From owner-chemistry@ccl.net Wed Dec 21 07:34:01 2022 From: "Visvaldas K. coyote_v2002[a]yahoo.com" To: CCL Subject: CCL:G: Adding many explicit water molecules to the model Message-Id: <-54835-221221021044-3820-/8atZjQvhEPx5Ie8fjWWZg%%server.ccl.net> X-Original-From: "Visvaldas K." Content-Type: multipart/mixed; boundary="----=_Part_856734_547988648.1671606633353" Date: Wed, 21 Dec 2022 07:10:33 +0000 (UTC) MIME-Version: 1.0 Sent to CCL by: "Visvaldas K." [coyote_v2002_._yahoo.com] ------=_Part_856734_547988648.1671606633353 Content-Type: multipart/alternative; boundary="----=_Part_856733_281182339.1671606633297" ------=_Part_856733_281182339.1671606633297 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: quoted-printable In the past has been a lot of work exploring water clusters, with or witho= ut the solute, e.g. see book "Solvation Effects on Molecules and Biomolecul= es", ed. S. Canuto, Springer, 2008. It has many references you can follow. = I am not doing research on the topic, so perhaps there are later examples. Good luck, Vis On Tuesday, December 20, 2022 at 07:51:03 PM GMT, Grigoriy Zhurko reg_z= hurko_-_chemcraftprog.com wrote: =20 =20 I need to compute the pKa values of some carbon acids and phenols, and it = is a common practice to add 1-3 explicit water molecules, bonded with polar= groups of the studied molecule, to better take into account the specific s= olvation effects (in addition to CPCM model). I tried to add many water mol= ecules (14) for better results =E2=80=93 see attached picture. The results = are interesting. At one side, possibly very big error is produced by the ex= istence of many local minimums with different numbers of h bonds. How these= minimums should be named in paper =E2=80=93 maybe =E2=80=9Cconformations= =E2=80=9D, =E2=80=9Cconfigurations=E2=80=9D, =E2=80=9Cgeometrical configura= tions=E2=80=9D, =E2=80=9Clocal minimums=E2=80=9D? Then I found, that if the computation of different acids is performed with = same geometrical configurations of 5 h2o molecules bound to =E2=80=93COOH, = and with same configurations for neutral molecule and anion, possibly the r= esults are quite good (a common correlation can be obtained for carbon acid= s and phenols). So I want to publish these results; but I need to read more= works when this approach (adding many explicit water molecules) was used. = Can you suggest such papers? By the way, using my program Chemcraft is important for such jobs, because = the =E2=80=9CStructures merger=E2=80=9D utility in in allows one to transfe= r several H2O molecules in same configuration from one acid to another. Grigoriy Zhurko https://chemcraftprog.com =20 ------=_Part_856733_281182339.1671606633297 Content-Type: text/html; charset=UTF-8 Content-Transfer-Encoding: quoted-printable
In the past has been a lo= t of work exploring water clusters, with or without the solute, e.g. see bo= ok "Solvation Effects on Molecules and Biomolecules", ed. S. Canuto, = Springer, 2008. It has many references you can follow. I am not doing resea= rch on the topic, so perhaps there are later examples.

Good l= uck,
Vis





=20
=20
On Tuesday, December 20, 2022 at 07:51:03 PM GMT, Grigo= riy Zhurko reg_zhurko_-_chemcraftprog.com <owner-chemistry|*|ccl.net> w= rote:


I need to compute the pKa values of s= ome carbon acids and phenols, and it is a common practice to add 1-3 explic= it water molecules, bonded with polar groups of the studied molecule, to be= tter take into account the specific solvation effects (in addition to CPCM = model). I tried to add many water molecules (14) for better results =E2=80= =93 see attached picture. The results are interesting. At one side, possibl= y very big error is produced by the existence of many local minimums with d= ifferent numbers of h bonds. How these minimums should be named in paper = =E2=80=93 maybe =E2=80=9Cconformations=E2=80=9D, =E2=80=9Cconfigurations=E2= =80=9D, =E2=80=9Cgeometrical configurations=E2=80=9D, =E2=80=9Clocal minimu= ms=E2=80=9D?
Then I found, that if the computatio= n of different acids is performed with same geometrical configurations of 5= h2o molecules bound to =E2=80=93COOH, and with same configurations for neu= tral molecule and anion, possibly the results are quite good (a common corr= elation can be obtained for carbon acids and phenols). So I want to publish= these results; but I need to read more works when this approach (adding ma= ny explicit water molecules) was used. Can you suggest such papers?
By the way, using my program Chemcraft is important for = such jobs, because the =E2=80=9CStructures merger=E2=80=9D utility in in al= lows one to transfer several H2O molecules in same configuration from one a= cid to another.
Grigoriy Zhurko
------=_Part_856733_281182339.1671606633297-- ------=_Part_856734_547988648.1671606633353 Content-Type: image/jpeg Content-Transfer-Encoding: base64 Content-Disposition: attachment; filename="manyexplh2omol.jpg" Content-ID: <38892cb0-0d67-aa44-3a00-95ed6776bdac|*|yahoo.com> /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsK CwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQU FBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAG5AgUDASIA AhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA AAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3 ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm p6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA AwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx BhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK U1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3 uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KK KACiiigAooooAKKKKACiiigAooooAKKKKACiivLPix8d7D4eXqaPZQrqevugkaAtiO3U9DIRzk9Q o5xzkcZ68Lha2NqqjQjeTPMzLMsLlOGli8bPlhHr+iW7fkj1Oivm3Tfjr4vu5POY2TLnPki3Oz6d c/rXrvw9+Jlr42V7aWL7FqkS7ng3ZV1/vKf5jtnvXo4vJsXg4Oc0mlvZ3sfEZJ4hZFn2L+pYebjU eymrc3o7tX8nZ9kdrRRRXhn6UFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF FABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUU AFFFFABRRRQAV82+Nf2mLzVdZudP8HmOLT7dzE2qMgkaZgcExg5UL6Eg568V7R8V7q6svhf4vuLE sLyLSLt4in3gwhYgj3r8dv2jfGch+FHhHSLW2hkvIfF1jdxtIdu9ljmCqW7Lk819bkuHoeyq4yvD n5LJRe2r1fn5I/L+MsXj51MPlWArOi6t7zW6S2S1Vtd2mntqfpBoPxV8Y2ii6e9/tGAcvHcQqVP4 qAR+de6eCvGFp410Vb62BikU+XNAxyYn9Pcdwa/JP4XfETxJ/wANnR6j4o06w02+bwTJZiGwuTcR tEbrcGLMq4Od3GOw55r9Bv2Y9ak1LXvEEcZJtvIjdwOgbcQv6Fvyr08ywFOvhauKhSUPZu2itfW2 qsj834RzTN8ozvC5Vi8VLEQxEOaXM+bklaTXLK8rrSz1tre2h9C0UUV+fn9MBRRRQAV+W/xa+JTx W3xo1e8knj1maw1U2c8UpjktpRHIImVhyCmFxjkbRX6hXd3BYWs1zcypb28KGSSWRgqooGSST0AF flN+0/pekeI/G/i46MbhdB1wzk7QFlQSKRKwGDtBJZlyOARkDGK+z4cjKSxCjF6xtft5X8/0Pyrj z2co4SNSStz35ertbW3W23zPDdN/aV8Zt4D+DdisfivSZU8QWH2zxFLeOkeqx7mDxNIr7pFYHJDc