmdpZXMuDQoNCkEgbXVsdGly ZWZlcmVuY2UgbWV0aG9kIGlzIGFuIGFsdGVybmF0aXZlLCBidXQgeW91IGhhdmUgdG8gd29yayBo YXJkIHRvIG92ZXJjb21lIHRoZSBzZWxmIGNvbnNpc3RlbnQgZmllbGQgYmlhcyBmb3IgaGlnaCBz cGluIHN0YXRlcyBhbmQgdGhlIHVuZGVyZXN0aW1hdGlvbiBvZiBleGNoYW5nZSBjb3VwbGluZy4N Cg0KSU1ITyB0aGVzZSBwcm9ibGVtcyBhcmUgbW9zdCBlYXNpbHkgc29sdmVkIGV4cGVyaW1lbnRh bGx5LiBDb25uZWN0aW5nIHRvIHRoZSBleHBlcmltZW50IChzdXNjZXB0aWJpbGl0eSwgTUNELCBF UFIgLi4uKSBpcyB2aXRhbCBpbiB0aGUgZmlyc3QgcGxhY2UuDQoNClBsZWFzZSBhbGxvdyBtZSAt IE15IGNvb3JkaW5hdGlvbiBjaGVtaXN0cnkgcmV2aWV3cyBhcnRpY2xlIGZyb20gMjAwOSBwcm92 aWRlcyBhIHNvbWV3aGF0IGRldGFpbGVkIGRpc2N1c3Npb24uIEZyb20gYSBtb3JlIGNvbmNlcHR1 YWwgcG9pbnQgb2YgdmlldyB5b3UgbWF5IHdhbnQgdG8gY2hlY2sgYSBqdXN0IHB1Ymxpc2hlZCBB bmdld2FuZHRlIENoZW1pZSBFc3NheS4gQSB3aG9sZSBpc3N1ZSBvZiBjb29yZGluYXRpb24gY2hl bWlzdHJ5IHJldiBoYXMgcmVjZW50bHkgYmVlbiBkZXZvdGVkIHRvIG1vbGVjdWxhciBtYWduZXRp c20gLSB0aGVyZSBnZW5lcmFsbHkgIGlzIGEgcmljaCBsaXRlcmF0dXJlIG9uIHRoaXMgdHlwZSBv ZiBwcm9ibGVtLg0KDQpHb29kIGx1Y2ssDQpDaGVlcnMsDQpGcmFuaw0KDQpWb24gbWVpbmVtIGlQ aG9uZSBnZXNlbmRldA0KDQpBbSAxMC4wOS4yMDE3IHVtIDE4OjE1IHNjaHJpZWIgU2VyZ2lvIEVt YW51ZWwgR2FsZW1iZWNrIHNlZ2FsZW1iXS1bdXNwLmJyPGh0dHA6Ly91c3AuYnIvPiA8b3duZXIt Y2hlbWlzdHJ5KH4pY2NsLm5ldDxtYWlsdG86b3duZXItY2hlbWlzdHJ5KH4pY2NsLm5ldD4+Og0K DQpEZWFyIEhlbnJpcXVlLA0KDQpJIHN1Z2dlc3QgdGhhdCBmb3IgZWFjaCBzcGluIHN0YXRlIHlv dSBvcHRpbWl6ZSB0aGUgZ2VvbWV0cnkuIFNvbWUgb2YgdGhpcyBzdGF0ZXMgY291bGQgZ2VuZXJh dGUgYW4gdW5zdGFibGUgZ2VvbWV0cnkuDQoNCkJlc3QgcmVnYXJkcywNCg0KU2VyZ2lvDQoNClBy b2YuIFNlcmdpbyBFbWFudWVsIEdhbGVtYmVjaw0KQ29tcHV0YXRpb25hbCBRdWFudHVtIENoZW1p c3RyeSBMYWJvcmF0b3J5DQpEZXBhcnRhbWVudG8gZGUgUXXDrW1pY2EgLSBGRkNMUlAtVVNQDQpB di4gQmFuZGVpcmFudGVzLCAzOTAwPGh0dHBzOi8vbWFwcy5nb29nbGUuY29tLz9xPUF2LitCYW5k ZWlyYW50ZXMsKzM5MDAmZW50cnk9Z21haWwmc291cmNlPWc+DQoxNDA0MC05MDEgLSBSaWJlaXJh byBQcmV0by1TUA0KQnJhc2lsDQoNCnBob25lOiArNTUoMTYpMzMxNTM3NjU8dGVsOigxNiklMjAz MzE1LTM3NjU+DQpzZWdhbGVtYn4hfnVzcC5icjxtYWlsdG86c2VnYWxlbWJ+IX51c3AuYnI+DQoN CjIwMTctMDktMTAgOTowMyBHTVQtMDM6MDAgSGVucmlxdWUgQy4gUy4gSnVuaW9yIGhlbnJpcXVl Y3NqKy8tZ21haWwuY29tPGh0dHA6Ly9nbWFpbC5jb20vPiA8b3duZXItY2hlbWlzdHJ5fiF+Y2Ns Lm5ldDxtYWlsdG86b3duZXItY2hlbWlzdHJ5fiF+Y2NsLm5ldD4+Og0KDQpEZWFyIGNvbGxlYWd1 ZXMsIEnigJltIHdvcmtpbmcgd2l0aCBhIENvYmFsdChJSSkgdHJpbWVyIHdob3NlIG1vbGVjdWxh ciBzdHJ1Y3R1cmUgd2FzIGFjaGlldmVkIGJ5IFNpbmdsZSBDcnlzdGFsIFgtUmF5IERpZmZyYWN0 aW9uLiBNeSB0YXNrIG5vdyBpcyB0byBjaGVjayB0aGUgc3BpbiBzdGF0ZXMgb2YgdGhlIHN0cnVj dHVyZSAoSGlnaCBvciBMb3cgc3BpbikuIFNpbmNlIENvKElJKSBjYW4gaGF2ZSAxIG9yIDMgdW5w YWlyZWQgZWxlY3Ryb25zLCBJ4oCZbSBhcHByb2FjaGluZyB0aGlzIHByb2JsZW0gYnkgY2FsY3Vs YXRpbmcgU2luZ2xlIFBvaW50cyBmb3IgZXZlcnkgcG9zc2libGUgbXVsdGlwbGljaXR5ICgxMCwg OCwgNiwgNCwgMikgYW5kIGFzc3VtaW5nIHRoYXQgdGhlIG1vc3Qgc3RhYmxlIGlzIHRoZSBvbmUg dGhhdCByZXByZXNlbnRzIG15IHN0cnVjdHVyZSAoYW5kIG15IHNwaW4gc3RhdGVzKS4NCg0KSXMg dGhpcyBhcHByb2FjaCBjb3JyZWN0Pw0KDQpUaGFuayB5b3UNCg0KLS0NCkhlbnJpcXVlIEMuIFMu IEp1bmlvcg0KDQoNCg0KDQoNCi0tDQpIZW5yaXF1ZSBDLiBTLiBKdW5pb3INCg0KDQo= --_000_9A3A7AD9F6204E1785BF5DE8F5C3B6FAcecmpgde_ Content-Type: text/html; charset="utf-8" Content-ID: Content-Transfer-Encoding: base64 PGh0bWw+DQo8aGVhZD4NCjxtZXRhIGh0dHAtZXF1aXY9IkNvbnRlbnQtVHlwZSIgY29udGVudD0i dGV4dC9odG1sOyBjaGFyc2V0PXV0Zi04Ij4NCjwvaGVhZD4NCjxib2R5IHN0eWxlPSJ3b3JkLXdy YXA6IGJyZWFrLXdvcmQ7IC13ZWJraXQtbmJzcC1tb2RlOiBzcGFjZTsgLXdlYmtpdC1saW5lLWJy ZWFrOiBhZnRlci13aGl0ZS1zcGFjZTsiIGNsYXNzPSIiPg0KRGVhciBIZW5yaXF1ZSwNCjxkaXYg Y2xhc3M9IiI+PGJyIGNsYXNzPSIiPg0KPC9kaXY+DQo8ZGl2IGNsYXNzPSIiPkkgYW0gZ2xhZCB0 aGF0IGl0IG1heSBoYXZlIGhlbHBlZCBhIGJpdC4mbmJzcDs8L2Rpdj4NCjxkaXYgY2xhc3M9IiI+ PGJyIGNsYXNzPSIiPg0KPC9kaXY+DQo8ZGl2IGNsYXNzPSIiPkFwb2xvZ2llcyBmb3IgZ2V0dGlu ZyB0aGUgb3hpZGF0aW9uIHN0YXRlIHdyb25nIChlbWJhcmFzc2luZykuIEkgd2FzIGEgYml0IHRp cmVkIHllc3RlcmRheSBhbmQgbWlzcmVhZCB0aGUgb3JpZ2luYWwgcG9zdC4gSWYgaXQgaXMgQ28o SUkpIG5vdCBDbyhJSUkpIG15IHNwaW4gc3RhdGUgZGlzY3Vzc2lvbiBtYWtlcyBubyBzZW5zZSBv ZiBjb3Vyc2UuIEJ1dCB0aGUgZ2VuZXJhbCBwb2ludHMgYXJlIHRoZSBzYW1lLiZuYnNwOzwvZGl2 Pg0KPGRpdiBjbGFzcz0iIj48YnIgY2xhc3M9IiI+DQo8L2Rpdj4NCjxkaXYgY2xhc3M9IiI+T24g dGhlIHF1ZXN0aW9uIG9mIGZpeGVkIGdlb21ldHJ5IG9yIG5vdDogVGhlIFNRVUlEIG1lYXN1cmVt ZW50IGlzIGRlZmluaXRlbHkgYWRpYWJhdGljIGFuZCBoZW5jZSwgb25lIGlzIHN0dWR5aW5nIGVh Y2ggc3BpbiBzdGF0ZSBpbiBpdHMgZXF1aWxpYnJpdW0gZ2VvZW10cnkuIEhvd2V2ZXIsIHRoZSBI ZWlzZW5iZXJnIEhhbWlsdG9uaWFuLCB0aGF0IGlzIHVzdWFsbHkgdXNlZCB0byBwYXJhbWV0ZXJp emUgdGhlIGV4cGVyaW1lbnQNCiBkb2VzbuKAmXQga25vdyBhbnl0aGluZyBhYm91dCBnZW9tZXRy eS4gVGhlIEhlaXNlbmJlcmcgc3BpbiBsYWRkZXIgZXhpc3RzIGF0IGZpeGVkIGdlb21ldHJ5IGFu ZCB3aGVuIG9uZSBpcyB1c2luZyB0aGUgY29tbW9uIHNwaW4gcHJvamVjdGlvbiB0ZWNobmlxdWVz LCBvbmUgYXNzdW1lcyB0aGUgdmFsaWRpdHkgb2YgYSBzcGluIGxhZGRlci4gSWYgdGhlIGNvdXBs aW5nIGlzIHNtYWxs4oCZaXNoLCB0aGUgZ2VvbWV0cnkgZGVwZW5kZW5jZSBpcyBhbHNvDQogc21h bGwgYW5kIHRoaW5ncyBmaXQgdG9nZXRoZXIgcmVhc29uYWJseSB3ZWxsLCBidXQgdGhlIHNpdHVh dGlvbiBvbiBhIHdob2xlIG1heSBub3QgYmUgY29uc2lkZXJlZCB0byBiZSBlbnRpcmVseSBzYXRp c2ZhY3RvcnkuJm5ic3A7PC9kaXY+DQo8ZGl2IGNsYXNzPSIiPjxiciBjbGFzcz0iIj4NCjwvZGl2 Pg0KPGRpdiBjbGFzcz0iIj5Hb29kIGx1Y2shJm5ic3A7PC9kaXY+DQo8ZGl2IGNsYXNzPSIiPjxi ciBjbGFzcz0iIj4NCjxkaXY+DQo8YmxvY2txdW90ZSB0eXBlPSJjaXRlIiBjbGFzcz0iIj4NCjxk aXYgY2xhc3M9IiI+QW0gMTAuMDkuMjAxNyB1bSAyMjowMiBzY2hyaWViIEhlbnJpcXVlIEMuIFMu IEp1bmlvciBoZW5yaXF1ZWNzanwsfDxhIGhyZWY9Imh0dHA6Ly9nbWFpbC5jb20iIGNsYXNzPSIi PmdtYWlsLmNvbTwvYT4gJmx0OzxhIGhyZWY9Im1haWx0bzpvd25lci1jaGVtaXN0cnlAY2NsLm5l dCIgY2xhc3M9IiI+b3duZXItY2hlbWlzdHJ5QGNjbC5uZXQ8L2E+Jmd0Ozo8L2Rpdj4NCjxiciBj bGFzcz0iQXBwbGUtaW50ZXJjaGFuZ2UtbmV3bGluZSI+DQo8ZGl2IGNsYXNzPSIiPg0KPGRpdiBk aXI9Imx0ciIgY2xhc3M9IiI+DQo8ZGl2IGNsYXNzPSJnbWFpbF9kZWZhdWx0IiBzdHlsZT0iZm9u dC1mYW1pbHk6bW9ub3NwYWNlLG1vbm9zcGFjZSI+RGVhciBQcm9mZXNzb3IgTmVlc2UsIHRoYW5r IHlvdSBmb3IgeW91ciBraW5kIHJlcGx5IGFuZCBwb2ludGluZyBtZSB0byB5b3VyIHJldmlldzsg dGhhdCB3YXMgcmVhbGx5IGhlbHBmdWwuPC9kaXY+DQo8ZGl2IGNsYXNzPSJnbWFpbF9kZWZhdWx0 IiBzdHlsZT0iZm9udC1mYW1pbHk6bW9ub3NwYWNlLG1vbm9zcGFjZSI+PGJyIGNsYXNzPSIiPg0K PC9kaXY+DQo8ZGl2IGNsYXNzPSJnbWFpbF9kZWZhdWx0IiBzdHlsZT0iZm9udC1mYW1pbHk6bW9u b3NwYWNlLG1vbm9zcGFjZSI+QWxsIHRoZSBiZXN0LjwvZGl2Pg0KPGRpdiBjbGFzcz0iZ21haWxf ZXh0cmEiPjxiciBjbGFzcz0iIj4NCjxkaXYgY2xhc3M9ImdtYWlsX3F1b3RlIj5PbiBTdW4sIFNl cCAxMCwgMjAxNyBhdCAxOjQzIFBNLCBOZWVzZSwgRnJhbmsgZnJhbmsubmVlc2UgKg0KPGEgaHJl Zj0iaHR0cDovL2NlYy5tcGcuZGUvIiBjbGFzcz0iIj5jZWMubXBnLmRlPC9hPiA8c3BhbiBkaXI9 Imx0ciIgY2xhc3M9IiI+Jmx0OzxhIGhyZWY9Im1haWx0bzpvd25lci1jaGVtaXN0cnkvYVxjY2wu bmV0IiB0YXJnZXQ9Il9ibGFuayIgY2xhc3M9IiI+b3duZXItY2hlbWlzdHJ5L2FcY2NsLm5ldDwv YT4mZ3Q7PC9zcGFuPiB3cm90ZTo8YnIgY2xhc3M9IiI+DQo8YmxvY2txdW90ZSBjbGFzcz0iZ21h aWxfcXVvdGUiIHN0eWxlPSJtYXJnaW46MCAwIDAgLjhleDtib3JkZXItbGVmdDoxcHggI2NjYyBz b2xpZDtwYWRkaW5nLWxlZnQ6MWV4Ij4NCjxkaXYgZGlyPSJhdXRvIiBjbGFzcz0iIj4NCjxkaXYg Y2xhc3M9IiI+DQo8ZGl2IGNsYXNzPSIiPjxzcGFuIHN0eWxlPSJiYWNrZ3JvdW5kLWNvbG9yOnJn YmEoMjU1LDI1NSwyNTUsMCkiIGNsYXNzPSIiPkRlYXIgSGVucmlxdWUsPC9zcGFuPjwvZGl2Pg0K PGRpdiBjbGFzcz0iIj48c3BhbiBzdHlsZT0iYmFja2dyb3VuZC1jb2xvcjpyZ2JhKDI1NSwyNTUs MjU1LDApIiBjbGFzcz0iIj48YnIgY2xhc3M9IiI+DQo8L3NwYW4+PC9kaXY+DQo8ZGl2IGNsYXNz PSIiPjxzcGFuIHN0eWxlPSJiYWNrZ3JvdW5kLWNvbG9yOnJnYmEoMjU1LDI1NSwyNTUsMCkiIGNs YXNzPSIiPlRoaXMgaXMgdGhlIGtpbmQgb2YgcHJvYmxlbSB3aGVyZSB5b3UgaGF2ZSB0byBwYXkg YXR0ZW50aW9uIHRvIHRoZSBhY3R1YWwgZWxlY3Ryb25pYyBzdHJ1Y3R1cmUgYW5kIG5vdCBqdXN0 IHJ1biBjYWxjdWxhdGlvbnMuPC9zcGFuPjwvZGl2Pg0KPGRpdiBpZD0ibV81MDU3MzgxMjIxNDc0 NjgxOTQyQXBwbGVNYWlsU2lnbmF0dXJlIiBjbGFzcz0iIj48c3BhbiBzdHlsZT0iYmFja2dyb3Vu ZC1jb2xvcjpyZ2JhKDI1NSwyNTUsMjU1LDApIiBjbGFzcz0iIj48YnIgY2xhc3M9IiI+DQo8L3Nw YW4+PC9kaXY+DQo8ZGl2IGlkPSJtXzUwNTczODEyMjE0NzQ2ODE5NDJBcHBsZU1haWxTaWduYXR1 cmUiIGNsYXNzPSIiPjxzcGFuIHN0eWxlPSJiYWNrZ3JvdW5kLWNvbG9yOnJnYmEoMjU1LDI1NSwy NTUsMCkiIGNsYXNzPSIiPllvdSBoYXZlIHRvIHBheSBhdHRlbnRpb24gdG8gc3BpbiBjb3VwbGlu Zy4gQ28oSUlJKSBpcyBkNiBzeXN0ZW0uIERlcGVuZGluZyBvbiB0aGUgY29vcmRpbmF0aW9uIGVu dmlyb25tZW50LCB0aGUgbW9zdCBsaWtlbHkgbG9jYWwgc3BpbiBzdGF0ZXMNCiBhcmUgU2w9MCBv ciAxLiBUaGUgdGhyZWUgbG9jYWwgc3BpbnMgLSBpZiB0aGVyZSBhcmUgYW55IC0gY291bGQgY291 cGxlIHRvIFN0PTMsMiwxIG9yIHBlcmhhcHMgMC4gSW4gYSB0cmlhbmdsZSBzcGluIGZydXN0cmF0 aW9uIG9jY3VycyBhbmQgdGhlIGNvdXBsaW5nIGlzIG1vc3QgbGlrZWx5IGFudGlmZXJyb21hZ25l dGljIHdoaWNoIHdvdWxkIGxlYXZlIFN0PTEgbW9zdCBsaWtlbHkgKGlmIFNsPTEpLCBidXQgaXQg Y291bGQgd2VsbCBiZSBtb3JlDQogY29tcGxpY2F0ZWQgaWYgdGhlcmUgaXMgYW55IG9yYml0YWwg ZGVnZW5lcmFjeS48L3NwYW4+PC9kaXY+DQo8ZGl2IGlkPSJtXzUwNTczODEyMjE0NzQ2ODE5NDJB cHBsZU1haWxTaWduYXR1cmUiIGNsYXNzPSIiPjxzcGFuIHN0eWxlPSJiYWNrZ3JvdW5kLWNvbG9y OnJnYmEoMjU1LDI1NSwyNTUsMCkiIGNsYXNzPSIiPjxiciBjbGFzcz0iIj4NCjwvc3Bhbj48L2Rp dj4NCjxkaXYgaWQ9Im1fNTA1NzM4MTIyMTQ3NDY4MTk0MkFwcGxlTWFpbFNpZ25hdHVyZSIgY2xh c3M9IiI+PHNwYW4gc3R5bGU9ImJhY2tncm91bmQtY29sb3I6cmdiYSgyNTUsMjU1LDI1NSwwKSIg Y2xhc3M9IiI+VGhlIHBvaW50IGlzIHRoYXQgdGhlIGxvd2VyIHNwaW4gc3RhdGVzIGFyZSBub3Qg c2luZ2xlIGRldGVybWluYW50cyBhbmQgaGVuY2UganVzdCBlbnRlcmluZyBhIGdpdmVuIG11bHRp cGxpY2l0eSBpbiBhIERGVCBwcm9ncmFtIGFuZCBydW4NCiB3aXRoIGl0IGlzIGluY29ycmVjdC4g WW91IG9idGFpbiBicm9rZW4gc3ltbWV0cnkgZGV0ZXJtaW5hbnRzIHRoYXQgYXJlIGVpZ2VuZnVu Y3Rpb25zIHRvIFN6IGJ1dCBub3QgUyoqMi4gU3BpbiBwcm9qZWN0aW9uIHRlY2huaXF1ZXMgbXVz dCB0aGVuIGJlIGFwcGxpZWQgdG8gZXN0aW1hdGUgc3BpbiBzdGF0ZSBlbmVyZ2llcy4mbmJzcDs8 L3NwYW4+PC9kaXY+DQo8ZGl2IGlkPSJtXzUwNTczODEyMjE0NzQ2ODE5NDJBcHBsZU1haWxTaWdu YXR1cmUiIGNsYXNzPSIiPjxzcGFuIHN0eWxlPSJiYWNrZ3JvdW5kLWNvbG9yOnJnYmEoMjU1LDI1 NSwyNTUsMCkiIGNsYXNzPSIiPjxiciBjbGFzcz0iIj4NCjwvc3Bhbj48L2Rpdj4NCjxkaXYgaWQ9 Im1fNTA1NzM4MTIyMTQ3NDY4MTk0MkFwcGxlTWFpbFNpZ25hdHVyZSIgY2xhc3M9IiI+PHNwYW4g c3R5bGU9ImJhY2tncm91bmQtY29sb3I6cmdiYSgyNTUsMjU1LDI1NSwwKSIgY2xhc3M9IiI+QSBt dWx0aXJlZmVyZW5jZSBtZXRob2QgaXMgYW4gYWx0ZXJuYXRpdmUsIGJ1dCB5b3UgaGF2ZSB0byB3 b3JrIGhhcmQgdG8gb3ZlcmNvbWUgdGhlIHNlbGYgY29uc2lzdGVudCBmaWVsZCBiaWFzIGZvciBo aWdoIHNwaW4gc3RhdGVzIGFuZCB0aGUNCiB1bmRlcmVzdGltYXRpb24gb2YgZXhjaGFuZ2UgY291 cGxpbmcuPC9zcGFuPjwvZGl2Pg0KPGRpdiBpZD0ibV81MDU3MzgxMjIxNDc0NjgxOTQyQXBwbGVN YWlsU2lnbmF0dXJlIiBjbGFzcz0iIj48c3BhbiBzdHlsZT0iYmFja2dyb3VuZC1jb2xvcjpyZ2Jh KDI1NSwyNTUsMjU1LDApIiBjbGFzcz0iIj48YnIgY2xhc3M9IiI+DQo8L3NwYW4+PC9kaXY+DQo8 ZGl2IGlkPSJtXzUwNTczODEyMjE0NzQ2ODE5NDJBcHBsZU1haWxTaWduYXR1cmUiIGNsYXNzPSIi PjxzcGFuIHN0eWxlPSJiYWNrZ3JvdW5kLWNvbG9yOnJnYmEoMjU1LDI1NSwyNTUsMCkiIGNsYXNz PSIiPklNSE8gdGhlc2UgcHJvYmxlbXMgYXJlIG1vc3QgZWFzaWx5IHNvbHZlZCBleHBlcmltZW50 YWxseS4gQ29ubmVjdGluZyB0byZuYnNwOzxhIGRpcj0ibHRyIiBjbGFzcz0iIj50aGUgZXhwZXJp bWVudDwvYT4mbmJzcDsoc3VzY2VwdGliaWxpdHksIE1DRCwgRVBSDQogLi4uKSBpcyB2aXRhbCBp biB0aGUgZmlyc3QgcGxhY2UuPC9zcGFuPjwvZGl2Pg0KPGRpdiBpZD0ibV81MDU3MzgxMjIxNDc0 NjgxOTQyQXBwbGVNYWlsU2lnbmF0dXJlIiBjbGFzcz0iIj48c3BhbiBzdHlsZT0iYmFja2dyb3Vu ZC1jb2xvcjpyZ2JhKDI1NSwyNTUsMjU1LDApIiBjbGFzcz0iIj48YnIgY2xhc3M9IiI+DQo8L3Nw YW4+PC9kaXY+DQo8ZGl2IGlkPSJtXzUwNTczODEyMjE0NzQ2ODE5NDJBcHBsZU1haWxTaWduYXR1 cmUiIGNsYXNzPSIiPjxzcGFuIHN0eWxlPSJiYWNrZ3JvdW5kLWNvbG9yOnJnYmEoMjU1LDI1NSwy NTUsMCkiIGNsYXNzPSIiPlBsZWFzZSBhbGxvdyBtZSAtIE15IGNvb3JkaW5hdGlvbiBjaGVtaXN0 cnkgcmV2aWV3cyBhcnRpY2xlIGZyb20gMjAwOSBwcm92aWRlcyBhIHNvbWV3aGF0IGRldGFpbGVk IGRpc2N1c3Npb24uIEZyb20gYSBtb3JlIGNvbmNlcHR1YWwgcG9pbnQNCiBvZiB2aWV3IHlvdSBt YXkgd2FudCB0byBjaGVjayBhIGp1c3QgcHVibGlzaGVkIEFuZ2V3YW5kdGUgQ2hlbWllIEVzc2F5 LiBBIHdob2xlIGlzc3VlIG9mIGNvb3JkaW5hdGlvbiBjaGVtaXN0cnkgcmV2IGhhcyByZWNlbnRs eSBiZWVuIGRldm90ZWQgdG8gbW9sZWN1bGFyIG1hZ25ldGlzbSAtIHRoZXJlIGdlbmVyYWxseSAm bmJzcDtpcyBhIHJpY2ggbGl0ZXJhdHVyZSBvbiB0aGlzIHR5cGUgb2YgcHJvYmxlbS48L3NwYW4+ PC9kaXY+DQo8ZGl2IGlkPSJtXzUwNTczODEyMjE0NzQ2ODE5NDJBcHBsZU1haWxTaWduYXR1cmUi IGNsYXNzPSIiPjxzcGFuIHN0eWxlPSJiYWNrZ3JvdW5kLWNvbG9yOnJnYmEoMjU1LDI1NSwyNTUs MCkiIGNsYXNzPSIiPjxiciBjbGFzcz0iIj4NCjwvc3Bhbj48L2Rpdj4NCjxkaXYgaWQ9Im1fNTA1 NzM4MTIyMTQ3NDY4MTk0MkFwcGxlTWFpbFNpZ25hdHVyZSIgY2xhc3M9IiI+PHNwYW4gc3R5bGU9 ImJhY2tncm91bmQtY29sb3I6cmdiYSgyNTUsMjU1LDI1NSwwKSIgY2xhc3M9IiI+R29vZCBsdWNr LDwvc3Bhbj48L2Rpdj4NCjxkaXYgaWQ9Im1fNTA1NzM4MTIyMTQ3NDY4MTk0MkFwcGxlTWFpbFNp