From owner-chemistry@ccl.net Sun Feb 26 09:52:00 2023 From: "Igors Mihailovs igorsm_._cfi.lu.lv" To: CCL Subject: CCL:G: =?US-ASCII?Q?Re=3A_CCL=3AG=3A_Help_with_DFT_convergence_f?= =?US-ASCII?Q?ailure_for_Fe2CO2_in_Gaussian_software?= Message-Id: <-54856-230226095114-26410-Z//UrwvJVlBRyivDiIaWLw[a]server.ccl.net> X-Original-From: Igors Mihailovs Content-Transfer-Encoding: 7bit Content-Type: multipart/alternative; boundary=----JPLGSNNZUIBL03TDO3DXACU63W8LVJ Date: Sun, 26 Feb 2023 16:50:42 +0200 MIME-Version: 1.0 Sent to CCL by: Igors Mihailovs [igorsm,,cfi.lu.lv] ------JPLGSNNZUIBL03TDO3DXACU63W8LVJ Content-Type: text/plain; charset=utf-8 Content-Transfer-Encoding: quoted-printable Dear Cheng Fei Phung, I would use something like MN15 or MN15L, and a basis set with at least so= me polarization (6-311G(d,p), for example)=2E Especially if I had to perfor= m something like a token computation in order to get someone's experimental= results published=2E Trying to converge B3LYP for a transition metal compound may take more tim= e than the options described above=2E=2E=2E Best regards, Igors Mihailovs former employee at ISSP UL On February 25, 2023 12:09:02 PM GMT+02:00, "Cheng Fei Phung feiphung=3D-= =3Dhotmail=2Ecom" wrote: > >Sent to CCL by: "Cheng Fei Phung" [feiphung{:}hotmail=2Ecom] >With the following gaussian16 gjf input file, I got some convergence fail= ure issues=2E > >Could anyone help ? > > >Gaussian input gjf file > >``` >%chk=3Dstep_000_DFT=2Echk ># opt b3lyp/6-31g geom=3Dconnectivity > >Fe2CO2_OPT > >0 1 > Fe 2=2E74538330 8=2E28679554 5=2E00000000 > O 4=2E55208397 8=2E06717607 5=2E00000000 > C 5=2E30819317 9=2E07309328 5=2E00000000 > O 5=2E97838127 9=2E96470142 5=2E00000000 > > 1 2 1=2E0 > 2 3 2=2E0 > 3 4 3=2E0 > 4 >``` > > >Gaussian log file > >``` > %chk=3Dstep_000_DFT=2Echk > ----------------------------------- > # opt b3lyp/6-31g geom=3Dconnectivity > ----------------------------------- > 1/18=3D20,19=3D15,26=3D3,38=3D1,57=3D2/1,3; > 2/9=3D110,12=3D2,17=3D6,18=3D5,40=3D1/2; > 3/5=3D1,6=3D6,11=3D2,25=3D1,30=3D1,71=3D1,74=3D-5/1,2,3; > 4//1; > 5/5=3D2,38=3D5/2; > 6/7=3D2,8=3D2,9=3D2,10=3D2,28=3D1/1; > 7//1,2,3,16; > 1/18=3D20,19=3D15,26=3D3/3(2); > 2/9=3D110/2; > 99//99; > 2/9=3D110/2; > 3/5=3D1,6=3D6,11=3D2,25=3D1,30=3D1,71=3D1,74=3D-5/1,2,3; > 4/5=3D5,16=3D3,69=3D1/1; > 5/5=3D2,38=3D5/2; > 7//1,2,3,16; > 1/18=3D20,19=3D15,26=3D3/3(-5); > 2/9=3D110/2; > 6/7=3D2,8=3D2,9=3D2,10=3D2,19=3D2,28=3D1/1; > 99/9=3D1/99; > ---------- > Fe2CO2_OPT > ---------- > Symbolic Z-matrix: > Charge =3D 0 Multiplicity =3D 1 > Fe 2=2E74538 8=2E2868 5=2E=20 > O 4=2E55208 8=2E06718 5=2E=20 > C 5=2E30819 9=2E07309 5=2E=20 > O 5=2E97838 9=2E9647 5=2E=20 >=20 > > GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad > Berny optimization=2E > Initialization pass=2E > ---------------------------- > ! Initial Parameters ! > ! (Angstroms and Degrees) ! > -------------------------- ------------------= -------- > ! Name Definition Value Derivative Info=2E = ! > ------------------------------------------------------------------------= -------- > ! R1 R(1,2) 1=2E82 estimate D2E/DX2 = ! > ! R2 R(2,3) 1=2E2584 estimate D2E/DX2 = ! > ! R3 R(3,4) 1=2E1154 estimate D2E/DX2 = ! > ! A1 A(1,2,3) 120=2E0 estimate D2E/DX2 = ! > ! A2 L(2,3,4,1,-1) 180=2E0 estimate D2E/DX2 = ! > ! A3 L(2,3,4,1,-2) 180=2E0 estimate D2E/DX2 = ! > ------------------------------------------------------------------------= -------- > Trust Radius=3D3=2E00D-01 FncErr=3D1=2E00D-07 GrdErr=3D1=2E00D-06 EigMax= =3D2=2E50D+02 EigMin=3D1=2E00D-04 > Number of steps in this run=3D 20 maximum allowed number of steps=3D= 100=2E > GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad > > Input orientation: =20 > --------------------------------------------------------------------- > Center Atomic Atomic Coordinates (Angstroms) > Number Number Type X Y Z > --------------------------------------------------------------------- > 1 26 0 2=2E745383 8=2E286796 5=2E000= 000 > 2 8 0 4=2E552084 8=2E067176 5=2E000= 000 > 3 6 0 5=2E308193 9=2E073093 5=2E000= 000 > 4 8 0 5=2E978381 9=2E964701 5=2E000= 000 > --------------------------------------------------------------------- > Distance matrix (angstroms): > 1 2 3 4 > 1 Fe 0=2E000000 > 2 O 1=2E820000 0=2E000000 > 3 C 2=2E680720 1=2E258400 0=2E000000 > 4 O 3=2E642478 2=2E373800 1=2E115400 0=2E000000 > Stoichiometry CFeO2 > Framework group CS[SG(CFeO2)] > Deg=2E of freedom 5 > Full point group CS NOp 2 > Largest Abelian subgroup CS NOp 2 > Largest concise Abelian subgroup C1 NOp 1 > Standard orientation: =20 > --------------------------------------------------------------------- > Center Atomic Atomic Coordinates (Angstroms) > Number Number Type X Y Z > --------------------------------------------------------------------- > 1 26 0 -1=2E018287 -0=2E652610 -0=2E000= 000 > 2 8 0 -0=2E000000 0=2E855864 0=2E000= 000 > 3 6 0 1=2E255302 0=2E767619 0=2E000= 000 > 4 8 0 2=2E367956 0=2E689403 0=2E000= 000 > --------------------------------------------------------------------- > Rotational constants (GHZ): 37=2E1744583 2=2E4897380 = 2=2E3334561 > Standard basis: 6-31G (6D, 7F) > There are 42 symmetry adapted cartesian basis functions of A' symmet= ry=2E > There are 14 symmetry adapted cartesian basis functions of A" symmet= ry=2E > There are 42 symmetry adapted basis functions of A' symmetry=2E > There are 14 symmetry adapted basis functions of A" symmetry=2E > 56 basis functions, 160 primitive gaussians, 56 cartesian basis = functions > 24 alpha electrons 24 beta electrons > nuclear repulsion energy 178=2E7145642873 Hartrees=2E > NAtoms=3D 4 NActive=3D 4 NUniq=3D 4 SFac=3D 1=2E00D+00 NAtFMM= =3D 60 NAOKFM=3DF Big=3DF > Integral buffers will be 131072 words long=2E > Raffenetti 2 integral format=2E > Two-electron integral symmetry is turned on=2E > One-electron integrals computed using PRISM=2E > NBasis=3D 56 RedAO=3D T EigKep=3D 1=2E76D-03 NBF=3D 42 14 > NBsUse=3D 56 1=2E00D-06 EigRej=3D -1=2E00D+00 NBFU=3D 42 14 > ExpMin=3D 4=2E11D-02 ExpMax=3D 6=2E11D+04 ExpMxC=3D 9=2E18D+03 IAcc=3D3 = IRadAn=3D 5 AccDes=3D 0=2E00D+00 > Harris functional with IExCor=3D 402 and IRadAn=3D 5 diagonalized= for initial guess=2E > HarFok: IExCor=3D 402 AccDes=3D 0=2E00D+00 IRadAn=3D 5 IDoV=3D= 1 UseB2=3DF ITyADJ=3D14 > ICtDFT=3D 3500011 ScaDFX=3D 1=2E000000 1=2E000000 1=2E000000 1=2E00= 0000 > FoFCou: FMM=3DF IPFlag=3D 0 FMFlag=3D 100000 FMFlg1=3D = 0 > NFxFlg=3D 0 DoJE=3DT BraDBF=3DF KetDBF=3DT FulRan=3DT > wScrn=3D 0=2E000000 ICntrl=3D 500 IOpCl=3D 0 I1Cent=3D = 200000004 NGrid=3D 0 > NMat0=3D 1 NMatS0=3D 1 NMatT0=3D 0 NMatD0=3D 1 NMt= DS0=3D 0 NMtDT0=3D 0 > Petite list used in FoFCou=2E > Initial guess orbital symmetries: > Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') > (A') (A") (A') (A') (A') (A') (A') (A") (A') (A") > (A') (A') (A") (A') > Virtual (A") (A') (A') (A") (A') (A") (A') (A') (A') (A') > (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') > (A') (A") (A') (A') (A') (A") (A") (A') (A') (A') > (A') (A') > The electronic state of the initial guess is 1-A'=2E > Keep R1 ints in memory in symmetry-blocked form, NReq=3D2159799=2E > Requested convergence on RMS density matrix=3D1=2E00D-08 within 128 cycl= es=2E > Requested convergence on MAX density matrix=3D1=2E00D-06=2E > Requested convergence on energy=3D1=2E00D-06=2E > No special actions if energy rises=2E > EnCoef did 3 forward-backward iterations > EnCoef did 100 forward-backward iterations > EnCoef did 2 forward-backward