From owner-chemistry@ccl.net Thu Mar 2 00:19:00 2023 From: "Nikunj Kumar nkk749++gmail.com" To: CCL Subject: CCL: DLPNO-CCSDT job finished by error termination in MDCI Message-Id: <-54862-230301231854-25057-8sdgjAkOmJSYgSgCtUH87g- -server.ccl.net> X-Original-From: Nikunj Kumar Content-Type: multipart/alternative; boundary="000000000000d8c37d05f5e31f3b" Date: Thu, 2 Mar 2023 09:48:34 +0530 MIME-Version: 1.0 Sent to CCL by: Nikunj Kumar [nkk749[*]gmail.com] --000000000000d8c37d05f5e31f3b Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable Thank you Bradley and Tobias for your prompt response. Sorry, I forgot to add the input file keywords in my previous message. Below are the input file keywords that I am using for my system: !UKS DLPNO-CCSD(T) B3LYP def2-TZVPP RIJCOSX def2/J def2-TZVPP/C TightSCF uno uco %pal nprocs 12 end %maxcore 18000 %scf maxiter 1000 Guess MoRead MOInp "5_i1_bs_tzvpp.gbw" DIISMaxEq 10 DirectResetFreq 20 end %mdci randomize false localize 1 LocMet PM LocTol 1e-6 LocTolRel 1e-8 LocMaxIter 200 end My calculations get through the localization but as soon as it reaches the coupled cluster iterations they get terminated by an error in MDCI. On Thu, 2 Mar 2023 at 01:53, Welch, Bradley welchbr2]*[msu.edu < owner-chemistry!A!ccl.net> wrote: > > Sent to CCL by: "Welch, Bradley" [welchbr2~!~msu.edu] > Without any output I have to ask some generic questions. > > How much memory per cpu have you assigned in your input file? > > Does your computation get through the localization and mp2 > transformations? Have you reached the ccsd iterations? Did the computatio= n > crash at the (T) portion? > > Bradley Welch > > > > > On Mar 1, 2023, at 10:26 AM, Nikunj Kumar nkk749**gmail.com > wrote: > > > > =EF=BB=BF > > Sent to CCL by: "Nikunj Kumar" [nkk749++gmail.com] > > Hello everyone, > > > > I am trying to do single point calculation using DLPNO-CCSDT in ORCA > 5.0.3. My > > job runs for a while and it get terminated by itself showing the > following > > error: > > ORCA finished by error termination in MDCI > > Calling Command: mpirun -np 12 --mca opal_common_ucx_opal_mem_hooks > > > > > > My system consist of 37 atoms/ > > Can someone please help me on how to deal with this error.> > https://urldefense.com/v3/__http://www.ccl.net/cgi-bin/ccl/send_ccl_messa= ge__;!!HXCxUKc!3iZ3Y-RV1pIdZV5-eadYndkLH_WS2aX1Q65gBdiQ9LCK56uGxa2SVzXKTwXH= RDc7aLgC_nmBkj0gB7r8-Qm3GfMFcQ$> > > https://urldefense.com/v3/__http://www.ccl.net/cgi-bin/ccl/send_ccl_messa= ge__;!!HXCxUKc!3iZ3Y-RV1pIdZV5-eadYndkLH_WS2aX1Q65gBdiQ9LCK56uGxa2SVzXKTwXH= RDc7aLgC_nmBkj0gB7r8-Qm3GfMFcQ$> > > https://urldefense.com/v3/__http://www.ccl.net/chemistry/sub_unsub.shtml_= _;!!HXCxUKc!3iZ3Y-RV1pIdZV5-eadYndkLH_WS2aX1Q65gBdiQ9LCK56uGxa2SVzXKTwXHRDc= 7aLgC_nmBkj0gB7r8-QkkCtoYMw$ > > > > Before posting, check wait time at: > https://urldefense.com/v3/__http://www.ccl.net__;!!HXCxUKc!3iZ3Y-RV1pIdZV= 5-eadYndkLH_WS2aX1Q65gBdiQ9LCK56uGxa2SVzXKTwXHRDc7aLgC_nmBkj0gB7r8-QkHVlmxD= Q$ > > > > Job: > https://urldefense.com/v3/__http://www.ccl.net/jobs__;!!HXCxUKc!3iZ3Y-RV1= pIdZV5-eadYndkLH_WS2aX1Q65gBdiQ9LCK56uGxa2SVzXKTwXHRDc7aLgC_nmBkj0gB7r8-Qmr= -oYOzw$ > > > Conferences: > https://urldefense.com/v3/__http://server.ccl.net/chemistry/announcements= /conferences/__;!!HXCxUKc!3iZ3Y-RV1pIdZV5-eadYndkLH_WS2aX1Q65gBdiQ9LCK56uGx= a2SVzXKTwXHRDc7aLgC_nmBkj0gB7r8-QnYn04CSA$ > > > > Search Messages: > https://urldefense.com/v3/__http://www.ccl.net/chemistry/searchccl/index.= shtml__;!!HXCxUKc!3iZ3Y-RV1pIdZV5-eadYndkLH_WS2aX1Q65gBdiQ9LCK56uGxa2SVzXKT= wXHRDc7aLgC_nmBkj0gB7r8-Qm5HGhXyQ$> > > https://urldefense.com/v3/__http://www.ccl.net/spammers.txt__;!!HXCxUKc!3= iZ3Y-RV1pIdZV5-eadYndkLH_WS2aX1Q65gBdiQ9LCK56uGxa2SVzXKTwXHRDc7aLgC_nmBkj0g= B7r8-Qn5hpGJ4w$ > > > > RTFI: > https://urldefense.com/v3/__http://www.ccl.net/chemistry/aboutccl/instruc= tions/__;!!HXCxUKc!3iZ3Y-RV1pIdZV5-eadYndkLH_WS2aX1Q65gBdiQ9LCK56uGxa2SVzXK= TwXHRDc7aLgC_nmBkj0gB7r8-Qkc0NUTJg$ > > > > > > > > -=3D This is automatically added to each message by the mailing script = =3D-> > > --=20 Nikunj Kumar Research Scholar Chemistry Department IIT Roorkee --000000000000d8c37d05f5e31f3b Content-Type: text/html; charset="UTF-8" Content-Transfer-Encoding: quoted-printable
Thank you Bradley and Tobias for your prompt response.
Sorry, I forgot to add the input file keywords in my previo= us message. Below are the input file=C2=A0 keywords that I am using for my = system:

!UKS DLPNO-CCSD(T) B3LYP =C2=A0def2-TZVPP = RIJCOSX def2/J def2-TZVPP/C TightSCF =C2=A0uno uco

%pal nprocs 12 en= d
%maxcore 18000

%scf
maxiter 1000
Guess MoRead
MOInp &q= uot;5_i1_bs_tzvpp.gbw"
DIISMaxEq 10
DirectResetFreq 20
end
%mdci
=C2=A0 =C2=A0 randomize false
=C2=A0 =C2=A0 localize 1
= =C2=A0 =C2=A0 LocMet PM
=C2=A0 =C2=A0 LocTol 1e-6
=C2=A0 =C2=A0 LocTo= lRel 1e-8
=C2=A0 =C2=A0 LocMaxIter 200
end


My calculations get through the localization but as soon = as it reaches the coupled cluster iterations they=C2=A0get terminated by an= error in MDCI.




On Thu, 2 Mar 2023 a= t 01:53, Welch, Bradley welchbr2]*[msu.edu <owner-chemistry!A!ccl.net> wrote:

Sent to CCL by: "Welch, Bradley" [welchbr2~!~msu.edu]
Without any output I have to ask some generic questions.

How much memory per cpu have you assigned in your input file?

Does your computation get through the localization and mp2 transformations?= Have you reached the ccsd iterations? Did the computation crash at the (T)= portion?

Bradley Welch



> On Mar 1, 2023, at 10:26 AM, Nikunj Kumar nkk749**gmail.com <owner-chemi= stry .. ccl= .net> wrote:
>
> =EF=BB=BF
> Sent to CCL by: "Nikunj=C2=A0 Kumar" [nkk749++gmail.com]
> Hello everyone,
>
> I am trying to do single point calculation using DLPNO-CCSDT in ORCA 5= .0.3. My
> job runs for a while and it get terminated by itself showing the follo= wing
> error:
> ORCA finished by error termination in MDCI
> Calling Command: mpirun -np 12 --mca opal_common_ucx_opal_mem_hooks >
>
> My system consist of 37 atoms/
> Can someone please help me on how to deal with this error.>=C2=A0 = =C2=A0 =C2=A0 https://urldefense.com/v3/__http://www.ccl.net/cgi-bin/cc= l/send_ccl_message__;!!HXCxUKc!3iZ3Y-RV1pIdZV5-eadYndkLH_WS2aX1Q65gBdiQ9LCK= 56uGxa2SVzXKTwXHRDc7aLgC_nmBkj0gB7r8-Qm3GfMFcQ$>=C2=A0 =C2=A0 =C2=A0= https://urldefense.com/v3/__http://www.ccl.net/cgi-bin/ccl/send_ccl_me= ssage__;!!HXCxUKc!3iZ3Y-RV1pIdZV5-eadYndkLH_WS2aX1Q65gBdiQ9LCK56uGxa2SVzXKT= wXHRDc7aLgC_nmBkj0gB7r8-Qm3GfMFcQ$>=C2=A0 =C2=A0 =C2=A0 https://url= defense.com/v3/__http://www.ccl.net/chemistry/sub_unsub.shtml__;!!HXCxUKc!3= iZ3Y-RV1pIdZV5-eadYndkLH_WS2aX1Q65gBdiQ9LCK56uGxa2SVzXKTwXHRDc7aLgC_nmBkj0g= B7r8-QkkCtoYMw$
>
> Before posting, check wait time at: https://urldefense.com/v3/__http://www.ccl.net__;!!HXCxUKc!= 3iZ3Y-RV1pIdZV5-eadYndkLH_WS2aX1Q65gBdiQ9LCK56uGxa2SVzXKTwXHRDc7aLgC_nmBkj0= gB7r8-QkHVlmxDQ$
>
> Job: https://ur= ldefense.com/v3/__http://www.ccl.net/jobs__;!!HXCxUKc!3iZ3Y-RV1pIdZV5-eadYn= dkLH_WS2aX1Q65gBdiQ9LCK56uGxa2SVzXKTwXHRDc7aLgC_nmBkj0gB7r8-Qmr-oYOzw$= =C2=A0
> Conferences: https://urldefense.com/v3/__http://server= .ccl.net/chemistry/announcements/conferences/__;!!HXCxUKc!3iZ3Y-RV1pIdZV5-e= adYndkLH_WS2aX1Q65gBdiQ9LCK56uGxa2SVzXKTwXHRDc7aLgC_nmBkj0gB7r8-QnYn04CSA$<= /a>
>
> Search Messages:
https://urldefense.com/v3/__http://www.ccl.net= /chemistry/searchccl/index.shtml__;!!HXCxUKc!3iZ3Y-RV1pIdZV5-eadYndkLH_WS2a= X1Q65gBdiQ9LCK56uGxa2SVzXKTwXHRDc7aLgC_nmBkj0gB7r8-Qm5HGhXyQ$>=C2=A0= =C2=A0 =C2=A0 https://urldefense.com/v3/__http://www.ccl.net/spammers.txt__;!!HXCxUKc!= 3iZ3Y-RV1pIdZV5-eadYndkLH_WS2aX1Q65gBdiQ9LCK56uGxa2SVzXKTwXHRDc7aLgC_nmBkj0= gB7r8-Qn5hpGJ4w$
>
> RTFI: https://urldefense.com/v3/__http://www.ccl.net/chemistry= /aboutccl/instructions/__;!!HXCxUKc!3iZ3Y-RV1pIdZV5-eadYndkLH_WS2aX1Q65gBdi= Q9LCK56uGxa2SVzXKTwXHRDc7aLgC_nmBkj0gB7r8-Qkc0NUTJg$
>
>