Z25hdHVyZSIgY2xhc3M9IiI+PHNwYW4gc3R5bGU9ImJhY2tncm91bmQtY29sb3I6cmdiYSgyNTUs MjU1LDI1NSwwKSIgY2xhc3M9IiI+Q2hlZXJzLDwvc3Bhbj48L2Rpdj4NCjxkaXYgaWQ9Im1fNTA1 NzM4MTIyMTQ3NDY4MTk0MkFwcGxlTWFpbFNpZ25hdHVyZSIgY2xhc3M9IiI+PHNwYW4gc3R5bGU9 ImJhY2tncm91bmQtY29sb3I6cmdiYSgyNTUsMjU1LDI1NSwwKSIgY2xhc3M9IiI+RnJhbms8L3Nw YW4+PGJyIGNsYXNzPSIiPg0KPC9kaXY+DQo8YnIgY2xhc3M9IiI+DQpWb24gbWVpbmVtIGlQaG9u ZSBnZXNlbmRldDwvZGl2Pg0KPHNwYW4gY2xhc3M9IiI+DQo8ZGl2IGNsYXNzPSIiPjxiciBjbGFz cz0iIj4NCkFtIDEwLjA5LjIwMTcgdW0gMTg6MTUgc2NocmllYiBTZXJnaW8gRW1hbnVlbCBHYWxl bWJlY2sgc2VnYWxlbWJdLVs8YSBocmVmPSJodHRwOi8vdXNwLmJyLyIgdGFyZ2V0PSJfYmxhbmsi IGNsYXNzPSIiPnVzcC5icjwvYT4gJmx0OzxhIGhyZWY9Im1haWx0bzpvd25lci1jaGVtaXN0cnko filjY2wubmV0IiB0YXJnZXQ9Il9ibGFuayIgY2xhc3M9IiI+b3duZXItY2hlbWlzdHJ5KH4pY2Ns Lm5ldDwvYT4mZ3Q7OjxiciBjbGFzcz0iIj4NCjxiciBjbGFzcz0iIj4NCjwvZGl2Pg0KPGJsb2Nr cXVvdGUgdHlwZT0iY2l0ZSIgY2xhc3M9IiI+DQo8ZGl2IGNsYXNzPSIiPg0KPGRpdiBkaXI9Imx0 ciIgY2xhc3M9IiI+RGVhciBIZW5yaXF1ZSwNCjxkaXYgY2xhc3M9IiI+PGJyIGNsYXNzPSIiPg0K PC9kaXY+DQo8ZGl2IGNsYXNzPSIiPkkgc3VnZ2VzdCB0aGF0IGZvciBlYWNoIHNwaW4gc3RhdGUg eW91IG9wdGltaXplIHRoZSBnZW9tZXRyeS4gU29tZSBvZiB0aGlzIHN0YXRlcyBjb3VsZCBnZW5l cmF0ZSBhbiB1bnN0YWJsZSBnZW9tZXRyeS4mbmJzcDs8L2Rpdj4NCjxkaXYgY2xhc3M9IiI+PGJy IGNsYXNzPSIiPg0KPC9kaXY+DQo8ZGl2IGNsYXNzPSIiPkJlc3QgcmVnYXJkcyw8L2Rpdj4NCjxk aXYgY2xhc3M9IiI+PGJyIGNsYXNzPSIiPg0KPC9kaXY+DQo8ZGl2IGNsYXNzPSIiPlNlcmdpbzwv ZGl2Pg0KPC9kaXY+DQo8ZGl2IGNsYXNzPSJnbWFpbF9leHRyYSI+PGJyIGNsZWFyPSJhbGwiIGNs YXNzPSIiPg0KPGRpdiBjbGFzcz0iIj4NCjxkaXYgY2xhc3M9Im1fNTA1NzM4MTIyMTQ3NDY4MTk0 MmdtYWlsX3NpZ25hdHVyZSIgZGF0YS1zbWFydG1haWw9ImdtYWlsX3NpZ25hdHVyZSI+DQo8ZGl2 IGRpcj0ibHRyIiBjbGFzcz0iIj4NCjxkaXYgY2xhc3M9IiI+DQo8ZGl2IGRpcj0ibHRyIiBjbGFz cz0iIj5Qcm9mLiBTZXJnaW8gRW1hbnVlbCBHYWxlbWJlY2s8L2Rpdj4NCjxkaXYgZGlyPSJsdHIi IGNsYXNzPSIiPkNvbXB1dGF0aW9uYWwgUXVhbnR1bSBDaGVtaXN0cnkgTGFib3JhdG9yeTxiciBj bGFzcz0iIj4NCjxkaXYgY2xhc3M9IiI+RGVwYXJ0YW1lbnRvIGRlIFF1w61taWNhIC0gRkZDTFJQ LVVTUDwvZGl2Pg0KPGRpdiBjbGFzcz0iIj48YSBocmVmPSJodHRwczovL21hcHMuZ29vZ2xlLmNv bS8/cT1Bdi4mIzQzO0JhbmRlaXJhbnRlcywmIzQzOzM5MDAmYW1wO2VudHJ5PWdtYWlsJmFtcDtz b3VyY2U9ZyIgY2xhc3M9IiI+QXYuIEJhbmRlaXJhbnRlcywgMzkwMDwvYT48L2Rpdj4NCjxkaXYg Y2xhc3M9IiI+MTQwNDAtOTAxIC0gUmliZWlyYW8gUHJldG8tU1A8L2Rpdj4NCjxkaXYgY2xhc3M9 IiI+QnJhc2lsPC9kaXY+DQo8ZGl2IGNsYXNzPSIiPjxiciBjbGFzcz0iIj4NCjwvZGl2Pg0KPGRp diBjbGFzcz0iIj5waG9uZTogPGEgaHJlZj0idGVsOigxNiklMjAzMzE1LTM3NjUiIHZhbHVlPSIm IzQzOzU1MTYzMzE1Mzc2NSIgdGFyZ2V0PSJfYmxhbmsiIGNsYXNzPSIiPg0KJiM0Mzs1NSgxNikz MzE1Mzc2NTwvYT48L2Rpdj4NCjxkaXYgY2xhc3M9IiI+PGEgaHJlZj0ibWFpbHRvOnNlZ2FsZW1i fiF+dXNwLmJyIiB0YXJnZXQ9Il9ibGFuayIgY2xhc3M9IiI+c2VnYWxlbWJ+IX51c3AuYnI8L2E+ PC9kaXY+DQo8L2Rpdj4NCjwvZGl2Pg0KPC9kaXY+DQo8L2Rpdj4NCjwvZGl2Pg0KPGJyIGNsYXNz PSIiPg0KPGRpdiBjbGFzcz0iZ21haWxfcXVvdGUiPjIwMTctMDktMTAgOTowMyBHTVQtMDM6MDAg SGVucmlxdWUgQy4gUy4gSnVuaW9yIGhlbnJpcXVlY3NqJiM0MzsvLTxhIGhyZWY9Imh0dHA6Ly9n bWFpbC5jb20vIiB0YXJnZXQ9Il9ibGFuayIgY2xhc3M9IiI+Z21haWwuY29tPC9hPg0KPHNwYW4g ZGlyPSJsdHIiIGNsYXNzPSIiPiZsdDs8YSBocmVmPSJtYWlsdG86b3duZXItY2hlbWlzdHJ5fiF+ Y2NsLm5ldCIgdGFyZ2V0PSJfYmxhbmsiIGNsYXNzPSIiPm93bmVyLWNoZW1pc3RyeX4hfmNjbC5u ZXQ8L2E+Jmd0Ozwvc3Bhbj46PGJyIGNsYXNzPSIiPg0KPGJsb2NrcXVvdGUgY2xhc3M9ImdtYWls X3F1b3RlIiBzdHlsZT0ibWFyZ2luOjAgMCAwIC44ZXg7Ym9yZGVyLWxlZnQ6MXB4ICNjY2Mgc29s aWQ7cGFkZGluZy1sZWZ0OjFleCI+DQo8ZGl2IGRpcj0ibHRyIiBjbGFzcz0iIj4NCjxkaXYgc3R5 bGU9ImZvbnQtZmFtaWx5Om1vbm9zcGFjZSxtb25vc3BhY2UiIGNsYXNzPSIiPg0KPHAgYWxpZ249 Imp1c3RpZnkiIGNsYXNzPSIiPkRlYXIgY29sbGVhZ3VlcywgSeKAmW0gd29ya2luZyB3aXRoIGEg Q29iYWx0KElJKSB0cmltZXIgd2hvc2UgbW9sZWN1bGFyIHN0cnVjdHVyZSB3YXMgYWNoaWV2ZWQg YnkgU2luZ2xlIENyeXN0YWwgWC1SYXkgRGlmZnJhY3Rpb24uIE15IHRhc2sgbm93IGlzIHRvIGNo ZWNrIHRoZSBzcGluIHN0YXRlcyBvZiB0aGUgc3RydWN0dXJlIChIaWdoIG9yIExvdyBzcGluKS4g U2luY2UgQ28oSUkpIGNhbiBoYXZlDQogMSBvciAzIHVucGFpcmVkIGVsZWN0cm9ucywgSeKAmW0g YXBwcm9hY2hpbmcgdGhpcyBwcm9ibGVtIGJ5IGNhbGN1bGF0aW5nIFNpbmdsZSBQb2ludHMgZm9y IGV2ZXJ5IHBvc3NpYmxlIG11bHRpcGxpY2l0eSAoMTAsIDgsIDYsIDQsIDIpIGFuZCBhc3N1bWlu ZyB0aGF0IHRoZSBtb3N0IHN0YWJsZSBpcyB0aGUgb25lIHRoYXQgcmVwcmVzZW50cyBteSBzdHJ1 Y3R1cmUgKGFuZCBteSBzcGluIHN0YXRlcykuPC9wPg0KPHAgYWxpZ249Imp1c3RpZnkiIGNsYXNz PSIiPklzIHRoaXMgYXBwcm9hY2ggY29ycmVjdD88L3A+DQo8cCBhbGlnbj0ianVzdGlmeSIgY2xh c3M9IiI+VGhhbmsgeW91PC9wPg0KPC9kaXY+DQo8c3BhbiBjbGFzcz0ibV81MDU3MzgxMjIxNDc0 NjgxOTQySE9FblpiIj48Zm9udCBjb2xvcj0iIzg4ODg4OCIgY2xhc3M9IiI+DQo8ZGl2IGNsYXNz PSIiPjxiciBjbGFzcz0iIj4NCjwvZGl2Pg0KLS0gPGJyIGNsYXNzPSIiPg0KPGRpdiBjbGFzcz0i bV81MDU3MzgxMjIxNDc0NjgxOTQybV8tNjk1MDQwODM5NDA5ODYyNDA4OGdtYWlsX3NpZ25hdHVy ZSI+DQo8ZGl2IGRpcj0ibHRyIiBjbGFzcz0iIj4NCjxkaXYgZGlyPSJsdHIiIGNsYXNzPSIiPg0K PGRpdiBkaXI9Imx0ciIgY2xhc3M9IiI+DQo8ZGl2IGRpcj0ibHRyIiBjbGFzcz0iIj4NCjxkaXYg ZGlyPSJsdHIiIGNsYXNzPSIiPg0KPGRpdiBkaXI9Imx0ciIgY2xhc3M9IiI+DQo8ZGl2IGRpcj0i bHRyIiBjbGFzcz0iIj4NCjxkaXYgZGlyPSJsdHIiIGNsYXNzPSIiPjxzcGFuIHN0eWxlPSJjb2xv cjpyZ2IoMTM5LDEzOSwxMzkpIiBjbGFzcz0iIj48Zm9udCBmYWNlPSJtb25vc3BhY2UsIG1vbm9z cGFjZSIgY2xhc3M9IiI+PGIgY2xhc3M9IiI+PGZvbnQgY29sb3I9IiM4MDgwODAiIGNsYXNzPSIi PkhlbnJpcXVlIEMuIFMuIEp1bmlvcjwvZm9udD48L2I+PGJyIGNsYXNzPSIiPg0KPGJyIGNsYXNz PSIiPg0KPC9mb250Pjwvc3Bhbj48L2Rpdj4NCjwvZGl2Pg0KPC9kaXY+DQo8L2Rpdj4NCjwvZGl2 Pg0KPC9kaXY+DQo8L2Rpdj4NCjwvZGl2Pg0KPC9kaXY+DQo8L2ZvbnQ+PC9zcGFuPjwvZGl2Pg0K PC9ibG9ja3F1b3RlPg0KPC9kaXY+DQo8YnIgY2xhc3M9IiI+DQo8L2Rpdj4NCjwvZGl2Pg0KPC9i bG9ja3F1b3RlPg0KPC9zcGFuPjwvZGl2Pg0KPC9ibG9ja3F1b3RlPg0KPC9kaXY+DQo8YnIgY2xh c3M9IiI+DQo8YnIgY2xlYXI9ImFsbCIgY2xhc3M9IiI+DQo8ZGl2IGNsYXNzPSIiPjxiciBjbGFz cz0iIj4NCjwvZGl2Pg0KLS0gPGJyIGNsYXNzPSIiPg0KPGRpdiBjbGFzcz0iZ21haWxfc2lnbmF0 dXJlIiBkYXRhLXNtYXJ0bWFpbD0iZ21haWxfc2lnbmF0dXJlIj4NCjxkaXYgZGlyPSJsdHIiIGNs YXNzPSIiPg0KPGRpdiBkaXI9Imx0ciIgY2xhc3M9IiI+DQo8ZGl2IGRpcj0ibHRyIiBjbGFzcz0i Ij4NCjxkaXYgZGlyPSJsdHIiIGNsYXNzPSIiPg0KPGRpdiBkaXI9Imx0ciIgY2xhc3M9IiI+DQo8 ZGl2IGRpcj0ibHRyIiBjbGFzcz0iIj4NCjxkaXYgZGlyPSJsdHIiIGNsYXNzPSIiPg0KPGRpdiBk aXI9Imx0ciIgY2xhc3M9IiI+PHNwYW4gc3R5bGU9ImNvbG9yOnJnYigxMzksMTM5LDEzOSkiIGNs YXNzPSIiPjxmb250IGZhY2U9Im1vbm9zcGFjZSwgbW9ub3NwYWNlIiBjbGFzcz0iIj48YiBjbGFz cz0iIj48Zm9udCBjb2xvcj0iIzgwODA4MCIgY2xhc3M9IiI+SGVucmlxdWUgQy4gUy4gSnVuaW9y PC9mb250PjwvYj48YnIgY2xhc3M9IiI+DQo8YnIgY2xhc3M9IiI+DQo8L2ZvbnQ+PC9zcGFuPjwv ZGl2Pg0KPC9kaXY+DQo8L2Rpdj4NCjwvZGl2Pg0KPC9kaXY+DQo8L2Rpdj4NCjwvZGl2Pg0KPC9k aXY+DQo8L2Rpdj4NCjwvZGl2Pg0KPC9kaXY+DQo8L2Rpdj4NCjwvYmxvY2txdW90ZT4NCjwvZGl2 Pg0KPGJyIGNsYXNzPSIiPg0KPC9kaXY+DQo8L2JvZHk+DQo8L2h0bWw+DQo= --_000_9A3A7AD9F6204E1785BF5DE8F5C3B6FAcecmpgde_-- From owner-chemistry@ccl.net Mon Sep 11 09:47:01 2017 From: "Henrique C. S. Junior henriquecsj:gmail.com" To: CCL Subject: CCL:G: Correctly evaluating spin states of a cobalt trimer (using Single Points)? Message-Id: <-52994-170910171432-1974-fDIgmMx8v+7DrvWylEWtug*o*server.ccl.net> X-Original-From: "Henrique C. S. Junior" Content-Type: multipart/alternative; boundary="94eb2c0ba0fc7c107a0558dc4b23" Date: Sun, 10 Sep 2017 18:13:45 -0300 MIME-Version: 1.0 Sent to CCL by: "Henrique C. S. Junior" [henriquecsj|-|gmail.com] --94eb2c0ba0fc7c107a0558dc4b23 Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable Dear Andrew, thank you for putting all this information together. The problem is really much more complex than a careless first look may suggest. Luckily I'm already using ORCA so I know that I have the right tool for the task. Thank you again. On Sun, Sep 10, 2017 at 11:51 AM, Andrew Rosen rosen###u.northwestern.edu < owner-chemistry.:.ccl.net> wrote: > Henrique, > > I am going to preface this by saying that this is a deceivingly > challenging task. I am a young graduate student who is very much still > learning, so if others reading this disagree with something I say, please > feel free to chime in. In general, you have the right idea, although ther= e > are a few things to consider. My response is in the context of DFT, which= I > imagine is what you're using. > > 1. I assume you are using the structure from XRD in your electronic > structure calculations. It is likely that at the level of theory you > choose, the XRD structure is not exactly the minimum energy structure > (although it is hopefully quite close!). In that case, it may be advisabl= e > to do a geometry optimization from this experimental geometry instead of = a > single point energy calculation at each spin multiplicity. This may also = be > beneficial, albeit more computationally tasking, because different spin > states can lead to different molecular geometries. Oftentimes, this > difference may be small, but it has the possibility of impacting the > energetics. The chapter on "Spin interactions in cluster chemistry" in th= e > text "Advances in Inorganic Chemistry Volume 62: Theoretical and > Computational Inorganic Chemistry" may be quite useful. A publicly > accessible link to the relevant section on Google Books is found here > . > Pages 216-222 are extremely relevant to this discussion. > > 2. You should check to see the degree of spin contamination in your > calculations, as discussed here > . If > it is large, it could signify that the level of theory you chose is not > sufficient for the problem at hand and the energetics as well as other > molecular properties may not be accurate. In such cases, it may be > necessary to consider more accurate multireference methods. > > 3. It can often be difficult to accurately capture the relative energies > of various spin states for transition metal complexes using DFT, and this > can often be very sensitive to the choice of density functional. As > discussed here , > pure functionals tend to favor low-spin states whereas hybrid functions > tend to favor high-spin states, and the energy difference between low- an= d > high-spin states is often directly related to the amount of Hartree-Fock > exchange in a given functional. This is a limitation to keep in mind. > > 4. There is the possibility that a broken-symmetry state is most stable. > While this is likely a bit more involved than what you are looking to che= ck > for (especially given this is a trimer), it is worth realizing that such = a > possibility exists, as discussed here in the > context of Gaussian or here > = in > the context of ORCA. > > 5. At times, it may be necessary to check the stability of the > wavefunction when dealing with open-shell structures. A detailed discussi= on > on StackExchange can be found here > > . > > In the end, yes, you are correct that you must do this "manually" and > compare the energetics of different possible spin multiplicities. Your > approach may end up being sufficient, but as I mentioned, there are some > factors that you should at the very least keep in mind. > > Andrew > > On Sun, Sep 10, 2017 at 8:20 AM Henrique C. S. Junior henriquecsj+/- > gmail.com wrote: > >> Dear colleagues, I=E2=80=99m working with a Cobalt(II) trimer whose mole= cular >> structure was achieved by Single Crystal X-Ray Diffraction. My task now = is >> to check the spin states of the structure (High or Low spin). Since Co(I= I) >> can have 1 or 3 unpaired electrons, I=E2=80=99m approaching this problem= by >> calculating Single Points for every possible multiplicity (10, 8, 6, 4, = 2) >> and assuming that the most stable is the one that represents my structur= e >> (and my spin states). >> >> Is this approach correct? >> >> Thank you >> >> -- >> *Henrique C. S. Junior* >> >> --=20 *Henrique C. S. Junior* Industrial Chemist - UFRRJ M. Sc. Inorganic Chemistry - UFRRJ Data Processing Center - PMP Visite o Mundo Qu=C3=ADmico --94eb2c0ba0fc7c107a0558dc4b23 Content-Type: text/html; charset="UTF-8" Content-Transfer-Encoding: quoted-printable
Dear Andrew, thank you for putting all this information togeth= er. The problem is really much more complex than a careless first look may = suggest. Luckily I'm already using ORCA so I know that I have the right= tool for the task.