iterations > EnCoef did 2 forward-backward iterations > SCF Done: E(RB3LYP) =3D -1451=2E84990065 A=2EU=2E after 22 cycle= s > NFock=3D 22 Conv=3D0=2E66D-08 -V/T=3D 2=2E0016 > > ********************************************************************** > > Population analysis using the SCF Density=2E > > ********************************************************************** > > Orbital symmetries: > Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') > (A") (A') (A') (A') (A') (A') (A") (A') (A') (A") > (A') (A') (A") (A') > Virtual (A") (A') (A") (A') (A') (A") (A') (A') (A') (A') > (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') > (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') > (A') (A') > The electronic state is 1-A'=2E > Alpha occ=2E eigenvalues -- -256=2E04016 -29=2E99951 -25=2E87326 -25=2E= 85859 -25=2E85805 > Alpha occ=2E eigenvalues -- -19=2E31120 -19=2E28742 -10=2E45249 -3=2E= 41064 -2=2E20510 > Alpha occ=2E eigenvalues -- -2=2E17421 -2=2E16694 -1=2E26882 -1=2E= 17261 -0=2E64217 > Alpha occ=2E eigenvalues -- -0=2E58881 -0=2E57965 -0=2E57594 -0=2E= 44473 -0=2E43175 > Alpha occ=2E eigenvalues -- -0=2E22416 -0=2E22137 -0=2E20382 -0=2E= 15336 > Alpha virt=2E eigenvalues -- -0=2E07558 -0=2E07420 -0=2E03518 -0=2E= 03067 -0=2E02764 > Alpha virt=2E eigenvalues -- -0=2E00807 0=2E00082 0=2E10567 0=2E= 12952 0=2E29804 > Alpha virt=2E eigenvalues -- 0=2E31948 0=2E36712 0=2E41870 0=2E= 45104 0=2E54770 > Alpha virt=2E eigenvalues -- 0=2E63606 0=2E74556 0=2E85137 0=2E= 88355 0=2E92857 > Alpha virt=2E eigenvalues -- 0=2E96917 1=2E00808 1=2E01595 1=2E= 25495 1=2E50958 > Alpha virt=2E eigenvalues -- 1=2E51252 1=2E55992 1=2E59723 1=2E= 70732 1=2E86833 > Alpha virt=2E eigenvalues -- 2=2E01356 20=2E37339 > Condensed to atoms (all electrons): > 1 2 3 4 > 1 Fe 26=2E065938 -0=2E058002 0=2E083106 -0=2E030239 > 2 O -0=2E058002 8=2E304619 0=2E168196 0=2E010116 > 3 C 0=2E083106 0=2E168196 4=2E724609 0=2E417125 > 4 O -0=2E030239 0=2E010116 0=2E417125 7=2E724230 > Mulliken charges: > 1 > 1 Fe -0=2E060803 > 2 O -0=2E424929 > 3 C 0=2E606964 > 4 O -0=2E121232 > Sum of Mulliken charges =3D -0=2E00000 > Mulliken charges with hydrogens summed into heavy atoms: > 1 > 1 Fe -0=2E060803 > 2 O -0=2E424929 > 3 C 0=2E606964 > 4 O -0=2E121232 > Electronic spatial extent (au): =3D 453=2E0609 > Charge=3D -0=2E0000 electrons > Dipole moment (field-independent basis, Debye): > X=3D 1=2E6708 Y=3D 1=2E8514 Z=3D = -0=2E0000 Tot=3D 2=2E4938 > Quadrupole moment (field-independent basis, Debye-Ang): > XX=3D -35=2E0872 YY=3D -34=2E7815 ZZ=3D = -32=2E5686 > XY=3D 0=2E8912 XZ=3D 0=2E0000 YZ=3D = 0=2E0000 > Traceless Quadrupole moment (field-independent basis, Debye-Ang): > XX=3D -0=2E9415 YY=3D -0=2E6357 ZZ=3D = 1=2E5772 > XY=3D 0=2E8912 XZ=3D 0=2E0000 YZ=3D = 0=2E0000 > Octapole moment (field-independent basis, Debye-Ang**2): > XXX=3D -8=2E4875 YYY=3D 8=2E6001 ZZZ=3D = -0=2E0000 XYY=3D 3=2E5470 > XXY=3D 1=2E7153 XXZ=3D 0=2E0000 XZZ=3D = 0=2E7336 YZZ=3D 1=2E9407 > YYZ=3D -0=2E0000 XYZ=3D -0=2E0000 > Hexadecapole moment (field-independent basis, Debye-Ang**3): > XXXX=3D -415=2E5041 YYYY=3D -171=2E1039 ZZZZ=3D = -55=2E1637 XXXY=3D -84=2E4690 > XXXZ=3D 0=2E0000 YYYX=3D -75=2E7822 YYYZ=3D = 0=2E0000 ZZZX=3D 0=2E0000 > ZZZY=3D 0=2E0000 XXYY=3D -90=2E7121 XXZZ=3D = -70=2E9019 YYZZ=3D -36=2E9432 > XXYZ=3D 0=2E0000 YYXZ=3D 0=2E0000 ZZXY=3D = -24=2E7602 > N-N=3D 1=2E787145642873D+02 E-N=3D-3=2E807626875025D+03 KE=3D 1=2E44949= 7603530D+03 > Symmetry A' KE=3D 1=2E287179877057D+03 > Symmetry A" KE=3D 1=2E623177264732D+02 > Calling FoFJK, ICntrl=3D 2127 FMM=3DF ISym2X=3D1 I1Cent=3D 0 IOpClX= =3D 0 NMat=3D1 NMatS=3D1 NMatT=3D0=2E > ***** Axes restored to original set ***** > ------------------------------------------------------------------- > Center Atomic Forces (Hartrees/Bohr) > Number Number X Y Z > ------------------------------------------------------------------- > 1 26 -0=2E048820174 0=2E005157682 0=2E00000000= 0 > 2 8 0=2E068584660 0=2E015861998 0=2E00000000= 0 > 3 6 -0=2E104728901 -0=2E126023309 0=2E00000000= 0 > 4 8 0=2E084964415 0=2E105003629 -0=2E00000000= 0 > ------------------------------------------------------------------- > Cartesian Forces: Max 0=2E126023309 RMS 0=2E066118707 > > GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad > Berny optimization=2E > FormGI is forming the generalized inverse of G from B-inverse, IUseBI=3D= 4=2E > Internal Forces: Max 0=2E134986320 RMS 0=2E059949734 > Search for a local minimum=2E > Step number 1 out of a maximum of 20 > All quantities printed in internal units (Hartrees-Bohrs-Radians) > Mixed Optimization -- RFO/linear search > Second derivative matrix not updated -- first step=2E > The second derivative matrix: > R1 R2 R3 A1 A2 > R1 0=2E22791 > R2 0=2E00000 0=2E80209 > R3 0=2E00000 0=2E00000 1=2E62060 > A1 0=2E00000 0=2E00000 0=2E00000 0=2E25000 > A2 0=2E00000 0=2E00000 0=2E00000 0=2E00000 0= =2E05456 > A3 0=2E00000 0=2E00000 0=2E00000 0=2E00000 0= =2E00000 > A3 > A3 0=2E05456 > ITU=3D 0 > Eigenvalues --- 0=2E05456 0=2E05456 0=2E22791 0=2E25000 0= =2E80209 > Eigenvalues --- 1=2E62060 > RFO step: Lambda=3D-2=2E30438557D-02 EMin=3D 5=2E45649275D-02 > Linear search not attempted -- first point=2E > Iteration 1 RMS(Cart)=3D 0=2E10911805 RMS(Int)=3D 0=2E00403264 > Iteration 2 RMS(Cart)=3D 0=2E00524126 RMS(Int)=3D 0=2E00001569 > Iteration 3 RMS(Cart)=3D 0=2E00001737 RMS(Int)=3D 0=2E00000000 > Iteration 4 RMS(Cart)=3D 0=2E00000000 RMS(Int)=3D 0=2E00000000 > ClnCor: largest displacement from symmetrization is 2=2E67D-10 for atom= 3=2E > Variable Old X -DE/DX Delta X Delta X Delta X New X > (Linear) (Quad) (Total) > R1 3=2E43930 0=2E04909 0=2E00000 0=2E19560 0=2E19560 = 3=2E63490 > R2 2=2E37803 -0=2E02868 0=2E00000 -0=2E03476 -0=2E03476 = 2=2E34327 > R3 2=2E10780 0=2E13499 0=2E00000 0=2E08213 0=2E08213 = 2=2E18993 > A1 2=2E09440 0=2E00265 0=2E00000 0=2E00969 0=2E00969 = 2=2E10408 > A2 3=2E14159 0=2E01018 0=2E00000 0=2E13112 0=2E13112 = 3=2E27271 > A3 3=2E14159 0=2E00000 0=2E00000 0=2E00000 0=2E00000 = 3=2E14159 > Item Value Threshold Converged? > Maximum Force 0=2E134986 0=2E000450 NO=20 > RMS Force 0=2E059950 0=2E000300 NO=20 > Maximum Displacement 0=2E164913 0=2E001800 NO=20 > RMS Displacement 0=2E111408 0=2E001200 NO=20 > Predicted change in Energy=3D-1=2E225354D-02 > GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad > > Input orientation: =20 > --------------------------------------------------------------------- > Center Atomic Atomic Coordinates (Angstroms) > Number Number Type X Y Z > --------------------------------------------------------------------- > 1 26 0 2=2E658115 8=2E232499 5=2E000= 000 > 2 8 0 4=2E576263 8=2E089032 5=2E000= 000 > 3 6 0 5=2E284531 9=2E106861 5=2E000= 000 > 4 8 0 6=2E065132 9=2E963375 5=2E000= 000 > --------------------------------------------------------------------- > Distance matrix (angstroms): > 1 2 3 4 > 1 Fe 0=2E000000 > 2 O 1=2E923506 0=2E000000 > 3 C 2=2E768135 1=2E240008 0=2E000000 > 4 O 3=2E821478 2=2E393719 1=2E158859 0=2E000000 > Stoichiometry CFeO2 > Framework group CS[SG(CFeO2)] > Deg=2E of freedom 5 > Full point group CS NOp 2 > Largest Abelian subgroup CS NOp 2 > Largest concise Abelian subgroup C1 NOp 1 > Standard orientation: =20 > --------------------------------------------------------------------- > Center Atomic Atomic Coordinates (Angstroms) > Number Number Type X Y Z > --------------------------------------------------------------------- > 1 26 0 -1=2E022093 -0=2E757193 -0=2E000= 