ELzX6M+HPGkbfEnRLuwAi82/ij2Jx8ruFZR+DEV+eY8L6LeeGfC/h+6ub9LLw7dxXlo6SJvZ487Q 52YI+Y5wB9a+9P2S/h/rHjXXrPxdqVpLaeH7E+bavOpX7ZN/CUB6op53dMgAZ5x9MqdHB4etXxc7 3ikvN8tmrev+Z+VYnLZ5vmGCoZVS5FCrKbstrzTUrvVadNlslsfaFFFFfkx/VQUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRWNrXjLQvDsyw6l q1pZzkZEMko3keu3rj3xVrSde07XoTLp19Beov3jDIG2/UDp+NbOjUUPaOL5e9tPvOKONwsq7w0a sXUX2eZc33XuX6KKKxO0KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAGTR JcRPFKiyRupVkYZDA9QRX5s/tNfsU65oWsPeaJoU/ivwql0L20S0VpbiycZ2q8a/M23JwwBGOuDX 6U0V6WCx1TBSbgk0909meHmmUUM1hFVG4yj8Mlur7/J9T8lPAvwd8beK/HEOpaf4D1SbXvI+w/2h NbSQpHFu3bWd8IozzzzX1F8MvGusfADxM/hnxPpSaZfT4LOTmHUEBOHjlxzjcfpnBA7fZNc14/8A h3oPxN8PyaPr9kLq2J3RyKdssD9pI36qw9fwOQSK+g/1hda9HE006Ut0t79/U+CxHAipxjiMBiZQ xNP4JdFa/u210d7NaryL/hzxPp/iqwF1YTCQDAeM8PGfRh2/ke1a1fHGsaZ4x/Zn16Ge6uptT8Nl /LtdbiT7gJ4inXoPoflbqpDdPUL/APay0HT9BhkWze/1tx/x6W74i/3zIR8oP90jcPTGCfgquNw8 as46xSel97dD98wnC+bVcFh6sXGtKaXM4bKVtVq9Lee33X93pskiQxtJIypGgLMzHAAHUk18wWn7 Vnia4uN/9g6c1vn/AFamTfj/AHs4/Sua+NH7R2oeNdLtPD+kadcWL3m1JrRD5ktzIThY12jJTOOM ZY8EYGG5ZZlQUHKLu+1tz3KHBOa1MRClVioxe8uZNRXW+v8AwPMT9oX483fjfVIvCnhZJbq1lmWG GK3BMl9Nn5Tj+4D90d/vHotev/s+/s+Wvwu0iTUdZWLUfFeox7buZsOkCHrCnt/eP8R9gKr/ALO/ 7P6fDm2/4SHX0S58XXac5wy2KN1jQ93P8TD6DjJb3Cvp4ZriKmXwwnKoLd23b8z8vx/DeWYXP6+Y Yeq63SDltFJa8vl5+r6nGJ8F/h/HqP29fA/h1b3du88aVBv3eudvX3rslUIoVQFUDAA6ClorglOU /idzshSp078kUr9lYKKKKg1CiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig AooooAKKKKACiiigArzn4/fEiX4WfDLUdYtdv9oyMlpaFhkLK5xux32qGbHfbiuw8ReK9J8KWn2j Vb6K0Q52Kxy8mOyqOWP0FfIP7UXxvsfih4fj8KaJZyT3Iu0uII0BluJnUMMBEyB8rMf4j6ha97Ks uq4utGo4Xpp3be1kfGcR59hctw08PGqlXkrRitZXezsr29XZHlNx8XLPw98W9A8J6zILm81zSm1q XV5rsbUO9l2Pnksduc5713fwK+OMPj3w7c+MNBik0iXTtYudKaCSYSed5OzLkgAFH3dPb6V8T6/4 Xg8XfFzR9Y8Q2Vnqug2emPZvb3nzHzN7Mp2kds9a9M/Zc0fU/BHhy48KwxRz3eo61PPZWdixcFZN gRQMDB+X8K/R1GvicQ41mlS970tpZPTbe2up/MmPybB0ML9bwd/rj9m003dS5pczi73ctI3VrLpq z9bNC1aLXtFsdShGIruFJlU9twBx+HSr9Y3g3RH8N+FNI0uRxJLaWscMjr0Zwo3Ee2c1s1+P1lBV JKn8N3b06H9h4R1nh6bxHx8q5vW2v4hRRRWR1hRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAU UUUAFFFFABRRRQAUUUUAZPix7KLwvq8mpWsV7p8dpLJcW0yhkkRUJZSDwQQK/MLXfH2j/DP4XeKP GF/B5sunw7rWwiJCyTO4SNMnJC7nGTyQBX6katpsWsaVe2E+fJuoXgfHXaylT+hr8hfj38NdTOk+ K/AGq7rS6jYRNIVOwOrh4pP91iqkHuDXz+Zx/eUpSXu9fw/Q/XeCKj+pY6jQlas0nH1Sdt/Oyfqj M8PftD/FP4OaB4b+KHimHw94m8JX00Daj4ZhtWhmt7aYZVo5c534x94kAkAgjJH1z4x8TaBB400r xX4Sx9mieK+tHxg4IDY9cEEgj0JFfnnqGj/Ef4jeAtF+HepaVYaTpVo0Ed3rovkl8+KIALtiHzBs AHnqR/DX2D8N/D9z4y13Q/Culh2D7LdSPm8qFQAzn2VQT+FcFeslBUoJc3Npbt0/rfufX5Zl0niK uNrymqKppS9pdXdnz6S6JdVpq7XR+k1vOl1bxTJykih1z6EZFSUyGFLeGOKMbURQqj0A4FPr68/n R2vpsFFFFAgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDk fif8StM+Fvhp9V1DM0jt5VtaRnDzykZCj0HBJPYDucA/M13+0J8QPEmobra9j0mJz8lta26EAdss 4LE/j+FS/tpa5LZ/EXwnBcZOnwWTTqp+6XaQh/0RK+BIdM0P9oX46fE6bx2872mizR22kafDePbx 2MOHHnIFI5+VWycjLHIORj5zE15zrTjzuMYdt3t/mfs+R5ThsLl+Gr/V41q2IbtzW5Y2TdtU+kW9 r302P028JfHzX/Dd9b2fji0MtnNjbfxQbJUz0JRRhh/ugH69KxfiD+1vLPdjSPCFlK95M3lxGOLz 7qU+iRruAP8A32fUCvkX9mT43698Rf2ctN0jxPfS61Nod/c6fZapdMXmntV2mPcx5bbuKjPZQO1f oD+zX4G0Pw38NNH1Gx0m3tdSv4C9zebd083znG5zlsYAOM4HYVrF1qlWWGhU0XXr6HJiKeWYPA0s 6xGDXPN2UE/cvq+ZrtZbJW9NzyDw7+zv8Qfilc/2j421ebwzp8+Ge2jcTahMvozElYx6ZLEdNor6 H+Hfwh8J/C20MPh7SIrWd12zXsn7y5m/35WyxGecZwOwFdlRX1DxeIlQhhpVG4R0S/rc/F54HAvH 1sxp0IwqVHdtL8r3seMfEX9kX4afErVZdUv9Hl07UZm3TXGlzGDzT3LLyhJ7nbk9zW58LP2dfAfw ema58PaOF1FlKHULuQzT7T1Cs3CA99oGe9el0U3i8RKHsnN8va5lHLsHCr7eNKKn3sr+vr5hRRRX IeiFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAMmlWCF5XO ERSxIGeBXknij4eWnxz0vW0uLp9P0++hW2S+06VDJKikOquNpDBWz1Y8k42nNdbr9zL4o1SPR7It 9kifdc3UJUNC6noQ/BH0VufTrXW28CWsEcMYwiKFGa7XFUKTT+KS+5f5v8iqdWdKoqlN2ad/mtV+ J8XR/wDBOSRNR3Hx+RaZz8ul4kx6f67H4/pXuPwi+DugfAXVjp9gLnUrrVEwNQng3ShV6qzjgDPO FCjA53HFeyVn65pCa5pslpJLLCGKsHhIDAggj7wI7dwa87C4bD0Z35d9L7281/wN9j3Mbn2Z4+l7 GvWbj20SfrZK/wAzQorG8ManLe2Qhu4Psd5D8jWzyKzhQBgnBP8A9fg8ZrZronB05OLPAWoUUUVm MKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA8U/aj+B0/xh 8IW82kFF8RaUXktVkYKs6MBviLdidqkE8ZGOASR+Y+pfs72/xM8dpY3vhqZ9flxbv/pDWjSruCBX O5QwyQM+mOcCv11+JOsz2WjJp1gN2p6m/wBlgXnjP3icdBjv2zmuB+MWhx+GND+H9vaH5bLWI4xI Rkk+VIxbnPUpmuTF5cnTWKg2pydkl1S3f6L0Z95kXEXsKX9m42MZUVdpztaLs310tf033PkD9n74 E614tuLTw9o2gy6B4a09zDcXpjKwQqGO8Ix/1jk56E5JyTg5r9INJ0u20PSrPTrOPyrS0hSCJP7q KAAPyFYnw1CL4G0hI87I4jGuTnhWKj+VdNWWEwkcMm95Pe5xcRcQVs6qRp2UaVO6io7W2vp5JWto lsFFFFegfIBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR RRQAVz/i7XX0yxMFrFLc3s/7sR23zSxhg2JAoBOAR16flWpq+qQaLptxfXORBAu59uM4/Hj8657w rpkmqXp1+/MM8zZWzmgkbHlEtglRhc4OAfm4/iINdlCEUnWqL3V+L7f5kt9Ea3hvQF0KzIkaK4vp ebi7WERtMecbuSTgHHJNa9FFc05yqSc5bsrYKKKKgDlvEcA8P3w1+D7PbRDA1GWTO94/lCheCM9v 4e2TxXSWtzHeW0U8TbopUDo3qCMipGUOpVgGU8EHvXM6FLLoeqT6RdPPNC5MsF7dug81jj92oGMk c+/U9xXZ/Gp/3o/iv+B+XTQnZnT0UUVxlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFYt7410DTbw2l1rVhb3KnDRSXCBl+ozx+NecftR/Em8+HPw5ibTZja3+qXiW CXKnDQoVZncHscLgHtuyOlfnH47/AGz7D4U69450aLS4NYu9DkgSxlM7hLwvGjOzHYdu0sRjvivo sFltGrh3icVU5Y6pWW9ld6/kt2fnuecRY/C46GW5Vh1Vqe65OTsoxlJRvZave7tsu/T9P/DKf8Jh 41vvEUgDWFhmysMgEFv+Wkg/PH447VhftIMF8N+H38wRtFq6ydcHH2edc/mw/OvL/DXxrg+F2laj cGY3+nNZGeCBjgG425QewYnafqD2rxLxD8ZWXx34LtfFMt7qGteNTdNZTRBGghWBQ7q2WBRcNhQq n3x1r6OjlM4YyNarLlpw5VHzvol63vfzZ8HnvHOHzXJK+HwFGU6k/aRauvdUE253V7rl95Jeeumv 3X8Lr22u/B1otvLHII5JlIjcNt/evjP1GDXW18OfCv4u6f4ovvFNz4YlvrC/8Kas+j3huURFllUZ Jj2u2+M4/iCn2r7J8G+JI/Fvhmw1WNQn2hPnQdFcEqw/MGvms0wPsW8VTlzQk38nvY+n4H4neZU1 k+MouliKNODte6lCySku3S6e11q+m1RRRXz5+rhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA UUUUAFFFFABRRRQAUUUUAFFFYPjTxxo/gHRm1LWboQQ7tkaKMySv2VF7n+XU4FaU6c6s1Tpq7eyR jWr0sNTlWrSUYxV23okvM3qRmVFLMQqgZJJwAK8FP7TN1f3BNhoMcdvn5Tczkuw9wBgfma37T4vt 4wjt9LggTSdTnlC5uX3W8q903gZBPb5T6Z5r2p5HjqSvUhZddVp9x8FhPEDhvHYtYKjilzt2V1KK b7JtJemuvS51UqT+LvEcY23Ntp1ifNjuY1TZPkKdp3ZOTz0AIHf5hXYgADA4Aqhoei2ugadHaWkK Qxj5mCA4LHqeSa0K8qvUU2ow+FaL/P5n6ElYKKKK5hhRRRQAVj+JdDOr2sckCRf2lat5tpLNnbG/ HPGe3qD24rYoq4TdOSlHdCepleGtaj17SkuEfeyHypW24BkXG7A9M1q1y+rJJ4f8QJq6GSS1ugsN 20kg8uADAUqvByfbd9BkmrL+P/DUdx5Da9pwl7r9pTj688fjXVOhKb56MW0+2tvL5HLWxVDCxTxF RQXm0r/eb9FMilSeNZI3WSNhlXU5BHqDT64jqTTV0FFFFAwooooAKKKKACiiq97qNrpsQku7mG1j JwHmkCDP1NF7bjScnZK7LFFRW9zDdwrLBKk0TfdeNgyn6EVLQDTTswooooEFFRxTxT7vLkSTacHa wOKkp2tuJNNXQUUUUhhRVe+v7XTLZri8uYrS3X70s7hFH1J4rGtPiF4ZvpxDBr1hJITgAXCjJ9jn mtoUalROUItpdkcVbG4XDTUK9WMW9k5JN+l2dDRSA5GRyK5X4k/EjSvhh4eOqamWkZ38q3tYv9ZP IRkKPQYBJPYfgDzTnGEXKTskeph6FXFVY0aEeaUnZJdTlf2lfhRP8XvhhdaZYOiavZyrfWXmNtV5 FDAoT2DKzDJ4BwTwK/Im98CWGof8JjYXEly0niZ4VneEK7QmPAAj4Oc7R6195fFj9rjxLN4U1a0j tNO0xL+B7aNEDtcIrgqWDbgMgE87RzXof7Cum6ToHwzubFA0fiO5nN/qCTLhirDEW31UKB9GZvUZ 9fK+IMPToyw8lzdk9N01LX06WPM4o8Os1hVhmDapqyU2nzNcsoyhp/iW97aL5+QeEvgT4u8b/B/x Fq17pt1YNDYq2lWdwhSe6dGV2bYeQCiMq5HzFgRwOfi34i6DN4++IPgD+1LWS98PaX9sW8K3RgMY