From owner-chemistry@ccl.net Wed Nov 24 04:42:01 2021 From: "Neese, Frank neese(-)kofo.mpg.de" To: CCL Subject: CCL: Why on increasing the SCF maxiter, the undesired modes vanish? Message-Id: <-54517-211124044038-11854-TZmT22QXHIyAje9+LprUGw**server.ccl.net> X-Original-From: "Neese, Frank" Content-Language: en-US Content-Type: multipart/signed; boundary="Apple-Mail=_F8BDC9BC-3A5B-42E0-AAFF-D6A25E034F49"; protocol="application/pkcs7-signature"; micalg=sha-256 Date: Wed, 24 Nov 2021 09:40:27 +0000 MIME-Version: 1.0 Sent to CCL by: "Neese, Frank" [neese[]kofo.mpg.de] --Apple-Mail=_F8BDC9BC-3A5B-42E0-AAFF-D6A25E034F49 Content-Type: multipart/alternative; boundary="Apple-Mail=_DBB535F8-18B3-4ABD-B213-471AB062ABCB" --Apple-Mail=_DBB535F8-18B3-4ABD-B213-471AB062ABCB Content-Transfer-Encoding: quoted-printable Content-Type: text/plain; charset=utf-8 Dear Sumangla, As long as you use the same basis set and functional (and perhaps = solvation model) the differences in the energies and geometries between = ORCA 4.2.1 and ORCA 5.0 should be very small. ORCA 5.0 uses larger and = more accurate grids by default but again, the differences should be = really small.=20 Good luck!=20 Frank Neese=20 > Am 23.11.2021 um 13:33 schrieb Sumangla Arora arorasumangla[]gmail.com = : >=20 > Dear Neese and Christoph, >=20 > I have completed the full project using Orca-4.2.1. Only two = transition states are not converged. Can I use Orca-5.0 to find these = two transition states although all geometries are calculated using = Orca-4.2.1? >=20 >=20 >=20 > Thanks >=20 > Sumangla >=20 = --------------------------------------------------------------------------= -- Prof. Dr. Frank Neese=20 Department of Molecular Theory and Spectroscopy Max-Planck Institut f=C3=BCr Kohlenforschung=20 Kaiser-Wilhelm-Platz 1 D-45470 M=C3=BClheim an der Ruhr=20 Germany E-Mail: Frank.Neese[]kofo.mpg.de=20 = --------------------------------------------------------------------------= -- --Apple-Mail=_DBB535F8-18B3-4ABD-B213-471AB062ABCB Content-Transfer-Encoding: quoted-printable Content-Type: text/html; charset=utf-8 Dear = Sumangla,

As long as = you use the same basis set and functional (and perhaps solvation model) = the differences in the energies and geometries between ORCA 4.2.1 and = ORCA 5.0 should be very small. ORCA 5.0 uses larger and more accurate = grids by default but again, the differences should be really = small. 

Good luck! 
Frank Neese 

Am 23.11.2021 um 13:33 schrieb Sumangla Arora = arorasumangla[]gmail.com = <owner-chemistry[]ccl.net>:

Dear Neese and Christoph,

I = have completed the full project using Orca-4.2.1. Only two transition states are not converged. Can I use Orca-5.0 to find these = two transition states although all geometries are calculated using = Orca-4.2.1?


Thanks=

Sumang= la


=
---------------------------------------------------------------------= -------
Prof. Dr. Frank Neese 
Department of Molecular Theory = and Spectroscopy
Max-Planck = Institut f=C3=BCr Kohlenforschung 
Kaiser-Wilhelm-Platz 1
D-45470 M=C3=BClheim an der Ruhr 
Germany
---------------------------------------------------------------= -------------

