From owner-chemistry@ccl.net Tue Dec 20 13:34:00 2022 From: "Grigoriy Zhurko reg_zhurko_-_chemcraftprog.com" To: CCL Subject: CCL:G: Adding many explicit water molecules to the model Message-Id: <-54830-221219041624-19510-MnBHrtrGKrx3ioJ2o5B+3Q+/-server.ccl.net> X-Original-From: Grigoriy Zhurko Content-Type: multipart/mixed; boundary="----------0EE1741282CEA6358" Date: Mon, 19 Dec 2022 12:15:57 +0300 MIME-Version: 1.0 Sent to CCL by: Grigoriy Zhurko [reg_zhurko]![chemcraftprog.com] ------------0EE1741282CEA6358 Content-Type: text/plain; charset=windows-1250 Content-Transfer-Encoding: quoted-printable I need to compute the pKa values of some carbon acids and phenols, and it i= s a common practice to add 1-3 explicit water molecules, bonded with polar = groups of the studied molecule, to better take into account the specific so= lvation effects (in addition to CPCM model). I tried to add many water mole= cules (14) for better results =96 see attached picture. The results are int= eresting. At one side, possibly very big error is produced by the existence= of many local minimums with different numbers of h bonds. How these minimu= ms should be named in paper =96 maybe =93conformations=94, =93configuration= s=94, =93geometrical configurations=94, =93local minimums=94? Then I found, that if the computation of different acids is performed with = same geometrical configurations of 5 h2o molecules bound to =96COOH, and wi= th same configurations for neutral molecule and anion, possibly the results= are quite good (a common correlation can be obtained for carbon acids and = phenols). So I want to publish these results; but I need to read more works= when this approach (adding many explicit water molecules) was used. Can yo= u suggest such papers? By the way, using my program Chemcraft is important for such jobs, because = the =93Structures merger=94 utility in in allows one to transfer several H2= O molecules in same configuration from one acid to another. Grigoriy Zhurko https://chemcraftprog.com ------------0EE1741282CEA6358 Content-Type: image/jpeg; name="manyexplh2omol.jpg" Content-transfer-encoding: base64 Content-Disposition: attachment; filename="manyexplh2omol.jpg" /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoM DAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsN FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAAR CAG5AgUDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAA AgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkK FhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWG h4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl 5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREA AgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYk NOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOE hYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk 5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAoooo AKKKKACiivLPix8d7D4eXqaPZQrqevugkaAtiO3U9DIRzk9Qo5xzkcZ68Lha2NqqjQjeTPMz LMsLlOGli8bPlhHr+iW7fkj1Oivm3Tfjr4vu5POY2TLnPki3Oz6dc/rXrvw9+Jlr42V7aWL7 FqkS7ng3ZV1/vKf5jtnvXo4vJsXg4Oc0mlvZ3sfEZJ4hZFn2L+pYebjUeymrc3o7tX8nZ9kd rRRRXhn6UFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAV82+Nf2mLzVdZudP8HmOLT7dzE2qMgkaZgcExg5UL6Eg568V7R8V7q6svhf4vuLEsLyL SLt4in3gwhYgj3r8dv2jfGch+FHhHSLW2hkvIfF1jdxtIdu9ljmCqW7Lk819bkuHoeyq4yvD n5LJRe2r1fn5I/L+MsXj51MPlWArOi6t7zW6S2S1Vtd2mntqfpBoPxV8Y2ii6e9/tGAcvHcQ qVP4qAR+de6eCvGFp410Vb62BikU+XNAxyYn9Pcdwa/JP4XfETxJ/wANnR6j4o06w02+bwTJ ZiGwuTcRtEbrcGLMq4Od3GOw55r9Bv2Y9ak1LXvEEcZJtvIjdwOgbcQv6Fvyr08ywFOvhauK hSUPZu2itfW2qsj834RzTN8ozvC5Vi8VLEQxEOaXM+bklaTXLK8rrSz1tre2h9C0UUV+fn9M BRRRQAV+W/xa+JTxW3xo1e8knj1maw1U2c8UpjktpRHIImVhyCmFxjkbRX6hXd3BYWs1zcyp b28KGSSWRgqooGSST0AFflN+0/pekeI/G/i46MbhdB1wzk7QFlQSKRKwGDtBJZlyOARkDGK+ z4cjKSxCjF6xtft5X8/0Pyrjz2co4SNSStz35ertbW3W23zPDdN/aV8Zt4D+DdisfivSZU8Q WH2zxFLeOkeqx7mDxNIr7pFYHJDcELzX6M+HPGkbfEnRLuwAi82/ij2Jx8ruFZR+DEV+eY8L 6LeeGfC/h+6ub9LLw7dxXlo6SJvZ487Q52YI+Y5wB9a+9P2S/h/rHjXXrPxdqVpLaeH7E+ba vOpX7ZN/CUB6op53dMgAZ5x9MqdHB4etXxc73ikvN8tmrev+Z+VYnLZ5vmGCoZVS5FCrKbst rzTUrvVadNlslsfaFFFFfkx/VQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRWNrXjLQvDsyw6lq1pZzkZEMko3keu3rj3xVrSde07X oTLp19Beov3jDIG2/UDp+NbOjUUPaOL5e9tPvOKONwsq7w0asXUX2eZc33XuX6KKKxO0KKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGTRJcRPFKiyRupVkYZDA9QR X5s/tNfsU65oWsPeaJoU/ivwql0L20S0VpbiycZ2q8a/M23JwwBGOuDX6U0V6WCx1TBSbgk0 909meHmmUUM1hFVG4yj8Mlur7/J9T8lPAvwd8beK/HEOpaf4D1SbXvI+w/2hNbSQpHFu3bWd 8IozzzzX1F8MvGusfADxM/hnxPpSaZfT4LOTmHUEBOHjlxzjcfpnBA7fZNc14/8Ah3oPxN8P yaPr9kLq2J3RyKdssD9pI36qw9fwOQSK+g/1hda9HE006Ut0t79/U+CxHAipxjiMBiZQxNP4 JdFa/u210d7NaryL/hzxPp/iqwF1YTCQDAeM8PGfRh2/ke1a1fHGsaZ4x/Zn16Ge6uptT8Nl /LtdbiT7gJ4inXoPoflbqpDdPUL/APay0HT9BhkWze/1tx/x6W74i/3zIR8oP90jcPTGCfgq uNw8as46xSel97dD98wnC+bVcFh6sXGtKaXM4bKVtVq9Lee33X93pskiQxtJIypGgLMzHAAH Uk18wWn7Vnia4uN/9g6c1vn/AFamTfj/AHs4/Sua+NH7R2oeNdLtPD+kadcWL3m1JrRD5ktz IThY12jJTOOMZY8EYGG5ZZlQUHKLu+1tz3KHBOa1MRClVioxe8uZNRXW+v8AwPMT9oX483fj fVIvCnhZJbq1lmWGGK3BMl9Nn5Tj+4D90d/vHotev/s+/s+Wvwu0iTUdZWLUfFeox7buZsOk CHrCnt/eP8R9gKr/ALO/7P6fDm2/4SHX0S58XXac5wy2KN1jQ93P8TD6DjJb3Cvp4ZriKmXw wnKoLd23b8z8vx/DeWYXP6+YYeq63SDltFJa8vl5+r6nGJ8F/h/HqP29fA/h1b3du88aVBv3 eudvX3rslUIoVQFUDAA6ClorglOU/idzshSp078kUr9lYKKKKg1CiiigAooooAKKKKACiiig AooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzn4/fEiX4WfDLUdYtdv9oy MlpaFhkLK5xux32qGbHfbiuw8ReK9J8KWn2jVb6K0Q52Kxy8mOyqOWP0FfIP7UXxvsfih4fj 8KaJZyT3Iu0uII0BluJnUMMBEyB8rMf4j6ha97Ksuq4utGo4Xpp3be1kfGcR59hctw08PGql XkrRitZXezsr29XZHlNx8XLPw98W9A8J6zILm81zSm1qXV5rsbUO9l2Pnksduc5713fwK+OM Pj3w7c+MNBik0iXTtYudKaCSYSed5OzLkgAFH3dPb6V8T6/4Xg8XfFzR9Y8Q2Vnqug2emPZv b3nzHzN7Mp2kds9a9M/Zc0fU/BHhy48KwxRz3eo61PPZWdixcFZNgRQMDB+X8K/R1GvicQ41 mlS970tpZPTbe2up/MmPybB0ML9bwd/rj9m003dS5pczi73ctI3VrLpqz9bNC1aLXtFsdShG IruFJlU9twBx+HSr9Y3g3RH8N+FNI0uRxJLaWscMjr0Zwo3Ee2c1s1+P1lBVJKn8N3b06H9h 4R1nh6bxHx8q5vW2v4hRRRWR1hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF ABRRRQAUUUUAZPix7KLwvq8mpWsV7p8dpLJcW0yhkkRUJZSDwQQK/MLXfH2j/DP4XeKPGF/B 5sunw7rWwiJCyTO4SNMnJC7nGTyQBX6katpsWsaVe2E+fJuoXgfHXaylT+hr8hfj38NdTOk+ K/AGq7rS6jYRNIVOwOrh4pP91iqkHuDXz+Zx/eUpSXu9fw/Q/XeCKj+pY6jQlas0nH1Sdt/O yfqjM8PftD/FP4OaB4b+KHimHw94m8JX00Daj4ZhtWhmt7aYZVo5c534x94kAkAgjJH1z4x8 TaBB400rxX4Sx9mieK+tHxg4IDY9cEEgj0JFfnnqGj/Ef4jeAtF+HepaVYaTpVo0Ed3rovkl 8+KIALtiHzBsAHnqR/DX2D8N/D9z4y13Q/Culh2D7LdSPm8qFQAzn2VQT+FcFeslBUoJc3Np bt0/rfufX5Zl0niKuNrymqKppS9pdXdnz6S6JdVpq7XR+k1vOl1bxTJykih1z6EZFSUyGFLe GOKMbURQqj0A4FPr68/nR2vpsFFFFAgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigDkfif8StM+Fvhp9V1DM0jt5VtaRnDzykZCj0HBJPYDucA/M13+ 0J8QPEmobra9j0mJz8lta26EAdss4LE/j+FS/tpa5LZ/EXwnBcZOnwWTTqp+6XaQh/0RK+BI dM0P9oX46fE6bx2872mizR22kafDePbx2MOHHnIFI5+VWycjLHIORj5zE15zrTjzuMYdt3t/ mfs+R5ThsLl+Gr/V41q2IbtzW5Y2TdtU+kW9r302P028JfHzX/Dd9b2fji0MtnNjbfxQbJUz 0JRRhh/ugH69KxfiD+1vLPdjSPCFlK95M3lxGOLz7qU+iRruAP8A32fUCvkX9mT43698Rf2c tN0jxPfS61Nod/c6fZapdMXmntV2mPcx5bbuKjPZQO1foD+zX4G0Pw38NNH1Gx0m3tdSv4C9 zebd083znG5zlsYAOM4HYVrF1qlWWGhU0XXr6HJiKeWYPA0s6xGDXPN2UE/cvq+ZrtZbJW9N zyDw7+zv8Qfilc/2j421ebwzp8+Ge2jcTahMvozElYx6ZLEdNor6H+Hfwh8J/C20MPh7SIrW d12zXsn7y5m/35WyxGecZwOwFdlRX1DxeIlQhhpVG4R0S/rc/F54HAvH1sxp0IwqVHdtL8r3 seMfEX9kX4afErVZdUv9Hl07UZm3TXGlzGDzT3LLyhJ7nbk9zW58LP2dfAfwema58PaOF1Fl KHULuQzT7T1Cs3CA99oGe9el0U3i8RKHsnN8va5lHLsHCr7eNKKn3sr+vr5hRRRXIeiFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAMmlWCF5XOERSx IGeBXknij4eWnxz0vW0uLp9P0++hW2S+06VDJKikOquNpDBWz1Y8k42nNdbr9zL4o1SPR7It 9kifdc3UJUNC6noQ/BH0VufTrXW28CWsEcMYwiKFGa7XFUKTT+KS+5f5v8iqdWdKoqlN2ad/ mtV+J8XR/wDBOSRNR3Hx+RaZz8ul4kx6f67H4/pXuPwi+DugfAXVjp9gLnUrrVEwNQng3ShV 6qzjgDPOFCjA53HFeyVn65pCa5pslpJLLCGKsHhIDAggj7wI7dwa87C4bD0Z35d9L7281/wN 9j3Mbn2Z4+l7GvWbj20SfrZK/wAzQorG8ManLe2Qhu4Psd5D8jWzyKzhQBgnBP8A9fg8ZrZr onB05OLPAWoUUUVmMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACi iigAooooA8U/aj+B0/xh8IW82kFF8RaUXktVkYKs6MBviLdidqkE8ZGOASR+Y+pfs72/xM8d