dF2AFXV/vKPu+nPFfuPXzf8AGn9j/wAD/EHxHb6hBa6lompajK32i40gAwFuCXkjKkAnJOQVBwc5 J5+mpZ+8bOUMarxbTVtvds7NPdO2vz7n5hV4JWWwp1ModpxUk7uzfOmnJNWtJKTt6Ltr8Cfs2Wlx 8LpfHlq0BsNJ1DWnudPRrkTF4MYUk7mbOP753etfqj8EtFu9B+GWiwX8bRXkqNcSROMFPMYuFI7E KRkeua85+FP7Fngb4ZatBq00194k1GBg8B1Jl8mJh0ZYlABI/wBotjgjBGa+gK4M1zWhiMNDBYWN oRd7vrv+Gp38OcL1sBmNbOcdJOtUio2XRLlu29dXyrr376FFFFfKH6YFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV8RfHbxqviz9oubR9Quzb6No6paxDspKq8r49S Tj6ItfbtfAn7WXwr16y+OMmoaVaPNa69GtzBKOEWRFVJUJ7HIVv+BivreGZQjjm5b8rt66bedrn5 n4gxqTyZ2docy5u1rPfyvb52PnXwf+2Fb6fD8V4tf1rRrDU9EvL638PW8i7DcLGJBDuUt85LKoOM ZzX0F8C/idL8VfgB4N8Xat5EXiHUIZzeraJ5cW5LmVEKLkkfIiZ565r4v8O/C6/8K23xT0nxPoVk uu6pc3bWQuljkdDIj7CH528sDkH3r2H9neS/8DfCbw54Zv1H9pWwkjaCFhJlnmdlAx1J3DpX2GX0 MTXq05Yibsot9d+br5219D8I4ky3Ko4GvHLaceedSnro/d5G24W1S5kr76s/Uj4X+IpPFXgXStQm bfOyGOVj1ZkYoSfrtz+NdVXI/CbwzceEPh5oumXg23qQmSdc52yOxdl/Atj8K66vy7Gez+s1fY/D zO3pfQ/qvJo4iGW4aOL/AIqhDmvvzcqvfzvuFFFFcZ7AUUUUAFFFFAHzV+118StT0+70LwJos6Wl zq6/aLq4c42xb9qLnsCysSf9gdia+NdC/an0vwt8JfFfirVbQ6jc6Dq8mmHT47mNJbgLNHFvQ7en zlunQGvpz9vTwLqaz6H45sIpJbW1g+wXjxjPkDeWjc/7JLuM9jt9a/Myf4LW+reAPEmmy2+jf8Jb qGpvd2uqy78xRNKj7S+zcDtDjABHzda/SMvlUjl8I4LqpOX+LS3z7Lsfz5xPl+FzLN5xzq/JGdLl 3+C/vdVaL+01qntqfrz8KvFzeHPGUWgC7+1aXfMVj54STBKsvpnGCPcele+18UfsuRX3xC8f2l9E rvpmj/v7m5/h37SI0B/vE849FNfa9eFxJRpUcYo05XfKua3fX8bWPp/DGGNp5LKGKTUFOXs076Rs tFf7Kd7fMKKKK+UP1wKKKKAEJCgknAHJJrmLj4neFLa5MD69ZGUHBEcm8A+5XIFfP37QHxS1PxT8 RT8PNDleO0tFX7d5TYNxKy7thP8AcVSMjuSc9BXz94H/AGgPB2tfDHW/HUBvhoOjNKlzvtwJsxhd 21N3P3h3r7PCZFRlh418XV5XJOSit+VdWfiPE/H2Oy7EywuT4X2vJJQlJ3tzS0UUlbW6avfdPTqf oJ4r8eaf4d8C6v4mhmi1C0sbZ518iQMsjAfKmR0ycD8a/Ov4tfHOez1zQp9Zi1Hxh4q8Q+bLaaPp e0tFDGcsTvYLEg7c8n8TXsdvqsPiv4b2epaXdTroPinS4rpEcbWeGRQ6b1yQGHB9jXyB8YdG1W1+ IWi63oBi0LXtEgktPK1aF5IbiCQAjcFIYDncrA85HavhuIcveDqUp83NRknZ+fZ/h+J/QnhDxZDi LB42j7H2OYUJxVSOjapvRuF7ed10aine6v8AWPwZ+Nmip4e0fxp4N1K9+wy3Uljrfh7UYvKuLSeJ gJYpYwxAcAgqwJ6j1Ir6pb46eBVHPiKD/v1J/wDE1+b37LPwu1TVZpfDVlfNq+q61qU2r6tfRRlI onlK+ZJjPyqAoAyeT05IFfoCv7KPwuXBPhyZ2/vPqt4Sf/I1eNhZ1pOX1dLk87/Ox+i5/hsuoRoP OJzeIabfJyXtf3efW17aK1+vkdF/wu/wRtB/t6Mg+kEp/wDZK+Zv2oP2noYl8QDSb5pPDvh7SW1C 4iiZoH1CULu8vLDOACoAIxkknOBj31P2W/hhH08MA/71/dH+ctfL/wC2d+yDdSaPd3ngXSrmTQr6 ya01Cx0/fNPAcEeaqsWZlIIzjOCM9Dx+mZZPLqdRSp8yq2dnLl5ea3+e1/zP5T4hw2fYmhUpV5Qe GcldU1NVOS/V8z6fFyr8LmT8Gv2itB8ZeL7jS/DOoxLeWOi2+rtqFjepNGHkkKNbNtz864BIJ6Hp X254T+I+ma74XstSubqGCZ7YzTIDwu2Qxs303qR7V+YfwV+FPiXUviItz4f8Pao+oyabDpEim1MV tEkblvMkfaAp55JPbgZr9Sfh74QTwN4N0rRfMWeS1iIlmAwHkZi8hHsWZjXdnroexg6suaq5Payt HX18rX8z5vgHLK+X4+v9VjKGEcI6Sbd6l1dq/W107WVrXLo8Uae04hWVnczpb4Cnh2GVz6cVm618 Q9L0HQrvV7qO7WztrWW7kbyCPlj+8OeN3YD3rqK8o/apiuZvgD4vFrkyrDC7bf7izxl//HQ1fJ4a FGtWhSaaUmlv307H7Njq88LhKteCu4xk0vNJs+Svid8f1vdMuvHnjjUn0rw3FcLBAixSzRW28/Ig WNWJY45bHPsMAa138SvB/hmfwpZ6xrK2Nz4pukstHQ2s0n2qZygVPkQ7MmROX2jnrwa+Of2o/G1z P+ztd+H/ADMW51G2mKepBODXK+P4/GGieLvgZdeIfHZ8V2qa7aS2dr/ZUNn9jKyW5PzRkl8jaOf7 vvX6bi8VWoc+Hw1NKEFC1tlzO2uqb8rJ67n8pLhfDZ7Vo4/Mq8nOpKrzK7vJQgpLkahJLz5mlbSO p+sXw/8AiDqnhDVU0KdGvreaRYYIHkCmKQsAApJxg+meuPfPA/tla/qek+M/Clxe2gTTYUuDbAsG SVgybiR9NnX/AOueZtPFU+t+IdOETFrqa6iWML1LlwB+tfV3xh+EWkfGbwjJouqM9tKjeba3sQBk t5cY3AHqCDgr3HocEfF8YZdyQioxSnNXfqmvzP2vwF4irYSU1jrypUJWi3q1GcZK3ny7+jsuh+FX iXUtM1mz8Z61rV3dy/GNteK6ZbguZQPOQxrHH90xbN4Axtx/wGv1Q/Z98X6h4u+NVnfSRpHPcWkz 3y24wgGzJ4Hbfs/SvJvGf7F/j7wDFf64t7o+o6ZYRmVrqFn88Qj7x2MnGBkkBiMA819UfssfDbR/ CHhCTVba7bVNXvjsuLyRAm1OGREUE7QVZGPJOTyeBj8zpxrTrQpyXKlrq/wXkf11jK2WYTK8RiqM 1VdSPs1yxtvduU3d+9ZrWyvZadvcK59tl341Ubr2J7S2zt2fuJA3+0V689A3bkcV0Fc94XnW+vdW uo7q7mjM/l+RcoFEJXghfX8enFfW0tIzn5W+8/FWdDRRRXMMKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAopGYIpZiFUdSegpsU0c67o3WRfVTkUDs9yDVNUtdF065v 72Zbe0t0Mksr9FUf56V8za9r2qfEfxXBdQ27Ne3bG30mxY8W8XUyN6cDcx56d9orR+MvxFi8X6pc adDK3/CKaNIDeSxH/j+uQfliX1AI/PJ7Ka9H+DPgCfQLB9d1mER69qCD9zjAs4Oqwgdj0Le4A7ZP o5TmtDDTqtQvO2j6f137pNI+c434HzHNcLg41K6p0JSvUh9prdfcrO32XKLeqSPCPGv/AAT4/wCE s16TVE+IE8Ek2DItxpglIOOdpEq8egI/E16b8Ff2Q/CXwfv4tWkuLnxHrsXMV5fALHAfWOIcA+5L EdiK91orSrmuNrxcJ1HZ+i/IWF4dyrBSjOhQScdt3a21k20goooryj6MKKKKACiiigAooooAiurW C+tpba5hjuLeVSkkUqhkdSMEEHggjsa8X1T9jH4QatqT3snhMQO5JaK1vJ4oifZFcBfoMCvbaK3p V6tG/spOPo7HLXwmHxVvb01K3dJ/mfDvwDvr39mj4+6/8PNbuXOi3jobSaU4V42J8qb0zyFY9ju/ u19xV86/tl/CaTxb4Mh8YaRDnxB4aDTHYuWmtOsqe+374+jetN+E37Veg3HgDSV12S7k1WJPJkaG Hf5iqBtcnPUjg98gnvTzLNaWIrQ9pHlly6vpJo7eHuDsZh8BVrYOftYe0doJPmgmr/NN6+r89Poy iub8HfEXw/48idtG1BLiSMZkgYFJUHqVODj3HHvW7d3sFhEZbiVYkHdj1+nrXNBqok4a37F1qNXD zdKtFxkt01Zk9MllSCNpJHWNFGSzHAFc5J4rudSlaHRLE3ZVirXEx2RLg4Iz9MEfXpSReDX1B1l1 29fVHH/LAfJAOMH5B1yMZB4zXZ7BQ1rO3lu/u6fOxz3vsfnv8aPEVz4S+Pvi67trkkvfvIksZ6o/ IwfbOPwr4O8DeH769/Zv8Y6nH4v1nT7WKa536JbyqLS44TO9cZOc889hX7VftI/sw2Pxo0m2utJl g0fxLYReTbTMmIZohyIpMDIAOcMAcZPBzx8T3/7Lnxk8P6m1svhC7uPmwstrLHLE3uGDcD64r7uj isHmFKCqT5XGMo2fmkr7q9rXt5n4jjcrx+UYqvLD0XONSpCaaV9IuT5WrSs3zWv0tdF/4B+L5Zvg d4AsdxkMWjWkSIvJJ8tQABX3h4Y+G/hTx58OvDS+I9D0vXp4LKNPMuYEleE4yUDdRgnBAPavmz4Y /sX+ONT0ya98T6xF4VvVTNlawbbqQSdjKVO0L7KxPPUYwb1n448b/s/+IYtP8X272Xmvsh1SHMll ege/c47HDj2rozGODzmhHBYSoueHR/a0tp/wLnzeSxzTgjMaue18LJ0q1+ZxfvQvK97aemtv0Prv wx4N0HwVYmz0DRrHRrVjuaKxt1iDH1baBk+5rZrifh98UtO8dWcbLi3uSOgbdHJ/ut/Q8/XrXbV+ aVKboVJUJaSjo12P6FwOZ4fOKEcbhqnPGfXW/wA76p+oUUUVB3hRRSMyopZiFUDJJOABSbtqwFr5 o/aR/aP0zStH1Pwxo8kN4biKS1vrwgPGqkFXijB4ZsZBbovTk9L/AO078V9Q0bwxJZaPM1tBOCJJ oztlmXuqnqqnuep6DA6+dfAD9lK78W3Nt4t+I1q0VgMSWXh+VdpkH8Lzr2X0j7/xYHB9vIMTlOIw 7zJ1lUUW0oxd7tfmu3Tzsfn2f4rNMXif7Gy2Dhde/UeyT6L/AD37a6nyN4t+DOvav4Hi17UPCV5f eELmQtFdzWxeIhejsByF54YgA84JrnIls9fvNJiu9Ij1O5sZVewXyvMeKQYwUHXPyr09BX7TRRJD EkcaLHGgCqijAUDoAKr2+k2NpO08FnbwzN96SOJVY/UgV7UeJJXk5Ulr59tr6PY82XAseWEYYlpL y6tWbVmrX/Lqz5V/ZW+A+vpqdt4x8YWUmlx2436fplyNszORxLIp+4B2U855IGBn61oor53H5hXz Gt7au9dl5I+3yfJsLkeG+rYRWV7t9W+7Ibyzh1CzntbmNZreeNopI26MrDBB+oNeD/s83s3hLxJr /ge9kLTadcPbRl+rquXibH+1GxJ9lWvfq+evjTjwB8YPD3iu2ICajbmC6iQ8mSEhkcjrhlbYT6KB 3qcvwNLHYj2cr83LLl9bX18tB5/n+LyLKp1aNnS54Oomr+4nZuPZq575qd5Hp+nXNzM5jiijZ2dR kqAOtUfChdtCtna+OpbxuFwVxuHb+Js/XJz24xXLP8VNC8R6fJBpuriwvWK7DdQOBjIJ9OoyODnm u8t0eOCNJH8x1UBnAxuOOTjtU1aNTD0+SrFxbfVdvl59/kdmCx2FzKksRg6sakH1i0196JKKKK4T vCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArzj42/GG1+Enh6KVY1u9Z vSyWVox4JGNztjnauR05JIHGcj0evhT9qPxG9/8AH+6tLlz9n0y2t7eNSeAGQSk/iZP0Fedj8RLD 0XKO70Ps+EsppZxmcaNfWEU5Nd0rK3zbV/Ix9d8V+I/Hd2brXdSuLwucrEzYiT2VB8o/AVuaB4T1 63s5NQ0h7y32r881o7IQMdyp6V8dfG/xfe/HD9pm0+Gljqd74b8G6VYpNfR6bN5ct2/lCRiW753o oByBhjjNdJ8Hfirrn7HX7T3hvwfp3iDVPEHw18YW/lT6Nq9yZ/s0zl0V4yeFIcKSQBuVyDkgMPFo 4aM5pVKnvNX/AKZ+n47O69DDyeDwq9lCfs3slfRNcqWyva/c+1/gFZ6frfjWw0zWWji/sqNp7CxC YS4nByZHOeWUcge2eNvP1jXwivitbD4habq9l+7aK9jlAXuNwyPoRkfjX3dXpZZNOEoLoz4bjfDV KeJo4iT0nHbs09bet7+twooor2T82CiiigAooooAKKKKACiiigAooooA+d/2xfHN3o3h3RfDFlcN