From owner-chemistry@ccl.net Mon Aug 13 10:44:01 2018 From: "Smith, Jack smith1106.:.marshall.edu" To: CCL Subject: CCL: overlap integral of two simple exponential decay functions (different centers) in three-dimensional space Message-Id: <-53433-180812095600-22473-2oUbksw4S4pITttNE5IrdQ-x-server.ccl.net> X-Original-From: "Smith, Jack" Content-Language: en-US Content-Type: multipart/alternative; boundary="_000_DCDCCB33DC5448E0BE2A76BA000E1444marshalledu_" Date: Sun, 12 Aug 2018 13:55:04 +0000 MIME-Version: 1.0 Sent to CCL by: "Smith, Jack" [smith1106+*+marshall.edu] --_000_DCDCCB33DC5448E0BE2A76BA000E1444marshalledu_ Content-Type: text/plain; charset="utf-8" Content-Transfer-Encoding: base64 RnJhbmsgSGFycmlzIChodHRwczovL3d3dy5waHlzaWNzLnV0YWguZWR1L35oYXJyaXMvaG9tZS5o dG1sKSB3b3JrZWQgb3V0IGFsbCB0aGUgYW5hbHl0aWNhbCBleHByZXNzaW9ucyBmb3IgYWxsIDEt Y2VudGVyICgxLSBhbmQgMi1lbGVjdHJvbikgYW5kIDItY2VudGVyIDEtZWxlY3Ryb24gU1RPIGlu dGVncmFscyBiYWNrIGluIHRoZSBlYXJseSA3MHMuICBJIHVzZWQgdGhlbSBpbiBhIHByb2dyYW0g SSB3cm90ZSBjYWxsZWQgUEhBVFBTWS4gIEkgZnVydGhlciBnZW5lcmFsaXplZCB0aGUgZGlhdG9t aWMgaW50ZWdyYWxzIGZvciBhcmJpdHJhcnkgb3JpZ2luIGFuZCBvcmllbnRhdGlvbiAoYW5kIHRv IGV4cG9uZW50aWFsbHkgc2hpZWxkZWQgbnVjbGVhciBhdHRyYWN0aW9uIGludGVncmFscykuICBV bmZvcnR1bmF0ZWx5LCBJIGRvbuKAmXQgdGhpbmsgRnJhbmsgZXZlciBmb3JtYWxseSBwdWJsaXNo ZWQgdGhvc2Ugbm90ZXMuICBJIHVzZWQgYSBwcmVwcmludCBjb3B5IGZyb20gdGhlIFFUUCBsaWJy YXJ5IGF0IHRoZSBVbml2ZXJzaXR5IG9mIEZsb3JpZGEuIFRoZXJlIHdlcmUgYSBmZXcgbWlub3Ig ZXJyb3JzICh0eXBvcykgaW4gaGlzIG5vdGVzIHRoYXQgSSBoYW5kLWNvcnJlY3RlZCwgYW5kIEni gJltIG5vdCBzdXJlIGlmIEkgc3RpbGwgaGF2ZSB0aGVtLg0KDQpZb3XigJlyZSB3ZWxjb21lIHRv IHRoZSBQSEFUUFNZIGNvZGUgKGluIEZPUlRSQU4gNjYpIGlmIGludGVyZXN0ZWQsIGFuZCBJ4oCZ bGwgbG9vayB0byBzZWUgaWYgSSBoYXZlIHRob3NlIG9sZCBub3RlcyBzdGFzaGVkIGF3YXkgc29t ZXdoZXJlLCBidXQgeW91IG1heSB3YW50IHRvIGRpZyBhcm91bmQgdG8gc2VlIGlmIEZyYW5rIGV2 ZXIgcHVibGlzaGVkIHRob3NlIG5vdGVzLiAgS2VlcCBpbiBtaW5kLCB0aGlzIHdhcyA0MCsgeWVh cnMgYWdvLg0KDQpCVFcsIG1vc3Qgb2YgdGhlIGNvbXBsZXhpdHkgaXMgaW4gdGhlIG92ZXJsYXAg b2YgdGhlIHNwaGVyaWNhbCBoYXJtb25pY3Mgd2l0aCBhcmJpdHJhcnkgb3JpZW50YXRpb24sIG5v dCB0aGUgZXhwb25lbnRpYWwgZnVuY3Rpb25zLCBzbyB0aGlzIG1heSBiZSBvdmVya2lsbCBpZiBh bGwgeW91IHdhbnQgaXMgdGhlIG92ZXJsYXAgb2Ygc2ltcGxlIFMgZnVuY3Rpb25zLg0KDQotIEph Y2sNCg0KSmFjayBBLiBTbWl0aCwgUGhEDQpNYXJzaGFsbCBVbml2ZXJzaXR5DQpzbWl0aDExMDZA bWFyc2hhbGwuZWR1PG1haWx0bzpzbWl0aDExMDZAbWFyc2hhbGwuZWR1Pg0KDQoNCk9uIEF1ZyAx MiwgMjAxOCwgYXQgMzoyNyBBTSwgU3VzaSBMZWh0b2xhIHN1c2kubGVodG9sYVtdYWx1bW5pLmhl bHNpbmtpLmZpPGh0dHA6Ly9hbHVtbmkuaGVsc2lua2kuZmk+IDxvd25lci1jaGVtaXN0cnlAY2Ns Lm5ldDxtYWlsdG86b3duZXItY2hlbWlzdHJ5QGNjbC5uZXQ+PiB3cm90ZToNCg0KDQpTZW50IHRv IENDTCBieTogU3VzaSBMZWh0b2xhIFtzdXNpLmxlaHRvbGEqYWx1bW5pLmhlbHNpbmtpLmZpPGh0 dHA6Ly9hbHVtbmkuaGVsc2lua2kuZmk+XQ0KT24gMDgvMTEvMjAxOCAxMjoyOSBBTSwgVGhvbWFz IE1hbnogdGhvbWFzYW1hbnogLiBnbWFpbC5jb208aHR0cDovL2dtYWlsLmNvbT4gd3JvdGU6DQpE ZWFyIGNvbGxlYWd1ZXMsDQpJIGFtIHRyeWluZyB0byBmaW5kIGFuIGFuYWx5dGljIGZvcm11bGEg YW5kIGpvdXJuYWwgcmVmZXJlbmNlIGZvciB0aGUgb3ZlcmxhcCBpbnRlZ3JhbCBvZiB0d28gc2lt cGxlIGV4cG9uZW50aWFsIGRlY2F5IGZ1bmN0aW9ucyAoZGlmZmVyZW50IGNlbnRlcnMpIGluIHRo cmVlLWRpbWVuc2lvbmFsIHNwYWNlLiBGb3IgZXhhbXBsZSwgY29uc2lkZXIgdGhlIG92ZXJsYXAg aW50ZWdyYWwgb2YgMXMgU2xhdGVyLXR5cGUgYmFzaXMgZnVuY3Rpb25zIHBsYWNlZCBvbiBlYWNo IGF0b20gb2YgYSBkaWF0b21pYyBtb2xlY3VsZS4NCkkgaGF2ZSBsb29rZWQgaW50byB0aGUgbGl0 ZXJhdHVyZSBhdCBhIGNvdXBsZSBvZiBzb3VyY2VzLiBGcnVzdHJhdGluZ2x5LCBJIGNvdWxkIG5v dCBnZXQgc29tZSBvZiB0aGUgcmVwb3J0ZWQgYW5hbHl0aWMgZm9ybXVsYXMgdG8gd29yayAoaS5l Liwgc29tZSBvZiB0aGUgY2xhaW1lZCBhbmFseXRpYyBmb3JtdWxhcyBpbiBsaXRlcmF0dXJlIGdp dmUgd3JvbmcgYW5zd2VycykuIE90aGVyIGZvcm11bGFzIGFyZSBob3JyZW5kb3VzbHkgY29tcGxl eCBpbnZvbHZpbmcgYWxsIHNvcnRzIG9mIGFuZ3VsYXIgbW9tZW50dW0gYW5kIHF1YW50dW0gbnVt YmVyIG9wZXJhdG9ycywgYWxtb3N0IHRvbyBjb21wbGljYXRlZCB0byBjb21wcmVoZW5kLg0KSSBh bSB0cnlpbmcgdG8gZ2V0IGFuIGFuYWx5dGljIG92ZXJsYXAgZm9ybXVsYSBmb3IgdGhlIHBsYWlu