Thank you again.

On Sun, Sep 10, 2017 at 11:51 AM, And= rew Rosen rosen###u.northwestern.edu<= /a> <owner-chemistry.:.ccl.net> wrote:
Henrique,=

I am going to preface this by saying that this is a deceivingly challen= ging task. I am a young graduate student who is very much still learning, s= o if others reading this disagree with something I say, please feel free to= chime in. In general, you have the right idea, although there are a few th= ings to consider. My response is in the context of DFT, which I imagine is = what you're using.

1. I assume you are using the structure from XRD i= n your electronic structure calculations. It is likely that at the level of= theory you choose, the XRD structure is not exactly the minimum energy str= ucture (although it is hopefully quite close!). In that case, it may be adv= isable to do a geometry optimization from this experimental geometry instea= d of a single point energy calculation at each spin multiplicity. This may = also be beneficial, albeit more computationally tasking, because different = spin states can lead to different molecular geometries. Oftentimes, this di= fference may be small, but it has the possibility of impacting the energeti= cs. The chapter on "Spin interactions in cluster chemistry" in th= e text "Advances in Inorganic Chemistry Volume 62: Theoretical and Com= putational Inorganic Chemistry" may be quite useful. A publicly access= ible link to the relevant section on Google Books is found=C2=A0here. Pages 216-222 are extremely relevant to this discussion.
<= div style=3D"font-size:small">
2. Y= ou should check to see the degree of spin contamination in your calculation= s, as discussed=C2=A0here. If it is large, it cou= ld signify that the level of theory you chose is not sufficient for the pro= blem at hand and the energetics as well as other molecular properties may n= ot be accurate. In such cases, it may be necessary to consider more accurat= e multireference methods.

3. It can often be difficult to accurately capt= ure the relative energies of various spin states for transition metal compl= exes using DFT, and this can often be very sensitive to the choice of densi= ty functional. As discussed=C2=A0here, pure functionals tend to= favor low-spin states whereas hybrid functions tend to favor high-spin sta= tes, and the energy difference between low- and high-spin states is often d= irectly related to the amount of Hartree-Fock exchange in a given functiona= l. This is a limitation to keep in mind.

4. There is the possibility that= a broken-symmetry state is most stable. While this is likely a bit more in= volved than what you are looking to check for (especially given this is a t= rimer), it is worth realizing that such a possibility exists, as discussed= =C2=A0here=C2=A0= in the context of Gaussian or=C2=A0here=C2=A0= in the context of ORCA.

5. At times, it may be necessary to check the sta= bility of the wavefunction when dealing with open-shell structures. A detai= led discussion on StackExchange can be found=C2=A0here.

= In the end, yes, you are correct that you must do this "manually"= and compare the energetics of different possible spin multiplicities. Your= approach may end up being sufficient, but as I mentioned, there are some f= actors that you should at the very least keep in mind.

Andrew
=
On Sun, Sep 10, 2017 at 8:2= 0 AM Henrique C. S. Junior henriquecsj+/-gmail.com <owner-chemistry^^ccl.net> wrote:

Dear coll= eagues, I=E2=80=99m working with a Cobalt(II) trimer whose molecular struct= ure was achieved by Single Crystal X-Ray Diffraction. My task now is to che= ck the spin states of the structure (High or Low spin). Since Co(II) can ha= ve 1 or 3 unpaired electrons, I=E2=80=99m approaching this problem by calcu= lating Single Points for every possible multiplicity (10, 8, 6, 4, 2) and a= ssuming that the most stable is the one that represents my structure (and m= y spin states).

Is this approach correct?

Thank you


--
Henri= que C. S. Junior




--
Henrique C. S. Junior
Industrial= Chemist - UFRRJ
M. Sc. Inorganic Chemi= stry - UFRRJ
Data Processing Center - PMP