= --Apple-Mail=_DBB535F8-18B3-4ABD-B213-471AB062ABCB-- --Apple-Mail=_F8BDC9BC-3A5B-42E0-AAFF-D6A25E034F49 Content-Disposition: attachment; filename="smime.p7s" Content-Type: application/pkcs7-signature; name="smime.p7s" Content-Transfer-Encoding: base64 MIAGCSqGSIb3DQEHAqCAMIACAQExDzANBglghkgBZQMEAgEFADCABgkqhkiG9w0BBwEAAKCCEH4w ggUSMIID+qADAgECAgkA4wvV+K8l2YEwDQYJKoZIhvcNAQELBQAwgYIxCzAJBgNVBAYTAkRFMSsw KQYDVQQKDCJULVN5c3RlbXMgRW50ZXJwcmlzZSBTZXJ2aWNlcyBHbWJIMR8wHQYDVQQLDBZULVN5 c3RlbXMgVHJ1c3QgQ2VudGVyMSUwIwYDVQQDDBxULVRlbGVTZWMgR2xvYmFsUm9vdCBDbGFzcyAy MB4XDTE2MDIyMjEzMzgyMloXDTMxMDIyMjIzNTk1OVowgZUxCzAJBgNVBAYTAkRFMUUwQwYDVQQK EzxWZXJlaW4genVyIEZvZXJkZXJ1bmcgZWluZXMgRGV1dHNjaGVuIEZvcnNjaHVuZ3NuZXR6ZXMg ZS4gVi4xEDAOBgNVBAsTB0RGTi1QS0kxLTArBgNVBAMTJERGTi1WZXJlaW4gQ2VydGlmaWNhdGlv biBBdXRob3JpdHkgMjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAMtg1/9moUHN0vqH l4pzq5lN6mc5WqFggEcVToyVsuXPztNXS43O+FZsFVV2B+pG/cgDRWM+cNSrVICxI5y+NyipCf8F XRgPxJiZN7Mg9mZ4F4fCnQ7MSjLnFp2uDo0peQcAIFTcFV9Kltd4tjTTwXS1nem/wHdN6r1ZB+Ba L2w8pQDcNb1lDY9/Mm3yWmpLYgHurDg0WUU2SQXaeMpqbVvAgWsRzNI8qIv4cRrKO+KA3Ra0Z3qL NupOkSk9s1FcragMvp0049ENF4N1xDkesJQLEvHVaY4l9Lg9K7/AjsMeO6W/VRCrKq4Xl14zzsjz 9AkH4wKGMUZrAcUQDBHHWekCAwEAAaOCAXQwggFwMA4GA1UdDwEB/wQEAwIBBjAdBgNVHQ4EFgQU k+PYMiba1fFKpZFK4OpL4qIMz+EwHwYDVR0jBBgwFoAUv1kgNgB5oKAia4zV8mHSuCzLgkowEgYD VR0TAQH/BAgwBgEB/wIBAjAzBgNVHSAELDAqMA8GDSsGAQQBga0hgiwBAQQwDQYLKwYBBAGBrSGC LB4wCAYGZ4EMAQICMEwGA1UdHwRFMEMwQaA/oD2GO2h0dHA6Ly9wa2kwMzM2LnRlbGVzZWMuZGUv cmwvVGVsZVNlY19HbG9iYWxSb290X0NsYXNzXzIuY3JsMIGGBggrBgEFBQcBAQR6MHgwLAYIKwYB BQUHMAGGIGh0dHA6Ly9vY3NwMDMzNi50ZWxlc2VjLmRlL29jc3ByMEgGCCsGAQUFBzAChjxodHRw Oi8vcGtpMDMzNi50ZWxlc2VjLmRlL2NydC9UZWxlU2VjX0dsb2JhbFJvb3RfQ2xhc3NfMi5jZXIw DQYJKoZIhvcNAQELBQADggEBAIcL/z4Cm2XIVi3WO5qYi3FP2ropqiH5Ri71sqQPrhE4eTizDnS6 