pY3vhqZ9flxbv/pDWjSruCBXO5QwyQM+mOcCv11+JOsz2WjJp1gN2p6m/wBlgXnjP3icdBjv 2zmuB+MWhx+GND+H9vaH5bLWI4xIRkk+VIxbnPUpmuTF5cnTWKg2pydkl1S3f6L0Z95kXEXs KX9m42MZUVdpztaLs310tf033PkD9n74E614tuLTw9o2gy6B4a09zDcXpjKwQqGO8Ix/1jk5 6E5JyTg5r9INJ0u20PSrPTrOPyrS0hSCJP7qKAAPyFYnw1CL4G0hI87I4jGuTnhWKj+VdNWW EwkcMm95Pe5xcRcQVs6qRp2UaVO6io7W2vp5JWtolsFFFFegfIBRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVz/i7XX0yxMFrFLc3s/7sR23 zSxhg2JAoBOAR16flWpq+qQaLptxfXORBAu59uM4/Hj8657wrpkmqXp1+/MM8zZWzmgkbHlE tglRhc4OAfm4/iINdlCEUnWqL3V+L7f5kt9Ea3hvQF0KzIkaK4vpebi7WERtMecbuSTgHHJN a9FFc05yqSc5bsrYKKKKgDlvEcA8P3w1+D7PbRDA1GWTO94/lCheCM9v4e2TxXSWtzHeW0U8 TbopUDo3qCMipGUOpVgGU8EHvXM6FLLoeqT6RdPPNC5MsF7dug81jj92oGMkc+/U9xXZ/Gp/ 3o/iv+B+XTQnZnT0UUVxlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR RQAUUUUAFYt7410DTbw2l1rVhb3KnDRSXCBl+ozx+NecftR/Em8+HPw5ibTZja3+qXiWCXKn DQoVZncHscLgHtuyOlfnH47/AGz7D4U69450aLS4NYu9DkgSxlM7hLwvGjOzHYdu0sRjvivo sFltGrh3icVU5Y6pWW9ld6/kt2fnuecRY/C46GW5Vh1Vqe65OTsoxlJRvZave7tsu/T9P/DK f8Jh41vvEUgDWFhmysMgEFv+Wkg/PH447VhftIMF8N+H38wRtFq6ydcHH2edc/mw/OvL/DXx rg+F2lajcGY3+nNZGeCBjgG425QewYnafqD2rxLxD8ZWXx34LtfFMt7qGteNTdNZTRBGghWB Q7q2WBRcNhQqn3x1r6OjlM4YyNarLlpw5VHzvol63vfzZ8HnvHOHzXJK+HwFGU6k/aRauvdU E253V7rl95Jeeumv3X8Lr22u/B1otvLHII5JlIjcNt/evjP1GDXW18OfCv4u6f4ovvFNz4Yl vrC/8Kas+j3huURFllUZJj2u2+M4/iCn2r7J8G+JI/Fvhmw1WNQn2hPnQdFcEqw/MGvms0wP sW8VTlzQk38nvY+n4H4neZU1k+MouliKNODte6lCySku3S6e11q+m1RRRXz5+rhRRRQAUUUU AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFYPjTxxo/gHRm1LWboQQ7 tkaKMySv2VF7n+XU4FaU6c6s1Tpq7eyRjWr0sNTlWrSUYxV23okvM3qRmVFLMQqgZJJwAK8F P7TN1f3BNhoMcdvn5Tczkuw9wBgfma37T4vt4wjt9LggTSdTnlC5uX3W8q903gZBPb5T6Z5r 2p5HjqSvUhZddVp9x8FhPEDhvHYtYKjilzt2V1KKb7JtJemuvS51UqT+LvEcY23Ntp1ifNju Y1TZPkKdp3ZOTz0AIHf5hXYgADA4Aqhoei2ugadHaWkKQxj5mCA4LHqeSa0K8qvUU2ow+FaL /P5n6ElYKKKK5hhRRRQAVj+JdDOr2sckCRf2lat5tpLNnbG/HPGe3qD24rYoq4TdOSlHdCep leGtaj17SkuEfeyHypW24BkXG7A9M1q1y+rJJ4f8QJq6GSS1ugsN20kg8uADAUqvByfbd9Bk mrL+P/DUdx5Da9pwl7r9pTj688fjXVOhKb56MW0+2tvL5HLWxVDCxTxFRQXm0r/eb9FMilSe NZI3WSNhlXU5BHqDT64jqTTV0FFFFAwooooAKKKKACiiq97qNrpsQku7mG1jJwHmkCDP1NF7 bjScnZK7LFFRW9zDdwrLBKk0TfdeNgyn6EVLQDTTswooooEFFRxTxT7vLkSTacHawOKkp2tu JNNXQUUUUhhRVe+v7XTLZri8uYrS3X70s7hFH1J4rGtPiF4ZvpxDBr1hJITgAXCjJ9jnmtoU alROUItpdkcVbG4XDTUK9WMW9k5JN+l2dDRSA5GRyK5X4k/EjSvhh4eOqamWkZ38q3tYv9ZP IRkKPQYBJPYfgDzTnGEXKTskeph6FXFVY0aEeaUnZJdTlf2lfhRP8XvhhdaZYOiavZyrfWXm NtV5FDAoT2DKzDJ4BwTwK/Im98CWGof8JjYXEly0niZ4VneEK7QmPAAj4Oc7R6195fFj9rjx LN4U1a0jtNO0xL+B7aNEDtcIrgqWDbgMgE87RzXof7Cum6ToHwzubFA0fiO5nN/qCTLhirDE W31UKB9GZvUZ9fK+IMPToyw8lzdk9N01LX06WPM4o8Os1hVhmDapqyU2nzNcsoyhp/iW97aL 5+QeEvgT4u8b/B/xFq17pt1YNDYq2lWdwhSe6dGV2bYeQCiMq5HzFgRwOfi34i6DN4++IPgD +1LWS98PaX9sW8K3RgMYdF2AFXV/vKPu+nPFfuPXzf8AGn9j/wAD/EHxHb6hBa6lompajK32 i40gAwFuCXkjKkAnJOQVBwc5J5+mpZ+8bOUMarxbTVtvds7NPdO2vz7n5hV4JWWwp1ModpxU k7uzfOmnJNWtJKTt6Ltr8Cfs2Wlx8LpfHlq0BsNJ1DWnudPRrkTF4MYUk7mbOP753etfqj8E tFu9B+GWiwX8bRXkqNcSROMFPMYuFI7EKRkeua85+FP7Fngb4ZatBq00194k1GBg8B1Jl8mJ h0ZYlABI/wBotjgjBGa+gK4M1zWhiMNDBYWNoRd7vrv+Gp38OcL1sBmNbOcdJOtUio2XRLlu 29dXyrr376FFFFfKH6YFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAV8RfHbxqviz9oubR9Quzb6No6paxDspKq8r49STj6ItfbtfAn7WXwr16y+OMmoaVaP Na69GtzBKOEWRFVJUJ7HIVv+BivreGZQjjm5b8rt66bedrn5n4gxqTyZ2docy5u1rPfyvb52 PnXwf+2Fb6fD8V4tf1rRrDU9EvL638PW8i7DcLGJBDuUt85LKoOMZzX0F8C/idL8VfgB4N8X at5EXiHUIZzeraJ5cW5LmVEKLkkfIiZ565r4v8O/C6/8K23xT0nxPoVkuu6pc3bWQuljkdDI j7CH528sDkH3r2H9neS/8DfCbw54Zv1H9pWwkjaCFhJlnmdlAx1J3DpX2GX0MTXq05Yibsot 9d+br5219D8I4ky3Ko4GvHLaceedSnro/d5G24W1S5kr76s/Uj4X+IpPFXgXStQmbfOyGOVj 1ZkYoSfrtz+NdVXI/CbwzceEPh5oumXg23qQmSdc52yOxdl/Atj8K66vy7Gez+s1fY/DzO3p fQ/qvJo4iGW4aOL/AIqhDmvvzcqvfzvuFFFFcZ7AUUUUAFFFFAHzV+118StT0+70LwJos6Wl zq6/aLq4c42xb9qLnsCysSf9gdia+NdC/an0vwt8JfFfirVbQ6jc6Dq8mmHT47mNJbgLNHFv Q7enzlunQGvpz9vTwLqaz6H45sIpJbW1g+wXjxjPkDeWjc/7JLuM9jt9a/Myf4LW+reAPEmm y2+jf8JbqGpvd2uqy78xRNKj7S+zcDtDjABHzda/SMvlUjl8I4LqpOX+LS3z7Lsfz5xPl+Fz LN5xzq/JGdLl3+C/vdVaL+01qntqfrz8KvFzeHPGUWgC7+1aXfMVj54STBKsvpnGCPcele+1 8UfsuRX3xC8f2l9Ervpmj/v7m5/h37SI0B/vE849FNfa9eFxJRpUcYo05XfKua3fX8bWPp/D GGNp5LKGKTUFOXs076RstFf7Kd7fMKKKK+UP1wKKKKAEJCgknAHJJrmLj4neFLa5MD69ZGUH BEcm8A+5XIFfP37QHxS1PxT8RT8PNDleO0tFX7d5TYNxKy7thP8AcVSMjuSc9BXz94H/AGgP B2tfDHW/HUBvhoOjNKlzvtwJsxhd21N3P3h3r7PCZFRlh418XV5XJOSit+VdWfiPE/H2Oy7E ywuT4X2vJJQlJ3tzS0UUlbW6avfdPTqfoJ4r8eaf4d8C6v4mhmi1C0sbZ518iQMsjAfKmR0y cD8a/Ov4tfHOez1zQp9Zi1Hxh4q8Q+bLaaPpe0tFDGcsTvYLEg7c8n8TXsdvqsPiv4b2epaX dTroPinS4rpEcbWeGRQ6b1yQGHB9jXyB8YdG1W1+IWi63oBi0LXtEgktPK1aF5IbiCQAjcFI YDncrA85HavhuIcveDqUp83NRknZ+fZ/h+J/QnhDxZDiLB42j7H2OYUJxVSOjapvRuF7ed10 aine6v8AWPwZ+Nmip4e0fxp4N1K9+wy3Uljrfh7UYvKuLSeJgJYpYwxAcAgqwJ6j1Ir6pb46 eBVHPiKD/v1J/wDE1+b37LPwu1TVZpfDVlfNq+q61qU2r6tfRRlIonlK+ZJjPyqAoAyeT05I FfoCv7KPwuXBPhyZ2/vPqt4Sf/I1eNhZ1pOX1dLk87/Ox+i5/hsuoRoPOJzeIabfJyXtf3ef W17aK1+vkdF/wu/wRtB/t6Mg+kEp/wDZK+Zv2oP2noYl8QDSb5pPDvh7SW1C4iiZoH1CULu8 vLDOACoAIxkknOBj31P2W/hhH08MA/71/dH+ctfL/wC2d+yDdSaPd3ngXSrmTQr6ya01Cx0/ fNPAcEeaqsWZlIIzjOCM9Dx+mZZPLqdRSp8yq2dnLl5ea3+e1/zP5T4hw2fYmhUpV5QeGcld U1NVOS/V8z6fFyr8LmT8Gv2itB8ZeL7jS/DOoxLeWOi2+rtqFjepNGHkkKNbNtz864BIJ6Hp X254T+I+ma74XstSubqGCZ7YzTIDwu2Qxs303qR7V+YfwV+FPiXUviItz4f8Pao+oyabDpEi m1MVtEkblvMkfaAp55JPbgZr9Sfh74QTwN4N0rRfMWeS1iIlmAwHkZi8hHsWZjXdnroexg6s uaq5PaytHX18rX8z5vgHLK+X4+v9VjKGEcI6Sbd6l1dq/W107WVrXLo8Uae04hWVnczpb4Cn h2GVz6cVm618Q9L0HQrvV7qO7WztrWW7kbyCPlj+8OeN3YD3rqK8o/apiuZvgD4vFrkyrDC7 bf7izxl//HQ1fJ4aFGtWhSaaUmlv307H7Njq88LhKteCu4xk0vNJs+Svid8f1vdMuvHnjjUn 0rw3FcLBAixSzRW28/IgWNWJY45bHPsMAa138SvB/hmfwpZ6xrK2Nz4pukstHQ2s0n2qZygV PkQ7MmROX2jnrwa+Of2o/G1zP+ztd+H/ADMW51G2mKepBODXK+P4/GGieLvgZdeIfHZ8V2qa 7aS2dr/ZUNn9jKyW5PzRkl8jaOf7vvX6bi8VWoc+Hw1NKEFC1tlzO2uqb8rJ67n8pLhfDZ7V o4/Mq8nOpKrzK7vJQgpLkahJLz5mlbSOp+sXw/8AiDqnhDVU0KdGvreaRYYIHkCmKQsAApJx g+meuPfPA/tla/qek+M/Clxe2gTTYUuDbAsGSVgybiR9NnX/AOueZtPFU+t+IdOETFrqa6iW ML1LlwB+tfV3xh+EWkfGbwjJouqM9tKjeba3sQBkt5cY3AHqCDgr3HocEfF8YZdyQioxSnNX fqmvzP2vwF4irYSU1jrypUJWi3q1GcZK3ny7+jsuh+FXiXUtM1mz8Z61rV3dy/GNteK6Zbgu ZQPOQxrHH90xbN4Axtx/wGv1Q/Z98X6h4u+NVnfSRpHPcWkz3y24wgGzJ4Hbfs/SvJvGf7F/ j7wDFf64t7o+o6ZYRmVrqFn88Qj7x2MnGBkkBiMA819UfssfDbR/CHhCTVba7bVNXvjsuLyR Am1OGREUE7QVZGPJOTyeBj8zpxrTrQpyXKlrq/wXkf11jK2WYTK8RiqM1VdSPs1yxtvduU3d +9ZrWyvZadvcK59tl341Ubr2J7S2zt2fuJA3+0V689A3bkcV0Fc94XnW+vdWuo7q7mjM/l+R coFEJXghfX8enFfW0tIzn5W+8/FWdDRRRXMMKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAopGYIpZiFUdSegpsU0c67o3WRfVTkUDs9yDVNUtdF065v72Zb e0t0Mksr9FUf56V8za9r2qfEfxXBdQ27Ne3bG30mxY8W8XUyN6cDcx56d9orR+MvxFi8X6pc adDK3/CKaNIDeSxH/j+uQfliX1AI/PJ7Ka9H+DPgCfQLB9d1mER69qCD9zjAs4Oqwgdj0Le4 A7ZPo5TmtDDTqtQvO2j6f137pNI+c434HzHNcLg41K6p0JSvUh9prdfcrO32XKLeqSPCPGv/ AAT4/wCEs16TVE+IE8Ek2DItxpglIOOdpEq8egI/E16b8Ff2Q/CXwfv4tWkuLnxHrsXMV5fA LHAfWOIcA+5LEdiK91orSrmuNrxcJ1HZ+i/IWF4dyrBSjOhQScdt3a21k20goooryj6MKKKK ACiiigAooooAiurWC+tpba5hjuLeVSkkUqhkdSMEEHggjsa8X1T9jH4QatqT3snhMQO5JaK1 vJ4oifZFcBfoMCvbaK3pV6tG/spOPo7HLXwmHxVvb01K3dJ/mfDvwDvr39mj4+6/8PNbuXOi 3jobSaU4V42J8qb0zyFY9ju/u19xV86/tl/CaTxb4Mh8YaRDnxB4aDTHYuWmtOsqe+374+je tN+E37Veg3HgDSV12S7k1WJPJkaGHf5iqBtcnPUjg98gnvTzLNaWIrQ9pHlly6vpJo7eHuDs Zh8BVrYOftYe0doJPmgmr/NN6+r89Poyiub8HfEXw/48idtG1BLiSMZkgYFJUHqVODj3HHvW 7d3sFhEZbiVYkHdj1+nrXNBqok4a37F1qNXDzdKtFxkt01Zk9MllSCNpJHWNFGSzHAFc5J4r udSlaHRLE3ZVirXEx2RLg4Iz9MEfXpSReDX1B1l129fVHH/LAfJAOMH5B1yMZB4zXZ7BQ1rO 3lu/u6fOxz3vsfnv8aPEVz4S+Pvi67trkkvfvIksZ6o/IwfbOPwr4O8DeH769/Zv8Y6nH4v1 nT7WKa536JbyqLS44TO9cZOc889hX7VftI/sw2Pxo0m2utJlg0fxLYReTbTMmIZohyIpMDIA OcMAcZPBzx8T3/7Lnxk8P6m1svhC7uPmwstrLHLE3uGDcD64r7ujisHmFKCqT5XGMo2fmkr7 q9rXt5n4jjcrx+UYqvLD0XONSpCaaV9IuT5WrSs3zWv0tdF/4B+L5Zvgd4AsdxkMWjWkSIvJ J8tQABX3h4Y+G/hTx58OvDS+I9D0vXp4LKNPMuYEleE4yUDdRgnBAPavmz4Y/sX+ONT0ya98 T6xF4VvVTNlawbbqQSdjKVO0L7KxPPUYwb1n448b/s/+IYtP8X272Xmvsh1SHMllege/c47H Dj2rozGODzmhHBYSoueHR/a0tp/wLnzeSxzTgjMaue18LJ0q1+ZxfvQvK97aemtv0Prvwx4N 0HwVYmz0DRrHRrVjuaKxt1iDH1baBk+5rZrifh98UtO8dWcbLi3uSOgbdHJ/ut/Q8/XrXbV+ aVKboVJUJaSjo12P6FwOZ4fOKEcbhqnPGfXW/wA76p+oUUUVB3hRRSMyopZiFUDJJOABSbtq