From owner-chemistry@ccl.net Sat May 8 00:18:01 2021 From: "Hantz, Eric R. hantz.2!A!buckeyemail.osu.edu" To: CCL Subject: CCL:G: A mailing list, forum, or Q&A site for Gaussian Message-Id: <-54325-210507153439-1541-xPUPbY1STBaCMO7NvFnkpw],[server.ccl.net> X-Original-From: "Hantz, Eric R." Content-Language: en-US Content-Type: multipart/related; boundary="_004_BYAPR01MB44569E6BC81EBB3A0B0E48D5FD579BYAPR01MB4456prod_"; type="multipart/alternative" Date: Fri, 7 May 2021 19:34:31 +0000 MIME-Version: 1.0 Sent to CCL by: "Hantz, Eric R." [hantz.2^buckeyemail.osu.edu] --_004_BYAPR01MB44569E6BC81EBB3A0B0E48D5FD579BYAPR01MB4456prod_ Content-Type: multipart/alternative; boundary="_000_BYAPR01MB44569E6BC81EBB3A0B0E48D5FD579BYAPR01MB4456prod_" --_000_BYAPR01MB44569E6BC81EBB3A0B0E48D5FD579BYAPR01MB4456prod_ Content-Type: text/plain; charset="us-ascii" Content-Transfer-Encoding: quoted-printable Hey Andrew, In my experience the gaussian support team has always been very helpful and= generous with their time. Specific Q&A might depend on what you are lookin= g to do. I know there is a page for QM/MM specific questions, but I am not = aware of a general resource for that. Best, [signature_1096478231] Eric Hantz Biophysics Doctoral Candidate Graduate Research Assistant Lindert Lab 2120 Newman Wolfrom > From: owner-chemistry+hantz.2=3D=3Dbuckeyemail.osu.edu(!)ccl.net on behalf of Andrew DeYoung = andrewdaviddeyoung ~ gmail.com Date: Friday, May 7, 2021 at 3:20 PM To: Hantz, Eric R. Subject: CCL:G: A mailing list, forum, or Q&A site for Gaussian Hi, Can anyone recommend a mailing list, forum, or Q&A site for questions about= Gaussian 16? (Other than asking questions directly to Gaussian tech suppo= rt or on here, CCL. Everyone here on CCL seems generous with their time, b= ut I don't want to bother you all with boring technical questions about Gau= ssian.) A lot of other packages (e.g., GROMACS, NAMD, VMD) have dedicated = forums or mailing lists, but offhand I don't see any for Gaussian. Thank you, Andrew DeYoung Carnegie Mellon University --_000_BYAPR01MB44569E6BC81EBB3A0B0E48D5FD579BYAPR01MB4456prod_ Content-Type: text/html; charset="us-ascii" Content-Transfer-Encoding: quoted-printable

Hey Andrew,

 

In my experience the gaussian support team has alway= s been very helpful and generous with their time. Specific Q&A might de= pend on what you are looking to do. I know there is a page for QM/MM specif= ic questions, but I am not aware of a general resource for that.

 

Best,

 

3D"signature_1096478231"<= o:p>

 

Eric Hantz

Biophysics Doctoral Candidate

Graduate Research Assistant

Lindert Lab

2120 Newman Wolfrom

 

 

From: owner-chemistry+han= tz.2=3D=3Dbuckeyemail.osu.edu(!)ccl.net <owner-chemistry+hantz.2=3D=3Dbuck= eyemail.osu.edu(!)ccl.net> on behalf of Andrew DeYoung andrewdaviddeyoung = ~ gmail.com <owner-chemistry(!)ccl.net>
Date: Friday, May 7, 2021 at 3:20 PM
To: Hantz, Eric R. <hantz.2(!)buckeyemail.osu.edu>
Subject: CCL:G: A mailing list, forum, or Q&A site for Gaussian<= o:p>

Hi,

 

Can anyone recommend a mailing list, forum, or = Q&A site for questions about Gaussian 16?  (Other than asking ques= tions directly to Gaussian tech support or on here, CCL.  Everyone her= e on CCL seems generous with their time, but I don't want to bother you all with boring technical questions about Gaussian.)&nb= sp; A lot of other packages (e.g., GROMACS, NAMD, VMD) have dedicated forum= s or mailing lists, but offhand I don't see any for Gaussian.

 