dl2e6BiClmLbTDPo3flq3zK9LExHYFV/53RrtCyD2HlrtrdNUAtmB7Xts5et6u5/MOaZ/SLick0+ hFvu+c+Z6n/XUjkurJgARH5pO7917tALOxrN5fcPImxHhPalR6D90Bo0fa3SPXez7vTXTf/D6OWS T1k+kEcQSrCFWMBvf/iu7QhCnh7U3xQuTY+8npTD5+32GPg8SecmqKc22CzeIs2LgtjZeOJVEqM7 h0S2EQvVDFKvaYwPBt/QolOLV5h7z/0HJPT8vcP9SpIClxvyt7bPZYoaorVyGTkwggWNMIIEdaAD AgECAgwcOtRQhH7u81j4jncwDQYJKoZIhvcNAQELBQAwgZUxCzAJBgNVBAYTAkRFMUUwQwYDVQQK EzxWZXJlaW4genVyIEZvZXJkZXJ1bmcgZWluZXMgRGV1dHNjaGVuIEZvcnNjaHVuZ3NuZXR6ZXMg ZS4gVi4xEDAOBgNVBAsTB0RGTi1QS0kxLTArBgNVBAMTJERGTi1WZXJlaW4gQ2VydGlmaWNhdGlv biBBdXRob3JpdHkgMjAeFw0xNjExMDMxNTI0NDhaFw0zMTAyMjIyMzU5NTlaMGoxCzAJBgNVBAYT AkRFMQ8wDQYDVQQIDAZCYXllcm4xETAPBgNVBAcMCE11ZW5jaGVuMSAwHgYDVQQKDBdNYXgtUGxh bmNrLUdlc2VsbHNjaGFmdDEVMBMGA1UEAwwMTVBHIENBIC0gRzAyMIIBIjANBgkqhkiG9w0BAQEF AAOCAQ8AMIIBCgKCAQEAnhx459Lh4WqgOs/Md04XxU2yFtfM15ZuJV0PZP7BmqSJKLLPyqmOrADf NdJ5PIGBto2JBhtRRBHdG0GROOvTRHjzOga95WOTeura79T21FWwwAwa29OFnD3ZplQs6HgdwQrZ WNi1WHNJxn/4mA19rNEBUc5urSIpZPvZi5XmlF3v3JHOlx3KWV7mUteB4pwEEfGTg4npPAJbp2o7 arxQdoIq+Pu2OsvqhD7Rk4QeaX+EM1QS4lqd1otW4hE70h/ODPy1xffgbZiuotWQLC6nIwa65Qv6 byqlIX0qZuu99Vsu+r3sWYsL5SBkgecNI7fMJ5tfHrjoxfrKl/ErTAt8GQIDAQABo4ICBTCCAgEw EgYDVR0TAQH/BAgwBgEB/wIBATAOBgNVHQ8BAf8EBAMCAQYwKQYDVR0gBCIwIDANBgsrBgEEAYGt IYIsHjAPBg0rBgEEAYGtIYIsAQEEMB0GA1UdDgQWBBTEiKUH7rh7qgwTv9opdGNSG0lwFjAfBgNV HSMEGDAWgBST49gyJtrV8UqlkUrg6kviogzP4TCBjwYDVR0fBIGHMIGEMECgPqA8hjpodHRwOi8v Y2RwMS5wY2EuZGZuLmRlL2dsb2JhbC1yb290LWcyLWNhL3B1Yi9jcmwvY2FjcmwuY3JsMECgPqA8 hjpodHRwOi8vY2RwMi5wY2EuZGZuLmRlL2dsb2JhbC1yb290LWcyLWNhL3B1Yi9jcmwvY2Fjcmwu Y3JsMIHdBggrBgEFBQcBAQSB0DCBzTAzBggrBgEFBQcwAYYnaHR0cDovL29jc3AucGNhLmRmbi5k ZS9PQ1NQLVNlcnZlci9PQ1NQMEoGCCsGAQUFBzAChj5odHRwOi8vY2RwMS5wY2EuZGZuLmRlL2ds b2JhbC1yb290LWcyLWNhL3B1Yi9jYWNlcnQvY2FjZXJ0LmNydDBKBggrBgEFBQcwAoY+aHR0cDov