wFr5o/aR/aP0zStH1Pwxo8kN4biKS1vrwgPGqkFXijB4ZsZBbovTk9L/AO078V9Q0bwxJZaP M1tBOCJJoztlmXuqnqqnuep6DA6+dfAD9lK78W3Nt4t+I1q0VgMSWXh+VdpkH8Lzr2X0j7/x YHB9vIMTlOIw7zJ1lUUW0oxd7tfmu3Tzsfn2f4rNMXif7Gy2Dhde/UeyT6L/AD37a6nyN4t+ DOvav4Hi17UPCV5feELmQtFdzWxeIhejsByF54YgA84JrnIls9fvNJiu9Ij1O5sZVewXyvMe KQYwUHXPyr09BX7TRRJDEkcaLHGgCqijAUDoAKr2+k2NpO08FnbwzN96SOJVY/UgV7UeJJXk 5Ulr59tr6PY82XAseWEYYlpLy6tWbVmrX/Lqz5V/ZW+A+vpqdt4x8YWUmlx2436fplyNszOR xLIp+4B2U855IGBn61oor53H5hXzGt7au9dl5I+3yfJsLkeG+rYRWV7t9W+7Ibyzh1Czntbm NZreeNopI26MrDBB+oNeD/s83s3hLxJr/ge9kLTadcPbRl+rquXibH+1GxJ9lWvfq+evjTjw B8YPD3iu2ICajbmC6iQ8mSEhkcjrhlbYT6KB3qcvwNLHYj2cr83LLl9bX18tB5/n+LyLKp1a NnS54Oomr+4nZuPZq575qd5Hp+nXNzM5jiijZ2dRkqAOtUfChdtCtna+OpbxuFwVxuHb+Js/ XJz24xXLP8VNC8R6fJBpuriwvWK7DdQOBjIJ9OoyODnmu8t0eOCNJH8x1UBnAxuOOTjtU1aN TD0+SrFxbfVdvl59/kdmCx2FzKksRg6sakH1i0196JKKKK4TvCiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigArzj42/GG1+Enh6KVY1u9ZvSyWVox4JGNztjnauR05 JIHGcj0evhT9qPxG9/8AH+6tLlz9n0y2t7eNSeAGQSk/iZP0Fedj8RLD0XKO70Ps+EsppZxm caNfWEU5Nd0rK3zbV/Ix9d8V+I/Hd2brXdSuLwucrEzYiT2VB8o/AVuaB4T163s5NQ0h7y32 r881o7IQMdyp6V8dfG/xfe/HD9pm0+Gljqd74b8G6VYpNfR6bN5ct2/lCRiW753ooByBhjjN dJ8Hfirrn7HX7T3hvwfp3iDVPEHw18YW/lT6Nq9yZ/s0zl0V4yeFIcKSQBuVyDkgMPFo4aM5 pVKnvNX/AKZ+n47O69DDyeDwq9lCfs3slfRNcqWyva/c+1/gFZ6frfjWw0zWWji/sqNp7CxC YS4nByZHOeWUcge2eNvP1jXwivitbD4habq9l+7aK9jlAXuNwyPoRkfjX3dXpZZNOEoLoz4b jfDVKeJo4iT0nHbs09bet7+twooor2T82CiiigAooooAKKKKACiiigAooooA+d/2xfHN3o3h 3RfDFlcNaf27LJ9qmQ4PkR7cp9GLjPspHQ18Bt478SWnxH8W+GfhjY6Jf2HhdI3vbrxA0zC7 ndC/kwCMrs6Mu5s8j0Ir70/bX+Hmo+JvBem+I9Khe4uNBeRriKIZb7O4Xc4HfaUUn2LHtX5l Xnh/xHo/jDxFrHhPXbHTD4ijRL+LULdpBHIqlRNEVI+bBPDcZJ68Y+Xxd1iZOp2XLfbp/wAH 5n7pw9FVMkoRwjfxS9qo2Une9tXb+512ufYnw++M2heOPh94K+JngtJdD1K6hY3enPJ5htri N2jlj3YG9CVJGRyrDIHSvtPw94ft9d06y1bUriTVHu4Y7hY5PlhUMgOAg6gjHDFuQCMV+cH7 PnwjvtM8KeGPB3h8PdwSSmFbuTADuzM0khGeFB3H2AxzX6h6Vp0ekaXZ2MOfJtYUgTPXaqgD 9BXqZbiJe0quj7sHa3/A6rzPmOLsIsJhMFSxM+fEJPm1TdtNG12d0vmWI41iRURQiKAFVRgA egp1FFeofmQUUUUAFZ+veH9N8U6TcaZq9jBqWn3C7Zba5jDow+h7+h6itCimm4u6JlFSTjJX TPE7L4NXPwmeefwgsmp6Mx3NpFxJumgH/TJz94f7Lc+5Ndh4T+IVtqsRVJGcxnbJbyjbNCw6 gg88eh/Ou8rgfip4b0s6Nda+Vez1a0QeVe2p2SMSQFV+zLkjg/hivyniXIMXRxFXiLKsU6dZ JympNuMlFXd9+nqr66PU6cHGhQprDRppQ6JK1jevvF1uhaOzxcSj7xPCofQ+/tWNJrmoTNk3 DL7IABXOeA4Rc6HHI75Y5ZmY8k96+Mta/bq+Jfxa+L+teCP2d/AOleKbfQ3ZbzXdelYWzhWK llCyRBFLAhSXLOASFGDj8IxWZ8V8X1pVo4j2VGKu+Wfs4RS0vJ31u9rtvtoj24woYeOqu/vZ 972viS9tTmUiePuGHP5iuV+IXxOW2VLWGJ5LiUhYbFBud2J43AdTnov5+3mv7L/xa+JnxEuf GPhv4ufDy28D+JPDyWcsN3p8zSWepRz+cC0WS4wph5xI338EKRz6loXhSxsPH9trkWVuGDwy I43qdwwCufuNkDkdiR3rvq1c5y2ph8jzLMnPD4hx95S57Ju1ub4rO+qva3lczSpzTqQhrH5D PAHwllkvovEXi5Vu9VyJLeyfDx2p7M3ZnH5L2ycEer0UV/U2VZVhMmwscJg48sV97fdvqzxJ zdSXNIKKKK9cgKKKKACvzH/a9+OmqeGdf8f6rFJIdbsNYttN0+IorqtutysTqqtxll3EdOXz X6cV8hftbfsVz/GDVZvEXhkWk17ctHJe6VeSGJJpExsljccBvlXIOAcZznOfoMnxNPDVJqUu VyjZS7M+I4ryypmeGpRUPaQhNSlD+ZLy6+h4p8Evi/4h8feIfiVLqehXuleH9Gm06DTEvYY4 57WV4C8294mYMSxjYDccB16ZxX6F+BdXl1/wbouoz8zXNpHI5/vEqMn8ev418X/B39krVTfS Qa+r+G9cvbtZ9Ykiv0uFu4Ik2KscaFlVwNqlieB1B+UV9zWNlBptlb2dtGIba3jWKKNeioow APoBXoZ3XoSpQpRlzTvJ3/ut6L/htNDxeEsjr5ZiJVlTVKk6VOPIklea+KT0u/WTcnd620U9 FFFfHn6iFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXw7+3J4Gut D8b2Xi6GNjp2qQrbzSgcJcRjABPbcgXH+43pX3FWR4r8J6T448P3mi63Zx3+m3abJYZP0IPU EHkEcgiuPF4dYmk4deh9FkGbyyTHRxSV47SXdP8ApP5H4d+OvC3iTTfinZfELwgtte6oIvIv NOupBGLhQuzIYkDlcDkjBVTzyK0PCngzxb8Qfi/pvj3xxb2mjQ6PGEsNJt5xM24bipZlJHDM WznJIUYwK+4viL/wT716G+lm8G67aX1ixJW11UtFPGP7odVKv9SF+lcxpv7CXxPSyu55r3SL V4YmeK2W5aSSZwMhBhdoyeMlu9fPuji4LkUNUrX62/L9T9fp5jw/Xqe3niHySmpuF7Rc9NWm ubfVq/K3q0Wvgh4aufiJ8StIsY0L2tvKt3eP2SFCCc/7xwo92r9Bq+Df2P8A4p/8IL4yn8O3 9mtrY34EV3dXBxNHcq21QwxwoJKkHpuB4wc/eVejlMIxotp631PjvEDEV62ZQjONqcY+5533 frfS3ZJ9Qooor2z8vCiiigAooooAKKKKACiiigAooooAQjIweRXj3iz9kf4WeMNTfULvw0tp dSNukOnzyW6Oe+UUhR9QAa9iorOdOFRWmrnVh8XiMJJyw9Rwb7Nr8j5i+J/wV034P6fp+t+D beTS9GtHVbuJZnkNtJu+S5DOScZIV+ePkbGFNe6/DvxknjTw9FcvtS/iAjuol42v6geh6j8R 2ror2zg1GzntLqFLi2njaKWKRdyujDBUjuCCRXxhbePbj4a+L9b03w1rSHS7O6exhv58MXXP yxnfwzIQUDc7tme5z7uUZPSxsa0aXuzVn/dtt8j4jjXjTMMpeDr4tqph1zRkrXqNvVNNvW1r W2t52PtWivnTw38aPEtpKZLu7h1iGPaZ4HRFdFPQ5QArntkEV73oOt2viPSLbUbNy9vcLuXP UHoQfcEEH6VnjctrYGzqWa2utr9jj4b4xyzifmhhOaE4q7jNWlyvTmVm01fqnp13RoUUUV5R 9yFFFFABXF/GG3kn+HuqGMEmPy5CB6B1J/TJ/Cu0qG8tIr+0mtrhBJBMjRyIejKRgj8q87Ms J9fwVbCXt7SMo39U0XCXLJS7Hy9onjSaz0y609JfKE8TokmfuMQQDXxL/wAEpvH/AIf+GOt/ EnwH4qvLXw94plvIGjjv5FhM/k+ZHJEC2MsjHO3qQxI6HH2N44+HGr+FvFkGkhHltbybZZ3e PldSe5HRgOo9s9K8f/aF/ZB+H2q6zZat4u0aDU728BU6lZSyWk77QBiRUbD8YwxycDGR0r+S KEKOX08bkGaKUHW5buKTlGVOTadm0mn66rVHvSvPlqQ6fqfVPhL4w+EvHXiXXfD3h3xBZ61q WhpA+opYyCVLfzTIEVnXK7v3T5UHIwMgZFdlpymbUrZR1Mi/zr5F+BXhvwB8BtMu7bwXo0Oi i92G7m815Zrgpnbvd2JONzYHAG44AzX1f8JGm1+E6zcPiPG23izyQern+Q/H2r5zLeH5ZnxB h8FhZy9jzRd52UrRSlPRNq+jsk3pa73ZrOryUpSlv5HpdFFFf3WfMhRRRQAUUUUAFJ0pssqQ RvJI6xxoCzOxwFA6kmvOfEPx88DabBdwLrlvfXKowWGCOSVJDjpvVSv6/jUucItKckr93b8z rw+DxOLusPSlO2/Km/yNK2t5oZW1r7FFBK15iRrK4jEc8Z+USOSeccdCDyeOx7ZWDKCCCDyC O9cl4Qn0TxT4JWPSnt57SaMho5HFz5bHoJAzNyODtJ4xjtW34du3vNJhaTeZUzG5eAw5YcHC noK7681WXPHZO3y6dX+ZyypzpScJqzW6ejNOiiiuIQUUUUAFFFFABRRXN+PfH+kfDnQm1TV5 ikZby4YYxmSeQ9EUevBPoAOa0p051pqnTV5PZGFevSwtKVevJRjFXbeyR0lFfOq/tJa9qtyW sdKsLS2z8qT75Xx7sGUfpXfeB/jPB4gvYtO1W3XT72U7YpEbMUjf3eeVJ7dc+te1iMjx2Gg5 zhtvZptf15H53gvEXhzH41YGlXtNuycotRb7Jtdel7XPTKKKK8E/SwooooAKKjnuIrWF5ZpE hiQZZ5GCqo9STWPa+OvDV9ci3tvEOlXFwTgRRXsTPn6Bs1LlFaNm0KNSonKEW0uyNyimySJD GzuwRFBZmY4AHck1xN58avBtncmD+2UuHU4JtonlUf8AAlBB/A11UcPWxF1Rg5W7Js8fG5lg ctip42vGmns5SUb+l2juKKyNA8W6P4ojZtLv4rvaMsikq6j1KnBH5Vr1lOE6cuWas/M6sPia GLpKth5qcHs4tNP0a0CiiioOgKKKKACiiigD4z/a6+Er+DPEsfxH0WErpl7IItZhjHEcx4Wb Ho3Ab/aweS1e3fs5fFMePvCUdldzeZqtggUuxyZouiv7kdD+B716fr2hWPifRb7SdTt0u9Pv YWgnhfo6MMEe317V8IaQNa/Zi+M0nh+5laW1R/P026k4W6tWJAB98ZVvQg47GurKclWNxVR0 6nLJq6Xdi4s45nluRUKOJw7qKnNLnW8YdfuW3eyW+p9/UVm+HdetPE+i2mp2T77e4QMPVT3U +4OR+FaVc84yhJxkrNGVGtTxFONalLmjJJprZp6poKKKKk2CiiigAooooAKKKKACiiigAooo oAiuVke2lWFgspQhGPZscGvxR/aI8T6rZeBdK8OZW1vY/FllMWuE3GOdDIvzdzhicjNftnXz F+0H+xbZ/FLW7jxH4Y1OLQdcuTvuoLhC1tcP/fyvKMe5AIPXAOSfocqxlKhGrQrOynbXtZ3/ AK7HxPEeV18bPD4vDx5pUW3y3tdO3fTpt1R8LfADxrr+kftDfEk+INTtNT1C70fT45biygME TKuSoCFm5A96/TH9muee8+GouZc+VNeTNAT0KDapx/wIPXzv8O/2BvE1rqsTeLvFdimmI2Xg 0bzJJZR/d3yIgT64avtDRtHs/D2k2mmadbra2NpEsMMKdFUDAHv9Tya9PNcfg3hPqmG95uTk 36tu2u71tfyPleGuGsZRzf8AtfGR5FGlGnGKt0UVeysorS9u7LtFFFfFn7AFFFFABRRTXdY0 Z3YKqjJZjgAetAHMeLr6KS7tbDeoYfv3UnnuF/8AZvyFcx4g+Cui/EmO1vdYnvo3iDLEltKq qFJ7gqeTj+VeVWPiHUfHvjya+tpZF/te+EFov/PO2XgNjthF3H3zX1FFGsMaRoNqIAoHoBXx uY8Bez4glmuaTjVU4JRhb4LWX4e985PsfL8N8WU+IqeIjhabjClNxUuk/Nfg/Ro840b9nfwL o1vNH/ZJvnljaNpryQyMARjK9Ap9CACPWvO/DF9qHwN8c/8ACM6pK02kXLF9NvH+66E/cJ7E cAjscHoRX0dXkfxxt7Hxd9m8MybI7lVN0t3jLQPghAv15yPTFfMca5VluCypY2lajUotOEor Xmvptv3+T6XPt8NOcp8r1T3PR38TWCRo3mFywztVckfWiDxLYzsFMjRE/wDPRcD86+W7n9oj w98FvC18fijqqeHpdKZYS8ytJJc5xsEaKCzkg5+UHj5jgAmtX4E/tcfCX9o3Wp9C8F+Jzda/ DC1wdNu7Oa3leJcbnUugVgM8gEkdxX55hOM+OcdVlUw2DjOnDe0Jcrsrv3ube2vl2OqWHwsF 70tX5n1GCGAIOQehFLXHaVrb6QXikjluYv4Y4hufPoATS33j423/AC729qP713eIpH/AFya/ aOGuKMNxHgFi4RcJJ8s478sl0vbVdU+3ndHzuY4qhlkuXESt1Wj2+S0OworybWfjFZ6epNzr 1pagf8+tvu/WQgfpXn2vftLeGbbcDqN5qLDqv2khD/wGMAfrX1Kruf8ADi3/AF5XPi8Txple Huue79U//SeZ/gZn7R/xA1Lxd4/XwBpUzQafaCM3m1tonmYBwrHuqqV49Sc9Bj46P7U3hHRd e1RI/D3iTxB4Z0W5+zap4h0iyWW1t2BwxBLDcF7njjkZBBPuHxX/AGgrPxLo8VlYaUNPbzhM twI8NgBgcMWLdzXwT4D8ezfCv4TeLfhzqOh6pc6/dG7t7NLW0aSK+E0exXDDqPX2x3yB4NSD debqq8lbTyf+X63P6V4Xz2eZcPYXEYWP1alNVFzNX5pR2km0vjd7XV/d5V0P0vt9cs/h5N4d 8a+Ctdi1nQNWtIr2KWIlUurdxna6nkcdiMqewIr6i8O6nbTX5nt3X7HqkMd7bu8xZn3KDgL2 4/ye35S/D+11Xwp+zloXhbUZXF9bWwVoVbcUaSYyeXx1xv28ehr9K/Dnw9Ph/wADeETfvePq Notu96luhkdpDGgeMbcbUDKPUcc+te5lEqVSrWpRk1DZdf62RxcW4WrRwWCr4xfv5R957O1k 7Nf3dj1BruBAS00agNsJLDhvT6+1Mk1G0hEpe6hQRELIWkA2E9AfTNY8ngTSJormOSOd0uLj 7S4NxIPm54GDwvzN8vTk1Lc+CtGvP7Q860MgvmVp8yv8xBJGPm+Xkn7uM5Nevy4frJ/cvLz9 fwPzLU0pNUtIjKGuYgYgGcbhlQcY/mPzHrUZ1uwWRUN1GGaPzRzwVwTnP0BP4Gq0nhLR5Zbq