IFNsYXRlciBzLXR5cGUgb3JiaXRhbHMgdGhhdCBhcmUgc2ltcGxlIGV4cG9uZW50aWFsIGRlY2F5 IGZ1bmN0aW9ucy4gRG9lcyBhbnlib2R5IGtub3cgd2hldGhlciBhIHdvcmtpbmcgYW5hbHl0aWMg Zm9ybXVsYSBpcyBhdmFpbGFibGUgZm9yIHRoaXM/DQpGLlkuSTogSSBhbSBhd2FyZSBvZiB0aGUg Zm9ybXVsYSBnaXZlbiBpbiBFcS4gMTYgb2YgVmFuZGVuYnJhbmRlIGV0IGFsLiBKLiBDaGVtLiBU aGVvcnkgQ29tcHV0LiAxMyAoMjAxNykgMTYxLTE3OS4gSXQgaXMgd3JvbmcgYW5kIGNsZWFybHkg ZG9lc24ndCBtYXRjaCB0aGUgbnVtZXJpY2FsIGludGVncmF0aW9uIG9mIHRoZSBzYW1lIGludGVn cmFsIChub3QgZXZlbiBjbG9zZSBhcyBldmlkZW5jZWQgYnkgY29tcGFyaW5nIGFjY3VyYXRlIG51 bWVyaWNhbCBpbnRlZ3JhdGlvbiB3aXRoIHRoZSBjbGFpbWVkIGFuYWx5dGljIGZvcm11bGEgb2Yg dGhlIHNhbWUgaW50ZWdyYWwpLiBJIGFtIG5vdCB0cnlpbmcgdG8gcGljayBvbiB0aGlzIHBhcGVy LiBJIGhhdmUgdHJpZWQgb3RoZXIgcGFwZXJzIGFsc28sIGJ1dCBtYW55IG9mIHRoZW0gYXJlIHNv IGNvbXBsaWNhdGVkIHRoYXQgaXQgaXMgZGlmZmljdWx0IHRvIHVuZGVyc3RhbmQgd2hhdCBpcyBh Y3R1YWxseSBnb2luZyBvbi4NCg0KVGhpcyBpcyBleGVyY2lzZSA1LjEgaW4gdGhlIHB1cnBsZSBi aWJsZSBbIGh0dHBzOi8vb25saW5lbGlicmFyeS53aWxleS5jb20vZG9pL2Jvb2svMTAuMTAwMi85 NzgxMTE5MDE5NTcyIF0uIFRoZSBvdmVybGFwIGJldHdlZW4gdHdvIGh5ZHJvZ2VuaWMgMXMgU1RP cyBpcw0KDQpTID0gKDEgKyBSICsgMS8zIFJeMikgZXhwKC1SKQ0KDQphcyBnaXZlbiBpbiBlcSA1 LjIuOC4NCg0KSXQncyBwcmV0dHkgc3RyYWlnaHRmb3J3YXJkIHRvIGRvIHRoZSBtb3JlIGdlbmVy YWwgY2FzZSB3aGVyZSB0aGUgZXhwb25lbnRzIGRpZmZlciBmcm9tIHVuaXR5IGJ5IHVzaW5nIGNv bmZvY2FsIGVsbGlwdGljYWwgY29vcmRpbmF0ZXMgYXMgYWR2aXNlZCBieSB0aGUgYm9vay4gVGhl IGNvb3JkaW5hdGVzIGFyZQ0KDQptdSA9IChyX0EgKyByX0IpIC8gUg0KbnUgPSAocl9BIC0gcl9C KSAvIFINCg0Kd2hlcmUgbXUgPSAxLi5pbmZpbml0eSBhbmQgbnU9LTEuLjEuIHJfQSBpcyB0aGUg ZGlzdGFuY2UgZnJvbSBudWNsZXVzIEEgYW5kIHJfQiBpcyB0aGUgZGlzdGFuY2UgZnJvbSBudWNs ZXVzIEIsIGFuZCBSIGlzIHRoZSBpbnRlcm51Y2xlYXIgZGlzdGFuY2UuIFRoZSB0aGlyZCBjb29y ZGluYXRlIGlzIHBoaSA9IDAuLjIqcGkuIFRoZSB2b2x1bWUgZWxlbWVudCBpcw0KDQpkViA9IDEv OCBSXjMgKG11XjIgLSBudV4yKSBkbXUgZG51IGRwaGkuDQoNClRoZSByZXN1bHRpbmcgZXhwcmVz c2lvbiBpcywgaG93ZXZlciwgYSBiaXQgaW52b2x2ZWQsIGFuZCBJIGRvbid0IGhhdmUgdGhlIHRp bWUgdG8gZGVidWcgbXkgTWFwbGUgd29ya3NoZWV0IG5vdy4NCg0KRm9yIGEgcmVmZXJlbmNlLCB5 b3UgbmVlZCB0byBnbyBwcmV0dHkgZmFyIGJhY2sgaW4gdGhlIGxpdGVyYXR1cmUuIFRoaXMgaXMg c3R1ZmYgdGhhdCB3YXMgZG9uZSBpbiB0aGUgZWFybHkgZGF5cyBvZiBxdWFudHVtIGNoZW1pc3Ry eSwgd2hlbiBTbGF0ZXIgdHlwZSBvcmJpdGFscyB3ZXJlIHVzZWQgYXMgdGhlIGJhc2lzIGFuZCB0 aGUgbW9sZWN1bGVzIHdlcmUgc21hbGwuDQoNCkkgZG9uJ3Qga25vdyBpZiB0aGlzIGl0IHdhcyB0 aGUgZmlyc3Qgb25lLCBidXQgIkEgU3R1ZHkgb2YgVHdvLUNlbnRlciBJbnRlZ3JhbHMgVXNlZnVs IGluIENhbGN1bGF0aW9ucyBvbiBNb2xlY3VsYXIgU3RydWN0dXJlLiBJIiBieSBDLiBDLiBKLiBS b290aGFhbiBpbiBUaGUgSm91cm5hbCBvZiBDaGVtaWNhbCBQaHlzaWNzIDE5LCAxNDQ1ICgxOTUx KSBwcmVzZW50cyB0aGUgbmVjZXNzYXJ5IGRpYXRvbWljIG92ZXJsYXAgaW50ZWdyYWxzIGZvciB0 aGUgZXhwb25lbnRpYWwgdHlwZSBiYXNpcy4gKFRoZSBzZWNvbmQgcGFydCBieSBSdWVkZW5iZXJn IGRldGFpbHMgdGhlIGV2YWx1YXRpb24gb2YgdHdvLWVsZWN0cm9uIGludGVncmFscyBmb3IgZGlh dG9taWNzLikNCi0tDQotLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0t LS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0NCk1yLiBTdXNpIExlaHRvbGEsIFBoRCAgICAgICAgICAg ICBKdW5pb3IgRmVsbG93LCBBZGp1bmN0IFByb2Zlc3Nvcg0Kc3VzaS5sZWh0b2xhIC4uIGFsdW1u aS5oZWxzaW5raS5maTxodHRwOi8vYWx1bW5pLmhlbHNpbmtpLmZpPiAgIFVuaXZlcnNpdHkgb2Yg SGVsc2lua2kNCmh0dHA6Ly93d3cuaGVsc2lua2kuZmkvfmp6bGVodG9sICBGaW5sYW5kDQotLS0t LS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0t LS0tLS0NClN1c2kgTGVodG9sYSwgZG9zZW50dGksIEZUICAgICAgICB0dXRraWphdG9odG9yaQ0K c3VzaS5sZWh0b2xhIC4uIGFsdW1uaS5oZWxzaW5raS5maTxodHRwOi8vYWx1bW5pLmhlbHNpbmtp LmZpPiAgIEhlbHNpbmdpbiB5bGlvcGlzdG8NCmh0dHA6Ly93d3cuaGVsc2lua2kuZmkvfmp6bGVo dG9sDQotLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0t LS0tLS0tLS0tLS0tLS0NCg0KDQoNCi09IFRoaXMgaXMgYXV0b21hdGljYWxseSBhZGRlZCB0byBl YWNoIG1lc3NhZ2UgYnkgdGhlIG1haWxpbmcgc2NyaXB0ID0tDQpUbyByZWNvdmVyIHRoZSBlbWFp bCBhZGRyZXNzIG9mIHRoZSBhdXRob3Igb2YgdGhlIG1lc3NhZ2UsIHBsZWFzZSBjaGFuZ2UNCnRo ZSBzdHJhbmdlIGNoYXJhY3RlcnMgb24gdGhlIHRvcCBsaW5lIHRvIHRoZSBAIHNpZ24uIFlvdSBj YW4gYWxzbw0KbG9vayB1cCB0aGUgWC1PcmlnaW5hbC1Gcm9tOiBsaW5lIGluIHRoZSBtYWlsIGhl