<= div>Visite o Mundo= Qu=C3=ADmico
--94eb2c0ba0fc7c107a0558dc4b23-- From owner-chemistry@ccl.net Mon Sep 11 10:22:01 2017 From: "Norrby, Per-Ola Per-Ola.Norrby+*+astrazeneca.com" To: CCL Subject: CCL: Correctly evaluating spin states of a cobalt trimer (using Single Points)? Message-Id: <-52995-170911020243-19954-0Pb050IZIVtH9GEVulwfgw-.-server.ccl.net> X-Original-From: "Norrby, Per-Ola" Content-Language: en-US Content-Type: multipart/alternative; boundary="_000_HE1PR04MB209236A3CE9BDA78EC785BFBCA680HE1PR04MB2092eurp_" Date: Mon, 11 Sep 2017 06:02:32 +0000 MIME-Version: 1.0 Sent to CCL by: "Norrby, Per-Ola" [Per-Ola.Norrby%x%astrazeneca.com] --_000_HE1PR04MB209236A3CE9BDA78EC785BFBCA680HE1PR04MB2092eurp_ Content-Type: text/plain; charset="utf-8" Content-Transfer-Encoding: base64 RGVhciBIZW5yaXF1ZSwNCg0KRXhjZWxsZW50IHN1bW1hcnkgYnkgU2VyZ2lvLiBJIGhhdmUgYSBj b3VwbGUgb2YgcmVpbmZvcmNlbWVudHMgYW5kIGFkZGl0aW9ucy4NCg0KWWVzLCB5b3UgbXVzdCBv cHRpbWl6ZSB0aGUgZ2VvbWV0cnkuIFNvbWV0aW1lcyBpdCdzIGdvb2QgcHJhY3RpY2UgdG8gZnJl ZXplIG9uZSByZW1vdGUgYXRvbSBwZXIgbGlnYW5kIChub3QgYSBoeWRyb2dlbiwgYW5kIGF0IGxl YXN0IDMgYm9uZHMgZnJvbSBhbnkgbWV0YWwpLCB0byBhdm9pZCBsYXJnZSBzaGlmdHMgaW4gdGhl IGxpZ2FuZCBnZW9tZXRyeS4gWW91IG11c3QgZG8gdGhpcyB0byBpZGVudGlmeSB0aGUgbG93ZXN0 IHNwaW4gc3RhdGUuIFlvdSBjYW4gdGhlbiB1c2Ugc2luZ2xlIHBvaW50cyBvbiB0aGF0IGdlb21l dHJ5IHRvIGNoZWNrIGV4Y2l0YXRpb25zIHRvIGhpZ2hlciBlbmVyZ3kgc3BpbiBzdGF0ZXMsIGJ1 dCB0aGUgbG93ZXN0IHN0YXRlIE1VU1QgYmUgb3B0aW1pemVkLiBBbmQgdG8gZW5zdXJlIHlvdSBr bm93IHdoaWNoIGlzIGxvd2VzdCwgeW91IG11c3Qgb3B0aW1pemUgYWxsIHN0YXRlcy4NCg0KU3Bp biBzdGF0ZSBlbmVyZ2llcyBhcmUgbm90IGNvbXBsZXRlbHkgcmVsaWFibGUgZnJvbSBhbnkgbWV0 aG9kLiBBIGJldHRlciBjaGVjayBpZiB5b3UgaGF2ZSB0aGUgY29ycmVjdCBvbmUgY2FuIGJlIHRv IGNvbXBhcmUgZ2VvbWV0cmllcy4gQmUgYXdhcmUgaWYgWHJheSBwcm9ibGVtcyB0aG91Z2gsIGJl bG93IQ0KDQpJZiB5b3UgaGF2ZSBhIHN5bW1ldHJpYyBsaWdhbmQgc3BoZXJlLCBidXQgYW4gdW5z eW1tZXRyaWMgd2F2ZWZ1bmN0aW9uLCBpdCBpcyBxdWl0ZSBwb3NzaWJsZSB0aGF0IHlvdXIgb2Jz ZXJ2ZWQgWHJheSBzdHJ1Y3R1cmUgaXMgYW4gYXZlcmFnZSBvZiAzIGlzb2VyZ2ljIHN0cnVjdHVy ZXMuIFhyYXlzIGFyZSBnZW5lcmFsbHkgbm90IGdvb2QgZW5vdWdoIHRvIHJlc29sdmUgdGhpcyB0 eXBlIG9mIHBoZW5vbWVub24sIHdoaWNoIGNhbiBiZSBjYXVzZWQgYnkgY29jcnlzdGFsbGl6YXRp b24gb2Ygc2ltaWxhciBnZW9tZXRyaWVzIGluIGRpZmZlcmVudCBvcmllbnRhdGlvbnMsIG9yIGJ5 IGxpYnJhdGlvbi4gQmUgYXdhcmUgaWYgdGhpcyB3aGVuIGNvbXBhcmluZyBnZW9tZXRyaWVzLg0K DQpNYWtlIHN1cmUgeW91IGhhdmUgc3ltbWV0cnkgdHVybmVkIG9mZiwgYW5kL29yIHRoYXQgeW91 IGNoZWNrIHlvdXIgZmluYWwgd2F2ZWZ1bmN0aW9uIGZvciBpbnN0YWJpbGl0eS4NCg0KQlRXLCBJ J3ZlIHNhaWQgIndhdmVmdW5jdGlvbiIgaGVyZSwgZXZlbiB0aG91Z2ggSSBndWVzcyB5b3UncmUg dXNpbmcgREZULiBJZiB5b3UgY2FuIGFmZm9yZCBpdCwgYSBoaWdoLWxldmVsIHNpbmdsZSBwb2lu dCBjaGVjayBtaWdodCBiZSBnb29kLCBmb3IgZXhhbXBsZSB1c2luZyBDQ1NEKFQpLiBJbiBhbnkg Y2FzZSwgeW91IHNob3VsZCBjaGVjayB5b3VyIHJlc3VsdHMgdXNpbmcgc29tZSBkaWZmZXJlbnQg REZUIGZ1bmN0aW9uYWxzLCB0byBzZWUgaWYgeW91ciBjb25jbHVzaW9ucyBhcmUgc2Vuc2l0aXZl IHRvIGZ1bmN0aW9uYWwgY2hvaWNlLiBUb28gbWFueSB0byBjaG9zZSBmcm9t4oCmDQoNCllvdSBt YXkgbmVlZCB0byBkbyBoYW5kLXR3ZWFraW5nIG9mIHRoZSBpbml0aWFsIGd1ZXNzIHRvIGFjaGll dmUgYW4gYW50aWZlcnJvbWFnbmV0aWMgcmVzdWx0LiBUaGlzIGlzIGFuIGFydCwgYW5kIHZlcnkg cHJvZ3JhbSBkZXBlbmRlbnQuIEkgYWN0dWFsbHkgcmVjb21tZW5kIEphZ3VhciBmb3IgdGhhdCwg dmVyeSBnb29kIGtleXdvcmQgY29udHJvbCBvZiBpbmRpdmlkdWFsIGF0b21pYyBzcGluIHN0YXRl LiBCdXQgeW91IENBTiBkbyBpdCBpbiBtb3N0IHByb2dyYW1zLg0KDQpGaW5hbGx5LCBJIHdvdWxk IGFsc28gcmVjb21tZW5kIHJlYWRpbmcgdGhlIGFydGljbGUgYnkgRnJhbmsgTmVlc2UsIGV2ZW4g dGhvdWdoIGhlIG1pc3VuZGVyc3Rvb2QgeW91ciBveGlkYXRpb24gc3RhdGUuDQoNCkJlc3QgcmVn YXJkcywNCg0KUGVyLU9sYQ0KDQpTZW50IGZyb20gbXkgaVBob25lDQoNCk9uIDExIFNlcCAyMDE3 LCBhdCAwMjoyOCwgU2VyZ2lvIEVtYW51ZWwgR2FsZW1iZWNrIHNlZ2FsZW1iXSFbdXNwLmJyPGh0 dHA6Ly91c3AuYnI+IDxvd25lci1jaGVtaXN0cnlAY2NsLm5ldDxtYWlsdG86b3duZXItY2hlbWlz dHJ5QGNjbC5uZXQ+PiB3cm90ZToNCkRlYXIgSGVucmlxdWUsDQoNCkkgYW0gbm90IGVudGlyZWx5 IHN1cmUgaWYgYSBzaW5nbGUgcG9pbnQgaXMgY29ycmVjdCBmb3Igc3R1ZHkgbWFnbmV0aWMgY291 cGxpbmdzLiBOb3JtYWxseSwgYSBnZW9tZXRyeSBvcHRpbWl6YXRpb24gaXMgdGhlIGZpcnN0IHN0 ZXAgZm9yIGFuDQppc29sYXRlZCBzeXN0ZW0sIGJlY2F1c2UgdGhlIGV4cGVyaW1lbnRhbCBtaW5p bXVtIGlzIG5vdCB0aGUgc2FtZSBhcw0KYSBjb21wdXRhdGlvbmFsIHF1YW50dW0gY2hlbWlzdHJ5 IG9uZS4NCg0KQnV0LCBJIHRoaW5rIHRoYXQgeW91ciBtYWluIGNvbmNlcm4gaXMgdGhlIGJyb2tl biBzeW1tZXRyeSBwcm9ibGVtIGFuZCB0aGUgbXVsdGljb25maWd1cmF0aW9uYWwgY2hhcmFjdGVy IG9mIHRoZSB3YXZlZnVuY3Rpb24uDQoNClVuZm9ydHVuYXRlbHksIEkgZG9uJ3Qgd29yayB3aXRo IHRoZXNlIHByb2JsZW1zIGFuZCB0ZWNobmlxdWVzLCBidXQgSSBjYW4gaW5kaWNhdGUNCnNvbWUg QnJhemlsaWFuIHRoZW9yZXRpY2FsIGNoZW1pc3RzIHRoYXQgd29yayB3aXRoIHRoZXNlIHN1Ympl Y3RzLCBvciBhdCBsZWFzdCB3aXRoIG11bHRpY29uZmlndXJhdGlvbmFsDQptZXRob2RzLg0KDQpC ZXN0IHJlZ2FyZHMsDQoNClNlcmdpbw0KDQoNClByb2YuIFNlcmdpbyBFbWFudWVsIEdhbGVtYmVj aw0KQ29tcHV0YXRpb25hbCBRdWFudHVtIENoZW1pc3RyeSBMYWJvcmF0b3J5DQpEZXBhcnRhbWVu dG8gZGUgUXXDrW1pY2EgLSBGRkNMUlAtVVNQDQpBdi4gQmFuZGVpcmFudGVzLCAzOTAwDQoxNDA0 MC05MDEgLSBSaWJlaXJhbyBQcmV0by1TUA0KQnJhc2lsDQoNCnBob25lOiArNTUoMTYpMzMxNTM3 NjUNCnNlZ2FsZW1iIyMjdXNwLmJyPG1haWx0bzpzZWdhbGVtYiMjI3VzcC5icj4NCg0KMjAxNy0w OS0xMCAxMzoyMSBHTVQtMDM6MDAgSGVucmlxdWUgQy4gUy4gSnVuaW9yIGhlbnJpcXVlY3NqLCss Z21haWwuY29tPGh0dHBzOi8vY2xpY2t0aW1lLnN5bWFudGVjLmNvbS9hLzEvdHM4V0l1T3NYSkNi WmdaS21UcHNLaWQxUkFITGN6YUk3bDFFT0hkNE9CQT0/ZD1ia2x0OWdLQUlqUnhwdDhYa1ZMZmxs WG91blJOY1J6MnNEVldrOS1oQ0NpWWs4dUJHcVFfakJMREMxN3BLQXhDSFdZYlFsSVNPX3k4UHBK eWo0VC1DbmlwQk9INXFMeHZXb1RwcmhfbHl0RDJlb3RnZTF3WmVVR0N1bG4yN1c0WVMtdnRpTkEz YVI5S3YzWGtqcFl6UUNlVWt0SnB4ODh6Mlg5TUFvd2ZLUk9wZ1owbjRHbmpKdTJvdWhxNXhTZkw5 MlN2Zi1MMTVsX1FMNm1yeTAwZHVZcWREZmVHQU1lN19sd0FEWDRmOWs5cXVsdHhsQ3VHZUVVYkYt RXJSWHluRE9RdEpaU3pCYmdLZUsxalhfbWstUjFMVjYxWEV2NzZkTkVNSnFIVEFYbl9wV1RHN09E RG9wU2szc3pudHZ1S09NWUF4WXhCRHZFWkNSQkpMa0R6Sy1VSkh0Z2ZQRlhFaE1mZlZWYld0b3d4 dVZDMi1Bc2hwZ1k5V2pFODBVVkg0eWtOT3I0SkxBeWE2cC1USnVzWldyOXQ3eVZJOHBrb1ZVaFBB aEpqTTJSRllHNmxucDlnOUotOTRFSzdNWVZIZURib2Iyck5pSm5qYzc1WFNKOF9iNk1ORFBiN19W RG1RQ0pqNTU4SEY3N1lyd0pKSF9aNk5QTjhhc2w0c1E4UiZ1PWh0dHAlM0ElMkYlMkZnbWFpbC5j b20+IDxvd25lci1jaGVtaXN0cnkjIyNjY2wubmV0PG1haWx0bzpvd25lci1jaGVtaXN0cnkjIyNj Y2wubmV0Pj46DQpEZWFyIFNlcmdpbywgdGhhbmtzIGZvciB5b3VyIHJlcGx5LiBJIGZvcmdvdCB0 byB0ZWxsIHRoYXQgdGhpcyBzdHJ1Y3R1cmUgaXMgdG8gYmUgdXNlZCB0byBzdHVkeSBtYWduZXRp YyBjb3VwbGluZ3MsIHNvIHdlIHVzdWFsbHkgZG9uJ3QgcGVyZm9ybSBnZW9tZXRyeSBvcHRpbWl6 YXRpb25zLg0KRGVzcGl0ZSB0aGF0LCBkbyB5b3UgYmVsaWV2ZSB0aGF0IHRoZSBTaW5nbGUgUG9p bnRzIGFwcHJvYWNoIGlzLCBpbiBnZW5lcmFsLCBjb3JyZWN0Pw0KDQpPbiBTdW4sIFNlcCAxMCwg MjAxNyBhdCAxMTowNyBBTSwgU2VyZ2lvIEVtYW51ZWwgR2FsZW1iZWNrIHNlZ2FsZW1iXS1bdXNw LmJyPGh0dHBzOi8vY2xpY2t0aW1lLnN5bWFudGVjLmNvbS9hLzEvVjVFWXlUeGx0WVpnZUtLVVY4 UDgzUV9LaGFCOG40elNqbGxfQUk4Vm5xUT0/ZD1ia2x0OWdLQUlqUnhwdDhYa1ZMZmxsWG91blJO Y1J6MnNEVldrOS1oQ0NpWWs4dUJHcVFfakJMREMxN3BLQXhDSFdZYlFsSVNPX3k4UHBKeWo0VC1D bmlwQk9INXFMeHZXb1RwcmhfbHl0RDJlb3RnZTF3WmVVR0N1bG4yN1c0WVMtdnRpTkEzYVI5S3Yz WGtqcFl6UUNlVWt0SnB4ODh6Mlg5TUFvd2ZLUk9wZ1owbjRHbmpKdTJvdWhxNXhTZkw5MlN2Zi1M MTVsX1FMNm1yeTAwZHVZcWREZmVHQU1lN19sd0FEWDRmOWs5cXVsdHhsQ3VHZUVVYkYtRXJSWHlu RE9RdEpaU3pCYmdLZUsxalhfbWstUjFMVjYxWEV2NzZkTkVNSnFIVEFYbl9wV1RHN09ERG9wU2sz c3pudHZ1S09NWUF4WXhCRHZFWkNSQkpMa0R6Sy1VSkh0Z2ZQRlhFaE1mZlZWYld0b3d4dVZDMi1B c2hwZ1k5V2pFODBVVkg0eWtOT3I0SkxBeWE2cC1USnVzWldyOXQ3eVZJOHBrb1ZVaFBBaEpqTTJS RllHNmxucDlnOUotOTRFSzdNWVZIZURib2Iyck5pSm5qYzc1WFNKOF9iNk1ORFBiN19WRG1RQ0pq NTU4SEY3N1lyd0pKSF9aNk5QTjhhc2w0c1E4UiZ1PWh0dHAlM0ElMkYlMkZ1c3AuYnI+IDxvd25l ci1jaGVtaXN0cnlfX2NjbC5uZXQ8bWFpbHRvOm93bmVyLWNoZW1pc3RyeV9fY2NsLm5ldD4+IHdy b3RlOg0KRGVhciBIZW5yaXF1ZSwNCg0KSSBzdWdnZXN0IHRoYXQgZm9yIGVhY2ggc3BpbiBzdGF0 ZSB5b3Ugb3B0aW1pemUgdGhlIGdlb21ldHJ5LiBTb21lIG9mIHRoaXMgc3RhdGVzIGNvdWxkIGdl bmVyYXRlIGFuIHVuc3RhYmxlIGdlb21ldHJ5Lg0KDQpCZXN0IHJlZ2FyZHMsDQoNClNlcmdpbw0K DQpQcm9mLiBTZXJnaW8gRW1hbnVlbCBHYWxlbWJlY2sNCkNvbXB1dGF0aW9uYWwgUXVhbnR1bSBD aGVtaXN0cnkgTGFib3JhdG9yeQ0KRGVwYXJ0YW1lbnRvIGRlIFF1w61taWNhIC0gRkZDTFJQLVVT UA0KQXYuIEJhbmRlaXJhbnRlcywgMzkwMDxodHRwczovL2NsaWNrdGltZS5zeW1hbnRlYy5jb20v YS8xL2ZuQzhnSHV0TDB6MGpiQ0Qwbm5kVmIyREZscEd6dTNGclhVTmJJeUtsdEk9P2Q9YmtsdDln S0FJalJ4cHQ4WGtWTGZsbFhvdW5STmNSejJzRFZXazktaENDaVlrOHVCR3FRX2pCTERDMTdwS0F4 Q0hXWWJRbElTT195OFBwSnlqNFQtQ25pcEJPSDVxTHh2V29UcHJoX2x5dEQyZW90Z2Uxd1plVUdD dWxuMjdXNFlTLXZ0aU5BM2FSOUt2M1hranBZelFDZVVrdEpweDg4ejJYOU1Bb3dmS1JPcGdaMG40 R25qSnUyb3VocTV4U2ZMOTJTdmYtTDE1bF9RTDZtcnkwMGR1WXFkRGZlR0FNZTdfbHdBRFg0Zjlr OXF1bHR4bEN1R2VFVWJGLUVyUlh5bkRPUXRKWlN6QmJnS2VLMWpYX21rLVIxTFY2MVhFdjc2ZE5F TUpxSFRBWG5fcFdURzdPRERvcFNrM3N6bnR2dUtPTVlBeFl4QkR2RVpDUkJKTGtEekstVUpIdGdm UEZYRWhNZmZWVmJXdG93eHVWQzItQXNocGdZOVdqRTgwVVZINHlrTk9yNEpMQXlhNnAtVEp1c1pX cjl0N3lWSThwa29WVWhQQWhKak0yUkZZRzZsbnA5ZzlKLTk0RUs3TVlWSGVEYm9iMnJOaUpuamM3 NVhTSjhfYjZNTkRQYjdfVkRtUUNKajU1OEhGNzdZcndKSkhfWjZOUE44YXNsNHNROFImdT1odHRw cyUzQSUyRiUyRm1hcHMuZ29vZ2xlLmNvbSUyRiUzRnElM0RBdi4lMkJCYW5kZWlyYW50ZXMlMkMl MkIzOTAwJTI2YW1wJTNCZW50cnklM0RnbWFpbCUyNmFtcCUzQnNvdXJjZSUzRGc+DQoxNDA0MC05 MDEgLSBSaWJlaXJhbyBQcmV0by1TUA0KQnJhc2lsDQoNCnBob25lOiArNTUoMTYpMzMxNTM3NjU8 dGVsOigxNiklMjAzMzE1LTM3NjU+DQpzZWdhbGVtYn4hfnVzcC5icjxtYWlsdG86c2VnYWxlbWJ+ IX51c3AuYnI+DQoNCjIwMTctMDktMTAgOTowMyBHTVQtMDM6MDAgSGVucmlxdWUgQy4gUy4gSnVu aW9yIGhlbnJpcXVlY3NqKy8tZ21haWwuY29tPGh0dHBzOi8vY2xpY2t0aW1lLnN5bWFudGVjLmNv bS9hLzEvdHM4V0l1T3NYSkNiWmdaS21UcHNLaWQxUkFITGN6YUk3bDFFT0hkNE9CQT0/ZD1ia2x0 OWdLQUlqUnhwdDhYa1ZMZmxsWG91blJOY1J6MnNEVldrOS1oQ0NpWWs4dUJHcVFfakJMREMxN3BL QXhDSFdZYlFsSVNPX3k4UHBKeWo0VC1DbmlwQk9INXFMeHZXb1RwcmhfbHl0RDJlb3RnZTF3WmVV R0N1bG4yN1c0WVMtdnRpTkEzYVI5S3YzWGtqcFl6UUNlVWt0SnB4ODh6Mlg5TUFvd2ZLUk9wZ1ow bjRHbmpKdTJvdWhxNXhTZkw5MlN2Zi1MMTVsX1FMNm1yeTAwZHVZcWREZmVHQU1lN19sd0FEWDRm OWs5cXVsdHhsQ3VHZUVVYkYtRXJSWHluRE9RdEpaU3pCYmdLZUsxalhfbWstUjFMVjYxWEV2NzZk TkVNSnFIVEFYbl9wV1RHN09ERG9wU2szc3pudHZ1S09NWUF4WXhCRHZFWkNSQkpMa0R6Sy1VSkh0 Z2ZQRlhFaE1mZlZWYld0b3d4dVZDMi1Bc2hwZ1k5V2pFODBVVkg0eWtOT3I0SkxBeWE2cC1USnVz WldyOXQ3eVZJOHBrb1ZVaFBBaEpqTTJSRllHNmxucDlnOUotOTRFSzdNWVZIZURib2Iyck5pSm5q Yzc1WFNKOF9iNk1ORFBiN19WRG1RQ0pqNTU4SEY3N1lyd0pKSF9aNk5QTjhhc2w0c1E4UiZ1PWh0 dHAlM0ElMkYlMkZnbWFpbC5jb20+IDxvd25lci1jaGVtaXN0cnl+IX5jY2wubmV0PG1haWx0bzpv d25lci1jaGVtaXN0cnl+IX5jY2wubmV0Pj46DQoNCkRlYXIgY29sbGVhZ3VlcywgSeKAmW0gd29y a2luZyB3aXRoIGEgQ29iYWx0KElJKSB0cmltZXIgd2hvc2UgbW9sZWN1bGFyIHN0cnVjdHVyZSB3 YXMgYWNoaWV2ZWQgYnkgU2luZ2xlIENyeXN0YWwgWC1SYXkgRGlmZnJhY3Rpb24uIE15IHRhc2sg bm93IGlzIHRvIGNoZWNrIHRoZSBzcGluIHN0YXRlcyBvZiB0aGUgc3RydWN0dXJlIChIaWdoIG9y IExvdyBzcGluKS4gU2luY2UgQ28oSUkpIGNhbiBoYXZlIDEgb3IgMyB1bnBhaXJlZCBlbGVjdHJv bnMsIEnigJltIGFwcHJvYWNoaW5nIHRoaXMgcHJvYmxlbSBieSBjYWxjdWxhdGluZyBTaW5nbGUg UG9pbnRzIGZvciBldmVyeSBwb3NzaWJsZSBtdWx0aXBsaWNpdHkgKDEwLCA4LCA2LCA0LCAyKSBh bmQgYXNzdW1pbmcgdGhhdCB0aGUgbW9zdCBzdGFibGUgaXMgdGhlIG9uZSB0aGF0IHJlcHJlc2Vu dHMgbXkgc3RydWN0dXJlIChhbmQgbXkgc3BpbiBzdGF0ZXMpLg0KDQpJcyB0aGlzIGFwcHJvYWNo IGNvcnJlY3Q/DQoNClRoYW5rIHlvdQ0KDQotLQ0KSGVucmlxdWUgQy4gUy4gSnVuaW9yDQoNCg0K DQoNCi0tDQpIZW5yaXF1ZSBDLiBTLiBKdW5pb3INCkluZHVzdHJpYWwgQ2hlbWlzdCAtIFVGUlJK DQpNLiBTYy4gSW5vcmdhbmljIENoZW1pc3RyeSAtIFVGUlJKDQpEYXRhIFByb2Nlc3NpbmcgQ2Vu dGVyIC0gUE1QDQpWaXNpdGUgbyBNdW5kbyBRdcOtbWljbzxodHRwczovL2NsaWNrdGltZS5zeW1h bnRlYy5jb20vYS8xL0VSUXplX2pCSm83QkRQMTZKb19KZ0wxSThxcncwakw1RUdsUDBTd3ZmU009 P2Q9YmtsdDlnS0FJalJ4cHQ4WGtWTGZsbFhvdW5STmNSejJzRFZXazktaENDaVlrOHVCR3FRX2pC TERDMTdwS0F4Q0hXWWJRbElTT195OFBwSnlqNFQtQ25pcEJPSDVxTHh2V29UcHJoX2x5dEQyZW90 Z2Uxd1plVUdDdWxuMjdXNFlTLXZ0aU5BM2FSOUt2M1hranBZelFDZVVrdEpweDg4ejJYOU1Bb3dm S1JPcGdaMG40R25qSnUyb3VocTV4U2ZMOTJTdmYtTDE1bF9RTDZtcnkwMGR1WXFkRGZlR0FNZTdf bHdBRFg0ZjlrOXF1bHR4bEN1R2VFVWJGLUVyUlh5bkRPUXRKWlN6QmJnS2VLMWpYX21rLVIxTFY2 MVhFdjc2ZE5FTUpxSFRBWG5fcFdURzdPRERvcFNrM3N6bnR2dUtPTVlBeFl4QkR2RVpDUkJKTGtE ekstVUpIdGdmUEZYRWhNZmZWVmJXdG93eHVWQzItQXNocGdZOVdqRTgwVVZINHlrTk9yNEpMQXlh NnAtVEp1c1pXcjl0N3lWSThwa29WVWhQQWhKak0yUkZZRzZsbnA5ZzlKLTk0RUs3TVlWSGVEYm9i MnJOaUpuamM3NVhTSjhfYjZNTkRQYjdfVkRtUUNKajU1OEhGNzdZcndKSkhfWjZOUE44YXNsNHNR OFImdT1odHRwJTNBJTJGJTJGbXVuZG9xdWltaWNvLmNvbS5icj4NCg0KX19fX19fX19fX19fX19f X19fX19fX19fX19fX19fX18NCg0KQ29uZmlkZW50aWFsaXR5IE5vdGljZTogVGhpcyBtZXNzYWdl IGlzIHByaXZhdGUgYW5kIG1heSBjb250YWluIGNvbmZpZGVudGlhbCBhbmQgcHJvcHJpZXRhcnkg aW5mb3JtYXRpb24uIElmIHlvdSBoYXZlIHJlY2VpdmVkIHRoaXMgbWVzc2FnZSBpbiBlcnJvciwg