R7CJnuYRBKTn5kGMLjt91enoPQVJF4Z0qGaGVNPtxJDB9mjbyxlYv7n0/wATStQtu/w/z7j1 CPxLpkv2XZeIftJKxdfmIbaR04OTjB71Um8daHBZPdtfx+Qk32dnweHxnH5c1et/D2l2qWiQ 6daxraEm3Cwr+5J6leOM98VIukWCRtGtlbrG0nnFBEuDJ/fxj73v1qr4dPaX3rv6drfMWpn3 PjLSrR9RR7hd9gAZ1BGV5A5545YcnA6+hr5A/am8ew6h8afD9rcyM+h2dhFKiKeGMrFncduQ EGf9mvtb7NDukbyk3SgBztGXHbPrXyf+3F8F9T8Q21l430G1e7l0+3+zahbQLlxCCWSVQOoX cwbvgg9Aa93IsRh6GNhKSs9rt9bf8P8AefEcZYOvjcnqUqOuqbS6pb/do/kfBv8Aw1lqHhbx f8brKV9cvYoJp4vDzWNiJ49NAjlCF2A+UBthy2fumvpL4D/E678dfAHwPrGs3bXniGazZry9 YBWlcSuAx2gAHAUcDtXyd4f8PQ6G3jtDqErDxYHEx8sfuNyOvHPP+sPXHSvc/wBmfwHqmvaV ovw/8NvLfpaReVNqDR4S3iLEmSTBwMZOBnJIwOTX22EoOlP2+LqWjGL3e3vO19ddP8j8AzvL sNj8M8HldC1WpOltHflp2dvdXL72+uurPvTw5+0d4bn0yzj1B7pb1YkWeRY1ZGcAbiMNnGc9 q6e2+Nfgy5XP9srEe4lhkXH4lcfrXnNx+xJ8OXhRLZ9c051UKZLbUmJJ7nDhhk9emKxLv9iK yiJ/srx94gtR2F6kVwP0VK+Jr/2LUjKVPnjLotLX/E/bsBS4ww1WlSxNSjUpXSk7S5rdX8Su 7eR7rZ/EjwpqBAg8SaU7H+D7ZGG/InNXtW8VaXougX+s3F5E2n2UD3E0sTh8KoycY6n0Hevl +9/Y28YWmf7P8d2F/wBMC9054f1V3rzv4o/AX4heAPCN/q2sS6JeaTBsE0unTSGVQ0iqDtaN eMkA81+fVMViqcW5UtvM/pPC5BkWNq06dHMNZNKzi03for21fQPiF8VtY+Jsl7rmsXY03w7a 7pI7aSUJb2sY/icnALY6sf0HFcr8HvG/gL4zeJ/+EZ8N+MNJvddYN5VkZxG8+0EkR78CQ4BO FzwM9K+cf2wfHOoD9nuDQ7KRorK41e3+3CPq8YSQgN7bwh+oFcB+0dd+HfDnhXwVe+BrC10T VtMv4JNJ1PS1Ed1IAm5XDKAzYYRsGOTuOc88+Vh6cKzjOs23J2P0DNsbicsjXwuXQhThQjGW t9VJtK3npq3e7fc+/NW8WeLZ9em+Gzancy2NpMFktWfJL/3N3XYOPlzjPbiua+G3xe8N+LtQ 8X2Vj9rEnhS6ks9R86EL+8jLhtnJ3D923p2ry+x8aaxpviBtXvbi4OrSnzZ5p3LSs7ckljyT z1r5x+Fei6h4r174wX9t4y1rw3jVLmWSHTJVVLrc0zfvMg59PxNf0Dgm8HgsJhsGk4yi2+7f Le93/VtEf5v8ZZc+Js4zXGZtPknTmorR8sUqnJy8qTe34u71ufov8J/ihpXxJ8Fad4+8G3V3 DYvcSwxSXMYimWSMgMCoJ45/EV9g+BPFKeMvC9nqYUJK4KTIvRZFOG/DuPYivyg/YX8VPYfs 8WViZMRrf3Tbfq4r9Jf2Y/Ok+Gz3MmfLub6WSEnuoCJx/wACRq8zN8NKplVLG1vidrPyavY0 4GhPJ+LcblGCTWG973W72cWkpfPb5rsj1qiiivz8/pMKKKKACiiigArxD9rj4c6X40+FV5q1 zcw6bqugK17Y30vAB4DQk9cScKB/e2/j7fXy5+3d4luNM8OeE9JRylrfXktxMB/F5SoFB9sy k49QPSvXyinOpjqUacrO+/pq/wAD5viStSoZRiJ1ocy5bW827L8Wjzz4PfFzxXpfhNbW0nl0 0SOGZZoVY5AwSocHGeO3YV65oXxm8VaY6SX0seq2/wDEksSo2PZkAwfqDX5+/Gr48t4F+OHw tXTJ9WPh1dNnbU9L01TK13LiQK3lj72DtPsFz2rr/wBmX9om/wDiF8fPipbXl1qg8L/2favp uk6sjRGyfEYdhGfuliGPuGz3r7/F1MHiK7pOgnNycXoruyvzX328z+W4YPiTAYf6/hsdOlQh TdSKTk4L3+VU+V6XvrqmrH6jeFvE9l4u0eLULFyY2O142+9G46q3v/8AWrXr57/Zx8QtP4r1 fTUYm3ltPtO3sGR1UfpJ+lfQlfn+aYL6hipUVtuvRn9J8HZ7U4iyWjj68bVHdStteLtdeT38 r2CiiivJPtQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKqavqC6TpV7fOpZLWF5mUd wqkn+VNJt2Qm1FNs8w+LHx+sPAGoHRNOhTU9f2hpI2bEVsCMjzMckkc7RjjkkZGfL7v4teLv FWn3lpc36RWt3E0MkVvAi/IwwQGwWHBPOc180t45Fz4W+IniPU72RddbTb6+t51wSLkxu6tz 2DdB7V88aH+2wtj+y9eWsvjSdfiyVbyZPsTlwftYI+fyvK/1Oe/61+m/V8uyimqdSCdRR5uZ 21a6Rv17JH8t5vi+KeKqzqZZXlTo+0jT5YcycVK/vz5V8KS95t2V9FY/TX4LXmm6N4xtxqLC FvINvZtj5FkYjJJ7Ej5R9TX0lXwZ8O/GX/CV/BnwBrF5ObjV73QLGe+nbAaWdoEMjkAAAliT getfZ3w312TxJ4G0bUZmLzSwBZHPVmUlSfxKk14ef4eU408dqubSz6dV+p9H4W5lLDTxXDdS 0nRbkpxv7yvaV79na3lp0Olr588eav8A2T8Vr+efO1GiI/3fLXpX0ETgZPAr5y/aEuLC51a0 1CylUzlRBIAf9bydrKO+M4z34xwM1/OfiVGnUymnCU0pc6aXWWjTsvK9z+kcHdVG7dD4v/aH v9N+I/8AwU0+EGl+LvKufCKabG9pa3mDbyTEXLICp4JadIkI/i2qDX3xP4f8KxeNtF1+4sNO i8VW8E1pp178sdyYmX95EpBBdcDO3kDGcDrXxP8AGn4R+FfjZZ2MfiFbq3vdPYvZarp0ojur cnBIBIIK5AOCOMcYPNbHwJ+FOifDPxzD4z1Hxt4r8a+I7e1extrjxJqZuFtoHxuVFIyM4HUk dMAV+I5lXeIwmGxFDEzp1aFNw5VFvmd2+ZSTSXNf3766bM9KKtN3Sadv6/yPtjVLefU7O5t7 ZlW6njaOJn6ByCFJ9skV5bY/so+L9Xw3iHx95A/ih02FmB/4ESn/AKCa9Q+F9zdeLJRqrRmP TYifLkIx5z+3qB6+vHrXqFfq/hNlOLy/Lq+MxkbOtJON1rZLfXu2/uufH8Q5Jlud16c8XDn9 mmlq0tfRrseFaP8Asc+BbJxJqUuq67L1b7XdbFJ/7ZhT+teh6D8G/A/hradP8K6XE69JZLdZ ZB/wN8t+tdlRX7q6k5bs48LkmWYP+Bh4RfflV/vep5d8cvgDonxs8PwWlw50vVLMH7FqEKAm LPVGXjchwOMjGOCOc/HOp/sO/FbS9TaOxGl6hb7vluYb0IpHqVcAj8Afxr9F6K82tgqNeXNJ an6JlnEuY5VS9jQknBbJq9vTZ/LY+V/gx+xgdAnh1Xx1qcepahARJa2WmuyxW8g+7IZCAWZe oGAARn5uMev3zar4LspbDVA+q+H5FMa3sZKSQg9BJj7uOm4fL0+6c59JrzT9pPU59J+Bvi+4 tpvIl+x+Xv3bfld1RgD6lWI/GvYyyMMPKOHjFcsmvv2vfozwc7zjF4/nx2Lk5yjFtLySvZI4 6+/aJvrG4TS7DQlie3Ajaa8diHxwCg6kYA+Ynmuv8FfGePW7+HT9XtF0+5nIWKaNiYnY9FOe VJ7dfwr8tvH/AMY/F/8Awtf4VxaE0d9dWltqS/YLu9kgt5/3cfzSEbskAEj5ev1r0f8AZW+K Gqaz8H3XWrqW41OLW78+ZJO0rJmYkIrNztU8D29K/QXlWFxNV4SnRs9feu+nK767/Ft0P5dz TiLiDLav9tUcXz0HyNUnGK0lKacXbVcvI7T+196P1PoqtpzzSafatcDbcNEpkHo2Bn9as1+a tWdj+lYy5oqXcKKKKRQUUUUAedeIf2dvhp4q1J7/AFPwXpM947bnmSHyjIfVtmNx9zmuu8M+ EdE8F6aun6DpNlo9kDnyLKBYlJ9SFHJ9zzWvRWsq1SceWUm16nPDDUKc3UhBKT6pK/3hRRRW R0BWT4s8M2XjPwzqeh6gpaz1C3e3k29QGGNw9wcEe4Fa1FJpNWZcJypyU4OzWq9T8l/j18F9 T8AahfeGPFmm/atLucrDcFD5F5HnIZG7EcHGcqfwNeLeB/g94H8J67b6p9juLu6tX32wvJzJ HAwOQVXpkds5weevNfuFregaZ4l0+Sw1fTrXVLGT79teQrLG31VgRXk+tfs9fDbQtY0nUbTw HazSrccx21vviz1G9NrDGR/sj1NePDKqkpOnRqWTP1Wnxpha3JWzDCqdWGzsn+e2uvWz1R8c eDv2e/Fvxy0O81vQrRbaG2i/cTXxMSXrg/6uMkckc/N90Hgn08n1L4T+M/AOp3Vpc+CdS06e Zz5wXTm2znnJ3KpV+p5BNfsHFEkESRxIscaAKqIMBQOgA7U+vssqzSvlmHjh376jtfdeS8j8 N4tyjCcVZlVzPl9jKpbmUdU7dWtPe7tWu9bXPzd+Av7MnjfxncW0U2gyeC/DKtvmubm3+zsw PURQkAsx/vEBffsf0S0DQrLwxollpOnQiCxs4lhijHOFA7nuT1J7kmtCilmGa4jMeVVHaMdk tjjybh/B5JzyoK857ye78vJf0wooorxz6YKKKKACiiigArwv9r74UX3xN+Gaz6RA1zrOjSm7 ht0GWmjK4kRR3bG1gO+zA5Ne6UV04avPC1o1qe8Thx2Dp5hhp4Wt8Mlb/g/J6n4dar4fnn+K nhnxU14IU0WOWJrZkO5tyuvXPGN3p2rp/AWn/wDCPfFjxZ40bUo5U1yGGIWwQho9iqMls852 +lfp98TP2UPhx8U9Ql1HU9Hex1SU7pb3S5TA8h9WHKMf9orn3rD8J/sVfDXwTK97Z6ZNq+qR qTbS63N58ccmPlJjChGwcfeU191Rz/Bwaqcj5ubmt/ea5b3vtby+R+SYjgzMa18P7WPI4ezv /c5ue1rb82u/lexV/ZF8G39tod54s1OB7c6mixWMcgwxgByZMejHbj2XPQivoasPwzfzNbCx v54ZNUhB81YMlFxjgMVAOMjOBxnFblfIZniquMxU69bd9trdLf1rufp2S5VQyTA08Dh/hj17 t6t/f/kFFFFeWe2FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABUF7ZxahZz2sy7oZ42id fVWGD+hqeimnbUTSasz8gPjR4L1jwJqHizwfdKY75IZ7SNn+VZVdCI5B/ssCD+NeRaR8Prw/ s3XPgcxaf/wkMgYLMSNozc+Z9/bn7vFfsf8AGr9n3wp8cNOjTW4ZLTUrdStvqtoQs8Q67TkE Mmedp98YJzXwn4t/Zr8M+F9akt0+KdpewRsQ8tvpjsUGfUSbDj2f8q+9hnuAqw58bLlk4uDv s07Xt5/kfkf+pWd+1dDJ6LqwU41FZXacb8qlqtNfR+WxjfCS6vdI8D+EvDG37VqttY2uniG2 O/zJVRU2r65I4r9LfBOjJ4E8A6XYXs8cQsLQG5mdgEVsbpGyegyW59K+ev2cPBXwe+HNjL4i tvE667rVvCXbUNUXyTCvQ+RFyOemQXbnAPOK4z4r/GjxL8e/FUPg3wVZzvayPlLVeN4B/wBd O3RVHBweBx1bGPn+IuJqGMpU6GGV4x27t7fcj7/w/wDC/G4HGYnG5ivZSl8cpKyhG/M1ru2+ i00Wp7t41+McOqKmnaAr39zct5cFvEMvOfUjsvfB7cnA4rf+HPwqOh3P9u+IHXUPEUvzL/FH aA/wp6t6t+A4yTV+B/wNs/hJo4kurn+2PElwv+lai44XPJjiB+6gPfq3U9gPUq/Jcu4bf1+W bZrP2tZ/CvswXRRXfz+er1PssbOjCpKjhHemno+r8zzrxX8AvBni65e5n05rG6c5eWwk8rcf UryuffGao6D+zV4H0O5Wd7K41N0OVF/NvQH3VQoP0INep0V9FLJMslV9tLDw5u/Kjz/aTta4 yGGO3hSKJFiiQBVRBhVA6AAdBT6KK9pK2iMwooooAKKKKACvnD9t/Up7PwFoEOCdPn1MC4A6 MRG5VT7feOPb2r6KubqGzhaa4mjgiXrJKwVR+Jrzv4ieDF+Nvhu80C6gNjpLNIhuLmJluYrl MeXLEOhXJIOSMjcO9Z18PUr0JqGmm57WS4yjgMxo4jEK8IvVb6PTbyvc/Im/8U6XN8RfFFii 2+kt4fRbiC51CZQzwPGGZoyQDx9049q9V+AF2uraRoXiS022tnc3AubaxEAiLsJcB3HT5iu7 3BBPpXTfEj9hbxwmvqLvwRYeMYYW229/EIpVZc5AIch1HqGGPrXuvwi/Y78UXOm/avE9+PCE 8CL/AGfa6eY5pYZFxtZ8fIFGOFU591xyS4gzqpQ+rQbTas5Ws7Ws9fPvue3R4F4FweNea4iU ZQTcoU7uSu5Xj7m9obWd092lsfZwIIBByD3pa+am8V/EH4EfL4m0/wDtTw9H/wAxrSkMtsq+ s0P3ofcrtXJ/jNew+Cfiz4f8cWcUtpeQq74AAkDIxPZW4/JgD7Vrh4VcRTlUjB2jvpsfHZtL CZRiKVCriYP2t3Bp72/J+T18jtKK5rxL8R/DnhK5W21PVIobthkW6BpJAOxKqCQPc4q34d8Z aN4rRjpd8lyyjLR4KOo9SrAHHvXQ8NXVP2rg+XvZ2+88ZZrl7xX1FYiHtv5OaPN/4De/4G1R RRXMeqFFFFABRRRQAUUUUAFc/wCOokfw7NK81xAsDpIWtkDt1xypVsjnJ4OMZ7V0FU9YiM+l XkazSW7NEwEsQy6cdQO5rajLkqxl5oT2JNPmFzYW0qh1WSNWAlBDjI755zVisPwZfx6j4dtZ YrmS7UAqZ5FCljnnABIwM44JxjHatylVhyVJRfRgtUFFFFZDCiiigAooooAKKKKACiiigAoo ooA5nXdPm0vUF1TSrKzSaU4vrp2WNvLA4JJByoxyBgnA5roba5ju4VlibfG3Q9KLq1ivbaW3 nQSwyqUdG6MCMEVzugmXQb+XS5LSDTtKQlbFvOBMucHABJYnk5z3IxXZ/Gp/3o/ivv1a6JLY nZnT0UUVxlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU2SRIY2kkZURRlmY4AHqTQ B86/tffEi+0PT9I8I6VMbefWA0l3KpwwgBChPoxJz7LjoTXwB8R/GdxpvxOufBPhrw1d+Ptc 063S51JLS/js4bcMoYJ5zqwLYZflA74BJBA+v/24rcjxDoOvWcySJb24tJgHGVJZnjYDOSD8 wz0yAO9fn1aeJdY+E/xm8W+JP+Ed1XxHpPiOOKRZNHi8+aGVBjayZGBktz6Y6nIr5fF05fW5 qtHVK8U9L7f8Fn73kk/q+RYV4KfIpyaqyUVKS312faMdU7J3Pq/wLe+A/i58BofEHgeS90DV La9ksdV0fVPmuLK7ULvB55UhgQRjr0BDKPrn9k/whoHh34WWd3plqq6rdll1K8c7pZpUYjk9 lxgqo4Ge5yT+aX7NWma34W0bxVq+uQHTL3xNq0upnT92TArEkBsdDlm49MZwcgfqB+zdpx0H 