From owner-chemistry@ccl.net Wed Mar 1 02:09:01 2023 From: "Cheng Fei Phung feiphung-*-hotmail.com" To: CCL Subject: CCL:G: Help with DFT convergence failure for Fe2CO2 in Gaussian software Message-Id: <-54857-230301020735-15487-1TVzzTPOQgVQ5dIdKBCDkA++server.ccl.net> X-Original-From: Cheng Fei Phung Content-Language: en-US Content-Type: multipart/alternative; boundary="_000_SEYPR06MB5514F2DD389718DA493D9B70C1AD9SEYPR06MB5514apcp_" Date: Wed, 1 Mar 2023 07:07:19 +0000 MIME-Version: 1.0 Sent to CCL by: Cheng Fei Phung [feiphung~!~hotmail.com] --_000_SEYPR06MB5514F2DD389718DA493D9B70C1AD9SEYPR06MB5514apcp_ Content-Type: text/plain; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable Hi, Since my messages contains the image and is longer than a limit for general= distribution, the CCL Admin saved my message under http://www.ccl.net/large_message/2023-02-28-LongMessage.html so please open this link to read my response Note that I am doing Fe2+ ferrous ion for MOF carbon capture What do you guys think about the following xtb result from https://calcus.c= loud/ ? step_000_DFT.Geometrical_Optimisation_Result.xyz : 4 energy: -13.349149310898 gnorm: 0.000502022323 xtb: 6.5.1 (579679a) Fe 2.73292919494009 7.81690557181600 4.999999999914= 02 O 4.23822629938734 8.62616541285678 4.999758633720= 67 C 5.28034049639189 9.19333556707946 5.000513677205= 69 O 6.33254571928068 9.75535975824776 4.999727689159= 61 Regards, Cheng Fei Phung ________________________________ > From: owner-chemistry+feiphung=3D=3Dhotmail.com-.-ccl.net on behalf of Igors Mihailovs igorsm_._cfi.= lu.lv Sent: Sunday, February 26, 2023 10:50 PM To: Phung, Cheng Fei Subject: CCL:G: Re: CCL:G: Help with DFT convergence failure for Fe2CO2 in = Gaussian software Dear Cheng Fei Phung, I would use something like MN15 or MN15L, and a basis set with at least som= e polarization (6-311G(d,p), for example). Especially if I had to perform s= omething like a token computation in order to get someone's experimental re= sults published. Trying to converge B3LYP for a transition metal compound may take more time= than the options described above... Best regards, Igors Mihailovs former employee at ISSP UL On February 25, 2023 12:09:02 PM GMT+02:00, "Cheng Fei Phung feiphung=3D-= =3Dhotmail.com" wrote: Sent to CCL by: "Cheng Fei Phung" [feiphung{:}hotmail.com] With the following gaussian16 gjf input file, I got some convergence failur= e issues. Could anyone help ? Gaussian input gjf file ``` %chk=3Dstep_000_DFT.chk # opt b3lyp/6-31g geom=3Dconnectivity Fe2CO2_OPT 0 1 Fe 2.74538330 8.28679554 5.00000000 O 4.55208397 8.06717607 5.00000000 C 5.30819317 9.07309328 5.00000000 O 5.97838127 9.96470142 5.00000000 1 2 1.0 2 3 2.0 3 4 3.0 4 ``` Gaussian log file ``` %chk=3Dstep_000_DFT.chk ________________________________ # opt b3lyp/6-31g geom=3Dconnectivity ________________________________ 1/18=3D20,19=3D15,26=3D3,38=3D1,57=3D2/1,3; 2/9=3D110,12=3D2,17=3D6,18=3D5,40=3D1/2; 3/5=3D1,6=3D6,11=3D2,25=3D1,30=3D1,71=3D1,74=3D-5/1,2,3; 4//1; 5/5=3D2,38=3D5/2; 6/7=3D2,8=3D2,9=3D2,10=3D2,28=3D1/1; 7//1,2,3,16; 1/18=3D20,19=3D15,26=3D3/3(2); 2/9=3D110/2; 99//99; 2/9=3D110/2; 3/5=3D1,6=3D6,11=3D2,25=3D1,30=3D1,71=3D1,74=3D-5/1,2,3; 4/5=3D5,16=3D3,69=3D1/1; 5/5=3D2,38=3D5/2; 7//1,2,3,16; 1/18=3D20,19=3D15,26=3D3/3(-5); 2/9=3D110/2; 6/7=3D2,8=3D2,9=3D2,10=3D2,19=3D2,28=3D1/1; 99/9=3D1/99; ________________________________ Fe2CO2_OPT ________________________________ Symbolic Z-matrix: Charge =3D 0 Multiplicity =3D 1 Fe 2.74538 8.2868 5. O 4.55208 8.06718 5. C 5.30819 9.07309 5. O 5.97838 9.9647 5. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ________________________________ ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- --------------------= ------ ! Name Definition Value Derivative Info. = ! ________________________________ ! R1 R(1,2) 1.82 estimate D2E/DX2 = ! ! R2 R(2,3) 1.2584 estimate D2E/DX2 = ! ! R3 R(3,4) 1.1154 estimate D2E/DX2 = ! ! A1 A(1,2,3) 120.0 estimate D2E/DX2 = ! ! A2 L(2,3,4,1,-1) 180.0 estimate D2E/DX2 = ! ! A3 L(2,3,4,1,-2) 180.0 estimate D2E/DX2 = ! ________________________________ Trust Radius=3D3.00D-01 FncErr=3D1.00D-07 GrdErr=3D1.00D-06 EigMax=3D2.50D= +02 EigMin=3D1.00D-04 Number of steps in this run=3D 20 maximum allowed number of steps=3D = 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: ________________________________ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z ________________________________ 1 26 0 2.745383 8.286796 5.000000 2 8 0 4.552084 8.067176 5.000000 3 6 0 5.308193 9.073093 5.000000 4 8 0 5.978381 9.964701 5.000000 ________________________________ Distance matrix (angstroms): 1 2 3 4 1 Fe 0.000000 2 O 1.820000 0.000000 3 C 2.680720 1.258400 0.000000 4 O 3.642478 2.373800 1.115400 0.000000 Stoichiometry CFeO2 Framework group CS[SG(CFeO2)] Deg. of freedom 5 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: ________________________________ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z ________________________________ 1 26 0 -1.018287 -0.652610 -0.000000 2 8 0 -0.000000 0.855864 0.000000 3 6 0 1.255302 0.767619 0.000000 4 8 0 2.367956 0.689403 0.000000 ________________________________ Rotational constants (GHZ): 37.1744583 2.4897380 = 2.3334561 Standard basis: 6-31G (6D, 7F) There are 42 symmetry adapted cartesian basis functions of A' symmetry= . There are 14 symmetry adapted cartesian basis functions of A" symmetry= . There are 42 symmetry adapted basis functions of A' symmetry. There are 14 symmetry adapted basis functions of A" symmetry. 56 basis functions, 160 primitive gaussians, 56 cartesian basis fu= nctions 24 alpha electrons 24 beta electrons nuclear repulsion energy 178.7145642873 Hartrees. NAtoms=3D 4 NActive=3D 4 NUniq=3D 4 SFac=3D 1.00D+00 NAtFMM=3D = 60 NAOKFM=3DF Big=3DF Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis=3D 56 RedAO=3D T EigKep=3D 1.76D-03 NBF=3D 42 14 NBsUse=3D 56 1.00D-06 EigRej=3D -1.00D+00 NBFU=3D 42 14 ExpMin=3D 4.11D-02 ExpMax=3D 6.11D+04 ExpMxC=3D 9.18D+03 IAcc=3D3 IRadAn= =3D 5 AccDes=3D 0.00D+00 Harris functional with IExCor=3D 402 and IRadAn=3D 5 diagonalized f= or initial guess. HarFok: IExCor=3D 402 AccDes=3D 0.00D+00 IRadAn=3D 5 IDoV=3D 1 U= seB2=3DF ITyADJ=3D14 ICtDFT=3D 3500011 ScaDFX=3D 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=3DF IPFlag=3D 0 FMFlag=3D 100000 FMFlg1=3D = 0 NFxFlg=3D 0 DoJE=3DT BraDBF=3DF KetDBF=3DT FulRan=3DT wScrn=3D 0.000000 ICntrl=3D 500 IOpCl=3D 0 I1Cent=3D 200= 000004 NGrid=3D 0 NMat0=3D 1 NMatS0=3D 1 NMatT0=3D 0 NMatD0=3D 1 NMtDS= 0=3D 0 NMtDT0=3D 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') Virtual (A") (A') (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A") (A') (A') (A') (A') (A') The electronic state of the initial guess is 1-A'. Keep R1 ints in memory in symmetry-blocked form, NReq=3D2159799. Requested convergence on RMS density matrix=3D1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=3D1.00D-06. Requested convergence on energy=3D1.00D-06. No special actions if energy rises. EnCoef did 3 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 2 forward-backward iterations EnCoef did 2 forward-backward iterations SCF Done: E(RB3LYP) =3D -1451.84990065 A.U. after 22 cycles NFock=3D 22 Conv=3D0.66D-08 -V/T=3D 2.0016 ********************************************************************** Population analysis using the SCF Density. ********************************************************************** Orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') Virtual (A") (A') (A") (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') The electronic state is 1-A'. Alpha occ. eigenvalues -- -256.04016 -29.99951 -25.87326 -25.85859 -25.85= 805 Alpha occ. eigenvalues -- -19.31120 -19.28742 -10.45249 -3.41064 -2.20= 510 Alpha occ. eigenvalues -- -2.17421 -2.16694 -1.26882 -1.17261 -0.64= 217 Alpha occ. eigenvalues -- -0.58881 -0.57965 -0.57594 -0.44473 -0.43= 175 Alpha occ. eigenvalues -- -0.22416 -0.22137 -0.20382 -0.15336 Alpha virt. eigenvalues -- -0.07558 -0.07420 -0.03518 -0.03067 -0.02= 764 Alpha virt. eigenvalues -- -0.00807 0.00082 0.10567 0.12952 0.29= 804 Alpha virt. eigenvalues -- 0.31948 0.36712 0.41870 0.45104 0.54= 770 Alpha virt. eigenvalues -- 0.63606 0.74556 0.85137 0.88355 0.92= 857 Alpha virt. eigenvalues -- 0.96917 1.00808 1.01595 1.25495 1.50= 958 Alpha virt. eigenvalues -- 1.51252 1.55992 1.59723 1.70732 1.86= 833 Alpha virt. eigenvalues -- 2.01356 20.37339 Condensed to atoms (all electrons): 1 2 3 4 1 Fe 26.065938 -0.058002 0.083106 -0.030239 2 O -0.058002 8.304619 0.168196 0.010116 3 C 0.083106 0.168196 4.724609 0.417125 4 O -0.030239 0.010116 0.417125 7.724230 Mulliken charges: 1 1 Fe -0.060803 2 O -0.424929 3 C 0.606964 4 O -0.121232 Sum of Mulliken charges =3D -0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 Fe -0.060803 2 O -0.424929 3 C 0.606964 4 O -0.121232 Electronic spatial extent (au): =3D 453.0609 Charge=3D -0.0000 electrons Dipole moment (field-independent basis, Debye): X=3D 1.6708 Y=3D 1.8514 Z=3D = -0.0000 Tot=3D 2.4938 Quadrupole moment (field-independent basis, Debye-Ang): XX=3D -35.0872 YY=3D -34.7815 ZZ=3D = -32.5686 XY=3D 0.8912 XZ=3D 0.0000 YZ=3D = 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX=3D -0.9415 YY=3D -0.6357 ZZ=3D = 1.5772 XY=3D 0.8912 XZ=3D 0.0000 YZ=3D = 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX=3D -8.4875 YYY=3D 8.6001 ZZZ=3D = -0.0000 XYY=3D 3.5470 XXY=3D 1.7153 XXZ=3D 0.0000 XZZ=3D = 0.7336 YZZ=3D 1.9407 YYZ=3D -0.0000 XYZ=3D -0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX=3D -415.5041 YYYY=3D -171.1039 ZZZZ=3D = -55.1637 XXXY=3D -84.4690 XXXZ=3D 0.0000 YYYX=3D -75.7822 YYYZ=3D = 0.0000 ZZZX=3D 0.0000 ZZZY=3D 0.0000 XXYY=3D -90.7121 XXZZ=3D = -70.9019 YYZZ=3D -36.9432 XXYZ=3D 0.0000 YYXZ=3D 0.0000 ZZXY=3D = -24.7602 N-N=3D 1.787145642873D+02 E-N=3D-3.807626875025D+03 KE=3D 1.449497603530D= +03 Symmetry A' KE=3D 1.287179877057D+03 Symmetry A" KE=3D 1.623177264732D+02 Calling FoFJK, ICntrl=3D 2127 FMM=3DF ISym2X=3D1 I1Cent=3D 0 IOpClX= =3D 0 NMat=3D1 NMatS=3D1 NMatT=3D0. ***** Axes restored to original set ***** ________________________________ Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ________________________________ 1 26 -0.048820174 0.005157682 0.000000000 2 8 0.068584660 0.015861998 0.000000000 3 6 -0.104728901 -0.126023309 0.000000000 4 8 0.084964415 0.105003629 -0.000000000 ________________________________ Cartesian Forces: Max 0.126023309 RMS 0.066118707 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=3D4. Internal Forces: Max 0.134986320 RMS 0.059949734 Search for a local minimum. Step number 1 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. The second derivative matrix: R1 R2 R3 A1 A2 R1 0.22791 R2 0.00000 0.80209 R3 0.00000 0.00000 1.62060 A1 0.00000 0.00000 0.00000 0.25000 A2 0.00000 0.00000 0.00000 0.00000 0.05456 A3 0.00000 0.00000 0.00000 0.00000 0.00000 A3 A3 0.05456 ITU=3D 0 Eigenvalues --- 0.05456 0.05456 0.22791 0.25000 0.80209 Eigenvalues --- 1.62060 RFO step: Lambda=3D-2.30438557D-02 EMin=3D 5.45649275D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)=3D 0.10911805 RMS(Int)=3D 0.00403264 Iteration 2 RMS(Cart)=3D 0.00524126 RMS(Int)=3D 0.00001569 Iteration 3 RMS(Cart)=3D 0.00001737 RMS(Int)=3D 0.00000000 Iteration 4 RMS(Cart)=3D 0.00000000 RMS(Int)=3D 0.00000000 ClnCor: largest displacement from symmetrization is 2.67D-10 for atom = 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.43930 0.04909 0.00000 0.19560 0.19560 3.63490 R2 2.37803 -0.02868 0.00000 -0.03476 -0.03476 2.34327 R3 2.10780 0.13499 0.00000 0.08213 0.08213 2.18993 A1 2.09440 0.00265 0.00000 0.00969 0.00969 2.10408 A2 3.14159 0.01018 0.00000 0.13112 0.13112 3.27271 A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.134986 0.000450 NO RMS Force 0.059950 0.000300 NO Maximum Displacement 0.164913 0.001800 NO RMS Displacement 0.111408 0.001200 NO Predicted change in Energy=3D-1.225354D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: ________________________________ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z ________________________________ 1 26 0 2.658115 8.232499 5.000000 2 8 0 4.576263 8.089032 5.000000 3 6 0 5.284531 9.106861 5.000000 4 8 0 6.065132 9.963375 5.000000 ________________________________ Distance matrix (angstroms): 1 2 3 4 1 Fe 0.000000 2 O 1.923506 0.000000 3 C 2.768135 1.240008 0.000000 4 O 3.821478 2.393719 1.158859 0.000000 Stoichiometry CFeO2 Framework group CS[SG(CFeO2)] Deg. of freedom 5 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: ________________________________ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z ________________________________ 1 26 0 -1.022093 -0.757193 -0.000000 2 8 0 0.000000 0.872286 0.000000 3 6 0 1.239558 0.838897 0.000000 4 8 0 2.392133 0.959419 0.000000 ________________________________ Rotational constants (GHZ): 40.3135828 2.2660782 = 2.1454781 Standard basis: 6-31G (6D, 7F) There are 42 symmetry adapted cartesian basis functions of A' symmetry= . There are 14 symmetry adapted cartesian basis functions of A" symmetry= . There are 42 symmetry adapted basis functions of A' symmetry. There are 14 symmetry adapted basis functions of A" symmetry. 56 basis functions, 160 primitive gaussians, 56 cartesian basis fu= nctions 24 alpha electrons 24 beta electrons nuclear repulsion energy 172.3989508234 Hartrees. NAtoms=3D 4 NActive=3D 4 NUniq=3D 4 SFac=3D 1.00D+00 NAtFMM=3D = 60 NAOKFM=3DF Big=3DF Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis=3D 56 RedAO=3D T EigKep=3D 1.76D-03 NBF=3D 42 14 NBsUse=3D 56 1.00D-06 EigRej=3D -1.00D+00 NBFU=3D 42 14 Initial guess from the checkpoint file: "step_000_DFT.chk" B after Tr=3D 0.000000 0.000000 -0.000000 Rot=3D 0.999288 -0.000000 -0.000000 -0.037733 Ang=3D -4.= 32 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') Virtual (A") (A') (A") (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') ExpMin=3D 4.11D-02 ExpMax=3D 6.11D+04 ExpMxC=3D 9.18D+03 IAcc=3D3 IRadAn= =3D 5 AccDes=3D 0.00D+00 Harris functional with IExCor=3D 402 and IRadAn=3D 5 diagonalized f= or initial guess. HarFok: IExCor=3D 402 AccDes=3D 0.00D+00 IRadAn=3D 5 IDoV=3D 1 U= seB2=3DF ITyADJ=3D14 ICtDFT=3D 3500011 ScaDFX=3D 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=3DF IPFlag=3D 0 FMFlag=3D 100000 FMFlg1=3D = 0 NFxFlg=3D 0 DoJE=3DT BraDBF=3DF KetDBF=3DT FulRan=3DT wScrn=3D 0.000000 ICntrl=3D 500 IOpCl=3D 0 I1Cent=3D 200= 000004 NGrid=3D 0 NMat0=3D 1 NMatS0=3D 1 NMatT0=3D 0 NMatD0=3D 1 NMtDS= 0=3D 0 NMtDT0=3D 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=3D2159799. Requested convergence on RMS density matrix=3D1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=3D1.00D-06. Requested convergence on energy=3D1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) =3D -1451.86533909 A.U. after 18 cycles NFock=3D 18 Conv=3D0.23D-08 -V/T=3D 2.0018 Calling FoFJK, ICntrl=3D 2127 FMM=3DF ISym2X=3D1 I1Cent=3D 0 IOpClX= =3D 0 NMat=3D1 NMatS=3D1 NMatT=3D0. ***** Axes restored to original set ***** ________________________________ Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ________________________________ 1 26 -0.021775369 0.002114287 0.000000000 2 8 0.036955110 0.014737157 0.000000000 3 6 -0.039695691 -0.040384091 0.000000000 4 8 0.024515951 0.023532647 -0.000000000 ________________________________ Cartesian Forces: Max 0.040384091 RMS 0.023135364 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=3D4. Internal Forces: Max 0.033908365 RMS 0.018980685 Search for a local minimum. Step number 2 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 DE=3D -1.54D-02 DEPred=3D-1.23D-02 R=3D 1.26D+00 TightC=3DF SS=3D 1.41D+00 RLast=3D 2.52D-01 DXNew=3D 5.0454D-01 7.5596D-= 01 Trust test=3D 1.26D+00 RLast=3D 2.52D-01 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.18668 R2 0.04604 0.76870 R3 -0.08608 0.12904 1.50110 A1 0.00316 0.00128 0.01538 0.25104 A2 -0.00501 0.00702 -0.00784 0.00077 0.05407 A3 0.00000 -0.00000 0.00000 0.00000 0.00000 A3 A3 0.05456 ITU=3D 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.05364 0.05456 0.17607 0.25109 0.75296 Eigenvalues --- 1.52783 RFO step: Lambda=3D-2.40357398D-03 EMin=3D 5.36398691D-02 Quartic linear search produced a step of 0.74433. Iteration 1 RMS(Cart)=3D 0.12055350 RMS(Int)=3D 0.00970928 Iteration 2 RMS(Cart)=3D 0.01171440 RMS(Int)=3D 0.00007671 Iteration 3 RMS(Cart)=3D 0.00008339 RMS(Int)=3D 0.00000000 Iteration 4 RMS(Cart)=3D 0.00000000 RMS(Int)=3D 0.00000000 ClnCor: largest displacement from symmetrization is 4.24D-12 for atom = 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.63490 0.02187 0.14559 0.04745 0.19304 3.82794 R2 2.34327 -0.02250 -0.02587 -0.02538 -0.05125 2.29202 R3 2.18993 0.03391 0.06113 -0.01980 0.04133 2.23126 A1 2.10408 -0.00172 0.00721 -0.01780 -0.01059 2.09349 A2 3.27271 0.00495 0.09759 0.11009 0.20769 3.48040 A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.033908 0.000450 NO RMS Force 0.018981 0.000300 NO Maximum Displacement 0.157853 0.001800 NO RMS Displacement 0.126480 0.001200 NO Predicted change in Energy=3D-2.644271D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: ________________________________ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z ________________________________ 1 26 0 2.586226 8.170844 5.000000 2 8 0 4.611490 8.130764 5.000000 3 6 0 5.237660 9.169515 5.000000 4 8 0 6.148665 9.920644 5.000000 ________________________________ Distance matrix (angstroms): 1 2 3 4 1 Fe 0.000000 2 O 2.025661 0.000000 3 C 2.833275 1.212885 0.000000 4 O 3.968976 2.359359 1.180730 0.000000 Stoichiometry CFeO2 Framework group CS[SG(CFeO2)] Deg. of freedom 5 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: ________________________________ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z ________________________________ 1 26 0 -0.994550 -0.879340 -0.000000 2 8 0 -0.000000 0.885361 0.000000 3 6 0 1.212831 0.896868 0.000000 4 8 0 2.322666 1.299844 0.000000 ________________________________ Rotational constants (GHZ): 47.4271405 2.0987230 = 2.0097869 Standard basis: 6-31G (6D, 7F) There are 42 symmetry adapted cartesian basis functions of A' symmetry= . There are 14 symmetry adapted cartesian basis functions of A" symmetry= . There are 42 symmetry adapted basis functions of A' symmetry. There are 14 symmetry adapted basis functions of A" symmetry. 56 basis functions, 160 primitive gaussians, 56 cartesian basis fu= nctions 24 alpha electrons 24 beta electrons nuclear repulsion energy 168.0152669884 Hartrees. NAtoms=3D 4 NActive=3D 4 NUniq=3D 4 SFac=3D 1.00D+00 NAtFMM=3D = 60 NAOKFM=3DF Big=3DF Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis=3D 56 RedAO=3D T EigKep=3D 1.76D-03 NBF=3D 42 14 NBsUse=3D 56 1.00D-06 EigRej=3D -1.00D+00 NBFU=3D 42 14 Initial guess from the checkpoint file: "step_000_DFT.chk" B after Tr=3D 0.000000 -0.000000 -0.000000 Rot=3D 0.998838 -0.000000 -0.000000 -0.048193 Ang=3D -5.= 52 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') ExpMin=3D 4.11D-02 ExpMax=3D 6.11D+04 ExpMxC=3D 9.18D+03 IAcc=3D3 IRadAn= =3D 5 AccDes=3D 0.00D+00 Harris functional with IExCor=3D 402 and IRadAn=3D 5 diagonalized f= or initial guess. HarFok: IExCor=3D 402 AccDes=3D 0.00D+00 IRadAn=3D 5 IDoV=3D 1 U= seB2=3DF ITyADJ=3D14 ICtDFT=3D 3500011 ScaDFX=3D 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=3DF IPFlag=3D 0 FMFlag=3D 100000 FMFlg1=3D = 0 NFxFlg=3D 0 DoJE=3DT BraDBF=3DF KetDBF=3DT FulRan=3DT wScrn=3D 0.000000 ICntrl=3D 500 IOpCl=3D 0 I1Cent=3D 200= 000004 NGrid=3D 0 NMat0=3D 1 NMatS0=3D 1 NMatT0=3D 0 NMatD0=3D 1 NMtDS= 0=3D 0 NMtDT0=3D 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=3D2159799. Requested convergence on RMS density matrix=3D1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=3D1.00D-06. Requested convergence on energy=3D1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) =3D -1451.86779894 A.U. after 19 cycles NFock=3D 19 Conv=3D0.32D-08 -V/T=3D 2.0018 Calling FoFJK, ICntrl=3D 2127 FMM=3DF ISym2X=3D1 I1Cent=3D 0 IOpClX= =3D 0 NMat=3D1 NMatS=3D1 NMatT=3D0. ***** Axes restored to original set ***** ________________________________ Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ________________________________ 1 26 -0.002475531 0.002170910 0.000000000 2 8 -0.009275511 -0.015400826 0.000000000 3 6 0.012873515 0.005174131 0.000000000 4 8 -0.001122473 0.008055785 -0.000000000 ________________________________ Cartesian Forces: Max 0.015400826 RMS 0.007028017 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=3D4. Internal Forces: Max 0.017401591 RMS 0.010265616 Search for a local minimum. Step number 3 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 3 DE=3D -2.46D-03 DEPred=3D-2.64D-03 R=3D 9.30D-01 TightC=3DF SS=3D 1.41D+00 RLast=3D 2.91D-01 DXNew=3D 8.4853D-01 8.7386D-= 01 Trust test=3D 9.30D-01 RLast=3D 2.91D-01 DXMaxT set to 8.49D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.14042 R2 0.04009 0.84593 R3 -0.15330 0.08559 1.42002 A1 0.01583 -0.02335 0.04566 0.25643 A2 0.00387 -0.03883 0.02611 0.01417 0.08070 A3 0.00000 -0.00000 0.00000 0.00000 0.00000 A3 A3 0.05456 ITU=3D 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.05456 0.07570 0.11658 0.25847 0.84223 Eigenvalues --- 1.45052 RFO step: Lambda=3D-2.28883397D-03 EMin=3D 5.45649275D-02 Quartic linear search produced a step of -0.27572. Iteration 1 RMS(Cart)=3D 0.11082651 RMS(Int)=3D 0.00968836 Iteration 2 RMS(Cart)=3D 0.01008655 RMS(Int)=3D 0.00002336 Iteration 3 RMS(Cart)=3D 0.00002996 RMS(Int)=3D 0.00000000 Iteration 4 RMS(Cart)=3D 0.00000000 RMS(Int)=3D 0.00000000 ClnCor: largest displacement from symmetrization is 3.37D-09 for atom = 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.82794 0.00252 -0.05323 0.09099 0.03776 3.86570 R2 2.29202 0.01740 0.01413 -0.00542 0.00871 2.30074 R3 2.23126 0.00426 -0.01140 0.02206 0.01067 2.24192 A1 2.09349 -0.00809 0.00292 -0.02802 -0.02510 2.06839 A2 3.48040 -0.01548 -0.05726 -0.11944 -0.17670 3.30370 A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.017402 0.000450 NO RMS Force 0.010266 0.000300 NO Maximum Displacement 0.128723 0.001800 NO RMS Displacement 0.114165 0.001200 NO Predicted change in Energy=3D-1.691720D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: ________________________________ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z ________________________________ 1 26 0 2.587635 8.230504 5.000000 2 8 0 4.627577 8.077882 5.000000 3 6 0 5.286906 9.101397 5.000000 4 8 0 6.081924 9.981983 5.000000 ________________________________ Distance matrix (angstroms): 1 2 3 4 1 Fe 0.000000 2 O 2.045643 0.000000 3 C 2.836286 1.217497 0.000000 4 O 3.908674 2.395981 1.186375 0.000000 Stoichiometry CFeO2 Framework group CS[SG(CFeO2)] Deg. of freedom 5 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: ________________________________ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z ________________________________ --_000_SEYPR06MB5514F2DD389718DA493D9B70C1AD9SEYPR06MB5514apcp_ Content-Type: text/html; charset="iso-8859-1" Content-Transfer-Encoding: quoted-printable
Hi,