cGxlYXNlIG5vdGlmeSB1cyBhbmQgcmVtb3ZlIGl0IGZyb20geW91ciBzeXN0ZW0gYW5kIG5vdGUg dGhhdCB5b3UgbXVzdCBub3QgY29weSwgZGlzdHJpYnV0ZSBvciB0YWtlIGFueSBhY3Rpb24gaW4g cmVsaWFuY2Ugb24gaXQuIEFueSB1bmF1dGhvcml6ZWQgdXNlIG9yIGRpc2Nsb3N1cmUgb2YgdGhl IGNvbnRlbnRzIG9mIHRoaXMgbWVzc2FnZSBpcyBub3QgcGVybWl0dGVkIGFuZCBtYXkgYmUgdW5s YXdmdWwuDQo= --_000_HE1PR04MB209236A3CE9BDA78EC785BFBCA680HE1PR04MB2092eurp_ Content-Type: text/html; charset="utf-8" Content-Transfer-Encoding: base64 PGh0bWwgeG1sbnM6dj0idXJuOnNjaGVtYXMtbWljcm9zb2Z0LWNvbTp2bWwiIHhtbG5zOm89InVy bjpzY2hlbWFzLW1pY3Jvc29mdC1jb206b2ZmaWNlOm9mZmljZSIgeG1sbnM6dz0idXJuOnNjaGVt YXMtbWljcm9zb2Z0LWNvbTpvZmZpY2U6d29yZCIgeG1sbnM6bT0iaHR0cDovL3NjaGVtYXMubWlj cm9zb2Z0LmNvbS9vZmZpY2UvMjAwNC8xMi9vbW1sIiB4bWxucz0iaHR0cDovL3d3dy53My5vcmcv VFIvUkVDLWh0bWw0MCI+DQo8aGVhZD4NCjxtZXRhIGh0dHAtZXF1aXY9IkNvbnRlbnQtVHlwZSIg Y29udGVudD0idGV4dC9odG1sOyBjaGFyc2V0PXV0Zi04Ij4NCjxtZXRhIG5hbWU9IkdlbmVyYXRv ciIgY29udGVudD0iTWljcm9zb2Z0IFdvcmQgMTUgKGZpbHRlcmVkIG1lZGl1bSkiPg0KPHN0eWxl PjwhLS0NCi8qIEZvbnQgRGVmaW5pdGlvbnMgKi8NCkBmb250LWZhY2UNCgl7Zm9udC1mYW1pbHk6 IkNhbWJyaWEgTWF0aCI7DQoJcGFub3NlLTE6MiA0IDUgMyA1IDQgNiAzIDIgNDt9DQpAZm9udC1m YWNlDQoJe2ZvbnQtZmFtaWx5OkNhbGlicmk7DQoJcGFub3NlLTE6MiAxNSA1IDIgMiAyIDQgMyAy IDQ7fQ0KLyogU3R5bGUgRGVmaW5pdGlvbnMgKi8NCnAuTXNvTm9ybWFsLCBsaS5Nc29Ob3JtYWws IGRpdi5Nc29Ob3JtYWwNCgl7bWFyZ2luOjBjbTsNCgltYXJnaW4tYm90dG9tOi4wMDAxcHQ7DQoJ Zm9udC1zaXplOjEyLjBwdDsNCglmb250LWZhbWlseToiVGltZXMgTmV3IFJvbWFuIixzZXJpZjt9 DQphOmxpbmssIHNwYW4uTXNvSHlwZXJsaW5rDQoJe21zby1zdHlsZS1wcmlvcml0eTo5OTsNCglj b2xvcjpibHVlOw0KCXRleHQtZGVjb3JhdGlvbjp1bmRlcmxpbmU7fQ0KYTp2aXNpdGVkLCBzcGFu Lk1zb0h5cGVybGlua0ZvbGxvd2VkDQoJe21zby1zdHlsZS1wcmlvcml0eTo5OTsNCgljb2xvcjpw dXJwbGU7DQoJdGV4dC1kZWNvcmF0aW9uOnVuZGVybGluZTt9DQpwDQoJe21zby1zdHlsZS1wcmlv cml0eTo5OTsNCgltc28tbWFyZ2luLXRvcC1hbHQ6YXV0bzsNCgltYXJnaW4tcmlnaHQ6MGNtOw0K CW1zby1tYXJnaW4tYm90dG9tLWFsdDphdXRvOw0KCW1hcmdpbi1sZWZ0OjBjbTsNCglmb250LXNp emU6MTIuMHB0Ow0KCWZvbnQtZmFtaWx5OiJUaW1lcyBOZXcgUm9tYW4iLHNlcmlmO30NCnNwYW4u bTY3NDMzNzQxMDQ0Nzg3MjAwMDNtOTU0NzQ0MTUxNzAzODUwOTVob2VuemINCgl7bXNvLXN0eWxl LW5hbWU6bV82NzQzMzc0MTA0NDc4NzIwMDAzbV85NTQ3NDQxNTE3MDM4NTA5NWhvZW56Yjt9DQpz cGFuLmhvZW56Yg0KCXttc28tc3R5bGUtbmFtZTpob2VuemI7fQ0Kc3Bhbi5FbWFpbFN0eWxlMjAN Cgl7bXNvLXN0eWxlLXR5cGU6cGVyc29uYWwtY29tcG9zZTsNCglmb250LWZhbWlseToiVGltZXMg TmV3IFJvbWFuIixzZXJpZjt9DQouTXNvQ2hwRGVmYXVsdA0KCXttc28tc3R5bGUtdHlwZTpleHBv cnQtb25seTsNCglmb250LXNpemU6MTAuMHB0O30NCkBwYWdlIFdvcmRTZWN0aW9uMQ0KCXtzaXpl OjYxMi4wcHQgNzkyLjBwdDsNCgltYXJnaW46NzIuMHB0IDcyLjBwdCA3Mi4wcHQgNzIuMHB0O30N CmRpdi5Xb3JkU2VjdGlvbjENCgl7cGFnZTpXb3JkU2VjdGlvbjE7fQ0KLS0+PC9zdHlsZT48IS0t W2lmIGd0ZSBtc28gOV0+PHhtbD4NCjxvOnNoYXBlZGVmYXVsdHMgdjpleHQ9ImVkaXQiIHNwaWRt YXg9IjEwMjYiIC8+DQo8L3htbD48IVtlbmRpZl0tLT48IS0tW2lmIGd0ZSBtc28gOV0+PHhtbD4N CjxvOnNoYXBlbGF5b3V0IHY6ZXh0PSJlZGl0Ij4NCjxvOmlkbWFwIHY6ZXh0PSJlZGl0IiBkYXRh PSIxIiAvPg0KPC9vOnNoYXBlbGF5b3V0PjwveG1sPjwhW2VuZGlmXS0tPg0KPC9oZWFkPg0KPGJv ZHkgbGFuZz0iRU4tVVMiIGxpbms9ImJsdWUiIHZsaW5rPSJwdXJwbGUiPg0KPGRpdiBjbGFzcz0i V29yZFNlY3Rpb24xIj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPkRlYXIgSGVucmlxdWUsPG86cD48 L286cD48L3A+DQo8ZGl2IGlkPSJBcHBsZU1haWxTaWduYXR1cmUiPg0KPHAgY2xhc3M9Ik1zb05v cm1hbCI+PG86cD4mbmJzcDs8L286cD48L3A+DQo8L2Rpdj4NCjxkaXYgaWQ9IkFwcGxlTWFpbFNp Z25hdHVyZSI+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj5FeGNlbGxlbnQgc3VtbWFyeSBieSBTZXJn aW8uIEkgaGF2ZSBhIGNvdXBsZSBvZiByZWluZm9yY2VtZW50cyBhbmQgYWRkaXRpb25zLiZuYnNw OzxvOnA+PC9vOnA+PC9wPg0KPC9kaXY+DQo8ZGl2IGlkPSJBcHBsZU1haWxTaWduYXR1cmUiPg0K PHAgY2xhc3M9Ik1zb05vcm1hbCI+PG86cD4mbmJzcDs8L286cD48L3A+DQo8L2Rpdj4NCjxkaXYg aWQ9IkFwcGxlTWFpbFNpZ25hdHVyZSI+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj5ZZXMsIHlvdSBt dXN0IG9wdGltaXplIHRoZSBnZW9tZXRyeS4gU29tZXRpbWVzIGl0J3MgZ29vZCBwcmFjdGljZSB0 byBmcmVlemUgb25lIHJlbW90ZSBhdG9tIHBlciBsaWdhbmQgKG5vdCBhIGh5ZHJvZ2VuLCBhbmQg YXQgbGVhc3QgMyBib25kcyBmcm9tIGFueSBtZXRhbCksIHRvIGF2b2lkIGxhcmdlIHNoaWZ0cyBp biB0aGUgbGlnYW5kIGdlb21ldHJ5LiBZb3UgbXVzdCBkbyB0aGlzIHRvIGlkZW50aWZ5IHRoZQ0K IGxvd2VzdCBzcGluIHN0YXRlLiBZb3UgY2FuIHRoZW4gdXNlIHNpbmdsZSBwb2ludHMgb24gdGhh dCBnZW9tZXRyeSB0byBjaGVjayBleGNpdGF0aW9ucyB0byBoaWdoZXIgZW5lcmd5IHNwaW4gc3Rh dGVzLCBidXQgdGhlIGxvd2VzdCBzdGF0ZSBNVVNUIGJlIG9wdGltaXplZC4gQW5kIHRvIGVuc3Vy ZSB5b3Uga25vdyB3aGljaCBpcyBsb3dlc3QsIHlvdSBtdXN0IG9wdGltaXplIGFsbCBzdGF0ZXMu Jm5ic3A7PG86cD48L286cD48L3A+DQo8L2Rpdj4NCjxkaXYgaWQ9IkFwcGxlTWFpbFNpZ25hdHVy ZSI+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj48bzpwPiZuYnNwOzwvbzpwPjwvcD4NCjwvZGl2Pg0K PGRpdiBpZD0iQXBwbGVNYWlsU2lnbmF0dXJlIj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPlNwaW4g c3RhdGUgZW5lcmdpZXMgYXJlIG5vdCBjb21wbGV0ZWx5IHJlbGlhYmxlIGZyb20gYW55IG1ldGhv ZC4gQSBiZXR0ZXIgY2hlY2sgaWYgeW91IGhhdmUgdGhlIGNvcnJlY3Qgb25lIGNhbiBiZSB0byBj b21wYXJlIGdlb21ldHJpZXMuIEJlIGF3YXJlIGlmIFhyYXkgcHJvYmxlbXMgdGhvdWdoLCBiZWxv dyE8bzpwPjwvbzpwPjwvcD4NCjwvZGl2Pg0KPGRpdiBpZD0iQXBwbGVNYWlsU2lnbmF0dXJlIj4N CjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxvOnA+Jm5ic3A7PC9vOnA+PC9wPg0KPC9kaXY+DQo8ZGl2 IGlkPSJBcHBsZU1haWxTaWduYXR1cmUiPg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+SWYgeW91IGhh dmUgYSBzeW1tZXRyaWMgbGlnYW5kIHNwaGVyZSwgYnV0IGFuIHVuc3ltbWV0cmljIHdhdmVmdW5j dGlvbiwgaXQgaXMgcXVpdGUgcG9zc2libGUgdGhhdCB5b3VyIG9ic2VydmVkIFhyYXkgc3RydWN0 dXJlIGlzIGFuIGF2ZXJhZ2Ugb2YgMyBpc29lcmdpYyBzdHJ1Y3R1cmVzLiBYcmF5cyBhcmUgZ2Vu ZXJhbGx5IG5vdCBnb29kIGVub3VnaCB0byByZXNvbHZlIHRoaXMgdHlwZSBvZiBwaGVub21lbm9u LA0KIHdoaWNoIGNhbiBiZSBjYXVzZWQgYnkgY29jcnlzdGFsbGl6YXRpb24gb2Ygc2ltaWxhciBn ZW9tZXRyaWVzIGluIGRpZmZlcmVudCBvcmllbnRhdGlvbnMsIG9yIGJ5IGxpYnJhdGlvbi4gQmUg YXdhcmUgaWYgdGhpcyB3aGVuIGNvbXBhcmluZyBnZW9tZXRyaWVzLjxvOnA+PC9vOnA+PC9wPg0K PC9kaXY+DQo8ZGl2IGlkPSJBcHBsZU1haWxTaWduYXR1cmUiPg0KPHAgY2xhc3M9Ik1zb05vcm1h bCI+PG86cD4mbmJzcDs8L286cD48L3A+DQo8L2Rpdj4NCjxkaXYgaWQ9IkFwcGxlTWFpbFNpZ25h dHVyZSI+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj5NYWtlIHN1cmUgeW91IGhhdmUgc3ltbWV0cnkg dHVybmVkIG9mZiwgYW5kL29yIHRoYXQgeW91IGNoZWNrIHlvdXIgZmluYWwgd2F2ZWZ1bmN0aW9u IGZvciBpbnN0YWJpbGl0eS4mbmJzcDs8bzpwPjwvbzpwPjwvcD4NCjwvZGl2Pg0KPGRpdiBpZD0i QXBwbGVNYWlsU2lnbmF0dXJlIj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxvOnA+Jm5ic3A7PC9v OnA+PC9wPg0KPC9kaXY+DQo8ZGl2IGlkPSJBcHBsZU1haWxTaWduYXR1cmUiPg0KPHAgY2xhc3M9 Ik1zb05vcm1hbCI+QlRXLCBJJ3ZlIHNhaWQgJnF1b3Q7d2F2ZWZ1bmN0aW9uJnF1b3Q7IGhlcmUs IGV2ZW4gdGhvdWdoIEkgZ3Vlc3MgeW91J3JlIHVzaW5nIERGVC4gSWYgeW91IGNhbiBhZmZvcmQg aXQsIGEgaGlnaC1sZXZlbCBzaW5nbGUgcG9pbnQgY2hlY2sgbWlnaHQgYmUgZ29vZCwgZm9yIGV4 YW1wbGUgdXNpbmcgQ0NTRChUKS4gSW4gYW55IGNhc2UsIHlvdSBzaG91bGQgY2hlY2sgeW91ciBy ZXN1bHRzIHVzaW5nIHNvbWUgZGlmZmVyZW50IERGVA0KIGZ1bmN0aW9uYWxzLCB0byBzZWUgaWYg eW91ciBjb25jbHVzaW9ucyBhcmUgc2Vuc2l0aXZlIHRvIGZ1bmN0aW9uYWwgY2hvaWNlLiBUb28g bWFueSB0byBjaG9zZSBmcm9t4oCmPG86cD48L286cD48L3A+DQo8L2Rpdj4NCjxkaXYgaWQ9IkFw cGxlTWFpbFNpZ25hdHVyZSI+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj48bzpwPiZuYnNwOzwvbzpw PjwvcD4NCjwvZGl2Pg0KPGRpdiBpZD0iQXBwbGVNYWlsU2lnbmF0dXJlIj4NCjxwIGNsYXNzPSJN c29Ob3JtYWwiPllvdSBtYXkgbmVlZCB0byBkbyBoYW5kLXR3ZWFraW5nIG9mIHRoZSBpbml0aWFs IGd1ZXNzIHRvIGFjaGlldmUgYW4gYW50aWZlcnJvbWFnbmV0aWMgcmVzdWx0LiBUaGlzIGlzIGFu IGFydCwgYW5kIHZlcnkgcHJvZ3JhbSBkZXBlbmRlbnQuIEkgYWN0dWFsbHkgcmVjb21tZW5kIEph Z3VhciBmb3IgdGhhdCwgdmVyeSBnb29kIGtleXdvcmQgY29udHJvbCBvZiBpbmRpdmlkdWFsIGF0 b21pYyBzcGluIHN0YXRlLiBCdXQNCiB5b3UgQ0FOIGRvIGl0IGluIG1vc3QgcHJvZ3JhbXMuPGJy Pg0KPGJyPg0KRmluYWxseSwgSSB3b3VsZCBhbHNvIHJlY29tbWVuZCByZWFkaW5nIHRoZSBhcnRp Y2xlIGJ5IEZyYW5rIE5lZXNlLCBldmVuIHRob3VnaCBoZSBtaXN1bmRlcnN0b29kIHlvdXIgb3hp ZGF0aW9uIHN0YXRlLjxvOnA+PC9vOnA+PC9wPg0KPC9kaXY+DQo8ZGl2IGlkPSJBcHBsZU1haWxT aWduYXR1cmUiPg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+PG86cD4mbmJzcDs8L286cD48L3A+DQo8 L2Rpdj4NCjxkaXYgaWQ9IkFwcGxlTWFpbFNpZ25hdHVyZSI+DQo8cCBjbGFzcz0iTXNvTm9ybWFs Ij5CZXN0IHJlZ2FyZHMsPG86cD48L286cD48L3A+DQo8L2Rpdj4NCjxkaXYgaWQ9IkFwcGxlTWFp bFNpZ25hdHVyZSI+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj48bzpwPiZuYnNwOzwvbzpwPjwvcD4N CjwvZGl2Pg0KPGRpdiBpZD0iQXBwbGVNYWlsU2lnbmF0dXJlIj4NCjxwIGNsYXNzPSJNc29Ob3Jt YWwiPlBlci1PbGE8YnI+DQo8YnI+DQpTZW50IGZyb20gbXkgaVBob25lPG86cD48L286cD48L3A+ DQo8L2Rpdj4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIiBzdHlsZT0ibWFyZ2luLWJvdHRv bToxMi4wcHQiPjxicj4NCk9uIDExIFNlcCAyMDE3LCBhdCAwMjoyOCwgU2VyZ2lvIEVtYW51ZWwg R2FsZW1iZWNrIHNlZ2FsZW1iXSFbPGEgaHJlZj0iaHR0cDovL3VzcC5iciI+dXNwLmJyPC9hPiAm bHQ7PGEgaHJlZj0ibWFpbHRvOm93bmVyLWNoZW1pc3RyeUBjY2wubmV0Ij5vd25lci1jaGVtaXN0 cnlAY2NsLm5ldDwvYT4mZ3Q7IHdyb3RlOjxvOnA+PC9vOnA+PC9wPg0KPC9kaXY+DQo8YmxvY2tx dW90ZSBzdHlsZT0ibWFyZ2luLXRvcDo1LjBwdDttYXJnaW4tYm90dG9tOjUuMHB0Ij4NCjxkaXY+ DQo8ZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+RGVhciBIZW5yaXF1ZSw8bzpwPjwvbzpwPjwv cD4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj48bzpwPiZuYnNwOzwvbzpwPjwvcD4NCjwv ZGl2Pg0KPGRpdj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPkkgYW0gbm90IGVudGlyZWx5IHN1cmUg aWYgYSBzaW5nbGUgcG9pbnQgaXMgY29ycmVjdCBmb3Igc3R1ZHkgbWFnbmV0aWMgY291cGxpbmdz LiBOb3JtYWxseSwgYSBnZW9tZXRyeSBvcHRpbWl6YXRpb24gaXMgdGhlIGZpcnN0IHN0ZXAgZm9y IGFuPG86cD48L286cD48L3A+DQo8L2Rpdj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPmlzb2xhdGVk IHN5c3RlbSwgYmVjYXVzZSB0aGUgZXhwZXJpbWVudGFsIG1pbmltdW0gaXMgbm90IHRoZSBzYW1l IGFzPG86cD48L286cD48L3A+DQo8ZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+YSBjb21wdXRh dGlvbmFsIHF1YW50dW0gY2hlbWlzdHJ5IG9uZS48bzpwPjwvbzpwPjwvcD4NCjwvZGl2Pg0KPGRp dj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxvOnA+Jm5ic3A7PC9vOnA+PC9wPg0KPC9kaXY+DQo8 ZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+QnV0LCBJIHRoaW5rIHRoYXQgeW91ciBtYWluIGNv bmNlcm4gaXMgdGhlIGJyb2tlbiBzeW1tZXRyeSBwcm9ibGVtIGFuZCB0aGUgbXVsdGljb25maWd1 cmF0aW9uYWwgY2hhcmFjdGVyIG9mIHRoZSB3YXZlZnVuY3Rpb24uJm5ic3A7PG86cD48L286cD48 L3A+DQo8L2Rpdj4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj48bzpwPiZuYnNwOzwvbzpw PjwvcD4NCjwvZGl2Pg0KPGRpdj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPlVuZm9ydHVuYXRlbHks IEkgZG9uJ3Qgd29yayB3aXRoIHRoZXNlIHByb2JsZW1zIGFuZCB0ZWNobmlxdWVzLCBidXQgSSBj YW4gaW5kaWNhdGU8bzpwPjwvbzpwPjwvcD4NCjwvZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+ c29tZSBCcmF6aWxpYW4gdGhlb3JldGljYWwgY2hlbWlzdHMgdGhhdCB3b3JrIHdpdGggdGhlc2Ug c3ViamVjdHMsIG9yIGF0IGxlYXN0IHdpdGggbXVsdGljb25maWd1cmF0aW9uYWw8bzpwPjwvbzpw PjwvcD4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj5tZXRob2RzLiZuYnNwOzxvOnA+PC9v OnA+PC9wPg0KPC9kaXY+DQo8ZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+PG86cD4mbmJzcDs8 L286cD48L3A+DQo8L2Rpdj4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj5CZXN0IHJlZ2Fy ZHMsPG86cD48L286cD48L3A+DQo8L2Rpdj4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj48 bzpwPiZuYnNwOzwvbzpwPjwvcD4NCjwvZGl2Pg0KPGRpdj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwi PlNlcmdpbzxvOnA+PC9vOnA+PC9wPg0KPC9kaXY+DQo8ZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1h bCI+PG86cD4mbmJzcDs8L286cD48L3A+DQo8L2Rpdj4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9y bWFsIj48YnIgY2xlYXI9ImFsbCI+DQo8bzpwPjwvbzpwPjwvcD4NCjxkaXY+DQo8ZGl2Pg0KPGRp dj4NCjxkaXY+DQo8ZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+UHJvZi4gU2VyZ2lvIEVtYW51 ZWwgR2FsZW1iZWNrPG86cD48L286cD48L3A+DQo8L2Rpdj4NCjxkaXY+DQo8cCBjbGFzcz0iTXNv Tm9ybWFsIj5Db21wdXRhdGlvbmFsIFF1YW50dW0gQ2hlbWlzdHJ5IExhYm9yYXRvcnk8bzpwPjwv bzpwPjwvcD4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj5EZXBhcnRhbWVudG8gZGUgUXXD rW1pY2EgLSBGRkNMUlAtVVNQPG86cD48L286cD48L3A+DQo8L2Rpdj4NCjxkaXY+DQo8cCBjbGFz cz0iTXNvTm9ybWFsIj5Bdi4gQmFuZGVpcmFudGVzLCAzOTAwPG86cD48L286cD48L3A+DQo8L2Rp dj4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj4xNDA0MC05MDEgLSBSaWJlaXJhbyBQcmV0 by1TUDxvOnA+PC9vOnA+PC9wPg0KPC9kaXY+DQo8ZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+ QnJhc2lsPG86cD48L286cD48L3A+DQo8L2Rpdj4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFs Ij48bzpwPiZuYnNwOzwvbzpwPjwvcD4NCjwvZGl2Pg0KPGRpdj4NCjxwIGNsYXNzPSJNc29Ob3Jt YWwiPnBob25lOiAmIzQzOzU1KDE2KTMzMTUzNzY1PG86cD48L286cD48L3A+DQo8L2Rpdj4NCjxk aXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj48YSBocmVmPSJtYWlsdG86c2VnYWxlbWIjIyN1c3Au