Thank you,

Andrew DeYoung

Carnegie Mellon University

--_000_BYAPR01MB44569E6BC81EBB3A0B0E48D5FD579BYAPR01MB4456prod_-- --_004_BYAPR01MB44569E6BC81EBB3A0B0E48D5FD579BYAPR01MB4456prod_ Content-Type: image/png; name="image001.png" Content-Description: image001.png Content-Disposition: inline; filename="image001.png"; size=16650; creation-date="Fri, 07 May 2021 19:34:31 GMT"; modification-date="Fri, 07 May 2021 19:34:31 GMT" Content-ID: Content-Transfer-Encoding: base64 iVBORw0KGgoAAAANSUhEUgAAAfYAAABoCAYAAAAD8NI7AAAMSGlDQ1BJQ0MgUHJvZmlsZQAASImV VwdYU8kWnltSSWiBCEgJvYlSpEsJoUUQkCrYCEkgocSQEETsLssquHYRAXVFV0VcdC2ArBW7sgj2 /lAWlZV1sWBD5U0KrOt+773vne+be/+cOec/JXPvnQFAp4YnleaiugDkSQpk8REhrCmpaSxSN0AA CegDAjDh8eVSdlxcNIAyfP+7vLkBraFcdVFy/XP+v4qeQCjnA4DEQZwhkPPzID4IAF7Cl8oKACD6 QL317AKpEk+D2EAGE4RYqsRZalyixBlqXKmySYznQLwHADKNx5NlAaDdDPWsQn4W5NG+BbGrRCCW AKBDhjiQL+IJII6EeExe3iwlhnbAIeMLnqy/cWaMcPJ4WSNYXYtKyKFiuTSXN+f/bMf/lrxcxXAM OzhoIllkvLJm2LdbObOilJgGcZ8kIyYWYn2I34kFKnuIUapIEZmktkdN+XIO7BlgQuwq4IVGQWwK cbgkNyZao8/IFIdzIYYrBC0SF3ATNb5LhfKwBA1njWxWfOwwzpRx2BrfBp5MFVdpf1qRk8TW8N8S CbnD/K+LRYkp6pwxaqE4OQZibYiZ8pyEKLUNZlMs4sQM28gU8cr8bSD2E0oiQtT82IxMWXi8xl6W Jx+uF1sqEnNjNLiqQJQYqeHZw+ep8jeCuFkoYScN8wjlU6KHaxEIQ8PUtWMdQkmSpl6sS1oQEq/x fSnNjdPY41RhboRSbwWxqbwwQeOLBxbABanmx2OkBXGJ6jzxjGzexDh1PngRiAYcEApYQAFHBpgF soG4va+pD/5Sz4QDHpCBLCAELhrNsEeKakYCrwmgGPwBkRDIR/xCVLNCUAj1n0a06qsLyFTNFqo8 csBjiPNAFMiFvxUqL8lItGTwG9SI/xGdD3PNhUM5908dG2qiNRrFMC9LZ9iSGEYMJUYSw4mOuAke iPvj0fAaDIc77oP7Dmf7lz3hMaGT8IhwndBFuD1TvET2VT0sMAl0wQjhmpozvqwZt4OsnngIHgD5 ITfOxE2ACz4eRmLjQTC2J9RyNJkrq/+a+281fNF1jR3FlYJSRlGCKQ5fe2o7aXuOsCh7+mWH1Llm jPSVMzLzdXzOF50WwHvU15bYUuwAdg47iV3AjmBNgIUdx5qxNuyoEo+sot9Uq2g4WrwqnxzII/5H PJ4mprKTctd6117Xj+q5AmGR8v0IOLOkc2TiLFEBiw3f/EIWV8IfO4bl7urmC4DyO6J+Tb1iqr4P CPPiX7r8EwD4lkFl1l86njUAhx8DwHjzl876JXw8VgFwtIOvkBWqdbjyQgBUoAOfKGNgDqyBA6zH HXgBfxAMwsBEEAsSQSqYAbssgutZBmaDeWAxKAXlYBVYD6rAFrAN7AI/gf2gCRwBJ8FZcAl0gOvg Llw9PeAZ6AdvwCCCICSEjjAQY8QCsUWcEXfEBwlEwpBoJB5JRdKRLESCKJB5yDdIObIGqUK2InXI z8hh5CRyAelEbiMPkV7kJfIBxVAaaoCaoXboONQHZaNRaCI6Hc1C89FitARdgVaitegetBE9iV5C r6Nd6DN0AAOYFsbELDEXzAfjYLFYGpaJybAFWBlWgdViDVgL/J+vYl1YH/YeJ+IMnIW7wBUciSfh fDwfX4Avx6vwXXgjfhq/ij/E+/HPBDrBlOBM8CNwCVMIWYTZhFJCBWEH4RDhDHyaeghviEQik2hP 9IZPYyoxmziXuJy4ibiXeILYSewmDpBIJGOSMymAFEvikQpIpaSNpD2k46QrpB7SO7IW2YLsTg4n p5El5CXkCvJu8jHyFfIT8iBFl2JL8aPEUgSUOZSVlO2UFsplSg9lkKpHtacGUBOp2dTF1EpqA/UM 9R71lZaWlpWWr9ZkLbHWIq1KrX1a57Uear2n6dOcaBzaNJqCtoK2k3aCdpv2ik6n29GD6Wn0AvoK eh39FP0B/Z02Q3usNldboL1Qu1q7UfuK9nMdio6tDltnhk6xToXOAZ3LOn26FF07XY4uT3eBbrXu Yd2bugN6DD03vVi9PL3lerv1Lug91Sfp2+mH6Qv0S/S36Z/S72ZgDGsGh8FnfMPYzjjD6DEgGtgb cA2yDcoNfjJoN+g31Dccb5hsWGRYbXjUsIuJMe2YXGYucyVzP/MG88Mos1HsUcJRy0Y1jLoy6q3R aKNgI6FRmdFeo+tGH4xZxmHGOcarjZuM75vgJk4mk01mm2w2OWPSN9pgtP9o/uiy0ftH3zFFTZ1M 403nmm4zbTMdMDM3izCTmm00O2XWZ840DzbPNl9nfsy814JhEWghtlhncdzid5Yhi83KZVWyTrP6 LU0tIy0Vllst2y0HreytkqyWWO21um9NtfaxzrReZ91q3W9jYTPJZp5Nvc0dW4qtj63IdoPtOdu3 dvZ2KXbf2TXZPbU3sufaF9vX299zoDsEOeQ71DpccyQ6+jjmOG5y7HBCnTydRE7VTpedUWcvZ7Hz JufOMYQxvmMkY2rH3HShubBdCl3qXR6OZY6NHrtkbNPY5+NsxqWNWz3u3LjPrp6uua7bXe+66btN dFvi1uL20t3Jne9e7X7Ng+4R7rHQo9njxXjn8cLxm8ff8mR4TvL8zrPV85OXt5fMq8Gr19vGO927 xvumj4FPnM9yn/O+BN8Q34W+R3zf+3n5Ffjt9/vT38U/x3+3/9MJ9hOEE7ZP6A6wCuAFbA3oCmQF pgf+ENgVZBnEC6oNehRsHSwI3hH8hO3IzmbvYT8PcQ2RhRwKecvx48znnAjFQiNCy0Lbw/TDksKq