-=3D This is automatically added to each message by the mailing script =3D-=
E-mail to subscribers: CHEMISTRY!A!ccl.net or use:
=C2=A0 =C2=A0 =C2=A0 http://www.ccl.net/cgi-bin/ccl/s= end_ccl_message

E-mail to administrators: CHEMISTRY-REQUEST!A!ccl.net or use
=C2=A0 =C2=A0 =C2=A0 http://www.ccl.net/cgi-bin/ccl/s= end_ccl_message
=C2=A0 =C2=A0 =C2=A0 http://www.ccl.net/chemistry/sub_un= sub.shtml

Before posting, check wait time at: http://www.ccl.net

Job: http://www.ccl.net/jobs
Conferences: http://server.ccl.net/chemist= ry/announcements/conferences/

Search Messages: http://www.ccl.net/chemistry/sear= chccl/index.shtml
=C2=A0 =C2=A0 =C2=A0 http://www.ccl.net/spammers.txt

RTFI: http://www.ccl.net/chemistry/aboutccl/ins= tructions/




--
Nikunj Kumar
Research Scholar
Chemistry Dep= artment
IIT Roorkee
--000000000000d8c37d05f5e31f3b-- From owner-chemistry@ccl.net Thu Mar 2 08:39:00 2023 From: "Cheng Fei Phung feiphung|hotmail.com" To: CCL Subject: CCL:G: Help with DFT convergence failure for Fe2CO2 in Gaussian software Message-Id: <-54863-230302083834-19330-Qi9LyZYiMyWKxDy1JdWCNg|,|server.ccl.net> X-Original-From: Cheng Fei Phung Content-Language: en-US Content-Type: multipart/alternative; boundary="_000_SEYPR06MB551453E53F57FE6C7CAB8FB0C1B29SEYPR06MB5514apcp_" Date: Thu, 2 Mar 2023 13:38:05 +0000 MIME-Version: 1.0 Sent to CCL by: Cheng Fei Phung [feiphung^-^hotmail.com] --_000_SEYPR06MB551453E53F57FE6C7CAB8FB0C1B29SEYPR06MB5514apcp_ Content-Type: text/plain; charset="us-ascii" Content-Transfer-Encoding: quoted-printable Hi, the following is from chatGPT, what do you guys think ? When using the 6-311G basis set, it is common to add diffuse functions to i= mprove the description of electron correlation and dispersion interactions.= One commonly used set of diffuse functions is the "polarization-consistent= basis set" (pcS-n, where n is an integer), which adds diffuse functions to= the valence and polarization sets in a consistent way. For Fe2+ ferrous ion, a suitable choice of diffuse functions would depend o= n the level of accuracy required and the size of the system. As a starting = point, you could consider adding diffuse functions up to the pcS-4 level, w= hich would add 4 sets of diffuse functions to the 6-311G basis set. To specify the pcS-4 basis set in Gaussian, you can use the following basis= set specification: ``` # opt umn15l/6-311++g(d,p) scrf=3D(solvent=3Dwater) geom=3Dconnectivity Fe2CO2_OPT 2 3 Fe 2.74538330 8.28679554 5.00000000 O 4.55208397 8.06717607 5.00000000 C 5.30819317 9.07309328 5.00000000 O 5.97838127 9.96470142 5.00000000 1 2 1.0 2 3 2.0 3 4 3.0 4 Fe S 4 6-311G(d,p) Fe 4,4,4,4,4,4 **** C S 1 6-311G(d,p) C 3,3,3,3,3,3 **** O S 2 6-311G(d,p) O 3,3,3,3,3,3 **** ``` In this input file, the "S" keyword specifies that diffuse functions should= be added to the basis set, and the "4" after "Fe S" indicates that 4 sets = of diffuse functions should be added to the iron atom. The same format is u= sed for the carbon and oxygen atoms. It is also worth noting that the use of solvent models, such as the SCRF mo= del with water as the solvent, can further improve the accuracy of calculat= ions by including the effects of solvation. However, the choice of solvent = model and the level of theory used for the calculation of solvent effects c= an also affect the accuracy of the results. ________________________________ > From: owner-chemistry+feiphung=3D=3Dhotmail.com{}ccl.net on behalf of David Shobe shobedavid]^[gmai= l.com Sent: Wednesday, March 1, 2023 7:53 PM To: Phung, Cheng Fei Subject: CCL:G: Help with DFT convergence failure for Fe2CO2 in Gaussian so= ftware Dear Cheng Fei Phung -- Isolated Fe^2+ is a quintuplet in the ground state. The coordination with t= he CO2 molecule may change it to a different electronic state, most likely = to a triplet. The charge and multiplicity are specified by replacing the "0 1" line with = "2 5" for the quintuplet or "2 3" for the triplet. The "++" in GaussView is= a red herring (if you don't know this expression, it refers to a misleadin= g clue), as the "++" refers to diffuse functions in the basis set. Good luck! Calculations of transition metals are difficult. I should warn y= ou that even if you get a converged SCF, it might not be the correct electr= onic state. Take a look at the manual under the keywords SCF and stable for= more information. --David Shobe On Wed, Mar 1, 2023, 2:48 AM Cheng Fei Phung feiphung-*-hotmail.com > wr= ote: Hi, Since my messages contains the image and is longer than a limit for general= distribution, the CCL Admin saved my message under http://www.ccl.net/large_message/2023-02-28-LongMessage.html so please open this link to read my response Note that I am doing Fe2+ ferrous ion for MOF carbon capture What do you guys think about the following xtb result from https://calcus.c= loud/ ? step_000_DFT.Geometrical_Optimisation_Result.xyz : 4 energy: -13.349149310898 gnorm: 0.000502022323 xtb: 6.5.1 (579679a) Fe 2.73292919494009 7.81690557181600 4.999999999914= 02 O 4.23822629938734 8.62616541285678 4.999758633720= 67 C 5.28034049639189 9.19333556707946 5.000513677205= 69 O 6.33254571928068 9.75535975824776 4.999727689159= 61 Regards, Cheng Fei Phung ________________________________ > From: owner-chemistry+feiphung=3D=3Dhotmail.com_-_ccl.net > on behalf of Igors Mihailovs igorsm_._cfi.lu.lv > Sent: Sunday, February 26, 2023 10:50 PM To: Phung, Cheng Fei = > Subject: CCL:G: Re: CCL:G: Help with DFT convergence failure for Fe2CO2 in = Gaussian software Dear Cheng Fei Phung, I would use something like MN15 or MN15L, and a basis set with at least som= e polarization (6-311G(d,p), for example). Especially if I had to perform s= omething like a token computation in order to get someone's experimental re= sults published. Trying to converge B3LYP for a transition metal compound may take more time= than the options described above... Best regards, Igors Mihailovs former employee at ISSP UL On February 25, 2023 12:09:02 PM GMT+02:00, "Cheng Fei Phung feiphung=3D-= =3Dhotmail.com" > wrote: Sent to CCL by: "Cheng Fei Phung" [feiphung{:}hotmail.com] With the following gaussian16 gjf input file, I got some convergence failur= e issues. Could anyone help ? Gaussian input gjf file ``` %chk=3Dstep_000_DFT.chk # opt b3lyp/6-31g geom=3Dconnectivity Fe2CO2_OPT 0 1 Fe 2.74538330 8.28679554 5.00000000 O 4.55208397 8.06717607 5.00000000 C 5.30819317 9.07309328 5.00000000 O 5.97838127 9.96470142 5.00000000 1 2 1.0 2 3 2.0 3 4 3.0 4 ``` Gaussian log file ``` %chk=3Dstep_000_DFT.chk ________________________________ # opt b3lyp/6-31g geom=3Dconnectivity ________________________________ 1/18=3D20,19=3D15,26=3D3,38=3D1,57=3D2/1,3; 2/9=3D110,12=3D2,17=3D6,18=3D5,40=3D1/2; 3/5=3D1,6=3D6,11=3D2,25=3D1,30=3D1,71=3D1,74=3D-5/1,2,3; 4//1; 5/5=3D2,38=3D5/2; 6/7=3D2,8=3D2,9=3D2,10=3D2,28=3D1/1; 7//1,2,3,16; 1/18=3D20,19=3D15,26=3D3/3(2); 2/9=3D110/2; 99//99; 2/9=3D110/2; 3/5=3D1,6=3D6,11=3D2,25=3D1,30=3D1,71=3D1,74=3D-5/1,2,3; 4/5=3D5,16=3D3,69=3D1/1; 5/5=3D2,38=3D5/2; 7//1,2,3,16; 1/18=3D20,19=3D15,26=3D3/3(-5); 2/9=3D110/2; 6/7=3D2,8=3D2,9=3D2,10=3D2,19=3D2,28=3D1/1; 99/9=3D1/99; ________________________________ Fe2CO2_OPT ________________________________ Symbolic Z-matrix: Charge =3D 0 Multiplicity =3D 1 Fe 2.74538 8.2868 5. O 4.55208 8.06718 5. C 5.30819 9.07309 5. O 5.97838 9.9647 5. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ________________________________ ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- --------------------= ------ ! Name Definition Value Derivative Info. = ! ________________________________ ! R1 R(1,2) 1.82 estimate D2E/DX2 = ! ! R2 R(2,3) 1.2584 estimate D2E/DX2 = ! ! R3 R(3,4) 1.1154 estimate D2E/DX2 = ! ! A1 A(1,2,3) 120.0 estimate D2E/DX2 = ! ! A2 L(2,3,4,1,-1) 180.0 estimate D2E/DX2 = ! ! A3 L(2,3,4,1,-2) 180.0 estimate D2E/DX2 = ! ________________________________ Trust Radius=3D3.00D-01 FncErr=3D1.00D-07 GrdErr=3D1.00D-06 EigMax=3D2.50D= +02 EigMin=3D1.00D-04 Number of steps in this run=3D 20 maximum allowed number of steps=3D = 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: ________________________________ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z ________________________________ 1 26 0 2.745383 8.286796 5.000000 2 8 0 4.552084 8.067176 5.000000 3 6 0 5.308193 9.073093 5.000000 4 8 0 5.978381 9.964701 5.000000 ________________________________ Distance matrix (angstroms): 1 2 3 4 1 Fe 0.000000 2 O 1.820000 0.000000 3 C 2.680720 1.258400 0.000000 4 O 3.642478 2.373800 1.115400 0.000000 Stoichiometry CFeO2 Framework group CS[SG(CFeO2)] Deg. of freedom 5 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: ________________________________ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z ________________________________ 1 26 0 -1.018287 -0.652610 -0.000000 2 8 0 -0.000000 0.855864 0.000000 3 6 0 1.255302 0.767619 0.000000 4 8 0 2.367956 0.689403 0.000000 ________________________________ Rotational constants (GHZ): 37.1744583 2.4897380 = 2.3334561 Standard basis: 6-31G (6D, 7F) There are 42 symmetry adapted cartesian basis functions of A' symmetry= . There are 14 symmetry adapted cartesian basis functions of A" symmetry= . There are 42 symmetry adapted basis functions of A' symmetry. There are 14 symmetry adapted basis functions of A" symmetry. 