YnIiPnNlZ2FsZW1iIyMjdXNwLmJyPC9hPjxvOnA+PC9vOnA+PC9wPg0KPC9kaXY+DQo8L2Rpdj4N CjwvZGl2Pg0KPC9kaXY+DQo8L2Rpdj4NCjwvZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+PG86 cD4mbmJzcDs8L286cD48L3A+DQo8ZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+MjAxNy0wOS0x MCAxMzoyMSBHTVQtMDM6MDAgSGVucmlxdWUgQy4gUy4gSnVuaW9yIGhlbnJpcXVlY3NqLCYjNDM7 LDxhIGhyZWY9Imh0dHBzOi8vY2xpY2t0aW1lLnN5bWFudGVjLmNvbS9hLzEvdHM4V0l1T3NYSkNi WmdaS21UcHNLaWQxUkFITGN6YUk3bDFFT0hkNE9CQT0/ZD1ia2x0OWdLQUlqUnhwdDhYa1ZMZmxs WG91blJOY1J6MnNEVldrOS1oQ0NpWWs4dUJHcVFfakJMREMxN3BLQXhDSFdZYlFsSVNPX3k4UHBK eWo0VC1DbmlwQk9INXFMeHZXb1RwcmhfbHl0RDJlb3RnZTF3WmVVR0N1bG4yN1c0WVMtdnRpTkEz YVI5S3YzWGtqcFl6UUNlVWt0SnB4ODh6Mlg5TUFvd2ZLUk9wZ1owbjRHbmpKdTJvdWhxNXhTZkw5 MlN2Zi1MMTVsX1FMNm1yeTAwZHVZcWREZmVHQU1lN19sd0FEWDRmOWs5cXVsdHhsQ3VHZUVVYkYt RXJSWHluRE9RdEpaU3pCYmdLZUsxalhfbWstUjFMVjYxWEV2NzZkTkVNSnFIVEFYbl9wV1RHN09E RG9wU2szc3pudHZ1S09NWUF4WXhCRHZFWkNSQkpMa0R6Sy1VSkh0Z2ZQRlhFaE1mZlZWYld0b3d4 dVZDMi1Bc2hwZ1k5V2pFODBVVkg0eWtOT3I0SkxBeWE2cC1USnVzWldyOXQ3eVZJOHBrb1ZVaFBB aEpqTTJSRllHNmxucDlnOUotOTRFSzdNWVZIZURib2Iyck5pSm5qYzc1WFNKOF9iNk1ORFBiN19W RG1RQ0pqNTU4SEY3N1lyd0pKSF9aNk5QTjhhc2w0c1E4UiZhbXA7dT1odHRwJTNBJTJGJTJGZ21h aWwuY29tIj5nbWFpbC5jb208L2E+DQogJmx0OzxhIGhyZWY9Im1haWx0bzpvd25lci1jaGVtaXN0 cnkjIyNjY2wubmV0Ij5vd25lci1jaGVtaXN0cnkjIyNjY2wubmV0PC9hPiZndDs6PG86cD48L286 cD48L3A+DQo8YmxvY2txdW90ZSBzdHlsZT0iYm9yZGVyOm5vbmU7Ym9yZGVyLWxlZnQ6c29saWQg I0NDQ0NDQyAxLjBwdDtwYWRkaW5nOjBjbSAwY20gMGNtIDYuMHB0O21hcmdpbi1sZWZ0OjQuOHB0 O21hcmdpbi1yaWdodDowY20iPg0KPGRpdj4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj48 c3BhbiBzdHlsZT0iZm9udC1mYW1pbHk6JnF1b3Q7Q291cmllciBOZXcmcXVvdDsiPkRlYXIgU2Vy Z2lvLCB0aGFua3MgZm9yIHlvdXIgcmVwbHkuIEkgZm9yZ290IHRvIHRlbGwgdGhhdCB0aGlzIHN0 cnVjdHVyZSBpcyB0byBiZSB1c2VkIHRvIHN0dWR5IG1hZ25ldGljIGNvdXBsaW5ncywgc28gd2Ug dXN1YWxseSBkb24ndCBwZXJmb3JtIGdlb21ldHJ5IG9wdGltaXphdGlvbnMuPG86cD48L286cD48 L3NwYW4+PC9wPg0KPC9kaXY+DQo8ZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+PHNwYW4gc3R5 bGU9ImZvbnQtZmFtaWx5OiZxdW90O0NvdXJpZXIgTmV3JnF1b3Q7Ij5EZXNwaXRlIHRoYXQsIGRv IHlvdSBiZWxpZXZlIHRoYXQgdGhlIFNpbmdsZSBQb2ludHMgYXBwcm9hY2ggaXMsIGluIGdlbmVy YWwsIGNvcnJlY3Q/PG86cD48L286cD48L3NwYW4+PC9wPg0KPC9kaXY+DQo8L2Rpdj4NCjxkaXY+ DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj48bzpwPiZuYnNwOzwvbzpwPjwvcD4NCjxkaXY+DQo8cCBj bGFzcz0iTXNvTm9ybWFsIj5PbiBTdW4sIFNlcCAxMCwgMjAxNyBhdCAxMTowNyBBTSwgU2VyZ2lv IEVtYW51ZWwgR2FsZW1iZWNrIHNlZ2FsZW1iXS1bPGEgaHJlZj0iaHR0cHM6Ly9jbGlja3RpbWUu c3ltYW50ZWMuY29tL2EvMS9WNUVZeVR4bHRZWmdlS0tVVjhQODNRX0toYUI4bjR6U2psbF9BSThW bnFRPT9kPWJrbHQ5Z0tBSWpSeHB0OFhrVkxmbGxYb3VuUk5jUnoyc0RWV2s5LWhDQ2lZazh1Qkdx UV9qQkxEQzE3cEtBeENIV1liUWxJU09feThQcEp5ajRULUNuaXBCT0g1cUx4dldvVHByaF9seXRE MmVvdGdlMXdaZVVHQ3VsbjI3VzRZUy12dGlOQTNhUjlLdjNYa2pwWXpRQ2VVa3RKcHg4OHoyWDlN QW93ZktST3BnWjBuNEduakp1Mm91aHE1eFNmTDkyU3ZmLUwxNWxfUUw2bXJ5MDBkdVlxZERmZUdB TWU3X2x3QURYNGY5azlxdWx0eGxDdUdlRVViRi1FclJYeW5ET1F0SlpTekJiZ0tlSzFqWF9tay1S MUxWNjFYRXY3NmRORU1KcUhUQVhuX3BXVEc3T0REb3BTazNzem50dnVLT01ZQXhZeEJEdkVaQ1JC SkxrRHpLLVVKSHRnZlBGWEVoTWZmVlZiV3Rvd3h1VkMyLUFzaHBnWTlXakU4MFVWSDR5a05PcjRK TEF5YTZwLVRKdXNaV3I5dDd5Vkk4cGtvVlVoUEFoSmpNMlJGWUc2bG5wOWc5Si05NEVLN01ZVkhl RGJvYjJyTmlKbmpjNzVYU0o4X2I2TU5EUGI3X1ZEbVFDSmo1NThIRjc3WXJ3SkpIX1o2TlBOOGFz bDRzUThSJmFtcDt1PWh0dHAlM0ElMkYlMkZ1c3AuYnIiPnVzcC5icjwvYT4NCiAmbHQ7PGEgaHJl Zj0ibWFpbHRvOm93bmVyLWNoZW1pc3RyeV9fY2NsLm5ldCI+b3duZXItY2hlbWlzdHJ5X19jY2wu bmV0PC9hPiZndDsgd3JvdGU6PG86cD48L286cD48L3A+DQo8YmxvY2txdW90ZSBzdHlsZT0iYm9y ZGVyOm5vbmU7Ym9yZGVyLWxlZnQ6c29saWQgI0NDQ0NDQyAxLjBwdDtwYWRkaW5nOjBjbSAwY20g MGNtIDYuMHB0O21hcmdpbi1sZWZ0OjQuOHB0O21hcmdpbi1yaWdodDowY20iPg0KPGRpdj4NCjxw IGNsYXNzPSJNc29Ob3JtYWwiPkRlYXIgSGVucmlxdWUsPG86cD48L286cD48L3A+DQo8ZGl2Pg0K PHAgY2xhc3M9Ik1zb05vcm1hbCI+PG86cD4mbmJzcDs8L286cD48L3A+DQo8L2Rpdj4NCjxkaXY+ DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj5JIHN1Z2dlc3QgdGhhdCBmb3IgZWFjaCBzcGluIHN0YXRl IHlvdSBvcHRpbWl6ZSB0aGUgZ2VvbWV0cnkuIFNvbWUgb2YgdGhpcyBzdGF0ZXMgY291bGQgZ2Vu ZXJhdGUgYW4gdW5zdGFibGUgZ2VvbWV0cnkuJm5ic3A7PG86cD48L286cD48L3A+DQo8L2Rpdj4N CjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj48bzpwPiZuYnNwOzwvbzpwPjwvcD4NCjwvZGl2 Pg0KPGRpdj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPkJlc3QgcmVnYXJkcyw8bzpwPjwvbzpwPjwv cD4NCjwvZGl2Pg0KPGRpdj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxvOnA+Jm5ic3A7PC9vOnA+ PC9wPg0KPC9kaXY+DQo8ZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+U2VyZ2lvPG86cD48L286 cD48L3A+DQo8L2Rpdj4NCjwvZGl2Pg0KPGRpdj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxiciBj bGVhcj0iYWxsIj4NCjxvOnA+PC9vOnA+PC9wPg0KPGRpdj4NCjxkaXY+DQo8ZGl2Pg0KPGRpdj4N CjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj5Qcm9mLiBTZXJnaW8gRW1hbnVlbCBHYWxlbWJl Y2s8bzpwPjwvbzpwPjwvcD4NCjwvZGl2Pg0KPGRpdj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPkNv bXB1dGF0aW9uYWwgUXVhbnR1bSBDaGVtaXN0cnkgTGFib3JhdG9yeTxvOnA+PC9vOnA+PC9wPg0K PGRpdj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPkRlcGFydGFtZW50byBkZSBRdcOtbWljYSAtIEZG Q0xSUC1VU1A8bzpwPjwvbzpwPjwvcD4NCjwvZGl2Pg0KPGRpdj4NCjxwIGNsYXNzPSJNc29Ob3Jt YWwiPjxhIGhyZWY9Imh0dHBzOi8vY2xpY2t0aW1lLnN5bWFudGVjLmNvbS9hLzEvZm5DOGdIdXRM MHowamJDRDBubmRWYjJERmxwR3p1M0ZyWFVOYkl5S2x0ST0/ZD1ia2x0OWdLQUlqUnhwdDhYa1ZM ZmxsWG91blJOY1J6MnNEVldrOS1oQ0NpWWs4dUJHcVFfakJMREMxN3BLQXhDSFdZYlFsSVNPX3k4 UHBKeWo0VC1DbmlwQk9INXFMeHZXb1RwcmhfbHl0RDJlb3RnZTF3WmVVR0N1bG4yN1c0WVMtdnRp TkEzYVI5S3YzWGtqcFl6UUNlVWt0SnB4ODh6Mlg5TUFvd2ZLUk9wZ1owbjRHbmpKdTJvdWhxNXhT Zkw5MlN2Zi1MMTVsX1FMNm1yeTAwZHVZcWREZmVHQU1lN19sd0FEWDRmOWs5cXVsdHhsQ3VHZUVV YkYtRXJSWHluRE9RdEpaU3pCYmdLZUsxalhfbWstUjFMVjYxWEV2NzZkTkVNSnFIVEFYbl9wV1RH N09ERG9wU2szc3pudHZ1S09NWUF4WXhCRHZFWkNSQkpMa0R6Sy1VSkh0Z2ZQRlhFaE1mZlZWYld0 b3d4dVZDMi1Bc2hwZ1k5V2pFODBVVkg0eWtOT3I0SkxBeWE2cC1USnVzWldyOXQ3eVZJOHBrb1ZV aFBBaEpqTTJSRllHNmxucDlnOUotOTRFSzdNWVZIZURib2Iyck5pSm5qYzc1WFNKOF9iNk1ORFBi N19WRG1RQ0pqNTU4SEY3N1lyd0pKSF9aNk5QTjhhc2w0c1E4UiZhbXA7dT1odHRwcyUzQSUyRiUy Rm1hcHMuZ29vZ2xlLmNvbSUyRiUzRnElM0RBdi4lMkJCYW5kZWlyYW50ZXMlMkMlMkIzOTAwJTI2 YW1wJTNCZW50cnklM0RnbWFpbCUyNmFtcCUzQnNvdXJjZSUzRGciPkF2Lg0KIEJhbmRlaXJhbnRl cywgMzkwMDwvYT48bzpwPjwvbzpwPjwvcD4NCjwvZGl2Pg0KPGRpdj4NCjxwIGNsYXNzPSJNc29O b3JtYWwiPjE0MDQwLTkwMSAtIFJpYmVpcmFvIFByZXRvLVNQPG86cD48L286cD48L3A+DQo8L2Rp dj4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj5CcmFzaWw8bzpwPjwvbzpwPjwvcD4NCjwv ZGl2Pg0KPGRpdj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxvOnA+Jm5ic3A7PC9vOnA+PC9wPg0K PC9kaXY+DQo8ZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+cGhvbmU6IDxhIGhyZWY9InRlbDoo MTYpJTIwMzMxNS0zNzY1Ij4mIzQzOzU1KDE2KTMzMTUzNzY1PC9hPjxvOnA+PC9vOnA+PC9wPg0K PC9kaXY+DQo8ZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+PGEgaHJlZj0ibWFpbHRvOnNlZ2Fs ZW1ifiF+dXNwLmJyIj5zZWdhbGVtYn4hfnVzcC5icjwvYT48bzpwPjwvbzpwPjwvcD4NCjwvZGl2 Pg0KPC9kaXY+DQo8L2Rpdj4NCjwvZGl2Pg0KPC9kaXY+DQo8L2Rpdj4NCjxkaXY+DQo8ZGl2Pg0K PHAgY2xhc3M9Ik1zb05vcm1hbCI+PG86cD4mbmJzcDs8L286cD48L3A+DQo8ZGl2Pg0KPHAgY2xh c3M9Ik1zb05vcm1hbCI+MjAxNy0wOS0xMCA5OjAzIEdNVC0wMzowMCBIZW5yaXF1ZSBDLiBTLiBK dW5pb3IgaGVucmlxdWVjc2omIzQzOy8tPGEgaHJlZj0iaHR0cHM6Ly9jbGlja3RpbWUuc3ltYW50 ZWMuY29tL2EvMS90czhXSXVPc1hKQ2JaZ1pLbVRwc0tpZDFSQUhMY3phSTdsMUVPSGQ0T0JBPT9k PWJrbHQ5Z0tBSWpSeHB0OFhrVkxmbGxYb3VuUk5jUnoyc0RWV2s5LWhDQ2lZazh1QkdxUV9qQkxE QzE3cEtBeENIV1liUWxJU09feThQcEp5ajRULUNuaXBCT0g1cUx4dldvVHByaF9seXREMmVvdGdl MXdaZVVHQ3VsbjI3VzRZUy12dGlOQTNhUjlLdjNYa2pwWXpRQ2VVa3RKcHg4OHoyWDlNQW93ZktS T3BnWjBuNEduakp1Mm91aHE1eFNmTDkyU3ZmLUwxNWxfUUw2bXJ5MDBkdVlxZERmZUdBTWU3X2x3 QURYNGY5azlxdWx0eGxDdUdlRVViRi1FclJYeW5ET1F0SlpTekJiZ0tlSzFqWF9tay1SMUxWNjFY RXY3NmRORU1KcUhUQVhuX3BXVEc3T0REb3BTazNzem50dnVLT01ZQXhZeEJEdkVaQ1JCSkxrRHpL LVVKSHRnZlBGWEVoTWZmVlZiV3Rvd3h1VkMyLUFzaHBnWTlXakU4MFVWSDR5a05PcjRKTEF5YTZw LVRKdXNaV3I5dDd5Vkk4cGtvVlVoUEFoSmpNMlJGWUc2bG5wOWc5Si05NEVLN01ZVkhlRGJvYjJy TmlKbmpjNzVYU0o4X2I2TU5EUGI3X1ZEbVFDSmo1NThIRjc3WXJ3SkpIX1o2TlBOOGFzbDRzUThS JmFtcDt1PWh0dHAlM0ElMkYlMkZnbWFpbC5jb20iPmdtYWlsLmNvbTwvYT4NCiAmbHQ7PGEgaHJl Zj0ibWFpbHRvOm93bmVyLWNoZW1pc3RyeX4hfmNjbC5uZXQiPm93bmVyLWNoZW1pc3RyeX4hfmNj bC5uZXQ8L2E+Jmd0Ozo8bzpwPjwvbzpwPjwvcD4NCjxibG9ja3F1b3RlIHN0eWxlPSJib3JkZXI6 bm9uZTtib3JkZXItbGVmdDpzb2xpZCAjQ0NDQ0NDIDEuMHB0O3BhZGRpbmc6MGNtIDBjbSAwY20g Ni4wcHQ7bWFyZ2luLWxlZnQ6NC44cHQ7bWFyZ2luLXJpZ2h0OjBjbSI+DQo8ZGl2Pg0KPGRpdj4N CjxwPjxzcGFuIHN0eWxlPSJmb250LWZhbWlseTomcXVvdDtDb3VyaWVyIE5ldyZxdW90OyI+RGVh ciBjb2xsZWFndWVzLCBJ4oCZbSB3b3JraW5nIHdpdGggYSBDb2JhbHQoSUkpIHRyaW1lciB3aG9z ZSBtb2xlY3VsYXIgc3RydWN0dXJlIHdhcyBhY2hpZXZlZCBieSBTaW5nbGUgQ3J5c3RhbCBYLVJh eSBEaWZmcmFjdGlvbi4gTXkgdGFzayBub3cgaXMgdG8gY2hlY2sgdGhlIHNwaW4gc3RhdGVzIG9m IHRoZSBzdHJ1Y3R1cmUgKEhpZ2ggb3IgTG93IHNwaW4pLiBTaW5jZSBDbyhJSSkNCiBjYW4gaGF2 ZSAxIG9yIDMgdW5wYWlyZWQgZWxlY3Ryb25zLCBJ4oCZbSBhcHByb2FjaGluZyB0aGlzIHByb2Js ZW0gYnkgY2FsY3VsYXRpbmcgU2luZ2xlIFBvaW50cyBmb3IgZXZlcnkgcG9zc2libGUgbXVsdGlw bGljaXR5ICgxMCwgOCwgNiwgNCwgMikgYW5kIGFzc3VtaW5nIHRoYXQgdGhlIG1vc3Qgc3RhYmxl IGlzIHRoZSBvbmUgdGhhdCByZXByZXNlbnRzIG15IHN0cnVjdHVyZSAoYW5kIG15IHNwaW4gc3Rh dGVzKS48bzpwPjwvbzpwPjwvc3Bhbj48L3A+DQo8cD48c3BhbiBzdHlsZT0iZm9udC1mYW1pbHk6 JnF1b3Q7Q291cmllciBOZXcmcXVvdDsiPklzIHRoaXMgYXBwcm9hY2ggY29ycmVjdD88bzpwPjwv bzpwPjwvc3Bhbj48L3A+DQo8cD48c3BhbiBzdHlsZT0iZm9udC1mYW1pbHk6JnF1b3Q7Q291cmll ciBOZXcmcXVvdDsiPlRoYW5rIHlvdTxvOnA+PC9vOnA+PC9zcGFuPjwvcD4NCjwvZGl2Pg0KPGRp dj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxzcGFuIHN0eWxlPSJjb2xvcjojODg4ODg4Ij48bzpw PiZuYnNwOzwvbzpwPjwvc3Bhbj48L3A+DQo8L2Rpdj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwiPjxz cGFuIGNsYXNzPSJtNjc0MzM3NDEwNDQ3ODcyMDAwM205NTQ3NDQxNTE3MDM4NTA5NWhvZW56YiI+ PHNwYW4gc3R5bGU9ImNvbG9yOiM4ODg4ODgiPi0tDQo8L3NwYW4+PG86cD48L286cD48L3NwYW4+ PC9wPg0KPGRpdj4NCjxkaXY+DQo8ZGl2Pg0KPGRpdj4NCjxkaXY+DQo8ZGl2Pg0KPGRpdj4NCjxk aXY+DQo8ZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCIgc3R5bGU9Im1hcmdpbi1ib3R0b206MTIu MHB0Ij48Yj48c3BhbiBzdHlsZT0iZm9udC1mYW1pbHk6JnF1b3Q7Q291cmllciBOZXcmcXVvdDs7 Y29sb3I6Z3JheSI+SGVucmlxdWUgQy4gUy4gSnVuaW9yPC9zcGFuPjwvYj48bzpwPjwvbzpwPjwv cD4NCjwvZGl2Pg0KPC9kaXY+DQo8L2Rpdj4NCjwvZGl2Pg0KPC9kaXY+DQo8L2Rpdj4NCjwvZGl2 Pg0KPC9kaXY+DQo8L2Rpdj4NCjwvZGl2Pg0KPC9ibG9ja3F1b3RlPg0KPC9kaXY+DQo8cCBjbGFz cz0iTXNvTm9ybWFsIj48bzpwPiZuYnNwOzwvbzpwPjwvcD4NCjwvZGl2Pg0KPC9kaXY+DQo8L2Rp dj4NCjwvYmxvY2txdW90ZT4NCjwvZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+PHNwYW4gc3R5 bGU9ImNvbG9yOiM4ODg4ODgiPjxicj4NCjxiciBjbGVhcj0iYWxsIj4NCjwvc3Bhbj48c3BhbiBj bGFzcz0iaG9lbnpiIj48c3BhbiBzdHlsZT0iY29sb3I6Izg4ODg4OCI+PG86cD48L286cD48L3Nw YW4+PC9zcGFuPjwvcD4NCjxkaXY+DQo8cCBjbGFzcz0iTXNvTm9ybWFsIj48bzpwPiZuYnNwOzwv bzpwPjwvcD4NCjwvZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+PHNwYW4gY2xhc3M9ImhvZW56 YiI+PHNwYW4gc3R5bGU9ImNvbG9yOiM4ODg4ODgiPi0tIDwvc3Bhbj48bzpwPjwvbzpwPjwvc3Bh bj48L3A+DQo8ZGl2Pg0KPGRpdj4NCjxkaXY+DQo8ZGl2Pg0KPGRpdj4NCjxkaXY+DQo8ZGl2Pg0K PGRpdj4NCjxkaXY+DQo8ZGl2Pg0KPGRpdj4NCjxkaXY+DQo8ZGl2Pg0KPGRpdj4NCjxkaXY+DQo8 ZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+PGI+PHNwYW4gc3R5bGU9ImZvbnQtZmFtaWx5OiZx dW90O0NvdXJpZXIgTmV3JnF1b3Q7O2NvbG9yOmdyYXkiPkhlbnJpcXVlIEMuIFMuIEp1bmlvcjwv c3Bhbj48L2I+PHNwYW4gc3R5bGU9ImZvbnQtZmFtaWx5OiZxdW90O0NvdXJpZXIgTmV3JnF1b3Q7 O2NvbG9yOiM4QjhCOEIiPjxicj4NCkluZHVzdHJpYWwgQ2hlbWlzdCAtIFVGUlJKPC9zcGFuPjxv OnA+PC9vOnA+PC9wPg0KPC9kaXY+DQo8ZGl2Pg0KPHAgY2xhc3M9Ik1zb05vcm1hbCI+PHNwYW4g c3R5bGU9ImZvbnQtZmFtaWx5OiZxdW90O0NvdXJpZXIgTmV3JnF1b3Q7O2NvbG9yOiM4QjhCOEIi Pk0uIFNjLiBJbm9yZ2FuaWMgQ2hlbWlzdHJ5IC0gVUZSUko8YnI+DQpEYXRhIFByb2Nlc3Npbmcg Q2VudGVyIC0gUE1QPC9zcGFuPjxzcGFuIHN0eWxlPSJjb2xvcjojODg4ODg4Ij48bzpwPjwvbzpw Pjwvc3Bhbj48L3A+DQo8L2Rpdj4NCjwvZGl2Pg0KPGRpdj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwi PjxzcGFuIHN0eWxlPSJmb250LWZhbWlseTomcXVvdDtDb3VyaWVyIE5ldyZxdW90Oztjb2xvcjoj OEI4QjhCIj5WaXNpdGUgbw0KPGEgaHJlZj0iaHR0cHM6Ly9jbGlja3RpbWUuc3ltYW50ZWMuY29t L2EvMS9FUlF6ZV9qQkpvN0JEUDE2Sm9fSmdMMUk4cXJ3MGpMNUVHbFAwU3d2ZlNNPT9kPWJrbHQ5 Z0tBSWpSeHB0OFhrVkxmbGxYb3VuUk5jUnoyc0RWV2s5LWhDQ2lZazh1QkdxUV9qQkxEQzE3cEtB eENIV1liUWxJU09feThQcEp5ajRULUNuaXBCT0g1cUx4dldvVHByaF9seXREMmVvdGdlMXdaZVVH Q3VsbjI3VzRZUy12dGlOQTNhUjlLdjNYa2pwWXpRQ2VVa3RKcHg4OHoyWDlNQW93ZktST3BnWjBu