YWRlci4NCg0KRS1tYWlsIHRvIHN1YnNjcmliZXJzOiBDSEVNSVNUUllAY2NsLm5ldDxtYWlsdG86 Q0hFTUlTVFJZQGNjbC5uZXQ+IG9yIHVzZToNCiAgICBodHRwOi8vd3d3LmNjbC5uZXQvY2dpLWJp bi9jY2wvc2VuZF9jY2xfbWVzc2FnZQ0KDQpFLW1haWwgdG8gYWRtaW5pc3RyYXRvcnM6IENIRU1J U1RSWS1SRVFVRVNUQGNjbC5uZXQ8bWFpbHRvOkNIRU1JU1RSWS1SRVFVRVNUQGNjbC5uZXQ+IG9y IHVzZQ0KICAgIGh0dHA6Ly93d3cuY2NsLm5ldC9jZ2ktYmluL2NjbC9zZW5kX2NjbF9tZXNzYWdl DQoNClN1YnNjcmliZS9VbnN1YnNjcmliZTogICAgICBodHRwOi8vd3d3LmNjbC5uZXQvY2hlbWlz dHJ5L3N1Yl91bnN1Yi5zaHRtbA0KDQpCZWZvcmUgcG9zdGluZywgY2hlY2sgd2FpdCB0aW1lIGF0 OiBodHRwOi8vd3d3LmNjbC5uZXQNCg0KSm9iOiBodHRwOi8vd3d3LmNjbC5uZXQvam9icyBDb25m ZXJlbmNlczogaHR0cDovL3NlcnZlci5jY2wubmV0L2NoZW1pc3RyeS9hbm5vdW5jZW1lbnRzL2Nv bmZlcmVuY2VzLw0KDQpTZWFyY2ggTWVzc2FnZXM6IGh0dHA6Ly93d3cuY2NsLm5ldC9jaGVtaXN0 cnkvc2VhcmNoY2NsL2luZGV4LnNodG1sDQoNCklmIHlvdXIgbWFpbCBib3VuY2VzIGZyb20gQ0NM IHdpdGggNS43LjEgZXJyb3IsIGNoZWNrOg0KICAgIGh0dHA6Ly93d3cuY2NsLm5ldC9zcGFtbWVy cy50eHQNCg0KUlRGSTogaHR0cDovL3d3dy5jY2wubmV0L2NoZW1pc3RyeS9hYm91dGNjbC9pbnN0 cnVjdGlvbnMvDQoNCg0K --_000_DCDCCB33DC5448E0BE2A76BA000E1444marshalledu_ Content-Type: text/html; charset="utf-8" Content-ID: Content-Transfer-Encoding: base64 PGh0bWw+DQo8aGVhZD4NCjxtZXRhIGh0dHAtZXF1aXY9IkNvbnRlbnQtVHlwZSIgY29udGVudD0i dGV4dC9odG1sOyBjaGFyc2V0PXV0Zi04Ij4NCjwvaGVhZD4NCjxib2R5IGRpcj0iYXV0byI+DQo8 ZGl2PjxzcGFuPjwvc3Bhbj48L2Rpdj4NCjxkaXY+DQo8ZGl2PjwvZGl2Pg0KPGRpdj5GcmFuayBI YXJyaXMgKDxhIGhyZWY9Imh0dHBzOi8vd3d3LnBoeXNpY3MudXRhaC5lZHUvfmhhcnJpcy9ob21l Lmh0bWwiPmh0dHBzOi8vd3d3LnBoeXNpY3MudXRhaC5lZHUvfmhhcnJpcy9ob21lLmh0bWw8L2E+ KSB3b3JrZWQgb3V0IGFsbCB0aGUgYW5hbHl0aWNhbCBleHByZXNzaW9ucyBmb3IgYWxsIDEtY2Vu dGVyICgxLSBhbmQgMi1lbGVjdHJvbikgYW5kIDItY2VudGVyIDEtZWxlY3Ryb24gU1RPIGludGVn cmFscyBiYWNrIGluIHRoZQ0KIGVhcmx5IDcwcy4gJm5ic3A7SSB1c2VkIHRoZW0gaW4gYSBwcm9n cmFtIEkgd3JvdGUgY2FsbGVkIFBIQVRQU1kuICZuYnNwO0kgZnVydGhlciBnZW5lcmFsaXplZCB0 aGUgZGlhdG9taWMgaW50ZWdyYWxzIGZvciBhcmJpdHJhcnkgb3JpZ2luIGFuZCBvcmllbnRhdGlv biAoYW5kIHRvIGV4cG9uZW50aWFsbHkgc2hpZWxkZWQgbnVjbGVhciBhdHRyYWN0aW9uIGludGVn cmFscykuICZuYnNwO1VuZm9ydHVuYXRlbHksIEkgZG9u4oCZdCB0aGluayBGcmFuayBldmVyIGZv cm1hbGx5DQogcHVibGlzaGVkIHRob3NlIG5vdGVzLiAmbmJzcDtJIHVzZWQgYSBwcmVwcmludCBj b3B5IGZyb20gdGhlIFFUUCBsaWJyYXJ5IGF0IHRoZSBVbml2ZXJzaXR5IG9mIEZsb3JpZGEuIFRo ZXJlIHdlcmUgYSBmZXcgbWlub3IgZXJyb3JzICh0eXBvcykgaW4gaGlzIG5vdGVzIHRoYXQgSSBo YW5kLWNvcnJlY3RlZCwgYW5kIEnigJltIG5vdCBzdXJlIGlmIEkgc3RpbGwgaGF2ZSB0aGVtLiAm bmJzcDs8L2Rpdj4NCjxkaXY+PGJyPg0KPC9kaXY+DQo8ZGl2PllvdeKAmXJlIHdlbGNvbWUgdG8g dGhlIFBIQVRQU1kgY29kZSAoaW4gRk9SVFJBTiA2NikgaWYgaW50ZXJlc3RlZCwgYW5kIEnigJls bCBsb29rIHRvIHNlZSBpZiBJIGhhdmUgdGhvc2Ugb2xkIG5vdGVzIHN0YXNoZWQgYXdheSBzb21l d2hlcmUsIGJ1dCB5b3UgbWF5IHdhbnQgdG8gZGlnIGFyb3VuZCB0byBzZWUgaWYgRnJhbmsgZXZl ciBwdWJsaXNoZWQgdGhvc2Ugbm90ZXMuICZuYnNwO0tlZXAgaW4gbWluZCwgdGhpcyB3YXMgNDAm IzQzOyB5ZWFycyBhZ28uPC9kaXY+DQo8ZGl2Pjxicj4NCjwvZGl2Pg0KPGRpdj5CVFcsIG1vc3Qg b2YgdGhlIGNvbXBsZXhpdHkgaXMgaW4gdGhlIG92ZXJsYXAgb2YgdGhlIHNwaGVyaWNhbCBoYXJt b25pY3Mgd2l0aCBhcmJpdHJhcnkgb3JpZW50YXRpb24sIG5vdCB0aGUgZXhwb25lbnRpYWwgZnVu Y3Rpb25zLCBzbyB0aGlzIG1heSBiZSBvdmVya2lsbCBpZiBhbGwgeW91IHdhbnQgaXMgdGhlIG92 ZXJsYXAgb2Ygc2ltcGxlIFMgZnVuY3Rpb25zLjwvZGl2Pg0KPGRpdj48YnI+DQo8L2Rpdj4NCjxk aXY+LSBKYWNrJm5ic3A7PC9kaXY+DQo8ZGl2Pjxicj4NCjwvZGl2Pg0KPGRpdj5KYWNrIEEuIFNt aXRoLCBQaEQ8L2Rpdj4NCjxkaXY+TWFyc2hhbGwgVW5pdmVyc2l0eSZuYnNwOzwvZGl2Pg0KPGRp dj48YSBocmVmPSJtYWlsdG86c21pdGgxMTA2QG1hcnNoYWxsLmVkdSI+c21pdGgxMTA2QG1hcnNo YWxsLmVkdTwvYT48L2Rpdj4NCjxkaXY+PGJyPg0KPC9kaXY+DQo8ZGl2Pjxicj4NCjxkaXY+PC9k aXY+DQpPbiBBdWcgMTIsIDIwMTgsIGF0IDM6MjcgQU0sIFN1c2kgTGVodG9sYSBzdXNpLmxlaHRv bGFbXTxhIGhyZWY9Imh0dHA6Ly9hbHVtbmkuaGVsc2lua2kuZmkiPmFsdW1uaS5oZWxzaW5raS5m aTwvYT4gJmx0OzxhIGhyZWY9Im1haWx0bzpvd25lci1jaGVtaXN0cnlAY2NsLm5ldCI+b3duZXIt Y2hlbWlzdHJ5QGNjbC5uZXQ8L2E+Jmd0OyB3cm90ZTo8YnI+DQo8YnI+DQo8L2Rpdj4NCjxibG9j a3F1b3RlIHR5cGU9ImNpdGUiPg0KPGRpdj48c3Bhbj48L3NwYW4+PGJyPg0KPHNwYW4+U2VudCB0 