56 basis functions, 160 primitive gaussians, 56 cartesian basis fu= nctions 24 alpha electrons 24 beta electrons nuclear repulsion energy 178.7145642873 Hartrees. NAtoms=3D 4 NActive=3D 4 NUniq=3D 4 SFac=3D 1.00D+00 NAtFMM=3D = 60 NAOKFM=3DF Big=3DF Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis=3D 56 RedAO=3D T EigKep=3D 1.76D-03 NBF=3D 42 14 NBsUse=3D 56 1.00D-06 EigRej=3D -1.00D+00 NBFU=3D 42 14 ExpMin=3D 4.11D-02 ExpMax=3D 6.11D+04 ExpMxC=3D 9.18D+03 IAcc=3D3 IRadAn= =3D 5 AccDes=3D 0.00D+00 Harris functional with IExCor=3D 402 and IRadAn=3D 5 diagonalized f= or initial guess. HarFok: IExCor=3D 402 AccDes=3D 0.00D+00 IRadAn=3D 5 IDoV=3D 1 U= seB2=3DF ITyADJ=3D14 ICtDFT=3D 3500011 ScaDFX=3D 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=3DF IPFlag=3D 0 FMFlag=3D 100000 FMFlg1=3D = 0 NFxFlg=3D 0 DoJE=3DT BraDBF=3DF KetDBF=3DT FulRan=3DT wScrn=3D 0.000000 ICntrl=3D 500 IOpCl=3D 0 I1Cent=3D 200= 000004 NGrid=3D 0 NMat0=3D 1 NMatS0=3D 1 NMatT0=3D 0 NMatD0=3D 1 NMtDS= 0=3D 0 NMtDT0=3D 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') Virtual (A") (A') (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A") (A') (A') (A') (A') (A') The electronic state of the initial guess is 1-A'. Keep R1 ints in memory in symmetry-blocked form, NReq=3D2159799. Requested convergence on RMS density matrix=3D1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=3D1.00D-06. Requested convergence on energy=3D1.00D-06. No special actions if energy rises. EnCoef did 3 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 2 forward-backward iterations EnCoef did 2 forward-backward iterations SCF Done: E(RB3LYP) =3D -1451.84990065 A.U. after 22 cycles NFock=3D 22 Conv=3D0.66D-08 -V/T=3D 2.0016 ********************************************************************** Population analysis using the SCF Density. ********************************************************************** Orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') Virtual (A") (A') (A") (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') The electronic state is 1-A'. Alpha occ. eigenvalues -- -256.04016 -29.99951 -25.87326 -25.85859 -25.85= 805 Alpha occ. eigenvalues -- -19.31120 -19.28742 -10.45249 -3.41064 -2.20= 510 Alpha occ. eigenvalues -- -2.17421 -2.16694 -1.26882 -1.17261 -0.64= 217 Alpha occ. eigenvalues -- -0.58881 -0.57965 -0.57594 -0.44473 -0.43= 175 Alpha occ. eigenvalues -- -0.22416 -0.22137 -0.20382 -0.15336 Alpha virt. eigenvalues -- -0.07558 -0.07420 -0.03518 -0.03067 -0.02= 764 Alpha virt. eigenvalues -- -0.00807 0.00082 0.10567 0.12952 0.29= 804 Alpha virt. eigenvalues -- 0.31948 0.36712 0.41870 0.45104 0.54= 770 Alpha virt. eigenvalues -- 0.63606 0.74556 0.85137 0.88355 0.92= 857 Alpha virt. eigenvalues -- 0.96917 1.00808 1.01595 1.25495 1.50= 958 Alpha virt. eigenvalues -- 1.51252 1.55992 1.59723 1.70732 1.86= 833 Alpha virt. eigenvalues -- 2.01356 20.37339 Condensed to atoms (all electrons): 1 2 3 4 1 Fe 26.065938 -0.058002 0.083106 -0.030239 2 O -0.058002 8.304619 0.168196 0.010116 3 C 0.083106 0.168196 4.724609 0.417125 4 O -0.030239 0.010116 0.417125 7.724230 Mulliken charges: 1 1 Fe -0.060803 2 O -0.424929 3 C 0.606964 4 O -0.121232 Sum of Mulliken charges =3D -0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 Fe -0.060803 2 O -0.424929 3 C 0.606964 4 O -0.121232 Electronic spatial extent (au): =3D 453.0609 Charge=3D -0.0000 electrons Dipole moment (field-independent basis, Debye): X=3D 1.6708 Y=3D 1.8514 Z=3D = -0.0000 Tot=3D 2.4938 Quadrupole moment (field-independent basis, Debye-Ang): XX=3D -35.0872 YY=3D -34.7815 ZZ=3D = -32.5686 XY=3D 0.8912 XZ=3D 0.0000 YZ=3D = 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX=3D -0.9415 YY=3D -0.6357 ZZ=3D = 1.5772 XY=3D 0.8912 XZ=3D 0.0000 YZ=3D = 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX=3D -8.4875 YYY=3D 8.6001 ZZZ=3D = -0.0000 XYY=3D 3.5470 XXY=3D 1.7153 XXZ=3D 0.0000 XZZ=3D = 0.7336 YZZ=3D 1.9407 YYZ=3D -0.0000 XYZ=3D -0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX=3D -415.5041 YYYY=3D -171.1039 ZZZZ=3D = -55.1637 XXXY=3D -84.4690 XXXZ=3D 0.0000 YYYX=3D -75.7822 YYYZ=3D = 0.0000 ZZZX=3D 0.0000 ZZZY=3D 0.0000 XXYY=3D -90.7121 XXZZ=3D = -70.9019 YYZZ=3D -36.9432 XXYZ=3D 0.0000 YYXZ=3D 0.0000 ZZXY=3D = -24.7602 N-N=3D 1.787145642873D+02 E-N=3D-3.807626875025D+03 KE=3D 1.449497603530D= +03 Symmetry A' KE=3D 1.287179877057D+03 Symmetry A" KE=3D 1.623177264732D+02 Calling FoFJK, ICntrl=3D 2127 FMM=3DF ISym2X=3D1 I1Cent=3D 0 IOpClX= =3D 0 NMat=3D1 NMatS=3D1 NMatT=3D0. ***** Axes restored to original set ***** ________________________________ Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ________________________________ 1 26 -0.048820174 0.005157682 0.000000000 2 8 0.068584660 0.015861998 0.000000000 3 6 -0.104728901 -0.126023309 0.000000000 4 8 0.084964415 0.105003629 -0.000000000 ________________________________ Cartesian Forces: Max 0.126023309 RMS 0.066118707 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=3D4. Internal Forces: Max 0.134986320 RMS 0.059949734 Search for a local minimum. Step number 1 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. The second derivative matrix: R1 R2 R3 A1 A2 R1 0.22791 R2 0.00000 0.80209 R3 0.00000 0.00000 1.62060 A1 0.00000 0.00000 0.00000 0.25000 A2 0.00000 0.00000 0.00000 0.00000 0.05456 A3 0.00000 0.00000 0.00000 0.00000 0.00000 A3 A3 0.05456 ITU=3D 0 Eigenvalues --- 0.05456 0.05456 0.22791 0.25000 0.80209 Eigenvalues --- 1.62060 RFO step: Lambda=3D-2.30438557D-02 EMin=3D 5.45649275D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)=3D 0.10911805 RMS(Int)=3D 0.00403264 Iteration 2 RMS(Cart)=3D 0.00524126 RMS(Int)=3D 0.00001569 Iteration 3 RMS(Cart)=3D 0.00001737 RMS(Int)=3D 0.00000000 Iteration 4 RMS(Cart)=3D 0.00000000 RMS(Int)=3D 0.00000000 ClnCor: largest displacement from symmetrization is 2.67D-10 for atom = 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.43930 0.04909 0.00000 0.19560 0.19560 3.63490 R2 2.37803 -0.02868 0.00000 -0.03476 -0.03476 2.34327 R3 2.10780 0.13499 0.00000 0.08213 0.08213 2.18993 A1 2.09440 0.00265 0.00000 0.00969 0.00969 2.10408 A2 3.14159 0.01018 0.00000 0.13112 0.13112 3.27271 A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.134986 0.000450 NO RMS Force 0.059950 0.000300 NO Maximum Displacement 0.164913 0.001800 NO RMS Displacement 0.111408 0.001200 NO Predicted change in Energy=3D-1.225354D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: ________________________________ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z ________________________________ 1 26 0 2.658115 8.232499 5.000000 2 8 0 4.576263 8.089032 5.000000 3 6 0 5.284531 9.106861 5.000000 4 8 0 6.065132 9.963375 5.000000 ________________________________ Distance matrix (angstroms): 1 2 3 4 1 Fe 0.000000 2 O 1.923506 0.000000 3 C 2.768135 1.240008 0.000000 4 O 3.821478 2.393719 1.158859 0.000000 Stoichiometry CFeO2 Framework group CS[SG(CFeO2)] Deg. of freedom 5 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: ________________________________ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z ________________________________ 1 26 0 -1.022093 -0.757193 -0.000000 2 8 0 0.000000 0.872286 0.000000 3 6 0 1.239558 0.838897 0.000000 4 8 0 2.392133 0.959419 0.000000 ________________________________ Rotational constants (GHZ): 40.3135828 2.2660782 = 2.1454781 Standard basis: 6-31G (6D, 7F) There are 42 symmetry adapted cartesian basis functions of A' symmetry= . There are 14 symmetry adapted cartesian basis functions of A" symmetry= . There are 42 symmetry adapted basis functions of A' symmetry. There are 14 symmetry adapted basis functions of A" symmetry. 56 basis functions, 160 primitive gaussians, 56 cartesian basis fu= nctions 24 alpha electrons 24 beta electrons nuclear repulsion energy 172.3989508234 Hartrees. NAtoms=3D 4 NActive=3D 4 NUniq=3D 4 SFac=3D 1.00D+00 NAtFMM=3D = 60 NAOKFM=3DF Big=3DF Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis=3D 56 RedAO=3D T EigKep=3D 1.76D-03 NBF=3D 42 14 NBsUse=3D 56 1.00D-06 EigRej=3D -1.00D+00 NBFU=3D 42 14 Initial guess from the checkpoint file: "step_000_DFT.chk" B after Tr=3D 0.000000 0.000000 -0.000000 Rot=3D 0.999288 -0.000000 -0.000000 -0.037733 Ang=3D -4.