af27LJ9qmQ4PkR7cp9GLjPspHQ18Bt478SWnxH8W+GfhjY6Jf2HhdI3vbrxA0zC7ndC/kwCMrs6M u5s8j0Ir70/bX+Hmo+JvBem+I9Khe4uNBeRriKIZb7O4Xc4HfaUUn2LHtX5lXnh/xHo/jDxFrHhP XbHTD4ijRL+LULdpBHIqlRNEVI+bBPDcZJ68Y+Xxd1iZOp2XLfbp/wAH5n7pw9FVMkoRwjfxS9qo 2Une9tXb+512ufYnw++M2heOPh94K+JngtJdD1K6hY3enPJ5htriN2jlj3YG9CVJGRyrDIHSvtPw 94ft9d06y1bUriTVHu4Y7hY5PlhUMgOAg6gjHDFuQCMV+cH7PnwjvtM8KeGPB3h8PdwSSmFbuTAD uzM0khGeFB3H2AxzX6h6Vp0ekaXZ2MOfJtYUgTPXaqgD9BXqZbiJe0quj7sHa3/A6rzPmOLsIsJh MFSxM+fEJPm1TdtNG12d0vmWI41iRURQiKAFVRgAegp1FFeofmQUUUUAFZ+veH9N8U6TcaZq9jBq Wn3C7Zba5jDow+h7+h6itCimm4u6JlFSTjJXTPE7L4NXPwmeefwgsmp6Mx3NpFxJumgH/TJz94f7 Lc+5Ndh4T+IVtqsRVJGcxnbJbyjbNCw6gg88eh/Ou8rgfip4b0s6Nda+Vez1a0QeVe2p2SMSQFV+ zLkjg/hivyniXIMXRxFXiLKsU6dZJympNuMlFXd9+nqr66PU6cHGhQprDRppQ6JK1jevvF1uhaOz xcSj7xPCofQ+/tWNJrmoTNk3DL7IABXOeA4Rc6HHI75Y5ZmY8k96+Mta/bq+Jfxa+L+teCP2d/AO leKbfQ3ZbzXdelYWzhWKllCyRBFLAhSXLOASFGDj8IxWZ8V8X1pVo4j2VGKu+Wfs4RS0vJ31u9rt vtoj24woYeOqu/vZ972viS9tTmUiePuGHP5iuV+IXxOW2VLWGJ5LiUhYbFBud2J43AdTnov5+3mv 7L/xa+JnxEufGPhv4ufDy28D+JPDyWcsN3p8zSWepRz+cC0WS4wph5xI338EKRz6loXhSxsPH9tr kWVuGDwyI43qdwwCufuNkDkdiR3rvq1c5y2ph8jzLMnPD4hx95S57Ju1ub4rO+qva3lczSpzTqQh rH5DPAHwllkvovEXi5Vu9VyJLeyfDx2p7M3ZnH5L2ycEer0UV/U2VZVhMmwscJg48sV97fdvqzxJ zdSXNIKKKK9cgKKKKACvzH/a9+OmqeGdf8f6rFJIdbsNYttN0+IorqtutysTqqtxll3EdOXzX6cV 8hftbfsVz/GDVZvEXhkWk17ctHJe6VeSGJJpExsljccBvlXIOAcZznOfoMnxNPDVJqUuVyjZS7M+ I4ryypmeGpRUPaQhNSlD+ZLy6+h4p8Evi/4h8feIfiVLqehXuleH9Gm06DTEvYY457WV4C8294mY MSxjYDccB16ZxX6F+BdXl1/wbouoz8zXNpHI5/vEqMn8ev418X/B39krVTfSQa+r+G9cvbtZ9Yki v0uFu4Ik2KscaFlVwNqlieB1B+UV9zWNlBptlb2dtGIba3jWKKNeioowAPoBXoZ3XoSpQpRlzTvJ 3/ut6L/htNDxeEsjr5ZiJVlTVKk6VOPIklea+KT0u/WTcnd620U9FFFfHn6iFFFFABRRRQAUUUUA FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABXw7+3J4GutD8b2Xi6GNjp2qQrbzSgcJcRjABPb cgXH+43pX3FWR4r8J6T448P3mi63Zx3+m3abJYZP0IPUEHkEcgiuPF4dYmk4deh9FkGbyyTHRxSV 47SXdP8ApP5H4d+OvC3iTTfinZfELwgtte6oIvIvNOupBGLhQuzIYkDlcDkjBVTzyK0PCngzxb8Q fi/pvj3xxb2mjQ6PGEsNJt5xM24bipZlJHDMWznJIUYwK+4viL/wT716G+lm8G67aX1ixJW11UtF PGP7odVKv9SF+lcxpv7CXxPSyu55r3SLV4YmeK2W5aSSZwMhBhdoyeMlu9fPuji4LkUNUrX62/L9 T9fp5jw/Xqe3niHySmpuF7Rc9NWmubfVq/K3q0Wvgh4aufiJ8StIsY0L2tvKt3eP2SFCCc/7xwo9 2r9Bq+Df2P8A4p/8IL4yn8O39mtrY34EV3dXBxNHcq21QwxwoJKkHpuB4wc/eVejlMIxotp631Pj vEDEV62ZQjONqcY+5533frfS3ZJ9Qooor2z8vCiiigAooooAKKKKACiiigAooooAQjIweRXj3iz9 kf4WeMNTfULvw0tpdSNukOnzyW6Oe+UUhR9QAa9iorOdOFRWmrnVh8XiMJJyw9Rwb7Nr8j5i+J/w V034P6fp+t+DbeTS9GtHVbuJZnkNtJu+S5DOScZIV+ePkbGFNe6/DvxknjTw9FcvtS/iAjuol42v 6geh6j8R2ror2zg1GzntLqFLi2njaKWKRdyujDBUjuCCRXxhbePbj4a+L9b03w1rSHS7O6exhv58 MXXPyxnfwzIQUDc7tme5z7uUZPSxsa0aXuzVn/dtt8j4jjXjTMMpeDr4tqph1zRkrXqNvVNNvW1r W2t52PtWivnTw38aPEtpKZLu7h1iGPaZ4HRFdFPQ5QArntkEV73oOt2viPSLbUbNy9vcLuXPUHoQ fcEEH6VnjctrYGzqWa2utr9jj4b4xyzifmhhOaE4q7jNWlyvTmVm01fqnp13RoUUUV5R9yFFFFAB XF/GG3kn+HuqGMEmPy5CB6B1J/TJ/Cu0qG8tIr+0mtrhBJBMjRyIejKRgj8q87MsJ9fwVbCXt7SM o39U0XCXLJS7Hy9onjSaz0y609JfKE8TokmfuMQQDXxL/wAEpvH/AIf+GOt/EnwH4qvLXw94plvI Gjjv5FhM/k+ZHJEC2MsjHO3qQxI6HH2N44+HGr+FvFkGkhHltbybZZ3ePldSe5HRgOo9s9K8f/aF /ZB+H2q6zZat4u0aDU728BU6lZSyWk77QBiRUbD8YwxycDGR0r+SKEKOX08bkGaKUHW5buKTlGVO Tadm0mn66rVHvSvPlqQ6fqfVPhL4w+EvHXiXXfD3h3xBZ61qWhpA+opYyCVLfzTIEVnXK7v3T5UH IwMgZFdlpymbUrZR1Mi/zr5F+BXhvwB8BtMu7bwXo0Oii92G7m815Zrgpnbvd2JONzYHAG44AzX1 f8JGm1+E6zcPiPG23izyQern+Q/H2r5zLeH5ZnxBh8FhZy9jzRd52UrRSlPRNq+jsk3pa73ZrOry UpSlv5HpdFFFf3WfMhRRRQAUUUUAFJ0pssqQRvJI6xxoCzOxwFA6kmvOfEPx88DabBdwLrlvfXKo wWGCOSVJDjpvVSv6/jUucItKckr93b8zrw+DxOLusPSlO2/Km/yNK2t5oZW1r7FFBK15iRrK4jEc 8Z+USOSeccdCDyeOx7ZWDKCCCDyCO9cl4Qn0TxT4JWPSnt57SaMho5HFz5bHoJAzNyODtJ4xjtW3 4du3vNJhaTeZUzG5eAw5YcHCnoK7681WXPHZO3y6dX+ZyypzpScJqzW6ejNOiiiuIQUUUUAFFFFA BRRXN+PfH+kfDnQm1TV5ikZby4YYxmSeQ9EUevBPoAOa0p051pqnTV5PZGFevSwtKVevJRjFXbey R0lFfOq/tJa9qtyWsdKsLS2z8qT75Xx7sGUfpXfeB/jPB4gvYtO1W3XT72U7YpEbMUjf3eeVJ7dc +te1iMjx2Gg5zhtvZptf15H53gvEXhzH41YGlXtNuycotRb7Jtdel7XPTKKKK8E/SwooooAKKjnu IrWF5ZpEhiQZZ5GCqo9STWPa+OvDV9ci3tvEOlXFwTgRRXsTPn6Bs1LlFaNm0KNSonKEW0uyNyim ySJDGzuwRFBZmY4AHck1xN58avBtncmD+2UuHU4JtonlUf8AAlBB/A11UcPWxF1Rg5W7Js8fG5lg ctip42vGmns5SUb+l2juKKyNA8W6P4ojZtLv4rvaMsikq6j1KnBH5Vr1lOE6cuWas/M6sPiaGLpK th5qcHs4tNP0a0CiiioOgKKKKACiiigD4z/a6+Er+DPEsfxH0WErpl7IItZhjHEcx4WbHo3Ab/aw eS1e3fs5fFMePvCUdldzeZqtggUuxyZouiv7kdD+B716fr2hWPifRb7SdTt0u9PvYWgnhfo6MMEe 317V8IaQNa/Zi+M0nh+5laW1R/P026k4W6tWJAB98ZVvQg47GurKclWNxVR06nLJq6Xdi4s45nlu RUKOJw7qKnNLnW8YdfuW3eyW+p9/UVm+HdetPE+i2mp2T77e4QMPVT3U+4OR+FaVc84yhJxkrNGV GtTxFONalLmjJJprZp6poKKKKk2CiiigAooooAKKKKACiiigAooooAiuVke2lWFgspQhGPZscGvx R/aI8T6rZeBdK8OZW1vY/FllMWuE3GOdDIvzdzhicjNftnXzF+0H+xbZ/FLW7jxH4Y1OLQdcuTvu oLhC1tcP/fyvKMe5AIPXAOSfocqxlKhGrQrOynbXtZ3/AK7HxPEeV18bPD4vDx5pUW3y3tdO3fTp t1R8LfADxrr+kftDfEk+INTtNT1C70fT45biygMETKuSoCFm5A96/TH9muee8+GouZc+VNeTNAT0 KDapx/wIPXzv8O/2BvE1rqsTeLvFdimmI2Xg0bzJJZR/d3yIgT64avtDRtHs/D2k2mmadbra2NpE sMMKdFUDAHv9Tya9PNcfg3hPqmG95uTk36tu2u71tfyPleGuGsZRzf8AtfGR5FGlGnGKt0UVeyso rS9u7LtFFFfFn7AFFFFABRRTXdY0Z3YKqjJZjgAetAHMeLr6KS7tbDeoYfv3UnnuF/8AZvyFcx4g +Cui/EmO1vdYnvo3iDLEltKqqFJ7gqeTj+VeVWPiHUfHvjya+tpZF/te+EFov/PO2XgNjthF3H3z X1FFGsMaRoNqIAoHoBXxuY8Bez4glmuaTjVU4JRhb4LWX4e985PsfL8N8WU+IqeIjhabjClNxUuk /Nfg/Ro840b9nfwLo1vNH/ZJvnljaNpryQyMARjK9Ap9CACPWvO/DF9qHwN8c/8ACM6pK02kXLF9 NvH+66E/cJ7EcAjscHoRX0dXkfxxt7Hxd9m8MybI7lVN0t3jLQPghAv15yPTFfMca5VluCypY2la jUotOEorXmvptv3+T6XPt8NOcp8r1T3PR38TWCRo3mFywztVckfWiDxLYzsFMjRE/wDPRcD86+W7 n9ojw98FvC18fijqqeHpdKZYS8ytJJc5xsEaKCzkg5+UHj5jgAmtX4E/tcfCX9o3Wp9C8F+Jzda/ DC1wdNu7Oa3leJcbnUugVgM8gEkdxX55hOM+OcdVlUw2DjOnDe0Jcrsrv3ube2vl2OqWHwsF70tX 5n1GCGAIOQehFLXHaVrb6QXikjluYv4Y4hufPoATS33j423/AC729qP713eIpH/AFya/aOGuKMNx HgFi4RcJJ8s478sl0vbVdU+3ndHzuY4qhlkuXESt1Wj2+S0OworybWfjFZ6epNzr1pagf8+tvu/W QgfpXn2vftLeGbbcDqN5qLDqv2khD/wGMAfrX1Kruf8ADi3/AF5XPi8TxpleHuue79U//SeZ/gZn 7R/xA1Lxd4/XwBpUzQafaCM3m1tonmYBwrHuqqV49Sc9Bj46P7U3hHRde1RI/D3iTxB4Z0W5+zap 4h0iyWW1t2BwxBLDcF7njjkZBBPuHxX/AGgrPxLo8VlYaUNPbzhMtwI8NgBgcMWLdzXwT4D8ezfC v4TeLfhzqOh6pc6/dG7t7NLW0aSK+E0exXDDqPX2x3yB4NSDdebqq8lbTyf+X63P6V4Xz2eZcPYX EYWP1alNVFzNX5pR2km0vjd7XV/d5V0P0vt9cs/h5N4d8a+Ctdi1nQNWtIr2KWIlUurdxna6nkcd iMqewIr6i8O6nbTX5nt3X7HqkMd7bu8xZn3KDgL24/ye35S/D+11Xwp+zloXhbUZXF9bWwVoVbcU aSYyeXx1xv28ehr9K/Dnw9Ph/wADeETfvePqNotu96luhkdpDGgeMbcbUDKPUcc+te5lEqVSrWpR k1DZdf62RxcW4WrRwWCr4xfv5R957O1k7Nf3dj1BruBAS00agNsJLDhvT6+1Mk1G0hEpe6hQRELI WkA2E9AfTNY8ngTSJormOSOd0uLj7S4NxIPm54GDwvzN8vTk1Lc+CtGvP7Q860MgvmVp8yv8xBJG Pm+Xkn7uM5Nevy4frJ/cvLz9fwPzLU0pNUtIjKGuYgYgGcbhlQcY/mPzHrUZ1uwWRUN1GGaPzRzw VwTnP0BP4Gq0nhLR5ZbqR7CJnuYRBKTn5kGMLjt91enoPQVJF4Z0qGaGVNPtxJDB9mjbyxlYv7n0 /wATStQtu/w/z7j1CPxLpkv2XZeIftJKxdfmIbaR04OTjB71Um8daHBZPdtfx+Qk32dnweHxnH5c 1et/D2l2qWiQ6daxraEm3Cwr+5J6leOM98VIukWCRtGtlbrG0nnFBEuDJ/fxj73v1qr4dPaX3rv6 drfMWpn3PjLSrR9RR7hd9gAZ1BGV5A5545YcnA6+hr5A/am8ew6h8afD9rcyM+h2dhFKiKeGMrFn