byBDQ0wgYnk6IFN1c2kgTGVodG9sYSBbc3VzaS5sZWh0b2xhKjxhIGhyZWY9Imh0dHA6Ly9hbHVt bmkuaGVsc2lua2kuZmkiPmFsdW1uaS5oZWxzaW5raS5maTwvYT5dPC9zcGFuPjxicj4NCjxzcGFu Pk9uIDA4LzExLzIwMTggMTI6MjkgQU0sIFRob21hcyBNYW56IHRob21hc2FtYW56IC4gPGEgaHJl Zj0iaHR0cDovL2dtYWlsLmNvbSI+DQpnbWFpbC5jb208L2E+IHdyb3RlOjwvc3Bhbj48YnI+DQo8 YmxvY2txdW90ZSB0eXBlPSJjaXRlIj48c3Bhbj5EZWFyIGNvbGxlYWd1ZXMsPC9zcGFuPjxicj4N CjwvYmxvY2txdW90ZT4NCjxibG9ja3F1b3RlIHR5cGU9ImNpdGUiPjxzcGFuPkkgYW0gdHJ5aW5n IHRvIGZpbmQgYW4gYW5hbHl0aWMgZm9ybXVsYSBhbmQgam91cm5hbCByZWZlcmVuY2UgZm9yIHRo ZSBvdmVybGFwIGludGVncmFsIG9mIHR3byBzaW1wbGUgZXhwb25lbnRpYWwgZGVjYXkgZnVuY3Rp b25zIChkaWZmZXJlbnQgY2VudGVycykgaW4gdGhyZWUtZGltZW5zaW9uYWwgc3BhY2UuIEZvciBl eGFtcGxlLCBjb25zaWRlciB0aGUgb3ZlcmxhcCBpbnRlZ3JhbCBvZiAxcyBTbGF0ZXItdHlwZQ0K IGJhc2lzIGZ1bmN0aW9ucyBwbGFjZWQgb24gZWFjaCBhdG9tIG9mIGEgZGlhdG9taWMgbW9sZWN1 bGUuPC9zcGFuPjxicj4NCjwvYmxvY2txdW90ZT4NCjxibG9ja3F1b3RlIHR5cGU9ImNpdGUiPjxz cGFuPkkgaGF2ZSBsb29rZWQgaW50byB0aGUgbGl0ZXJhdHVyZSBhdCBhIGNvdXBsZSBvZiBzb3Vy Y2VzLiBGcnVzdHJhdGluZ2x5LCBJIGNvdWxkIG5vdCBnZXQgc29tZSBvZiB0aGUgcmVwb3J0ZWQg YW5hbHl0aWMgZm9ybXVsYXMgdG8gd29yayAoaS5lLiwgc29tZSBvZiB0aGUgY2xhaW1lZCBhbmFs eXRpYyBmb3JtdWxhcyBpbiBsaXRlcmF0dXJlIGdpdmUgd3JvbmcgYW5zd2VycykuIE90aGVyIGZv cm11bGFzDQogYXJlIGhvcnJlbmRvdXNseSBjb21wbGV4IGludm9sdmluZyBhbGwgc29ydHMgb2Yg YW5ndWxhciBtb21lbnR1bSBhbmQgcXVhbnR1bSBudW1iZXIgb3BlcmF0b3JzLCBhbG1vc3QgdG9v IGNvbXBsaWNhdGVkIHRvIGNvbXByZWhlbmQuPC9zcGFuPjxicj4NCjwvYmxvY2txdW90ZT4NCjxi bG9ja3F1b3RlIHR5cGU9ImNpdGUiPjxzcGFuPkkgYW0gdHJ5aW5nIHRvIGdldCBhbiBhbmFseXRp YyBvdmVybGFwIGZvcm11bGEgZm9yIHRoZSBwbGFpbiBTbGF0ZXIgcy10eXBlIG9yYml0YWxzIHRo YXQgYXJlIHNpbXBsZSBleHBvbmVudGlhbCBkZWNheSBmdW5jdGlvbnMuIERvZXMgYW55Ym9keSBr bm93IHdoZXRoZXIgYSB3b3JraW5nIGFuYWx5dGljIGZvcm11bGEgaXMgYXZhaWxhYmxlIGZvciB0 aGlzPzwvc3Bhbj48YnI+DQo8L2Jsb2NrcXVvdGU+DQo8YmxvY2txdW90ZSB0eXBlPSJjaXRlIj48 c3Bhbj5GLlkuSTogSSBhbSBhd2FyZSBvZiB0aGUgZm9ybXVsYSBnaXZlbiBpbiBFcS4gMTYgb2Yg VmFuZGVuYnJhbmRlIGV0IGFsLiBKLiBDaGVtLiBUaGVvcnkgQ29tcHV0LiAxMyAoMjAxNykgMTYx LTE3OS4gSXQgaXMgd3JvbmcgYW5kIGNsZWFybHkgZG9lc24ndCBtYXRjaCB0aGUgbnVtZXJpY2Fs IGludGVncmF0aW9uIG9mIHRoZSBzYW1lIGludGVncmFsIChub3QgZXZlbiBjbG9zZSZuYnNwO2Fz IGV2aWRlbmNlZA0KIGJ5IGNvbXBhcmluZyBhY2N1cmF0ZSBudW1lcmljYWwgaW50ZWdyYXRpb24g d2l0aCB0aGUgY2xhaW1lZCBhbmFseXRpYyBmb3JtdWxhIG9mIHRoZSBzYW1lIGludGVncmFsKS4g SSBhbSBub3QgdHJ5aW5nIHRvIHBpY2sgb24gdGhpcyBwYXBlci4gSSBoYXZlIHRyaWVkIG90aGVy IHBhcGVycyBhbHNvLCBidXQgbWFueSBvZiB0aGVtIGFyZSBzbyBjb21wbGljYXRlZCB0aGF0IGl0 IGlzIGRpZmZpY3VsdCB0byB1bmRlcnN0YW5kIHdoYXQgaXMgYWN0dWFsbHkNCiBnb2luZyBvbi48 L3NwYW4+PGJyPg0KPC9ibG9ja3F1b3RlPg0KPHNwYW4+PC9zcGFuPjxicj4NCjxzcGFuPlRoaXMg aXMgZXhlcmNpc2UgNS4xIGluIHRoZSBwdXJwbGUgYmlibGUgWyA8YSBocmVmPSJodHRwczovL29u bGluZWxpYnJhcnkud2lsZXkuY29tL2RvaS9ib29rLzEwLjEwMDIvOTc4MTExOTAxOTU3MiI+DQpo dHRwczovL29ubGluZWxpYnJhcnkud2lsZXkuY29tL2RvaS9ib29rLzEwLjEwMDIvOTc4MTExOTAx OTU3MjwvYT4gXS4gVGhlIG92ZXJsYXAgYmV0d2VlbiB0d28gaHlkcm9nZW5pYyAxcyBTVE9zIGlz PC9zcGFuPjxicj4NCjxzcGFuPjwvc3Bhbj48YnI+DQo8c3Bhbj5TID0gKDEgJiM0MzsgUiAmIzQz OyAxLzMgUl4yKSBleHAoLVIpPC9zcGFuPjxicj4NCjxzcGFuPjwvc3Bhbj48YnI+DQo8c3Bhbj5h cyBnaXZlbiBpbiBlcSA1LjIuOC48L3NwYW4+PGJyPg0KPHNwYW4+PC9zcGFuPjxicj4NCjxzcGFu Pkl0J3MgcHJldHR5IHN0cmFpZ2h0Zm9yd2FyZCB0byBkbyB0aGUgbW9yZSBnZW5lcmFsIGNhc2Ug d2hlcmUgdGhlIGV4cG9uZW50cyBkaWZmZXIgZnJvbSB1bml0eSBieSB1c2luZyBjb25mb2NhbCBl bGxpcHRpY2FsIGNvb3JkaW5hdGVzIGFzIGFkdmlzZWQgYnkgdGhlIGJvb2suIFRoZSBjb29yZGlu YXRlcyBhcmU8L3NwYW4+PGJyPg0KPHNwYW4+PC9zcGFuPjxicj4NCjxzcGFuPm11ID0gKHJfQSAm IzQzOyByX0IpIC8gUjwvc3Bhbj48YnI+DQo8c3Bhbj5udSA9IChyX0EgLSByX0IpIC8gUjwvc3Bh bj48YnI+DQo8c3Bhbj48L3NwYW4+PGJyPg0KPHNwYW4+d2hlcmUgbXUgPSAxLi5pbmZpbml0eSBh bmQgbnU9LTEuLjEuIHJfQSBpcyB0aGUgZGlzdGFuY2UgZnJvbSBudWNsZXVzIEEgYW5kIHJfQiBp cyB0aGUgZGlzdGFuY2UgZnJvbSBudWNsZXVzIEIsIGFuZCBSIGlzIHRoZSBpbnRlcm51Y2xlYXIg ZGlzdGFuY2UuIFRoZSB0aGlyZCBjb29yZGluYXRlIGlzIHBoaSA9IDAuLjIqcGkuIFRoZSB2b2x1 bWUgZWxlbWVudCBpczwvc3Bhbj48YnI+DQo8c3Bhbj48L3NwYW4+PGJyPg0KPHNwYW4+ZFYgPSAx