000 > 2 8 0 0=2E000000 0=2E872286 0=2E000= 000 > 3 6 0 1=2E239558 0=2E838897 0=2E000= 000 > 4 8 0 2=2E392133 0=2E959419 0=2E000= 000 > --------------------------------------------------------------------- > Rotational constants (GHZ): 40=2E3135828 2=2E2660782 = 2=2E1454781 > Standard basis: 6-31G (6D, 7F) > There are 42 symmetry adapted cartesian basis functions of A' symmet= ry=2E > There are 14 symmetry adapted cartesian basis functions of A" symmet= ry=2E > There are 42 symmetry adapted basis functions of A' symmetry=2E > There are 14 symmetry adapted basis functions of A" symmetry=2E > 56 basis functions, 160 primitive gaussians, 56 cartesian basis = functions > 24 alpha electrons 24 beta electrons > nuclear repulsion energy 172=2E3989508234 Hartrees=2E > NAtoms=3D 4 NActive=3D 4 NUniq=3D 4 SFac=3D 1=2E00D+00 NAtFMM= =3D 60 NAOKFM=3DF Big=3DF > Integral buffers will be 131072 words long=2E > Raffenetti 2 integral format=2E > Two-electron integral symmetry is turned on=2E > One-electron integrals computed using PRISM=2E > NBasis=3D 56 RedAO=3D T EigKep=3D 1=2E76D-03 NBF=3D 42 14 > NBsUse=3D 56 1=2E00D-06 EigRej=3D -1=2E00D+00 NBFU=3D 42 14 > Initial guess from the checkpoint file: "step_000_DFT=2Echk" > B after Tr=3D 0=2E000000 0=2E000000 -0=2E000000 > Rot=3D 0=2E999288 -0=2E000000 -0=2E000000 -0=2E037733 A= ng=3D -4=2E32 deg=2E > Initial guess orbital symmetries: > Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') > (A") (A') (A') (A') (A') (A') (A") (A') (A') (A") > (A') (A') (A") (A') > Virtual (A") (A') (A") (A') (A') (A") (A') (A') (A') (A') > (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') > (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') > (A') (A') > ExpMin=3D 4=2E11D-02 ExpMax=3D 6=2E11D+04 ExpMxC=3D 9=2E18D+03 IAcc=3D3 = IRadAn=3D 5 AccDes=3D 0=2E00D+00 > Harris functional with IExCor=3D 402 and IRadAn=3D 5 diagonalized= for initial guess=2E > HarFok: IExCor=3D 402 AccDes=3D 0=2E00D+00 IRadAn=3D 5 IDoV=3D= 1 UseB2=3DF ITyADJ=3D14 > ICtDFT=3D 3500011 ScaDFX=3D 1=2E000000 1=2E000000 1=2E000000 1=2E00= 0000 > FoFCou: FMM=3DF IPFlag=3D 0 FMFlag=3D 100000 FMFlg1=3D = 0 > NFxFlg=3D 0 DoJE=3DT BraDBF=3DF KetDBF=3DT FulRan=3DT > wScrn=3D 0=2E000000 ICntrl=3D 500 IOpCl=3D 0 I1Cent=3D = 200000004 NGrid=3D 0 > NMat0=3D 1 NMatS0=3D 1 NMatT0=3D 0 NMatD0=3D 1 NMt= DS0=3D 0 NMtDT0=3D 0 > Petite list used in FoFCou=2E > Keep R1 ints in memory in symmetry-blocked form, NReq=3D2159799=2E > Requested convergence on RMS density matrix=3D1=2E00D-08 within 128 cycl= es=2E > Requested convergence on MAX density matrix=3D1=2E00D-06=2E > Requested convergence on energy=3D1=2E00D-06=2E > No special actions if energy rises=2E > SCF Done: E(RB3LYP) =3D -1451=2E86533909 A=2EU=2E after 18 cycle= s > NFock=3D 18 Conv=3D0=2E23D-08 -V/T=3D 2=2E0018 > Calling FoFJK, ICntrl=3D 2127 FMM=3DF ISym2X=3D1 I1Cent=3D 0 IOpClX= =3D 0 NMat=3D1 NMatS=3D1 NMatT=3D0=2E > ***** Axes restored to original set ***** > ------------------------------------------------------------------- > Center Atomic Forces (Hartrees/Bohr) > Number Number X Y Z > ------------------------------------------------------------------- > 1 26 -0=2E021775369 0=2E002114287 0=2E00000000= 0 > 2 8 0=2E036955110 0=2E014737157 0=2E00000000= 0 > 3 6 -0=2E039695691 -0=2E040384091 0=2E00000000= 0 > 4 8 0=2E024515951 0=2E023532647 -0=2E00000000= 0 > ------------------------------------------------------------------- > Cartesian Forces: Max 0=2E040384091 RMS 0=2E023135364 > > GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad > Berny optimization=2E > Using GEDIIS/GDIIS optimizer=2E > FormGI is forming the generalized inverse of G from B-inverse, IUseBI=3D= 4=2E > Internal Forces: Max 0=2E033908365 RMS 0=2E018980685 > Search for a local minimum=2E > Step number 2 out of a maximum of 20 > All quantities printed in internal units (Hartrees-Bohrs-Radians) > Mixed Optimization -- RFO/linear search > Update second derivatives using D2CorX and points 1 2 > DE=3D -1=2E54D-02 DEPred=3D-1=2E23D-02 R=3D 1=2E26D+00 > TightC=3DF SS=3D 1=2E41D+00 RLast=3D 2=2E52D-01 DXNew=3D 5=2E0454D-01 = 7=2E5596D-01 > Trust test=3D 1=2E26D+00 RLast=3D 2=2E52D-01 DXMaxT set to 5=2E05D-01 > The second derivative matrix: > R1 R2 R3 A1 A2 > R1 0=2E18668 > R2 0=2E04604 0=2E76870 > R3 -0=2E08608 0=2E12904 1=2E50110 > A1 0=2E00316 0=2E00128 0=2E01538 0=2E25104 > A2 -0=2E00501 0=2E00702 -0=2E00784 0=2E00077 0= =2E05407 > A3 0=2E00000 -0=2E00000 0=2E00000 0=2E00000 0= =2E00000 > A3 > A3 0=2E05456 > ITU=3D 1 0 > Use linear search instead of GDIIS=2E > Eigenvalues --- 0=2E05364 0=2E05456 0=2E17607 0=2E25109 0= =2E75296 > Eigenvalues --- 1=2E52783 > RFO step: Lambda=3D-2=2E40357398D-03 EMin=3D 5=2E36398691D-02 > Quartic linear search produced a step of 0=2E74433=2E > Iteration 1 RMS(Cart)=3D 0=2E12055350 RMS(Int)=3D 0=2E00970928 > Iteration 2 RMS(Cart)=3D 0=2E01171440 RMS(Int)=3D 0=2E00007671 > Iteration 3 RMS(Cart)=3D 0=2E00008339 RMS(Int)=3D 0=2E00000000 > Iteration 4 RMS(Cart)=3D 0=2E00000000 RMS(Int)=3D 0=2E00000000 > ClnCor: largest displacement from symmetrization is 4=2E24D-12 for atom= 3=2E > Variable Old X -DE/DX Delta X Delta X Delta X New X > (Linear) (Quad) (Total) > R1 3=2E63490 0=2E02187 0=2E14559 0=2E04745 0=2E19304 = 3=2E82794 > R2 2=2E34327 -0=2E02250 -0=2E02587 -0=2E02538 -0=2E05125 = 2=2E29202 > R3 2=2E18993 0=2E03391 0=2E06113 -0=2E01980 0=2E04133 = 2=2E23126 > A1 2=2E10408 -0=2E00172 0=2E00721 -0=2E01780 -0=2E01059 = 2=2E09349 > A2 3=2E27271 0=2E00495 0=2E09759 0=2E11009 0=2E20769 = 3=2E48040 > A3 3=2E14159 0=2E00000 0=2E00000 0=2E00000 0=2E00000 = 3=2E14159 > Item Value Threshold Converged? > Maximum Force 0=2E033908 0=2E000450 NO=20 > RMS Force 0=2E018981 0=2E000300 NO=20 > Maximum Displacement 0=2E157853 0=2E001800 NO=20 > RMS Displacement 0=2E126480 0=2E001200 NO=20 > Predicted change in Energy=3D-2=2E644271D-03 > GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad > > Input orientation: =20 > --------------------------------------------------------------------- > Center Atomic Atomic Coordinates (Angstroms) > Number Number Type X Y Z > --------------------------------------------------------------------- > 1 26 0 2=2E586226 8=2E170844 5=2E000= 000 > 2 8 0 4=2E611490 8=2E130764 5=2E000= 000 > 3 6 0 5=2E237660 9=2E169515 5=2E000= 000 > 4 8 0 6=2E148665 9=2E920644 5=2E000= 000 > --------------------------------------------------------------------- > Distance matrix (angstroms): > 1 2 3 4 > 1 Fe 0=2E000000 > 2 O 2=2E025661 0=2E000000 > 3 C 2=2E833275 1=2E212885 0=2E000000 > 4 O 3=2E968976 2=2E359359 1=2E180730 0=2E000000 > Stoichiometry CFeO2 > Framework group CS[SG(CFeO2)] > Deg=2E of freedom 5 > Full point group CS NOp 2 > Largest Abelian subgroup CS NOp 2 > Largest concise Abelian subgroup C1 NOp 1 > Standard orientation: =20 > --------------------------------------------------------------------- > Center Atomic Atomic Coordinates (Angstroms) > Number Number Type X Y Z > --------------------------------------------------------------------- > 1 26 0 -0=2E994550 -0=2E879340 -0=2E000= 000 > 2 8 0 -0=2E000000 0=2E885361 0=2E000= 000 > 3 6 0 1=2E212831 0=2E896868 0=2E000= 000 > 4 8 0 2=2E322666 1=2E299844 0=2E000= 000 > --------------------------------------------------------------------- > Rotational constants (GHZ): 47=2E4271405 2=2E0987230 = 2=2E0097869 > Standard basis: 6-31G (6D, 7F) > There are 42 symmetry adapted cartesian basis functions of A' symmet= ry=2E > There are 14 symmetry adapted cartesian