Since my messages contains the image and is longer than a limit for general= distribution,
the CCL Admin saved my message under so please open this link to read my response

Note that I am doing Fe2+ ferrous ion for MOF carbon capture


What do you guys think about the following xtb result from https://calcus.cloud/ ?

step_000_DFT.Geometrical_Optimisation_Result.xyz :

4
 energy: -13.349149310898 gnorm: 0.000= 502022323 xtb: 6.5.1 (579679a)
Fe           2.732= 92919494009        7.81690557181600      = ;  4.99999999991402
O            = 4.23822629938734        8.62616541285678     =    4.99975863372067
C            = 5.28034049639189        9.19333556707946     =    5.00051367720569
O            = 6.33254571928068        9.75535975824776     =    4.99972768915961


Regards,
Cheng Fei  Phung


From: owner-chemistry+f= eiphung=3D=3Dhotmail.com-.-ccl.net <owner-chemistry+feiphung=3D=3Dhotmail.= com-.-ccl.net> on behalf of Igors Mihailovs igorsm_._cfi.lu.lv <owner-chemistry-.-ccl.net>
Sent: Sunday, February 26, 2023 10:50 PM
To: Phung, Cheng Fei <feiphung-.-hotmail.com>
Subject: CCL:G: Re: CCL:G: Help with DFT convergence failure for Fe2= CO2 in Gaussian software
 
Dear Cheng Fei  Phung,

I would use something like MN15 or MN15L, and a basis set with at least som= e polarization (6-311G(d,p), for example). Especially if I had to perform s= omething like a token computation in order to get someone's experimental re= sults published.

Trying to converge B3LYP for a transition metal compound may take more time= than the options described above...

Best regards,
Igors Mihailovs
former employee at ISSP UL


On February 25, 2023 12:09:02 PM GMT+02:00= , "Cheng Fei Phung feiphung=3D-=3Dhotmail.com" <owner-chemistr= y^-^ccl.net> wrote:

Sent to CCL by: "Cheng Fe= i Phung" [feiphung{:}hotmail.com]
With the following gaussian16 gj= f input file, I got some convergence failure issues.

Could anyone he= lp ?


Gaussian input gjf file

```
%chk=3Dstep_000_DFT.c= hk
# opt b3lyp/6-31g geom=3Dconnectivity

Fe2CO2_OPT

0 1 Fe 2.74538330 8.28679554 5.00000000
O = 4.55208397 8.06717607 5.00000000
C 5.308= 19317 9.07309328 5.00000000
O 5.97838127 9.96= 470142 5.00000000

1 2 1.0
2 3 2.0
3 4 3.0
4
```

Gaussian log file

```
%chk=3Dstep_000_DFT.chk
# op= t b3lyp/6-31g geom=3Dconnectivity
1/18=3D20,19=3D15,26=3D3,38=3D1,57=3D= 2/1,3;
2/9=3D110,12=3D2,17=3D6,18=3D5,40=3D1/2;
3/5=3D1,6=3D6,11=3D= 2,25=3D1,30=3D1,71=3D1,74=3D-5/1,2,3;
4//1;
5/5=3D2,38=3D5/2;
6= /7=3D2,8=3D2,9=3D2,10=3D2,28=3D1/1;
7//1,2,3,16;
1/18=3D20,19=3D15,= 26=3D3/3(2);
2/9=3D110/2;
99//99;
2/9=3D110/2;
3/5=3D1,6=3D= 6,11=3D2,25=3D1,30=3D1,71=3D1,74=3D-5/1,2,3;
4/5=3D5,16=3D3,69=3D1/1; 5/5=3D2,38=3D5/2;
7//1,2,3,16;
1/18=3D20,19=3D15,26=3D3/3(-5); 2/9=3D110/2;
6/7=3D2,8=3D2,9=3D2,10=3D2,19=3D2,28=3D1/1;
99/9=3D= 1/99;
Fe2CO2_OPT
Symbolic Z-matrix:
Charge =3D 0 Multiplicity = =3D 1
Fe 2.74538 8.2868 5.
O = 4.55208 8.06718 5.
C 5.30819 9.07309 = 5.
O 5.97838 9.9647 5.


GradGr= adGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Bern= y optimization.
Initialization pass.
! = Initial Parameters !
! (Angstroms and Deg= rees) !
-------------------------- --------= ------------------
! Name Definition Value Deriv= ative Info. !
! R1 R(1,2) 1.82 = estimate D2E/DX2 !
! R2 R(2,3) = 1.2584 estimate D2E/DX2 !
! R3 R(3,4) = 1.1154 estimate D2E/DX2 !
! A1 A(1,= 2,3) 120.0 estimate D2E/DX2 !
! = A2 L(2,3,4,1,-1) 180.0 estimate D2E/DX2 = !
! A3 L(2,3,4,1,-2) 180.0 estimate D2E/DX2 = !
Trust Radius=3D3.00D-01 FncErr=3D1.00D-07 GrdErr=3D1.00D-= 06 EigMax=3D2.50D+02 EigMin=3D1.00D-04
Number of steps in this run=3D = 20 maximum allowed number of steps=3D 100.
GradGradGradGradGradGr= adGradGradGradGradGradGradGradGradGradGradGradGrad

= Input orientation:
Center Atomic= Atomic Coordinates (Angstroms)
Number Number = Type X Y Z
1 26 = 0 2.745383 8.286796 5.000000
2 8 = 0 4.552084 8.067176 5.000000
3 6 = 0 5.308193 9.073093 5.000000
4 8 0= 5.978381 9.964701 5.000000
Distance ma= trix (angstroms):
1 2 3 4=
1 Fe 0.000000
2 O 1.820000 0.000000
3 C = 2.680720 1.258400 0.000000
4 O 3.642478 2.373800 1.1= 15400 0.000000
Stoichiometry CFeO2
Framework group CS[SG(CFeO= 2)]
Deg. of freedom 5
Full point group CS = NOp 2
Largest Abelian subgroup CS NOp 2
Largest co= ncise Abelian subgroup C1 NOp 1
Standard= orientation:
Center Atomic Atomic = Coordinates (Angstroms)
Number Number Type = X Y Z
1 26 0 -1.01= 8287 -0.652610 -0.000000
2 8 0 -0.000= 000 0.855864 0.000000
3 6 0 1.2553= 02 0.767619 0.000000
4 8 0 2.36795= 6 0.689403 0.000000
Rotational constants (GHZ): 37.17445= 83 2.4897380 2.3334561
Standard basis: 6-31G (6D, 7= F)
There are 42 symmetry adapted cartesian basis functions of A' sy= mmetry.
There are 14 symmetry adapted cartesian basis functions of A= " symmetry.
There are 42 symmetry adapted basis functions of A= ' symmetry.
There are 14 symmetry adapted basis functions of A"= ; symmetry.
56 basis functions, 160 primitive gaussians, 56 ca= rtesian basis functions
24 alpha electrons 24 beta electrons nuclear repulsion energy 178.7145642873 Hartrees.
NAtoms= =3D 4 NActive=3D 4 NUniq=3D 4 SFac=3D 1.00D+00 NAtFMM=3D 60 NAOK= FM=3DF Big=3DF
Integral buffers will be 131072 words long.
Raffe= netti 2 integral format.
Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM.
NBasis=3D 56 RedAO= =3D T EigKep=3D 1.76D-03 NBF=3D 42 14
NBsUse=3D 56 1.00D-06 = EigRej=3D -1.00D+00 NBFU=3D 42 14
ExpMin=3D 4.11D-02 ExpMax=3D 6.= 11D+04 ExpMxC=3D 9.18D+03 IAcc=3D3 IRadAn=3D 5 AccDes=3D 0.00D+00 Harris functional with IExCor=3D 402 and IRadAn=3D 5 diagonalized= for initial guess.
HarFok: IExCor=3D 402 AccDes=3D 0.00D+00 IRadAn= =3D 5 IDoV=3D 1 UseB2=3DF ITyADJ=3D14
ICtDFT=3D 3500011 ScaDFX= =3D 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=3DF IPFlag=3D = 0 FMFlag=3D 100000 FMFlg1=3D 0
NFxFlg= =3D 0 DoJE=3DT BraDBF=3DF KetDBF=3DT FulRan=3DT
wScrn= =3D 0.000000 ICntrl=3D 500 IOpCl=3D 0 I1Cent=3D 200000004 NGrid= =3D 0
NMat0=3D 1 NMatS0=3D 1 NMatT0=3D 0 N= MatD0=3D 1 NMtDS0=3D 0 NMtDT0=3D 0
Petite list used in FoFCou.=
Initial guess orbital symmetries:
Occupied (A') (A') (A') (= A') (A") (A') (A') (A') (A') (A')
(A') (A") (= A') (A') (A') (A') (A') (A") (A') (A")
(A') (= A') (A") (A')
Virtual (A") (A') (A') (A") (A') (= A") (A') (A') (A') (A')
(A") (A') (A') (A&quo= t;) (A') (A') (A') (A") (A') (A')
(A') (A") (= A') (A') (A') (A") (A") (A') (A') (A')
(A') (= A')
The electronic state of the initial guess is 1-A'.
Keep R1 ints= in memory in symmetry-blocked form, NReq=3D2159799.
Requested converge= nce on RMS density matrix=3D1.00D-08 within 128 cycles.
Requested conve= rgence on MAX density matrix=3D1.00D-06.
Requested convergence on = energy=3D1.00D-06.
No special actions if energy rises.
EnCoe= f did 3 forward-backward iterations
EnCoef did 100 forward-backwa= rd iterations
EnCoef did 2 forward-backward iterations
EnCoef d= id 2 forward-backward iterations
SCF Done: E(RB3LYP) =3D -1451.84= 990065 A.U. after 22 cycles
NFock=3D 22 Conv=3D0.66D-= 08 -V/T=3D 2.0016

*********************************************= *************************

Population analysis using the = SCF Density.

******************************************************= ****************

Orbital symmetries:
Occupied (A') (A') = (A') (A') (A") (A') (A') (A') (A') (A')
(A") = (A') (A') (A') (A') (A') (A") (A') (A') (A")
= (A') (A') (A") (A')
Virtual (A") (A') (A") (A') = (A') (A") (A') (A') (A') (A')
(A") (A') (A') = (A") (A') (A') (A') (A") (A') (A')
(A') (A&qu= ot;) (A') (A') (A') (A") (A') (A") (A') (A')
= (A') (A')
The electronic state is 1-A'.
Alpha occ. eigenvalues -- = -256.04016 -29.99951 -25.87326 -25.85859 -25.85805
Alpha occ. eigenval= ues -- -19.31120 -19.28742 -10.45249 -3.41064 -2.20510
Alpha occ. e= igenvalues -- -2.17421 -2.16694 -1.26882 -1.17261 -0.64217
Alpha = occ. eigenvalues -- -0.58881 -0.57965 -0.57594 -0.44473 -0.43175
= Alpha occ. eigenvalues -- -0.22416 -0.22137 -0.20382 -0.15336
Al= pha virt. eigenvalues -- -0.07558 -0.07420 -0.03518 -0.03067 -0.02764=
Alpha virt. eigenvalues -- -0.00807 0.00082 0.10567 0.12952 = 0.29804
Alpha virt. eigenvalues -- 0.31948 0.36712 0.41870 0.4= 5104 0.54770
Alpha virt. eigenvalues -- 0.63606 0.74556 0.8513= 7 0.88355 0.92857
Alpha virt. eigenvalues -- 0.96917 1.00808 = 1.01595 1.25495 1.50958
Alpha virt. eigenvalues -- 1.51252 1.= 55992 1.59723 1.70732 1.86833
Alpha virt. eigenvalues -- 2.013= 56 20.37339
Condensed to atoms (all electrons):
= 1 2 3 4
1 Fe 26.065938 -0.058002= 0.083106 -0.030239
2 O -0.058002 8.304619 0.168196 0.0= 10116
3 C 0.083106 0.168196 4.724609 0.417125
4 = O -0.030239 0.010116 0.417125 7.724230
Mulliken charges:
= 1
1 Fe -0.060803
2 O -0.424929
3 = C 0.606964
4 O -0.121232
Sum of Mulliken charges =3D -0.= 00000
Mulliken charges with hydrogens summed into heavy atoms:
= 1
1 Fe -0.060803
2 O -0.424929
3 C = 0.606964
4 O -0.121232
Electronic spatial extent (au): &= lt;R**2>=3D 453.0609
Charge=3D -0.0000 electr= ons
Dipole moment (field-independent basis, Debye):
X=3D = 1.6708 Y=3D 1.8514 Z=3D -0.0000 Tot= =3D 2.4938
Quadrupole moment (field-independent basis, Deb= ye-Ang):
XX=3D -35.0872 YY=3D -34.7815 ZZ= =3D -32.5686
XY=3D 0.8912 XZ=3D = 0.0000 YZ=3D 0.0000
Traceless Quadrupole moment (field= -independent basis, Debye-Ang):
XX=3D -0.9415 YY=3D = -0.6357 ZZ=3D 1.5772
XY=3D 0.891= 2 XZ=3D 0.0000 YZ=3D 0.0000
Octapole mome= nt (field-independent basis, Debye-Ang**2):
XXX=3D -8.4875= YYY=3D 8.6001 ZZZ=3D -0.0000 XYY=3D = 3.5470
XXY=3D 1.7153 XXZ=3D 0.0000 XZZ= =3D 0.7336 YZZ=3D 1.9407
YYZ=3D = -0.0000 XYZ=3D -0.0000
Hexadecapole moment (field-indepen= dent basis, Debye-Ang**3):
XXXX=3D -415.5041 YYYY=3D = -171.1039 ZZZZ=3D -55.1637 XXXY=3D -84.4690
XXX= Z=3D 0.0000 YYYX=3D -75.7822 YYYZ=3D 0= .0000 ZZZX=3D 0.0000
ZZZY=3D 0.0000 XXYY=3D = -90.7121 XXZZ=3D -70.9019 YYZZ=3D -36.9432<= br> XXYZ=3D 0.0000 YYXZ=3D 0.0000 ZZXY=3D = -24.7602
N-N=3D 1.787145642873D+02 E-N=3D-3.807626875025D+03 KE=3D= 1.449497603530D+03
Symmetry A' KE=3D 1.287179877057D+03
Symmetry= A" KE=3D 1.623177264732D+02
Calling FoFJK, ICntrl=3D 2127 = FMM=3DF ISym2X=3D1 I1Cent=3D 0 IOpClX=3D 0 NMat=3D1 NMatS=3D1 NMatT=3D0. ***** Axes restored to original set *****
Center Atomic = Forces (Hartrees/Bohr)
Number Number X = Y Z
1 26 -0.048820174 0.0051= 57682 0.000000000
2 8 0.068584660 0.0158619= 98 0.000000000
3 6 -0.104728901 -0.126023309 = 0.000000000
4 8 0.084964415 0.105003629 -= 0.000000000
Cartesian Forces: Max 0.126023309 RMS 0.066118707<= br>
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGra= dGrad
Berny optimization.
FormGI is forming the generalized inverse= of G from B-inverse, IUseBI=3D4.
Internal Forces: Max 0.13498632= 0 RMS 0.059949734
Search for a local minimum.
Step number 1 o= ut of a maximum of 20
All quantities printed in internal units (Hartr= ees-Bohrs-Radians)
Mixed Optimization -- RFO/linear search
Second d= erivative matrix not updated -- first step.
The second derivative matri= x:
R1 R2 R3 A1 A2<= br> R1 0.22791
R2 0.00000 0.8= 0209
R3 0.00000 0.00000 1.62060
A= 1 0.00000 0.00000 0.00000 0.25000
A2 = 0.00000 0.00000 0.00000 0.00000 0.05456
A3 = 0.00000 0.00000 0.00000 0.00000 0.00000
= A3
A3 0.05456
ITU=3D 0
Eigenvalues= --- 0.05456 0.05456 0.22791 0.25000 0.80209
Eigenvalues= --- 1.62060
RFO step: Lambda=3D-2.30438557D-02 EMin=3D 5.45649275D= -02
Linear search not attempted -- first point.
Iteration 1 RMS(Ca= rt)=3D 0.10911805 RMS(Int)=3D 0.00403264
Iteration 2 RMS(Cart)=3D 0= .00524126 RMS(Int)=3D 0.00001569
Iteration 3 RMS(Cart)=3D 0.00001737= RMS(Int)=3D 0.00000000
Iteration 4 RMS(Cart)=3D 0.00000000 RMS(Int)= =3D 0.00000000
ClnCor: largest displacement from symmetrization is 2.= 67D-10 for atom 3.
Variable Old X -DE/DX Delta X Delta= X Delta X New X
(Linear) (Qua= d) (Total)
R1 3.43930 0.04909 0.00000 0.19560 0.195= 60 3.63490
R2 2.37803 -0.02868 0.00000 -0.03476 -0.034= 76 2.34327
R3 2.10780 0.13499 0.00000 0.08213 0.082= 13 2.18993
A1 2.09440 0.00265 0.00000 0.00969 0.009= 69 2.10408
A2 3.14159 0.01018 0.00000 0.13112 0.131= 12 3.27271
A3 3.14159 0.00000 0.00000 0.00000 0.000= 00 3.14159
Item Value Threshold Converged?=
Maximum Force 0.134986 0.000450 NO
RMS For= ce 0.059950 0.000300 NO
Maximum Displacement 0.= 164913 0.001800 NO
RMS Displacement 0.111408 0.001= 200 NO
Predicted change in Energy=3D-1.225354D-02
GradGradGrad= GradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

= Input orientation:
Center = Atomic Atomic Coordinates (Angstroms)
Number N= umber Type X Y Z
1 2= 6 0 2.658115 8.232499 5.000000
2 8= 0 4.576263 8.089032 5.000000
3 6 = 0 5.284531 9.106861 5.000000
4 8 = 0 6.065132 9.963375 5.000000
D= istance matrix (angstroms):
1 2 3 = 4
1 Fe 0.000000
2 O 1.923506 0.000000
= 3 C 2.768135 1.240008 0.000000
4 O 3.821478 2.39= 3719 1.158859 0.000000
Stoichiometry CFeO2
Framework group = CS[SG(CFeO2)]
Deg. of freedom 5
Full point group = CS NOp 2
Largest Abelian subgroup CS NOp 2
= Largest concise Abelian subgroup C1 NOp 1
= Standard orientation:
Center Atomic = Atomic Coordinates (Angstroms)
Number Number Typ= e X Y Z
1 26 0 = -1.022093 -0.757193 -0.000000
2 8 0 = 0.000000 0.872286 0.000000
3 6 0 = 1.239558 0.838897 0.000000
4 8 0 = 2.392133 0.959419 0.000000
Rotational constants (GHZ): = 40.3135828 2.2660782 2.1454781
Standard basis: 6-= 31G (6D, 7F)
There are 42 symmetry adapted cartesian basis functions= of A' symmetry.
There are 14 symmetry adapted cartesian basis func= tions of A" symmetry.
There are 42 symmetry adapted basis func= tions of A' symmetry.
There are 14 symmetry adapted basis functions= of A" symmetry.
56 basis functions, 160 primitive gaussians= , 56 cartesian basis functions
24 alpha electrons 24 beta e= lectrons
nuclear repulsion energy 172.3989508234 Hartrees.<= br> NAtoms=3D 4 NActive=3D 4 NUniq=3D 4 SFac=3D 1.00D+00 NAtFMM=3D= 60 NAOKFM=3DF Big=3DF
Integral buffers will be 131072 words long.=
Raffenetti 2 integral format.
Two-electron integral symmetry is tu= rned on.
One-electron integrals computed using PRISM.
NBasis=3D = 56 RedAO=3D T EigKep=3D 1.76D-03 NBF=3D 42 14
NBsUse=3D 56 1= .00D-06 EigRej=3D -1.00D+00 NBFU=3D 42 14
Initial guess from the = checkpoint file: "step_000_DFT.chk"
B after Tr=3D 0.0000= 00 0.000000 -0.000000
Rot=3D 0.999288 -0.000000 -0.= 000000 -0.037733 Ang=3D -4.32 deg.
Initial guess orbital symmetries:=
Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A')=
(A") (A') (A') (A') (A') (A') (A") (A') (A')= (A")
(A') (A') (A") (A')
Virtual = (A") (A') (A") (A') (A') (A") (A') (A') (A') (A')
= (A") (A') (A') (A") (A') (A') (A') (A") (A') (A')=
(A') (A") (A') (A') (A') (A") (A') (A")= (A') (A')
(A') (A')
ExpMin=3D 4.11D-02 ExpMax=3D 6= .11D+04 ExpMxC=3D 9.18D+03 IAcc=3D3 IRadAn=3D 5 AccDes=3D 0.00D+00<= br> Harris functional with IExCor=3D 402 and IRadAn=3D 5 diagonalize= d for initial guess.
HarFok: IExCor=3D 402 AccDes=3D 0.00D+00 IRadAn= =3D 5 IDoV=3D 1 UseB2=3DF ITyADJ=3D14
ICtDFT=3D 3500011 ScaDFX= =3D 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=3DF IPFlag=3D = 0 FMFlag=3D 100000 FMFlg1=3D 0
NFxFlg= =3D 0 DoJE=3DT BraDBF=3DF KetDBF=3DT FulRan=3DT
wScrn= =3D 0.000000 ICntrl=3D 500 IOpCl=3D 0 I1Cent=3D 200000004 NGrid= =3D 0
NMat0=3D 1 NMatS0=3D 1 NMatT0=3D 0 N= MatD0=3D 1 NMtDS0=3D 0 NMtDT0=3D 0
Petite list used in FoFCou.=
Keep R1 ints in memory in symmetry-blocked form, NReq=3D2159799.
R= equested convergence on RMS density matrix=3D1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=3D1.00D-06.
Requested con= vergence on energy=3D1.00D-06.
No special actions if energy= rises.
SCF Done: E(RB3LYP) =3D -1451.86533909 A.U. after 18 cy= cles
NFock=3D 18 Conv=3D0.23D-08 -V/T=3D 2.0018
Cal= ling FoFJK, ICntrl=3D 2127 FMM=3DF ISym2X=3D1 I1Cent=3D 0 IOpClX=3D 0 = NMat=3D1 NMatS=3D1 NMatT=3D0.
***** Axes restored to original set *****=
Center Atomic Forces (Hartrees/Bohr)
Number = Number X Y Z
1 26= -0.021775369 0.002114287 0.000000000
2 8 = 0.036955110 0.014737157 0.000000000
3 6 = -0.039695691 -0.040384091 0.000000000
4 8 = 0.024515951 0.023532647 -0.000000000
Cartesian Forces: Max = 0.040384091 RMS 0.023135364

GradGradGradGradGradGradGradGradGra= dGradGradGradGradGradGradGradGradGrad
Berny optimization.
Using GED= IIS/GDIIS optimizer.
FormGI is forming the generalized inverse of G fro= m B-inverse, IUseBI=3D4.
Internal Forces: Max 0.033908365 RMS = 0.018980685
Search for a local minimum.
Step number 2 out of a m= aximum of 20
All quantities printed in internal units (Hartrees-Bohrs= -Radians)
Mixed Optimization -- RFO/linear search
Update second der= ivatives using D2CorX and points 1 2
DE=3D -1.54D-02 DEPred=3D-1.= 23D-02 R=3D 1.26D+00
TightC=3DF SS=3D 1.41D+00 RLast=3D 2.52D-01 DXNe= w=3D 5.0454D-01 7.5596D-01
Trust test=3D 1.26D+00 RLast=3D 2.52D-01 DXM= axT set to 5.05D-01
The second derivative matrix:
= R1 R2 R3 A1 A2
R1 = 0.18668
R2 0.04604 0.76870
R3 = -0.08608 0.12904 1.50110
A1 0.00316 0.= 00128 0.01538 0.25104
A2 -0.00501 0.00702 -0.= 00784 0.00077 0.05407
A3 0.00000 -0.00000 0.= 00000 0.00000 0.00000
A3
A3 = 0.05456
ITU=3D 1 0
Use linear search instead of GDIIS.<= br> Eigenvalues --- 0.05364 0.05456 0.17607 0.25109 0.75296<= br> Eigenvalues --- 1.52783
RFO step: Lambda=3D-2.40357398D-03 = EMin=3D 5.36398691D-02
Quartic linear search produced a step of 0.7443= 3.
Iteration 1 RMS(Cart)=3D 0.12055350 RMS(Int)=3D 0.00970928
It= eration 2 RMS(Cart)=3D 0.01171440 RMS(Int)=3D 0.00007671
Iteration = 3 RMS(Cart)=3D 0.00008339 RMS(Int)=3D 0.00000000
Iteration 4 RMS(Car= t)=3D 0.00000000 RMS(Int)=3D 0.00000000
ClnCor: largest displacement= from symmetrization is 4.24D-12 for atom 3.
Variable Old X = -DE/DX Delta X Delta X Delta X New X
= (Linear) (Quad) (Total)
R1 3.63490 0.02187 = 0.14559 0.04745 0.19304 3.82794
R2 2.34327 -0.02250 = -0.02587 -0.02538 -0.05125 2.29202
R3 2.18993 0.03391 = 0.06113 -0.01980 0.04133 2.23126
A1 2.10408 -0.00172 = 0.00721 -0.01780 -0.01059 2.09349
A2 3.27271 0.00495 = 0.09759 0.11009 0.20769 3.48040
A3 3.14159 0.00000 = 0.00000 0.00000 0.00000 3.14159
Item Value= Threshold Converged?
Maximum Force 0.033908 0.0004= 50 NO
RMS Force 0.018981 0.000300 NO
M= aximum Displacement 0.157853 0.001800 NO
RMS Displacem= ent 0.126480 0.001200 NO
Predicted change in Energy=3D-2.6= 44271D-03
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradG= radGradGrad

Input orientation: =
Center Atomic Atomic Coordinates (A= ngstroms)
Number Number Type X Y = Z
1 26 0 2.586226 8.170844 5.00= 0000
2 8 0 4.611490 8.130764 5.000= 000
3 6 0 5.237660 9.169515 5.0000= 00
4 8 0 6.148665 9.920644 5.00000= 0
Distance matrix (angstroms):
= 1 2 3 4
1 Fe 0.000000
2 O = 2.025661 0.000000
3 C 2.833275 1.212885 0.000000
= 4 O 3.968976 2.359359 1.180730 0.000000
Stoichiometry C= FeO2
Framework group CS[SG(CFeO2)]
Deg. of freedom 5
Full = point group CS NOp 2
Largest Abelian subgroup = CS NOp 2
Largest concise Abelian subgroup C1 NOp 1<= br> Standard orientation: <= hr> Center Atomic Atomic Coordinates (Angstroms)
N= umber Number Type X Y Z
= 1 26 0 -0.994550 -0.879340 -0.000000
2= 8 0 -0.000000 0.885361 0.000000
3 = 6 0 1.212831 0.896868 0.000000
4 = 8 0 2.322666 1.299844 0.000000
Rotationa= l constants (GHZ): 47.4271405 2.0987230 2.0097= 869
Standard basis: 6-31G (6D, 7F)
There are 42 symmetry adapted= cartesian basis functions of A' symmetry.
There are 14 symmetry ad= apted cartesian basis functions of A" symmetry.
There are 42 s= ymmetry adapted basis functions of A' symmetry.
There are 14 symmet= ry adapted basis functions of A" symmetry.
56 basis functions,= 160 primitive gaussians, 56 cartesian basis functions
24 alpha= electrons 24 beta electrons
nuclear repulsion energy = 168.0152669884 Hartrees.
NAtoms=3D 4 NActive=3D 4 NUniq=3D 4 = SFac=3D 1.00D+00 NAtFMM=3D 60 NAOKFM=3DF Big=3DF
Integral buffers wil= l be 131072 words long.