wh6EW4VnhdeH90d4RsyNOBFJiIyKXB15k2vG5XPruP0TvSfOn3g6ihaVEFUV9SjaKVoW3TIJnTRx 0tpJ92JsYyQxTbEglhu7NvZ+nH1cftwvk4mT4yZXT34c7xY/L/5cAiNhZsLuhDeJIYkrE+8mOSQp klqTdZKnJdclv00JTVmT0jVl3JT5Uy6lmqSKU5vTSGnJaTvSBqaGTV0/tWea57TSaTem208vmn5h hsmM3BlHZ+rM5M08kE5IT0nfnf6RF8ur5Q1kcDNqMvr5HP4G/jNBsGCdoFcYIFwjfJIZkLkm82lW QNbarF5RkKhC1CfmiKvEL7Ijs7dkv82JzdmZM5Sbkrs3j5yXnndYoi/JkZyeZT6raFan1FlaKu3K 98tfn98vi5LtkCPy6fLmAgO4YW9TOCi+VTwsDCysLnw3O3n2gSK9IklR2xynOcvmPCkOL/5xLj6X P7d1nuW8xfMezmfP37oAWZCxoHWh9cKShT2LIhbtWkxdnLP41yWuS9Ysef1NyjctJWYli0q6v434 tr5Uu1RWevM7/++2LMWXipe2L/NYtnHZ5zJB2cVy1/KK8o/L+csvfu/2feX3QysyV7Sv9Fq5eRVx lWTVjdVBq3et0VtTvKZ77aS1jetY68rWvV4/c/2FivEVWzZQNyg2dFVGVzZvtNm4auPHKlHV9eqQ 6r01pjXLat5uEmy6sjl4c8MWsy3lWz78IP7h1taIrY21drUV24jbCrc93p68/dyPPj/W7TDZUb7j 007Jzq5d8btO13nX1e023b2yHq1X1Pfumban46fQn5obXBq27mXuLd8H9in2/f5z+s839kftbz3g c6DhoO3BmkOMQ2WNSOOcxv4mUVNXc2pz5+GJh1tb/FsO/TL2l51HLI9UHzU8uvIY9VjJsaHjxccH TkhP9J3MOtndOrP17qkpp66dnny6/UzUmfNnw8+eOsc+d/x8wPkjF/wuHL7oc7HpktelxjbPtkO/ ev56qN2rvfGy9+XmDt+Ols4JnceuBF05eTX06tlr3GuXrsdc77yRdOPWzWk3u24Jbj29nXv7xZ3C O4N3F90j3Cu7r3u/4oHpg9p/Of5rb5dX19GHoQ/bHiU8utvN7372m/y3jz0lj+mPK55YPKl76v70 SG94b8fvU3/veSZ9NthX+ofeHzXPHZ4f/DP4z7b+Kf09L2Qvhl4uf2X8aufr8a9bB+IGHrzJezP4 tuyd8btd733en/uQ8uHJ4OyPpI+Vnxw/tXyO+nxvKG9oSMqT8VRbAQwONDMTgJc7AaCnwr1DBwDU qepznkoQ9dlUhcB/wuqzoEq8ANgZDEDSIgCi4R5lMxy2ENPgXblVTwwGqIfHyNCIPNPDXc1Fgyce wruhoVdmAJBaAPgkGxoa3DQ09Gk7TPY2ACfy1edLpRDh2eAHIyVqu6kLvpZ/AyXofkFqjZ59AAAA CXBIWXMAABYlAAAWJQFJUiTwAAABnWlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPHg6eG1wbWV0 YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iWE1QIENvcmUgNS40LjAiPgogICA8 cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRh eC1ucyMiPgogICAgICA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIgogICAgICAgICAgICB4 bWxuczpleGlmPSJodHRwOi8vbnMuYWRvYmUuY29tL2V4aWYvMS4wLyI+CiAgICAgICAgIDxleGlm OlBpeGVsWERpbWVuc2lvbj41MDI8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8ZXhp ZjpQaXhlbFlEaW1lbnNpb24+MTA0PC9leGlmOlBpeGVsWURpbWVuc2lvbj4KICAgICAgPC9yZGY6 RGVzY3JpcHRpb24+CiAgIDwvcmRmOlJERj4KPC94OnhtcG1ldGE+CmHKlJIAAAAcaURPVAAAAAIA AAAAAAAANAAAACgAAAA0AAAANAAAKVfnwu95AAApI0lEQVR4Aezd2bNcxX0H8NaCJJAAsYPZBJh9 x+wYg/HuKlelKs+pylOq8pSkkvwVScpJVd7ykoe8+wHvLmyMzb7v+w5mM5tASAIt6c+BL26P5869 kuZKo0t31bkzc04vv9/3t3y7+5yZu2xnLaWXjkBHoCPQEegIdASWBALLOrEvCTt2JToCHYGOQEeg IzAg0Im9O0JHoCPQEegIdASWEAKd2JeQMbsqHYGOQEegI9AR6MTefaAj0BHoCHQEOgJLCIFO7EvI mF2VjkBHoCPQEegIdGLvPtAR6Ah0BDoCHYElhEAn9iVkzK5KR6Aj0BHoCHQEOrF3H+gIdAQ6Ah2B jsASQqAT+xIyZlelI9AR6Ah0BDoCndi7D3QEOgIdgY5AR2AJIdCJfQkZs6vSEegIdAQ6Ah2BTuzd BzoCHYGOQEegI7CEEOjEvoSM2VXpCHQEOgIdgY7APiH2jz/+uGzatKm89tpr5cknnyzvv/9+OfDA A8sBBxwwVYts27atbNmypaxbt66cdNJJ5bjjjiuHH374MNZUB+qddQQ6Ah2BjkBHYEYQ2KvE7j/E bt++vXz00UflnXfeKe++++7w+vHWrWX1qlVlxfLlU4Vlx44d5eNK7itXrizrDj64HHbYYeXII48c iN655VMeb6rC9846Ah2BjkBHoCOwGwjsVWLPCvrtt98uL7300kDyxx57bDn4oIPK8krCVZjdUGFC k0rcO1esKB/WicTrb7wxVDSeVfvBlehX1clELx2BjkBHoCPQEVhKCOwVYm9X6lbpDtvvqyuSJ64/ rKyrfL7tnXfLjs2bp4rt8oMOLKsqiW9asby8unFj2bxj+7ANf8ghh5Qjjjiir9yninbvrCPQEegI dARmAYG9QuztSv3ll1/+fKW+bsvWsv3xJ8vWemyqx8d//ONUMVll2/2cs8qaeqysx6YD1wz39Q2S lbv7733lPlXYe2cdgY5AR6AjsA8RWFRiH12pv/fee8VhA9xKfdVrb5R3f3NL2XjPvWXTk09VYn97 qlCsOvKIsvbMM8qhl32lHH7DdWXbl477fOV+UN3+b1fuK+qWfb/nPlX4e2cdgY5AR6AjsA8QWFRi