basis functions of A" symmet= ry=2E > There are 42 symmetry adapted basis functions of A' symmetry=2E > There are 14 symmetry adapted basis functions of A" symmetry=2E > 56 basis functions, 160 primitive gaussians, 56 cartesian basis = functions > 24 alpha electrons 24 beta electrons > nuclear repulsion energy 168=2E0152669884 Hartrees=2E > NAtoms=3D 4 NActive=3D 4 NUniq=3D 4 SFac=3D 1=2E00D+00 NAtFMM= =3D 60 NAOKFM=3DF Big=3DF > Integral buffers will be 131072 words long=2E > Raffenetti 2 integral format=2E > Two-electron integral symmetry is turned on=2E > One-electron integrals computed using PRISM=2E > NBasis=3D 56 RedAO=3D T EigKep=3D 1=2E76D-03 NBF=3D 42 14 > NBsUse=3D 56 1=2E00D-06 EigRej=3D -1=2E00D+00 NBFU=3D 42 14 > Initial guess from the checkpoint file: "step_000_DFT=2Echk" > B after Tr=3D 0=2E000000 -0=2E000000 -0=2E000000 > Rot=3D 0=2E998838 -0=2E000000 -0=2E000000 -0=2E048193 A= ng=3D -5=2E52 deg=2E > Initial guess orbital symmetries: > Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') > (A") (A') (A') (A') (A') (A') (A") (A') (A') (A") > (A') (A') (A") (A') > Virtual (A') (A") (A') (A") (A') (A") (A') (A') (A') (A') > (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') > (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') > (A') (A') > ExpMin=3D 4=2E11D-02 ExpMax=3D 6=2E11D+04 ExpMxC=3D 9=2E18D+03 IAcc=3D3 = IRadAn=3D 5 AccDes=3D 0=2E00D+00 > Harris functional with IExCor=3D 402 and IRadAn=3D 5 diagonalized= for initial guess=2E > HarFok: IExCor=3D 402 AccDes=3D 0=2E00D+00 IRadAn=3D 5 IDoV=3D= 1 UseB2=3DF ITyADJ=3D14 > ICtDFT=3D 3500011 ScaDFX=3D 1=2E000000 1=2E000000 1=2E000000 1=2E00= 0000 > FoFCou: FMM=3DF IPFlag=3D 0 FMFlag=3D 100000 FMFlg1=3D = 0 > NFxFlg=3D 0 DoJE=3DT BraDBF=3DF KetDBF=3DT FulRan=3DT > wScrn=3D 0=2E000000 ICntrl=3D 500 IOpCl=3D 0 I1Cent=3D = 200000004 NGrid=3D 0 > NMat0=3D 1 NMatS0=3D 1 NMatT0=3D 0 NMatD0=3D 1 NMt= DS0=3D 0 NMtDT0=3D 0 > Petite list used in FoFCou=2E > Keep R1 ints in memory in symmetry-blocked form, NReq=3D2159799=2E > Requested convergence on RMS density matrix=3D1=2E00D-08 within 128 cycl= es=2E > Requested convergence on MAX density matrix=3D1=2E00D-06=2E > Requested convergence on energy=3D1=2E00D-06=2E > No special actions if energy rises=2E > SCF Done: E(RB3LYP) =3D -1451=2E86779894 A=2EU=2E after 19 cycle= s > NFock=3D 19 Conv=3D0=2E32D-08 -V/T=3D 2=2E0018 > Calling FoFJK, ICntrl=3D 2127 FMM=3DF ISym2X=3D1 I1Cent=3D 0 IOpClX= =3D 0 NMat=3D1 NMatS=3D1 NMatT=3D0=2E > ***** Axes restored to original set ***** > ------------------------------------------------------------------- > Center Atomic Forces (Hartrees/Bohr) > Number Number X Y Z > ------------------------------------------------------------------- > 1 26 -0=2E002475531 0=2E002170910 0=2E00000000= 0 > 2 8 -0=2E009275511 -0=2E015400826 0=2E00000000= 0 > 3 6 0=2E012873515 0=2E005174131 0=2E00000000= 0 > 4 8 -0=2E001122473 0=2E008055785 -0=2E00000000= 0 > ------------------------------------------------------------------- > Cartesian Forces: Max 0=2E015400826 RMS 0=2E007028017 > > GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad > Berny optimization=2E > Using GEDIIS/GDIIS optimizer=2E > FormGI is forming the generalized inverse of G from B-inverse, IUseBI=3D= 4=2E > Internal Forces: Max 0=2E017401591 RMS 0=2E010265616 > Search for a local minimum=2E > Step number 3 out of a maximum of 20 > All quantities printed in internal units (Hartrees-Bohrs-Radians) > Mixed Optimization -- RFO/linear search > Update second derivatives using D2CorX and points 1 2 3 > DE=3D -2=2E46D-03 DEPred=3D-2=2E64D-03 R=3D 9=2E30D-01 > TightC=3DF SS=3D 1=2E41D+00 RLast=3D 2=2E91D-01 DXNew=3D 8=2E4853D-01 = 8=2E7386D-01 > Trust test=3D 9=2E30D-01 RLast=3D 2=2E91D-01 DXMaxT set to 8=2E49D-01 > The second derivative matrix: > R1 R2 R3 A1 A2 > R1 0=2E14042 > R2 0=2E04009 0=2E84593 > R3 -0=2E15330 0=2E08559 1=2E42002 > A1 0=2E01583 -0=2E02335 0=2E04566 0=2E25643 > A2 0=2E00387 -0=2E03883 0=2E02611 0=2E01417 0= =2E08070 > A3 0=2E00000 -0=2E00000 0=2E00000 0=2E00000 0= =2E00000 > A3 > A3 0=2E05456 > ITU=3D 1 1 0 > Use linear search instead of GDIIS=2E > Eigenvalues --- 0=2E05456 0=2E07570 0=2E11658 0=2E25847 0= =2E84223 > Eigenvalues --- 1=2E45052 > RFO step: Lambda=3D-2=2E28883397D-03 EMin=3D 5=2E45649275D-02 > Quartic linear search produced a step of -0=2E27572=2E > Iteration 1 RMS(Cart)=3D 0=2E11082651 RMS(Int)=3D 0=2E00968836 > Iteration 2 RMS(Cart)=3D 0=2E01008655 RMS(Int)=3D 0=2E00002336 > Iteration 3 RMS(Cart)=3D 0=2E00002996 RMS(Int)=3D 0=2E00000000 > Iteration 4 RMS(Cart)=3D 0=2E00000000 RMS(Int)=3D 0=2E00000000 > ClnCor: largest displacement from symmetrization is 3=2E37D-09 for atom= 3=2E > Variable Old X -DE/DX Delta X Delta X Delta X New X > (Linear) (Quad) (Total) > R1 3=2E82794 0=2E00252 -0=2E05323 0=2E09099 0=2E03776 = 3=2E86570 > R2 2=2E29202 0=2E01740 0=2E01413 -0=2E00542 0=2E00871 = 2=2E30074 > R3 2=2E23126 0=2E00426 -0=2E01140 0=2E02206 0=2E01067 = 2=2E24192 > A1 2=2E09349 -0=2E00809 0=2E00292 -0=2E02802 -0=2E02510 = 2=2E06839 > A2 3=2E48040 -0=2E01548 -0=2E05726 -0=2E11944 -0=2E17670 = 3=2E30370 > A3 3=2E14159 0=2E00000 0=2E00000 0=2E00000 0=2E00000 = 3=2E14159 > Item Value Threshold Converged? > Maximum Force 0=2E017402 0=2E000450 NO=20 > RMS Force 0=2E010266 0=2E000300 NO=20 > Maximum Displacement 0=2E128723 0=2E001800 NO=20 > RMS Displacement 0=2E114165 0=2E001200 NO=20 > Predicted change in Energy=3D-1=2E691720D-03 > GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad > > Input orientation: =20 > --------------------------------------------------------------------- > Center Atomic Atomic Coordinates (Angstroms) > Number Number Type X Y Z > --------------------------------------------------------------------- > 1 26 0 2=2E587635 8=2E230504 5=2E000= 000 > 2 8 0 4=2E627577 8=2E077882 5=2E000= 000 > 3 6 0 5=2E286906 9=2E101397 5=2E000= 000 > 4 8 0 6=2E081924 9=2E981983 5=2E000= 000 > --------------------------------------------------------------------- > Distance matrix (angstroms): > 1 2 3 4 > 1 Fe 0=2E000000 > 2 O 2=2E045643 0=2E000000 > 3 C 2=2E836286 1=2E217497 0=2E000000 > 4 O 3=2E908674 2=2E395981 1=2E186375 0=2E000000 > Stoichiometry CFeO2 > Framework group CS[SG(CFeO2)] > Deg=2E of freedom 5 > Full point group CS NOp 2 > Largest Abelian subgroup CS NOp 2 > Largest concise Abelian subgroup C1 NOp 1 > Standard orientation: =20 > --------------------------------------------------------------------- > Center Atomic Atomic Coordinates (Angstroms) > Number Number Type X Y Z > --------------------------------------------------------------------- ------JPLGSNNZUIBL03TDO3DXACU63W8LVJ Content-Type: text/html; charset=utf-8 Content-Transfer-Encoding: quoted-printable Dear Cheng Fei=C2=A0 Phung,

I would use som= ething like MN15 or MN15L, and a basis set with at least some polarization = (6-311G(d,p), for example)=2E Especially if I had to perform something like= a token computation in order to get someone's experimental results publish= ed=2E

Trying to converge B3LYP for a transition metal compound may t= ake more time than the options described above=2E=2E=2E

Best regards= ,
Igors Mihailovs
former employee at ISSP UL


On February 25, 2023 12:09:02 PM GMT+02:00, "Cheng Fei Phung = feiphung=3D-=3Dhotmail=2Ecom" <owner-chemistry .. ccl=2Enet> wrote:

Sent to CCL by: "Cheng Fei Phung" = [feiphung{:}hotmail=2Ecom]
With the following gaussian16 gjf input file,= I got some convergence failure issues=2E

Could anyone help ?