4O6VPdypH9taS8JZxtVXb5ef90A/jW+EdOeMkqUVZLprrpseRxFHF0OG6UsfVlzSndX0bXvN XWnSz12PVqKhtL23v4RLbTxXERON8Thlz9RU1fRNW0Z+NJqSugooopDCiiigAooooAKz9W1y 00SKOS5dgHlSICNSzbnOF4HOKrXuus92bLTovtlykqxXO1wDaqykiQg/ex6Cl0Tw+umyfbLq X7bq7xCGe92lPMUEkfJkgYz29K6Y04wXNV+7q/8AJf8AAsraiv2KVvod1rx8/X0URtG0L6UG ElucSZWQ5H3sAfn+FdLRRWdSo6m+i7dECVgooorIYhAIweQa8M+LfwC8P2elaz4u8NSS+E9a srWa8k/s1Qba62IzFZIOFO7B5XaSTzmvdKiurWK+tZra4jWWCZDHJG3RlIwQfqDXXhsTUwtR VKcmu/mux5mY5dh8zw8qGJgpJ7XV7Puu3yPyj8W/tBXXhXxn8PNtvc61Jr1xqT6zbWdr5tw3 lwq0IhAYYwxJI/ujjpXqH7N/x/vfGHhP/hKrpBZatZa3eWywpH5R+zxyYRHXJ+bbkNz1rD+N f7FXjPwf8QbHXfDuj3XinTdOlmfTLixbdLAsq7WSWIHJYLxuAIPXgnA7L9lz9krxXZXIfWtJ m8KeHhdyX8sN5JvuLmZ23ECMklVLdd2OOB6j9L+u4WpKWIrVk6VnaP8A27FJW9VLTpc/mzEc I4mfJhsLhnDFJx/eW2aqTk5c3o4e8t7W6K/30DkA+vrS1hNfahoUDG9ia/tYYkzPbRlpZHLY P7sEnAznqeB1PNa1veQ3ZkEUgdo22uB1U+n8/wAjX5dKm4q61Xc/qVMnooorIYUUUUAFFFFA BRRRQBzPgq+806pZvqT6nPaXLI7um0pyQF+8390+nbgV01czp195PjXUbKTUfOZ41lS02YKD A5+8cjjqFA55JNdNXViV+85u6T+9ei/ImOwUUUVylBRRRQAUUUUAFFFFABRRRQAUUUUAFYni jRk1C1S7S0+2ahZbpbWPzWQF+ODhgGBwOCcHFbdFaU5unJTj0E1cztD1J9RslNwI4r1eJrdX VmiOTgMATg47ZNaNcrcWx8M699os7JjaXzl7y6lnykJyMnDOAgOSflBycDiuoR1kRXRgyMMh lOQR61pWgk1OGz/q27/4YEOooornGFFFFABRRRQAUUUUAFFFFABRRRQAUjMFBJIAHJJ7Vj3H ie1jubGKFZLkXbtGkkSFkUjHUgccHPPGATVSz0rVtU+x3Oqz/Y5YWcSWtuweOZTjGSRxyD07 HHrXQqLS5qjsv+H6fKwr9i1d+J4FuoLO0Bubm6id7dlGYiQOhYdO34GqsGj6hrQguNWlNvHJ btDc6ZGcoSS2G3BuDgjp3AwRWzpml2mjWi2tlCtvApJCL7/WrdU6sYaUlbze/wDwP8+orX3M HXvA+ieJ/C1x4d1OxS80iePynglYscZyDuJ3bgeQ2c55zXyF4z/4J56i2pvL4V8WW/2JmykG qxsskY9N8YIb67Vr7borza+Hp4h3qK779T3cuznHZVdYWpZPdbr7n+h8YWn7DsHhTwTr2qeK /Gk5ntLGW4jOmwARW5RS25t/Mg4+6Nn1r5ZvfiL53/CLeEvEV9qdgdUvvslitupktJGc/MxU sADzyR+Ir9VfiB4cfxh4F8Q6HG4jl1GwntY3borOhVSfbJFfjJ8ZfB2o614g8NaHq1i6W2ja yW1O1lmaCSNQNrjKkMD/ALpzX2nDWGoYWnVq4eC9reK17Nq/n6vpY/KPEbOczzueHwmY15fV 3zS0skpqLtponbonvfe+p9Q/BG30jQfFniaTwf4p1q38ReFriC21NGCR2szSoZFHl8+ahCkE E8Z4wcEfoJ4V1+PxR4dsNViG1bmIOVBztbow/Agj8K/If9nvSz8M/E/jtbKEwaPrF3atp0K3 LXEjhUZSCWZnJ3Nxkk81+sPwn0C68MfDvQ9OvlKXkcJkmjPVHdi5U+4LY/Cu7PqCjhadetb2 rk1/26r/AHraz8z4fgWpi6eb4nC0pynhVTg7v/n41G9t1Fu8rxTaTXkdbRRRXwp+6BXl/wAa /j3ovwatbaK5ja/1i7UvBYxnBCA4Lsey5yB6kH0JHqFfnN+3lq13YeKvHmopGl/p9z4fn023 nUCVI3Noysg64cMXOOuT6ivaynC08TXftVeMU5W2vbZX6XPkeJ8zq5bgo/V5ctSpJQT0dr7t J7tJHvvw7/ap8V+KbyWbU/BkdroyrvS5ikYMwzgdSecc9Mcda9v0fxCfiDp63GnB7fS3Lwzm dSsjqRghSOhByODjvk4xX4//AAN8Sa/oXxK+ENzqmqQ6jZ2/hCe2t44rA2/2SNoYR5Ujb23t wBuwvQ8c8fqf+zHeT6j4AuruTP2ea/kMBPQqFQEj23Bh9Qa9/MsDSp4WWLp0+Rxkktb7q/pc /P8AhjOc1WdrLMXW9vTnCU72a5HGbju9WmlrfZtcum/q1jYxafbxwxA4RQu5jlmAGBk96sUU V8O227s/bgooopAFFFFABRRRQAUUUUAFZtxoNpNPHOifZpUlM5aD5N74xl8fe7dfStKiqjKU NYsDBW/1HQ4B/aS/boIYC817AgXc+4/KI8k9Me3XkYwde2vIbsExOGIALJ/EuRkAjsanrNud AtZ5xNGDaTGdJ5ZLcBWmKggBzjkYP19CK25oVPiVn5bfd/l9wtjSorCGo6ho6D+0ohcwKks0 17BhViVeQCuckken9M1518W/2h7PwI9vpuj26atrdxCs+xyRFbxsMqz45JPUKCOOcjIzzYhx w0PaVH7vc9HAYDEZnXWGwseaT/Bd2+iPYqK+XvD37QPj+7aS8bT7HUbOL5pYY4GTavswJx9T mvffAPjvT/iFoCanYboyGMc9vJ9+GQdVP5gg9wfwrko4qnXdo7+Z6eZ5Bjcqjz1knHZuLvZ9 n1R0lFFFdh84czq979g8Y6T5moCGK5jaIWhTmVgeoO4f3hxtONvbmumrl/HepJo8GnXkupjT okuQGyoPmAg5H3lxwD1yPUGtvTdb07WFLWF/bXqjqbeZZMfXBrtqwlKlColpa33P0/zMHVpx mqbkuZ7K+r+RdoooriNwooooAKKKKACiiigAooooAKKKKACiiigCpqulwazp81nchzDKAG8t yjDBBBBHIOQKyvDF9PGH0+8tlsGhOy3ieUM8qDPzD5mLDAHzHBJzwK6Cuc8TaZJFcwazYWLX uqQYiCCYqPLJOTtLqrEZOMnvXXRkpJ0ZPR7eT+9LXqyX3Ojoqtp94l/aRzJJHJkDcYn3KGxy Aas1ytOLsygooopAFFFFABVaTUrSKcQPdQJMf+WbSAN+Wa+ffj98ZNUj8YxeAPDMzwXflLLf 3MBxKNwysSnqvy4Ykc4ZQD1z83aF8d/h5N8Obnx7N4iA8KQTCGbVGs7g4kMgTmPy/MPzMBnb 3zX1mFyJVcOsRiKqhdXS627vVaH4/wAR8f1Mpxf1PLsFLESUlGTTaSlLaKtGV5Ozttqna9j9 HKK+f/hz4/vfC2sWWl3tybrSL0IITKxPlFwCjKTyFORkds59c+p2eka5rn9m3er3R0q5srp5 DbWL5SeP+EPyff14PavLxWXSwk7VJrleqfffp+D7XR9hw1xLQ4lwsq1KDp1IPlnCW8ZLp5rs 9OuiaaNW68UWkFxp8UYe5W8lMSyQqWVSMdSBx1zzxgE1TtNL1fVPsVxqdx9gntbhmMNqwdJk 4xkkccg9OcEjua2NL0ey0S2a3sbdLaEuXKIONx6mrlcLqwhpSXze/X5LR+Z9da+5T0zSLLRb doLG2jtYWcyFIxgFj1NXKKK55ScneTuygoooqQCiiigDyv4y/Hax+F0kWnQxxXWsSwNdMs77 IbaAZzLIfT5W4yPukkjHPz14tbwl8bdStbzxRpelahqE9uLhLjSLg213Jb8AOpViJEGQAzKw 6AEZrhP29bjXPDPjvxsYYpJI/EHhuS2tMLnerWzRMi++8Hj/AGh618vfCjXPEvw78a+Etcvt QvtWtbTwX/Zm25t4o0snZ4f9GBjVc42k/Plvl61+j4DC0qVGl7KndySbld6XbuvK3l8z+c+K MTmuOxlflxXs40nJRp2TUnGN4t3TT5n/ADdHpqfp38Nf2WPhfoujx6t4esZ57u4TfbalfTGa WBgf4VPyAgjB+XPUZr0bwt4sbTra50zxLdxWuo6cCZLi4Iijli/hkDHAxj+XNfMnw+/aA8e+ BvCFpLL4DvrnQ7hTdQXclrN5ZVuf9aoIUHqMjvWD41/aYHjvU7rWdXtbbRvDGl6bK15ayP5w ZFBeRi2xST8o2jAIIyMHmvjs1xVPCYqWCxNTmu/dlvbtd9v5kvW2h/RHA+S4zPcmhmFPDqlG K99Ky95JOXKr3d/st6Pqz67s/jH4Jv7z7ND4lsDKTtG6TapPsxwp/Ot3xD4p0vwtpv27U7xL eA8J/E0p7KijlifQV+ZPwj/aI8JeIPEmgW3i3wtrvhfwl4qufsWgeJbp4HSSZs+SLiJGLRB8 cHkEnP3csPoz4YeFP+E/8bTeHrrW7iOwsbdpEaIlpXhDqvlRuSfKUlsnaMnn6j5L61XjaMoq 7dlZ9UfpkuH8rnz1aNeahTSlLmi7tPbl0W/o11vY7rX/AIo+JPidqcug+FdPlROkkaSbSin+ K5mHEY/2FJY4I56Va1L9kjQvF/hGTT/E2p3dzqsmHjurFvJis2H8MUZyCOcEuCT1G3t7R4d8 NaX4S0qLTdHsYrCyj6RRDGT3Zj1Zj3JyTWnX1FDMcVQw8aEJKNt2lZv1f9X6n4zmHDmT4zNa uZOm530ipvmUFaz5VtG+/Vrv1fyF4X/4J46ZpGsrPqfji/1HTVbd9jtrJbZ2HoZC78euFB+l fV+iaJY+G9ItNL0y2SzsLSMRQwR9EUfz+p5PU1eoqMTjsTi0lXm2kdGByrBZa5PC0lFvd7v7 3dhRRRXCesFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfmR+1P471/wAJa/8AGCbTlb/hIWFy lnIU3SRrjCMg/vCPBX6Cv03r5v8A2pf2ZIvibHP4r0S8g0zX7W3JuVuMiG6jRcgkgEq4AwDg ggAHGM15mPozqwThvF3sfb8KZjh8DiatLEvljVi48y6NtW/rvbofmp8EPilB8N/iF8K7z4ce J7/UtV1uGSLxXYyalLdx3cLQgyPcxOxCOrlivC8j8/0l/ZI1SfUtb8WMgItCkDOOwkLPj9N3 5V8i/Az9mbxZ8S7+fVvDtlpunWYmEN1qEzrGCepyFBdjznp1PUV9AfDT4h+JvgXqPiPwbdaV Y3Gow3AL3G7chbau18rgspQqdpIIz2ORW+UZdjM4rp0NoJvV6u7tp5K/9bGvG3EWScF5XWp4 1/vK0oxfJHSHKk05K7d5Wb6u77Js+0K5r4keNrb4c+BtY8R3SeZHYQF1jzjzJCQqJntlmUZ9 68r0H47eIBtuNRsLW7s8/P8AZ0aNl+hJI/A/nWn+0hbn4hfs669c6IWuh5Md8iqOWSKRXkBH qFVuPVa+peV1cLiKUMSvclJJtPTfX0P5/wABxpl2f4PEzymbdWnCUuWStLZ2aXVX7X7O10fI 3ib4rLH428I3vjG6vb7W/GU1xBpjgboIhEEZ0C5xGg3rjAOec5PNd34I+Jela5448VaBoV3d W/iDwktrJevs2IBOm+Py2z83HUY/Ovhn4tf2l408dfC+1MuqwWGn3F35t9pcjxyWiusWGEq/ 6snbjP1rsv2eIr7wD8aPihI02sXem3sVgkGqaxJJNJd7Yzu/fMP3m0nb14AA7V+i3r1cQsNT ilTUuXbTl5Oa1vXS/wAj+eMwyPDVcNPNa1WUsT7JzXva8/tlBST8o68u/W5+tnwz8Zf8Jv4Y jvJdovIXMFwF4G8AHI+oIP4n0rrK8X/ZXguJvAl7qkwKw314xgz/ABIihSw/4FuH/Aa9or8x zSjTw+Nq0qWyf9L5bH9Q8K4nF4zJMJXx38WUFdvd9m/VWfzCiiivLPqgooooAKKKKACiiigA ooooAKKKKACkZQ6lWAKkYIPelrz34++MbjwJ8I/EWrWbmK9WFYIJF4KPI6xhh7ruLfhUTmqc HN7LU6sLh54zEU8NT+KbUV6t2PMPGn7Ren/DTWNR8PeEdPh1iSCcIxaWQwxPj94Wc53FSNu0 H24xWNpn7UHjN5xJNpml3EGctFHFIhx7NvOPxBr5D+MfxXs/gr8EZ/ENtEl74iurqOxsLeYE xiRlZi74OSAqMcdzgZFcpo3xz+LH7MWoeFvFvxC1LR/G/gzU7yOz1jR1sEhmsA4LExSIqlmV VfBYkErjHO6vC+s4rHzjUlNRvot9X+N33P2LFZdkuRUqmH+rSryppOcmtk/mrJ2dkrvu+p+r Hwz+Lek/Eq3kSBGsdUgXdNYTNlgP7yn+Jc8Z4I7gZGe3d1iRndgiKMlmOABXxH4k8T2vhjx0 useGLqW2gSQtHJAV3+W3BAyCOVJ6g13kel/ELx26va+CJkjY/Le+NNQd9nofIyNvrjyiK2o4 6TTg480l2/4Y+fzHhahTlHEwqqlRmrpSaun1WrV/ld+XV+9XnxN8NWszQR6pHf3I/wCWFgDc Nn0OwED8cVyniD46WuloxW1hsVH/AC01W6WJh7+Um5z+lczZfs++K9bhEfibx7La2h+9pvhy 2S2iX2DEYP8A37rrPD/7N/w/0B1lfQ11i6HJn1iRrsk+uxyUB+iivrcvq4JUufGQk59v+DfT 8T8Q4lwOcTxvsMlxcI0bays3K/Ve9HVfKPq9z4q+MPj/AE6H4jS+KtE1sX2p37Mb1YUKRxYV VXy8ndjAI59Pfj87rHTtZP7KOpXi+LbuPRxeqH8PCBPJdvtCDcX+9nOG/Cv3Q+Pf7NWh/Gnw 9awQNHoWsachSxvIIRsVDyYnQYymeRjlTyOpB+PJ/wBh34wabqpgtYNMurfdgXUV+oiI9cMA /wD47X1yxuBzCkozn7PljKNn0vazuuVNK2x+ZrJM0yOtJ06ft+acJuVk7uDk2rNScW3L4lqu j7bnhTxRe+KbHw/p9rKTf3EVvbW5XkhyFVT+eK/Qqvnv9nX9lo/Cu5TXfE2oQ6x4jClYUtgf s9pkYJUsAXYjI3EDAJAHevoSvK4hzKhj6sI4Ze7BPXu3+mh7/AnDNbh7D16mJ0nWknbsle1/ PVhRRRXyZ+oBRRRQAUUUUAFFFFAHH/E74TeGfi9oQ0rxLp4u4kJeCeNik0DHqyOOR2yOQcDI NeO+Fv2B/ht4d1mO+uptZ16KJxIllqNynkZHTcI0Ut9CcHuDX0lRXZSxmIow9nTm0vU8yvlm CxVVVq1KMpLq1/V/mMhhjt4UiiRYoo1CoiDCqBwAB2Ffnf8Aty/C+80nxf4gnnjlHh3xZbug uYxwkjR7JUJ7NnLjPUHvg1+idZ+u6BpnijS59N1ewt9TsJxiS2uoxIjfUH+favHxWHWJhy3s 1qj7bIc4lkuJdXl5oSTjJd0/6/Q/EDQvB/ijWbbwb4f8Q61o58M+F7yC7gNmkourowAiFXDf KgAODgmv0s/Y58KX15cal4xuo3jspYDZWbOMedlg0jj2GwDPclvSut1j9lP4UeHpYdZg8M2l r5Fwjyi5knuIWUnBXy3l2DJI5IwMdK9xtYIbW1iht4kgt40CxxRrtVFA4AHYAdq5aWX1IzjX qyVleyXfrfQ+nzLinC1MDUwWApSTqWUpTd3yraK1enT7927ktFFFesfmoUUUUAFFFFABRRRQ AUUUUAFFFFABRRRQAUUUUAFFFFABXEfG/V/7C+D3jO9B2smk3KofRmjKr+rCuo17WLfw7oeo 6rdEi1sbaS6lK9diKWb9Aa/OD4o/Gy28d+NPD1p468QXdjZ+JYbua1hiv0gsbCOEr8jK38R3 jDHJO3mvby3LvrsnOpJKEWr3636fP8D43iPiNZDSXsoSnVkpOKj0UVdy+W9up9Y/sS6X9g+C MFwVw17eyz59gET/ANkNfA37bXim+0jQPjbo99GDcahqBDPIuWCC9R02+gKhce2K+rf2QvjH Y3Pw68Faho814PC+seZAtlqLq88DLcSQ7yV+UEsm75eCrevT0r9ov9kzTPjZdDWtNvxoPiVU EbztHvhulAwokAIIYDgMO3BBwMepThh8sqVKS92jWi1F6uyf46f5HzEszxfGdGOKqXli8LVX tYysnKUbPRr3dbadtV01/Pr9nfxt4t1L9pLXbzWRpt9eHwKsLHRoJUiS2S8VssJGY7gwOSDj GPev0q/Zpu5tT+HdxNMC1vJfyiHd0KbUBx7bt/614P8ACb9h/wAb+DvFNpqGpeNbHT7S2fdj R1kkmkXuuXVAufX5selfTHhq6PgSSHw9fQLDZDcbS5giVYmGSxyFxtPJJGOOuSDkdOYYnD1s LLDYZ88nLmb1v1b9Wvy6Bw/w3VoZlTzbERdNwg6ahpZrSzVtlvdNb2aZ88fHH9hDTtYm1LX/ AAZqq6I2x7iTSJ4i8BYAsREwOUBx93BHPGBxXjv7JvwAtPi7rNzNrutTx6dYKsrWFqMPcDdj aZCflHTOBk54I61+kLKsiFWAZWGCD0Ir4m/YnL+G/in4h0KTOEjubcZ/vJKn9Aa8/D546WFq Uq9Vqo0lDve+qv6dz6DFcFzx2OpYrAYZSowblWWlkraOzffou3mfaOmaZaaLp1tYWNvHa2dt GsUMEQwqIBgAD6Vaoor5htt3Z9wkopJLQKKKKQwooooAKKKKACiiigAooooAKKKKACvPvj54 MufH3wj8R6PZIZL54BPboOryRusgUe7bdv416DRUTgqkXB7M6cLiJ4SvDEU/ig016p3PxI+O 3hK6+JXgOTRYZRDf2tyt3bCY7R5ihlKk9shmH1xXIeKIfiP8frHQfC2v+HYPDek2l1HcalqJ vEk89lUrmNRyMhnwBuGSMsB1/VP4/fsd6D8Q7i+8SaLe/wDCOayytPcoIvMtrlgMlioIKMe7 Dg9SMkmvCPB/wRn+MkOl6Jpd7baJLBG11JdyQlyIl2qQFGMnLqcEgcda+VdKvhZRpJJu7cX9 3n+Z+908flme0auPnUlCNoqrFW1Su0m+VvurxabTsyh8ONGufiB4z0bQbVS6zTKJCvIjhXl2 PsFB/HA71+jNea/Bf4D6B8FtMkj09pdR1W4ULc6pdAeZIOu1QOETPO0e2ScCvSq9nAYWWGg+ d3kz824tz+lnmKgsNG1Kmmlfdt7vy2Vl5fIKKKK9Q+ECiiigAooooAKKKKACiiigAooooAKK KKACiiigAooooAr38L3FjcRJK8DvGyrLH95TjqPeq3h+7+26Nayn7Rkpgm6jMchI4JZT0zit GsfQo3tbrU7YpdlFn8xZrkgh9wyQhAHA98n1Nbx1pyXbX9P8hdTYooorAYUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFAGb4l0OHxP4c1XR7hikGoWktpIy9QsiFCR+Br8hfi58I9 V+H3xa0r/hMLFWTR47mGG3ubQS294km0CWNm4IG0HoTzg4IIr9jKrX+m2eqweTe2sF5DnPlz xh1z64Ir2cuzJ4G8XHmi2nbzWzPls7yKGb8s4z5JxUle19JKzX3bNbH5zfsJ/C/VrnTfDWgW jT3vh7QZmnutWeAwxNmZpfKUZILEttwCcDJOK/SKo4LeK1hSGGNIYkGFjjUKqj0AHSpKnMcx lj5QXLyxgrJdl69S8jyKjksa0oy5qlWTnOVrXb8lolv97CqWsaNaa7YvaXsQlibkf3kYdGU9 iOxq7RXlRk4NSi7NH0x87fE/456v8HZn8LWEFvrutNGJLe4mkOy3jP3TIvXdx93d78AgV83/ AA7g8bad8SLzxJYXUNvf3sss8jW6At5khJbapUrjk8H2qD4n/EeTw/8AEP4l69eW6317ZzX7 QwT5wTCHWNT9Aij8K+O/DtnqcvwLufjIvjbxBa/EaJ5NSt9Tg1F0SIx3BQQiMfLtIU/L0yQP u8H5eviJY+u61WXKk0lZde/q7Xf4H75hsHTyDBLDYWgqlSdJzm29GlbmWz0XMklbXdn68fC/ 45X1/rkXhzxdAlrqMp2W94i7Flfsjr0DHsRwemB39sr88IvjdefF/wAGeEPF99DHZa5eaVaX Vy1uNo88xqWZR2+bJH4V+gulXL3ul2dxIu2SWFJGX0JUEivTwdZzlOlJ35XufnnEmWU8NSw2 PpU/Z+2V3HomrPTyd9uhaooor0z4YKKKKACiiigAooooAKKKKACiiigAooooAxvGU/2bwfrs 3Ty7Cd/yjY188/sqaW9p4kMx5T+yZB+JliP9K94+KEvkfDPxbLnGzSLts/SF68i/ZniMeoyj qF04DP8AwNf8K9ahllDE4OrjKl+ana3z3Pkcy4vzHJs2wORYS3ssW5e0urtqMXaz6W1PoSii ivJPrgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArFnh+y+KLe5W2kYXMJ hkuDOAiY5UbCeSfUA1tVh+LYZBp0d3Bbw3F1aSLNH59wYUXB5LMCBgDnB446HFb0NZ8vfT7/ AJoTNyimxyLLGrowdGAZWU5BB6EGnVgMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii igAooooAKKKKACiivIfjt8Wj4S0+XRdJnCavNHme5U/8ecRHXP8AfI6Dt19MlpcrcYt2V9C6 ahOrTpTqRhztRTk0ld+v5bnyh+1p4QsY/iX4g1bQbiO6tZNr6hDxtjuCCJVU/wAXTLDsWYdj j4rj+C+gkS6a+s65B4ZlnFzJoMN3i1Zs5xjGQuQOM5465xj9Yf2ffhAY1g8W67bYldc6ZZTD mJD/AMtnH99geB2Bz1PHpV18Efh7fagb648EeH5ronc0j6bCSx9T8vJ9zXztPB1ql60Xy82t j9ixvEWXYNwy+rTddUVy811q7Wa81or6tPbW138U/s2fCu7+KmsWC29i9r4Q04otxcbCsRRM Ygj9SQAOPujk9gf0LAAGBwBUVpaQWFtHb2sMdtbxLtSKJAqIPQAcAVNXqYTCRwsWk7t7s+E4 g4gr5/XjUqRUIQVoxXTv83p9yCiiiu4+VCiiigAooooAKKKKACiiigAooooAKxfGXizT/Avh fUde1SQx2VjEZX2/eY9FUe7EgD3Irar56/bkubm2+DEHkFvKk1aBZ8dNmyQjP/Awn6V24KhH E4mnRk9JNJnlZri5YHA1sTBXlGLa9eh5L4n+OOqeOr2A61q8WkWOoyGKy0kXAiSUcDYASDK3 zDPXr0AOK2vDGtHSdXeDRtYit9ZhhE8lpb3K+eIsj5mizkpkjqMcivgn9pPx7qWqeJfgbBo9 vayanpWqXD2qXJKxySs9sVDsOcZUVvfA7x94ptv21tX1LxXbafZavL4Sa1eLS5Wkh8oyQleW 5zxzX6dVr8k3g8PRSipKPk0482vn5M/k3F5BiMelnmMxk+f2dSpo/fUozcUoq9+XrdWtsj9Z fhd8Q/8AhNtPlhulWPVbTHnKvAkU9HA/QjsfqK7ivlz9nzXX1D4n7ISdj2kplA/u5U/z219R 18HneCjgcY6cFZNJ27XP3/w+zjF53kVOvjnepFuLf81rWfrZpPu02FFFFeAfpAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVbUbOPULG4tpYknjlQqY5Put7GrNFNNxd0BmeG5 GfRrZHS2ieJfKaK0bdHHt4Cg+wxWnXmunfFTwnofiLV9KfWtKVVm3JFpsbyFHP3/ADmRSqvn HBOeDn0HoGm6paaxaLc2NzFd27dJImDD6cd/auvEUKlN88otReqdnbXU8+jmGDxFWWHpVoyq R3ipJyXqk7otUUUVxnoBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcV4h+MXhX w3fvY3Goi4vYztkgtEMpQ+jEcA+xOa5n9qD4i3fw2+FN1d6fKbfUL+4j0+CdTgxFwzMw9CER 8HscHtXwlrvxy0b4ZfFLwh4W1O802DStX0p9RutYvbwQLbyBmAjO7CknaOp719VlWVUMRReJ xc2o35Ul1fm+iPyvi/ijMcrqfUsmoqpW5XN82yilfRJpt2V/0d9PvXxV8edHs/Dcs+jO11qs h8uGCaJlEZI++5IxtHoDycDjkjzr4PfDeb4iaw/iTXd9zo8U5kXz+uo3APLN6xqe3QkY6Aiv BPg38a9O+NumeN5Yba1gttC16fSLWe1ufPjv7dfuXAbGPmBzgZGOhr7q+F+rw654B0W6ghjt 4xB5PlRKFRTGShwB0GV6V6OIdPLcvc8Cn+8dnJ7pdl66/wDD2t8TkGJx3FXESw/EfKp4WKnG nD4XJ296Wr1jeOn5ap9TRRRXwh/RQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcv8Tf AFj8T/A2reGr9jHDfRbUmUZMMgIZHA74YA478jvXUUVcJypyU4OzWqMqtKFanKlUV4yVmu6Z +Ofxu+A+rfD3xrpf/CXaTPFdaRcmfTr6Nm+zTnKnejDhvuqcHkdwKzfCmnW+ofEhdfsNNvL3 xTd24sES2DytImQdqxrnJ+UdBX7LX1hbanbPbXlvFd278NFOgdG+oPBqno/hfRvDxc6VpFhp hf7xs7ZIt312gZr7GlxG4LmlSTne9/NKye29tD8yr8EKpLkhiGqdmrdVFu7jvazeux5F+zD8 HtS+H+hz6z4ijEOv6kir9lyGNrDnOwkcbmOCccDCjsa9xoor5fGYurjq0q9Z3kz7/Lctw+U4 WGDwsbQj+PdvzbCiiiuM9MKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArw/9rjx /d+CfhrBa2E72lxrN4ti9xGdrRw7WaQqexIAX6Ma9wryj9pf4SXHxg+Gc+m6cUXWbOZb2xDt tWSRQQYye25WYA9M7c8V6OXTpU8XTnW+FNXPEzuliK2W16eF+Nxdrb/Lztsfm54j/a40P4Sa t8R9BT+zGufD0dsNCgkWUf2k7wq8gfHTDNjORX2z8E/iBHH4i8PvaS/6JrlvD59uD8qu8YYY +jHGfTNfnvqPwh1SDxD4z8K6naanYar4sMMFza3CCJ4zGu0bN4AIIGcnIPavuX9k74Q+I49d s9T1u0kstH0JPItmlYE3cqrsBXHVV6lumQAOjY/RMRb6vWq42peLi1Fd3eVvV25dVb8Ln824 XJ6SzfBRyem4YiM4ym7u/KowU+zUXLn5k73b31SPsSiiivyo/q0KKKKACiiigAooooAKKKKA CiiigAooooAKKKKACiiigDx79qz4d33xH+D99a6XE1xqenTJqNvAgy0pQMrKPUlHfA7kAd6/ J/VNBfVPi5oXiHU47K80rTrGWzltb1N7FmLY+QqV4z3Ir9odbnk1aVdMt4DdWc+6G7mhlUNB 27kH+90DcjBArzvxv+yR8M/H84u9S0WSLUT/AKy+s52hlmPdpAPlZj3YrmvrMuzKGCoqliFd c3MrdLd/8j4LPuHquYV3i8JJRm4uDv1TTV0+js7f8Mfm5+z5pN54G1DxZawfZrj/AISHXpb3 T7LTQxKpIcRx7Now3QbVyPQ1+rnwt8MT+DvAGjaTd4+2Qw75wDkCR2LsM98FiM+1c78Mf2b/ AIf/AAjuvtvh/Q1XUsFf7Qu5GnnUHrtLHCZHB2gZ716bWWa5vHGUYYShG1OOuu7f9NmfD3C7 yrGVszxUlKvUSjpskrfe3ZX9Aooor5g/QQooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAOT+K vh4+Jvh/rdpHCs14tuZ7UEZ/fR4kj/8AH0WuX/Z+11NS8M3Fsj7ljZZ4yT1R14/VSf8AgVeq V89/Chz4K+KmpeHWOyBLmazjQ8AIR5sH5Rqg/wC2ldqx1OjhJYWovia5fJ9fwPDlw3isxzej m+Ekl7CE1UT3lB7W9Jan0JRRRXEe4FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWLr+s m3YadZ3EMWsXCFrZJjhTg89j6HscVc1rVU0TTpLuSOSVEKgiNSxGSBnABOBnniquhaZNCrXF 3cteySOZITNFteFG528k89jjA4HArppxUV7We3Tzf/A6ifZE2jaPDpkckogiivbnEl08OcSS Y5P5k9h16c1pUUVhKTm+aQwoooqQCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvl/ 4yeMdK8LfGNdQsblby4SKBrqG2IZo543zhj0yVSJSM5AB9a9i+O/jS58AfCjX9Zsm2XscSw2 7jqjyOsYYe67t34V+aPxO+JeoeHtZ8E+E/CTWdx4s8TPPPPfaoryQ2cMY3M5CkF3bDEc/wAP Oc14uPqtyjQhvvftb+mfpvCeX040amZ4lvkv7NRSu5OVtPvaS7t76H6P+Ev2hfCfiu9js/Mu dJuZTtjXUI1RXPYBlYj8yK9Nr8yfhT8aoNctPH3gXx9ZadbeMvCawXlvrOjh1t9RtJF3ZaNi Sjrlc4ODuwAMc/cf7NfjxviB8LLK9eZrl7WVrTz2+86qFZSfcKyg/SujD4ibmqdRptq6aPIz jJ8PSwzxuCjKMYzcJRlumuqfbp6nqdFFFekfEhRRRQAUUU13WNSzsFUd2OBQGw6ikBDAEEEH oRS0AFFFFABRRRQAVFPcw2se+eVIUyBukYKM+mTT5JFiRndgqKCST0ArmpIv+EvuyksUV1oG 1ZI5UleOQSDtgYYdfXGD05ranTU9ZaRW/wDwPMTZJo9nNq+oprN7b3WnXUIa3W1d12OvPzYG T/ER1GcZx0ro6QAKAAMAdqWlUqOo77AlYKKKKyGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFAHGfGPwK3xJ+GmveHomVLm6gBt2Y4AlRg8eT2BZQD7E1+RXxU8Dar/wAJbpl0 bqXw14u8NTyJG9xb+YFDDDxSISMgjuD0JxnNftRXin7VHhDwbP8ADHXfEuv+G7LVtRsbdY7a 4cNHKru6xx5dCrFQzg7c44NcNXATxlaHsXab0XZ30/U+vyjiejkeDrUcdByofG7aOLjZ3Wq/ lT3TTSsz8wfB3hyTQZvEut6hqx8Q+K/Enl28skUHlIiKNqRxoCTgDHOecL+P6d/s8/CiHQfh R4dhudTlOpR+XcXB0+5XYrKWZYjjI43/ADY5Jzzivzfk+IXh/wCD3xd0e31C90+0spdAbWWn urgoPN814xbLlT87Bc5z0J44r7B/Z8+NsOv+HPBfjOxhbTINfgje80oz+cIgzlSu/au4jG4H aPT1z9VgOHauFdRqvetZrlina0baO6XbTS35n5TxZ4u08RPDUMNl7hgHKLdScl7Rzm5apXld LVz95v0tZ/T/APwiuvWNvtsfE00kiwOi/bYhJukZ9wcn0A+UDH+FTB/Ftpc4MenX1u08SBgz