Raffenetti 2 integral format.
Two-electr= on integral symmetry is turned on.
One-electron integrals computed usin= g PRISM.
NBasis=3D 56 RedAO=3D T EigKep=3D 1.76D-03 NBF=3D 42 = 14
NBsUse=3D 56 1.00D-06 EigRej=3D -1.00D+00 NBFU=3D 42 14 Initial guess from the checkpoint file: "step_000_DFT.chk" B after Tr=3D 0.000000 -0.000000 -0.000000
Rot=3D = 0.998838 -0.000000 -0.000000 -0.048193 Ang=3D -5.52 deg.
Initial= guess orbital symmetries:
Occupied (A') (A') (A') (A') (A"= ) (A') (A') (A') (A') (A')
(A") (A') (A') (A') (A'= ) (A') (A") (A') (A') (A")
(A') (A') (A"= ) (A')
Virtual (A') (A") (A') (A") (A') (A") (A'= ) (A') (A') (A')
(A") (A') (A') (A") (A') (A'= ) (A') (A") (A') (A')
(A') (A") (A') (A') (A'= ) (A") (A') (A") (A') (A')
(A') (A')
ExpM= in=3D 4.11D-02 ExpMax=3D 6.11D+04 ExpMxC=3D 9.18D+03 IAcc=3D3 IRadAn=3D = 5 AccDes=3D 0.00D+00
Harris functional with IExCor=3D 402 and IRa= dAn=3D 5 diagonalized for initial guess.
HarFok: IExCor=3D 402 = AccDes=3D 0.00D+00 IRadAn=3D 5 IDoV=3D 1 UseB2=3DF ITyADJ=3D14
= ICtDFT=3D 3500011 ScaDFX=3D 1.000000 1.000000 1.000000 1.000000
Fo= FCou: FMM=3DF IPFlag=3D 0 FMFlag=3D 100000 FMFlg1=3D = 0
NFxFlg=3D 0 DoJE=3DT BraDBF=3DF KetDBF=3DT FulRa= n=3DT
wScrn=3D 0.000000 ICntrl=3D 500 IOpCl=3D 0 I1Cent= =3D 200000004 NGrid=3D 0
NMat0=3D 1 NMatS0=3D = 1 NMatT0=3D 0 NMatD0=3D 1 NMtDS0=3D 0 NMtDT0=3D 0
Petite= list used in FoFCou.
Keep R1 ints in memory in symmetry-blocked form, = NReq=3D2159799.
Requested convergence on RMS density matrix=3D1.00D-08 = within 128 cycles.
Requested convergence on MAX density matrix=3D1.00D-= 06.
Requested convergence on energy=3D1.00D-06.
No spec= ial actions if energy rises.
SCF Done: E(RB3LYP) =3D -1451.86779894 = A.U. after 19 cycles
NFock=3D 19 Conv=3D0.32D-08 -= V/T=3D 2.0018
Calling FoFJK, ICntrl=3D 2127 FMM=3DF ISym2X=3D1 I1C= ent=3D 0 IOpClX=3D 0 NMat=3D1 NMatS=3D1 NMatT=3D0.
***** Axes restored = to original set *****
Center Atomic Forces (Hartr= ees/Bohr)
Number Number X Y = Z
1 26 -0.002475531 0.002170910 0.000000000 2 8 -0.009275511 -0.015400826 0.000000000
= 3 6 0.012873515 0.005174131 0.000000000
= 4 8 -0.001122473 0.008055785 -0.000000000
Cartes= ian Forces: Max 0.015400826 RMS 0.007028017

GradGradGradGr= adGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimi= zation.
Using GEDIIS/GDIIS optimizer.
FormGI is forming the general= ized inverse of G from B-inverse, IUseBI=3D4.
Internal Forces: Max = 0.017401591 RMS 0.010265616
Search for a local minimum.
Step = number 3 out of a maximum of 20
All quantities printed in internal = units (Hartrees-Bohrs-Radians)
Mixed Optimization -- RFO/linear search<= br> Update second derivatives using D2CorX and points 1 2 3
DE= =3D -2.46D-03 DEPred=3D-2.64D-03 R=3D 9.30D-01
TightC=3DF SS=3D 1.41D+= 00 RLast=3D 2.91D-01 DXNew=3D 8.4853D-01 8.7386D-01
Trust test=3D 9.30= D-01 RLast=3D 2.91D-01 DXMaxT set to 8.49D-01
The second derivative mat= rix:
R1 R2 R3 A1 A= 2
R1 0.14042
R2 0.04009 0= .84593
R3 -0.15330 0.08559 1.42002
= A1 0.01583 -0.02335 0.04566 0.25643
A2 = 0.00387 -0.03883 0.02611 0.01417 0.08070
A3 = 0.00000 -0.00000 0.00000 0.00000 0.00000
= A3
A3 0.05456
ITU=3D 1 1 0
Use lin= ear search instead of GDIIS.
Eigenvalues --- 0.05456 0.07570 = 0.11658 0.25847 0.84223
Eigenvalues --- 1.45052
RFO ste= p: Lambda=3D-2.28883397D-03 EMin=3D 5.45649275D-02
Quartic linear sear= ch produced a step of -0.27572.
Iteration 1 RMS(Cart)=3D 0.11082651 R= MS(Int)=3D 0.00968836
Iteration 2 RMS(Cart)=3D 0.01008655 RMS(Int)= =3D 0.00002336
Iteration 3 RMS(Cart)=3D 0.00002996 RMS(Int)=3D 0.00= 000000
Iteration 4 RMS(Cart)=3D 0.00000000 RMS(Int)=3D 0.00000000 ClnCor: largest displacement from symmetrization is 3.37D-09 for atom = 3.
Variable Old X -DE/DX Delta X Delta X Delta X N= ew X
(Linear) (Quad) (Total)
= R1 3.82794 0.00252 -0.05323 0.09099 0.03776 3.86570
= R2 2.29202 0.01740 0.01413 -0.00542 0.00871 2.30074
= R3 2.23126 0.00426 -0.01140 0.02206 0.01067 2.24192
= A1 2.09349 -0.00809 0.00292 -0.02802 -0.02510 2.06839
= A2 3.48040 -0.01548 -0.05726 -0.11944 -0.17670 3.30370
= A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159
= Item Value Threshold Converged?
Maximum Force= 0.017402 0.000450 NO
RMS Force 0.01= 0266 0.000300 NO
Maximum Displacement 0.128723 0.00180= 0 NO
RMS Displacement 0.114165 0.001200 NO
Pr= edicted change in Energy=3D-1.691720D-03
GradGradGradGradGradGradGradGr= adGradGradGradGradGradGradGradGradGradGrad

= Input orientation:
Center Atomic At= omic Coordinates (Angstroms)
Number Number Type = X Y Z
1 26 0 = 2.587635 8.230504 5.000000
2 8 0 = 4.627577 8.077882 5.000000
3 6 0 = 5.286906 9.101397 5.000000
4 8 0 = 6.081924 9.981983 5.000000
Distance matrix (an= gstroms):
1 2 3 4
= 1 Fe 0.000000
2 O 2.045643 0.000000
3 C 2.836= 286 1.217497 0.000000
4 O 3.908674 2.395981 1.186375 = 0.000000
Stoichiometry CFeO2
Framework group CS[SG(CFeO2)]
= Deg. of freedom 5
Full point group CS NOp 2<= br> Largest Abelian subgroup CS NOp 2
Largest concise Ab= elian subgroup C1 NOp 1
Standard orienta= tion:
Center Atomic Atomic = Coordinates (Angstroms)
Number Number Type X = Y Z
--_000_SEYPR06MB5514F2DD389718DA493D9B70C1AD9SEYPR06MB5514apcp_-- From owner-chemistry@ccl.net Wed Mar 1 06:56:00 2023 From: "David Shobe shobedavid]^[gmail.com" To: CCL Subject: CCL:G: Help with DFT convergence failure for Fe2CO2 in Gaussian software Message-Id: <-54858-230301065424-26162-KrRDYl1VhH9mVxORfgCCLg*server.ccl.net> X-Original-From: David Shobe Content-Type: multipart/alternative; boundary="000000000000b2a95205f5d55eef" Date: Wed, 1 Mar 2023 05:53:57 -0600 MIME-Version: 1.0 Sent to CCL by: David Shobe [shobedavid:-:gmail.com] --000000000000b2a95205f5d55eef Content-Type: text/plain; charset="UTF-8" Dear Cheng Fei Phung -- Isolated Fe^2+ is a quintuplet in the ground state. The coordination with the CO2 molecule may change it to a different electronic state, most likely to a triplet. The charge and multiplicity are specified by replacing the "0 1" line with "2 5" for the quintuplet or "2 3" for the triplet. The "++" in GaussView is a red herring (if you don't know this expression, it refers to a misleading clue), as the "++" refers to diffuse functions in the basis set. Good luck! Calculations of transition metals are difficult. I should warn you that even if you get a converged SCF, it might not be the correct electronic state. Take a look at the manual under the keywords SCF and stable for more information. --David Shobe On Wed, Mar 1, 2023, 2:48 AM Cheng Fei Phung feiphung-*-hotmail.com < owner-chemistry]~[ccl.net> wrote: > Hi, > > Since my messages contains the image and is longer than a limit for > general distribution, > the CCL Admin saved my message under > http://www.ccl.net/large_message/2023-02-28-LongMessage.html > so please open this link to read my response > > Note that I am doing Fe2+ ferrous ion for MOF carbon capture > > > What do you guys think about the following xtb result from > https://calcus.cloud/ ? > > *step_000_DFT.Geometrical_Optimisation_Result.xyz > : * > > 4 > energy: -13.349149310898 gnorm: 0.000502022323 xtb: 6.5.1 (579679a) > Fe 2.73292919494009 7.81690557181600 > 4.99999999991402 > O 4.23822629938734 8.62616541285678 > 4.99975863372067 > C 5.28034049639189 9.19333556707946 > 5.00051367720569 > O 6.33254571928068 9.75535975824776 > 4.99972768915961 > > > Regards, > Cheng Fei Phung > > ------------------------------ > *From:* owner-chemistry+feiphung==hotmail.com_-_ccl.net > on behalf of Igors > Mihailovs igorsm_._cfi.lu.lv > *Sent:* Sunday, February 26, 2023 10:50 PM > *To:* Phung, Cheng Fei > *Subject:* CCL:G: Re: CCL:G: Help with DFT convergence failure for Fe2CO2 > in Gaussian software > > Dear Cheng Fei Phung, > > I would use something like MN15 or MN15L, and a basis set with at least > some polarization (6-311G(d,p), for example). Especially if I had to > perform something like a token computation in order to get someone's > experimental results published. > > Trying to converge B3LYP for a transition metal compound may take more > time than the options described above... > > Best regards, > Igors Mihailovs > former employee at ISSP UL > > > On February 25, 2023 12:09:02 PM GMT+02:00, "Cheng Fei Phung feiphung=-= > hotmail.com" wrote: > > > Sent to CCL by: "Cheng Fei Phung" [feiphung{:}hotmail.com] > With the following gaussian16 gjf input file, I got some convergence failure issues. > > Could anyone help ? > > > Gaussian input gjf file > > ``` > %chk=step_000_DFT.chk > # opt b3lyp/6-31g geom=connectivity > > Fe2CO2_OPT > > 0 1 > Fe 2.74538330 8.28679554 5.00000000 > O 4.55208397 8.06717607 5.00000000 > C 5.30819317 9.07309328 5.00000000 > O 5.97838127 9.96470142 5.00000000 > > 1 2 1.0 > 2 3 2.0 > 3 4 3.0 > 4 > ``` > > > Gaussian log file > > ``` > %chk=step_000_DFT.chk > ------------------------------ > # opt b3lyp/6-31g geom=connectivity > ------------------------------ > 1/18=20,19=15,26=3,38=1,57=2/1,3; > 2/9=110,12=2,17=6,18=5,40=1/2; > 3/5=1,6=6,11=2,25=1,30=1,71=1,74=-5/1,2,3; > 4//1; > 5/5=2,38=5/2; > 6/7=2,8=2,9=2,10=2,28=1/1; > 7//1,2,3,16; > 1/18=20,19=15,26=3/3(2); > 2/9=110/2; > 99//99; > 2/9=110/2; > 3/5=1,6=6,11=2,25=1,30=1,71=1,74=-5/1,2,3; > 4/5=5,16=3,69=1/1; > 5/5=2,38=5/2; > 7//1,2,3,16; > 1/18=20,19=15,26=3/3(-5); > 2/9=110/2; > 6/7=2,8=2,9=2,10=2,19=2,28=1/1; > 99/9=1/99; > ------------------------------ > Fe2CO2_OPT > ------------------------------ > Symbolic Z-matrix: > Charge = 0 Multiplicity = 1 > Fe 2.74538 8.2868 5. > O 4.55208 8.06718 5. > C 5.30819 9.07309 5. > O 5.97838 9.9647 5. > > > GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad > Berny optimization. > Initialization pass. > ------------------------------ > ! Initial Parameters ! > ! (Angstroms and Degrees) ! > -------------------------- -------------------------- > ! Name Definition Value Derivative Info. ! > ------------------------------ > ! R1 R(1,2) 1.82 estimate D2E/DX2 ! > ! R2 R(2,3) 1.2584 estimate D2E/DX2 ! > ! R3 R(3,4) 1.1154 estimate D2E/DX2 ! > ! A1 A(1,2,3) 120.0 estimate D2E/DX2 ! > ! A2 L(2,3,4,1,-1) 180.0 estimate D2E/DX2 ! > ! A3 L(2,3,4,1,-2) 180.0 estimate D2E/DX2 ! > ------------------------------ > Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 EigMax=2.50D+02 EigMin=1.00D-04 > Number of steps in this run= 20 maximum allowed number of steps= 100. > GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad > > Input orientation: > ------------------------------ > Center Atomic Atomic Coordinates (Angstroms) > Number Number Type X Y Z > ------------------------------ > 1 26 0 2.745383 8.286796 5.000000 > 2 8 0 4.552084 8.067176 5.000000 > 3 6 0 5.308193 9.073093 5.000000 > 4 8 0 5.978381 9.964701 5.000000 > ------------------------------ > Distance matrix (angstroms): > 1 2 3 4 > 1 Fe 0.000000 > 2 O 1.820000 0.000000 > 3 C 2.680720 1.258400 0.000000 > 4 O 3.642478 2.373800 1.115400 0.000000 > Stoichiometry CFeO2 > Framework group CS[SG(CFeO2)] > Deg. of freedom 5 > Full point group CS NOp 2 > Largest Abelian subgroup CS NOp 2 > Largest concise Abelian subgroup C1 NOp 1 > Standard orientation: > ------------------------------ > Center Atomic Atomic Coordinates (Angstroms) > Number Number Type X Y Z > ------------------------------ > 1 26 0 -1.018287 -0.652610 -0.000000 > 2 8 0 -0.000000 0.855864 0.000000 > 3 6 0 1.255302 0.767619 0.000000 > 4 8 0 2.367956 0.689403 0.000000 > ------------------------------ > Rotational constants (GHZ): 37.1744583 2.4897380 2.3334561 > Standard basis: 6-31G (6D, 7F) > There are 42 symmetry adapted cartesian basis functions of A' symmetry. > There are 14 symmetry adapted cartesian basis functions of A" symmetry. > There are 42 symmetry adapted basis functions of A' symmetry. > There are 14 symmetry adapted basis functions of A" symmetry. > 56 basis functions, 160 primitive gaussians, 56 cartesian basis functions > 24 alpha electrons 24 beta electrons > nuclear repulsion energy 178.7145642873 Hartrees. > NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F > Integral buffers will be 131072 words long. > Raffenetti 2 integral format. > Two-electron integral symmetry is turned on. > One-electron integrals computed using PRISM. > NBasis= 56 RedAO= T EigKep= 1.76D-03 NBF= 42 14 > NBsUse= 56 1.00D-06 EigRej= -1.00D+00 NBFU= 42 14 > ExpMin= 4.11D-02 ExpMax= 6.11D+04 ExpMxC= 9.18D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 > Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. > HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 > ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 > FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 > NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T > wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 > NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 > Petite list used in FoFCou. > Initial guess orbital symmetries: > Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') > (A') (A") (A') (A') (A') (A') (A') (A") (A') (A") > (A') (A') (A") (A') > Virtual (A") (A') (A') (A") (A') (A") (A') (A') (A') (A') > (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') > (A') (A") (A') (A') (A') (A") (A") (A') (A') (A') > (A') (A') > The electronic state of the initial guess is 1-A'. > Keep R1 ints in memory in symmetry-blocked form, NReq=2159799. > Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. > Requested convergence on MAX density matrix=1.00D-06. > Requested convergence on energy=1.00D-06. > No special actions if energy rises. > EnCoef did 3 forward-backward iterations > EnCoef did 100 forward-backward iterations > EnCoef did 2 forward-backward iterations > EnCoef did 2 forward-backward iterations > SCF Done: E(RB3LYP) = -1451.84990065 A.U. after 22 cycles > NFock= 22 Conv=0.66D-08 -V/T= 2.0016 > > ********************************************************************** > > Population analysis using the SCF Density. > > ********************************************************************** > > Orbital symmetries: > Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') > (A") (A') (A') (A') (A') (A') (A") (A') (A') (A") > (A') (A') (A") (A') > Virtual (A") (A') (A") (A') (A') (A") (A') (A') (A') (A') > (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') > (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') > (A') (A') > The electronic state is 1-A'. > Alpha occ. eigenvalues -- -256.04016 -29.99951 -25.87326 -25.85859 -25.85805 > Alpha occ. eigenvalues -- -19.31120 -19.28742 -10.45249 -3.41064 -2.20510 > Alpha occ. eigenvalues -- -2.17421 -2.16694 -1.26882 -1.17261 -0.64217 > Alpha occ. eigenvalues -- -0.58881 -0.57965 -0.57594 -0.44473 -0.43175 > Alpha occ. eigenvalues -- -0.22416 -0.22137 -0.20382 -0.15336 > Alpha virt. eigenvalues -- -0.07558 -0.07420 -0.03518 -0.03067 -0.02764 > Alpha virt. eigenvalues -- -0.00807 0.00082 0.10567 0.12952 0.29804 > Alpha virt. eigenvalues -- 0.31948 0.36712 0.41870 0.45104 0.54770 > Alpha virt. eigenvalues -- 0.63606 0.74556 0.85137 0.88355 0.92857 > Alpha virt. eigenvalues -- 0.96917 1.00808 1.01595 1.25495 1.50958 > Alpha virt. eigenvalues -- 1.51252 1.55992 1.59723 1.70732 1.86833 > Alpha virt. eigenvalues -- 2.01356 20.37339 > Condensed to atoms (all electrons): > 1 2 3 4 > 1 Fe 26.065938 -0.058002 0.083106 -0.030239 > 2 O -0.058002 8.304619 0.168196 0.010116 > 3 C 0.083106 0.168196 4.724609 0.417125 > 4 O -0.030239 0.010116 0.417125 7.724230 > Mulliken charges: > 1 > 1 Fe -0.060803 > 2 O -0.424929 > 3 C 0.606964 > 4 O -0.121232 > Sum of Mulliken charges = -0.00000 > Mulliken charges with hydrogens summed into heavy atoms: > 1 > 1 Fe -0.060803 > 2 O -0.424929 > 3 C 0.606964 > 4 O -0.121232 > Electronic spatial extent (au): = 453.0609 > Charge= -0.0000 electrons > Dipole moment (field-independent basis, Debye): > X= 1.6708 Y= 1.8514 Z= -0.0000 Tot= 2.4938 > Quadrupole moment (field-independent basis, Debye-Ang): > XX= -35.0872 YY= -34.7815 ZZ= -32.5686 > XY= 0.8912 XZ= 0.0000 YZ= 0.0000 > Traceless Quadrupole moment (field-independent basis, Debye-Ang): > XX= -0.9415 YY= -0.6357 ZZ= 1.5772 > XY= 0.8912 XZ= 0.0000 YZ= 0.0000 > Octapole moment (field-independent basis, Debye-Ang**2): > XXX= -8.4875 YYY= 8.6001 ZZZ= -0.0000 XYY= 3.5470 > XXY= 1.7153 XXZ= 0.0000 XZZ= 0.7336 YZZ= 1.9407 > YYZ= -0.0000 XYZ= -0.0000 > Hexadecapole moment (field-independent basis, Debye-Ang**3): > XXXX= -415.5041 YYYY= -171.1039 ZZZZ= -55.1637 XXXY= -84.4690 > XXXZ= 0.0000 YYYX= -75.7822 YYYZ= 0.0000 ZZZX= 0.0000 > ZZZY= 0.0000 XXYY= -90.7121 XXZZ= -70.9019 YYZZ= -36.9432 > XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= -24.7602 > N-N= 1.787145642873D+02 E-N=-3.807626875025D+03 KE= 1.449497603530D+03 > Symmetry A' KE= 1.287179877057D+03 > Symmetry A" KE= 1.623177264732D+02 > Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. > ***** Axes restored to original set ***** > ------------------------------ > Center Atomic Forces (Hartrees/Bohr) > Number Number X Y Z > ------------------------------ > 1 26 -0.048820174 0.005157682 0.000000000 > 2 8 0.068584660 0.015861998 0.000000000 > 3 6 -0.104728901 -0.126023309 0.000000000 > 4 8 0.084964415 0.105003629 -0.000000000 > ------------------------------ > Cartesian Forces: Max 0.126023309 RMS 0.066118707 > > GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad > Berny optimization. > FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. > Internal Forces: Max 0.134986320 RMS 0.059949734 > Search for a local minimum. > Step number 1 out of a maximum of 20 > All quantities printed in internal units (Hartrees-Bohrs-Radians) > Mixed Optimization -- RFO/linear search > Second derivative matrix not updated -- first step. > The second derivative matrix: > R1 R2 R3 A1 A2 > R1 0.22791 > R2 0.00000 0.80209 > R3 0.00000 0.00000 1.62060 > A1 0.00000 0.00000 0.00000 0.25000 > A2 0.00000 0.00000 0.00000 0.00000 0.05456 > A3 0.00000 0.00000 0.00000 0.00000 0.00000 > A3 > A3 0.05456 > ITU= 0 > Eigenvalues --- 0.05456 0.05456 0.22791 0.25000 0.80209 > Eigenvalues --- 1.62060 > RFO step: Lambda=-2.30438557D-02 EMin= 5.45649275D-02 > Linear search not attempted -- first point. > Iteration 1 RMS(Cart)= 0.10911805 RMS(Int)= 0.00403264 > Iteration 2 RMS(Cart)= 0.00524126 RMS(Int)= 0.00001569 > Iteration 3 RMS(Cart)= 0.00001737 RMS(Int)= 0.00000000 > Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 > ClnCor: largest displacement from symmetrization is 2.67D-10 for atom 3. > Variable Old X -DE/DX Delta X Delta X Delta X New X > (Linear) (Quad) (Total) > R1 3.43930 0.04909 0.00000 0.19560 0.19560 3.63490 > R2 2.37803 -0.02868 0.00000 -0.03476 -0.03476 2.34327 > R3 2.10780 0.13499 0.00000 0.08213 0.08213 2.18993 > A1 2.09440 0.00265 0.00000 0.00969 0.00969 2.10408 > A2 3.14159 0.01018 0.00000 0.13112 0.13112 3.27271 > A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 > Item Value Threshold Converged? > Maximum Force 0.134986 0.000450 NO > RMS Force 0.059950 0.000300 NO > Maximum Displacement 0.164913 0.001800 NO > RMS Displacement 0.111408 0.001200 NO > Predicted change in Energy=-1.225354D-02 > GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad > > Input orientation: > ------------------------------ > Center Atomic Atomic Coordinates (Angstroms) > Number Number Type X Y Z > ------------------------------ > 1 26 0 2.658115 8.232499 5.000000 > 2 8 0 4.576263 8.089032 5.000000 > 3 6 0 5.284531 9.106861 5.000000 > 4 8 0 6.065132 9.963375 5.000000 > ------------------------------ > Distance matrix (angstroms): > 1 2 3 4 > 1 Fe 0.000000 > 2 O 1.923506 0.000000 > 3 C 2.768135 1.240008 0.000000 > 4 O 3.821478 2.393719 1.158859 0.000000 > Stoichiometry CFeO2 > Framework group CS[SG(CFeO2)] > Deg. of freedom 5 > Full point group CS NOp 2 > Largest Abelian subgroup CS NOp 2 > Largest concise Abelian subgroup C1 NOp 1 > Standard orientation: > ------------------------------ > Center Atomic Atomic Coordinates (Angstroms) > Number Number Type X Y Z > ------------------------------ > 1 26 0 -1.022093 -0.757193 -0.000000 > 2 8 0 0.000000 0.872286 0.000000 > 3 6 0 1.239558 0.838897 0.000000 > 4 8 0 2.392133 0.959419 0.000000 > ------------------------------ > Rotational constants (GHZ): 40.3135828 2.2660782 2.1454781 > Standard basis: 6-31G (6D, 7F) > There are 42 symmetry adapted cartesian basis functions of A' symmetry. > There are 14 symmetry adapted cartesian basis functions of A" symmetry. > There are 42 symmetry adapted basis functions of A' symmetry. > There are 14 symmetry adapted basis functions of A" symmetry. > 56 basis functions, 160 primitive gaussians, 56 cartesian basis functions > 24 alpha electrons 24 beta electrons > nuclear repulsion energy 172.3989508234 Hartrees. > NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F > Integral buffers will be 131072 words long. > Raffenetti 2 integral format. > Two-electron integral symmetry is turned on. > One-electron integrals computed using PRISM. > NBasis= 56 RedAO= T EigKep= 1.76D-03 NBF= 42 14 > NBsUse= 56 1.00D-06 EigRej= -1.00D+00 NBFU= 42 14 > Initial guess from the checkpoint file: "step_000_DFT.chk" > B after Tr= 0.000000 0.000000 -0.000000 > Rot= 0.999288 -0.000000 -0.000000 -0.037733 Ang= -4.32 deg. > Initial guess orbital symmetries: > Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') > (A") (A') (A') (A') (A') (A') (A") (A') (A') (A") > (A') (A') (A") (A') > Virtual (A") (A') (A") (A') (A') (A") (A') (A') (A') (A') > (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') > (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') > (A') (A') > ExpMin= 4.11D-02 ExpMax= 6.11D+04 ExpMxC= 9.18D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 > Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. > HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 > ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 > FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 > NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T > wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 > NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 > Petite list used in FoFCou. > Keep R1 ints in memory in symmetry-blocked form, NReq=2159799. > Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. > Requested convergence on MAX density matrix=1.00D-06. > Requested convergence on energy=1.00D-06. > No special actions if energy rises. > SCF Done: E(RB3LYP) = -1451.86533909 A.U. after 18 cycles > NFock= 18 Conv=0.23D-08 -V/T= 2.0018 > Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. > ***** Axes restored to original set ***** > ------------------------------ > Center Atomic Forces (Hartrees/Bohr) > Number Number X Y Z > ------------------------------ > 1 26 -0.021775369 0.002114287 0.000000000 > 2 8 0.036955110 0.014737157 0.000000000 > 3 6 -0.039695691 -0.040384091 0.000000000 > 4 8 0.024515951 0.023532647 -0.000000000 > ------------------------------ > Cartesian Forces: Max 0.040384091 RMS 0.023135364 > > GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad > Berny optimization. > Using GEDIIS/GDIIS optimizer. > FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. > Internal Forces: Max 0.033908365 RMS 0.018980685 > Search for a local minimum. > Step number 2 out of a maximum of 20 > All quantities printed in internal units (Hartrees-Bohrs-Radians) > Mixed Optimization -- RFO/linear search > Update second derivatives using D2CorX and points 1 2 > DE= -1.54D-02 DEPred=-1.23D-02 R= 1.26D+00 > TightC=F SS= 1.41D+00 RLast= 2.52D-01 DXNew= 5.0454D-01 7.5596D-01 > Trust test= 1.26D+00 RLast= 2.52D-01 DXMaxT set to 5.05D-01 > The second derivative matrix: > R1 R2 R3 A1 A2 > R1 0.18668 > R2 0.04604 0.76870 > R3 -0.08608 0.12904 1.50110 > A1 0.00316 0.00128 0.01538 0.25104 > A2 -0.00501 0.00702 -0.00784 0.00077 0.05407 > A3 0.00000 -0.00000 0.00000 0.00000 0.00000 > A3 > A3 0.05456 > ITU= 1 0 > Use linear search instead of GDIIS. > Eigenvalues --- 0.05364 0.05456 0.17607 0.25109 0.75296 > Eigenvalues --- 1.52783 > RFO step: Lambda=-2.40357398D-03 EMin= 5.36398691D-02 > Quartic linear search produced a step of 0.74433. > Iteration 1 RMS(Cart)= 0.12055350 RMS(Int)= 0.00970928 > Iteration 2 RMS(Cart)= 0.01171440 RMS(Int)= 0.00007671 > Iteration 3 RMS(Cart)= 0.00008339 RMS(Int)= 0.00000000 > Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 > ClnCor: largest displacement from symmetrization is 4.24D-12 for atom 3. > Variable Old X -DE/DX Delta X Delta X Delta X New X > (Linear) (Quad) (Total) > R1 3.63490 0.02187 0.14559 0.04745 0.19304 3.82794 > R2 2.34327 -0.02250 -0.02587 -0.02538 -0.05125 2.29202 > R3 2.18993 0.03391 0.06113 -0.01980 0.04133 2.23126 > A1 2.10408 -0.00172 0.00721 -0.01780 -0.01059 2.09349 > A2 3.27271 0.00495 0.09759 0.11009 0.20769 3.48040 > A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 > Item Value Threshold Converged? > Maximum Force 0.033908 0.000450 NO > RMS Force 0.018981 0.000300 NO > Maximum Displacement 0.157853 0.001800 NO > RMS Displacement 0.126480 0.001200 NO > Predicted change in Energy=-2.644271D-03 > GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad > > Input orientation: > ------------------------------ > Center Atomic Atomic Coordinates (Angstroms) > Number Number Type X Y Z > ------------------------------ > 1 26 0 2.586226 8.170844 5.000000 > 2 8 0 4.611490 8.130764 5.000000 > 3 6 0 5.237660 9.169515 5.000000 > 4 8 0 6.148665 9.920644 5.000000 > ------------------------------ > Distance matrix (angstroms): > 1 2 3 4 > 1 Fe 0.000000 > 2 O 2.025661 0.000000 > 3 C 2.833275 1.212885 0.000000 > 4 O 3.968976 2.359359 1.180730 0.000000 > Stoichiometry CFeO2 > Framework group CS[SG(CFeO2)] > Deg. of freedom 5 > Full point group CS NOp 2 > Largest Abelian subgroup CS NOp 2 > Largest concise Abelian subgroup C1 NOp 1 > Standard orientation: > ------------------------------ > Center Atomic Atomic Coordinates (Angstroms) > Number Number Type X Y Z > ------------------------------ > 1 26 0 -0.994550 -0.879340 -0.000000 > 2 8 0 -0.000000 0.885361 0.000000 > 3 6 0 1.212831 0.896868 0.000000 > 4 8 0 2.322666 1.299844 0.000000 > ------------------------------ > Rotational constants (GHZ): 47.4271405 2.0987230 2.0097869 > Standard basis: 6-31G (6D, 7F) > There are 42 symmetry adapted cartesian basis functions of A' symmetry. > There are 14 symmetry adapted cartesian basis functions of A" symmetry. > There are 42 symmetry adapted basis functions of A' symmetry. > There are 14 symmetry adapted basis functions of A" symmetry. > 56 basis functions, 160 primitive gaussians, 56 cartesian basis functions > 24 alpha electrons 24 beta electrons > nuclear repulsion energy 168.0152669884 Hartrees. > NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F > Integral buffers will be 131072 words long. > Raffenetti 2 integral format. > Two-electron integral symmetry is turned on. > One-electron integrals computed using PRISM. > NBasis= 56 RedAO= T EigKep= 1.76D-03 NBF= 42 14 > NBsUse= 56 1.00D-06 EigRej= -1.00D+00 NBFU= 42 14 > Initial guess from the checkpoint file: "step_000_DFT.chk" > B after Tr= 0.000000 -0.000000 -0.000000 > Rot= 0.998838 -0.000000 -0.000000 -0.048193 Ang= -5.52 deg. > Initial guess orbital symmetries: > Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') > (A") (A') (A') (A') (A') (A') (A") (A') (A') (A") > (A') (A') (A") (A') > Virtual (A') (A") (A') (A") (A') (A") (A') (A') (A') (A') > (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') > (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') > (A') (A') > ExpMin= 4.11D-02 ExpMax= 6.11D+04 ExpMxC= 9.18D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 > Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. > HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 > ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 > FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 > NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T > wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 > NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 > Petite list used in FoFCou. > Keep R1 ints in memory in symmetry-blocked form, NReq=2159799. > Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. > Requested convergence on MAX density matrix=1.00D-06. > Requested convergence on energy=1.00D-06. > No special actions if energy rises. > SCF Done: E(RB3LYP) = -1451.86779894 A.U. after 19 cycles > NFock= 19 Conv=0.32D-08 -V/T= 2.0018 > Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. > ***** Axes restored to original set ***** > ------------------------------ > Center Atomic Forces (Hartrees/Bohr) > Number Number X Y Z > ------------------------------ > 1 26 -0.002475531 0.002170910 0.000000000 > 2 8 -0.009275511 -0.015400826 0.000000000 > 3 6 0.012873515 0.005174131 0.000000000 > 4 8 -0.001122473 0.008055785 -0.000000000 > ------------------------------ > Cartesian Forces: Max 0.015400826 RMS 0.007028017 > > GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad > Berny optimization. > Using GEDIIS/GDIIS optimizer. > FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. > Internal Forces: Max 0.017401591 RMS 0.010265616 > Search for a local minimum. > Step number 3 out of a maximum of 20 > All quantities printed in internal units (Hartrees-Bohrs-Radians) > Mixed Optimization -- RFO/linear search > Update second derivatives using D2CorX and points 1 2 3 > DE= -2.46D-03 DEPred=-2.64D-03 R= 9.30D-01 > TightC=F SS= 1.41D+00 RLast= 2.91D-01 DXNew= 8.4853D-01 8.7386D-01 > Trust test= 9.30D-01 RLast= 2.91D-01 DXMaxT set to 8.49D-01 > The second derivative matrix: > R1 R2 R3 A1 A2 > R1 0.14042 > R2 0.04009 0.84593 > R3 -0.15330 0.08559 1.42002 > A1 0.01583 -0.02335 0.04566 0.25643 > A2 0.00387 -0.03883 0.02611 0.01417 0.08070 > A3 0.00000 -0.00000 0.00000 0.00000 0.00000 > A3 > A3 0.05456 > ITU= 1 1 0 > Use linear search instead of GDIIS. > Eigenvalues --- 0.05456 0.07570 0.11658 0.25847 0.84223 > Eigenvalues --- 1.45052 > RFO step: Lambda=-2.28883397D-03 EMin= 5.45649275D-02 > Quartic linear search produced a step of -0.27572. > Iteration 1 RMS(Cart)= 0.11082651 RMS(Int)= 0.00968836 > Iteration 2 RMS(Cart)= 0.01008655 RMS(Int)= 0.00002336 > Iteration 3 RMS(Cart)= 0.00002996 RMS(Int)= 0.00000000 > Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 > ClnCor: largest displacement from symmetrization is 3.37D-09 for atom 3. > Variable Old X -DE/DX Delta X Delta X Delta X New X > (Linear) (Quad) (Total) > R1 3.82794 0.00252 -0.05323 0.09099 0.03776 3.86570 > R2 2.29202 0.01740 0.01413 -0.00542 0.00871 2.30074 > R3 2.23126 0.00426 -0.01140 0.02206 0.01067 2.24192 > A1 2.09349 -0.00809 0.00292 -0.02802 -0.02510 2.06839 > A2 3.48040 -0.01548 -0.05726 -0.11944 -0.17670 3.30370 > A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 > Item Value Threshold Converged? > Maximum Force 0.017402 0.000450 NO > RMS Force 0.010266 0.000300 NO > Maximum Displacement 0.128723 0.001800 NO > RMS Displacement 0.114165 0.001200 NO > Predicted change in Energy=-1.691720D-03 > GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad > > Input orientation: > ------------------------------ > Center Atomic Atomic Coordinates (Angstroms) > Number Number Type X Y Z > ------------------------------ > 1 26 0 2.587635 8.230504 5.000000 > 2 8 0 4.627577 8.077882 5.000000 > 3 6 0 5.286906 9.101397 5.000000 > 4 8 0 6.081924 9.981983 5.000000 > ------------------------------ > Distance matrix (angstroms): > 1 2 3 4 > 1 Fe 0.000000 > 2 O 2.045643 0.000000 > 3 C 2.836286 1.217497 0.000000 > 4 O 3.908674 2.395981 1.186375 0.000000 > Stoichiometry CFeO2 > Framework group CS[SG(CFeO2)] > Deg. of freedom 5 > Full point group CS NOp 2 > Largest Abelian subgroup CS NOp 2 > Largest concise Abelian subgroup C1 NOp 1 > Standard orientation: > ------------------------------ > Center Atomic Atomic Coordinates (Angstroms) > Number Number Type X Y Z > ------------------------------ > > --000000000000b2a95205f5d55eef Content-Type: text/html; charset="UTF-8" Content-Transfer-Encoding: quoted-printable
Dear Cheng Fei Phung --

<= div dir=3D"auto">Isolated Fe^2+ is a quintuplet in the ground state. The co= ordination with the CO2 molecule may change it to a different electronic st= ate, most likely to a triplet.=C2=A0

The charge and multiplicity are specified by replacing the "0 1= " line with "2 5" for the quintuplet or "2 3" for = the triplet. The "++" in GaussView is a red herring (if you don&#= 39;t know this expression, it refers to a misleading clue), as the "++= " refers to diffuse functions in the basis set.=C2=A0

Good luck! Calculations of transition me= tals are difficult. I should warn you that even if you get a converged SCF,= it might not be the correct electronic state. Take a look at the manual un= der the keywords SCF and stable for more information.


--David Shobe=C2=A0

On Wed, Mar = 1, 2023, 2:48 AM Cheng Fei Phung feiphung-*-= hotmail.com <owner-chemis= try]~[ccl.net> wrote:
Hi,

Since my messages contains the image and is longer than a limit for general= distribution,
the CCL Admin saved my message under
so please open this link to read my response

Note that I am doing Fe2+ ferrous ion for MOF carbon capture


What do you guys think about the following xtb result from https://calcus.cloud/ ?


4
=C2=A0energy: -13.349149310898 gnorm: 0.000502022323 xtb: 6.5.1 (57967= 9a)
Fe =C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A0 2.73292919494009 =C2=A0 =C2=A0 = =C2=A0 =C2=A07.81690557181600 =C2=A0 =C2=A0 =C2=A0 =C2=A04.99999999991402
O =C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A04.23822629938734 =C2=A0 =C2= =A0 =C2=A0 =C2=A08.62616541285678 =C2=A0 =C2=A0 =C2=A0 =C2=A04.999758633720= 67
C =C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A05.28034049639189 =C2=A0 =C2= =A0 =C2=A0 =C2=A09.19333556707946 =C2=A0 =C2=A0 =C2=A0 =C2=A05.000513677205= 69
O =C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A0 =C2=A06.33254571928068 =C2=A0 =C2= =A0 =C2=A0 =C2=A09.75535975824776 =C2=A0 =C2=A0 =C2=A0 =C2=A04.999727689159= 61


Regards,
Cheng Fei=C2=A0 Phung


From:= owner-chemistry+feiphung=3D=3Dhotmail.com_-_ccl.net <owner-c= hemistry+feiphung=3D=3Dhotmail.com_-_ccl.net> on behalf of Igors = Mihailovs igorsm_._cfi.lu.lv <owner-chemistry_-_ccl.net>
Sent: Sunday, February 26, 2023 10:50 PM
To: Phung, Cheng Fei <feiphung_-_hotmail.com>
Subject: CCL:G: Re: CCL:G: Help with DFT convergence failure for Fe2= CO2 in Gaussian software
=C2=A0
Dear Cheng Fei=C2=A0 Phung,

I would use something like MN15 or MN15L, and a basis set with at least som= e polarization (6-311G(d,p), for example). Especially if I had to perform s= omething like a token computation in order to get someone's experimenta= l results published.

Trying to converge B3LYP for a transition metal compound may take more time= than the options described above...

Best regards,
Igors Mihailovs
former employee at ISSP UL


On February 25, 2023 12:09:02 PM GMT+02:00, "Cheng Fei Phung feip= hung=3D-=3Dhotmail.com" <owner-chemistry^-^ccl.net> wrote:

Sent to CCL by: "Cheng Fei Phung" [feiphun= g{:}hot= mail.com]
With the following gaussian16 gjf input file, I got some c= onvergence failure issues.

Could anyone help ?


Gaussian i= nput gjf file