Gaussian input gjf file

```
%chk=3Dstep_000_DFT=2Echk
# o= pt b3lyp/6-31g geom=3Dconnectivity

Fe2CO2_OPT

0 1
Fe = 2=2E74538330 8=2E28679554 5=2E00000000
O = 4=2E55208397 8=2E06717607 5=2E00000000
C 5= =2E30819317 9=2E07309328 5=2E00000000
O 5=2E9783= 8127 9=2E96470142 5=2E00000000

1 2 1=2E0
2 3 2=2E0
3 = 4 3=2E0
4
```


Gaussian log file

```
%chk=3Dste= p_000_DFT=2Echk
# opt b3lyp/6-31g geom=3Dconnectivity
1/18=3D20,19= =3D15,26=3D3,38=3D1,57=3D2/1,3;
2/9=3D110,12=3D2,17=3D6,18=3D5,40=3D1/2= ;
3/5=3D1,6=3D6,11=3D2,25=3D1,30=3D1,71=3D1,74=3D-5/1,2,3;
4//1; 5/5=3D2,38=3D5/2;
6/7=3D2,8=3D2,9=3D2,10=3D2,28=3D1/1;
7//1,2,3,1= 6;
1/18=3D20,19=3D15,26=3D3/3(2);
2/9=3D110/2;
99//99;
2/9= =3D110/2;
3/5=3D1,6=3D6,11=3D2,25=3D1,30=3D1,71=3D1,74=3D-5/1,2,3;
= 4/5=3D5,16=3D3,69=3D1/1;
5/5=3D2,38=3D5/2;
7//1,2,3,16;
1/18=3D= 20,19=3D15,26=3D3/3(-5);
2/9=3D110/2;
6/7=3D2,8=3D2,9=3D2,10=3D2,19= =3D2,28=3D1/1;
99/9=3D1/99;
Fe2CO2_OPT
Symbolic Z-matrix:
C= harge =3D 0 Multiplicity =3D 1
Fe 2=2E74538 8=2E2= 868 5=2E
O 4=2E55208 8=2E06718 5=2E
C = 5=2E30819 9=2E07309 5=2E
O = 5=2E97838 9=2E9647 5=2E


GradGradGradGradGradGradGradGra= dGradGradGradGradGradGradGradGradGradGrad
Berny optimization=2E
Ini= tialization pass=2E
! Initial Parameters = !
! (Angstroms and Degrees) !
--------= ------------------ -------------------------- ! Name Definition Value Derivative Info=2E = !
! R1 R(1,2) 1=2E82 estimate D2E= /DX2 !
! R2 R(2,3) 1=2E2584 = estimate D2E/DX2 !
! R3 R(3,4) 1=2E1= 154 estimate D2E/DX2 !
! A1 A(1,2,3) = 120=2E0 estimate D2E/DX2 !
! A2 L(2,3= ,4,1,-1) 180=2E0 estimate D2E/DX2 !
!= A3 L(2,3,4,1,-2) 180=2E0 estimate D2E/DX2 = !
Trust Radius=3D3=2E00D-01 FncErr=3D1=2E00D-07 GrdErr=3D1=2E00D-0= 6 EigMax=3D2=2E50D+02 EigMin=3D1=2E00D-04
Number of steps in this run= =3D 20 maximum allowed number of steps=3D 100=2E
GradGradGradGra= dGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

= Input orientation:
Center = Atomic Atomic Coordinates (Angstroms)
Number Numb= er Type X Y Z
1 26 = 0 2=2E745383 8=2E286796 5=2E000000
2 = 8 0 4=2E552084 8=2E067176 5=2E000000
3 = 6 0 5=2E308193 9=2E073093 5=2E000000
= 4 8 0 5=2E978381 9=2E964701 5=2E000000
= Distance matrix (angstroms):
1 = 2 3 4
1 Fe 0=2E000000
2 O = 1=2E820000 0=2E000000
3 C 2=2E680720 1=2E258400 0=2E00000= 0
4 O 3=2E642478 2=2E373800 1=2E115400 0=2E000000
Sto= ichiometry CFeO2
Framework group CS[SG(CFeO2)]
Deg=2E of freedo= m 5
Full point group CS NOp 2
Largest Ab= elian subgroup CS NOp 2
Largest concise Abelian subgroup= C1 NOp 1
Standard orientation: =
Center Atomic Atomic Coordinates = (Angstroms)
Number Number Type X Y = Z
1 26 0 -1=2E018287 -0=2E652610 = -0=2E000000
2 8 0 -0=2E000000 0=2E855= 864 0=2E000000
3 6 0 1=2E255302 0= =2E767619 0=2E000000
4 8 0 2=2E367956= 0=2E689403 0=2E000000
Rotational constants (GHZ): 37=2E= 1744583 2=2E4897380 2=2E3334561
Standard basis: 6-3= 1G (6D, 7F)
There are 42 symmetry adapted cartesian basis functions = of A' symmetry=2E
There are 14 symmetry adapted cartesian basis fun= ctions of A" symmetry=2E
There are 42 symmetry adapted basis functi= ons of A' symmetry=2E
There are 14 symmetry adapted basis functions= of A" symmetry=2E
56 basis functions, 160 primitive gaussians, = 56 cartesian basis functions
24 alpha electrons 24 beta elec= trons
nuclear repulsion energy 178=2E7145642873 Hartrees=2E=
NAtoms=3D 4 NActive=3D 4 NUniq=3D 4 SFac=3D 1=2E00D+00 NAtFMM= =3D 60 NAOKFM=3DF Big=3DF
Integral buffers will be 131072 words lo= ng=2E
Raffenetti 2 integral format=2E
Two-electron integral symmetr= y is turned on=2E
One-electron integrals computed using PRISM=2E
NB= asis=3D 56 RedAO=3D T EigKep=3D 1=2E76D-03 NBF=3D 42 14
NBsU= se=3D 56 1=2E00D-06 EigRej=3D -1=2E00D+00 NBFU=3D 42 14
ExpMin= =3D 4=2E11D-02 ExpMax=3D 6=2E11D+04 ExpMxC=3D 9=2E18D+03 IAcc=3D3 IRadAn=3D= 5 AccDes=3D 0=2E00D+00
Harris functional with IExCor=3D 402 a= nd IRadAn=3D 5 diagonalized for initial guess=2E
HarFok: IExCor= =3D 402 AccDes=3D 0=2E00D+00 IRadAn=3D 5 IDoV=3D 1 UseB2=3DF ITyAD= J=3D14
ICtDFT=3D 3500011 ScaDFX=3D 1=2E000000 1=2E000000 1=2E000000= 1=2E000000
FoFCou: FMM=3DF IPFlag=3D 0 FMFlag=3D 10000= 0 FMFlg1=3D 0
NFxFlg=3D 0 DoJE=3DT BraDBF= =3DF KetDBF=3DT FulRan=3DT
wScrn=3D 0=2E000000 ICntrl=3D = 500 IOpCl=3D 0 I1Cent=3D 200000004 NGrid=3D 0
NMa= t0=3D 1 NMatS0=3D 1 NMatT0=3D 0 NMatD0=3D 1 NMtDS0=3D 0 NM= tDT0=3D 0
Petite list used in FoFCou=2E
Initial guess orbital sy= mmetries:
Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') = (A')
(A') (A") (A') (A') (A') (A') (A') (A") (A') (A")<= br> (A') (A') (A") (A')
Virtual (A") (A') (A') = (A") (A') (A") (A') (A') (A') (A')
(A") (A') (A') (A") = (A') (A') (A') (A") (A') (A')
(A') (A") (A') (A') (A') = (A") (A") (A') (A') (A')
(A') (A')
The electronic s= tate of the initial guess is 1-A'=2E
Keep R1 ints in memory in symmetry= -blocked form, NReq=3D2159799=2E
Requested convergence on RMS density m= atrix=3D1=2E00D-08 within 128 cycles=2E
Requested convergence on MAX de= nsity matrix=3D1=2E00D-06=2E
Requested convergence on energ= y=3D1=2E00D-06=2E
No special actions if energy rises=2E
EnCoef did = 3 forward-backward iterations
EnCoef did 100 forward-backward ite= rations
EnCoef did 2 forward-backward iterations
EnCoef did = 2 forward-backward iterations
SCF Done: E(RB3LYP) =3D -1451=2E849900= 65 A=2EU=2E after 22 cycles
NFock=3D 22 Conv=3D0=2E66= D-08 -V/T=3D 2=2E0016

*****************************************= *****************************

Population analysis using = the SCF Density=2E