LzggUl4zIChtdV4yIC0gbnVeMikgZG11IGRudSBkcGhpLjwvc3Bhbj48YnI+DQo8c3Bhbj48L3Nw YW4+PGJyPg0KPHNwYW4+VGhlIHJlc3VsdGluZyBleHByZXNzaW9uIGlzLCBob3dldmVyLCBhIGJp dCBpbnZvbHZlZCwgYW5kIEkgZG9uJ3QgaGF2ZSB0aGUgdGltZSB0byBkZWJ1ZyBteSBNYXBsZSB3 b3Jrc2hlZXQgbm93Ljwvc3Bhbj48YnI+DQo8c3Bhbj48L3NwYW4+PGJyPg0KPHNwYW4+Rm9yIGEg cmVmZXJlbmNlLCB5b3UgbmVlZCB0byBnbyBwcmV0dHkgZmFyIGJhY2sgaW4gdGhlIGxpdGVyYXR1 cmUuIFRoaXMgaXMgc3R1ZmYgdGhhdCB3YXMgZG9uZSBpbiB0aGUgZWFybHkgZGF5cyBvZiBxdWFu dHVtIGNoZW1pc3RyeSwgd2hlbiBTbGF0ZXIgdHlwZSBvcmJpdGFscyB3ZXJlIHVzZWQgYXMgdGhl IGJhc2lzIGFuZCB0aGUgbW9sZWN1bGVzIHdlcmUgc21hbGwuPC9zcGFuPjxicj4NCjxzcGFuPjwv c3Bhbj48YnI+DQo8c3Bhbj5JIGRvbid0IGtub3cgaWYgdGhpcyBpdCB3YXMgdGhlIGZpcnN0IG9u ZSwgYnV0ICZxdW90O0EgU3R1ZHkgb2YgVHdvLUNlbnRlciBJbnRlZ3JhbHMgVXNlZnVsIGluIENh bGN1bGF0aW9ucyBvbiBNb2xlY3VsYXIgU3RydWN0dXJlLiBJJnF1b3Q7IGJ5IEMuIEMuIEouIFJv b3RoYWFuIGluIFRoZSBKb3VybmFsIG9mIENoZW1pY2FsIFBoeXNpY3MgMTksIDE0NDUgKDE5NTEp IHByZXNlbnRzIHRoZSBuZWNlc3NhcnkgZGlhdG9taWMgb3ZlcmxhcCBpbnRlZ3JhbHMNCiBmb3Ig dGhlIGV4cG9uZW50aWFsIHR5cGUgYmFzaXMuIChUaGUgc2Vjb25kIHBhcnQgYnkgUnVlZGVuYmVy ZyBkZXRhaWxzIHRoZSBldmFsdWF0aW9uIG9mIHR3by1lbGVjdHJvbiBpbnRlZ3JhbHMgZm9yIGRp YXRvbWljcy4pPC9zcGFuPjxicj4NCjxzcGFuPi0tIDwvc3Bhbj48YnI+DQo8c3Bhbj4tLS0tLS0t LS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0t LS08L3NwYW4+PGJyPg0KPHNwYW4+TXIuIFN1c2kgTGVodG9sYSwgUGhEICZuYnNwOyZuYnNwOyZu YnNwOyZuYnNwOyZuYnNwOyZuYnNwOyZuYnNwOyZuYnNwOyZuYnNwOyZuYnNwOyZuYnNwOyZuYnNw O0p1bmlvciBGZWxsb3csIEFkanVuY3QgUHJvZmVzc29yPC9zcGFuPjxicj4NCjxzcGFuPnN1c2ku bGVodG9sYSAuLiA8YSBocmVmPSJodHRwOi8vYWx1bW5pLmhlbHNpbmtpLmZpIj5hbHVtbmkuaGVs c2lua2kuZmk8L2E+ICZuYnNwOyZuYnNwO1VuaXZlcnNpdHkgb2YgSGVsc2lua2k8L3NwYW4+PGJy Pg0KPHNwYW4+PGEgaHJlZj0iaHR0cDovL3d3dy5oZWxzaW5raS5maS9+anpsZWh0b2wiPmh0dHA6 Ly93d3cuaGVsc2lua2kuZmkvfmp6bGVodG9sPC9hPiAmbmJzcDtGaW5sYW5kPC9zcGFuPjxicj4N CjxzcGFuPi0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0t LS0tLS0tLS0tLS0tLS0tLTwvc3Bhbj48YnI+DQo8c3Bhbj5TdXNpIExlaHRvbGEsIGRvc2VudHRp LCBGVCAmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDt0dXRraWphdG9o dG9yaTwvc3Bhbj48YnI+DQo8c3Bhbj5zdXNpLmxlaHRvbGEgLi4gPGEgaHJlZj0iaHR0cDovL2Fs dW1uaS5oZWxzaW5raS5maSI+YWx1bW5pLmhlbHNpbmtpLmZpPC9hPiAmbmJzcDsmbmJzcDtIZWxz aW5naW4geWxpb3Bpc3RvPC9zcGFuPjxicj4NCjxzcGFuPjxhIGhyZWY9Imh0dHA6Ly93d3cuaGVs c2lua2kuZmkvfmp6bGVodG9sIj5odHRwOi8vd3d3LmhlbHNpbmtpLmZpL35qemxlaHRvbDwvYT48 L3NwYW4+PGJyPg0KPHNwYW4+LS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0t LS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tPC9zcGFuPjxicj4NCjxzcGFuPjwvc3Bhbj48YnI+ DQo8c3Bhbj48L3NwYW4+PGJyPg0KPHNwYW4+PC9zcGFuPjxicj4NCjxzcGFuPi09IFRoaXMgaXMg YXV0b21hdGljYWxseSBhZGRlZCB0byBlYWNoIG1lc3NhZ2UgYnkgdGhlIG1haWxpbmcgc2NyaXB0 ID0tPC9zcGFuPjxicj4NCjxzcGFuPlRvIHJlY292ZXIgdGhlIGVtYWlsIGFkZHJlc3Mgb2YgdGhl IGF1dGhvciBvZiB0aGUgbWVzc2FnZSwgcGxlYXNlIGNoYW5nZTwvc3Bhbj48YnI+DQo8c3Bhbj50 aGUgc3RyYW5nZSBjaGFyYWN0ZXJzIG9uIHRoZSB0b3AgbGluZSB0byB0aGUgQCBzaWduLiBZb3Ug Y2FuIGFsc288L3NwYW4+PGJyPg0KPHNwYW4+bG9vayB1cCB0aGUgWC1PcmlnaW5hbC1Gcm9tOiBs aW5lIGluIHRoZSBtYWlsIGhlYWRlci48L3NwYW4+PGJyPg0KPHNwYW4+PC9zcGFuPjxicj4NCjxz cGFuPkUtbWFpbCB0byBzdWJzY3JpYmVyczogPGEgaHJlZj0ibWFpbHRvOkNIRU1JU1RSWUBjY2wu bmV0Ij5DSEVNSVNUUllAY2NsLm5ldDwvYT4gb3IgdXNlOjwvc3Bhbj48YnI+DQo8c3Bhbj4mbmJz cDsmbmJzcDsmbmJzcDsmbmJzcDs8YSBocmVmPSJodHRwOi8vd3d3LmNjbC5uZXQvY2dpLWJpbi9j Y2wvc2VuZF9jY2xfbWVzc2FnZSI+aHR0cDovL3d3dy5jY2wubmV0L2NnaS1iaW4vY2NsL3NlbmRf Y2NsX21lc3NhZ2U8L2E+PC9zcGFuPjxicj4NCjxzcGFuPjwvc3Bhbj48YnI+DQo8c3Bhbj5FLW1h aWwgdG8gYWRtaW5pc3RyYXRvcnM6IDxhIGhyZWY9Im1haWx0bzpDSEVNSVNUUlktUkVRVUVTVEBj Y2wubmV0Ij5DSEVNSVNUUlktUkVRVUVTVEBjY2wubmV0PC9hPiBvciB1c2U8L3NwYW4+PGJyPg0K PHNwYW4+Jm5ic3A7Jm5ic3A7Jm5ic3A7Jm5ic3A7PGEgaHJlZj0iaHR0cDovL3d3dy5jY2wubmV0 L2NnaS1iaW4vY2NsL3NlbmRfY2NsX21lc3NhZ2UiPmh0dHA6Ly93d3cuY2NsLm5ldC9jZ2ktYmlu L2NjbC9zZW5kX2NjbF9tZXNzYWdlPC9hPjwvc3Bhbj48YnI+DQo8c3Bhbj48L3NwYW4+PGJyPg0K