= 32 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') Virtual (A") (A') (A") (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') ExpMin=3D 4.11D-02 ExpMax=3D 6.11D+04 ExpMxC=3D 9.18D+03 IAcc=3D3 IRadAn= =3D 5 AccDes=3D 0.00D+00 Harris functional with IExCor=3D 402 and IRadAn=3D 5 diagonalized f= or initial guess. HarFok: IExCor=3D 402 AccDes=3D 0.00D+00 IRadAn=3D 5 IDoV=3D 1 U= seB2=3DF ITyADJ=3D14 ICtDFT=3D 3500011 ScaDFX=3D 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=3DF IPFlag=3D 0 FMFlag=3D 100000 FMFlg1=3D = 0 NFxFlg=3D 0 DoJE=3DT BraDBF=3DF KetDBF=3DT FulRan=3DT wScrn=3D 0.000000 ICntrl=3D 500 IOpCl=3D 0 I1Cent=3D 200= 000004 NGrid=3D 0 NMat0=3D 1 NMatS0=3D 1 NMatT0=3D 0 NMatD0=3D 1 NMtDS= 0=3D 0 NMtDT0=3D 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=3D2159799. Requested convergence on RMS density matrix=3D1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=3D1.00D-06. Requested convergence on energy=3D1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) =3D -1451.86533909 A.U. after 18 cycles NFock=3D 18 Conv=3D0.23D-08 -V/T=3D 2.0018 Calling FoFJK, ICntrl=3D 2127 FMM=3DF ISym2X=3D1 I1Cent=3D 0 IOpClX= =3D 0 NMat=3D1 NMatS=3D1 NMatT=3D0. ***** Axes restored to original set ***** ________________________________ Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ________________________________ 1 26 -0.021775369 0.002114287 0.000000000 2 8 0.036955110 0.014737157 0.000000000 3 6 -0.039695691 -0.040384091 0.000000000 4 8 0.024515951 0.023532647 -0.000000000 ________________________________ Cartesian Forces: Max 0.040384091 RMS 0.023135364 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=3D4. Internal Forces: Max 0.033908365 RMS 0.018980685 Search for a local minimum. Step number 2 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 DE=3D -1.54D-02 DEPred=3D-1.23D-02 R=3D 1.26D+00 TightC=3DF SS=3D 1.41D+00 RLast=3D 2.52D-01 DXNew=3D 5.0454D-01 7.5596D-= 01 Trust test=3D 1.26D+00 RLast=3D 2.52D-01 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.18668 R2 0.04604 0.76870 R3 -0.08608 0.12904 1.50110 A1 0.00316 0.00128 0.01538 0.25104 A2 -0.00501 0.00702 -0.00784 0.00077 0.05407 A3 0.00000 -0.00000 0.00000 0.00000 0.00000 A3 A3 0.05456 ITU=3D 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.05364 0.05456 0.17607 0.25109 0.75296 Eigenvalues --- 1.52783 RFO step: Lambda=3D-2.40357398D-03 EMin=3D 5.36398691D-02 Quartic linear search produced a step of 0.74433. Iteration 1 RMS(Cart)=3D 0.12055350 RMS(Int)=3D 0.00970928 Iteration 2 RMS(Cart)=3D 0.01171440 RMS(Int)=3D 0.00007671 Iteration 3 RMS(Cart)=3D 0.00008339 RMS(Int)=3D 0.00000000 Iteration 4 RMS(Cart)=3D 0.00000000 RMS(Int)=3D 0.00000000 ClnCor: largest displacement from symmetrization is 4.24D-12 for atom = 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.63490 0.02187 0.14559 0.04745 0.19304 3.82794 R2 2.34327 -0.02250 -0.02587 -0.02538 -0.05125 2.29202 R3 2.18993 0.03391 0.06113 -0.01980 0.04133 2.23126 A1 2.10408 -0.00172 0.00721 -0.01780 -0.01059 2.09349 A2 3.27271 0.00495 0.09759 0.11009 0.20769 3.48040 A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.033908 0.000450 NO RMS Force 0.018981 0.000300 NO Maximum Displacement 0.157853 0.001800 NO RMS Displacement 0.126480 0.001200 NO Predicted change in Energy=3D-2.644271D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: ________________________________ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z ________________________________ 1 26 0 2.586226 8.170844 5.000000 2 8 0 4.611490 8.130764 5.000000 3 6 0 5.237660 9.169515 5.000000 4 8 0 6.148665 9.920644 5.000000 ________________________________ Distance matrix (angstroms): 1 2 3 4 1 Fe 0.000000 2 O 2.025661 0.000000 3 C 2.833275 1.212885 0.000000 4 O 3.968976 2.359359 1.180730 0.000000 Stoichiometry CFeO2 Framework group CS[SG(CFeO2)] Deg. of freedom 5 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: ________________________________ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z ________________________________ 1 26 0 -0.994550 -0.879340 -0.000000 2 8 0 -0.000000 0.885361 0.000000 3 6 0 1.212831 0.896868 0.000000 4 8 0 2.322666 1.299844 0.000000 ________________________________ Rotational constants (GHZ): 47.4271405 2.0987230 = 2.0097869 Standard basis: 6-31G (6D, 7F) There are 42 symmetry adapted cartesian basis functions of A' symmetry= . There are 14 symmetry adapted cartesian basis functions of A" symmetry= . There are 42 symmetry adapted basis functions of A' symmetry. There are 14 symmetry adapted basis functions of A" symmetry. 56 basis functions, 160 primitive gaussians, 56 cartesian basis fu= nctions 24 alpha electrons 24 beta electrons nuclear repulsion energy 168.0152669884 Hartrees. NAtoms=3D 4 NActive=3D 4 NUniq=3D 4 SFac=3D 1.00D+00 NAtFMM=3D = 60 NAOKFM=3DF Big=3DF Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis=3D 56 RedAO=3D T EigKep=3D 1.76D-03 NBF=3D 42 14 NBsUse=3D 56 1.00D-06 EigRej=3D -1.00D+00 NBFU=3D 42 14 Initial guess from the checkpoint file: "step_000_DFT.chk" B after Tr=3D 0.000000 -0.000000 -0.000000 Rot=3D 0.998838 -0.000000 -0.000000 -0.048193 Ang=3D -5.= 52 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') ExpMin=3D 4.11D-02 ExpMax=3D 6.11D+04 ExpMxC=3D 9.18D+03 IAcc=3D3 IRadAn= =3D 5 AccDes=3D 0.00D+00 Harris functional with IExCor=3D 402 and IRadAn=3D 5 diagonalized f= or initial guess. HarFok: IExCor=3D 402 AccDes=3D 0.00D+00 IRadAn=3D 5 IDoV=3D 1 U= seB2=3DF ITyADJ=3D14 ICtDFT=3D 3500011 ScaDFX=3D 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=3DF IPFlag=3D 0 FMFlag=3D 100000 FMFlg1=3D = 0 NFxFlg=3D 0 DoJE=3DT BraDBF=3DF KetDBF=3DT FulRan=3DT wScrn=3D 0.000000 ICntrl=3D 500 IOpCl=3D 0 I1Cent=3D 200= 000004 NGrid=3D 0 NMat0=3D 1 NMatS0=3D 1 NMatT0=3D 0 NMatD0=3D 1 NMtDS= 0=3D 0 NMtDT0=3D 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=3D2159799. Requested convergence on RMS density matrix=3D1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=3D1.00D-06. Requested convergence on energy=3D1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) =3D -1451.86779894 A.U. after 19 cycles NFock=3D 19 Conv=3D0.32D-08 -V/T=3D 2.0018 Calling FoFJK, ICntrl=3D 2127 FMM=3DF ISym2X=3D1 I1Cent=3D 0 IOpClX= =3D 0 NMat=3D1 NMatS=3D1 NMatT=3D0. ***** Axes restored to original set ***** ________________________________ Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ________________________________ 1 26 -0.002475531 0.002170910 0.000000000 2 8 -0.009275511 -0.015400826 0.000000000 3 6 0.012873515 0.005174131 0.000000000 4 8 -0.001122473 0.008055785 -0.000000000 ________________________________ Cartesian Forces: Max 0.015400826 RMS 0.007028017 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=3D4. Internal Forces: Max 0.017401591 RMS 0.010265616 Search for a local minimum. Step number 3 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 3 DE=3D -2.46D-03 DEPred=3D-2.64D-03 R=3D 9.30D-01 TightC=3DF SS=3D 1.41D+00 RLast=3D 2.91D-01 DXNew=3D 8.4853D-01 8.7386D-= 01 Trust test=3D 9.30D-01 RLast=3D 2.91D-01 DXMaxT set to 8.49D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.14042 R2 0.04009 0.84593 R3 -0.15330 0.08559 1.42002 A1 0.01583 -0.02335 0.04566 0.25643 A2 0.00387 -0.03883 0.02611 0.01417 0.08070 A3 0.00000 -0.00000 0.00000 0.00000 0.00000 A3 A3 0.05456 ITU=3D 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.05456 0.07570 0.11658 0.25847 0.84223 Eigenvalues --- 1.45052 RFO step: Lambda=3D-2.28883397D-03 EMin=3D 5.45649275D-02 Quartic linear search produced a step of -0.27572. Iteration 1 RMS(Cart)=3D 0.11082651 RMS(Int)=3D 0.00968836 Iteration 2 RMS(Cart)=3D 0.01008655 RMS(Int)=3D 0.00002336 Iteration 3 RMS(Cart)=3D 0.00002996 RMS(Int)=3D 0.00000000 Iteration 4 RMS(Cart)=3D 0.00000000 RMS(Int)=3D 0.00000000 ClnCor: largest displacement from symmetrization is 3.37D-09 for atom = 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.82794 0.00252 -0.05323 0.09099 0.03776 3.86570 R2 2.29202 0.01740 0.01413 -0.00542 0.00871 2.30074 R3 2.23126 0.00426 -0.01140 0.02206 0.01067 2.24192 A1 2.09349 -0.00809 0.00292 -0.02802 -0.02510 2.06839 A2 3.48040 -0.01548 -0.05726 -0.11944 -0.17670 3.30370 A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.017402 0.000450 NO RMS Force 0.010266 0.000300 NO Maximum Displacement 0.128723 0.001800 NO RMS Displacement 0.114165 0.001200 NO Predicted change in Energy=3D-1.691720D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: ________________________________ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z ________________________________ 1 26 0 2.587635 8.230504 5.000000 2 8 0 4.627577 8.077882 5.000000 3 6 0 5.286906 9.101397 5.000000 4 8 0 6.081924 9.981983 5.000000 ________________________________ Distance matrix (angstroms): 1 2 3 4 1 Fe 0.000000 2 O 2.045643 0.000000 3 C 2.836286 1.217497 0.000000 4 O 3.908674 2.395981 1.186375 0.000000 Stoichiometry CFeO2 Framework group CS[SG(CFeO2)] Deg. of freedom 5 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: ________________________________ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z ________________________________ --_000_SEYPR06MB551453E53F57FE6C7CAB8FB0C1B29SEYPR06MB5514apcp_ Content-Type: text/html; charset="us-ascii" Content-Transfer-Encoding: quoted-printable
Hi,