cduQEGf9mvtb7NDukbyk3SgBztGXHbPrXyf+3F8F9T8Q21l430G1e7l0+3+zahbQLlxCCWSVQOoX cwbvgg9Aa93IsRh6GNhKSs9rt9bf8P8AefEcZYOvjcnqUqOuqbS6pb/do/kfBv8Aw1lqHhbxf8br KV9cvYoJp4vDzWNiJ49NAjlCF2A+UBthy2fumvpL4D/E678dfAHwPrGs3bXniGazZry9YBWlcSuA x2gAHAUcDtXyd4f8PQ6G3jtDqErDxYHEx8sfuNyOvHPP+sPXHSvc/wBmfwHqmvaVovw/8NvLfpaR eVNqDR4S3iLEmSTBwMZOBnJIwOTX22EoOlP2+LqWjGL3e3vO19ddP8j8AzvLsNj8M8HldC1WpOlt Hflp2dvdXL72+uurPvTw5+0d4bn0yzj1B7pb1YkWeRY1ZGcAbiMNnGc9q6e2+Nfgy5XP9srEe4lh kXH4lcfrXnNx+xJ8OXhRLZ9c051UKZLbUmJJ7nDhhk9emKxLv9iKyiJ/srx94gtR2F6kVwP0VK+J r/2LUjKVPnjLotLX/E/bsBS4ww1WlSxNSjUpXSk7S5rdX8Su7eR7rZ/EjwpqBAg8SaU7H+D7ZGG/ InNXtW8VaXougX+s3F5E2n2UD3E0sTh8KoycY6n0Hevl+9/Y28YWmf7P8d2F/wBMC9054f1V3rzv 4o/AX4heAPCN/q2sS6JeaTBsE0unTSGVQ0iqDtaNeMkA81+fVMViqcW5UtvM/pPC5BkWNq06dHMN ZNKzi03for21fQPiF8VtY+Jsl7rmsXY03w7a7pI7aSUJb2sY/icnALY6sf0HFcr8HvG/gL4zeJ/+ EZ8N+MNJvddYN5VkZxG8+0EkR78CQ4BOFzwM9K+cf2wfHOoD9nuDQ7KRorK41e3+3CPq8YSQgN7b wh+oFcB+0dd+HfDnhXwVe+BrC10TVtMv4JNJ1PS1Ed1IAm5XDKAzYYRsGOTuOc88+Vh6cKzjOs23 J2P0DNsbicsjXwuXQhThQjGWt9VJtK3npq3e7fc+/NW8WeLZ9em+Gzancy2NpMFktWfJL/3N3XYO PlzjPbiua+G3xe8N+LtQ8X2Vj9rEnhS6ks9R86EL+8jLhtnJ3D923p2ry+x8aaxpviBtXvbi4OrS nzZ5p3LSs7ckljyTz1r5x+Fei6h4r174wX9t4y1rw3jVLmWSHTJVVLrc0zfvMg59PxNf0Dgm8Hgs JhsGk4yi2+7fLe93/VtEf5v8ZZc+Js4zXGZtPknTmorR8sUqnJy8qTe34u71ufov8J/ihpXxJ8Fa d4+8G3V3DYvcSwxSXMYimWSMgMCoJ45/EV9g+BPFKeMvC9nqYUJK4KTIvRZFOG/DuPYivyg/YX8V PYfs8WViZMRrf3Tbfq4r9Jf2Y/Ok+Gz3MmfLub6WSEnuoCJx/wACRq8zN8NKplVLG1vidrPyavY0 4GhPJ+LcblGCTWG973W72cWkpfPb5rsj1qiiivz8/pMKKKKACiiigArxD9rj4c6X40+FV5q1zcw6 bqugK17Y30vAB4DQk9cScKB/e2/j7fXy5+3d4luNM8OeE9JRylrfXktxMB/F5SoFB9syk49QPSvX yinOpjqUacrO+/pq/wAD5viStSoZRiJ1ocy5bW827L8Wjzz4PfFzxXpfhNbW0nl00SOGZZoVY5Aw SocHGeO3YV65oXxm8VaY6SX0seq2/wDEksSo2PZkAwfqDX5+/Gr48t4F+OHwtXTJ9WPh1dNnbU9L 01TK13LiQK3lj72DtPsFz2rr/wBmX9om/wDiF8fPipbXl1qg8L/2favpuk6sjRGyfEYdhGfuliGP uGz3r7/F1MHiK7pOgnNycXoruyvzX328z+W4YPiTAYf6/hsdOlQhTdSKTk4L3+VU+V6XvrqmrH6j eFvE9l4u0eLULFyY2O142+9G46q3v/8AWrXr57/Zx8QtP4r1fTUYm3ltPtO3sGR1UfpJ+lfQlfn+ aYL6hipUVtuvRn9J8HZ7U4iyWjj68bVHdStteLtdeT38r2CiiivJPtQooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKqavqC6TpV7fOpZLWF5mUdwqkn+VNJt2Qm1FNs8w+LHx+sPAGoHRNOhTU9 f2hpI2bEVsCMjzMckkc7RjjkkZGfL7v4teLvFWn3lpc36RWt3E0MkVvAi/IwwQGwWHBPOc180t45 Fz4W+IniPU72RddbTb6+t51wSLkxu6tz2DdB7V88aH+2wtj+y9eWsvjSdfiyVbyZPsTlwftYI+fy vK/1Oe/61+m/V8uyimqdSCdRR5uZ21a6Rv17JH8t5vi+KeKqzqZZXlTo+0jT5YcycVK/vz5V8KS9 5t2V9FY/TX4LXmm6N4xtxqLCFvINvZtj5FkYjJJ7Ej5R9TX0lXwZ8O/GX/CV/BnwBrF5ObjV73QL Ge+nbAaWdoEMjkAAAliTgetfZ3w312TxJ4G0bUZmLzSwBZHPVmUlSfxKk14ef4eU408dqubSz6dV +p9H4W5lLDTxXDdS0nRbkpxv7yvaV79na3lp0Olr588eav8A2T8Vr+efO1GiI/3fLXpX0ETgZPAr 5y/aEuLC51a01CylUzlRBIAf9bydrKO+M4z34xwM1/OfiVGnUymnCU0pc6aXWWjTsvK9z+kcHdVG 7dD4v/aHv9N+I/8AwU0+EGl+LvKufCKabG9pa3mDbyTEXLICp4JadIkI/i2qDX3xP4f8KxeNtF1+ 4sNOi8VW8E1pp178sdyYmX95EpBBdcDO3kDGcDrXxP8AGn4R+FfjZZ2MfiFbq3vdPYvZarp0ojur cnBIBIIK5AOCOMcYPNbHwJ+FOifDPxzD4z1Hxt4r8a+I7e1extrjxJqZuFtoHxuVFIyM4HUkdMAV +I5lXeIwmGxFDEzp1aFNw5VFvmd2+ZSTSXNf3766bM9KKtN3Sadv6/yPtjVLefU7O5t7ZlW6njaO Jn6ByCFJ9skV5bY/so+L9Xw3iHx95A/ih02FmB/4ESn/AKCa9Q+F9zdeLJRqrRmPTYifLkIx5z+3 qB6+vHrXqFfq/hNlOLy/Lq+MxkbOtJON1rZLfXu2/uufH8Q5Jlud16c8XDn9mmlq0tfRrseFaP8A sc+BbJxJqUuq67L1b7XdbFJ/7ZhT+teh6D8G/A/hradP8K6XE69JZLdZZB/wN8t+tdlRX7q6k5bs 48LkmWYP+Bh4RfflV/vep5d8cvgDonxs8PwWlw50vVLMH7FqEKAmLPVGXjchwOMjGOCOc/HOp/sO /FbS9TaOxGl6hb7vluYb0IpHqVcAj8Afxr9F6K82tgqNeXNJan6JlnEuY5VS9jQknBbJq9vTZ/LY +V/gx+xgdAnh1Xx1qcepahARJa2WmuyxW8g+7IZCAWZeoGAARn5uMev3zar4LspbDVA+q+H5FMa3 sZKSQg9BJj7uOm4fL0+6c59JrzT9pPU59J+Bvi+4tpvIl+x+Xv3bfld1RgD6lWI/GvYyyMMPKOHj Fcsmvv2vfozwc7zjF4/nx2Lk5yjFtLySvZI46+/aJvrG4TS7DQlie3Ajaa8diHxwCg6kYA+Ynmuv 8FfGePW7+HT9XtF0+5nIWKaNiYnY9FOeVJ7dfwr8tvH/AMY/F/8Awtf4VxaE0d9dWltqS/YLu9kg t5/3cfzSEbskAEj5ev1r0f8AZW+KGqaz8H3XWrqW41OLW78+ZJO0rJmYkIrNztU8D29K/QXlWFxN V4SnRs9feu+nK767/Ft0P5dzTiLiDLav9tUcXz0HyNUnGK0lKacXbVcvI7T+196P1PoqtpzzSafa tcDbcNEpkHo2Bn9as1+atWdj+lYy5oqXcKKKKRQUUUUAedeIf2dvhp4q1J7/AFPwXpM947bnmSHy jIfVtmNx9zmuu8M+EdE8F6aun6DpNlo9kDnyLKBYlJ9SFHJ9zzWvRWsq1SceWUm16nPDDUKc3UhB KT6pK/3hRRRWR0BWT4s8M2XjPwzqeh6gpaz1C3e3k29QGGNw9wcEe4Fa1FJpNWZcJypyU4OzWq9T 8l/j18F9T8AahfeGPFmm/atLucrDcFD5F5HnIZG7EcHGcqfwNeLeB/g94H8J67b6p9juLu6tX32w vJzJHAwOQVXpkds5weevNfuFregaZ4l0+Sw1fTrXVLGT79teQrLG31VgRXk+tfs9fDbQtY0nUbTw HazSrccx21vviz1G9NrDGR/sj1NePDKqkpOnRqWTP1Wnxpha3JWzDCqdWGzsn+e2uvWz1R8ceDv2 e/Fvxy0O81vQrRbaG2i/cTXxMSXrg/6uMkckc/N90Hgn08n1L4T+M/AOp3Vpc+CdS06eZz5wXTm2 znnJ3KpV+p5BNfsHFEkESRxIscaAKqIMBQOgA7U+vssqzSvlmHjh376jtfdeS8j8N4tyjCcVZlVz Pl9jKpbmUdU7dWtPe7tWu9bXPzd+Av7MnjfxncW0U2gyeC/DKtvmubm3+zswPURQkAsx/vEBffsf 0S0DQrLwxollpOnQiCxs4lhijHOFA7nuT1J7kmtCilmGa4jMeVVHaMdktjjybh/B5JzyoK857ye7 8vJf0wooorxz6YKKKKACiiigArwv9r74UX3xN+Gaz6RA1zrOjSm7ht0GWmjK4kRR3bG1gO+zA5Ne 6UV04avPC1o1qe8Thx2Dp5hhp4Wt8Mlb/g/J6n4dar4fnn+KnhnxU14IU0WOWJrZkO5tyuvXPGN3 p2rp/AWn/wDCPfFjxZ40bUo5U1yGGIWwQho9iqMls852+lfp98TP2UPhx8U9Ql1HU9Hex1SU7pb3 S5TA8h9WHKMf9orn3rD8J/sVfDXwTK97Z6ZNq+qRqTbS63N58ccmPlJjChGwcfeU191Rz/Bwaqcj 5ubmt/ea5b3vtby+R+SYjgzMa18P7WPI4ezv/c5ue1rb82u/lexV/ZF8G39tod54s1OB7c6mixWM cgwxgByZMejHbj2XPQivoasPwzfzNbCxv54ZNUhB81YMlFxjgMVAOMjOBxnFblfIZniquMxU69bd 9trdLf1rufp2S5VQyTA08Dh/hj17t6t/f/kFFFFeWe2FFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABUF7ZxahZz2sy7oZ42idfVWGD+hqeimnbUTSasz8gPjR4L1jwJqHizwfdKY75IZ7SNn+VZVd CI5B/ssCD+NeRaR8Prw/s3XPgcxaf/wkMgYLMSNozc+Z9/bn7vFfsf8AGr9n3wp8cNOjTW4ZLTUr dStvqtoQs8Q67TkEMmedp98YJzXwn4t/Zr8M+F9akt0+KdpewRsQ8tvpjsUGfUSbDj2f8q+9hnuA qw58bLlk4uDvs07Xt5/kfkf+pWd+1dDJ6LqwU41FZXacb8qlqtNfR+WxjfCS6vdI8D+EvDG37Vqt tY2uniG2O/zJVRU2r65I4r9LfBOjJ4E8A6XYXs8cQsLQG5mdgEVsbpGyegyW59K+ev2cPBXwe+HN jL4itvE667rVvCXbUNUXyTCvQ+RFyOemQXbnAPOK4z4r/GjxL8e/FUPg3wVZzvayPlLVeN4B/wBd O3RVHBweBx1bGPn+IuJqGMpU6GGV4x27t7fcj7/w/wDC/G4HGYnG5ivZSl8cpKyhG/M1ru2+i00W p7t41+McOqKmnaAr39zct5cFvEMvOfUjsvfB7cnA4rf+HPwqOh3P9u+IHXUPEUvzL/FHaA/wp6t6 t+A4yTV+B/wNs/hJo4kurn+2PElwv+lai44XPJjiB+6gPfq3U9gPUq/Jcu4bf1+WbZrP2tZ/Cvsw XRRXfz+er1PssbOjCpKjhHemno+r8zzrxX8AvBni65e5n05rG6c5eWwk8rcfUryuffGao6D+zV4H 0O5Wd7K41N0OVF/NvQH3VQoP0INep0V9FLJMslV9tLDw5u/Kjz/aTta4yGGO3hSKJFiiQBVRBhVA 6AAdBT6KK9pK2iMwooooAKKKKACvnD9t/Up7PwFoEOCdPn1MC4A6MRG5VT7feOPb2r6KubqGzhaa 4mjgiXrJKwVR+Jrzv4ieDF+Nvhu80C6gNjpLNIhuLmJluYrlMeXLEOhXJIOSMjcO9Z18PUr0JqGm m57WS4yjgMxo4jEK8IvVb6PTbyvc/Im/8U6XN8RfFFii2+kt4fRbiC51CZQzwPGGZoyQDx9049q9 V+AF2uraRoXiS022tnc3AubaxEAiLsJcB3HT5iu73BBPpXTfEj9hbxwmvqLvwRYeMYYW229/EIpV Zc5AIch1HqGGPrXuvwi/Y78UXOm/avE9+PCE8CL/AGfa6eY5pYZFxtZ8fIFGOFU591xyS4gzqpQ+ rQbTas5Ws7Ws9fPvue3R4F4FweNea4iUZQTcoU7uSu5Xj7m9obWd092lsfZwIIBByD3pa+am8V/E H4EfL4m0/wDtTw9H/wAxrSkMtsq+s0P3ofcrtXJ/jNew+Cfiz4f8cWcUtpeQq74AAkDIxPZW4/Jg D7Vrh4VcRTlUjB2jvpsfHZtLCZRiKVCriYP2t3Bp72/J+T18jtKK5rxL8R/DnhK5W21PVIobthkW 6BpJAOxKqCQPc4q34d8ZaN4rRjpd8lyyjLR4KOo9SrAHHvXQ8NXVP2rg+XvZ2+88ZZrl7xX1FYiH