************************************************= **********************

Orbital symmetries:
Occupied (A')= (A') (A') (A') (A") (A') (A') (A') (A') (A')
(A") (A')= (A') (A') (A') (A') (A") (A') (A') (A")
(A') (A') (A")= (A')
Virtual (A") (A') (A") (A') (A') (A") (A') (A') (A') (A')=
(A") (A') (A') (A") (A') (A') (A') (A") (A') (A')
= (A') (A") (A') (A') (A') (A") (A') (A") (A') (A')
= (A') (A')
The electronic state is 1-A'=2E
Alpha occ=2E = eigenvalues -- -256=2E04016 -29=2E99951 -25=2E87326 -25=2E85859 -25=2E85805=
Alpha occ=2E eigenvalues -- -19=2E31120 -19=2E28742 -10=2E45249 -3= =2E41064 -2=2E20510
Alpha occ=2E eigenvalues -- -2=2E17421 -2=2E16= 694 -1=2E26882 -1=2E17261 -0=2E64217
Alpha occ=2E eigenvalues -- = -0=2E58881 -0=2E57965 -0=2E57594 -0=2E44473 -0=2E43175
Alpha occ= =2E eigenvalues -- -0=2E22416 -0=2E22137 -0=2E20382 -0=2E15336
Alp= ha virt=2E eigenvalues -- -0=2E07558 -0=2E07420 -0=2E03518 -0=2E03067 = -0=2E02764
Alpha virt=2E eigenvalues -- -0=2E00807 0=2E00082 0= =2E10567 0=2E12952 0=2E29804
Alpha virt=2E eigenvalues -- 0=2E31= 948 0=2E36712 0=2E41870 0=2E45104 0=2E54770
Alpha virt=2E eigen= values -- 0=2E63606 0=2E74556 0=2E85137 0=2E88355 0=2E92857
= Alpha virt=2E eigenvalues -- 0=2E96917 1=2E00808 1=2E01595 1=2E254= 95 1=2E50958
Alpha virt=2E eigenvalues -- 1=2E51252 1=2E55992 = 1=2E59723 1=2E70732 1=2E86833
Alpha virt=2E eigenvalues -- 2=2E0= 1356 20=2E37339
Condensed to atoms (all electrons):
= 1 2 3 4
1 Fe 26=2E065938 -0= =2E058002 0=2E083106 -0=2E030239
2 O -0=2E058002 8=2E304619= 0=2E168196 0=2E010116
3 C 0=2E083106 0=2E168196 4=2E72= 4609 0=2E417125
4 O -0=2E030239 0=2E010116 0=2E417125 7= =2E724230
Mulliken charges:
1
1 Fe -0=2E060= 803
2 O -0=2E424929
3 C 0=2E606964
4 O -0= =2E121232
Sum of Mulliken charges =3D -0=2E00000
Mulliken charges = with hydrogens summed into heavy atoms:
1
1 Fe = -0=2E060803
2 O -0=2E424929
3 C 0=2E606964
4= O -0=2E121232
Electronic spatial extent (au): <R**2>=3D = 453=2E0609
Charge=3D -0=2E0000 electrons
Dipole = moment (field-independent basis, Debye):
X=3D 1=2E6708 = Y=3D 1=2E8514 Z=3D -0=2E0000 Tot=3D = 2=2E4938
Quadrupole moment (field-independent basis, Debye-Ang):<= br> XX=3D -35=2E0872 YY=3D -34=2E7815 ZZ=3D = -32=2E5686
XY=3D 0=2E8912 XZ=3D 0= =2E0000 YZ=3D 0=2E0000
Traceless Quadrupole moment (fiel= d-independent basis, Debye-Ang):
XX=3D -0=2E9415 YY=3D = -0=2E6357 ZZ=3D 1=2E5772
XY=3D = 0=2E8912 XZ=3D 0=2E0000 YZ=3D 0=2E0000
= Octapole moment (field-independent basis, Debye-Ang**2):
XXX=3D = -8=2E4875 YYY=3D 8=2E6001 ZZZ=3D -0=2E0000= XYY=3D 3=2E5470
XXY=3D 1=2E7153 XXZ=3D = 0=2E0000 XZZ=3D 0=2E7336 YZZ=3D 1=2E= 9407
YYZ=3D -0=2E0000 XYZ=3D -0=2E0000
He= xadecapole moment (field-independent basis, Debye-Ang**3):
XXXX=3D = -415=2E5041 YYYY=3D -171=2E1039 ZZZZ=3D -55=2E16= 37 XXXY=3D -84=2E4690
XXXZ=3D 0=2E0000 YYYX=3D = -75=2E7822 YYYZ=3D 0=2E0000 ZZZX=3D 0= =2E0000
ZZZY=3D 0=2E0000 XXYY=3D -90=2E7121 XXZ= Z=3D -70=2E9019 YYZZ=3D -36=2E9432
XXYZ=3D = 0=2E0000 YYXZ=3D 0=2E0000 ZZXY=3D -24=2E7602=
N-N=3D 1=2E787145642873D+02 E-N=3D-3=2E807626875025D+03 KE=3D 1=2E449= 497603530D+03
Symmetry A' KE=3D 1=2E287179877057D+03
Symmetry A" = KE=3D 1=2E623177264732D+02
Calling FoFJK, ICntrl=3D 2127 FMM=3DF= ISym2X=3D1 I1Cent=3D 0 IOpClX=3D 0 NMat=3D1 NMatS=3D1 NMatT=3D0=2E
***= ** Axes restored to original set *****
Center Atomic = Forces (Hartrees/Bohr)
Number Number X = Y Z
1 26 -0=2E048820174 0=2E00515= 7682 0=2E000000000
2 8 0=2E068584660 0=2E01= 5861998 0=2E000000000
3 6 -0=2E104728901 -0= =2E126023309 0=2E000000000
4 8 0=2E084964415 = 0=2E105003629 -0=2E000000000
Cartesian Forces: Max 0=2E1260233= 09 RMS 0=2E066118707

GradGradGradGradGradGradGradGradGradGradGr= adGradGradGradGradGradGradGrad
Berny optimization=2E
FormGI is form= ing the generalized inverse of G from B-inverse, IUseBI=3D4=2E
Internal= Forces: Max 0=2E134986320 RMS 0=2E059949734
Search for a loc= al minimum=2E
Step number 1 out of a maximum of 20
All quantiti= es printed in internal units (Hartrees-Bohrs-Radians)
Mixed Optimizatio= n -- RFO/linear search
Second derivative matrix not updated -- first st= ep=2E
The second derivative matrix:
R1 = R2 R3 A1 A2
R1 0=2E22791 R2 0=2E00000 0=2E80209
R3 = 0=2E00000 0=2E00000 1=2E62060
A1 0=2E00000 0= =2E00000 0=2E00000 0=2E25000
A2 0=2E00000 0= =2E00000 0=2E00000 0=2E00000 0=2E05456
A3 0= =2E00000 0=2E00000 0=2E00000 0=2E00000 0=2E00000
= A3
A3 0=2E05456
ITU=3D 0
Ei= genvalues --- 0=2E05456 0=2E05456 0=2E22791 0=2E25000 0=2E80209<= br> Eigenvalues --- 1=2E62060
RFO step: Lambda=3D-2=2E30438557D= -02 EMin=3D 5=2E45649275D-02
Linear search not attempted -- first point= =2E
Iteration 1 RMS(Cart)=3D 0=2E10911805 RMS(Int)=3D 0=2E00403264 Iteration 2 RMS(Cart)=3D 0=2E00524126 RMS(Int)=3D 0=2E00001569
It= eration 3 RMS(Cart)=3D 0=2E00001737 RMS(Int)=3D 0=2E00000000
Iterati= on 4 RMS(Cart)=3D 0=2E00000000 RMS(Int)=3D 0=2E00000000
ClnCor: lar= gest displacement from symmetrization is 2=2E67D-10 for atom 3=2E
V= ariable Old X -DE/DX Delta X Delta X Delta X New X
= (Linear) (Quad) (Total)
R1 = 3=2E43930 0=2E04909 0=2E00000 0=2E19560 0=2E19560 3=2E63490
= R2 2=2E37803 -0=2E02868 0=2E00000 -0=2E03476 -0=2E03476 2= =2E34327
R3 2=2E10780 0=2E13499 0=2E00000 0=2E08213 0= =2E08213 2=2E18993
A1 2=2E09440 0=2E00265 0=2E00000 0= =2E00969 0=2E00969 2=2E10408
A2 3=2E14159 0=2E01018 0= =2E00000 0=2E13112 0=2E13112 3=2E27271
A3 3=2E14159 0= =2E00000 0=2E00000 0=2E00000 0=2E00000 3=2E14159
Item = Value Threshold Converged?