the following is from chatGPT, what do you guys think ?


When using the 6-311G basis set, it is common= to add diffuse functions to improve the description of electron correlatio= n and dispersion interactions. One commonly used set of diffuse functions i= s the "polarization-consistent basis set" (pcS-n, where n is an integer), which adds diffuse functions to = the valence and polarization sets in a consistent way.

For Fe2+ ferrous ion, a suitable choice of di= ffuse functions would depend on the level of accuracy required and the size= of the system. As a starting point, you could consider adding diffuse func= tions up to the pcS-4 level, which would add 4 sets of diffuse functions to the 6-311G basis set.

To specify the pcS-4 basis set in Gaussian, y= ou can use the following basis set specification:


```
# opt umn15l/6-311++g(d,p) scrf=3D(solvent=3D= water) geom=3Dconnectivity

Fe2CO2_OPT

2 3
 Fe           &= nbsp;     2.74538330    8.28679554    5.00000= 000
 O           &n= bsp;      4.55208397    8.06717607    5.= 00000000
 C           &n= bsp;      5.30819317    9.07309328    5.= 00000000
 O           &n= bsp;      5.97838127    9.96470142    5.= 00000000

 1 2 1.0
 2 3 2.0
 3 4 3.0
 4

Fe S 4
6-311G(d,p)  Fe 4,4,4,4,4,4
****
C S 1
6-311G(d,p)  C 3,3,3,3,3,3
****
O S 2
6-311G(d,p)  O 3,3,3,3,3,3
****
```


In this input file, the "S" keyword= specifies that diffuse functions should be added to the basis set, and the= "4" after "Fe S" indicates that 4 sets of diffuse func= tions should be added to the iron atom. The same format is used for the carbon and oxygen atoms.

It is also worth noting that the use of solvent models, such as the SCRF mo= del with water as the solvent, can further improve the accuracy of calculat= ions by including the effects of solvation. However, the choice of solvent = model and the level of theory used for the calculation of solvent effects can also affect the accuracy of the= results.




From: owner-chemistry+feiph= ung=3D=3Dhotmail.com{}ccl.net <owner-chemistry+feiphung=3D=3Dhotmail.com{}= ccl.net> on behalf of David Shobe shobedavid]^[gmail.com <owner-chemistry{}ccl.net>
Sent: Wednesday, March 1, 2023 7:53 PM
To: Phung, Cheng Fei <feiphung{}hotmail.com>
Subject: CCL:G: Help with DFT convergence failure for Fe2CO2 in Gaus= sian software
 
Dear Cheng Fei Phung --

Isolated Fe^2+ is a quintuplet in the ground state. The c= oordination with the CO2 molecule may change it to a different electronic s= tate, most likely to a triplet. 

The charge and multiplicity are specified by replacing th= e "0 1" line with "2 5" for the quintuplet or "2 3= " for the triplet. The "++" in GaussView is a red herring (i= f you don't know this expression, it refers to a misleading clue), as the "++" refers to diffuse functions in the basis set. 

Good luck! Calculations of transition metals are difficul= t. I should warn you that even if you get a converged SCF, it might not be = the correct electronic state. Take a look at the manual under the keywords = SCF and stable for more information.


--David Shobe 

On Wed, Mar 1, 2023, 2:48 AM Cheng = Fei Phung feiphung-*-hotmail.com <owner-chemistry::ccl.net> w= rote:
Hi,

Since my messages contains the image and is longer than a limit for general= distribution,
the CCL Admin saved my message under
so please open this link to read my response

Note that I am doing Fe2+ ferrous ion for MOF carbon capture


What do you guys think about the following xtb result from https://calcus.cloud/ ?


4
 energy: -13.349149310898 gnorm: 0.000502022323 xtb: 6.5.1 (57967= 9a)
Fe           2.73292919494009     &= nbsp;  7.81690557181600        4.99999999991402
O            4.23822629938734   &nb= sp;    8.62616541285678        4.999758633720= 67
C            5.28034049639189   &nb= sp;    9.19333556707946        5.000513677205= 69
O            6.33254571928068   &nb= sp;    9.75535975824776        4.999727689159= 61


Regards,
Cheng Fei  Phung


From= : owner-chemistry+feiphung=3D=3Dhotmail.com_-_ccl.net <owner-chemistry+feiphung=3D=3Dhotmail.com_-_ccl.net> on beha= lf of Igors Mihailovs igorsm_._cfi.lu.lv <owner-chemistry_-_ccl.net>
Sent: Sunday, February 26, 2023 10:50 PM
To: Phung, Cheng Fei <
feiphung_-_hotmail.com>
Subject: CCL:G: Re: CCL:G: Help with DFT convergence failure for Fe2= CO2 in Gaussian software
 
Dear Cheng Fei  Phung,

I would use something like MN15 or MN15L, and a basis set with at least som= e polarization (6-311G(d,p), for example). Especially if I had to perform s= omething like a token computation in order to get someone's experimental re= sults published.

Trying to converge B3LYP for a transition metal compound may take more time= than the options described above...

Best regards,
Igors Mihailovs
former employee at ISSP UL


On February 25, 2023 12:09:02 PM GMT+02:00, "Cheng Fei Phung feip= hung=3D-=3Dhotmail.com" <owner-chemistry^-^ccl.net> wrote:

Sent to CCL by: "Cheng Fei Phung" [feiphun= g{:}hot= mail.com]
With the following gaussian16 gjf input file, I got some c= onvergence failure issues.

Could anyone help ?