PHNwYW4+U3Vic2NyaWJlL1Vuc3Vic2NyaWJlOiAmbmJzcDsmbmJzcDsmbmJzcDsmbmJzcDsmbmJz cDs8YSBocmVmPSJodHRwOi8vd3d3LmNjbC5uZXQvY2hlbWlzdHJ5L3N1Yl91bnN1Yi5zaHRtbCI+ aHR0cDovL3d3dy5jY2wubmV0L2NoZW1pc3RyeS9zdWJfdW5zdWIuc2h0bWw8L2E+PC9zcGFuPjxi cj4NCjxzcGFuPjwvc3Bhbj48YnI+DQo8c3Bhbj5CZWZvcmUgcG9zdGluZywgY2hlY2sgd2FpdCB0 aW1lIGF0OiA8YSBocmVmPSJodHRwOi8vd3d3LmNjbC5uZXQiPmh0dHA6Ly93d3cuY2NsLm5ldDwv YT48L3NwYW4+PGJyPg0KPHNwYW4+PC9zcGFuPjxicj4NCjxzcGFuPkpvYjogPGEgaHJlZj0iaHR0 cDovL3d3dy5jY2wubmV0L2pvYnMiPmh0dHA6Ly93d3cuY2NsLm5ldC9qb2JzPC9hPiBDb25mZXJl bmNlczoNCjxhIGhyZWY9Imh0dHA6Ly9zZXJ2ZXIuY2NsLm5ldC9jaGVtaXN0cnkvYW5ub3VuY2Vt ZW50cy9jb25mZXJlbmNlcy8iPmh0dHA6Ly9zZXJ2ZXIuY2NsLm5ldC9jaGVtaXN0cnkvYW5ub3Vu Y2VtZW50cy9jb25mZXJlbmNlcy88L2E+PC9zcGFuPjxicj4NCjxzcGFuPjwvc3Bhbj48YnI+DQo8 c3Bhbj5TZWFyY2ggTWVzc2FnZXM6IDxhIGhyZWY9Imh0dHA6Ly93d3cuY2NsLm5ldC9jaGVtaXN0 cnkvc2VhcmNoY2NsL2luZGV4LnNodG1sIj4NCmh0dHA6Ly93d3cuY2NsLm5ldC9jaGVtaXN0cnkv c2VhcmNoY2NsL2luZGV4LnNodG1sPC9hPjwvc3Bhbj48YnI+DQo8c3Bhbj48L3NwYW4+PGJyPg0K PHNwYW4+SWYgeW91ciBtYWlsIGJvdW5jZXMgZnJvbSBDQ0wgd2l0aCA1LjcuMSBlcnJvciwgY2hl Y2s6PC9zcGFuPjxicj4NCjxzcGFuPiZuYnNwOyZuYnNwOyZuYnNwOyZuYnNwOzxhIGhyZWY9Imh0 dHA6Ly93d3cuY2NsLm5ldC9zcGFtbWVycy50eHQiPmh0dHA6Ly93d3cuY2NsLm5ldC9zcGFtbWVy cy50eHQ8L2E+PC9zcGFuPjxicj4NCjxzcGFuPjwvc3Bhbj48YnI+DQo8c3Bhbj5SVEZJOiA8YSBo cmVmPSJodHRwOi8vd3d3LmNjbC5uZXQvY2hlbWlzdHJ5L2Fib3V0Y2NsL2luc3RydWN0aW9ucy8i Pmh0dHA6Ly93d3cuY2NsLm5ldC9jaGVtaXN0cnkvYWJvdXRjY2wvaW5zdHJ1Y3Rpb25zLzwvYT48 L3NwYW4+PGJyPg0KPHNwYW4+PC9zcGFuPjxicj4NCjxzcGFuPjwvc3Bhbj48YnI+DQo8L2Rpdj4N CjwvYmxvY2txdW90ZT4NCjwvZGl2Pg0KPC9ib2R5Pg0KPC9odG1sPg0K --_000_DCDCCB33DC5448E0BE2A76BA000E1444marshalledu_-- From owner-chemistry@ccl.net Mon Aug 13 21:31:01 2018 From: "Thomas Manz thomasamanz\a/gmail.com" To: CCL Subject: CCL: overlap integral of two simple exponential decay functions (different centers) in three-dimensional space Message-Id: <-53434-180813212954-28077-wgiN2EOCPtJV+a9DmpVfoQ=-=server.ccl.net> X-Original-From: Thomas Manz Content-Type: multipart/alternative; boundary="0000000000003361fc05735b2515" Date: Mon, 13 Aug 2018 19:29:46 -0600 MIME-Version: 1.0 Sent to CCL by: Thomas Manz [thomasamanz-,-gmail.com] --0000000000003361fc05735b2515 Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable Hi, Thanks to all of you that replied with information about the Slater s-orbital overlap integrals. I am looking into the resources you suggested. Sincerely, Tom On Sun, Aug 12, 2018 at 7:55 AM, Smith, Jack smith1106.:.marshall.edu < owner-chemistry ~~ ccl.net> wrote: > Frank Harris (https://www.physics.utah.edu/~harris/home.html) worked out > all the analytical expressions for all 1-center (1- and 2-electron) and > 2-center 1-electron STO integrals back in the early 70s. I used them in = a > program I wrote called PHATPSY. I further generalized the diatomic > integrals for arbitrary origin and orientation (and to exponentially > shielded nuclear attraction integrals). Unfortunately, I don=E2=80=99t t= hink Frank > ever formally published those notes. I used a preprint copy from the QTP > library at the University of Florida. There were a few minor errors (typo= s) > in his notes that I hand-corrected, and I=E2=80=99m not sure if I still h= ave them. > > You=E2=80=99re welcome to the PHATPSY code (in FORTRAN 66) if interested,= and I=E2=80=99ll > look to see if I have those old notes stashed away somewhere, but you may > want to dig around to see if Frank ever published those notes. Keep in > mind, this was 40+ years ago. > > BTW, most of the complexity is in the overlap of the spherical harmonics > with arbitrary orientation, not the exponential functions, so this may be > overkill if all you want is the overlap of simple S functions. > > - Jack > > Jack A. Smith, PhD > Marshall University > smith1106 ~~ marshall.edu > > > On Aug 12, 2018, at 3:27 AM, Susi Lehtola susi.lehtola[]alumni.helsinki.f= i > wrote: > > > Sent to