NEduakp1Mm91aHE1eFNmTDkyU3ZmLUwxNWxfUUw2bXJ5MDBkdVlxZERmZUdBTWU3X2x3QURYNGY5 azlxdWx0eGxDdUdlRVViRi1FclJYeW5ET1F0SlpTekJiZ0tlSzFqWF9tay1SMUxWNjFYRXY3NmRO RU1KcUhUQVhuX3BXVEc3T0REb3BTazNzem50dnVLT01ZQXhZeEJEdkVaQ1JCSkxrRHpLLVVKSHRn ZlBGWEVoTWZmVlZiV3Rvd3h1VkMyLUFzaHBnWTlXakU4MFVWSDR5a05PcjRKTEF5YTZwLVRKdXNa V3I5dDd5Vkk4cGtvVlVoUEFoSmpNMlJGWUc2bG5wOWc5Si05NEVLN01ZVkhlRGJvYjJyTmlKbmpj NzVYU0o4X2I2TU5EUGI3X1ZEbVFDSmo1NThIRjc3WXJ3SkpIX1o2TlBOOGFzbDRzUThSJmFtcDt1 PWh0dHAlM0ElMkYlMkZtdW5kb3F1aW1pY28uY29tLmJyIj4NCk11bmRvIFF1w61taWNvPC9hPjwv c3Bhbj48c3BhbiBzdHlsZT0iY29sb3I6Izg4ODg4OCI+PG86cD48L286cD48L3NwYW4+PC9wPg0K PC9kaXY+DQo8L2Rpdj4NCjwvZGl2Pg0KPC9kaXY+DQo8L2Rpdj4NCjwvZGl2Pg0KPC9kaXY+DQo8 L2Rpdj4NCjwvZGl2Pg0KPC9kaXY+DQo8L2Rpdj4NCjwvZGl2Pg0KPC9kaXY+DQo8L2Rpdj4NCjwv ZGl2Pg0KPC9kaXY+DQo8L2Jsb2NrcXVvdGU+DQo8L2Rpdj4NCjxwIGNsYXNzPSJNc29Ob3JtYWwi PjxvOnA+Jm5ic3A7PC9vOnA+PC9wPg0KPC9kaXY+DQo8L2Rpdj4NCjwvZGl2Pg0KPC9ibG9ja3F1 b3RlPg0KPC9kaXY+DQo8aHI+DQo8cCBjbGFzcz0ie0ltcHJpbnQuVW5pcXVlSUR9IiBzdHlsZT0i Rk9OVC1TSVpFOiA4cHQiPjxmb250IGZhY2U9IkFyaWFsIiBzaXplPSIxIj48L2ZvbnQ+PC9wPg0K PHAgY2xhc3M9IntJbXByaW50LlVuaXF1ZUlEfSIgc3R5bGU9IkZPTlQtU0laRTogOHB0Ij48Zm9u dCBmYWNlPSJBcmlhbCI+PHN0cm9uZz5Db25maWRlbnRpYWxpdHkgTm90aWNlOg0KPC9zdHJvbmc+ VGhpcyBtZXNzYWdlIGlzIHByaXZhdGUgYW5kIG1heSBjb250YWluIGNvbmZpZGVudGlhbCBhbmQg cHJvcHJpZXRhcnkgaW5mb3JtYXRpb24uIElmIHlvdSBoYXZlIHJlY2VpdmVkIHRoaXMgbWVzc2Fn ZSBpbiBlcnJvciwgcGxlYXNlIG5vdGlmeSB1cyBhbmQgcmVtb3ZlIGl0IGZyb20geW91ciBzeXN0 ZW0gYW5kIG5vdGUgdGhhdCB5b3UgbXVzdCBub3QgY29weSwgZGlzdHJpYnV0ZSBvciB0YWtlIGFu eSBhY3Rpb24gaW4gcmVsaWFuY2UNCiBvbiBpdC4gQW55IHVuYXV0aG9yaXplZCB1c2Ugb3IgZGlz Y2xvc3VyZSBvZiB0aGUgY29udGVudHMgb2YgdGhpcyBtZXNzYWdlIGlzIG5vdCBwZXJtaXR0ZWQg YW5kIG1heSBiZSB1bmxhd2Z1bC48L2ZvbnQ+PC9wPg0KPHAgY2xhc3M9IntJbXByaW50LlVuaXF1 ZUlEfSIgc3R5bGU9IkZPTlQtU0laRTogOHB0Ij48Zm9udCBmYWNlPSJBcmlhbCI+PC9mb250Pjwv cD4NCjxwIGNsYXNzPSJ7SW1wcmludC5VbmlxdWVJRH0iIHN0eWxlPSJGT05ULVNJWkU6IDhwdCI+ PGZvbnQgZmFjZT0iQXJpYWwiPjwvZm9udD48L3A+DQo8cCBjbGFzcz0ie0ltcHJpbnQuVW5pcXVl SUR9IiBzdHlsZT0iRk9OVC1TSVpFOiA4cHQiPjxmb250IGZhY2U9IkFyaWFsIj48L2ZvbnQ+PC9w Pg0KPHAgY2xhc3M9IntJbXByaW50LlVuaXF1ZUlEfSIgc3R5bGU9IkZPTlQtU0laRTogOHB0Ij48 Zm9udCBmYWNlPSJBcmlhbCI+PC9mb250PjwvcD4NCjxwIGNsYXNzPSJ7SW1wcmludC5VbmlxdWVJ RH0iIHN0eWxlPSJGT05ULVNJWkU6IDhwdCI+PGZvbnQgZmFjZT0iQXJpYWwiPjwvZm9udD48L3A+ DQo8cCBjbGFzcz0ie0ltcHJpbnQuVW5pcXVlSUR9IiBzdHlsZT0iRk9OVC1TSVpFOiA4cHQiPjxm b250IGZhY2U9IkFyaWFsIj48L2ZvbnQ+PGZvbnQgc2l6ZT0iJiM0MzswIj48L2ZvbnQ+PC9wPg0K PHAgY2xhc3M9IntJbXByaW50LlVuaXF1ZUlEfSIgc3R5bGU9IkZPTlQtU0laRTogOHB0Ij48Zm9u dCBmYWNlPSJBcmlhbCI+PC9mb250PjwvcD4NCjxwIGNsYXNzPSJ7SW1wcmludC5VbmlxdWVJRH0i IHN0eWxlPSJGT05ULVNJWkU6IDhwdCI+PC9wPg0KPHAgY2xhc3M9IntJbXByaW50LlVuaXF1ZUlE fSIgc3R5bGU9IkZPTlQtU0laRTogOHB0Ij48L3A+DQo8L2JvZHk+DQo8L2h0bWw+DQo= --_000_HE1PR04MB209236A3CE9BDA78EC785BFBCA680HE1PR04MB2092eurp_-- From owner-chemistry@ccl.net Mon Sep 11 10:57:01 2017 From: "Igors Mihailovs igorsm!=!cfi.lu.lv" To: CCL Subject: CCL:G: Gaussian SCRF error "No solvent atoms in DisRep" Message-Id: <-52996-170911063843-24756-j95lfIbFS+LJRzqeSP53bw^_^server.ccl.net> X-Original-From: Igors Mihailovs Content-Language: en-US Content-Type: multipart/alternative; boundary="------------2A3D99DFE872EA0B49E737C0" Date: Mon, 11 Sep 2017 13:41:02 +0300 MIME-Version: 1.0 Sent to CCL by: Igors Mihailovs [igorsm#,#cfi.lu.lv] This is a multi-part message in MIME format. --------------2A3D99DFE872EA0B49E737C0 Content-Type: text/plain; charset=utf-8; format=flowed Content-Transfer-Encoding: 8bit Dear Dr. Klamt, Actually, this was just /p/-nitroaniline (C6H6N2O2). But this was CPCM + SMD calculation. As Dr. Zou said, SMD is constructed over IEFPCM (if I use the right words), at least in /Gaussian/. I actually got to check it without SMD option (same molecule), and in this case 1) the "error on total polarization charges" is 0.00492 for CPCM and 0.00493 for IEFPCM, so, seems to me, it's all right with CPCM in /Gaussian/, for all that. I also checked some archived files, in which a molecule of 71 atom has this number -0.00015 for CPCM; another one is 88 atoms and the error value is 0.01296 (but here it was a 'generic' solvent; similar case has 0.01106 for 92 atoms); and I also found a rather big molecule with 258 atoms, for which CPCM "error on total polarization charges" is 0.01800 for one conformer and 0.02019 for another one. 2) yes, escaped charge is not reported now also for CPCM, so it is probably due to a threshold. So, in fact, Dr. Zou told all I needed at the moment. It's just that SMD is a model which was not build with CPCM. And CPCM alone is as good (from that "error" side) as IEFPCM. 3) there is an IOp option (3/70=20000) to "Do COSMO style CPCM: Klamt radii, iterative (implies g03defaults)", and it does not return any "error on total polarization charges" (maybe this is why You were confused by this message). The corresponding part of output is (same molecule/solvent): Gaussian default C-PCM: No special actions if energy rises. Inv3: Mode=1 IEnd= 6203532. Iteration 1 A*A^-1 deviation from unit magnitude is 3.55D-15 for 771. Iteration 1 A*A^-1 deviation from orthogonality is 2.58D-15 for 583 203. Iteration 1 A^-1*A deviation from unit magnitude is 3.55D-15 for 771. Iteration 1 A^-1*A deviation from orthogonality is 1.56D-15 for 1219 49. Error on total polarization charges = 0.00492 SCF Done: E(RB3LYP) = -492.131647316 A.U. after 13 cycles NFock= 13 Conv=0.26D-08 -V/T= 2.0086 Gaussian "COSMO-style C-PCM": No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -492.120662663 A.U. after 15 cycles NFock= 15 Conv=0.48D-08 -V/T= 2.0086 Seems to be two quite different algorithms – and thereactuallyare two different algorithms, as IOp(3/140) possible values suggest: Override PCM solution method. 0Leave unchanged. 1Force inversion. 2Force iterative. 3Force simultaneous in L502. (/Gaussian 09 IOp Reference/, 2nd ed., p. 72). Looks like that "error on total polarization charges" appears only for the inversion method of solving PCM (the first case, as I can guess). I am starting to feel uneasy if this discussion does not fall under 'reverse engineering' or something else which is not permitted under /Gaussian/ license... Yours sincerely, Igors Mihailovs ISSP UL On 10/09/17 14:25, Andreas Klamt klamt_-_cosmologic.de wrote: > Dear Igors, > > Can you tell me how big the molecule with escaped charge of 0.46 e is? > This either means, that too small radii have been used somewhere, or > that the molecule is very big, so that even with COSMO (C-PCM) the > error is that large. By the way, this error does not depend on epsilon. > > And what does the > "Error on total polarization charges = 0.30616 "mean? > It is claimed to be only 0.01 for IEFPCM. > > Andreas > > > Am 09.09.2017 um 21:24 schrieb Igors Mihailovs igorsm###cfi.lu.lv: >> Dear Dr. Zou, >> >> Thank You for the further clarification! >> >> One another thing I am a little curious about -- only in CPCM+SMD >> calculation the escaped charge is /reported/ (in my case, enormous >> 0.46984). Is that because of some threshold for things to appear in >> output, or due to a different algorithm in use (for IEFPCM, even with >> #P there is no sign of escaped charge)? >> >> Dear Dr. Klamt, >> >> That's why I was surprised by the results I had got, because I have >> read before, well, at least the abstract of the article You cited >> (due to the lack of access) /and/ Your article of 2011 (DOI: >> 10.1002/wcms.56 ) where You argued >> that, although it was proven that the best value of /x/ in the >> equation for COSMO is 0.5, "[u]nfortunately, several >> reimplementations of COSMO, including C-PCM, set the value of /x/ to >> zero either by default or fixed." Can this be the reason? Or is it >> simply because SMD model in Gaussian is optimized for IEFPCM, not >> CPCM?(Maybe Dr. Zou can comment on that.) >> You also mention that "in the literature the COSMO approximation is >> often claimed to be applicable only to polar solvents, it needs to be >> emphasized that for neutral compounds the COSMO approximation with x >> = 0.5 provides very accurate results down to ε = 2". Maybe this is >> why COSMO is not that popular? On the other hand, if, as Dr. Zou >> said, the differences in computational cost arise only in really >> large molecules, maybe software developers just feel it is not that >> urgent to implement COSMO if they already have another methods >> implemented… >> >> By "the equation" I mean the equation of COSMO scaling factor for >> unscreened charge density, >> >> /f/ (/ε/) = (/ε/ – 1) / (/ε/ + /x/) >> >> --------------------------------------------------------------------------- >> >> To mention some other details, the differing part in the output is >> the following: >> >> ***** CPCM_SMD.out >> No special actions if energy rises. >> Using charges instead of weights in PCMQM. >> Inv3: Mode=1 IEnd= 5838075. >> Iteration 1 A*A^-1 deviation from unit magnitude is 2.78D-15 >> for 865. >> Iteration 1 A*A^-1 deviation from orthogonality is 1.65D-15 >> for 711 187. >> Iteration 1 A^-1*A deviation from unit magnitude is 3.11D-15 >> for 813. >> Iteration 1 A^-1*A deviation from orthogonality is 1.65D-15 >> for 1142 64. >> Escaped charge = 0.46984 >> Error on total polarization charges = 0.30616 >> SCF Done: E(RB3LYP) = -492.141763479 A.U. after 13 cycles >> NFock= 13 Conv=0.34D-08 -V/T= 2.0086 >> SMD-CDS (non-electrostatic) energy (kcal/mol) = -1.55 >> >> ***** IEFPCM_SMD.OUT >> No special actions if energy rises. >> Inv3: Mode=1 IEnd= 5838075. >> Iteration 1 A*A^-1 deviation from unit magnitude is 3.55D-15 >> for 317. >> Iteration 1 A*A^-1 deviation from orthogonality is 2.67D-15 >> for 629 474. >> Iteration 1 A^-1*A deviation from unit magnitude is 3.33D-15 >> for 317. >> Iteration 1 A^-1*A deviation from orthogonality is 2.19D-15 >> for 545 224. >> Error on total polarization charges = 0.01601 >> SCF Done: E(RB3LYP) = -492.138961313 A.U. after 13 cycles >> NFock= 13 Conv=0.35D-08 -V/T= 2.0086 >> SMD-CDS (non-electrostatic) energy (kcal/mol) = -1.55 >> >> >> Yours sincerely, >> Igors Mihailovs >> ISSP UL >> >> On 08/09/17 22:59, Lufeng Zou g09gv5_+_gmail.com wrote: >>> Hello Igors, >>> >>> One thing to add is that SMD is a solvation model (IEFPCM using SMD >>> radii for electrostatic part, plus nonelectrostatic terms), so >>> please do not combine SMD with other solvation models. The program >>> should have recognized this error and abort, thank you for catching >>> the bug. >>> >>> As for the cost, please rest assured that difference between IEFPCM >>> and CPCM will be minor for most calculations. The only exception is >>> that for very large molecules with hundreds of atoms, more MEMORY >>> (RAM) is required for IEFPCM than CPCM. >>> >>> Lufeng Zou, Ph.D. >>> Technical Support >>> Gaussian, Inc. >>> help . gaussian.com >> >> >> On 09/09/17 04:16, Andreas Klamt klamt#cosmologic.de wrote: >>> For the differences of IEFPCM and CPCM see >>> Comprehensive Comparison of the IEFPCM and SS(V)PE Continuum >>> Solvation Methods with the COSMO Approach >>> http://pubs.acs.org/doi/abs/10.1021/acs.jctc.5b00601?src=recsys&journalCode=jctcce >>> >>> They are indeed essentially identical. Hence I do not really >>> understand why the more complicated IEFPCM is so much in use. >>> >>> Andreas > > > -- > -------------------------------------------------- > > Prof. Dr. Andreas Klamt > CEO / Geschäftsführer > COSMOlogic GmbH & Co. KG > Imbacher Weg 46 > D-51379 Leverkusen, Germany > > phone +49-2171-731681 > fax +49-2171-731689 > e-mail klamt+/-cosmologic.de > web www.cosmologic.de > > [University address: Inst. of Physical and > Theoretical Chemistry, University of Regensburg] > > HRA 20653 Amtsgericht Koeln, GF: Prof. Dr. Andreas Klamt > Komplementaer: COSMOlogic Verwaltungs GmbH > HRB 49501 Amtsgericht Koeln, GF: Prof. Dr. Andreas Klamt > --------------2A3D99DFE872EA0B49E737C0 Content-Type: text/html; charset=utf-8 Content-Transfer-Encoding: 8bit Dear Dr. Klamt,