```
%chk=3Dstep_000_DFT.chk
# opt b3lyp/6-31g ge= om=3Dconnectivity

Fe2CO2_OPT

0 1
Fe 2.745= 38330 8.28679554 5.00000000
O 4.55208397 8.06= 717607 5.00000000
C 5.30819317 9.07309328 5.0= 0000000
O 5.97838127 9.96470142 5.00000000
1 2 1.0
2 3 2.0
3 4 3.0
4
```


Gaussian log fil= e

```
%chk=3Dstep_000_DFT.chk
# opt b3lyp/6-31g geom=3Dconne= ctivity
1/18=3D20,19=3D15,26=3D3,38=3D1,57=3D2/1,3;
2/9=3D110,12=3D= 2,17=3D6,18=3D5,40=3D1/2;
3/5=3D1,6=3D6,11=3D2,25=3D1,30=3D1,71=3D1,74= =3D-5/1,2,3;
4//1;
5/5=3D2,38=3D5/2;
6/7=3D2,8=3D2,9=3D2,10=3D2= ,28=3D1/1;
7//1,2,3,16;
1/18=3D20,19=3D15,26=3D3/3(2);
2/9=3D11= 0/2;
99//99;
2/9=3D110/2;
3/5=3D1,6=3D6,11=3D2,25=3D1,30=3D1,71= =3D1,74=3D-5/1,2,3;
4/5=3D5,16=3D3,69=3D1/1;
5/5=3D2,38=3D5/2;
= 7//1,2,3,16;
1/18=3D20,19=3D15,26=3D3/3(-5);
2/9=3D110/2;
6/7= =3D2,8=3D2,9=3D2,10=3D2,19=3D2,28=3D1/1;
99/9=3D1/99;
Fe2CO2_OPT Symbolic Z-matrix:
Charge =3D 0 Multiplicity =3D 1
Fe = 2.74538 8.2868 5.
O 4.55208 8.0671= 8 5.
C 5.30819 9.07309 5.
O = 5.97838 9.9647 5.


GradGradGradGradGradGradGradG= radGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Ini= tialization pass.
! Initial Parameters = !
! (Angstroms and Degrees) !
----------= ---------------- --------------------------
= ! Name Definition Value Derivative Info. = !
! R1 R(1,2) 1.82 estimate D2E/DX2 = !
! R2 R(2,3) 1.2584 estimate= D2E/DX2 !
! R3 R(3,4) 1.1154 = estimate D2E/DX2 !
! A1 A(1,2,3) 120.0= estimate D2E/DX2 !
! A2 L(2,3,4,1,-1) = 180.0 estimate D2E/DX2 !
! A3 L(2,3,4= ,1,-2) 180.0 estimate D2E/DX2 !
Trust= Radius=3D3.00D-01 FncErr=3D1.00D-07 GrdErr=3D1.00D-06 EigMax=3D2.50D+02 Ei= gMin=3D1.00D-04
Number of steps in this run=3D 20 maximum allowed n= umber of steps=3D 100.
GradGradGradGradGradGradGradGradGradGradGradG= radGradGradGradGradGradGrad

Input orientat= ion:
Center Atomic Atomic = Coordinates (Angstroms)
Number Number Type X = Y Z
1 26 0 2.745383 = 8.286796 5.000000
2 8 0 4.552084 8= .067176 5.000000
3 6 0 5.308193 9.= 073093 5.000000
4 8 0 5.978381 9.9= 64701 5.000000
Distance matrix (angstroms):
= 1 2 3 4
1 Fe 0.0000= 00
2 O 1.820000 0.000000
3 C 2.680720 1.258400 = 0.000000
4 O 3.642478 2.373800 1.115400 0.000000
St= oichiometry CFeO2
Framework group CS[SG(CFeO2)]
Deg. of freedom= 5
Full point group CS NOp 2
Largest Abe= lian subgroup CS NOp 2
Largest concise Abelian subgroup = C1 NOp 1
Standard orientation: =
Center Atomic Atomic Coordinates (= Angstroms)
Number Number Type X Y = Z
1 26 0 -1.018287 -0.652610 -0.0= 00000
2 8 0 -0.000000 0.855864 0.00= 0000
3 6 0 1.255302 0.767619 0.000= 000
4 8 0 2.367956 0.689403 0.0000= 00
Rotational constants (GHZ): 37.1744583 2.4897380 = 2.3334561
Standard basis: 6-31G (6D, 7F)
There are 42 = symmetry adapted cartesian basis functions of A' symmetry.
There a= re 14 symmetry adapted cartesian basis functions of A" symmetry. There are 42 symmetry adapted basis functions of A' symmetry. There are 14 symmetry adapted basis functions of A" symmetry. 56 basis functions, 160 primitive gaussians, 56 cartesian basis f= unctions
24 alpha electrons 24 beta electrons
nuclea= r repulsion energy 178.7145642873 Hartrees.
NAtoms=3D 4 NActiv= e=3D 4 NUniq=3D 4 SFac=3D 1.00D+00 NAtFMM=3D 60 NAOKFM=3DF Big=3DF<= br> Integral buffers will be 131072 words long.
Raffenetti 2 integra= l format.
Two-electron integral symmetry is turned on.
One-electron= integrals computed using PRISM.
NBasis=3D 56 RedAO=3D T EigKep=3D = 1.76D-03 NBF=3D 42 14
NBsUse=3D 56 1.00D-06 EigRej=3D -1.00D+= 00 NBFU=3D 42 14
ExpMin=3D 4.11D-02 ExpMax=3D 6.11D+04 ExpMxC=3D = 9.18D+03 IAcc=3D3 IRadAn=3D 5 AccDes=3D 0.00D+00
Harris functio= nal with IExCor=3D 402 and IRadAn=3D 5 diagonalized for initial gues= s.
HarFok: IExCor=3D 402 AccDes=3D 0.00D+00 IRadAn=3D 5 IDoV= =3D 1 UseB2=3DF ITyADJ=3D14
ICtDFT=3D 3500011 ScaDFX=3D 1.000000 1.0= 00000 1.000000 1.000000
FoFCou: FMM=3DF IPFlag=3D 0 FMFlag= =3D 100000 FMFlg1=3D 0
NFxFlg=3D 0 DoJ= E=3DT BraDBF=3DF KetDBF=3DT FulRan=3DT
wScrn=3D 0.000000 ICntr= l=3D 500 IOpCl=3D 0 I1Cent=3D 200000004 NGrid=3D 0
= NMat0=3D 1 NMatS0=3D 1 NMatT0=3D 0 NMatD0=3D 1 NMtDS0= =3D 0 NMtDT0=3D 0
Petite list used in FoFCou.
Initial guess o= rbital symmetries:
Occupied (A') (A') (A') (A') = (A") (A') (A') (A') (A') (A')
= (A') (A") (A') (A') (A') (A') (A') (A") (= A') (A")
(A') (A') (A") (A')<= br> Virtual (A") (A') (A') (A") (A') (A"= ) (A') (A') (A') (A')
(A") (A'= ) (A') (A") (A') (A') (A') (A") (A') (A')=
(A') (A") (A') (A') (A') (A"= ) (A") (A') (A') (A')
(A') (A'= )
The electronic state of the initial guess is 1-A'.
Keep R1 in= ts in memory in symmetry-blocked form, NReq=3D2159799.
Requested conver= gence on RMS density matrix=3D1.00D-08 within 128 cycles.
Requested con= vergence on MAX density matrix=3D1.00D-06.
Requested convergence on = energy=3D1.00D-06.
No special actions if energy rises.
EnC= oef did 3 forward-backward iterations
EnCoef did 100 forward-back= ward iterations
EnCoef did 2 forward-backward iterations
EnCoef= did 2 forward-backward iterations
SCF Done: E(RB3LYP) =3D -1451.= 84990065 A.U. after 22 cycles
NFock=3D 22 Conv=3D0.66= D-08 -V/T=3D 2.0016

*******************************************= ***************************

Population analysis using th= e SCF Density.

****************************************************= ******************

Orbital symmetries:
Occupied (A')= (A') (A') (A') (A") (A') (A') (A') (A') (= A')
(A") (A') (A') (A') (A') (= A') (A") (A') (A') (A")
(A') = (A') (A") (A')
Virtual (A") (A') (A"= ) (A') (A') (A") (A') (A') (A') (A')
= (A") (A') (A') (A") (A') (A') (A')= (A") (A') (A')
(A') (A") (A'= ) (A') (A') (A") (A') (A") (A') (A')
= (A') (A')
The electronic state is 1-A'.
Alp= ha occ. eigenvalues -- -256.04016 -29.99951 -25.87326 -25.85859 -25.85805<= br> Alpha occ. eigenvalues -- -19.31120 -19.28742 -10.45249 -3.41064 -2= .20510
Alpha occ. eigenvalues -- -2.17421 -2.16694 -1.26882 -1.17= 261 -0.64217
Alpha occ. eigenvalues -- -0.58881 -0.57965 -0.57594= -0.44473 -0.43175
Alpha occ. eigenvalues -- -0.22416 -0.22137 -= 0.20382 -0.15336
Alpha virt. eigenvalues -- -0.07558 -0.07420 -0.0= 3518 -0.03067 -0.02764
Alpha virt. eigenvalues -- -0.00807 0.0008= 2 0.10567 0.12952 0.29804
Alpha virt. eigenvalues -- 0.31948 = 0.36712 0.41870 0.45104 0.54770
Alpha virt. eigenvalues -- 0.= 63606 0.74556 0.85137 0.88355 0.92857
Alpha virt. eigenvalues -= - 0.96917 1.00808 1.01595 1.25495 1.50958
Alpha virt. eigenv= alues -- 1.51252 1.55992 1.59723 1.70732 1.86833
Alpha virt.= eigenvalues -- 2.01356 20.37339
Condensed to atoms (all e= lectrons):
1 2 3 4
1 = Fe 26.065938 -0.058002 0.083106 -0.030239
2 O -0.058002 8= .304619 0.168196 0.010116
3 C 0.083106 0.168196 4.72460= 9 0.417125
4 O -0.030239 0.010116 0.417125 7.724230
= Mulliken charges:
1
1 Fe -0.060803
2 O= -0.424929
3 C 0.606964
4 O -0.121232
Sum of M= ulliken charges =3D -0.00000
Mulliken charges with hydrogens summed in= to heavy atoms:
1
1 Fe -0.060803
2 O = -0.424929
3 C 0.606964
4 O -0.121232
Electronic= spatial extent (au): <R**2>=3D 453.0609
Charge=3D = -0.0000 electrons
Dipole moment (field-independent basis, Deb= ye):
X=3D 1.6708 Y=3D 1.8514 Z=3D = -0.0000 Tot=3D 2.4938
Quadrupole moment (field-= independent basis, Debye-Ang):
XX=3D -35.0872 YY=3D = -34.7815 ZZ=3D -32.5686
XY=3D 0.8912= XZ=3D 0.0000 YZ=3D 0.0000
Traceless Quad= rupole moment (field-independent basis, Debye-Ang):
XX=3D = -0.9415 YY=3D -0.6357 ZZ=3D 1.5772
XY= =3D 0.8912 XZ=3D 0.0000 YZ=3D 0.= 0000
Octapole moment (field-independent basis, Debye-Ang**2):
XXX= =3D -8.4875 YYY=3D 8.6001 ZZZ=3D -0.= 0000 XYY=3D 3.5470
XXY=3D 1.7153 XXZ=3D = 0.0000 XZZ=3D 0.7336 YZZ=3D 1.9407 YYZ=3D -0.0000 XYZ=3D -0.0000
Hexadecapole= moment (field-independent basis, Debye-Ang**3):
XXXX=3D -415= .5041 YYYY=3D -171.1039 ZZZZ=3D -55.1637 XXXY=3D = -84.4690
XXXZ=3D 0.0000 YYYX=3D -75.7822 = YYYZ=3D 0.0000 ZZZX=3D 0.0000
ZZZY=3D = 0.0000 XXYY=3D -90.7121 XXZZ=3D -70.9019 YYZZ= =3D -36.9432
XXYZ=3D 0.0000 YYXZ=3D = 0.0000 ZZXY=3D -24.7602
N-N=3D 1.787145642873D+02 E-N=3D-3= .807626875025D+03 KE=3D 1.449497603530D+03
Symmetry A' KE=3D 1.2= 87179877057D+03
Symmetry A" KE=3D 1.623177264732D+02
Calling= FoFJK, ICntrl=3D 2127 FMM=3DF ISym2X=3D1 I1Cent=3D 0 IOpClX=3D 0 NMat= =3D1 NMatS=3D1 NMatT=3D0.
***** Axes restored to original set *****
= Center Atomic Forces (Hartrees/Bohr)
Number = Number X Y Z
1 26 = -0.048820174 0.005157682 0.000000000
2 8 = 0.068584660 0.015861998 0.000000000
3 6 = -0.104728901 -0.126023309 0.000000000
4 8 0.= 084964415 0.105003629 -0.000000000
Cartesian Forces: Max 0.12= 6023309 RMS 0.066118707

GradGradGradGradGradGradGradGradGradGra= dGradGradGradGradGradGradGradGrad
Berny optimization.
FormGI is for= ming the generalized inverse of G from B-inverse, IUseBI=3D4.
Internal = Forces: Max 0.134986320 RMS 0.059949734
Search for a local mi= nimum.
Step number 1 out of a maximum of 20
All quantities prin= ted in internal units (Hartrees-Bohrs-Radians)
Mixed Optimization -- RF= O/linear search
Second derivative matrix not updated -- first step.
= The second derivative matrix:
R1 R2 = R3 A1 A2
R1 0.22791
= R2 0.00000 0.80209
R3 0.00000 0.000= 00 1.62060
A1 0.00000 0.00000 0.00000 0.250= 00
A2 0.00000 0.00000 0.00000 0.00000 0.054= 56
A3 0.00000 0.00000 0.00000 0.00000 0.000= 00
A3
A3 0.05456
I= TU=3D 0
Eigenvalues --- 0.05456 0.05456 0.22791 0.25000 = 0.80209
Eigenvalues --- 1.62060
RFO step: Lambda=3D-2.3043= 8557D-02 EMin=3D 5.45649275D-02
Linear search not attempted -- first po= int.
Iteration 1 RMS(Cart)=3D 0.10911805 RMS(Int)=3D 0.00403264
= Iteration 2 RMS(Cart)=3D 0.00524126 RMS(Int)=3D 0.00001569
Iteration= 3 RMS(Cart)=3D 0.00001737 RMS(Int)=3D 0.00000000
Iteration 4 RMS(C= art)=3D 0.00000000 RMS(Int)=3D 0.00000000
ClnCor: largest displaceme= nt from symmetrization is 2.67D-10 for atom 3.
Variable Old X= -DE/DX Delta X Delta X Delta X New X
= (Linear) (Quad) (Total)
R1 3.43930 0.04909= 0.00000 0.19560 0.19560 3.63490
R2 2.37803 -0.02868= 0.00000 -0.03476 -0.03476 2.34327
R3 2.10780 0.13499= 0.00000 0.08213 0.08213 2.18993
A1 2.09440 0.00265= 0.00000 0.00969 0.00969 2.10408
A2 3.14159 0.01018= 0.00000 0.13112 0.13112 3.27271
A3 3.14159 0.00000= 0.00000 0.00000 0.00000 3.14159
Item Val= ue Threshold Converged?
Maximum Force 0.134986 0.00= 0450 NO
RMS Force 0.059950 0.000300 NO
= Maximum Displacement 0.164913 0.001800 NO
RMS Displac= ement 0.111408 0.001200 NO
Predicted change in Energy=3D-1= .225354D-02
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGra= dGradGradGrad