Gaussian i= nput gjf file

```
%chk=3Dstep_000_DFT.chk
# opt b3lyp/6-31g ge= om=3Dconnectivity

Fe2CO2_OPT

0 1
Fe 2.745= 38330 8.28679554 5.00000000
O 4.55208397 8.06= 717607 5.00000000
C 5.30819317 9.07309328 5.0= 0000000
O 5.97838127 9.96470142 5.00000000
1 2 1.0
2 3 2.0
3 4 3.0
4
```


Gaussian log fil= e

```
%chk=3Dstep_000_DFT.chk
# opt b3lyp/6-31g geom=3Dconne= ctivity
1/18=3D20,19=3D15,26=3D3,38=3D1,57=3D2/1,3;
2/9=3D110,12=3D= 2,17=3D6,18=3D5,40=3D1/2;
3/5=3D1,6=3D6,11=3D2,25=3D1,30=3D1,71=3D1,74= =3D-5/1,2,3;
4//1;
5/5=3D2,38=3D5/2;
6/7=3D2,8=3D2,9=3D2,10=3D2= ,28=3D1/1;
7//1,2,3,16;
1/18=3D20,19=3D15,26=3D3/3(2);
2/9=3D11= 0/2;
99//99;
2/9=3D110/2;
3/5=3D1,6=3D6,11=3D2,25=3D1,30=3D1,71= =3D1,74=3D-5/1,2,3;
4/5=3D5,16=3D3,69=3D1/1;
5/5=3D2,38=3D5/2;
= 7//1,2,3,16;
1/18=3D20,19=3D15,26=3D3/3(-5);
2/9=3D110/2;
6/7= =3D2,8=3D2,9=3D2,10=3D2,19=3D2,28=3D1/1;
99/9=3D1/99;
Fe2CO2_OPT Symbolic Z-matrix:
Charge =3D 0 Multiplicity =3D 1
Fe = 2.74538 8.2868 5.
O 4.55208 8.0671= 8 5.
C 5.30819 9.07309 5.
O = 5.97838 9.9647 5.


GradGradGradGradGradGradGradG= radGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Ini= tialization pass.
! Initial Parameters = !
! (Angstroms and Degrees) !
----------= ---------------- --------------------------
= ! Name Definition Value Derivative Info. = !
! R1 R(1,2) 1.82 estimate D2E/DX2 = !
! R2 R(2,3) 1.2584 estimate= D2E/DX2 !
! R3 R(3,4) 1.1154 = estimate D2E/DX2 !
! A1 A(1,2,3) 120.0= estimate D2E/DX2 !
! A2 L(2,3,4,1,-1) = 180.0 estimate D2E/DX2 !
! A3 L(2,3,4= ,1,-2) 180.0 estimate D2E/DX2 !
Trust= Radius=3D3.00D-01 FncErr=3D1.00D-07 GrdErr=3D1.00D-06 EigMax=3D2.50D+02 Ei= gMin=3D1.00D-04
Number of steps in this run=3D 20 maximum allowed n= umber of steps=3D 100.
GradGradGradGradGradGradGradGradGradGradGradG= radGradGradGradGradGradGrad

Input orientat= ion:
Center Atomic Atomic = Coordinates (Angstroms)
Number Number Type X = Y Z
1 26 0 2.745383 = 8.286796 5.000000
2 8 0 4.552084 8= .067176 5.000000
3 6 0 5.308193 9.= 073093 5.000000
4 8 0 5.978381 9.9= 64701 5.000000
Distance matrix (angstroms):
= 1 2 3 4
1 Fe 0.0000= 00
2 O 1.820000 0.000000
3 C 2.680720 1.258400 = 0.000000
4 O 3.642478 2.373800 1.115400 0.000000
St= oichiometry CFeO2
Framework group CS[SG(CFeO2)]
Deg. of freedom= 5
Full point group CS NOp 2
Largest Abe= lian subgroup CS NOp 2
Largest concise Abelian subgroup = C1 NOp 1
Standard orientation: =
Center Atomic Atomic Coordinates (= Angstroms)
Number Number Type X Y = Z
1 26 0 -1.018287 -0.652610 -0.0= 00000
2 8 0 -0.000000 0.855864 0.00= 0000
3 6 0 1.255302 0.767619 0.000= 000
4 8 0 2.367956 0.689403 0.0000= 00
Rotational constants (GHZ): 37.1744583 2.4897380 = 2.3334561
Standard basis: 6-31G (6D, 7F)
There are 42 = symmetry adapted cartesian basis functions of A' symmetry.
There are = 14 symmetry adapted cartesian basis functions of A" symmetry.
T= here are 42 symmetry adapted basis functions of A' symmetry.
There = are 14 symmetry adapted basis functions of A" symmetry.
56 = basis functions, 160 primitive gaussians, 56 cartesian basis functions=
24 alpha electrons 24 beta electrons
nuclear repuls= ion energy 178.7145642873 Hartrees.
NAtoms=3D 4 NActive=3D = 4 NUniq=3D 4 SFac=3D 1.00D+00 NAtFMM=3D 60 NAOKFM=3DF Big=3DF
Inte= gral buffers will be 131072 words long.
Raffenetti 2 integral format= .
Two-electron integral symmetry is turned on.
One-electron integra= ls computed using PRISM.
NBasis=3D 56 RedAO=3D T EigKep=3D 1.76D-03= NBF=3D 42 14
NBsUse=3D 56 1.00D-06 EigRej=3D -1.00D+00 NBFU= =3D 42 14
ExpMin=3D 4.11D-02 ExpMax=3D 6.11D+04 ExpMxC=3D 9.18D+0= 3 IAcc=3D3 IRadAn=3D 5 AccDes=3D 0.00D+00
Harris functional wit= h IExCor=3D 402 and IRadAn=3D 5 diagonalized for initial guess.
= HarFok: IExCor=3D 402 AccDes=3D 0.00D+00 IRadAn=3D 5 IDoV=3D 1 Us= eB2=3DF ITyADJ=3D14
ICtDFT=3D 3500011 ScaDFX=3D 1.000000 1.000000 1= .000000 1.000000
FoFCou: FMM=3DF IPFlag=3D 0 FMFlag=3D = 100000 FMFlg1=3D 0
NFxFlg=3D 0 DoJE=3DT Bra= DBF=3DF KetDBF=3DT FulRan=3DT
wScrn=3D 0.000000 ICntrl=3D = 500 IOpCl=3D 0 I1Cent=3D 200000004 NGrid=3D 0
NM= at0=3D 1 NMatS0=3D 1 NMatT0=3D 0 NMatD0=3D 1 NMtDS0=3D 0 N= MtDT0=3D 0
Petite list used in FoFCou.
Initial guess orbital sym= metries:
Occupied (A') (A') (A') (A') (A") (A') (A') (A') (= A') (A')
(A') (A") (A') (A') (A') (A') (A') (A&quo= t;) (A') (A")
(A') (A') (A") (A')
V= irtual (A") (A') (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (= A') (A')
(A') (A") (A') (A') (A') (A") (A&quo= t;) (A') (A') (A')
(A') (A')
The electronic state o= f the initial guess is 1-A'.
Keep R1 ints in memory in symmetry-blocked= form, NReq=3D2159799.
Requested convergence on RMS density matrix=3D1.= 00D-08 within 128 cycles.
Requested convergence on MAX density matrix= =3D1.00D-06.
Requested convergence on energy=3D1.00D-06. No special actions if energy rises.
EnCoef did 3 forward-backward= iterations
EnCoef did 100 forward-backward iterations
EnCoef did= 2 forward-backward iterations
EnCoef did 2 forward-backward it= erations
SCF Done: E(RB3LYP) =3D -1451.84990065 A.U. after 22 c= ycles
NFock=3D 22 Conv=3D0.66D-08 -V/T=3D 2.0016
**********************************************************************
Population analysis using the SCF Density.

*******= ***************************************************************

Orb= ital symmetries:
Occupied (A') (A') (A') (A') (A") (A') (A'= ) (A') (A') (A')
(A") (A') (A') (A') (A') (A') (A&= quot;) (A') (A') (A")
(A') (A') (A") (A')
= Virtual (A") (A') (A") (A') (A') (A") (A') (A') (A'= ) (A')
(A") (A') (A') (A") (A') (A') (A') (A&= quot;) (A') (A')
(A') (A") (A') (A') (A') (A"= ) (A') (A") (A') (A')
(A') (A')
The electronic= state is 1-A'.
Alpha occ. eigenvalues -- -256.04016 -29.99951 -25.873= 26 -25.85859 -25.85805
Alpha occ. eigenvalues -- -19.31120 -19.28742 = -10.45249 -3.41064 -2.20510
Alpha occ. eigenvalues -- -2.17421 -2= .16694 -1.26882 -1.17261 -0.64217
Alpha occ. eigenvalues -- -0.58= 881 -0.57965 -0.57594 -0.44473 -0.43175
Alpha occ. eigenvalues -- = -0.22416 -0.22137 -0.20382 -0.15336
Alpha virt. eigenvalues -- -= 0.07558 -0.07420 -0.03518 -0.03067 -0.02764
Alpha virt. eigenvalues= -- -0.00807 0.00082 0.10567 0.12952 0.29804
Alpha virt. eige= nvalues -- 0.31948 0.36712 0.41870 0.45104 0.54770
Alpha vir= t. eigenvalues -- 0.63606 0.74556 0.85137 0.88355 0.92857
Al= pha virt. eigenvalues -- 0.96917 1.00808 1.01595 1.25495 1.50958=
Alpha virt. eigenvalues -- 1.51252 1.55992 1.59723 1.70732 = 1.86833
Alpha virt. eigenvalues -- 2.01356 20.37339
Co= ndensed to atoms (all electrons):
1 2 3= 4
1 Fe 26.065938 -0.058002 0.083106 -0.030239
= 2 O -0.058002 8.304619 0.168196 0.010116
3 C 0.0831= 06 0.168196 4.724609 0.417125
4 O -0.030239 0.010116 0= .417125 7.724230
Mulliken charges:
1
1 Fe = -0.060803
2 O -0.424929
3 C 0.606964
4 O = -0.121232
Sum of Mulliken charges =3D -0.00000
Mulliken charges w= ith hydrogens summed into heavy atoms:
1
1 Fe -= 0.060803
2 O -0.424929
3 C 0.606964
4 O -= 0.121232
Electronic spatial extent (au): <R**2>=3D 45= 3.0609