tv5OaPN/4De/4G1RRRXMeqFFFFABRRRQAUUUUAFc/wCOokfw7NK81xAsDpIWtkDt1xypVsjnJ4OM Z7V0FU9YiM+lXkazSW7NEwEsQy6cdQO5rajLkqxl5oT2JNPmFzYW0qh1WSNWAlBDjI755zVisPwZ fx6j4dtZYrmS7UAqZ5FCljnnABIwM44JxjHatylVhyVJRfRgtUFFFFZDCiiigAooooAKKKKACiii gAooooA5nXdPm0vUF1TSrKzSaU4vrp2WNvLA4JJByoxyBgnA5roba5ju4VlibfG3Q9KLq1ivbaW3 nQSwyqUdG6MCMEVzugmXQb+XS5LSDTtKQlbFvOBMucHABJYnk5z3IxXZ/Gp/3o/ivv1a6JLYnZnT 0UUVxlBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU2SRIY2kkZURRlmY4AHqTQB86/tffE i+0PT9I8I6VMbefWA0l3KpwwgBChPoxJz7LjoTXwB8R/GdxpvxOufBPhrw1d+Ptc063S51JLS/js 4bcMoYJ5zqwLYZflA74BJBA+v/24rcjxDoOvWcySJb24tJgHGVJZnjYDOSD8wz0yAO9fn1aeJdY+ E/xm8W+JP+Ed1XxHpPiOOKRZNHi8+aGVBjayZGBktz6Y6nIr5fF05fW5qtHVK8U9L7f8Fn73kk/q +RYV4KfIpyaqyUVKS312faMdU7J3Pq/wLe+A/i58BofEHgeS90DVLa9ksdV0fVPmuLK7ULvB55Uh gQRjr0BDKPrn9k/whoHh34WWd3plqq6rdll1K8c7pZpUYjk9lxgqo4Ge5yT+aX7NWma34W0bxVq+ uQHTL3xNq0upnT92TArEkBsdDlm49MZwcgfqB+zdpx0H4O6VPdypH9taS8JZxtVXb5ef90A/jW+E dOeMkqUVZLprrpseRxFHF0OG6UsfVlzSndX0bXvNXWnSz12PVqKhtL23v4RLbTxXERON8Thlz9RU 1fRNW0Z+NJqSugooopDCiiigAooooAKz9W1y00SKOS5dgHlSICNSzbnOF4HOKrXuus92bLTovtly kqxXO1wDaqykiQg/ex6Cl0Tw+umyfbLqX7bq7xCGe92lPMUEkfJkgYz29K6Y04wXNV+7q/8AJf8A Asraiv2KVvod1rx8/X0URtG0L6UGElucSZWQ5H3sAfn+FdLRRWdSo6m+i7dECVgooorIYhAIweQa 8M+LfwC8P2elaz4u8NSS+E9asrWa8k/s1Qba62IzFZIOFO7B5XaSTzmvdKiurWK+tZra4jWWCZDH JG3RlIwQfqDXXhsTUwtRVKcmu/mux5mY5dh8zw8qGJgpJ7XV7Puu3yPyj8W/tBXXhXxn8PNtvc61 Jr1xqT6zbWdr5tw3lwq0IhAYYwxJI/ujjpXqH7N/x/vfGHhP/hKrpBZatZa3eWywpH5R+zxyYRHX J+bbkNz1rD+Nf7FXjPwf8QbHXfDuj3XinTdOlmfTLixbdLAsq7WSWIHJYLxuAIPXgnA7L9lz9krx XZXIfWtJm8KeHhdyX8sN5JvuLmZ23ECMklVLdd2OOB6j9L+u4WpKWIrVk6VnaP8A27FJW9VLTpc/ mzEcI4mfJhsLhnDFJx/eW2aqTk5c3o4e8t7W6K/30DkA+vrS1hNfahoUDG9ia/tYYkzPbRlpZHLY P7sEnAznqeB1PNa1veQ3ZkEUgdo22uB1U+n8/wAjX5dKm4q61Xc/qVMnooorIYUUUUAFFFFABRRR QBzPgq+806pZvqT6nPaXLI7um0pyQF+8390+nbgV01czp195PjXUbKTUfOZ41lS02YKDA5+8cjjq FA55JNdNXViV+85u6T+9ei/ImOwUUUVylBRRRQAUUUUAFFFFABRRRQAUUUUAFYnijRk1C1S7S0+2 ahZbpbWPzWQF+ODhgGBwOCcHFbdFaU5unJTj0E1cztD1J9RslNwI4r1eJrdXVmiOTgMATg47ZNaN crcWx8M699os7JjaXzl7y6lnykJyMnDOAgOSflBycDiuoR1kRXRgyMMhlOQR61pWgk1OGz/q27/4 YEOooornGFFFFABRRRQAUUUUAFFFFABRRRQAUjMFBJIAHJJ7Vj3Hie1jubGKFZLkXbtGkkSFkUjH UgccHPPGATVSz0rVtU+x3Oqz/Y5YWcSWtuweOZTjGSRxyD07HHrXQqLS5qjsv+H6fKwr9i1d+J4F uoLO0Bubm6id7dlGYiQOhYdO34GqsGj6hrQguNWlNvHJbtDc6ZGcoSS2G3BuDgjp3AwRWzpml2mj Wi2tlCtvApJCL7/WrdU6sYaUlbze/wDwP8+orX3MHXvA+ieJ/C1x4d1OxS80iePynglYscZyDuJ3 bgeQ2c55zXyF4z/4J56i2pvL4V8WW/2JmykGqxsskY9N8YIb67Vr7borza+Hp4h3qK779T3cuznH ZVdYWpZPdbr7n+h8YWn7DsHhTwTr2qeK/Gk5ntLGW4jOmwARW5RS25t/Mg4+6Nn1r5ZvfiL53/CL eEvEV9qdgdUvvslitupktJGc/MxUsADzyR+Ir9VfiB4cfxh4F8Q6HG4jl1GwntY3borOhVSfbJFf jJ8ZfB2o614g8NaHq1i6W2jayW1O1lmaCSNQNrjKkMD/ALpzX2nDWGoYWnVq4eC9reK17Nq/n6vp Y/KPEbOczzueHwmY15fV3zS0skpqLtponbonvfe+p9Q/BG30jQfFniaTwf4p1q38ReFriC21NGCR 2szSoZFHl8+ahCkEE8Z4wcEfoJ4V1+PxR4dsNViG1bmIOVBztbow/Agj8K/If9nvSz8M/E/jtbKE waPrF3atp0K3LXEjhUZSCWZnJ3Nxkk81+sPwn0C68MfDvQ9OvlKXkcJkmjPVHdi5U+4LY/Cu7PqC jhadetb2rk1/26r/AHraz8z4fgWpi6eb4nC0pynhVTg7v/n41G9t1Fu8rxTaTXkdbRRRXwp+6BXl /wAa/j3ovwatbaK5ja/1i7UvBYxnBCA4Lsey5yB6kH0JHqFfnN+3lq13YeKvHmopGl/p9z4fn023 nUCVI3Noysg64cMXOOuT6ivaynC08TXftVeMU5W2vbZX6XPkeJ8zq5bgo/V5ctSpJQT0dr7tJ7tJ Hvvw7/ap8V+KbyWbU/BkdroyrvS5ikYMwzgdSecc9Mcda9v0fxCfiDp63GnB7fS3LwzmdSsjqRgh SOhByODjvk4xX4//AAN8Sa/oXxK+ENzqmqQ6jZ2/hCe2t44rA2/2SNoYR5Ujb23twBuwvQ8c8fqf +zHeT6j4AuruTP2ea/kMBPQqFQEj23Bh9Qa9/MsDSp4WWLp0+Rxkktb7q/pc/P8AhjOc1WdrLMXW 9vTnCU72a5HGbju9WmlrfZtcum/q1jYxafbxwxA4RQu5jlmAGBk96sUUV8O227s/bgooopAFFFFA BRRRQAUUUUAFZtxoNpNPHOifZpUlM5aD5N74xl8fe7dfStKiqjKUNYsDBW/1HQ4B/aS/boIYC817 AgXc+4/KI8k9Me3XkYwde2vIbsExOGIALJ/EuRkAjsanrNudAtZ5xNGDaTGdJ5ZLcBWmKggBzjkY P19CK25oVPiVn5bfd/l9wtjSorCGo6ho6D+0ohcwKks017BhViVeQCuckken9M1518W/2h7PwI9v puj26atrdxCs+xyRFbxsMqz45JPUKCOOcjIzzYhxw0PaVH7vc9HAYDEZnXWGwseaT/Bd2+iPYqK+ XvD37QPj+7aS8bT7HUbOL5pYY4GTavswJx9TmvffAPjvT/iFoCanYboyGMc9vJ9+GQdVP5gg9wfw rko4qnXdo7+Z6eZ5Bjcqjz1knHZuLvZ9n1R0lFFFdh84czq979g8Y6T5moCGK5jaIWhTmVgeoO4f 3hxtONvbmumrl/HepJo8GnXkupjTokuQGyoPmAg5H3lxwD1yPUGtvTdb07WFLWF/bXqjqbeZZMfX BrtqwlKlColpa33P0/zMHVpxmqbkuZ7K+r+RdoooriNwooooAKKKKACiiigAooooAKKKKACiiigC pqulwazp81nchzDKAG8tyjDBBBBHIOQKyvDF9PGH0+8tlsGhOy3ieUM8qDPzD5mLDAHzHBJzwK6C uc8TaZJFcwazYWLXuqQYiCCYqPLJOTtLqrEZOMnvXXRkpJ0ZPR7eT+9LXqyX3Ojoqtp94l/aRzJJ HJkDcYn3KGxyAas1ytOLsygooopAFFFFABVaTUrSKcQPdQJMf+WbSAN+Wa+ffj98ZNUj8YxeAPDM zwXflLLf3MBxKNwysSnqvy4Ykc4ZQD1z83aF8d/h5N8Obnx7N4iA8KQTCGbVGs7g4kMgTmPy/MPz MBnb3zX1mFyJVcOsRiKqhdXS627vVaH4/wAR8f1Mpxf1PLsFLESUlGTTaSlLaKtGV5Ozttqna9j9 HKK+f/hz4/vfC2sWWl3tybrSL0IITKxPlFwCjKTyFORkds59c+p2eka5rn9m3er3R0q5srp5DbWL 5SeP+EPyff14PavLxWXSwk7VJrleqfffp+D7XR9hw1xLQ4lwsq1KDp1IPlnCW8ZLp5rs9OuiaaNW 68UWkFxp8UYe5W8lMSyQqWVSMdSBx1zzxgE1TtNL1fVPsVxqdx9gntbhmMNqwdJk4xkkccg9OcEj ua2NL0ey0S2a3sbdLaEuXKIONx6mrlcLqwhpSXze/X5LR+Z9da+5T0zSLLRbdoLG2jtYWcyFIxgF j1NXKKK55ScneTuygoooqQCiiigDyv4y/Hax+F0kWnQxxXWsSwNdMs77IbaAZzLIfT5W4yPukkjH Pz14tbwl8bdStbzxRpelahqE9uLhLjSLg213Jb8AOpViJEGQAzKw6AEZrhP29bjXPDPjvxsYYpJI /EHhuS2tMLnerWzRMi++8Hj/AGh618vfCjXPEvw78a+EtcvtQvtWtbTwX/Zm25t4o0snZ4f9GBjV c42k/Plvl61+j4DC0qVGl7KndySbld6XbuvK3l8z+c+KMTmuOxlflxXs40nJRp2TUnGN4t3TT5n/ ADdHpqfp38Nf2WPhfoujx6t4esZ57u4TfbalfTGaWBgf4VPyAgjB+XPUZr0bwt4sbTra50zxLdxW uo6cCZLi4Iijli/hkDHAxj+XNfMnw+/aA8e+BvCFpLL4DvrnQ7hTdQXclrN5ZVuf9aoIUHqMjvWD 41/aYHjvU7rWdXtbbRvDGl6bK15ayP5wZFBeRi2xST8o2jAIIyMHmvjs1xVPCYqWCxNTmu/dlvbt d9v5kvW2h/RHA+S4zPcmhmFPDqlGK99Ky95JOXKr3d/st6Pqz67s/jH4Jv7z7ND4lsDKTtG6TapP sxwp/Ot3xD4p0vwtpv27U7xLeA8J/E0p7KijlifQV+ZPwj/aI8JeIPEmgW3i3wtrvhfwl4qufsWg eJbp4HSSZs+SLiJGLRB8cHkEnP3csPoz4YeFP+E/8bTeHrrW7iOwsbdpEaIlpXhDqvlRuSfKUlsn aMnn6j5L61XjaMoq7dlZ9UfpkuH8rnz1aNeahTSlLmi7tPbl0W/o11vY7rX/AIo+JPidqcug+FdP lROkkaSbSin+K5mHEY/2FJY4I56Va1L9kjQvF/hGTT/E2p3dzqsmHjurFvJis2H8MUZyCOcEuCT1 G3t7R4d8NaX4S0qLTdHsYrCyj6RRDGT3Zj1Zj3JyTWnX1FDMcVQw8aEJKNt2lZv1f9X6n4zmHDmT 4zNauZOm530ipvmUFaz5VtG+/Vrv1fyF4X/4J46ZpGsrPqfji/1HTVbd9jtrJbZ2HoZC78euFB+l fV+iaJY+G9ItNL0y2SzsLSMRQwR9EUfz+p5PU1eoqMTjsTi0lXm2kdGByrBZa5PC0lFvd7v73dhR RRXCesFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFfmR+1P471/wAJa/8AGCbTlb/hIWFylnIU3SRr jCMg/vCPBX6Cv03r5v8A2pf2ZIvibHP4r0S8g0zX7W3JuVuMiG6jRcgkgEq4AwDgggAHGM15mPoz qwThvF3sfb8KZjh8DiatLEvljVi48y6NtW/rvbofmp8EPilB8N/iF8K7z4ceJ7/UtV1uGSLxXYya lLdx3cLQgyPcxOxCOrlivC8j8/0l/ZI1SfUtb8WMgItCkDOOwkLPj9N35V8i/Az9mbxZ8S7+fVvD tlpunWYmEN1qEzrGCepyFBdjznp1PUV9AfDT4h+JvgXqPiPwbdaVY3Gow3AL3G7chbau18rgspQq dpIIz2ORW+UZdjM4rp0NoJvV6u7tp5K/9bGvG3EWScF5XWp41/vK0oxfJHSHKk05K7d5Wb6u77Js +0K5r4keNrb4c+BtY8R3SeZHYQF1jzjzJCQqJntlmUZ968r0H47eIBtuNRsLW7s8/P8AZ0aNl+hJ I/A/nWn+0hbn4hfs669c6IWuh5Md8iqOWSKRXkBHqFVuPVa+peV1cLiKUMSvclJJtPTfX0P5/wAB xpl2f4PEzymbdWnCUuWStLZ2aXVX7X7O10fI3ib4rLH428I3vjG6vb7W/GU1xBpjgboIhEEZ0C5x Gg3rjAOec5PNd34I+Jela5448VaBoV3dW/iDwktrJevs2IBOm+Py2z83HUY/Ovhn4tf2l408dfC+ 