IyxY/eOR0znoBn/DqKK894qUvjin8l+lj6XlOSj8YapbRxtqPhu8gzHLLI0BEojCE7Qcd2GO B61J/wALJ0WFJTdvNYNDDFNKtxCwKCQZUHGefb2rqaZNBHcJsljWRMg7XAIyORR7WhJ+9Tt6 Pz87hZ9ziPiV8WtI+H3grWdb8+G7nsT5KWofBediAieuMkEkdgT2r441H4wya/8AEbSdB8Ua ncT+ItYsW1W0t2jbyFtwxUlP4VGVIx14zzX0J+2D4HTUPgtql7pdhGtxY3aalP5EYDOvKyMc dcBgxJ7Lmvy58WWmpeOvjp4bvLu/1rTNOs9De0Op6RdvbSRt5jkRiReQDnp3r7fI406WG9rh o3nKai77peT6d7n4Vx9h6maYr6jiajhRjTlJW2ctbNr7W1rfduffnwc+M9vqmiy+JPCGoy3e kWuozaZdW8yNGjTRbfMXa3++MOP8a+u9H1WDXNKtNQtjmC5iWVM9cEZwfevx9/Zw8S6n8Kfh Hrdhfw3KSP4guZ4orxj5s6OYwHz3JCk574NfW+l/Gj4r/DPRreG88IazbabEgMYuNOM0Cg88 yquR16E1WPyuWNoUqspRjWervpdf5o8PhXMqvDOOxeDpwqVcFFpRtabjJWu9WrRlrouq9Wfa 9FfKHh79uKO4jQahpVlcSdHFtcNAVPoFcNn8xXYXH7Ynhr/hGtQvY9L1K3voYj9nhuUQxTSY +Ub0c4GcZJA4r8zxFelhq06FSS5o7n9XZfkeZ5nhKOOw2Hk6dVJx2vr3V7r5ns/iPxfonhG3 WbWdUtdOR/uefIFZ/wDdXq34CsbRvjD4M1+6W2svENo87HCpKTEWPoN4GT9K/Pz4sfFSDwro LePfHmpzTG/uPIgVFMktxL1EUSDsB24AHpWr8APiL4L+O2vah4RUav4Q8awWjXtvofiewNpP dwqMs0XzMDgc4yDjJAIBI8qGNxFZ3pU/d8z7jEcMZRl1P2eNxb9rpfltZN+Vr7+auffeo6nL q+qvpWmXiW93Zur3KypuDRkdsHP8QIzwcHqM1u2Vjbabbrb2lvFawLnbFCgRRnk4A4rwr9nb 4h3j6ndeDtVna4eCMyWU0jZYKpw0ZPcAHI9ACOmK98r2qeKjiaUXBWXbz6/8A+BzPLauVYqW Hqu/VPo09n/XUKKKKo8oKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr k/it4FT4l/DvXfDTyiBr+32xSsMhJVIeNj7B1Un2rrKKunOVOanF6p3XyMq1KFenKlUV4yTT 9Hoz8Z/HHw5134a/FW9uvEdvd6XqP9jyaL9nki+Ro2k3+aj5w4z0xx719A/sT/CjV9asfDOm QQ3T+FNB2GbVLiIxpPsbcI07MxPBx0GSewP6IXdjbX8YjureK5QHIWZA4B9cGpURY0CqoVVG AAMACvrXxHUjTkqdNKbTV7997L+rH5v/AKjYapWg8RVc6UXFqNkvhvy3fld9Fe46iiivjz9N CiiigBk0MdzDJFLGssUilXRxlWB4IIPUV8m/Ev8A4J86F4l1ebUPCniCXwykrF2sJrf7RCpP aM7lZB7Hd7YFfWtFdeGxdfCNyoytc83G5bhMxio4qmpW27r5rU+Zvg/+w54e+H+sWmseItXm 8XX9m4ltoJIBDaxOOjFNzF2HbJx7V9M0UUsRiq2Klz1pXZWCwGFy+n7LCwUV/W73Zg+IfAPh rxaCNa8P6ZqpIxuvLSOVh9CRkfhXzh+0t+zx4O8J/Dy71/wxo39napBPEWiguJGWSMuFYCJm IyNwPygcA17X8cvipH8JPA8mqKiTalcyraWML/daVgTlv9lQCx9cAcZr4/uviPBfePdO0fxN rjT+LdWtTf29rcbi8kGW+ZeNqrlG4GOnAr0sFw9HNqMqtaShF6J2u2/I+ezrxLxPA9emsDTl WqR99wUmoqK1fNZPT5aLVtaX+QP2kdUvrXXvhdr2p29yfD/hvVfMvsxMywB3hKyFf+2bfjgd 6l1L4h2vxE/ak+HOoeDr5dRHh2Caa+1Ozz5aROGAQt75Ix/00x64+1tO1Dwv8RI/EumabfWu sTaHMtlq9qqEm1kfftR9wAOfLfpn7pryrwp+zb42u/EN3p/g/wAPQyaP5+P7QAjtoFyAfnPG WAIyACfQV89mmR1MrpQrYaXtYq8U1pZvutfk7+vS/wCicCeKGB47x9fA5vR+o1ZezquEveU4 wtrCb5LX0vFxbs24t629p/ZqmufEHxnsLmPLJawTzzsOymMoM/8AAnWvtKvMPgT8FLb4O+Hp I5rhdQ1282te3irheOkcYPIQZPJ5J5OOAPT648BQnQo8tTd6nv8AFma4fNsydXC/w4pRT72u 7/e3byCiiivRPjQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKAPlL9vyG6i8OeD7+MN9kgvZo5D2EjIpTP4I9fnD8S/EviPxv +1D4Mk0nxKfDWq2/h1reLUjZx3flIrzkr5b4U5BI9s1+0vxI+H2lfFHwdqHhzWEY2l2vEkfD wuOVkQ9iD+fIPBNfnL8SP2NfiP4F8Rtdaf4e/wCEnhjylvqulxiSQpzwU/1iHnkYI5OCa+5y rF0KuFhhKsuVwlfe11e+jTTT9GfkXEWVYqjmNXMaFP2iqQcdlJJuPLrFpprZ6pp6pnlX7HXi TU/Dvjz42Wup6t/bF/carbfatQMCwfaXU3GZPLX5Vzk8Dpmv0m/ZXnmvvDWt3Zz9me8CRnsW VAWx/wB9LXyN8If2T/iV4k1dmufDyeD7G4cNealfxrFK/v5Q+d25OM4H+0K/QzwT4O0/wD4X sNC0xGW0tE2hnOXkY8s7HuSSSfrxxWua4zCUMuWBoPmm3dtdFe/37I8vhzh7F4jiF5/iYOnG MFFJ6XfIoaJJWjo3oklokblFFFfAn7iFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAf/9k= ------------0EE1741282CEA6358-- From owner-chemistry@ccl.net Tue Dec 20 15:23:01 2022 From: "Close, David M. CLOSED**mail.etsu.edu" To: CCL Subject: CCL: [EXTERNAL] CCL:G: Adding many explicit water molecules to the model Message-Id: <-54831-221220150400-8066-B9IqUzRrEs1IkdhyOR9K/A^server.ccl.net> X-Original-From: "Close, David M." Content-Language: en-US Content-Transfer-Encoding: 8bit Content-Type: text/plain; charset="us-ascii" Date: Tue, 20 Dec 2022 20:03:45 +0000 MIME-Version: 1.0 Sent to CCL by: "Close, David M." [CLOSED===mail.etsu.edu] Grigoriy: I have looked at your figure and see things that don't look right. Your picture can't be rotated, so I can't see how far some of the bonds are apart. When you made this drawing did you go back to Chemcraft and try an optimization? Also I would try to use just a few waters and see how they respond. Try just three of four waters and perform an optimization. Then one at a time put in more waters, with each new water try an optimization. I bet that you can get the number of waters that you used, but they will be in different. Regards, Dave Close. -----Original Message----- > From: owner-chemistry+closed==etsu.edu..ccl.net On Behalf Of Grigoriy Zhurko reg_zhurko_-_chemcraftprog.com Sent: Monday, December 19, 2022 4:16 AM To: Close, David M. Subject: [EXTERNAL] CCL:G: Adding many explicit water molecules to the model I need to compute the pKa values of some carbon acids and phenols, and it is a common practice to add 1-3 explicit water molecules, bonded with polar groups of the studied molecule, to better take into account the specific solvation effects (in addition to CPCM model). I tried to add many water molecules (14) for better results - see attached picture. The results are interesting. At one side, possibly very big error is produced by the existence of many local minimums with different numbers of h bonds. How these minimums should be named in paper - maybe "conformations", "configurations", "geometrical configurations", "local minimums"? Then I found, that if the computation of different acids is performed with same geometrical configurations of 5 h2o molecules bound to -COOH, and with same configurations for neutral molecule and anion, possibly the results are quite good (a common correlation can be obtained for carbon acids and phenols). So I want to publish these results; but I need to read more works when this approach (adding many explicit water molecules) was used. Can you suggest such papers? By the way, using my program Chemcraft is important for such jobs, because the "Structures merger" utility in in allows one to transfer several H2O molecules in same configuration from one acid to another. Grigoriy Zhurk From owner-chemistry@ccl.net Tue Dec 20 16:41:00 2022 From: "Christoph Riplinger riplinger:-:faccts.de" To: CCL Subject: CCL: Adding many explicit water molecules to the model Message-Id: <-54832-221220164002-9292-G9De3jDuegmxgWKl6f1fqQ(-)server.ccl.net> X-Original-From: Christoph Riplinger Content-Language: en-US Content-Transfer-Encoding: 8bit Content-Type: text/plain; charset=UTF-8; format=flowed Date: Tue, 20 Dec 2022 22:39:38 +0100 MIME-Version: 1.0 Sent to CCL by: Christoph Riplinger [riplinger]*[faccts.de] Dear Grigoriy, a recent example can be found here: https://pubs.acs.org/doi/pdf/10.1021/acs.jctc.1c00582 There you find a comparison of different approaches to compute EPR properties of a pH-sensitive spin probe, including explicit solvent (which was crucial): using snapshots from an MD, QM/MM, CCSD, EC-RISM, and CPCM. Best, Christoph On 12/19/22 10:15, Grigoriy Zhurko reg_zhurko_-_chemcraftprog.com wrote: > I need to compute the pKa values of some carbon acids and phenols, and it is a common practice to add 1-3 explicit water molecules, bonded with polar groups of the studied molecule, to better take into account the specific solvation effects (in addition to CPCM model). I tried to add many water molecules (14) for better results – see attached picture. The results are interesting. At one side, possibly very big error is produced by the existence of many local minimums with different numbers of h bonds. How these minimums should be named in paper – maybe “conformations”, “configurations”, “geometrical configurations”, “local minimums”? > Then I found, that if the computation of different acids is performed with same geometrical configurations of 5 h2o molecules bound to –COOH, and with same configurations for neutral molecule and anion, possibly the results are quite good (a common correlation can be obtained for carbon acids and phenols). So I want to publish these results; but I need to read more works when this approach (adding many explicit water molecules) was used. Can you suggest such papers? > By the way, using my program Chemcraft is important for such jobs, because the “Structures merger” utility in in allows one to transfer several H2O molecules in same configuration from one acid to another. > Grigoriy Zhurko > https://chemcraftprog.com -- FAccTs GmbH Rolandstrasse 67, 50677 Köln Amtsgericht Köln HRB 88406 Geschäftsführer: Dr. Christoph Riplinger https://www.faccts.de | https://twitter.com/faccts_orca From owner-chemistry@ccl.net Tue Dec 20 21:43:01 2022 From: "MINKYU PARK minkyu.park^simulation.re.kr" To: CCL Subject: CCL: Webinar Eco-Friendly Materials Simulation and Machine Learning Message-Id: <-54833-221220214218-22256-3C5naArYriOXZuSTbGWAww-x-server.ccl.net> X-Original-From: "MINKYU PARK" Date: Tue, 20 Dec 2022 21:42:13 -0500 Sent to CCL by: "MINKYU PARK" [minkyu.park()simulation.re.kr] Dear colleagues, Virtual Lab has successfully finished katalitic wordshop/showcase on Dec 3- 5th at Georgia Institute of Technology (6 Invited talks and 4 contribution talks). More details about talk related to the eco-friendly energy materials and machine learning of this workshop listed below. 