L2NkcDIucGNhLmRmbi5kZS9nbG9iYWwtcm9vdC1nMi1jYS9wdWIvY2FjZXJ0L2NhY2VydC5jcnQw DQYJKoZIhvcNAQELBQADggEBABLpeD5FygzqOjj+/lAOy20UQOGWlx0RMuPcI4nuyFT8SGmK9lD7 QCg/HoaJlfU/r78ex+SEide326evlFAoJXIFjVyzNltDhpMKrPIDuh2N12zyn1EtagqPL6hu4pVR zcBpl/F2HCvtmMx5K4WN1L1fmHWLcSapdhXLvAZ9RG/B3rqyULLSNN8xHXYXpmtvG0VGJAndZ+lj +BH7uvd3nHWnXEHC2q7iQlDUqg0awIqWJgdLlx1Q8Dg/sodv0m+LN0kOzGvVDRCmowBdWGhhusD+ duKV66pBl+qhC+4LipariWaMqK5ppMQROATjYeNRvwI+nDcEXr2vDaKmdbxgDVwwggXTMIIEu6AD AgECAgwj+ACpryvOlNX8QjAwDQYJKoZIhvcNAQELBQAwajELMAkGA1UEBhMCREUxDzANBgNVBAgM BkJheWVybjERMA8GA1UEBwwITXVlbmNoZW4xIDAeBgNVBAoMF01heC1QbGFuY2stR2VzZWxsc2No YWZ0MRUwEwYDVQQDDAxNUEcgQ0EgLSBHMDIwHhcNMjAxMjE1MDkzNDE3WhcNMjMxMjE1MDkzNDE3 WjCBtTELMAkGA1UEBhMCREUxHDAaBgNVBAgME05vcmRyaGVpbi1XZXN0ZmFsZW4xHTAbBgNVBAcM FE11ZWxoZWltIGFuIGRlciBSdWhyMSAwHgYDVQQKDBdNYXgtUGxhbmNrLUdlc2VsbHNjaGFmdDEx MC8GA1UECwwoTWF4LVBsYW5jay1JbnN0aXR1dCBmdWVyIEtvaGxlbmZvcnNjaHVuZzEUMBIGA1UE AwwLRnJhbmsgTmVlc2UwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQCxTh2YDDwvcewO lk5b8w32wVnWS2+rHYJWjXA0UZU9ydMP5p72/hYZd9ksHR96f1tRy81hHXdJkQUdW/90AKhuSh9G 9EMavzq/rkpQpNk4oH56+PZRm1Yf2PkMveKIlmEa0ty/aOjSnQbrcG2J+9g3htUDwMgM7PhOEHWz SelxAn+TPOET3KxQNxjoaVJKmO+HbeOhdq7KQteceU1OUPExbuOsiT0VahTDFTDu3pptQeL4iVKI fqwGFMfkl2KblQmqPrPnChugBG2PABzs/a1OtqW79A+lNhOPUL6VqDBhZf/6XDln4VTqE2C65Api ujKAbzanbIvJsKO+3zqF70/dAgMBAAGjggIrMIICJzAJBgNVHRMEAjAAMA4GA1UdDwEB/wQEAwIF 4DAdBgNVHSUEFjAUBggrBgEFBQcDAgYIKwYBBQUHAwQwHQYDVR0OBBYEFL7AlafnmXHbgtIagQ0x wxy3JC64MB8GA1UdIwQYMBaAFMSIpQfuuHuqDBO/2il0Y1IbSXAWMBwGA1UdEQQVMBOBEW5lZXNl QGtvZm8ubXBnLmRlMH0GA1UdHwR2MHQwOKA2oDSGMmh0dHA6Ly9jZHAxLnBjYS5kZm4uZGUvbXBn LWcyLWNhL3B1Yi9jcmwvY2FjcmwuY3JsMDigNqA0hjJodHRwOi8vY2RwMi5wY2EuZGZuLmRlL21w Zy1nMi1jYS9wdWIvY3JsL2NhY3JsLmNybDCBzQYIKwYBBQUHAQEEgcAwgb0wMwYIKwYBBQUHMAGG J2h0dHA6Ly9vY3NwLnBjYS5kZm4uZGUvT0NTUC1TZXJ2ZXIvT0NTUDBCBggrBgEFBQcwAoY2aHR0 