Charge=3D -0.0000 electrons
Dipole moment (field= -independent basis, Debye):
X=3D 1.6708 Y=3D = 1.8514 Z=3D -0.0000 Tot=3D 2.4938
Qu= adrupole moment (field-independent basis, Debye-Ang):
XX=3D = -35.0872 YY=3D -34.7815 ZZ=3D -32.5686
XY= =3D 0.8912 XZ=3D 0.0000 YZ=3D 0.= 0000
Traceless Quadrupole moment (field-independent basis, Debye-Ang):<= br> XX=3D -0.9415 YY=3D -0.6357 ZZ=3D = 1.5772
XY=3D 0.8912 XZ=3D 0.0000 = YZ=3D 0.0000
Octapole moment (field-independent basis, Deb= ye-Ang**2):
XXX=3D -8.4875 YYY=3D 8.6001 ZZ= Z=3D -0.0000 XYY=3D 3.5470
XXY=3D = 1.7153 XXZ=3D 0.0000 XZZ=3D 0.7336 YZZ=3D = 1.9407
YYZ=3D -0.0000 XYZ=3D -0.0= 000
Hexadecapole moment (field-independent basis, Debye-Ang**3):
XX= XX=3D -415.5041 YYYY=3D -171.1039 ZZZZ=3D -5= 5.1637 XXXY=3D -84.4690
XXXZ=3D 0.0000 YYYX=3D = -75.7822 YYYZ=3D 0.0000 ZZZX=3D 0.0000=
ZZZY=3D 0.0000 XXYY=3D -90.7121 XXZZ=3D = -70.9019 YYZZ=3D -36.9432
XXYZ=3D 0.0000 Y= YXZ=3D 0.0000 ZZXY=3D -24.7602
N-N=3D 1.7871456= 42873D+02 E-N=3D-3.807626875025D+03 KE=3D 1.449497603530D+03
Symmetry = A' KE=3D 1.287179877057D+03
Symmetry A" KE=3D 1.623177264732D+= 02
Calling FoFJK, ICntrl=3D 2127 FMM=3DF ISym2X=3D1 I1Cent=3D 0 IO= pClX=3D 0 NMat=3D1 NMatS=3D1 NMatT=3D0.
***** Axes restored to original= set *****
Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z
= 1 26 -0.048820174 0.005157682 0.000000000
2 = 8 0.068584660 0.015861998 0.000000000
3 = 6 -0.104728901 -0.126023309 0.000000000
4 = 8 0.084964415 0.105003629 -0.000000000
Cartesian Forces:= Max 0.126023309 RMS 0.066118707

GradGradGradGradGradGradG= radGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
= FormGI is forming the generalized inverse of G from B-inverse, IUseBI=3D4.=
Internal Forces: Max 0.134986320 RMS 0.059949734
Search = for a local minimum.
Step number 1 out of a maximum of 20
All q= uantities printed in internal units (Hartrees-Bohrs-Radians)
Mixed Opti= mization -- RFO/linear search
Second derivative matrix not updated -- f= irst step.
The second derivative matrix:
R= 1 R2 R3 A1 A2
R1 0.2279= 1
R2 0.00000 0.80209
R3 0= .00000 0.00000 1.62060
A1 0.00000 0.00000 0= .00000 0.25000
A2 0.00000 0.00000 0.00000 0= .00000 0.05456
A3 0.00000 0.00000 0.00000 0= .00000 0.00000
A3
A3 = 0.05456
ITU=3D 0
Eigenvalues --- 0.05456 0.05456 0.227= 91 0.25000 0.80209
Eigenvalues --- 1.62060
RFO step: La= mbda=3D-2.30438557D-02 EMin=3D 5.45649275D-02
Linear search not attempt= ed -- first point.
Iteration 1 RMS(Cart)=3D 0.10911805 RMS(Int)=3D 0= .00403264
Iteration 2 RMS(Cart)=3D 0.00524126 RMS(Int)=3D 0.00001569=
Iteration 3 RMS(Cart)=3D 0.00001737 RMS(Int)=3D 0.00000000
Iter= ation 4 RMS(Cart)=3D 0.00000000 RMS(Int)=3D 0.00000000
ClnCor: larg= est displacement from symmetrization is 2.67D-10 for atom 3.
Variab= le Old X -DE/DX Delta X Delta X Delta X New X
= (Linear) (Quad) (Total)
R1 3.4= 3930 0.04909 0.00000 0.19560 0.19560 3.63490
R2 2.3= 7803 -0.02868 0.00000 -0.03476 -0.03476 2.34327
R3 2.1= 0780 0.13499 0.00000 0.08213 0.08213 2.18993
A1 2.0= 9440 0.00265 0.00000 0.00969 0.00969 2.10408
A2 3.1= 4159 0.01018 0.00000 0.13112 0.13112 3.27271
A3 3.1= 4159 0.00000 0.00000 0.00000 0.00000 3.14159
Item = Value Threshold Converged?
Maximum Force 0.1= 34986 0.000450 NO
RMS Force 0.059950 0.0003= 00 NO
Maximum Displacement 0.164913 0.001800 NO
R= MS Displacement 0.111408 0.001200 NO
Predicted change = in Energy=3D-1.225354D-02
GradGradGradGradGradGradGradGradGradGradGradG= radGradGradGradGradGradGrad

Input orientat= ion:
Center Atomic Atomic = Coordinates (Angstroms)
Number Number Type X = Y Z
1 26 0 2.658115 = 8.232499 5.000000
2 8 0 4.576263 8= .089032 5.000000
3 6 0 5.284531 9.= 106861 5.000000
4 8 0 6.065132 9.9= 63375 5.000000
Distance matrix (angstroms):
= 1 2 3 4
1 Fe 0.0000= 00
2 O 1.923506 0.000000
3 C 2.768135 1.240008 = 0.000000
4 O 3.821478 2.393719 1.158859 0.000000
St= oichiometry CFeO2
Framework group CS[SG(CFeO2)]
Deg. of freedom= 5
Full point group CS NOp 2
Largest Abe= lian subgroup CS NOp 2
Largest concise Abelian subgroup = C1 NOp 1
Standard orientation: =
Center Atomic Atomic Coordinates (= Angstroms)
Number Number Type X Y = Z
1 26 0 -1.022093 -0.757193 -0.0= 00000
2 8 0 0.000000 0.872286 0.00= 0000
3 6 0 1.239558 0.838897 0.000= 000
4 8 0 2.392133 0.959419 0.0000= 00
Rotational constants (GHZ): 40.3135828 2.2660782 = 2.1454781
Standard basis: 6-31G (6D, 7F)
There are 42 = symmetry adapted cartesian basis functions of A' symmetry.
There are = 14 symmetry adapted cartesian basis functions of A" symmetry.
T= here are 42 symmetry adapted basis functions of A' symmetry.
There = are 14 symmetry adapted basis functions of A" symmetry.
56 = basis functions, 160 primitive gaussians, 56 cartesian basis functions=
24 alpha electrons 24 beta electrons
nuclear repuls= ion energy 172.3989508234 Hartrees.
NAtoms=3D 4 NActive=3D = 4 NUniq=3D 4 SFac=3D 1.00D+00 NAtFMM=3D 60 NAOKFM=3DF Big=3DF
Inte= gral buffers will be 131072 words long.
Raffenetti 2 integral format= .
Two-electron integral symmetry is turned on.
One-electron integra= ls computed using PRISM.
NBasis=3D 56 RedAO=3D T EigKep=3D 1.76D-03= NBF=3D 42 14
NBsUse=3D 56 1.00D-06 EigRej=3D -1.00D+00 NBFU= =3D 42 14
Initial guess from the checkpoint file: "step_000= _DFT.chk"
B after Tr=3D 0.000000 0.000000 -0.000000
= Rot=3D 0.999288 -0.000000 -0.000000 -0.037733 Ang=3D -4.32= deg.
Initial guess orbital symmetries:
Occupied (A') (A') (= A') (A') (A") (A') (A') (A') (A') (A')
(A") (= A') (A') (A') (A') (A') (A") (A') (A') (A")
(= A') (A') (A") (A')
Virtual (A") (A') (A") (A') (= A') (A") (A') (A') (A') (A')
(A") (A') (A') (= A") (A') (A') (A') (A") (A') (A')
(A') (A&quo= t;) (A') (A') (A') (A") (A') (A") (A') (A')
(= A') (A')
ExpMin=3D 4.11D-02 ExpMax=3D 6.11D+04 ExpMxC=3D 9.18D+03 IAcc= =3D3 IRadAn=3D 5 AccDes=3D 0.00D+00
Harris functional with IExC= or=3D 402 and IRadAn=3D 5 diagonalized for initial guess.
HarFok= : IExCor=3D 402 AccDes=3D 0.00D+00 IRadAn=3D 5 IDoV=3D 1 UseB2=3D= F ITyADJ=3D14
ICtDFT=3D 3500011 ScaDFX=3D 1.000000 1.000000 1.00000= 0 1.000000
FoFCou: FMM=3DF IPFlag=3D 0 FMFlag=3D 100000= FMFlg1=3D 0
NFxFlg=3D 0 DoJE=3DT BraDBF=3D= F KetDBF=3DT FulRan=3DT
wScrn=3D 0.000000 ICntrl=3D 500 = IOpCl=3D 0 I1Cent=3D 200000004 NGrid=3D 0
NMat0=3D= 1 NMatS0=3D 1 NMatT0=3D 0 NMatD0=3D 1 NMtDS0=3D 0 NMtDT0= =3D 0
Petite list used in FoFCou.
Keep R1 ints in memory in symm= etry-blocked form, NReq=3D2159799.
Requested convergence on RMS density= matrix=3D1.00D-08 within 128 cycles.
Requested convergence on MAX dens= ity matrix=3D1.00D-06.
Requested convergence on energy=3D1.= 00D-06.
No special actions if energy rises.
SCF Done: E(RB3LYP) = =3D -1451.86533909 A.U. after 18 cycles
NFock=3D 18 = Conv=3D0.23D-08 -V/T=3D 2.0018
Calling FoFJK, ICntrl=3D 2127 F= MM=3DF ISym2X=3D1 I1Cent=3D 0 IOpClX=3D 0 NMat=3D1 NMatS=3D1 NMatT=3D0.
= ***** Axes restored to original set *****
Center Atomic = Forces (Hartrees/Bohr)
Number Number X = Y Z
1 26 -0.021775369 0.00211= 4287 0.000000000
2 8 0.036955110 0.01473715= 7 0.000000000