Maximum Force 0= =2E134986 0=2E000450 NO
RMS Force 0=2E059950 = 0=2E000300 NO
Maximum Displacement 0=2E164913 0=2E001800= NO
RMS Displacement 0=2E111408 0=2E001200 NO
= Predicted change in Energy=3D-1=2E225354D-02
GradGradGradGradGradGradG= radGradGradGradGradGradGradGradGradGradGradGrad

= Input orientation:
Center Atomic = Atomic Coordinates (Angstroms)
Number Number T= ype X Y Z
1 26 0= 2=2E658115 8=2E232499 5=2E000000
2 8 = 0 4=2E576263 8=2E089032 5=2E000000
3 6 = 0 5=2E284531 9=2E106861 5=2E000000
4 = 8 0 6=2E065132 9=2E963375 5=2E000000
= Distance matrix (angstroms):
1 2 = 3 4
1 Fe 0=2E000000
2 O 1=2E923506= 0=2E000000
3 C 2=2E768135 1=2E240008 0=2E000000
= 4 O 3=2E821478 2=2E393719 1=2E158859 0=2E000000
Stoichiometry= CFeO2
Framework group CS[SG(CFeO2)]
Deg=2E of freedom 5 Full point group CS NOp 2
Largest Abelian subg= roup CS NOp 2
Largest concise Abelian subgroup C1 N= Op 1
Standard orientation: =
Center Atomic Atomic Coordinates (Angstroms= )
Number Number Type X Y Z 1 26 0 -1=2E022093 -0=2E757193 -0=2E0000= 00
2 8 0 0=2E000000 0=2E872286 0= =2E000000
3 6 0 1=2E239558 0=2E838897= 0=2E000000
4 8 0 2=2E392133 0=2E9= 59419 0=2E000000
Rotational constants (GHZ): 40=2E3135828 = 2=2E2660782 2=2E1454781
Standard basis: 6-31G (6D, 7= F)
There are 42 symmetry adapted cartesian basis functions of A' sy= mmetry=2E
There are 14 symmetry adapted cartesian basis functions of= A" symmetry=2E
There are 42 symmetry adapted basis functions of A'= symmetry=2E
There are 14 symmetry adapted basis functions of A" s= ymmetry=2E
56 basis functions, 160 primitive gaussians, 56 cart= esian basis functions
24 alpha electrons 24 beta electrons
= nuclear repulsion energy 172=2E3989508234 Hartrees=2E
NAto= ms=3D 4 NActive=3D 4 NUniq=3D 4 SFac=3D 1=2E00D+00 NAtFMM=3D 60 = NAOKFM=3DF Big=3DF
Integral buffers will be 131072 words long=2E
= Raffenetti 2 integral format=2E
Two-electron integral symmetry is turn= ed on=2E
One-electron integrals computed using PRISM=2E
NBasis=3D = 56 RedAO=3D T EigKep=3D 1=2E76D-03 NBF=3D 42 14
NBsUse=3D = 56 1=2E00D-06 EigRej=3D -1=2E00D+00 NBFU=3D 42 14
Initial guess f= rom the checkpoint file: "step_000_DFT=2Echk"
B after Tr=3D 0=2E00= 0000 0=2E000000 -0=2E000000
Rot=3D 0=2E999288 -0=2E00= 0000 -0=2E000000 -0=2E037733 Ang=3D -4=2E32 deg=2E
Initial guess o= rbital symmetries:
Occupied (A') (A') (A') (A') (A") (A') (A') (= A') (A') (A')
(A") (A') (A') (A') (A') (A') (A") (A') (= A') (A")
(A') (A') (A") (A')
Virtual (A") (= A') (A") (A') (A') (A") (A') (A') (A') (A')
(A") (A') (= A') (A") (A') (A') (A') (A") (A') (A')
(A') (A") (A') (= A') (A') (A") (A') (A") (A') (A')
(A') (A')
ExpMin= =3D 4=2E11D-02 ExpMax=3D 6=2E11D+04 ExpMxC=3D 9=2E18D+03 IAcc=3D3 IRadAn=3D= 5 AccDes=3D 0=2E00D+00
Harris functional with IExCor=3D 402 a= nd IRadAn=3D 5 diagonalized for initial guess=2E
HarFok: IExCor= =3D 402 AccDes=3D 0=2E00D+00 IRadAn=3D 5 IDoV=3D 1 UseB2=3DF ITyAD= J=3D14
ICtDFT=3D 3500011 ScaDFX=3D 1=2E000000 1=2E000000 1=2E000000= 1=2E000000
FoFCou: FMM=3DF IPFlag=3D 0 FMFlag=3D 10000= 0 FMFlg1=3D 0
NFxFlg=3D 0 DoJE=3DT BraDBF= =3DF KetDBF=3DT FulRan=3DT
wScrn=3D 0=2E000000 ICntrl=3D = 500 IOpCl=3D 0 I1Cent=3D 200000004 NGrid=3D 0
NMa= t0=3D 1 NMatS0=3D 1 NMatT0=3D 0 NMatD0=3D 1 NMtDS0=3D 0 NM= tDT0=3D 0
Petite list used in FoFCou=2E
Keep R1 ints in memory i= n symmetry-blocked form, NReq=3D2159799=2E
Requested convergence on RMS= density matrix=3D1=2E00D-08 within 128 cycles=2E
Requested convergence= on MAX density matrix=3D1=2E00D-06=2E
Requested convergence on = energy=3D1=2E00D-06=2E
No special actions if energy rises=2E
S= CF Done: E(RB3LYP) =3D -1451=2E86533909 A=2EU=2E after 18 cycles NFock=3D 18 Conv=3D0=2E23D-08 -V/T=3D 2=2E0018
Callin= g FoFJK, ICntrl=3D 2127 FMM=3DF ISym2X=3D1 I1Cent=3D 0 IOpClX=3D 0 NMa= t=3D1 NMatS=3D1 NMatT=3D0=2E
***** Axes restored to original set *****<= hr> Center Atomic Forces (Hartrees/Bohr)
Number = Number X Y Z
1 26 = -0=2E021775369 0=2E002114287 0=2E000000000
2 = 8 0=2E036955110 0=2E014737157 0=2E000000000
3 = 6 -0=2E039695691 -0=2E040384091 0=2E000000000
4 = 8 0=2E024515951 0=2E023532647 -0=2E000000000
Cart= esian Forces: Max 0=2E040384091 RMS 0=2E023135364

GradGrad= GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny = optimization=2E
Using GEDIIS/GDIIS optimizer=2E
FormGI is forming t= he generalized inverse of G from B-inverse, IUseBI=3D4=2E
Internal For= ces: Max 0=2E033908365 RMS 0=2E018980685
Search for a local mi= nimum=2E
Step number 2 out of a maximum of 20
All quantities pr= inted in internal units (Hartrees-Bohrs-Radians)
Mixed Optimization -- = RFO/linear search
Update second derivatives using D2CorX and points = 1 2
DE=3D -1=2E54D-02 DEPred=3D-1=2E23D-02 R=3D 1=2E26D+00
Tight= C=3DF SS=3D 1=2E41D+00 RLast=3D 2=2E52D-01 DXNew=3D 5=2E0454D-01 7=2E5596= D-01
Trust test=3D 1=2E26D+00 RLast=3D 2=2E52D-01 DXMaxT set to 5=2E05D= -01
The second derivative matrix:
R1 = R2 R3 A1 A2
R1 0=2E18668
= R2 0=2E04604 0=2E76870
R3 -0= =2E08608 0=2E12904 1=2E50110
A1 0=2E00316 0= =2E00128 0=2E01538 0=2E25104
A2 -0=2E00501 0= =2E00702 -0=2E00784 0=2E00077 0=2E05407
A3 0= =2E00000 -0=2E00000 0=2E00000 0=2E00000 0=2E00000
= A3
A3 0=2E05456
ITU=3D 1 0
Use= linear search instead of GDIIS=2E
Eigenvalues --- 0=2E05364 0= =2E05456 0=2E17607 0=2E25109 0=2E75296
Eigenvalues --- 1= =2E52783
RFO step: Lambda=3D-2=2E40357398D-03 EMin=3D 5=2E36398691D-02=
Quartic linear search produced a step of 0=2E74433=2E
Iteration = 1 RMS(Cart)=3D 0=2E12055350 RMS(Int)=3D 0=2E00970928
Iteration 2 RMS= (Cart)=3D 0=2E01171440 RMS(Int)=3D 0=2E00007671
Iteration 3 RMS(Cart= )=3D 0=2E00008339 RMS(Int)=3D 0=2E00000000
Iteration 4 RMS(Cart)=3D = 0=2E00000000 RMS(Int)=3D 0=2E00000000
ClnCor: largest displacement f= rom symmetrization is 4=2E24D-12 for atom 3=2E
Variable Old X= -DE/DX Delta X Delta X Delta X New X
= (Linear) (Quad) (Total)
R1 3=2E63490 0=2E0= 2187 0=2E14559 0=2E04745 0=2E19304 3=2E82794
R2 2=2E3= 4327 -0=2E02250 -0=2E02587 -0=2E02538 -0=2E05125 2=2E29202
R3 = 2=2E18993 0=2E03391 0=2E06113 -0=2E01980 0=2E04133 2=2E2312= 6
A1 2=2E10408 -0=2E00172 0=2E00721 -0=2E01780 -0=2E0105= 9 2=2E09349
A2 3=2E27271 0=2E00495 0=2E09759 0=2E1100= 9 0=2E20769 3=2E48040
A3 3=2E14159 0=2E00000 0=2E0000= 0 0=2E00000 0=2E00000 3=2E14159
Item Value = Threshold Converged?