Input orientation: =
Center Atomic Atomic Coordinates = (Angstroms)
Number Number Type X Y = Z
1 26 0 2.658115 8.232499 5.= 000000
2 8 0 4.576263 8.089032 5.0= 00000
3 6 0 5.284531 9.106861 5.00= 0000
4 8 0 6.065132 9.963375 5.000= 000
Distance matrix (angstroms):
= 1 2 3 4
1 Fe 0.000000
2 = O 1.923506 0.000000
3 C 2.768135 1.240008 0.000000
= 4 O 3.821478 2.393719 1.158859 0.000000
Stoichiometry = CFeO2
Framework group CS[SG(CFeO2)]
Deg. of freedom 5
Ful= l point group CS NOp 2
Largest Abelian subgroup = CS NOp 2
Largest concise Abelian subgroup C1 NOp = 1
Standard orientation: =
Center Atomic Atomic Coordinates (Angstroms)
= Number Number Type X Y Z
= 1 26 0 -1.022093 -0.757193 -0.000000
= 2 8 0 0.000000 0.872286 0.000000
= 3 6 0 1.239558 0.838897 0.000000
4= 8 0 2.392133 0.959419 0.000000
Rotatio= nal constants (GHZ): 40.3135828 2.2660782 2.14= 54781
Standard basis: 6-31G (6D, 7F)
There are 42 symmetry adapt= ed cartesian basis functions of A' symmetry.
There are 14 symme= try adapted cartesian basis functions of A" symmetry.
There are = 42 symmetry adapted basis functions of A' symmetry.
There are = 14 symmetry adapted basis functions of A" symmetry.
56 basis = functions, 160 primitive gaussians, 56 cartesian basis functions
= 24 alpha electrons 24 beta electrons
nuclear repulsion en= ergy 172.3989508234 Hartrees.
NAtoms=3D 4 NActive=3D 4 NUni= q=3D 4 SFac=3D 1.00D+00 NAtFMM=3D 60 NAOKFM=3DF Big=3DF
Integral b= uffers will be 131072 words long.
Raffenetti 2 integral format.
= Two-electron integral symmetry is turned on.
One-electron integrals com= puted using PRISM.
NBasis=3D 56 RedAO=3D T EigKep=3D 1.76D-03 NBF= =3D 42 14
NBsUse=3D 56 1.00D-06 EigRej=3D -1.00D+00 NBFU=3D = 42 14
Initial guess from the checkpoint file: "step_000_DFT.c= hk"
B after Tr=3D 0.000000 0.000000 -0.000000
= Rot=3D 0.999288 -0.000000 -0.000000 -0.037733 Ang=3D -4.32 deg.<= br> Initial guess orbital symmetries:
Occupied (A') (A')= (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (= A") (A') (A') (A")
(A') (A') = (A") (A')
Virtual (A") (A') (A") (A'= ) (A') (A") (A') (A') (A') (A')
= (A") (A') (A') (A") (A') (A') (A') (A"= ) (A') (A')
(A') (A") (A') (A'= ) (A') (A") (A') (A") (A') (A')
= (A') (A')
ExpMin=3D 4.11D-02 ExpMax=3D 6.11D+04 ExpMxC=3D 9.= 18D+03 IAcc=3D3 IRadAn=3D 5 AccDes=3D 0.00D+00
Harris functiona= l with IExCor=3D 402 and IRadAn=3D 5 diagonalized for initial guess.=
HarFok: IExCor=3D 402 AccDes=3D 0.00D+00 IRadAn=3D 5 IDoV=3D= 1 UseB2=3DF ITyADJ=3D14
ICtDFT=3D 3500011 ScaDFX=3D 1.000000 1.0000= 00 1.000000 1.000000
FoFCou: FMM=3DF IPFlag=3D 0 FMFlag=3D = 100000 FMFlg1=3D 0
NFxFlg=3D 0 DoJE=3D= T BraDBF=3DF KetDBF=3DT FulRan=3DT
wScrn=3D 0.000000 ICntrl=3D= 500 IOpCl=3D 0 I1Cent=3D 200000004 NGrid=3D 0
= NMat0=3D 1 NMatS0=3D 1 NMatT0=3D 0 NMatD0=3D 1 NMtDS0=3D = 0 NMtDT0=3D 0
Petite list used in FoFCou.
Keep R1 ints in memo= ry in symmetry-blocked form, NReq=3D2159799.
Requested convergence on R= MS density matrix=3D1.00D-08 within 128 cycles.
Requested convergence o= n MAX density matrix=3D1.00D-06.
Requested convergence on e= nergy=3D1.00D-06.
No special actions if energy rises.
SCF Done: E(= RB3LYP) =3D -1451.86533909 A.U. after 18 cycles
NFock= =3D 18 Conv=3D0.23D-08 -V/T=3D 2.0018
Calling FoFJK, ICntrl=3D = 2127 FMM=3DF ISym2X=3D1 I1Cent=3D 0 IOpClX=3D 0 NMat=3D1 NMatS=3D1 NMatT= =3D0.
***** Axes restored to original set *****
Center Atomic = Forces (Hartrees/Bohr)
Number Number = X Y Z
1 26 -0.021775369 = 0.002114287 0.000000000
2 8 0.036955110 0= .014737157 0.000000000
3 6 -0.039695691 -0.04= 0384091 0.000000000
4 8 0.024515951 0.02353= 2647 -0.000000000
Cartesian Forces: Max 0.040384091 RMS 0.02= 3135364

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGra= dGradGradGrad
Berny optimization.
Using GEDIIS/GDIIS optimizer.
= FormGI is forming the generalized inverse of G from B-inverse, IUseBI=3D4.=
Internal Forces: Max 0.033908365 RMS 0.018980685
Search = for a local minimum.
Step number 2 out of a maximum of 20
All q= uantities printed in internal units (Hartrees-Bohrs-Radians)
Mixed Opti= mization -- RFO/linear search
Update second derivatives using D2CorX an= d points 1 2
DE=3D -1.54D-02 DEPred=3D-1.23D-02 R=3D 1.26D+00
= TightC=3DF SS=3D 1.41D+00 RLast=3D 2.52D-01 DXNew=3D 5.0454D-01 7.5596D-= 01
Trust test=3D 1.26D+00 RLast=3D 2.52D-01 DXMaxT set to 5.05D-01
= The second derivative matrix:
R1 R2 = R3 A1 A2
R1 0.18668
= R2 0.04604 0.76870
R3 -0.08608 0.1290= 4 1.50110
A1 0.00316 0.00128 0.01538 0.2510= 4
A2 -0.00501 0.00702 -0.00784 0.00077 0.0540= 7
A3 0.00000 -0.00000 0.00000 0.00000 0.0000= 0
A3
A3 0.05456
IT= U=3D 1 0
Use linear search instead of GDIIS.
Eigenvalues --- = 0.05364 0.05456 0.17607 0.25109 0.75296
Eigenvalues --- = 1.52783
RFO step: Lambda=3D-2.40357398D-03 EMin=3D 5.36398691D-02 Quartic linear search produced a step of 0.74433.
Iteration 1 RMS(= Cart)=3D 0.12055350 RMS(Int)=3D 0.00970928
Iteration 2 RMS(Cart)=3D = 0.01171440 RMS(Int)=3D 0.00007671
Iteration 3 RMS(Cart)=3D 0.000083= 39 RMS(Int)=3D 0.00000000
Iteration 4 RMS(Cart)=3D 0.00000000 RMS(In= t)=3D 0.00000000
ClnCor: largest displacement from symmetrization is = 4.24D-12 for atom 3.
Variable Old X -DE/DX Delta X Del= ta X Delta X New X
(Linear) (Q= uad) (Total)
R1 3.63490 0.02187 0.14559 0.04745 0.1= 9304 3.82794
R2 2.34327 -0.02250 -0.02587 -0.02538 -0.0= 5125 2.29202
R3 2.18993 0.03391 0.06113 -0.01980 0.0= 4133 2.23126
A1 2.10408 -0.00172 0.00721 -0.01780 -0.0= 1059 2.09349
A2 3.27271 0.00495 0.09759 0.11009 0.2= 0769 3.48040
A3 3.14159 0.00000 0.00000 0.00000 0.0= 0000 3.14159
Item Value Threshold Converge= d?
Maximum Force 0.033908 0.000450 NO
RMS F= orce 0.018981 0.000300 NO
Maximum Displacement = 0.157853 0.001800 NO
RMS Displacement 0.126480 0.0= 01200 NO
Predicted change in Energy=3D-2.644271D-03
GradGradGr= adGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

= Input orientation:
Cente= r Atomic Atomic Coordinates (Angstroms)
Number = Number Type X Y Z
1 = 26 0 2.586226 8.170844 5.000000
2 = 8 0 4.611490 8.130764 5.000000
3 = 6 0 5.237660 9.169515 5.000000
4 8= 0 6.148665 9.920644 5.000000
= Distance matrix (angstroms):
1 2 = 3 4
1 Fe 0.000000
2 O 2.025661 0.000000 3 C 2.833275 1.212885 0.000000
4 O 3.968976 2.= 359359 1.180730 0.000000
Stoichiometry CFeO2
Framework group= CS[SG(CFeO2)]
Deg. of freedom 5
Full point group = CS NOp 2
Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1
= Standard orientation:
Center Atomic = Atomic Coordinates (Angstroms)
Number Number T= ype X Y Z
1 26 0= -0.994550 -0.879340 -0.000000
2 8 0 = -0.000000 0.885361 0.000000
3 6 0 = 1.212831 0.896868 0.000000
4 8 0 = 2.322666 1.299844 0.000000
Rotational constants (GHZ): = 47.4271405 2.0987230 2.0097869
Standard basis: = 6-31G (6D, 7F)
There are 42 symmetry adapted cartesian basis functio= ns of A' symmetry.
There are 14 symmetry adapted cartesian basi= s functions of A" symmetry.
There are 42 symmetry adapted basi= s functions of A' symmetry.
There are 14 symmetry adapted basis= functions of A" symmetry.
56 basis functions, 160 primitive= gaussians, 56 cartesian basis functions
24 alpha electrons = 24 beta electrons
nuclear repulsion energy 168.0152669884 = Hartrees.
NAtoms=3D 4 NActive=3D 4 NUniq=3D 4 SFac=3D 1.00D+00= NAtFMM=3D 60 NAOKFM=3DF Big=3DF
Integral buffers will be 131072 w= ords long.
Raffenetti 2 integral format.
Two-electron integral symm= etry is turned on.
One-electron integrals computed using PRISM.
NBa= sis=3D 56 RedAO=3D T EigKep=3D 1.76D-03 NBF=3D 42 14
NBsUse= =3D 56 1.00D-06 EigRej=3D -1.00D+00 NBFU=3D 42 14
Initial gues= s from the checkpoint file: "step_000_DFT.chk"
B after Tr=3D= 0.000000 -0.000000 -0.000000
Rot=3D 0.998838 -0.0= 00000 -0.000000 -0.048193 Ang=3D -5.52 deg.
Initial guess orbital = symmetries:
Occupied (A') (A') (A') (A') (A"= ;) (A') (A') (A') (A') (A')
(A"= ;) (A') (A') (A') (A') (A') (A") (A') (A')= (A")
(A') (A') (A") (A')
= Virtual (A') (A") (A') (A") (A') (A") (A= 9;) (A') (A') (A')
(A") (A') (A= 9;) (A") (A') (A') (A') (A") (A') (A')
= (A') (A") (A') (A') (A') (A") (A= 9;) (A") (A') (A')
(A') (A')
E= xpMin=3D 4.11D-02 ExpMax=3D 6.11D+04 ExpMxC=3D 9.18D+03 IAcc=3D3 IRadAn=3D = 5 AccDes=3D 0.00D+00
Harris functional with IExCor=3D 402 and = IRadAn=3D 5 diagonalized for initial guess.
HarFok: IExCor=3D 4= 02 AccDes=3D 0.00D+00 IRadAn=3D 5 IDoV=3D 1 UseB2=3DF ITyADJ=3D14 ICtDFT=3D 3500011 ScaDFX=3D 1.000000 1.000000 1.000000 1.000000
= FoFCou: FMM=3DF IPFlag=3D 0 FMFlag=3D 100000 FMFlg1=3D = 0
NFxFlg=3D 0 DoJE=3DT BraDBF=3DF KetDBF=3DT Fu= lRan=3DT
wScrn=3D 0.000000 ICntrl=3D 500 IOpCl=3D 0 I1C= ent=3D 200000004 NGrid=3D 0
NMat0=3D 1 NMatS0=3D= 1 NMatT0=3D 0 NMatD0=3D 1 NMtDS0=3D 0 NMtDT0=3D 0
Pet= ite list used in FoFCou.
Keep R1 ints in memory in symmetry-blocked for= m, NReq=3D2159799.
Requested convergence on RMS density matrix=3D1.00D-= 08 within 128 cycles.
Requested convergence on MAX density matrix=3D1.0= 0D-06.
Requested convergence on energy=3D1.00D-06.
No s= pecial actions if energy rises.
SCF Done: E(RB3LYP) =3D -1451.8677989= 4 A.U. after 19 cycles
NFock=3D 19 Conv=3D0.32D-08 = -V/T=3D 2.0018
Calling FoFJK, ICntrl=3D 2127 FMM=3DF ISym2X=3D1 = I1Cent=3D 0 IOpClX=3D 0 NMat=3D1 NMatS=3D1 NMatT=3D0.
***** Axes restor= ed to original set *****
Center Atomic Forces (Ha= rtrees/Bohr)
Number Number X Y = Z
1 26 -0.002475531 0.002170910 0.00000000= 0
2 8 -0.009275511 -0.015400826 0.000000000 3 6 0.012873515 0.005174131 0.000000000
= 4 8 -0.001122473 0.008055785 -0.000000000
Car= tesian Forces: Max 0.015400826 RMS 0.007028017

GradGradGra= dGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny opt= imization.
Using GEDIIS/GDIIS optimizer.
FormGI is forming the gene= ralized inverse of G from B-inverse, IUseBI=3D4.
Internal Forces: Max= 0.017401591 RMS 0.010265616
Search for a local minimum.
St= ep number 3 out of a maximum of 20
All quantities printed in intern= al units (Hartrees-Bohrs-Radians)
Mixed Optimization -- RFO/linear sear= ch
Update second derivatives using D2CorX and points 1 2 3
= DE=3D -2.46D-03 DEPred=3D-2.64D-03 R=3D 9.30D-01
TightC=3DF SS=3D 1.4= 1D+00 RLast=3D 2.91D-01 DXNew=3D 8.4853D-01 8.7386D-01
Trust test=3D 9= .30D-01 RLast=3D 2.91D-01 DXMaxT set to 8.49D-01
The second derivative = matrix:
R1 R2 R3 A1 = A2
R1 0.14042
R2 0.04009 = 0.84593
R3 -0.15330 0.08559 1.42002
= A1 0.01583 -0.02335 0.04566 0.25643
A2 = 0.00387 -0.03883 0.02611 0.01417 0.08070
A3 = 0.00000 -0.00000 0.00000 0.00000 0.00000
= A3
A3 0.05456
ITU=3D 1 1 0
Use = linear search instead of GDIIS.
Eigenvalues --- 0.05456 0.0757= 0 0.11658 0.25847 0.84223
Eigenvalues --- 1.45052
RFO = step: Lambda=3D-2.28883397D-03 EMin=3D 5.45649275D-02
Quartic linear s= earch produced a step of -0.27572.
Iteration 1 RMS(Cart)=3D 0.1108265= 1 RMS(Int)=3D 0.00968836
Iteration 2 RMS(Cart)=3D 0.01008655 RMS(Int= )=3D 0.00002336
Iteration 3 RMS(Cart)=3D 0.00002996 RMS(Int)=3D 0.0= 0000000
Iteration 4 RMS(Cart)=3D 0.00000000 RMS(Int)=3D 0.00000000 ClnCor: largest displacement from symmetrization is 3.37D-09 for atom = 3.
Variable Old X -DE/DX Delta X Delta X Delta X = New X
(Linear) (Quad) (Total)
= R1 3.82794 0.00252 -0.05323 0.09099 0.03776 3.86570
= R2 2.29202 0.01740 0.01413 -0.00542 0.00871 2.30074
= R3 2.23126 0.00426 -0.01140 0.02206 0.01067 2.24192
= A1 2.09349 -0.00809 0.00292 -0.02802 -0.02510 2.06839
= A2 3.48040 -0.01548 -0.05726 -0.11944 -0.17670 3.30370
= A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159
= Item Value Threshold Converged?
Maximum Forc= e 0.017402 0.000450 NO
RMS Force 0.0= 10266 0.000300 NO
Maximum Displacement 0.128723 0.0018= 00 NO
RMS Displacement 0.114165 0.001200 NO
P= redicted change in Energy=3D-1.691720D-03
GradGradGradGradGradGradGradG= radGradGradGradGradGradGradGradGradGradGrad