CCL by: Susi Lehtola [susi.lehtola*alumni.helsinki.fi] > On 08/11/2018 12:29 AM, Thomas Manz thomasamanz . gmail.com wrote: > > Dear colleagues, > > I am trying to find an analytic formula and journal reference for the > overlap integral of two simple exponential decay functions (different > centers) in three-dimensional space. For example, consider the overlap > integral of 1s Slater-type basis functions placed on each atom of a > diatomic molecule. > > I have looked into the literature at a couple of sources. Frustratingly, = I > could not get some of the reported analytic formulas to work (i.e., some = of > the claimed analytic formulas in literature give wrong answers). Other > formulas are horrendously complex involving all sorts of angular momentum > and quantum number operators, almost too complicated to comprehend. > > I am trying to get an analytic overlap formula for the plain Slater s-typ= e > orbitals that are simple exponential decay functions. Does anybody know > whether a working analytic formula is available for this? > > F.Y.I: I am aware of the formula given in Eq. 16 of Vandenbrande et al. J= . > Chem. Theory Comput. 13 (2017) 161-179. It is wrong and clearly doesn't > match the numerical integration of the same integral (not even close as > evidenced by comparing accurate numerical integration with the claimed > analytic formula of the same integral). I am not trying to pick on this > paper. I have tried other papers also, but many of them are so complicate= d > that it is difficult to understand what is actually going on. > > > This is exercise 5.1 in the purple bible [ https://onlinelibrary.wiley. > com/doi/book/10.1002/9781119019572 ]. The overlap between two hydrogenic > 1s STOs is > > S =3D (1 + R + 1/3 R^2) exp(-R) > > as given in eq 5.2.8. > > It's pretty straightforward to do the more general case where the > exponents differ from unity by using confocal elliptical coordinates as > advised by the book. The coordinates are > > mu =3D (r_A + r_B) / R > nu =3D (r_A - r_B) / R > > where mu =3D 1..infinity and nu=3D-1..1. r_A is the distance from nucleus= A > and r_B is the distance from nucleus B, and R is the internuclear distanc= e. > The third coordinate is phi =3D 0..2*pi. The volume element is > > dV =3D 1/8 R^3 (mu^2 - nu^2) dmu dnu dphi. > > The resulting expression is, however, a bit involved, and I don't have th= e > time to debug my Maple worksheet now. > > For a reference, you need to go pretty far back in the literature. This i= s > stuff that was done in the early days of quantum chemistry, when Slater > type orbitals were used as the basis and the molecules were small. > > I don't know if this it was the first one, but "A Study of Two-Center > Integrals Useful in Calculations on Molecular Structure. I" by C. C. J. > Roothaan in The Journal of Chemical Physics 19, 1445 (1951) presents the > necessary diatomic overlap integrals for the exponential type basis. (The > second part by Ruedenberg details the evaluation of two-electron integral= s > for diatomics.) > -- > ------------------------------------------------------------------ > Mr. Susi Lehtola, PhD Junior Fellow, Adjunct Professor > susi.lehtola .. alumni.helsinki.fi University of Helsinki > http://www.helsinki.fi/~jzlehtol Finland > ------------------------------------------------------------------ > Susi Lehtola, dosentti, FT tutkijatohtori > susi.lehtola .. alumni.helsinki.fi Helsingin yliopisto > http://www.helsinki.fi/~jzlehtol > ------------------------------------------------------------------ > > > > -=3D This is automatically added to each message by the mailing script = =3D-http://www.ccl.net/chemistry/sub_unsub.shtmlConferences: http://server.ccl.net/ > chemistry/announcements/conferences/> > > --0000000000003361fc05735b2515 Content-Type: text/html; charset="UTF-8" Content-Transfer-Encoding: quoted-printable
Hi,