t1LfWh+Mc0/9xRdf/Hylvrau1Hc+8VTZfP9D5b077iybn32ubPvgg7Jj68dThWD56lVlZb2XftBp p5b1V15RDrrkwrKirtw/snJ//fVhrC996UvDPfe1a9dO/an8qSrTO+sIdAQ6Ah2BjsACEFgUYs9K fXO9Z5576l4/X6m//kZ5b1ip37coK/VRvbNyP+TSS/5s5b5l546C0A899NDPyb2v3EfR6587Ah2B jkBHYH9CYFGIvV2pe/rdZ/e0127eUnY88XTZ8sCDdaV+16Kt1EcNkJX7gaee8vnKfeW5Z/eV+yhQ /XNHoCPQEegI7PcITJ3YkfjYlfqh68uq198s793snvreWamPWueA+iT82jNPL4demnvux5ZXP9hY ttSv2fWV+yha/XNHoCPQEegI7I8ITJ3YN9avlfkqm3vqw0r9mGOKe+o76j31LQ/Ue+q315X6c4tz T30+Ayz3IzjDPfe6cr/i8uGeu5X7pvq1OL+Ct2zZsnL88ccP2/Ierpv2L+HNJ1+/3hHoCHQEOgId gT1FYOrE/lwlbb8s98f61bWV9UdnTqpPv69+4619ulIfBemAIw4va8+wcnfP/fryyfHHlVc2vl+2 1pW7H65Zv359Oeqoo4ZV/Gjb/rkj0BHoCHQEOgKzjMDUif03v/lNWbN69UCOazZ9VJY99UzZ+uAj n95T30cr9VEDfLpyX1cOqvfcD72yrtwvvrCsPO+cz7/n7nvtp59++vAjNqNt++eOQEegI9AR6AjM MgJTJ/Yf/ehH5bC64j31lFPKgXWl/s6NPysbb79jQU+/L6v/BGZF/WcwKw89pKysq+pl9WtpO3bs LJ6yn1RsofsO+s76D1+2vf1O2fb+xrK97hrs/OSTSc3KsHKvBL7+2qvLMX/9V+Wjo44ojz72WKl7 8uX8888vx9TbCLtS/A6+r/d5xsDxyTzjp2+y++36NWvWLImfuoWDf/STwy0Zv9uv0NU3D9zmMIFa XSeBdP8iFVgEI/7CT5zj5/FlGMEFRrDq39b4Sw/Jt2/g5589wXRcgWH7T6ZgrY2Dj8Y30xbuqc8e jl46AvsTAotD7PXrY6fV/6a28tnny2v/879lY/2u+kK+p76y/tTrmhNPKGvrfe+Dr7qirKhb5Ftr 8G3/jBTmAnZlTYKrV60u2197vXxw+51l0yOPlc0v1qfx673+SSUr98Ouuaqc+Pd/Vz4+5eTyaP1v c/W/0ewWsbsF8dZbbw336/3CnmcNFlIkHr+A57/PnXHGGfv1ToFka1LT/pMf/8lPAlUkTc8vuN3h N/v9Ux4PLn6RkidCgYmvgL755pvFcykIHnaZ9CAWPgEjP6TUf2fhLyPJhBFu4uz1+rsUH3744Z9V yiSJr5144okDjipoA/P8YBZ/bQu8PWvja7D8tf9wVYtOf78/ILB4xH7CCWV5/ZnYl3/435XY75qI RVbqa048vqy76IKyuh4r67Hs2GPKzjpbnrxet8BeVlao98abZfsDD9cfvnmwfHD/A2XLS68saOV+ 2NVXlg3/+k/lk/rE/GNPP1WJfcVuEbtkgdA9OPj8888PCcdqy4pAMkFukpFk0SZqiQO5Sz6XXXZZ 8aM5+2Oh4wf1h4aQukQrcTqHyJCWwlb0p68E6muQfrffezsWS5ngs1JERB7W9BwKjKw26T348Wcr dQSP3OECH5M+RN/LnxAQS7AzQXrllVeGSbUYFGd8DH6embHzdkrdQUTwijZw98NZb9R/DqU9cheH 8D766KPLySefPPw3yE7sf8K7v9t/EJgJYs9Kfd1F55dD/PRrXbW/vnVL+aQmt+G/sNXt2klFIJut r6oEeszqNeWAl18t7990c/mwPoW/+aWX5125T4vY822AP/zhD0PCQGgShQSUBEJOpH7aaacNicb2 oaQiIXlg76qrrion1EnR/lYQt0T51FNPDRMb+iqSqn+XS2eJk66SKuKHS1ZT55xzzpBQ1Vmq5J6V ot92ePjhh4cJEFzyA0l2MuieFX22l+1qnHfeeQM++5tfLKa8Jkp8SEyZJL3wwgvl0UcfHfzLJMik UZyJJxjCV4EvP0ToYvXVV18dJgZuC5111lnlpLrbmIdnl7I/LqZtet/7FoGZIHbb74fVrfc1l11S ll14Qdmy/pDybk3+1ngSv5XcpCIBIlVJ8XD16z32HVbud99X3r319rKlrqInlWkRO3KWJCQZyUZS QGqSyLPPPjtcQ362V7MyR+zaWcGZxHzlK18ZVmeT5J21a5Ir0rJbcd999w1J0meE5SFEOxB0Yx9Y IP1nnnlmmAhoKwFfeumlwyoJ0VnNz2LJrgPZdmfyYTeDfzz99NPlgQceGAjmy1/+8kA8iCTEAzuT Hwfy4UMXX3zxfucXi21D9shumHiD629/+9vh9gbMrNLhZieMX+Xrq9k5SdzZXXviiSeGFb6J9amn njrsjvDD3bHzYuu9v/fPbokl+HaMp2/RmSD2Q+q2+/F/+zdl53lnl1e3bC7b68z56LrSy/asbclJ BTlKhsjdPcsV9f0Jaw4s5eHHyqv/+39l4wMPTmpepkXsSAtxu38qeUgMCE2CfuSRRwZyt1K11fet b31rSCAcPAlf4rHCkJT2p0JfuJu8ICyfkbmVD32slpJU2Qoetk6tsBC87U4rdiQnCZsQzFpJMvKa ZLSrCcnzF48//vhAQHTn31/96lcHPzB5jZ+b7Hhewy0NEz7Xzj777AHHWcNlX8vDHlm52y36+c9/ PqzCTZRMKk0Yrdhha6KtxJb81CTcV3Qfeuihgdivv/76wR59C37xLMteDoVNYpfFG/GL1/NMEPv6 eo/7lH/+h7LtrDPK45UcysoVQyJDgIw+XwJNcCMXibNs217OroSysv4ozvP/8V/lvdvumGjZaRF7 tlC9SiTIzH0+Cf3+++8ftqmt2KxQf/CDHwwPyhEs3/s3OUmCR4Cc3yv92v5MGOASAtButJ5+1JOg XJPE1NNGfzAdh23Gsi2pD/KHlOcCEQEhaInVyseYl1xyyaCfh5BMbtpiAqSN+nfcccewY2ESIBHb crZLY7JjJ4a8SQIwoBO5bLWSVT39jdYjQ+6xGrutBw+F/m09Oiuus6Hx2catHuciR7AjizEc2pJv UkHS/MDK0nu3KUzw6A1j8igZn8x82rgme+rEhmSgv6Mtzuea/rSBFxuQN0U7+plkefVZPeN41UcK /fkPnOFCvowxaXx4wAXG3tMjfbRYGqcdL32Sl9zw1UfwiVyjr/zpxhtvHHZFYOtB1Msvv3x4EG60 