= Input orientation:
Center Atomic A= tomic Coordinates (Angstroms)
Number Number Type = X Y Z
1 26 0 = 2.587635 8.230504 5.000000
2 8 0 = 4.627577 8.077882 5.000000
3 6 0 = 5.286906 9.101397 5.000000
4 8 0 = 6.081924 9.981983 5.000000
Distance matrix (a= ngstroms):
1 2 3 4
= 1 Fe 0.000000
2 O 2.045643 0.000000
3 C 2.83= 6286 1.217497 0.000000
4 O 3.908674 2.395981 1.186375 = 0.000000
Stoichiometry CFeO2
Framework group CS[SG(CFeO2)]
= Deg. of freedom 5
Full point group CS NOp 2=
Largest Abelian subgroup CS NOp 2
Largest concise A= belian subgroup C1 NOp 1
Standard orient= ation:
Center Atomic Atomic = Coordinates (Angstroms)
Number Number Type X = Y Z
--000000000000b2a95205f5d55eef-- From owner-chemistry@ccl.net Wed Mar 1 11:28:00 2023 From: "Nikunj Kumar nkk749**gmail.com" To: CCL Subject: CCL: DLPNO-CCSDT job finished by error termination in MDCI Message-Id: <-54859-230301072642-25733-rj5zPdTk2MIxX34XXBHuwg*|*server.ccl.net> X-Original-From: "Nikunj Kumar" Date: Wed, 1 Mar 2023 07:26:40 -0500 Sent to CCL by: "Nikunj Kumar" [nkk749++gmail.com] Hello everyone, I am trying to do single point calculation using DLPNO-CCSDT in ORCA 5.0.3. My job runs for a while and it get terminated by itself showing the following error: ORCA finished by error termination in MDCI Calling Command: mpirun -np 12 --mca opal_common_ucx_opal_mem_hooks My system consist of 37 atoms/ Can someone please help me on how to deal with this error. From owner-chemistry@ccl.net Wed Mar 1 13:35:00 2023 From: "Welch, Bradley welchbr2]*[msu.edu" To: CCL Subject: CCL: DLPNO-CCSDT job finished by error termination in MDCI Message-Id: <-54860-230301124206-9971-9sDBf4KiJxejLsXjyV8+gA**server.ccl.net> X-Original-From: "Welch, Bradley" Content-Language: en-US Content-Transfer-Encoding: 8bit Content-Type: text/plain; charset="utf-8" Date: Wed, 1 Mar 2023 17:35:05 +0000 MIME-Version: 1.0 Sent to CCL by: "Welch, Bradley" [welchbr2~!~msu.edu] Without any output I have to ask some generic questions. How much memory per cpu have you assigned in your input file? Does your computation get through the localization and mp2 transformations? Have you reached the ccsd iterations? Did the computation crash at the (T) portion? Bradley Welch > On Mar 1, 2023, at 10:26 AM, Nikunj Kumar nkk749**gmail.com wrote: > >  > Sent to CCL by: "Nikunj Kumar" [nkk749++gmail.com] > Hello everyone, > > I am trying to do single point calculation using DLPNO-CCSDT in ORCA 5.0.3. My > job runs for a while and it get terminated by itself showing the following > error: > ORCA finished by error termination in MDCI > Calling Command: mpirun -np 12 --mca opal_common_ucx_opal_mem_hooks > > > My system consist of 37 atoms/ > Can someone please help me on how to deal with this error.> https://urldefense.com/v3/__http://www.ccl.net/cgi-bin/ccl/send_ccl_message__;!!HXCxUKc!3iZ3Y-RV1pIdZV5-eadYndkLH_WS2aX1Q65gBdiQ9LCK56uGxa2SVzXKTwXHRDc7aLgC_nmBkj0gB7r8-Qm3GfMFcQ$> https://urldefense.com/v3/__http://www.ccl.net/cgi-bin/ccl/send_ccl_message__;!!HXCxUKc!3iZ3Y-RV1pIdZV5-eadYndkLH_WS2aX1Q65gBdiQ9LCK56uGxa2SVzXKTwXHRDc7aLgC_nmBkj0gB7r8-Qm3GfMFcQ$> https://urldefense.com/v3/__http://www.ccl.net/chemistry/sub_unsub.shtml__;!!HXCxUKc!3iZ3Y-RV1pIdZV5-eadYndkLH_WS2aX1Q65gBdiQ9LCK56uGxa2SVzXKTwXHRDc7aLgC_nmBkj0gB7r8-QkkCtoYMw$ > > Before posting, check wait time at: https://urldefense.com/v3/__http://www.ccl.net__;!!HXCxUKc!3iZ3Y-RV1pIdZV5-eadYndkLH_WS2aX1Q65gBdiQ9LCK56uGxa2SVzXKTwXHRDc7aLgC_nmBkj0gB7r8-QkHVlmxDQ$ > > Job: https://urldefense.com/v3/__http://www.ccl.net/jobs__;!!HXCxUKc!3iZ3Y-RV1pIdZV5-eadYndkLH_WS2aX1Q65gBdiQ9LCK56uGxa2SVzXKTwXHRDc7aLgC_nmBkj0gB7r8-Qmr-oYOzw$ > Conferences: https://urldefense.com/v3/__http://server.ccl.net/chemistry/announcements/conferences/__;!!HXCxUKc!3iZ3Y-RV1pIdZV5-eadYndkLH_WS2aX1Q65gBdiQ9LCK56uGxa2SVzXKTwXHRDc7aLgC_nmBkj0gB7r8-QnYn04CSA$ > > Search Messages: https://urldefense.com/v3/__http://www.ccl.net/chemistry/searchccl/index.shtml__;!!HXCxUKc!3iZ3Y-RV1pIdZV5-eadYndkLH_WS2aX1Q65gBdiQ9LCK56uGxa2SVzXKTwXHRDc7aLgC_nmBkj0gB7r8-Qm5HGhXyQ$> https://urldefense.com/v3/__http://www.ccl.net/spammers.txt__;!!HXCxUKc!3iZ3Y-RV1pIdZV5-eadYndkLH_WS2aX1Q65gBdiQ9LCK56uGxa2SVzXKTwXHRDc7aLgC_nmBkj0gB7r8-Qn5hpGJ4w$ > > RTFI: https://urldefense.com/v3/__http://www.ccl.net/chemistry/aboutccl/instructions/__;!!HXCxUKc!3iZ3Y-RV1pIdZV5-eadYndkLH_WS2aX1Q65gBdiQ9LCK56uGxa2SVzXKTwXHRDc7aLgC_nmBkj0gB7r8-Qkc0NUTJg$ > > From owner-chemistry@ccl.net Wed Mar 1 15:10:01 2023 From: "Tobias Kraemer Tobias.Kraemer],[mu.ie" To: CCL Subject: CCL: [EXTERNAL] CCL: DLPNO-CCSDT job finished by error termination in MDCI Message-Id: <-54861-230301140819-20712-fUQoG0NQjZnvwa9iUGCCNQ##server.ccl.net> X-Original-From: Tobias Kraemer Content-Language: en-GB Content-Type: multipart/alternative; boundary="_000_DB8PR02MB55135D2F7C918247EB0FD8AF8BAD9DB8PR02MB5513eurp_" Date: Wed, 1 Mar 2023 19:08:04 +0000 MIME-Version: 1.0 Sent to CCL by: Tobias Kraemer [Tobias.Kraemer]_[mu.ie] --_000_DB8PR02MB55135D2F7C918247EB0FD8AF8BAD9DB8PR02MB5513eurp_ Content-Type: text/plain; charset="Windows-1252" Content-Transfer-Encoding: quoted-printable Dear Nikunj, This is potentially due to a memory issue. But it might be better to pose t= hat question in the ORCA Forum. Without more specific detail it=92s hard to= tell what=92s going on. Tobias Dr Tobias Kr=E4mer Assistant Professor of Inorganic Chemistry Maynooth University, Maynooth, Co. Kildare, Ireland. E: tobias.kraemer[]mu.ie T: +353 (0)1 474 7517 > From: owner-chemistry+tobias.kraemer=3D=3Dmu.ie[]ccl.net on behalf of Nikunj Kumar nkk749**gmail.co= m Date: Wednesday, 1 March 2023 at 18:26 To: Tobias Kraemer Subject: [EXTERNAL] CCL: DLPNO-CCSDT job finished by error termination in M= DCI *Warning* This email originated from outside of Maynooth University's Mail System. Do= not reply, click links or open attachments unless you recognise the sender= and know the content is safe. Sent to CCL by: "Nikunj Kumar" [nkk749++gmail.com] Hello everyone, I am trying to do single point calculation using DLPNO-CCSDT in ORCA 5.0.3.= My job runs for a while and it get terminated by itself showing the following error: ORCA finished by error termination in MDCI Calling Command: mpirun -np 12 --mca opal_common_ucx_opal_mem_hooks My system consist of 37 atoms/ Can someone please help me on how to deal with this error. -=3D This is automatically added to each message by the mailing script =3D-https://eur02.safelinks.protection.outlook.com/?url=3Dhttp%3A%2F%2Fww= w.ccl.net%2Fcgi-bin%2Fccl%2Fsend_ccl_message&data=3D05%7C01%7Ctobias.kraeme= r%40mu.ie%7C3fec6fff400a46a2fc1a08db1a82857a%7C1454f5ccbb354685bbd98621fd80= 55c9%7C0%7C0%7C638132920118110294%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwM= DAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=3Dy= 5Q1vxj5vxBQKywX2%2Ft2kfigZkLZvlAWFz2mw7A2SK8%3D&reserved=3D0https://eur02.safelinks.protection.outlook.com/?url=3Dhttp%3A%2F%2Fww= w.ccl.net%2Fcgi-bin%2Fccl%2Fsend_ccl_message&data=3D05%7C01%7Ctobias.kraeme= r%40mu.ie%7C3fec6fff400a46a2fc1a08db1a82857a%7C1454f5ccbb354685bbd98621fd80= 55c9%7C0%7C0%7C638132920118110294%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwM= DAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=3Dy= 5Q1vxj5vxBQKywX2%2Ft2kfigZkLZvlAWFz2mw7A2SK8%3D&reserved=3D0https://eur02.safelinks.protection.outlook.com/?url=3Dhttp%3A%2F%2Fww= w.ccl.net%2Fchemistry%2Fsub_unsub.shtml&data=3D05%7C01%7Ctobias.kraemer%40m= u.ie%7C3fec6fff400a46a2fc1a08db1a82857a%7C1454f5ccbb354685bbd98621fd8055c9%= 7C0%7C0%7C638132920118110294%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLC= JQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=3Dn1jPuX= N10XwFrWVM%2FVUpC%2FCUyOXHxJtg0tH5NsZffhU%3D&reserved=3D0 Before posting, check wait time at: https://eur02.safelinks.protection.outl= ook.com/?url=3Dhttp%3A%2F%2Fwww.ccl.net%2F&data=3D05%7C01%7Ctobias.kraemer%= 40mu.ie%7C3fec6fff400a46a2fc1a08db1a82857a%7C1454f5ccbb354685bbd98621fd8055= c9%7C0%7C0%7C638132920118110294%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDA= iLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=3D%2B= 7SbuVzeq%2BGadl1utp90Oe81bB9aZm2psa7RGOvl8Bk%3D&reserved=3D0 Job: https://eur02.safelinks.protection.outlook.com/?url=3Dhttp%3A%2F%2Fwww= .ccl.net%2Fjobs&data=3D05%7C01%7Ctobias.kraemer%40mu.ie%7C3fec6fff400a46a2f= c1a08db1a82857a%7C1454f5ccbb354685bbd98621fd8055c9%7C0%7C0%7C63813292011826= 6536%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik= 1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=3DvNxazjt9bL1YyFIshA2GqeG23%2FQs= Y9jYbElKjo311cs%3D&reserved=3D0 Conferences: https://eur02.safelinks.protection.outlook.com/?url=3Dhttp%3A%= 2F%2Fserver.ccl.net%2Fchemistry%2Fannouncements%2Fconferences%2F&data=3D05%= 7C01%7Ctobias.kraemer%40mu.ie%7C3fec6fff400a46a2fc1a08db1a82857a%7C1454f5cc= bb354685bbd98621fd8055c9%7C0%7C0%7C638132920118266536%7CUnknown%7CTWFpbGZsb= 3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C300= 0%7C%7C%7C&sdata=3DtBLwrfyT%2F2wv2Z6P9aJbCKLa2TAjuWPImqEBpILQEQs%3D&reserve= d=3D0 Search Messages: https://eur02.safelinks.protection.outlook.com/?url=3Dhttp= %3A%2F%2Fwww.ccl.net%2Fchemistry%2Fsearchccl%2Findex.shtml&data=3D05%7C01%7= Ctobias.kraemer%40mu.ie%7C3fec6fff400a46a2fc1a08db1a82857a%7C1454f5ccbb3546= 85bbd98621fd8055c9%7C0%7C0%7C638132920118266536%7CUnknown%7CTWFpbGZsb3d8eyJ= WIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7= C%7C&sdata=3DG%2BtbaYak6nOb2%2BpMkskcrdN2OJ6q%2FGbdRVh8QWFW37w%3D&reserved= =3D0https://eur02.safelinks.protection.outlook.com/?url=3Dhttp%3A%2F%2Fww= w.ccl.net%2Fspammers.txt&data=3D05%7C01%7Ctobias.kraemer%40mu.ie%7C3fec6fff= 400a46a2fc1a08db1a82857a%7C1454f5ccbb354685bbd98621fd8055c9%7C0%7C0%7C63813= 2920118266536%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiL= CJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=3DbkOkhDOdecgCZuTCxWQ4X= bWLX1ix%2BkReNGIrTDYYQ4Q%3D&reserved=3D0 RTFI: https://eur02.safelinks.protection.outlook.com/?url=3Dhttp%3A%2F%2Fww= w.ccl.net%2Fchemistry%2Faboutccl%2Finstructions%2F&data=3D05%7C01%7Ctobias.= kraemer%40mu.ie%7C3fec6fff400a46a2fc1a08db1a82857a%7C1454f5ccbb354685bbd986= 21fd8055c9%7C0%7C0%7C638132920118266536%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4= wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sda= ta=3DZpATtt5mVcwoBaTCESNSbWrVozlfFI0bwH5qDiCTN8E%3D&reserved=3D0 --_000_DB8PR02MB55135D2F7C918247EB0FD8AF8BAD9DB8PR02MB5513eurp_ Content-Type: text/html; charset="Windows-1252" Content-Transfer-Encoding: quoted-printable

Dear Nikunj,

 

 

This is potentially due to a memory issue. But it might be better t= o pose that question in the ORCA Forum. Without more specific detail it=92s= hard to tell what=92s going on.

 

Tobias

 

Dr Tobias Kr=E4mer

Assistant Professor of Inorganic Chemistry

Maynooth University, Maynooth, Co. Kildare, Ireland.

E: tobias.kr= aemer[]mu.ie T: +353 (0)1 474 7517

 

 

From: owner-chemistry+tob= ias.kraemer=3D=3Dmu.ie[]ccl.net <owner-chemistry+tobias.kraemer=3D=3Dmu.i= e[]ccl.net> on behalf of Nikunj Kumar nkk749**gmail.com <owner-chemist= ry[]ccl.net>
Date: Wednesday, 1 March 2023 at 18:26
To: Tobias Kraemer <Tobias.Kraemer[]mu.ie>
Subject: [EXTERNAL] CCL: DLPNO-CCSDT job finished by error terminati= on in MDCI

*Warning*

This email originated from outside of Maynooth University's Mail System. Do= not reply, click links or open attachments unless you recognise the sender= and know the content is safe.

Sent to CCL by: "Nikunj  Kumar" [nkk749++gmail.com]
Hello everyone,

I am trying to do single point calculation using DLPNO-CCSDT in ORCA 5.0.3.= My
job runs for a while and it get terminated by itself showing the following<= br> error:
ORCA finished by error termination in MDCI
Calling Command: mpirun -np 12 --mca opal_common_ucx_opal_mem_hooks


My system consist of 37 atoms/
Can someone please help me on how to deal with this error.



-=3D This is automatically added to each message by the mailing script =3D-=       https://eur02.safelinks.protection.outlook.com/?url=3Dhttp%3A%2F%2Fwww.ccl.= net%2Fcgi-bin%2Fccl%2Fsend_ccl_message&data=3D05%7C01%7Ctobias.kraemer%= 40mu.ie%7C3fec6fff400a46a2fc1a08db1a82857a%7C1454f5ccbb354685bbd98621fd8055= c9%7C0%7C0%7C638132920118110294%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDA= iLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata= =3Dy5Q1vxj5vxBQKywX2%2Ft2kfigZkLZvlAWFz2mw7A2SK8%3D&reserved=3D0       https://eur02.safelinks.protection.outlook.com/?url=3Dhttp%3A%2F%2Fwww.ccl.= net%2Fcgi-bin%2Fccl%2Fsend_ccl_message&data=3D05%7C01%7Ctobias.kraemer%= 40mu.ie%7C3fec6fff400a46a2fc1a08db1a82857a%7C1454f5ccbb354685bbd98621fd8055= c9%7C0%7C0%7C638132920118110294%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDA= iLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata= =3Dy5Q1vxj5vxBQKywX2%2Ft2kfigZkLZvlAWFz2mw7A2SK8%3D&reserved=3D0
Subscribe/Unsubscribe:
      https://eur02.safelinks.protection.outlook.com/?url=3Dhttp%3A%2F%2Fwww.ccl.= net%2Fchemistry%2Fsub_unsub.shtml&data=3D05%7C01%7Ctobias.kraemer%40mu.= ie%7C3fec6fff400a46a2fc1a08db1a82857a%7C1454f5ccbb354685bbd98621fd8055c9%7C= 0%7C0%7C638132920118110294%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQ= IjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=3Dn1jP= uXN10XwFrWVM%2FVUpC%2FCUyOXHxJtg0tH5NsZffhU%3D&reserved=3D0

Before posting, check wait time at: https://eur02.safelinks.protection.outlook.com/?url=3Dhttp%3A%2F%2Fwww.ccl.= net%2F&data=3D05%7C01%7Ctobias.kraemer%40mu.ie%7C3fec6fff400a46a2fc1a08= db1a82857a%7C1454f5ccbb354685bbd98621fd8055c9%7C0%7C0%7C638132920118110294%= 7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWw= iLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=3D%2B7SbuVzeq%2BGadl1utp90Oe81bB9= aZm2psa7RGOvl8Bk%3D&reserved=3D0

Job: https://eur02.safelinks.protection.outlook.com/?url=3Dhttp%3A%2F%2Fwww.ccl.= net%2Fjobs&data=3D05%7C01%7Ctobias.kraemer%40mu.ie%7C3fec6fff400a46a2fc= 1a08db1a82857a%7C1454f5ccbb354685bbd98621fd8055c9%7C0%7C0%7C638132920118266= 536%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1= haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=3DvNxazjt9bL1YyFIshA2GqeG23%2= FQsY9jYbElKjo311cs%3D&reserved=3D0
Conferences: https://eur02.safelinks.protection.outlook.com/?url=3Dhttp%3A%2F%2Fserver.c= cl.net%2Fchemistry%2Fannouncements%2Fconferences%2F&data=3D05%7C01%7Cto= bias.kraemer%40mu.ie%7C3fec6fff400a46a2fc1a08db1a82857a%7C1454f5ccbb354685b= bd98621fd8055c9%7C0%7C0%7C638132920118266536%7CUnknown%7CTWFpbGZsb3d8eyJWIj= oiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7= C&sdata=3DtBLwrfyT%2F2wv2Z6P9aJbCKLa2TAjuWPImqEBpILQEQs%3D&reserved= =3D0

Search Messages: https://eur02.safelinks.protection.outlook.com/?url=3Dhttp%3A%2F%2Fwww.ccl.= net%2Fchemistry%2Fsearchccl%2Findex.shtml&data=3D05%7C01%7Ctobias.kraem= er%40mu.ie%7C3fec6fff400a46a2fc1a08db1a82857a%7C1454f5ccbb354685bbd98621fd8= 055c9%7C0%7C0%7C638132920118266536%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAw= MDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdat= a=3DG%2BtbaYak6nOb2%2BpMkskcrdN2OJ6q%2FGbdRVh8QWFW37w%3D&reserved=3D0
     
https://eur02.safelinks.protection.outlook.com/?url=3Dhttp%3A%2F%2Fwww.ccl.= net%2Fspammers.txt&data=3D05%7C01%7Ctobias.kraemer%40mu.ie%7C3fec6fff40= 0a46a2fc1a08db1a82857a%7C1454f5ccbb354685bbd98621fd8055c9%7C0%7C0%7C6381329= 20118266536%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJ= BTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=3DbkOkhDOdecgCZuTCxWQ= 4XbWLX1ix%2BkReNGIrTDYYQ4Q%3D&reserved=3D0

RTFI: https://eur02.safelinks.protection.outlook.com/?url=3Dhttp%3A%2F%2Fwww.ccl.= net%2Fchemistry%2Faboutccl%2Finstructions%2F&data=3D05%7C01%7Ctobias.kr= aemer%40mu.ie%7C3fec6fff400a46a2fc1a08db1a82857a%7C1454f5ccbb354685bbd98621= fd8055c9%7C0%7C0%7C638132920118266536%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wL= jAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&s= data=3DZpATtt5mVcwoBaTCESNSbWrVozlfFI0bwH5qDiCTN8E%3D&reserved=3D0<= br>

--_000_DB8PR02MB55135D2F7C918247EB0FD8AF8BAD9DB8PR02MB5513eurp_--