1MuqwWGn3F35t9pcjxyWiusWGEq/6snbjP1rsv2eIr7wD8aPihI02sXem3sVgkGqaxJJNJd7Yzu/ fMP3m0nb14AA7V+i3r1cQsNTilTUuXbTl5Oa1vXS/wAj+eMwyPDVcNPNa1WUsT7JzXva8/tlBST8 o68u/W5+tnwz8Zf8Jv4YjvJdovIXMFwF4G8AHI+oIP4n0rrK8X/ZXguJvAl7qkwKw314xgz/ABIi hSw/4FuH/Aa9or8xzSjTw+Nq0qWyf9L5bH9Q8K4nF4zJMJXx38WUFdvd9m/VWfzCiiivLPqgoooo AKKKKACiiigAooooAKKKKACkZQ6lWAKkYIPelrz34++MbjwJ8I/EWrWbmK9WFYIJF4KPI6xhh7ru LfhUTmqcHN7LU6sLh54zEU8NT+KbUV6t2PMPGn7Ren/DTWNR8PeEdPh1iSCcIxaWQwxPj94Wc53F SNu0H24xWNpn7UHjN5xJNpml3EGctFHFIhx7NvOPxBr5D+MfxXs/gr8EZ/ENtEl74iurqOxsLeYE xiRlZi74OSAqMcdzgZFcpo3xz+LH7MWoeFvFvxC1LR/G/gzU7yOz1jR1sEhmsA4LExSIqlmVVfBY kErjHO6vC+s4rHzjUlNRvot9X+N33P2LFZdkuRUqmH+rSryppOcmtk/mrJ2dkrvu+p+rHwz+Lek/ Eq3kSBGsdUgXdNYTNlgP7yn+Jc8Z4I7gZGe3d1iRndgiKMlmOABXxH4k8T2vhjx0useGLqW2gSQt HJAV3+W3BAyCOVJ6g13kel/ELx26va+CJkjY/Le+NNQd9nofIyNvrjyiK2o46TTg480l2/4Y+fzH hahTlHEwqqlRmrpSaun1WrV/ld+XV+9XnxN8NWszQR6pHf3I/wCWFgDcNn0OwED8cVyniD46Wulo xW1hsVH/AC01W6WJh7+Um5z+lczZfs++K9bhEfibx7La2h+9pvhy2S2iX2DEYP8A37rrPD/7N/w/ 0B1lfQ11i6HJn1iRrsk+uxyUB+iivrcvq4JUufGQk59v+DfT8T8Q4lwOcTxvsMlxcI0bays3K/Ve 9HVfKPq9z4q+MPj/AE6H4jS+KtE1sX2p37Mb1YUKRxYVVXy8ndjAI59Pfj87rHTtZP7KOpXi+Lbu PRxeqH8PCBPJdvtCDcX+9nOG/Cv3Q+Pf7NWh/Gnw9awQNHoWsachSxvIIRsVDyYnQYymeRjlTyOp B+PJ/wBh34wabqpgtYNMurfdgXUV+oiI9cMA/wD47X1yxuBzCkozn7PljKNn0vazuuVNK2x+ZrJM 0yOtJ06ft+acJuVk7uDk2rNScW3L4lquj7bnhTxRe+KbHw/p9rKTf3EVvbW5XkhyFVT+eK/Qqvnv 9nX9lo/Cu5TXfE2oQ6x4jClYUtgfs9pkYJUsAXYjI3EDAJAHevoSvK4hzKhj6sI4Ze7BPXu3+mh7 /AnDNbh7D16mJ0nWknbsle1/PVhRRRXyZ+oBRRRQAUUUUAFFFFAHH/E74TeGfi9oQ0rxLp4u4kJe CeNik0DHqyOOR2yOQcDINeO+Fv2B/ht4d1mO+uptZ16KJxIllqNynkZHTcI0Ut9CcHuDX0lRXZSx mIow9nTm0vU8yvlmCxVVVq1KMpLq1/V/mMhhjt4UiiRYoo1CoiDCqBwAB2Ffnf8Aty/C+80nxf4g nnjlHh3xZbuguYxwkjR7JUJ7NnLjPUHvg1+idZ+u6BpnijS59N1ewt9TsJxiS2uoxIjfUH+favHx WHWJhy3s1qj7bIc4lkuJdXl5oSTjJd0/6/Q/EDQvB/ijWbbwb4f8Q61o58M+F7yC7gNmkourowAi FXDfKgAODgmv0s/Y58KX15cal4xuo3jspYDZWbOMedlg0jj2GwDPclvSut1j9lP4UeHpYdZg8M2l r5Fwjyi5knuIWUnBXy3l2DJI5IwMdK9xtYIbW1iht4kgt40CxxRrtVFA4AHYAdq5aWX1IzjXqyVl eyXfrfQ+nzLinC1MDUwWApSTqWUpTd3yraK1enT7927ktFFFesfmoUUUUAFFFFABRRRQAUUUUAFF FFABRRRQAUUUUAFFFFABXEfG/V/7C+D3jO9B2smk3KofRmjKr+rCuo17WLfw7oeo6rdEi1sbaS6l K9diKWb9Aa/OD4o/Gy28d+NPD1p468QXdjZ+JYbua1hiv0gsbCOEr8jK38R3jDHJO3mvby3Lvrsn OpJKEWr3636fP8D43iPiNZDSXsoSnVkpOKj0UVdy+W9up9Y/sS6X9g+CMFwVw17eyz59gET/ANkN fA37bXim+0jQPjbo99GDcahqBDPIuWCC9R02+gKhce2K+rf2QvjHY3Pw68Faho814PC+seZAtlqL q88DLcSQ7yV+UEsm75eCrevT0r9ov9kzTPjZdDWtNvxoPiVUEbztHvhulAwokAIIYDgMO3BBwMep Thh8sqVKS92jWi1F6uyf46f5HzEszxfGdGOKqXli8LVXtYysnKUbPRr3dbadtV01/Pr9nfxt4t1L 9pLXbzWRpt9eHwKsLHRoJUiS2S8VssJGY7gwOSDjGPev0q/Zpu5tT+HdxNMC1vJfyiHd0KbUBx7b t/614P8ACb9h/wAb+DvFNpqGpeNbHT7S2fdjR1kkmkXuuXVAufX5selfTHhq6PgSSHw9fQLDZDcb S5giVYmGSxyFxtPJJGOOuSDkdOYYnD1sLLDYZ88nLmb1v1b9Wvy6Bw/w3VoZlTzbERdNwg6ahpZr SzVtlvdNb2aZ88fHH9hDTtYm1LX/AAZqq6I2x7iTSJ4i8BYAsREwOUBx93BHPGBxXjv7JvwAtPi7 rNzNrutTx6dYKsrWFqMPcDdjaZCflHTOBk54I61+kLKsiFWAZWGCD0Ir4m/YnL+G/in4h0KTOEju bcZ/vJKn9Aa8/D546WFqUq9Vqo0lDve+qv6dz6DFcFzx2OpYrAYZSowblWWlkraOzffou3mfaOma ZaaLp1tYWNvHa2dtGsUMEQwqIBgAD6Vaoor5htt3Z9wkopJLQKKKKQwooooAKKKKACiiigAooooA KKKKACvPvj54MufH3wj8R6PZIZL54BPboOryRusgUe7bdv416DRUTgqkXB7M6cLiJ4SvDEU/ig01 6p3PxI+O3hK6+JXgOTRYZRDf2tyt3bCY7R5ihlKk9shmH1xXIeKIfiP8frHQfC2v+HYPDek2l1Hc alqJvEk89lUrmNRyMhnwBuGSMsB1/VP4/fsd6D8Q7i+8SaLe/wDCOayytPcoIvMtrlgMlioIKMe7 Dg9SMkmvCPB/wRn+MkOl6Jpd7baJLBG11JdyQlyIl2qQFGMnLqcEgcda+VdKvhZRpJJu7cX93n+Z +908flme0auPnUlCNoqrFW1Su0m+VvurxabTsyh8ONGufiB4z0bQbVS6zTKJCvIjhXl2PsFB/HA7 1+jNea/Bf4D6B8FtMkj09pdR1W4ULc6pdAeZIOu1QOETPO0e2ScCvSq9nAYWWGg+d3kz824tz+ln mKgsNG1Kmmlfdt7vy2Vl5fIKKKK9Q+ECiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAr3 8L3FjcRJK8DvGyrLH95TjqPeq3h+7+26Nayn7Rkpgm6jMchI4JZT0zitGsfQo3tbrU7YpdlFn8xZ rkgh9wyQhAHA98n1Nbx1pyXbX9P8hdTYooorAYUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFAGb4l0OHxP4c1XR7hikGoWktpIy9QsiFCR+Br8hfi58I9V+H3xa0r/hMLFWTR47mGG3ubQS29 4km0CWNm4IG0HoTzg4IIr9jKrX+m2eqweTe2sF5DnPlzxh1z64Ir2cuzJ4G8XHmi2nbzWzPls7yK Gb8s4z5JxUle19JKzX3bNbH5zfsJ/C/VrnTfDWgWjT3vh7QZmnutWeAwxNmZpfKUZILEttwCcDJO K/SKo4LeK1hSGGNIYkGFjjUKqj0AHSpKnMcxlj5QXLyxgrJdl69S8jyKjksa0oy5qlWTnOVrXb8l olv97CqWsaNaa7YvaXsQlibkf3kYdGU9iOxq7RXlRk4NSi7NH0x87fE/456v8HZn8LWEFvrutNGJ Le4mkOy3jP3TIvXdx93d78AgV83/AA7g8bad8SLzxJYXUNvf3sss8jW6At5khJbapUrjk8H2qD4n /EeTw/8AEP4l69eW6317ZzX7QwT5wTCHWNT9Aij8K+O/DtnqcvwLufjIvjbxBa/EaJ5NSt9Tg1F0 SIx3BQQiMfLtIU/L0yQPu8H5eviJY+u61WXKk0lZde/q7Xf4H75hsHTyDBLDYWgqlSdJzm29Glbm Wz0XMklbXdn68fC/45X1/rkXhzxdAlrqMp2W94i7Flfsjr0DHsRwemB39sr88IvjdefF/wAGeEPF 99DHZa5eaVaXVy1uNo88xqWZR2+bJH4V+gulXL3ul2dxIu2SWFJGX0JUEivTwdZzlOlJ35XufnnE mWU8NSw2PpU/Z+2V3HomrPTyd9uhaooor0z4YKKKKACiiigAooooAKKKKACiiigAooooAxvGU/2b wfrs3Ty7Cd/yjY188/sqaW9p4kMx5T+yZB+JliP9K94+KEvkfDPxbLnGzSLts/SF68i/ZniMeoyj qF04DP8AwNf8K9ahllDE4OrjKl+ana3z3Pkcy4vzHJs2wORYS3ssW5e0urtqMXaz6W1PoSiiivJP rgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArFnh+y+KLe5W2kYXMJhkuDOAiY 5UbCeSfUA1tVh+LYZBp0d3Bbw3F1aSLNH59wYUXB5LMCBgDnB446HFb0NZ8vfT7/AJoTNyimxyLL GrowdGAZWU5BB6EGnVgMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACii vIfjt8Wj4S0+XRdJnCavNHme5U/8ecRHXP8AfI6Dt19MlpcrcYt2V9C6ahOrTpTqRhztRTk0ld+v 5bnyh+1p4QsY/iX4g1bQbiO6tZNr6hDxtjuCCJVU/wAXTLDsWYdjj4rj+C+gkS6a+s65B4ZlnFzJ oMN3i1Zs5xjGQuQOM5465xj9Yf2ffhAY1g8W67bYldc6ZZTDmJD/AMtnH99geB2Bz1PHpV18Efh7 fagb648EeH5ronc0j6bCSx9T8vJ9zXztPB1ql60Xy82tj9ixvEWXYNwy+rTddUVy811q7Wa81or6 tPbW138U/s2fCu7+KmsWC29i9r4Q04otxcbCsRRMYgj9SQAOPujk9gf0LAAGBwBUVpaQWFtHb2sM dtbxLtSKJAqIPQAcAVNXqYTCRwsWk7t7s+E4g4gr5/XjUqRUIQVoxXTv83p9yCiiiu4+VCiiigAo oooAKKKKACiiigAooooAKxfGXizT/AvhfUde1SQx2VjEZX2/eY9FUe7EgD3Irar56/bkubm2+DEH kFvKk1aBZ8dNmyQjP/Awn6V24KhHE4mnRk9JNJnlZri5YHA1sTBXlGLa9eh5L4n+OOqeOr2A61q8 WkWOoyGKy0kXAiSUcDYASDK3zDPXr0AOK2vDGtHSdXeDRtYit9ZhhE8lpb3K+eIsj5mizkpkjqMc ivgn9pPx7qWqeJfgbBo9vayanpWqXD2qXJKxySs9sVDsOcZUVvfA7x94ptv21tX1LxXbafZavL4S a1eLS5Wkh8oyQleW5zxzX6dVr8k3g8PRSipKPk0482vn5M/k3F5BiMelnmMxk+f2dSpo/fUozcUo q9+XrdWtsj9Zfhd8Q/8AhNtPlhulWPVbTHnKvAkU9HA/QjsfqK7ivlz9nzXX1D4n7ISdj2kplA/u 5U/z219R18HneCjgcY6cFZNJ27XP3/w+zjF53kVOvjnepFuLf81rWfrZpPu02FFFFeAfpAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABVbUbOPULG4tpYknjlQqY5Put7GrNFNNxd0BmeG5 GfRrZHS2ieJfKaK0bdHHt4Cg+wxWnXmunfFTwnofiLV9KfWtKVVm3JFpsbyFHP3/ADmRSqvnHBOe Dn0HoGm6paaxaLc2NzFd27dJImDD6cd/auvEUKlN88otReqdnbXU8+jmGDxFWWHpVoyqR3ipJyXq k7otUUUVxnoBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFcV4h+MXhXw3fvY3Goi4vY ztkgtEMpQ+jEcA+xOa5n9qD4i3fw2+FN1d6fKbfUL+4j0+CdTgxFwzMw9CER8HscHtXwlrvxy0b4 ZfFLwh4W1O802DStX0p9RutYvbwQLbyBmAjO7CknaOp719VlWVUMRReJxc2o35Ul1fm+iPyvi/ij McrqfUsmoqpW5XN82yilfRJpt2V/0d9PvXxV8edHs/Dcs+jO11qsh8uGCaJlEZI++5IxtHoDycDj kjzr4PfDeb4iaw/iTXd9zo8U5kXz+uo3APLN6xqe3QkY6AivBPg38a9O+NumeN5Yba1gttC16fSL