rs/xQ8TOLsb5xje+MewcwRkukZfOZLDyj719VuDT+hfdyBr/SPzATn/xJ23h4ro+vTcOXza++rCA jWvxe6/6V09/5Ixf6DN2954s+nQE12Cd15ynDznIbTz9x//1o56+086rc+pqw9Z2neiTOmSI3pGV /vpTR1t9OuhlsksOY6tnfLq14wcvbVq8vI9M0cn4ivO5Zkx9GMc57YxlTO2cU4c82elxXh1xEPn1 Qd8Ws09H2/d/Z4fY/+Ufy/azzyxPPv/c8PCaFYpZN5AXUgCfFVG1VDnzlFPLivrw3vP//p97jdgT RHFajsdBrNInETvH4rxW+x688+pzEgvdBI2kiyi9+mz70f1aegsA4zqPGD1sZcufY7r2Ql0hqqeN 8Th1DnIqkZ+jWmWbgLRPE89lByR17733DoTlnqWHva6vKx+JFQEL+rZEXyv8X//618MKSz1boFdf ffUQKJK0vhJI/IBcdLMbYCeAvCZybT3jwECCUI8MSvqz/QpbhVzwUa9dEcPdFji7ub1gEiKYya3E rmSxGoR1u5U+VBrzB05uVZDFezhdd911A7G3xMvedJNoyEpmPsF+bmOwJzzUI5NXh3NJVj7TT7+j 37ZIfTI8+OCDgyzOIcNs+dMxsQcLtlI/E4F2fLL67ODvucZeeTDSe7jqw85akqP67VhgI4s++a97 3uzT4jMG2uHUtIid3wdrE3E6swMf9VCdGIQV31HYpvUvdpP0xWkbP+wYf4oPJq7pCCPn4WN8kwV9 wQiBkMuulgWPdmLDzhc/NQH0GfbsTlbtYO7gM3wF1jkG4T/7A29tkl+Mpz/y0k8f6tCrtRlbIUC6 woS+4iL+oPvoLU7ZP7cpU4fPkpl+7C121bGbIr9lfGOpZ0ePTxvXZCHx4X18r40L+pI514I5HY1N N2PRF97OuQZnecZ4JifygDzq1Wc+uWHDhkEWfs5+s1JmgtizYt4xEPvzZdlnK3bksiuFcST6nXXF fma9v+ap/Bf+7Yfl3b20Yp9LVs48idjTjgNnNcexOZBELqBC6hwNiXBOgW+1wfkFDadUT5Jwf5Fj Sj4cVj2TBolA8hA8HNOhL0V7Ts6xBacgt5rktJOKfn/3u98Nq3ZyC+6sRJMERtsLUvc2ETvSoKOk ecMNNwyywcF18tJTP3SzsjcBaImdbhKweoKYbmSAQUvs+pOoJALj0Z2O+kPsiAQGCWCYSpgSRhKa 5CBpwFCSgU36yC0Hso4r+vJwFxKQILT3ewn0Nja5JSvnjUcXhV88Wb+GCQuyIUU2k1yQjqRNbm3J IMEksZGXfJ7d4BdK7AyP22+/ffAL50xS3BqArT7IoPBBEwAY0xt2fMT7JF3jaEMP7cgGBxjzJXKR 25jiwWRBUZ+P0jn6qseW7N3iQ79JZdrETl/y8gN6knFDTeTwERfikI50MXb8Cy7IAFHxLXoo6vFV dpSrFLiwDx9ArNqysTpwZ19j6Is/u2WF1NhfXKvHl8QLzGDJj4ypnTr6gzlcjaGOI/aNP8MXOdOL Xfi9nThjtDtHbBoSky/Esr7kG3FEPteNzw9MPPi9fuQH/oM4M378UXu3TrzyaWMGL1iQk176hwV7 wBFG+tWPc/SkM/kz8RCniRl+5j0s+KZ+yWgypZ2iPlvzPzaKHh56VU8f6sgv4sb7YDJ0sI//dGKv BsjEYk+/7jaXLRdK7EloiIezIkwJlVOZqUsSnE3QcSyOy7ERoxWzpJB6IYskYElFkN51111DEOgH SXJKiUDRPkRhTMlJf8abVATfr371qyEIJXhBZ0uTvD47xhUTkt///vdDUqIzWUwIyEU3CYu8gk4g um6L33VBKWglMwmV/oJfMkFgVp7qSUKKesYzwZKoBbMkhvDIqx45JQi4W1lL5rCRaOApCShklaTI JRGoc9FFF5UNFVOJZy4CshIzsUAC7OqzPiUFY5BHAvdZn3RW2NgtDjZ0TlI2DlnbHQsJOYmRLclv PFh5WBOBKJKmPuEmUSEweKc90iKLcRR6wg2G5CSzxKx/5yVgfkb23Eqhm/qwMj4/YpsXqk35C1+U 2CXOrGqjb3yffeGuXz44F66DkPXPtIjdmCFY+JEX/vShCzvD2SuM4ofxL/jSCd6O1gdhrT9Ep5x7 7rlDnPBZffFLmGVSYUIn1uEKQz4Nf+cQGbvxV3GCxMmO+JARvPkIzPkzuVzXB7kS9/rgW0hacV6s iQdyyC/kRchnnnnmoBtfUZCceCIDUo0+ZGBfutD3nnvuGfCDi2v8iA8p8W/1xREsyE5evmd8z0DI j8lvsIcVP6I3meHslf94pklbGBlLPuBD6rpObkSMmOPLcBIPcCCnsUykYMnG8rhniPi2vsQInLyn O5lnpXRir5aYFWKPUwg0hCFR3XrrrYNDS4CcUGCGYCQfyUbw33LLLUOQj6vHuQWJ/m666aYh2Mys 9cd5kYQgUUeASwaCiMMLsiSmyDf6arXws5/9bEggki9i+PrXv14E36SCHN1jJ7/gFvDf+c53BrkE imRBXslVECLga665Zgi6tl8B6Wlo9SQHGI2r5zo89WviInhthUdOeksGcJKI1LE1CCerNDhJdgJb EldPwlFa3E2IxhUJA77k1Y7+bC0haCOBSBaSJnJ3DvbaqcveEpfzZEGsErrEyQ8kaxMqiVvdkLf+ 21sNZNBG0lbHoS+24w/s5yCD4hobwyOJjG9oPw53iVRCN46+EXYmebCHmwTKxuwE3yRHY0i8+ua3 MOHvcFB/UtHvNO6xk1WhA9JCHuQ1cVTYKESb+OAXbMS/kAcc+Vc7QXJeH+RkN8UzAPRv64lDxAPz O++8c8Cdf7EJ345/IVpxy5+SJy688MLBn9UhU5sf+Pdccc/G5IM524pFk4dWXuMhSOROb9fFi/hN vCB2+sCQ3dnfdXGub/K5DpvokZ0s1+nIf9iaL0zKg8iWH8tV/ERM8BP9jYtz8UFHffIvucJ42sDJ RJddXOdzsL7gggsGeehOVxMG48lFMDDmLK3UB6eqfzqxVxC+6MSOLBCBhCKZCRgrEysITms1NqlI VD/5yU+GBKOdwG0Jc662gkvi0l4wSm7f/OY3h/bGRZ57k9iThCQiyZz+IZ42gAW2BEFuEyqJAOFJ EhIXPcYVSViykkQRXA5E5hoCRq4wRHQSkT69d12iloxySDTjiF3SUT9yaid5ZUWcHSTESy+TCwmS /fmC9u0KXz8SH79gF0mXrOwzjtjJTU/tHAgAlvqfROzkNGnKytE42sGED+pnUmGPxSB2xMkf+Ae9 