cDovL2NkcDEucGNhLmRmbi5kZS9tcGctZzItY2EvcHViL2NhY2VydC9jYWNlcnQuY3J0MEIGCCsG AQUFBzAChjZodHRwOi8vY2RwMi5wY2EuZGZuLmRlL21wZy1nMi1jYS9wdWIvY2FjZXJ0L2NhY2Vy dC5jcnQwPgYDVR0gBDcwNTAPBg0rBgEEAYGtIYIsAQEEMBAGDisGAQQBga0hgiwBAQQIMBAGDisG AQQBga0hgiwCAQQIMA0GCSqGSIb3DQEBCwUAA4IBAQAbLSDAaMfkjnRve01I0O5XrYFZ17AJg5pv TY3jF21fchPEmEzAmire69se/D8cALRmKIhSuUfuucIh3wZ2q/Qk3kZOOOcQcs+Kdl8/X1nGjZTY 3SIO+ud0k/4ayWyBgZpmhLAzYUvmSWXz2DcrAdDaxFeoh9Sc7aYtRa4iqYAgJogQH4hbeTMakWUC 8YGAUP8eiaTDAMfc8M9gRrbpLgRFZgr9oM8koz5Hm0yY9RaL3+rkV2NQ4w3lc1wg/xYBJgVrNMXW GuRIkFaUs7joSC1hzBECc1tJvLifakS7OHw7eD9H8ZY4hrLJRWylLYJuCIyGDMvQil0I2E9wAjLu rxNFMYIDLDCCAygCAQEwejBqMQswCQYDVQQGEwJERTEPMA0GA1UECAwGQmF5ZXJuMREwDwYDVQQH DAhNdWVuY2hlbjEgMB4GA1UECgwXTWF4LVBsYW5jay1HZXNlbGxzY2hhZnQxFTATBgNVBAMMDE1Q RyBDQSAtIEcwMgIMI/gAqa8rzpTV/EIwMA0GCWCGSAFlAwQCAQUAoIIBgzAYBgkqhkiG9w0BCQMx CwYJKoZIhvcNAQcBMBwGCSqGSIb3DQEJBTEPFw0yMTExMjQwOTQwMjZaMC8GCSqGSIb3DQEJBDEi BCD8zpild2gehawA+fcXSZlw3oIQiTGV4y9rHzXN3uSC4TCBiQYJKwYBBAGCNxAEMXwwejBqMQsw CQYDVQQGEwJERTEPMA0GA1UECAwGQmF5ZXJuMREwDwYDVQQHDAhNdWVuY2hlbjEgMB4GA1UECgwX TWF4LVBsYW5jay1HZXNlbGxzY2hhZnQxFTATBgNVBAMMDE1QRyBDQSAtIEcwMgIMI/gAqa8rzpTV /EIwMIGLBgsqhkiG9w0BCRACCzF8oHowajELMAkGA1UEBhMCREUxDzANBgNVBAgMBkJheWVybjER MA8GA1UEBwwITXVlbmNoZW4xIDAeBgNVBAoMF01heC1QbGFuY2stR2VzZWxsc2NoYWZ0MRUwEwYD VQQDDAxNUEcgQ0EgLSBHMDICDCP4AKmvK86U1fxCMDANBgkqhkiG9w0BAQEFAASCAQCZQT+XXKgY /7yJ5MXu8mtZgugfDON42NghRIfiX5xvFptdkXEJVOCi3I9dF8tNwG1XhsYxxBS1Lgbi1YkLf6wo LmqrqMglmJCF0c4EIYhyUwBcOErIS1PuNtIFh1V2vi5DzKa1okmrthQsfkbu5p56SnhU7imfFM60 zGFfUCyKemqL3qxeyOJvoetuSvzYdH+kfOrP4Q0I6FpWrT2XFnaSHNJ1MGL22+3rz6omCwH0fssf eF/Ci9gbY8YFU3MJpk10ibeGf8CnxzQ6aKoNyP1ZWiOPldLBECwYsuNhPq/1L3pXGE9UYd2u4jKf XaBIrFMS54vSoIaT59wBgz623p1HAAAAAAAA --Apple-Mail=_F8BDC9BC-3A5B-42E0-AAFF-D6A25E034F49--