We1ufPjv7dfuXAbGPmBzgZGOhr7q+F+rw654B0W6ghjt4xB5PlRKFRTGShwB0GV6V6OIdPLcvc8C n+8dnJ7pdl66/wDD2t8TkGJx3FXESw/EfKp4WKnGnD4XJ296Wr1jeOn5ap9TRRRXwh/RQUUUUAFF FFABRRRQAUUUUAFFFFABRRRQAUUUUAFcv8TfAFj8T/A2reGr9jHDfRbUmUZMMgIZHA74YA478jvX UUVcJypyU4OzWqMqtKFanKlUV4yVmu6Z+Ofxu+A+rfD3xrpf/CXaTPFdaRcmfTr6Nm+zTnKnejDh vuqcHkdwKzfCmnW+ofEhdfsNNvL3xTd24sES2DytImQdqxrnJ+UdBX7LX1hbanbPbXlvFd278NFO gdG+oPBqno/hfRvDxc6VpFhphf7xs7ZIt312gZr7GlxG4LmlSTne9/NKye29tD8yr8EKpLkhiGqd mrdVFu7jvazeux5F+zD8HtS+H+hz6z4ijEOv6kir9lyGNrDnOwkcbmOCccDCjsa9xoor5fGYurjq 0q9Z3kz7/Lctw+U4WGDwsbQj+PdvzbCiiiuM9MKKKKACiiigAooooAKKKKACiiigAooooAKKKKAC iiigArw/9rjx/d+CfhrBa2E72lxrN4ti9xGdrRw7WaQqexIAX6Ma9wryj9pf4SXHxg+Gc+m6cUXW bOZb2xDttWSRQQYye25WYA9M7c8V6OXTpU8XTnW+FNXPEzuliK2W16eF+Nxdrb/Lztsfm54j/a40 P4Sat8R9BT+zGufD0dsNCgkWUf2k7wq8gfHTDNjORX2z8E/iBHH4i8PvaS/6JrlvD59uD8qu8YYY +jHGfTNfnvqPwh1SDxD4z8K6naanYar4sMMFza3CCJ4zGu0bN4AIIGcnIPavuX9k74Q+I49ds9T1 u0kstH0JPItmlYE3cqrsBXHVV6lumQAOjY/RMRb6vWq42peLi1Fd3eVvV25dVb8Ln824XJ6SzfBR yem4YiM4ym7u/KowU+zUXLn5k73b31SPsSiiivyo/q0KKKKACiiigAooooAKKKKACiiigAooooAK KKKACiiigDx79qz4d33xH+D99a6XE1xqenTJqNvAgy0pQMrKPUlHfA7kAd6/J/VNBfVPi5oXiHU4 7K80rTrGWzltb1N7FmLY+QqV4z3Ir9odbnk1aVdMt4DdWc+6G7mhlUNB27kH+90DcjBArzvxv+yR 8M/H84u9S0WSLUT/AKy+s52hlmPdpAPlZj3YrmvrMuzKGCoqliFdc3MrdLd/8j4LPuHquYV3i8JJ Rm4uDv1TTV0+js7f8Mfm5+z5pN54G1DxZawfZrj/AISHXpb3T7LTQxKpIcRx7Now3QbVyPQ1+rnw t8MT+DvAGjaTd4+2Qw75wDkCR2LsM98FiM+1c78Mf2b/AIf/AAjuvtvh/Q1XUsFf7Qu5GnnUHrtL HCZHB2gZ716bWWa5vHGUYYShG1OOuu7f9NmfD3C7yrGVszxUlKvUSjpskrfe3ZX9Aooor5g/QQoo ooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKAOT+Kvh4+Jvh/rdpHCs14tuZ7UEZ/fR4kj/8AH0WuX/Z+11NS 8M3Fsj7ljZZ4yT1R14/VSf8AgVeqV89/Chz4K+KmpeHWOyBLmazjQ8AIR5sH5Rqg/wC2ldqx1Ojh JYWovia5fJ9fwPDlw3isxzejm+Ekl7CE1UT3lB7W9Jan0JRRRXEe4FFFFABRRRQAUUUUAFFFFABR RRQAUUUUAFFFFABWLr+sm3YadZ3EMWsXCFrZJjhTg89j6HscVc1rVU0TTpLuSOSVEKgiNSxGSBnA BOBnniquhaZNCrXF3cteySOZITNFteFG528k89jjA4HArppxUV7We3Tzf/A6ifZE2jaPDpkckogi ivbnEl08OcSSY5P5k9h16c1pUUVhKTm+aQwoooqQCiiigAooooAKKKKACiiigAooooAKKKKACiii gAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA Cvl/4yeMdK8LfGNdQsblby4SKBrqG2IZo543zhj0yVSJSM5AB9a9i+O/jS58AfCjX9Zsm2XscSw2 7jqjyOsYYe67t34V+aPxO+JeoeHtZ8E+E/CTWdx4s8TPPPPfaoryQ2cMY3M5CkF3bDEc/wAPOc14 uPqtyjQhvvftb+mfpvCeX040amZ4lvkv7NRSu5OVtPvaS7t76H6P+Ev2hfCfiu9js/MudJuZTtjX UI1RXPYBlYj8yK9Nr8yfhT8aoNctPH3gXx9ZadbeMvCawXlvrOjh1t9RtJF3ZaNiSjrlc4ODuwAM c/cf7NfjxviB8LLK9eZrl7WVrTz2+86qFZSfcKyg/SujD4ibmqdRptq6aPIzjJ8PSwzxuCjKMYzc JRlumuqfbp6nqdFFFekfEhRRRQAUUU13WNSzsFUd2OBQGw6ikBDAEEEHoRS0AFFFFABRRRQAVFPc w2se+eVIUyBukYKM+mTT5JFiRndgqKCST0ArmpIv+EvuyksUV1oG1ZI5UleOQSDtgYYdfXGD05ra nTU9ZaRW/wDwPMTZJo9nNq+oprN7b3WnXUIa3W1d12OvPzYGT/ER1GcZx0ro6QAKAAMAdqWlUqOo 77AlYKKKKyGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF FFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHGfGPwK3xJ+GmveHomVLm6gB t2Y4AlRg8eT2BZQD7E1+RXxU8Dar/wAJbpl0bqXw14u8NTyJG9xb+YFDDDxSISMgjuD0JxnNftRX in7VHhDwbP8ADHXfEuv+G7LVtRsbdY7a4cNHKru6xx5dCrFQzg7c44NcNXATxlaHsXab0XZ30/U+ vyjiejkeDrUcdByofG7aOLjZ3Wq/lT3TTSsz8wfB3hyTQZvEut6hqx8Q+K/Enl28skUHlIiKNqRx oCTgDHOecL+P6d/s8/CiHQfhR4dhudTlOpR+XcXB0+5XYrKWZYjjI43/ADY5Jzzivzfk+IXh/wCD 3xd0e31C90+0spdAbWWnurgoPN814xbLlT87Bc5z0J44r7B/Z8+NsOv+HPBfjOxhbTINfgje80oz +cIgzlSu/au4jG4HaPT1z9VgOHauFdRqvetZrlina0baO6XbTS35n5TxZ4u08RPDUMNl7hgHKLdS cl7Rzm5apXldLVz95v0tZ/T/APwiuvWNvtsfE00kiwOi/bYhJukZ9wcn0A+UDH+FTB/Ftpc4MenX 1u08SBgzIyxY/eOR0znoBn/DqKK894qUvjin8l+lj6XlOSj8YapbRxtqPhu8gzHLLI0BEojCE7Qc d2GOB61J/wALJ0WFJTdvNYNDDFNKtxCwKCQZUHGefb2rqaZNBHcJsljWRMg7XAIyORR7WhJ+9Tt6 Pz87hZ9ziPiV8WtI+H3grWdb8+G7nsT5KWofBediAieuMkEkdgT2r441H4wya/8AEbSdB8UancT+ ItYsW1W0t2jbyFtwxUlP4VGVIx14zzX0J+2D4HTUPgtql7pdhGtxY3aalP5EYDOvKyMcdcBgxJ7L mvy58WWmpeOvjp4bvLu/1rTNOs9De0Op6RdvbSRt5jkRiReQDnp3r7fI406WG9rho3nKai77peT6 d7n4Vx9h6maYr6jiajhRjTlJW2ctbNr7W1rfduffnwc+M9vqmiy+JPCGoy3ekWuozaZdW8yNGjTR bfMXa3++MOP8a+u9H1WDXNKtNQtjmC5iWVM9cEZwfevx9/Zw8S6n8KfhHrdhfw3KSP4guZ4orxj5 s6OYwHz3JCk574NfW+l/Gj4r/DPRreG88IazbabEgMYuNOM0Cg88yquR16E1WPyuWNoUqspRjWer vpdf5o8PhXMqvDOOxeDpwqVcFFpRtabjJWu9WrRlrouq9Wfa9FfKHh79uKO4jQahpVlcSdHFtcNA VPoFcNn8xXYXH7Ynhr/hGtQvY9L1K3voYj9nhuUQxTSY+Ub0c4GcZJA4r8zxFelhq06FSS5o7n9X ZfkeZ5nhKOOw2Hk6dVJx2vr3V7r5ns/iPxfonhG3WbWdUtdOR/uefIFZ/wDdXq34CsbRvjD4M1+6 W2svENo87HCpKTEWPoN4GT9K/Pz4sfFSDwroLePfHmpzTG/uPIgVFMktxL1EUSDsB24AHpWr8APi L4L+O2vah4RUav4Q8awWjXtvofiewNpPdwqMs0XzMDgc4yDjJAIBI8qGNxFZ3pU/d8z7jEcMZRl1 P2eNxb9rpfltZN+Vr7+auffeo6nLq+qvpWmXiW93Zur3KypuDRkdsHP8QIzwcHqM1u2Vjbabbrb2 lvFawLnbFCgRRnk4A4rwr9nb4h3j6ndeDtVna4eCMyWU0jZYKpw0ZPcAHI9ACOmK98r2qeKjiaUX BWXbz6/8A+BzPLauVYqWHqu/VPo09n/XUKKKKo8oKKKKACiiigAooooAKKKKACiiigAooooAKKKK ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigArk/it4FT4l/DvXfDTyiBr+32xSsMhJVIeNj7B1Un2rrKKunOVOanF6p3XyMq1KFen KlUV4yTT9Hoz8Z/HHw5134a/FW9uvEdvd6XqP9jyaL9nki+Ro2k3+aj5w4z0xx719A/sT/CjV9as fDOmQQ3T+FNB2GbVLiIxpPsbcI07MxPBx0GSewP6IXdjbX8YjureK5QHIWZA4B9cGpURY0CqoVVG AAMACvrXxHUjTkqdNKbTV7997L+rH5v/AKjYapWg8RVc6UXFqNkvhvy3fld9Fe46iiivjz9NCiii gBk0MdzDJFLGssUilXRxlWB4IIPUV8m/Ev8A4J86F4l1ebUPCniCXwykrF2sJrf7RCpPaM7lZB7H d7YFfWtFdeGxdfCNyoytc83G5bhMxio4qmpW27r5rU+Zvg/+w54e+H+sWmseItXm8XX9m4ltoJIB DaxOOjFNzF2HbJx7V9M0UUsRiq2Klz1pXZWCwGFy+n7LCwUV/W73Zg+IfAPhrxaCNa8P6ZqpIxuv LSOVh9CRkfhXzh+0t+zx4O8J/Dy71/wxo39napBPEWiguJGWSMuFYCJmIyNwPygcA17X8cvipH8J PA8mqKiTalcyraWML/daVgTlv9lQCx9cAcZr4/uviPBfePdO0fxNrjT+LdWtTf29rcbi8kGW+ZeN qrlG4GOnAr0sFw9HNqMqtaShF6J2u2/I+ezrxLxPA9emsDTlWqR99wUmoqK1fNZPT5aLVtaX+QP2 kdUvrXXvhdr2p29yfD/hvVfMvsxMywB3hKyFf+2bfjgd6l1L4h2vxE/ak+HOoeDr5dRHh2Caa+1O zz5aROGAQt75Ix/00x64+1tO1Dwv8RI/EumabfWusTaHMtlq9qqEm1kfftR9wAOfLfpn7pryrwp+ zb42u/EN3p/g/wAPQyaP5+P7QAjtoFyAfnPGWAIyACfQV89mmR1MrpQrYaXtYq8U1pZvutfk7+vS /wCicCeKGB47x9fA5vR+o1ZezquEveU4wtrCb5LX0vFxbs24t629p/ZqmufEHxnsLmPLJawTzzsO ymMoM/8AAnWvtKvMPgT8FLb4O+HpI5rhdQ1282te3irheOkcYPIQZPJ5J5OOAPT648BQnQo8tTd6 nv8AFma4fNsydXC/w4pRT72u7/e3byCiiivRPjQooooAKKKKACiiigAooooAKKKKACiiigAooooA KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAo oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPlL9vyG6i8OeD7+MN9kgvZo5D2EjIpTP4I9 fnD8S/EviPxv+1D4Mk0nxKfDWq2/h1reLUjZx3flIrzkr5b4U5BI9s1+0vxI+H2lfFHwdqHhzWEY 2l2vEkfDwuOVkQ9iD+fIPBNfnL8SP2NfiP4F8Rtdaf4e/wCEnhjylvqulxiSQpzwU/1iHnkYI5OC a+5yrF0KuFhhKsuVwlfe11e+jTTT9GfkXEWVYqjmNXMaFP2iqQcdlJJuPLrFpprZ6pp6pnlX7HXi TU/Dvjz42Wup6t/bF/carbfatQMCwfaXU3GZPLX5Vzk8Dpmv0m/ZXnmvvDWt3Zz9me8CRnsWVAWx /wB9LXyN8If2T/iV4k1dmufDyeD7G4cNealfxrFK/v5Q+d25OM4H+0K/QzwT4O0/wD4XsNC0xGW0 tE2hnOXkY8s7HuSSSfrxxWua4zCUMuWBoPmm3dtdFe/37I8vhzh7F4jiF5/iYOnGMFFJ6XfIoaJJ Wjo3oklokblFFFfAn7iFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRR QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA BRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAf /9k= ------=_Part_856734_547988648.1671606633353--