4C/xb6gTV0QnwcODP0+D2BEcDIx58803D/5iDJMFRBP/Igs/DCHBx60U9iOjfiYRexv3SD9xz8YO OWESsbMPH4K7nTf2NRFG/GTlb2178iJ+Pk1Gvsfm/E9MIE+4mljQxfiTiF09+mtnrMRF7MDXjJkJ vAlv4sKYiQu+BasQN3sbl3wmXiY5/Jj9YU1vdmCTxMIkv9wX1zqxV9RnndgFjGCQSDiTJK0ksDni 3XffPThtu3IUJAqn1YcARJSC0YzajNQhQDg651VXMuXMGWfoZMIf/f74xz8ekrY2IXZ9TyoCEDEh 0hC7Faf2EosVNnkFqABCnrbiydYW/dBfYApwOO3Oih3h2dKnj/cSqFsD5GkDWAKUTGwR/vKXvxxW avSWzDz8J5FMKrBmA2PQje4mVGzkmmI8W9ASJX3IgvDbEvxGV+xZcbZ1vSezxIaQ3VuXOCVaSZTO 8DM+H7v22muHcScRKr8bR+xz6W8C0xK7cdmTflZv5JM8nbdq47/8YL6JZfSkw2IQOz8kN/Iji7hj LxMuW/LwJr9V9jSInX854Gvi2O5E+Z49fGHEX/iO61b34jb+h7TYtyV2kyY7T/BO3OtD3MNe+9bP kOYoMdupQMrqwYJNyWmLWh8hbiTKhxG2CYr4JAvfcohlxBlCNjFCzJnEhfAnEXvyW+yfV3iMW7HT e1KBj7bkdeuBDLbi7VzByAFTdrfzkdsRk/rcV9c6sVfkZ53YObdA4mCcmfMrSJijZQUoSBZC7BK4 rSv9OQSUFYJkYRZvLME7V+AMgzd/JJWf/vSnQ4CbJITY5wskxDS6Yg+R0jErdsQlyCQCfY7KhSSR rMQrOUm0u0PstlIRHn30aeX53e9+d5hUwYYMKRKv2buJh8QmMcFsIbcgsmqAueSJJCRIxIDs2dM5 iZMtTBisDBF9K8OuEjtCQtzktjVKJziZMMDPeQTGBxC7cV2ToMcVeu8JsfNd9pQg+Q1/5utsKHEi gEnjj8q0WMTOLxwKn2A3W/PwZHM4WaUiyWkQu3H4F1/wDAP/5xsmO9fXb5sgZzbhM3zVtRAO4lVP ca4l9vQBb/Ev7snMp0xMtWOPxNcosfvsOj9Uhx8jfpMxsiA8Oz0wMdHhv7DiUybwSJONnedj+tCG PPxcfLN9/I2v7k1iz0JJHJiImDTxP/LSlXwWWCYl8iafndXSib1aZn8gds7PsQQMAldCEJxf0CDD hRC7hMExBZU+Oa4Al+j1b0UsWbm+kIIUfvGLXwzEoC+Jx9PtArwlotG+yHzbbbcNyYkOEvm3v/3t IXgEt4SAOCU2RTKwEvDaFjNtJEMHicH4u0PsJhISs2SJWI31ve99b5CnHS/vjenfFJPPakXSy0OD qTPfqwQuARsPobMNwqa7pJwJg1sb8PSZnZRdJXb4SO76dq+QH8FJgs29ZOfZ0ErUBE0Sl9zGFfrv CbFL+jBGMlbmVkRJpvzYNYQTfx8nQ3tuT4jdipMM7AdnhU3ggtRhLb6sSBGAe8pIjWwSvYkXW7YP sVpZIyw+qYwSpXPj7rE7r2TCSi8PSSISW+3sIgZcNx45kbL4MWbiY5TYYRtSF/98yWRYgfNo3I/K yx9DanTiT7DxSja7AB5GJYNJAz8VF3zusfpfM8UXH1cfVurwLTmIn+WQg8hG/r1J7GRytBMq45uM sD39TFz4JbuTcVZLJ/ZqmVkndsGHNJIokmglwgTXuIe4MvPmmOpJEIhScOnLIRkgUclBouXYAm1X iF2CR3AIXjCSFUEjWMQ+F7mHGGx9kU/AeHjOrFhSGF0RS5K2piWntkhYCEkQSs4S8zSIHT7f//73 JxL7zfUeKGI3yaL3rhI7PbRlI9ixgcRiK1AilLzpbSeATdqt6V0ldvjAWjLmA5IxPBGBpG08BMev 2ACBWIki3nEl9jNBk6QlvnG4p61VnUkFP7Ti5WtWmMiCDFZorkuYxs/toMUkdjjwM/EDj3bHZZTY xZ1bB+KFDtrBkk08WwEDMcDf2SrxurvELibIZyw7LOzi3m5WjXzD10z5TW5pwDF4Od+u2NUXY+Sy 80AP5+CumMi3cT9K7D6zsUmBMeCTSa3z2vIX8Sl+4cDG5FDXWHwwhwk5+bKKJ5On4skIM+fVpb8J N/3HLVziX3nlj7uzFa89ecmqDxN8eQU+8iT9jG8CEv0y5qy9dmKvFpl1YudYtiZtMQvKzMg5usAQ XLaQrSTGOf4osUuwkoP+kKDEpB+JRBAKKkGWceZzWsnNlrpAkIg4vofgjDFuZmsWj8wkQRMCyVyg kKdd6dMr99j1k5XRYt1jb/WwvQiDrNhHA1kCkNh9Dx/BISPyT3poMOQNT0lVm3ETHytBxCehwcZE C+FImshHW2VXiJ28Vp++9qR/Y1ulsRX7k815Ewq+YEwTszxEN05Oeu/Jip0M+oeb8fgzG/APNkY0 fBFhLqTAy0Oc+jAZ4X9XXnnl4Dfj2iMqk0IYWxEbi/2QlDJK7OLBCtuKElb819cWxSfftNORCRNb Iag9WbGzib5NxuCMGPkk+dhGvIp7vtk+NAdXZZTY6TMa98gVDrA3cckkS/tRYjfp1D466c/zMc7z I7nEjobdA/6isCXfcxhDn/IPnKzkc4g3PnDFFVcME0r208feJnYywxzWmVBYWNHbRNdEeK6Jrraz UjqxV0vMOrEL0DyUIqglFiWBi1Azc18IsQtIiYezShASlkmBRIJwJahdSaiCEyEIBGSHMDzEIxAE K+JoS+5lkVvCklytAsgjcUouSojdStJW2Ia6Ihb4uZ4+XTdDl9CRgHrjVo7zzeQ9e2DFSg99WXnY eaBHiNiYkpSEJeH6/r66bGJGP+m/84VItA9pScISc1skPQmTHA722RNiNx67IuI8xS8R29GBK3vT Jw8PSWpsZBJ5fb2nK2GrMyrnnhI7W8GL3fkJLEwqyGsCQzZ1RsdtsWrfs4evXbIzH2QPfoBgxxVx YHLEf+gC57a+6+1WfIgdsSEzdncP3CvSghmc+Y14hVtI0PijROncpK341m7xbxhl0gIXMQKrxI1z IdXkB77E7ghqNO7J7RD7sIZbJo6j8qojv9ALebsu7mHoPZ+Cn/jTF/nJAJPIRD6fjWlikttobik4 bwdHvOnDZH5fEDuZySX24EY3uJGLr8pVs146sVcLzTqxC4JxhD0auGaa4+oJSEHEUa2AJaz2+6xI