Thanks to all of you that replied w= ith information about the Slater s-orbital overlap integrals. I am looking = into the resources you suggested.

Sincerely,
=

Tom

On Sun, Aug 12, 2018 at 7:55 AM, Smith, Jack smith1106.:.marshall.edu <owner-chemistry ~~ ccl.net<= /a>> wrote:

You=E2=80=99re welcome to the PHATPSY code (in FORTRAN 66) if interest= ed, and I=E2=80=99ll look to see if I have those old notes stashed away som= ewhere, but you may want to dig around to see if Frank ever published those= notes.=C2=A0 Keep in mind, this was 40+ years ago.

BTW, most of the complexity is in the overlap of the spherical harmoni= cs with arbitrary orientation, not the exponential functions, so this may b= e overkill if all you want is the overlap of simple S functions.

- Jack=C2=A0

Jack A. Smith, PhD
Marshall University=C2=A0


On Aug 12, 2018, at 3:27 AM, Susi Lehtola susi.lehtola[]alumni.helsinki.fi <owner-chemistry ~~ ccl.= net> wrote:


Sent to CCL by: Susi Lehtola [susi.lehtola*alumni.helsinki.fi]
On 08/11/2018 12:29 AM, Thomas Manz thomasamanz . gmail.com wrote:
Dear colleagues,
I am trying to find an analytic formula and= journal reference for the overlap integral of two simple exponential decay= functions (different centers) in three-dimensional space. For example, con= sider the overlap integral of 1s Slater-type basis functions placed on each atom of a diatomic molecule.
I have looked into the literature at a coup= le of sources. Frustratingly, I could not get some of the reported analytic= formulas to work (i.e., some of the claimed analytic formulas in literatur= e give wrong answers). Other formulas are horrendously complex involving all sorts of angular momentum and quant= um number operators, almost too complicated to comprehend.
I am trying to get an analytic overlap form= ula for the plain Slater s-type orbitals that are simple exponential decay = functions. Does anybody know whether a working analytic formula is availabl= e for this?
F.Y.I: I am aware of the formula given in E= q. 16 of Vandenbrande et al. J. Chem. Theory Comput. 13 (2017) 161-179. It = is wrong and clearly doesn't match the numerical integration of the sam= e integral (not even close=C2=A0as evidenced by comparing accurate numerical integration with the claimed analytic form= ula of the same integral). I am not trying to pick on this paper. I have tr= ied other papers also, but many of them are so complicated that it is diffi= cult to understand what is actually going on.

This is exercise 5.1 in the purple bible [ https://onlinelibrary.wiley.com/doi/book/10.1002/9781119019572 ]. The overlap between two hydrogenic 1s STOs is

S =3D (1 + R + 1/3 R^2) exp(-R)

as given in eq 5.2.8.

It's pretty straightforward to do the more general case where the= exponents differ from unity by using confocal elliptical coordinates as ad= vised by the book. The coordinates are

mu =3D (r_A + r_B) / R
nu =3D (r_A - r_B) / R

where mu =3D 1..infinity and nu=3D-1..1. r_A is the distance from nuc= leus A and r_B is the distance from nucleus B, and R is the internuclear di= stance. The third coordinate is phi =3D 0..2*pi. The volume element is

dV =3D 1/8 R^3 (mu^2 - nu^2) dmu dnu dphi.

The resulting expression is, however, a bit involved, and I don't= have the time to debug my Maple worksheet now.

For a reference, you need to go pretty far back in the literature. Th= is is stuff that was done in the early days of quantum chemistry, when Slat= er type orbitals were used as the basis and the molecules were small.

I don't know if this it was the first one, but "A Study of T= wo-Center Integrals Useful in Calculations on Molecular Structure. I" = by C. C. J. Roothaan in The Journal of Chemical Physics 19, 1445 (1951) pre= sents the necessary diatomic overlap integrals for the exponential type basis. (The second part by Ruedenberg details the= evaluation of two-electron integrals for diatomics.)
--
----------------------------------------= --------------------------
Mr. Susi Lehtola, PhD =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2= =A0=C2=A0=C2=A0=C2=A0=C2=A0Junior Fellow, Adjunct Professor
susi.lehtola ..
alumni.helsinki.fi =C2=A0=C2=A0University of Helsinki

http:/= /www.helsinki.fi/~jzlehtol =C2=A0Finland
------------------------------------------------------------------
Susi Lehtola, dosentti, FT =C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0=C2=A0= tutkijatohtori
susi.lehtola .. alumni.helsinki.fi =C2=A0=C2=A0Helsingin yliopisto
http:/= /www.helsinki.fi/~jzlehtol
------------------------------------------------------------------



-=3D This is automatically added to each message by the mailing scrip= t =3D-
To recover the email address of the author of the message, please cha= nge



E-mail to subscribers: CHEMISTRY ~~ ccl.net or use:
=C2=A0=C2=A0=C2=A0=C2=A0http://www.ccl.net/cgi-bin/ccl/send_c= cl_message

E-mail to administrators: CHEMISTRY-REQUEST ~~ ccl.net or use
=C2=A0=C2=A0=C2=A0=C2=A0http://www.ccl.net/cgi-bin/ccl/send_c= cl_message

http://www.ccl.n= et/chemistry/sub_unsub.shtml

Before posting, check wait time at: http://www.ccl.net

Job: http://www= .ccl.net/jobs Conferences: http://server.ccl.net/chemistry/announcements/confe= rences/

Search Messages: http://www.ccl.net/chemistry/searchccl/index.shtml


=C2=A0=C2=A0=C2=A0=C2=A0http://www.ccl.net/spammers.txt

RTFI: http://www.ccl.net/chemistry/aboutccl/instructions/=



--0000000000003361fc05735b2515--