Maximum Force 0=2E033908 0=2E0= 00450 NO
RMS Force 0=2E018981 0=2E000300 NO=
Maximum Displacement 0=2E157853 0=2E001800 NO
RMS = Displacement 0=2E126480 0=2E001200 NO
Predicted change i= n Energy=3D-2=2E644271D-03
GradGradGradGradGradGradGradGradGradGradGrad= GradGradGradGradGradGradGrad

Input orienta= tion:
Center Atomic Atomic = Coordinates (Angstroms)
Number Number Type X = Y Z
1 26 0 2=2E586226 = 8=2E170844 5=2E000000
2 8 0 4=2E61= 1490 8=2E130764 5=2E000000
3 6 0 5= =2E237660 9=2E169515 5=2E000000
4 8 0 = 6=2E148665 9=2E920644 5=2E000000
Distance = matrix (angstroms):
1 2 3 = 4
1 Fe 0=2E000000
2 O 2=2E025661 0=2E000000
= 3 C 2=2E833275 1=2E212885 0=2E000000
4 O 3=2E968976 = 2=2E359359 1=2E180730 0=2E000000
Stoichiometry CFeO2
Frame= work group CS[SG(CFeO2)]
Deg=2E of freedom 5
Full point group = CS NOp 2
Largest Abelian subgroup CS = NOp 2
Largest concise Abelian subgroup C1 NOp 1
= Standard orientation:
Center = Atomic Atomic Coordinates (Angstroms)
Number Nu= mber Type X Y Z
1 26= 0 -0=2E994550 -0=2E879340 -0=2E000000
2 = 8 0 -0=2E000000 0=2E885361 0=2E000000
3 = 6 0 1=2E212831 0=2E896868 0=2E000000
= 4 8 0 2=2E322666 1=2E299844 0=2E000000 Rotational constants (GHZ): 47=2E4271405 2=2E0987230 = 2=2E0097869
Standard basis: 6-31G (6D, 7F)
There are 4= 2 symmetry adapted cartesian basis functions of A' symmetry=2E
There a= re 14 symmetry adapted cartesian basis functions of A" symmetry=2E
= There are 42 symmetry adapted basis functions of A' symmetry=2E
The= re are 14 symmetry adapted basis functions of A" symmetry=2E
56 = basis functions, 160 primitive gaussians, 56 cartesian basis functions=
24 alpha electrons 24 beta electrons
nuclear repuls= ion energy 168=2E0152669884 Hartrees=2E
NAtoms=3D 4 NActive=3D= 4 NUniq=3D 4 SFac=3D 1=2E00D+00 NAtFMM=3D 60 NAOKFM=3DF Big=3DF Integral buffers will be 131072 words long=2E
Raffenetti 2 integra= l format=2E
Two-electron integral symmetry is turned on=2E
One-elec= tron integrals computed using PRISM=2E
NBasis=3D 56 RedAO=3D T EigKe= p=3D 1=2E76D-03 NBF=3D 42 14
NBsUse=3D 56 1=2E00D-06 EigRej= =3D -1=2E00D+00 NBFU=3D 42 14
Initial guess from the checkpoint f= ile: "step_000_DFT=2Echk"
B after Tr=3D 0=2E000000 -0=2E000000 = -0=2E000000
Rot=3D 0=2E998838 -0=2E000000 -0=2E000000 = -0=2E048193 Ang=3D -5=2E52 deg=2E
Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A')
= (A") (A') (A') (A') (A') (A') (A") (A') (A') (A")
= (A') (A') (A") (A')
Virtual (A') (A") (A') (A") (A') (= A") (A') (A') (A') (A')
(A") (A') (A') (A") (A') (A') (= A') (A") (A') (A')
(A') (A") (A') (A') (A') (A") (A') (= A") (A') (A')
(A') (A')
ExpMin=3D 4=2E11D-02 ExpMax= =3D 6=2E11D+04 ExpMxC=3D 9=2E18D+03 IAcc=3D3 IRadAn=3D 5 AccDes=3D = 0=2E00D+00
Harris functional with IExCor=3D 402 and IRadAn=3D 5 = diagonalized for initial guess=2E
HarFok: IExCor=3D 402 AccDes=3D 0= =2E00D+00 IRadAn=3D 5 IDoV=3D 1 UseB2=3DF ITyADJ=3D14
ICtDFT=3D= 3500011 ScaDFX=3D 1=2E000000 1=2E000000 1=2E000000 1=2E000000
FoF= Cou: FMM=3DF IPFlag=3D 0 FMFlag=3D 100000 FMFlg1=3D = 0
NFxFlg=3D 0 DoJE=3DT BraDBF=3DF KetDBF=3DT FulRan= =3DT
wScrn=3D 0=2E000000 ICntrl=3D 500 IOpCl=3D 0 I1Cen= t=3D 200000004 NGrid=3D 0
NMat0=3D 1 NMatS0=3D = 1 NMatT0=3D 0 NMatD0=3D 1 NMtDS0=3D 0 NMtDT0=3D 0
Petit= e list used in FoFCou=2E
Keep R1 ints in memory in symmetry-blocked for= m, NReq=3D2159799=2E
Requested convergence on RMS density matrix=3D1=2E= 00D-08 within 128 cycles=2E
Requested convergence on MAX density matrix= =3D1=2E00D-06=2E
Requested convergence on energy=3D1=2E00D-= 06=2E
No special actions if energy rises=2E
SCF Done: E(RB3LYP) = =3D -1451=2E86779894 A=2EU=2E after 19 cycles
NFock= =3D 19 Conv=3D0=2E32D-08 -V/T=3D 2=2E0018
Calling FoFJK, ICntrl=3D= 2127 FMM=3DF ISym2X=3D1 I1Cent=3D 0 IOpClX=3D 0 NMat=3D1 NMatS=3D1 NM= atT=3D0=2E
***** Axes restored to original set *****
Center Ato= mic Forces (Hartrees/Bohr)
Number Number = X Y Z
1 26 -0=2E0024= 75531 0=2E002170910 0=2E000000000
2 8 -0=2E0= 09275511 -0=2E015400826 0=2E000000000
3 6 0= =2E012873515 0=2E005174131 0=2E000000000
4 8 = -0=2E001122473 0=2E008055785 -0=2E000000000
Cartesian Forces: Ma= x 0=2E015400826 RMS 0=2E007028017

GradGradGradGradGradGradG= radGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization=2E Using GEDIIS/GDIIS optimizer=2E
FormGI is forming the generalized in= verse of G from B-inverse, IUseBI=3D4=2E
Internal Forces: Max 0= =2E017401591 RMS 0=2E010265616
Search for a local minimum=2E
St= ep number 3 out of a maximum of 20
All quantities printed in intern= al units (Hartrees-Bohrs-Radians)
Mixed Optimization -- RFO/linear sear= ch
Update second derivatives using D2CorX and points 1 2 3
= DE=3D -2=2E46D-03 DEPred=3D-2=2E64D-03 R=3D 9=2E30D-01
TightC=3DF SS= =3D 1=2E41D+00 RLast=3D 2=2E91D-01 DXNew=3D 8=2E4853D-01 8=2E7386D-01
= Trust test=3D 9=2E30D-01 RLast=3D 2=2E91D-01 DXMaxT set to 8=2E49D-01
= The second derivative matrix:
R1 R2 = R3 A1 A2
R1 0=2E14042
= R2 0=2E04009 0=2E84593
R3 -0=2E15330 = 0=2E08559 1=2E42002
A1 0=2E01583 -0=2E02335 = 0=2E04566 0=2E25643
A2 0=2E00387 -0=2E03883 0= =2E02611 0=2E01417 0=2E08070
A3 0=2E00000 -0= =2E00000 0=2E00000 0=2E00000 0=2E00000
A= 3
A3 0=2E05456
ITU=3D 1 1 0
Use linear s= earch instead of GDIIS=2E
Eigenvalues --- 0=2E05456 0=2E07570 = 0=2E11658 0=2E25847 0=2E84223
Eigenvalues --- 1=2E45052 RFO step: Lambda=3D-2=2E28883397D-03 EMin=3D 5=2E45649275D-02
Quarti= c linear search produced a step of -0=2E27572=2E
Iteration 1 RMS(Cart)= =3D 0=2E11082651 RMS(Int)=3D 0=2E00968836
Iteration 2 RMS(Cart)=3D = 0=2E01008655 RMS(Int)=3D 0=2E00002336
Iteration 3 RMS(Cart)=3D 0=2E0= 0002996 RMS(Int)=3D 0=2E00000000
Iteration 4 RMS(Cart)=3D 0=2E000000= 00 RMS(Int)=3D 0=2E00000000
ClnCor: largest displacement from symmetr= ization is 3=2E37D-09 for atom 3=2E
Variable Old X -DE/DX = Delta X Delta X Delta X New X
= (Linear) (Quad) (Total)
R1 3=2E82794 0=2E00252 -0=2E= 05323 0=2E09099 0=2E03776 3=2E86570
R2 2=2E29202 0=2E= 01740 0=2E01413 -0=2E00542 0=2E00871 2=2E30074
R3 2=2E= 23126 0=2E00426 -0=2E01140 0=2E02206 0=2E01067 2=2E24192
A1= 2=2E09349 -0=2E00809 0=2E00292 -0=2E02802 -0=2E02510 2=2E068= 39
A2 3=2E48040 -0=2E01548 -0=2E05726 -0=2E11944 -0=2E176= 70 3=2E30370
A3 3=2E14159 0=2E00000 0=2E00000 0=2E000= 00 0=2E00000 3=2E14159
Item Value Thresho= ld Converged?
Maximum Force 0=2E017402 0=2E000450 N= O
RMS Force 0=2E010266 0=2E000300 NO
Maxim= um Displacement 0=2E128723 0=2E001800 NO
RMS Displacem= ent 0=2E114165 0=2E001200 NO
Predicted change in Energy=3D= -1=2E691720D-03
GradGradGradGradGradGradGradGradGradGradGradGradGradGra= dGradGradGradGrad

Input orientation: =
Center Atomic Atomic Coordina= tes (Angstroms)
Number Number Type X Y = Z
1 26 0 2=2E587635 8=2E2305= 04 5=2E000000
2 8 0 4=2E627577 8= =2E077882 5=2E000000
3 6 0 5=2E286906= 9=2E101397 5=2E000000
4 8 0 6=2E0= 81924 9=2E981983 5=2E000000
Distance matrix (a= ngstroms):
1 2 3 4
= 1 Fe 0=2E000000
2 O 2=2E045643 0=2E000000
3 C = 2=2E836286 1=2E217497 0=2E000000
4 O 3=2E908674 2=2E395= 981 1=2E186375 0=2E000000
Stoichiometry CFeO2
Framework grou= p CS[SG(CFeO2)]
Deg=2E of freedom 5
Full point group = CS NOp 2
Largest Abelian subgroup CS NOp 2=
Largest concise Abelian subgroup C1 NOp 1
= Standard orientation:
Center Atomic= Atomic Coordinates (Angstroms)
Number Number = Type X Y Z
------JPLGSNNZUIBL03TDO3DXACU63W8LVJ--