RhCqp08JSqKXzCUNQTqp6E9yQ9RWmgJUIFiJSar615fimuRtxSMRI1JjSsICx5EZcYhdojY5kFDG EfZCCWY+YpdE6AAnydCY4yYo7CFJqmdCZQWCBAU9/CXzcUX/VnnwtbWXSQ9sJD6Yu2aiZHz6kxl+ 11eChRGZguVCV+z6lJxMuuys8BP2Cc5JuupYOZng6Jt8X/va1wabWM0l4Ue3heKe+qNb8fpjTzan o0TOB+FLRgW5q7cQgifPzfXWiFf+bHVr4oAkMoEJzsYxgeKDfJE9Jez2F/rmInb9KpmA6QO29NO/ 3QZbyibNe0LswyD1j1sziI8/GBMe4goJsy2524fm0m40P9CxjXv2hZM+4A0T8sNa3GsPG37u4Tf+ 2X6PXX3xksNiwM6BODAJUmBoEqQt+2Yy6ZrzMEsckcGEiD/IHWy2r4hdjmonRC1ufHXWSyf2aqFO 7J86KvIXSGarkgASaXcI5nLmEJ3kJgFIBhID8pJwkJ4kJGkYQ6LKwzSIRLB7WAtxCRptlb1N7GRD qhIVPSQaScoR2eggGdFVPXpYRbnHql57q2QUr+wIGAc5SPr0hbN+4SihIHMTJDg5p08Eu6ESVLvC Xyixs6WxTb6QngRLXiustki07E83W/aKRC7RkpcN26KvPdmKHyV2iRzR2DEgA92tfhGQsck9qcDL Cppd+KDJCD3ZDtb6sGLMRAfO7q3D3CTHThBdsyKbj9jhJVb4qYfp9IcMrWb5M3+YBrFnQkgvZMOe doiMIz6R/Di/m4/Y+R68+aMJA31hntjla5OI3QRTO8TsGQC4ZsVNLljb8RAv+oU/HxbvxoU7m2lv 4qJ4ViD+pv9O7JM8fu5rndgrNotF7EkgnNs9PPfyEIfEYaUi4Ug+EpbErj5nF2AShi1CCd55M1gr VoEh0QkaxIMYJZasfFNPYKknOAS4ZJkEZGWWZNAm7CR2icOYAtDKLoluLjcSpFbiyEOiJDc9JAjy SkBm83Q0BgwkbnpaHZDBCserZJ9VPeLwtRPJBUapJ4npTzEOXNt7xyYUErp68FXoJPG6J8oexpB0 JRJYSTrkgyn59QdbOkj66sBDIbe+3EJgJ+eNp46Ei6DGlRA7WxjPqsYRwpL8yAkfOsFK3/oNEWcC wIaInX94lZyRoHvWMG/1kRwjL9nJmB/YMLYEnkQLaytQOBlfX8bnL/qHR+rOhztbKlZ2fBAJaMOu di7YHhHkvm7qIwK+ahzjm4DwZROgSUU7ffMth3GtntmZDflMiB1e7AsX56yu+Yu6xknMmAyxG5to b0eGH3ovtqxE4W9CQSd9wjcTVZjxB/FEPkRGN/lAsRIU1+TULvZo9WRr47MLAuR3sINbfhKZn8Tv yMS/40vGIx/fHhf3zrONV4VPwiLEHHn1i3TJa2w+5hybulXAz9jKNXXIQ2f+7jWxrp0SveALQ5jm 4Tl1YMYf2VJe8Zmd4pPyErzYQUn8zBfn8bOhUfNnEm5igE6O2DTjNl3MzNtO7NUUi0XsSTSSAzLh 4BIGhxfIgsysXtLhJK6bvXJ0iQdpOcfhEJSkw6nV55yuS2T6FpiCWT1Eqm/1fBZAglPwSDyZlUvS kpiAU7R3zWeJFEEKJO/nK5JwZv7kF1xk159+2yJhIBMJRJKEBZlDwhKE1QmCDRbaSHxkopsAgwu8 Uo+e6kkKEox65Fck3dSDm7YSCUzVM4GhJ1mRdWwmidILoToUbR3sCGNjCXztYUe3cYVe5GAvY+jX eAjIKwwV7R0SF3vDyDjkVeAq2cEYUSBrfbBl9OZXZGFzdeCYekjABFAChrt22tPVihBO3kukbEIv 9chBT3XhLqFLvHPhni3LJHB6k1nfZIEnH+CH/D+48Rlt2BvxIRnvQ1wDCGP+aAdT/ZMNGerHedgG X02NLYb4Ct3gkYStvniCGSzEDNJL3JKH/8FRn/yJbmIRLnQxcWI7NuSTbKY/cnn1WQm2+mQ79eHR FngbX/92kozFtuzn3jr/bf2O3egNh8Q9LJzX92jc65/O9IMBu9HNxI6f8R/y0tX5xIxXn10zceBr 6vAnmNKN/5Cd3vJhinoOcQQv9ejPb/mEseGuHX3FjhhxTd/wkgvIm7hQx+SHzfhlG+eJi3ZHJrLk dS7c4MNPxKBxxQHdk6/SfpZeO7FXayw2sQswTobUObNAF4icchyxq8/JOBTHT5sQlmCSlASvRClg 1E09Dsf51fNeshMgHD/1JjmhwNfegXQX6sBk1T95EKPgMiY56UM+Qax/iVr/kpNEkpWKPiRVxA4H CUefScQh45bYjQPb1IOt5CL4WmJXT5JpZYGjeu3OhDHZSzKEL3lg2LbTv8QlyOnh/XzEk2RLDrrB iTytjmSnI3wkI0QKnzZxS6QSrj6syrRXECN9yNMSOz2MJVnCMf7B/9QNsUukJh7q61MiVZ9eSagt sc+H+yixk1ffSbj8YVKBKfuxD0xgMF/RJ5yDsTFNolq7J/6CMR93iC+FrdmcrPqJvCEgmPE/8in8 ImPCjwxIndz69JnN9IckycNXFX2qoy57jCN27cUFXdz6YSc6kCP/pISdUiJPiDFxr49JBcZ8Tt4Q j3RC1vPJK/ZMIMinjaIv+CBDuooj8rRxxF/ZlB3on8M5Ez94tePDgd7wiu96NZYSYidHa28Y00f/ CyH2UdwyrnHoA3d9LTQvDsLt5T+d2Cvgi0XsCTCO730bWByUs3EOrwJTnUwA1OVQjhQOL8l61V7A hBjaehw59byXoAWcZD3aZ/puXxMI+nD4vJCSvukhgOkd0oru9NQfHeiNVJCRIHdNH9qM4mB8Oke2 BHPqtSte9fQXfLVFgORRr5VFXTpKFuRQXIet+vSIDtEv/dOB/MHamJNK+kSw8YnIY0z6t/jo1ySI XMZ0TSEPe+pDn6P60Js+6vOPdqz0r04OctNNvfSrT+cU1+EeeZyHOz3aesEluAfP6K3/yBwshwHm +KO9+DAuGfS/kGK8YNzqHpz0oa/Ek/7ZMX7OJpE17bVpseN/0U+/2hiTnymuw8EYdBUT+moJRz19 JhZae7jWFn1oj/C8aqe+CZfXtkQe9eK/rZ3auu37yBF/o1NLxOqOk1e9+A3slTbGyZ58oG7soK/Y gQ7s4HA+PhO82jbJAcErdhMX8I9ftm34j/ptnA+CNn/UJ98obqqQKX1E1ozbdDEzbzuxV1MsFrHP jJW7IB2BjkBHoCPwhUHg/wEAAP//pWeLGAAACWNJREFU7d3Lb1TnGcfx31w84/sNgw2+UEPAdqgD