1. Finding the needle in the haystack: Materials discovery through high- throughput ab initio computing and machine learning G. Hautier (Dartmouth College) 2. Machine learning functionals and force-fields with multipole features A. J. Medford (Georgia Institute of Technology) 3. POLYMER INFORMATICS - Forward & inverse problems, Pranav Shetty (Georgia Institute of Technology) 4. Accelerating the High-Throughput Search for new Thermal Insulators with Symbolic Regression Thomas A. R. Purcell (FRITZ-HABER-INSTITUT) 5. Multiscale Modeling of Multicompartment Micelle for NanoReactor: Revisiting Flory-Huggins Chi Parameter Seung Soon Jang (Georgia Institute of Technology) 6. Designing Elastomeric Electrolytes for Sustainable Batteries Seung Woo Lee (Georgia Institute of Technology) 7. Enhanced Oxygen Evolution Reaction Activity by Self-reconstruction of Nickle Nanoparticles on Pyrochlore Oxide Support Myeongjin Kim (Kyungpook National University) 8. Design of Metal-doped 2D Materials for A Superior Oxygen Reduction Reaction Catalyst: from Density Functional Theory and Data Analysis to Experiment Byung-Hyun Kim (Korea Institute of Energy Research) 9. Machine Learning approach in designing catalytic entropy alloy nanoparticle Yongjoo Kim (Kookmin University) 10. Energy/Catalyst Materials Simulation Platform katalitic Minkyu Park (Virtual Lab, Inc.) All recordings will be released by katalitic platform. PLEASE REGISTER KATALITIC (katalitic.io) platform (FREE) if you are interested in these talks. (ALL RECORDINGS ALLOWED ONLY KATALITIC REGISTERED USERS.) Users who sign up for katalitic by the end of this month will receive a "1 MONTH FREE SUBSCRIPTION". REGISTER KATALITIC HERE : https://katalitic.io/signup With Warm Regards, Virtual Lab From owner-chemistry@ccl.net Tue Dec 20 22:59:01 2022 From: "Professor Doctor Vitaly Vitalievich Chaban vvchaban(0)gmail.com" To: CCL Subject: CCL: Adding many explicit water molecules to the model Message-Id: <-54834-221220165425-16394-/W6zokgh1+wZ8/FT8mSVJw**server.ccl.net> X-Original-From: Professor Doctor Vitaly Vitalievich Chaban Content-Type: multipart/alternative; boundary="0000000000002e776305f0497a2b" Date: Tue, 20 Dec 2022 23:53:40 +0200 MIME-Version: 1.0 Sent to CCL by: Professor Doctor Vitaly Vitalievich Chaban [vvchaban!^!gmail.com] --0000000000002e776305f0497a2b Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable ------------------------------------------ On Tue, Dec 20, 2022 at 9:50 PM Grigoriy Zhurko reg_zhurko_-_chemcraftprog.com wrote: > I need to compute the pKa values of some carbon acids and phenols, and it > is a common practice to add 1-3 explicit water molecules, bonded with pol= ar > groups of the studied molecule, to better take into account the specific > solvation effects (in addition to CPCM model). I tried to add many water > molecules (14) for better results =E2=80=93 see attached picture. The res= ults are > interesting. At one side, possibly very big error is produced by the > existence of many local minimums with different numbers of h bonds. How > these minimums should be named in paper =E2=80=93 maybe =E2=80=9Cconforma= tions=E2=80=9D, > =E2=80=9Cconfigurations=E2=80=9D, =E2=80=9Cgeometrical configurations=E2= =80=9D, =E2=80=9Clocal minimums=E2=80=9D? > Yes, local minima. Here is what will interest you https://scholar.google.com/citations?view_op=3Dview_citation&hl=3Den&user= =3DgT8ec74AAAAJ&sortby=3Dpubdate&citation_for_view=3DgT8ec74AAAAJ:vfT5ieZw1= WcC Sincerely yours, Prof. Vitaly V. Chaban (i10-index =3D 101, Hirsch =3D 33) Summary: https://sites.google.com/site/vvchaban Papers: https://scholar.google.com/citations?user=3DgT8ec74AAAAJ&hl=3Den ------------------------------------------ Then I found, that if the computation of different acids is performed with > same geometrical configurations of 5 h2o molecules bound to =E2=80=93COOH= , and with > same configurations for neutral molecule and anion, possibly the results > are quite good (a common correlation can be obtained for carbon acids and > phenols). So I want to publish these results; but I need to read more wor= ks > when this approach (adding many explicit water molecules) was used. Can y= ou > suggest such papers? > By the way, using my program Chemcraft is important for such jobs, becaus= e > the =E2=80=9CStructures merger=E2=80=9D utility in in allows one to trans= fer several H2O > molecules in same configuration from one acid to another. > Grigoriy Zhurko > https://chemcraftprog.com [image: Mailtrack] Sender notified by Mailtrack 20.12.22, 23:53:28 --0000000000002e776305f0497a2b Content-Type: text/html; charset="UTF-8" Content-Transfer-Encoding: quoted-printable


------------------------------------------<= br>


3D""
On Tue, Dec 20, 2022 at 9:50 = PM Grigoriy Zhurko reg_zh= urko_-_chemcraftprog.com <owner-chemistry%ccl.net> wrote:
I need to compute the pKa values of some carbon aci= ds and phenols, and it is a common practice to add 1-3 explicit water molec= ules, bonded with polar groups of the studied molecule, to better take into= account the specific solvation effects (in addition to CPCM model). I trie= d to add many water molecules (14) for better results =E2=80=93 see attache= d picture. The results are interesting. At one side, possibly very big erro= r is produced by the existence of many local minimums with different number= s of h bonds. How these minimums should be named in paper =E2=80=93 maybe = =E2=80=9Cconformations=E2=80=9D, =E2=80=9Cconfigurations=E2=80=9D, =E2=80= =9Cgeometrical configurations=E2=80=9D, =E2=80=9Clocal minimums=E2=80=9D?


=C2=A0

Sincerely yours,=C2=A0
Prof. Vitaly V. Chaban (i10-index =3D 101, H= irsch =3D 33)
Summary:=C2=A0https://sites.google.com/site/vvchaban
Pape= rs:=C2=A0https://scholar.google.com/citations?user= =3DgT8ec74AAAAJ&hl=3Den
------------------------------------------


<= blockquote class=3D"gmail_quote" style=3D"margin:0px 0px 0px 0.8ex;border-l= eft:1px solid rgb(204,204,204);padding-left:1ex"> Then I found, that if the computation of different acids is performed with = same geometrical configurations of 5 h2o molecules bound to =E2=80=93COOH, = and with same configurations for neutral molecule and anion, possibly the r= esults are quite good (a common correlation can be obtained for carbon acid= s and phenols). So I want to publish these results; but I need to read more= works when this approach (adding many explicit water molecules) was used. = Can you suggest such papers?
By the way, using my program Chemcraft is important for such jobs, because = the =E2=80=9CStructures merger=E2=80=9D utility in in allows one to transfe= r several H2O molecules in same configuration from one acid to another.
Grigoriy Zhurko
= https= ://chemcraftprog.com

=20
3D"Mailtrack" Sender notified by Mailtrack =20 20.12.22, 23:53:= 28 =20
--0000000000002e776305f0497a2b--