Actually, this was just p-nitroaniline (C6H6N2O2).

But this was CPCM + SMD calculation. As Dr. Zou said, SMD is constructed over IEFPCM (if I use the right words), at least in Gaussian.

I actually got to check it without SMD option (same molecule), and in this case

1) the "e
rror on total polarization charges" is 0.00492 for CPCM and 0.00493 for IEFPCM, so, seems to me, it's all right with CPCM in Gaussian, for all that.
I also checked some archived files, in which a molecule of 71 atom has this number -0.00015 for CPCM; another one is 88 atoms and the error value is 0.01296 (but here it was a 'generic' solvent; similar case has 0.01106 for 92 atoms); and I also found a rather big molecule with 258 atoms, for which CPCM
"error on total polarization charges" is 0.01800 for one conformer and 0.02019 for another one.

2) yes, escaped charge is not reported now also for CPCM, so it is probably due to a threshold.

So, in fact, Dr. Zou told all I needed at the moment. It's just that SMD is a model which was not build with CPCM. And CPCM alone is as good (from that "error" side) as IEFPCM.

3) there is an IOp option (3/70=20000) to "Do COSMO style CPCM: Klamt radii, iterative (implies g03defaults)", and it does not return any "error on total polarization charges" (maybe this is why You were confused by this message). The corresponding part of output is (same molecule/solvent):

Gaussian default C-PCM:
 No special actions if energy rises.
 Inv3:  Mode=1 IEnd=     6203532.
 Iteration    1 A*A^-1 deviation from unit magnitude is 3.55D-15 for    771.
 Iteration    1 A*A^-1 deviation from orthogonality  is 2.58D-15 for    583    203.
 Iteration    1 A^-1*A deviation from unit magnitude is 3.55D-15 for    771.
 Iteration    1 A^-1*A deviation from orthogonality  is 1.56D-15 for   1219     49.
 Error on total polarization charges =  0.00492
 SCF Done:  E(RB3LYP) =  -492.131647316     A.U. after   13 cycles
            NFock= 13  Conv=0.26D-08     -V/T= 2.0086
           
Gaussian "COSMO-style C-PCM":
 No special actions if energy rises.
 Integral accuracy reduced to 1.0D-05 until final iterations.
 Initial convergence to 1.0D-05 achieved.  Increase integral accuracy.
 SCF Done:  E(RB3LYP) =  -492.120662663     A.U. after   15 cycles
            NFock= 15  Conv=0.48D-08     -V/T= 2.0086

Seems to be two quite different algorithms – and there
actually are two different algorithms, as IOp(3/140) possible values suggest:
Override PCM solution method.
0 Leave unchanged.
1 Force inversion.
2 Force iterative.
3 Force simultaneous in L502. (Gaussian 09 IOp Reference, 2nd ed., p. 72).

Looks like that "error
on total polarization charges" appears only for the inversion method of solving PCM (the first case, as I can guess).

I am starting to feel uneasy if this discussion does not fall under 'reverse engineering' or something else which is not permitted under Gaussian license...

Yours sincerely,
Igors Mihailovs
ISSP UL


On 10/09/17 14:25, Andreas Klamt klamt_-_cosmologic.de wrote:
Dear Igors,

Can you tell me how big the molecule with escaped charge of  0.46 e is?
This either means, that too small radii have been used somewhere, or that the molecule is very big, so that even with COSMO (C-PCM) the error is that large. By the way, this error does not depend on epsilon.

And what does the
"Error on total polarization charges =  0.30616 "mean?
It is claimed to be only 0.01 for IEFPCM.

Andreas


Am 09.09.2017 um 21:24 schrieb Igors Mihailovs igorsm###cfi.lu.lv:
Dear Dr. Zou,

Thank You for the further clarification!

One another thing I am a little curious about -- only in CPCM+SMD calculation the escaped charge is reported (in my case, enormous 0.46984). Is that because of some threshold for things to appear in output, or due to a different algorithm in use (for IEFPCM, even with #P there is no sign of escaped charge)?

Dear Dr. Klamt
,

That's why I was surprised by the results I had got, because I have read before, well, at least the abstract of the article You cited (due to the lack of access) and Your article of 2011 (DOI: 10.1002/wcms.56) where You argued that, although it was proven that the best value of x in the equation for COSMO is 0.5, "[u]nfortunately, several reimplementations of COSMO, including C-PCM, set the value of x to zero either by default or fixed." Can this be the reason? Or is it simply because SMD model in Gaussian is optimized for IEFPCM, not CPCM?
(Maybe Dr. Zou can comment on that.)
You also mention that "in the literature the COSMO approximation is often claimed to be applicable only to polar solvents, it needs to be emphasized that for neutral compounds the COSMO approximation with x = 0.5 provides very accurate results down to ε = 2". Maybe this is why COSMO is not that popular? On the other hand, if, as Dr. Zou said, the differences in computational cost arise only in really large molecules, maybe software developers just feel it is not that urgent to implement COSMO if they already have another methods implemented…

By "the equation" I mean the equation of COSMO scaling factor
for unscreened charge density,

f (ε) = (ε – 1) / (ε + x)

---------------------------------------------------------------------------

To mention some other details, the differing part in the output is the following:

***** CPCM_SMD.out
 
No special actions if energy rises.
 Using charges instead of weights in PCMQM.
 Inv3:  Mode=1 IEnd=     5838075.
 Iteration    1 A*A^-1 deviation from unit magnitude is 2.78D-15 for    865.
 Iteration    1 A*A^-1 deviation from orthogonality  is 1.65D-15 for    711    187.
 Iteration    1 A^-1*A deviation from unit magnitude is 3.11D-15 for    813.
 Iteration    1 A^-1*A deviation from orthogonality  is 1.65D-15 for   1142     64.
 Escaped charge =  0.46984
 Error on total polarization charges =  0.30616
 SCF Done:  E(RB3LYP) =  -492.141763479     A.U. after   13 cycles
            NFock= 13  Conv=0.34D-08     -V/T= 2.0086
 SMD-CDS (non-electrostatic) energy       (kcal/mol) =      -1.55

***** IEFPCM_SMD.OUT
 
No special actions if energy rises.
 Inv3:  Mode=1 IEnd=     5838075.
 Iteration    1 A*A^-1 deviation from unit magnitude is 3.55D-15 for    317.
 Iteration    1 A*A^-1 deviation from orthogonality  is 2.67D-15 for    629    474.
 Iteration    1 A^-1*A deviation from unit magnitude is 3.33D-15 for    317.
 Iteration    1 A^-1*A deviation from orthogonality  is 2.19D-15 for    545    224.
 Error on total polarization charges =  0.01601
 SCF Done:  E(RB3LYP) =  -492.138961313     A.U. after   13 cycles
            NFock= 13  Conv=0.35D-08     -V/T= 2.0086
 SMD-CDS (non-electrostatic) energy       (kcal/mol) =      -1.55


Yours sincerely,
Igors Mihailovs
ISSP UL


On 08/09/17 22:59, Lufeng Zou g09gv5_+_gmail.com wrote:
Hello Igors,

One thing to add is that SMD is a solvation model (IEFPCM using SMD radii for electrostatic part, plus nonelectrostatic terms), so please do not combine SMD with other solvation models. The program should have recognized this error and abort, thank you for catching the bug.

As for the cost, please rest assured that difference between IEFPCM and CPCM will be minor for most calculations. The only exception is that for very large molecules with hundreds of atoms, more MEMORY (RAM) is required for IEFPCM than CPCM.

Lufeng Zou, Ph.D.
Technical Support
Gaussian, Inc.
help . gaussian.com


On 09/09/17 04:16, Andreas Klamt klamt#cosmologic.de wrote:
For the differences of IEFPCM and CPCM see
 Comprehensive Comparison of the IEFPCM and SS(V)PE Continuum Solvation Methods with the COSMO Approach
http://pubs.acs.org/doi/abs/10.1021/acs.jctc.5b00601?src=recsys&journalCode=jctcce

They are indeed essentially identical. Hence I do not really understand why the more complicated IEFPCM is so much in use.

Andreas


-- 
--------------------------------------------------

Prof. Dr. Andreas Klamt
CEO / Geschäftsführer
COSMOlogic GmbH & Co. KG
Imbacher Weg 46
D-51379 Leverkusen, Germany

phone  	+49-2171-731681
fax    	+49-2171-731689
e-mail 	klamt+/-cosmologic.de
web    	www.cosmologic.de

[University address:      Inst. of Physical and
Theoretical Chemistry, University of Regensburg]

HRA 20653 Amtsgericht Koeln, GF: Prof. Dr. Andreas Klamt
Komplementaer: COSMOlogic Verwaltungs GmbH
HRB 49501 Amtsgericht Koeln, GF: Prof. Dr. Andreas Klamt

--------------2A3D99DFE872EA0B49E737C0--