heZC2iaRuuiqUvZZdFWpu17U/hWtmqrqtotW3cOuUqtKKG0KbUpCuBmSBgyOMWAbG9vYnvHY7vMc MzRB7fEgZuzxOd8jjWxrrudzjvTzc97nfSexbpvKuJ06dUptLS062NOj5Mh1jb37G82d+2foO7S9 /pq+8rMfa21oQNdv3lQindLQ0JA6OjpCn/f0nVNTUxoZGdF6YVUD/f3B+4/+/F3N/P3c0w/90t/F 918ZOKSrn34ipVIaHh5WZ2fnlx7HHwgggAACCFS7QIJglwj2aj9N+XwIIIAAAqUKEOwmRbCXerrw OAQQQACBahcg2O0IEezVfpry+RBAAAEEShUg2E2KYC/1dOFxCCCAAALVLlAVwd5qzXP9P/2RVoPm uRtB89rg4KB2796tRCIR3MIgvf/Pb8XmOa1689wBpax57+YvfqVZmufC+LgPAQQQQCBCAlUS7K+q /yc/VGHosEZu3NB6MqlisKfTaSXt77BtbW3NsnxV9+/f17Vr15Sw34cOvqC0B/svf02wh+FxHwII IIBApASqItibjr6k7u+9Iw2/qDv5nFazWe3atUuNTU3K2u8pm34Wtnmo5/N5zc/Pa2pyUqlcXt3Z WunSVY3//g+av3Ax7OlluRTvVwz8Mzx69EgrKyuh78edCCCAAALREKipqVFDQ4MymcymV5e3ao+r Ithre7rV8urLqn/lhNJfP67l1hZN2pz0vAVkfX29HC5s8yBdWlpSjVX3HfYPQe3sQ62ev6DFD87r oc2hX/58POzpzx3sHup+1WBmZkY3bR7+7Oxs6PtxJwIIIIBANARaW1vVb+um+E+/wlwNW1UEe9or 8+59ajx2VO3f+bYKfb2aWFrUktaVra3dFKtQKCi3vKxaJbS3rk7pW59r5s9/0YJV6rnxcRXm5kOt n7d5jmAP5eVOBBBAILICBPv/ObQJ+y8nZYGc7e1R89eOqe74UWVOHFPKwj5h4+t+C9s8WNd9nH18 QvnzH2npwwua/+hjLY+NadUq+fWVQtjTn7ti9xfnUnwoMXcigAACkRSI1aX4A319qvnspiZ++zvN nf1HUDWv5XKhBzbd3KxaC/em4SNq/ebrylrlvmbPWE+EPs3qdClp3fO522Oa/etZLVy6rCUL9cLD udAnJrMZ+dWC1m+cVO8Pvq9c/35dvX7duvKTLCkbKsedCCCAAALVKlD2S/GnT58Oxhr69+9X3eS0 Zv/4Jwv2c1q4MqL85FSoQ8LG0r1yT7c0K2PrxCcb6uxifGmbTYrT2uKi8lPTFug2xr7olXp4E1um Y5caBgeCfyL2vP1dPepo1xVba96n2LFWfGnuPAoBBBBAoLoEyh7sZ86cCTrZm636rltaVvLGqPIX L2v2/bNa/PdnJVXulSZKWqe9V+r1LxxQy8lXVGdj+8nBw1qszeruvXtBd+OhQ4eCzvxKfxZeHwEE EEAAgXIKlD3YvSvcp3xN2rSzmrV19VmXevb+pB6+977m/nW+pMq9nDv4v17LrwY02GI4LS8fV9ub byjXtUdj1tGes+sDLfbNdG1tbcHiOD6FgQ0BBBBAAIGdJFD2YPe55D7d69atW8F87q6uLjXYvHJZ tb584ZItFmOV+6fbU7kHlXrzRqXeevI1q9RfCir1BRtrn7hzJ2jS6+3tDSr1UqbZ7aQDzWdFAAEE EIiHQNmD3aeeLdvUM5/T7bfp6WllzLKv3Sr3e5Oafe9v21a5Z3Z7pT5olfoJtb31LeU7rVKftUrd OuqbbOjApy20t7cHiw34ojibrXgXj1OEvUQAAQQQ2EkCZQ9233lfCS5nHfAe6n5p3sN+7969arSV 2datWt+o3M89rtzntFm3/POC/rdSP2gd8F6p25j6wCEtZGo0MTERBHhPTw+V+vNC83wEEEAAgW0X qEiwFxdsWbQu9QcPHgSVu//0yn1/MOY+tVG5f/Dh4zH3yYpCPKnUbWW79rfeUL6r08bUH2jJ/gFp 8uluVqn7ErY+pk6lXtFDwYsjgAACCFRYoCLBXvzMwYpwVrn7t66Njo4GlfxG5b6yUbl/fNG65StX uT9dqdc/7n73Sv2Oj6nbtLZipe6hvtnStcX94icCCCCAAALVKlDRYPfK3S/Lf7Fy93H3rAVqMOZu 3fLBmHuFKnev1BuPDG2MqVv3ez7oft+o1BsbG59U6v47lXq1nqJ8LgQQQACBZxGoaLAXP0ixoc4r d++W97D3bvkmW+rVx9zz1z7RwuUrylvQl3PL7Nmtpq8eUfbFAaUO25i6db+P29rxXql3d3c/ufzu 38rDhgACCCCAQBQEtiTYi5W7z2/3hjqv2n1KXDaRDMbcm23VuIKNwa/ZanHl3JL+zXC2utwjW3PW u999TN0vuftc9Q6fy26/l/J97+X8TLwWAggggAAClRTYkmAv7kDx61W/WLn7mHtzQ6MSa6t2K3UB 2eIrbvLTvjxmPZ3SgjXx3b17N6jU9+3b9yTUqdQ38eNuBBBAAIEdJ7Clwe7fWe6X4YuVu1fv3i2f twY7/y711Cbf4vasuv5+K/Z+GVtC1jvffUU5r9R9TJ1K/Vk1eTwCCCCAwE4Q2NJgL4J45e4NdV65 3759WwsLC0FHujewlXMLgt3eyy+5F8fUfXoblXo5lXktBBBAAIFqEtiWYC9W7r6IjQe8N9f5Km/e 1FbOzcf2/eb/MNT59737l7/YlQFWlCunMq+FAAIIIFBNAtsS7NUEwGdBAAEEEEAgSgIEe5SOJvuC AAIIIBB7AYI99qcAAAgggAACURIg2KN0NNkXBBBAAIHYCxDssT8FAEAAAQQQiJIAwR6lo8m+IIAA AgjEXoBgj/0pAAACCCCAQJQECPYoHU32BQEEEEAg9gIEe+xPAQAQQAABBKIkQLBH6WiyLwgggAAC sRcg2GN/CgCAAAIIIBAlAYI9SkeTfUEAAQQQiL0AwR77UwAABBBAAIEoCRDsUTqa7AsCCCCAQOwF CPbYnwIAIIAAAghESYBgj9LRZF8QQAABBGIvQLDH/hQAAAEEEEAgSgIEe5SOJvuCAAIIIBB7AYI9 9qcAAAgggAACURIg2KN0NNkXBBBAAIHYCxDssT8FAEAAAQQQiJIAwR6lo8m+IIAAAgjEXoBgj/0p AAACCCCAQJQECPYoHU32BQEEEEAg9gIEe+xPAQAQQAABBKIk8B817z17DSncpQAAAABJRU5ErkJg ggAAAAAA --_004_BYAPR01MB44569E6BC81EBB3A0B0E48D5FD579BYAPR01MB4456prod_--