3 6 -0.039695691 -0.040384091 = 0.000000000
4 8 0.024515951 0.023532647 -0= .000000000
Cartesian Forces: Max 0.040384091 RMS 0.023135364
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad= Grad
Berny optimization.
Using GEDIIS/GDIIS optimizer.
FormGI i= s forming the generalized inverse of G from B-inverse, IUseBI=3D4.
Inte= rnal Forces: Max 0.033908365 RMS 0.018980685
Search for a loc= al minimum.
Step number 2 out of a maximum of 20
All quantities= printed in internal units (Hartrees-Bohrs-Radians)
Mixed Optimization = -- RFO/linear search
Update second derivatives using D2CorX and points = 1 2
DE=3D -1.54D-02 DEPred=3D-1.23D-02 R=3D 1.26D+00
TightC= =3DF SS=3D 1.41D+00 RLast=3D 2.52D-01 DXNew=3D 5.0454D-01 7.5596D-01
= Trust test=3D 1.26D+00 RLast=3D 2.52D-01 DXMaxT set to 5.05D-01
The sec= ond derivative matrix:
R1 R2 R3 = A1 A2
R1 0.18668
R2 = 0.04604 0.76870
R3 -0.08608 0.12904 1.5= 0110
A1 0.00316 0.00128 0.01538 0.25104
= A2 -0.00501 0.00702 -0.00784 0.00077 0.05407
= A3 0.00000 -0.00000 0.00000 0.00000 0.00000
= A3
A3 0.05456
ITU=3D 1= 0
Use linear search instead of GDIIS.
Eigenvalues --- 0.05= 364 0.05456 0.17607 0.25109 0.75296
Eigenvalues --- 1.52= 783
RFO step: Lambda=3D-2.40357398D-03 EMin=3D 5.36398691D-02
Quar= tic linear search produced a step of 0.74433.
Iteration 1 RMS(Cart)= =3D 0.12055350 RMS(Int)=3D 0.00970928
Iteration 2 RMS(Cart)=3D 0.01= 171440 RMS(Int)=3D 0.00007671
Iteration 3 RMS(Cart)=3D 0.00008339 RM= S(Int)=3D 0.00000000
Iteration 4 RMS(Cart)=3D 0.00000000 RMS(Int)=3D= 0.00000000
ClnCor: largest displacement from symmetrization is 4.24D= -12 for atom 3.
Variable Old X -DE/DX Delta X Delta X = Delta X New X
(Linear) (Quad) = (Total)
R1 3.63490 0.02187 0.14559 0.04745 0.19304 = 3.82794
R2 2.34327 -0.02250 -0.02587 -0.02538 -0.05125 = 2.29202
R3 2.18993 0.03391 0.06113 -0.01980 0.04133 = 2.23126
A1 2.10408 -0.00172 0.00721 -0.01780 -0.01059 = 2.09349
A2 3.27271 0.00495 0.09759 0.11009 0.20769 = 3.48040
A3 3.14159 0.00000 0.00000 0.00000 0.00000 = 3.14159
Item Value Threshold Converged? Maximum Force 0.033908 0.000450 NO
RMS Force = 0.018981 0.000300 NO
Maximum Displacement 0.157= 853 0.001800 NO
RMS Displacement 0.126480 0.001200= NO
Predicted change in Energy=3D-2.644271D-03
GradGradGradGra= dGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

= Input orientation:
Center = Atomic Atomic Coordinates (Angstroms)
Number Numb= er Type X Y Z
1 26 = 0 2.586226 8.170844 5.000000
2 8 = 0 4.611490 8.130764 5.000000
3 6 = 0 5.237660 9.169515 5.000000
4 8 = 0 6.148665 9.920644 5.000000
Dist= ance matrix (angstroms):
1 2 3 = 4
1 Fe 0.000000
2 O 2.025661 0.000000
= 3 C 2.833275 1.212885 0.000000
4 O 3.968976 2.35935= 9 1.180730 0.000000
Stoichiometry CFeO2
Framework group CS[= SG(CFeO2)]
Deg. of freedom 5
Full point group C= S NOp 2
Largest Abelian subgroup CS NOp 2
Lar= gest concise Abelian subgroup C1 NOp 1
S= tandard orientation:
Center Atomic At= omic Coordinates (Angstroms)
Number Number Type = X Y Z
1 26 0 = -0.994550 -0.879340 -0.000000
2 8 0 = -0.000000 0.885361 0.000000
3 6 0 = 1.212831 0.896868 0.000000
4 8 0 = 2.322666 1.299844 0.000000
Rotational constants (GHZ): 4= 7.4271405 2.0987230 2.0097869
Standard basis: 6-31G= (6D, 7F)
There are 42 symmetry adapted cartesian basis functions of= A' symmetry.
There are 14 symmetry adapted cartesian basis functio= ns of A" symmetry.
There are 42 symmetry adapted basis functio= ns of A' symmetry.
There are 14 symmetry adapted basis functions of= A" symmetry.
56 basis functions, 160 primitive gaussians, = 56 cartesian basis functions
24 alpha electrons 24 beta elec= trons
nuclear repulsion energy 168.0152669884 Hartrees.
= NAtoms=3D 4 NActive=3D 4 NUniq=3D 4 SFac=3D 1.00D+00 NAtFMM=3D = 60 NAOKFM=3DF Big=3DF
Integral buffers will be 131072 words long. Raffenetti 2 integral format.
Two-electron integral symmetry is turne= d on.
One-electron integrals computed using PRISM.
NBasis=3D 56 = RedAO=3D T EigKep=3D 1.76D-03 NBF=3D 42 14
NBsUse=3D 56 1.00= D-06 EigRej=3D -1.00D+00 NBFU=3D 42 14
Initial guess from the che= ckpoint file: "step_000_DFT.chk"
B after Tr=3D 0.000000 = -0.000000 -0.000000
Rot=3D 0.998838 -0.000000 -0.000= 000 -0.048193 Ang=3D -5.52 deg.
Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A= ")
(A') (A') (A") (A')
Virtual (A= ') (A") (A') (A") (A') (A") (A') (A') (A') (A')
= (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A= ') (A')
(A') (A')
ExpMin=3D 4.11D-02 ExpMax=3D 6.11= D+04 ExpMxC=3D 9.18D+03 IAcc=3D3 IRadAn=3D 5 AccDes=3D 0.00D+00
= Harris functional with IExCor=3D 402 and IRadAn=3D 5 diagonalized f= or initial guess.
HarFok: IExCor=3D 402 AccDes=3D 0.00D+00 IRadAn=3D = 5 IDoV=3D 1 UseB2=3DF ITyADJ=3D14
ICtDFT=3D 3500011 ScaDFX=3D = 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=3DF IPFlag=3D = 0 FMFlag=3D 100000 FMFlg1=3D 0
NFxFlg=3D = 0 DoJE=3DT BraDBF=3DF KetDBF=3DT FulRan=3DT
wScrn=3D 0= .000000 ICntrl=3D 500 IOpCl=3D 0 I1Cent=3D 200000004 NGrid=3D = 0
NMat0=3D 1 NMatS0=3D 1 NMatT0=3D 0 NMatD0=3D= 1 NMtDS0=3D 0 NMtDT0=3D 0
Petite list used in FoFCou.
Kee= p R1 ints in memory in symmetry-blocked form, NReq=3D2159799.
Requested= convergence on RMS density matrix=3D1.00D-08 within 128 cycles.
Reques= ted convergence on MAX density matrix=3D1.00D-06.
Requested convergence= on energy=3D1.00D-06.
No special actions if energy rises.<= br> SCF Done: E(RB3LYP) =3D -1451.86779894 A.U. after 19 cycles
= NFock=3D 19 Conv=3D0.32D-08 -V/T=3D 2.0018
Calling FoF= JK, ICntrl=3D 2127 FMM=3DF ISym2X=3D1 I1Cent=3D 0 IOpClX=3D 0 NMat=3D1= NMatS=3D1 NMatT=3D0.
***** Axes restored to original set *****
Cen= ter Atomic Forces (Hartrees/Bohr)
Number Numb= er X Y Z
1 26 = -0.002475531 0.002170910 0.000000000
2 8 -= 0.009275511 -0.015400826 0.000000000
3 6 0.0= 12873515 0.005174131 0.000000000
4 8 -0.0011= 22473 0.008055785 -0.000000000
Cartesian Forces: Max 0.015400= 826 RMS 0.007028017

GradGradGradGradGradGradGradGradGradGradGra= dGradGradGradGradGradGradGrad
Berny optimization.
Using GEDIIS/GDII= S optimizer.
FormGI is forming the generalized inverse of G from B-inve= rse, IUseBI=3D4.
Internal Forces: Max 0.017401591 RMS 0.01026= 5616
Search for a local minimum.
Step number 3 out of a maximum o= f 20
All quantities printed in internal units (Hartrees-Bohrs-Radians= )
Mixed Optimization -- RFO/linear search
Update second derivatives= using D2CorX and points 1 2 3
DE=3D -2.46D-03 DEPred=3D-2.64D= -03 R=3D 9.30D-01
TightC=3DF SS=3D 1.41D+00 RLast=3D 2.91D-01 DXNew= =3D 8.4853D-01 8.7386D-01
Trust test=3D 9.30D-01 RLast=3D 2.91D-01 DXMa= xT set to 8.49D-01
The second derivative matrix:
= R1 R2 R3 A1 A2
R1 = 0.14042
R2 0.04009 0.84593
R3 = -0.15330 0.08559 1.42002
A1 0.01583 -0.0= 2335 0.04566 0.25643
A2 0.00387 -0.03883 0.0= 2611 0.01417 0.08070
A3 0.00000 -0.00000 0.0= 0000 0.00000 0.00000
A3
A3 = 0.05456
ITU=3D 1 1 0
Use linear search instead of GDIIS= .
Eigenvalues --- 0.05456 0.07570 0.11658 0.25847 0.8422= 3
Eigenvalues --- 1.45052
RFO step: Lambda=3D-2.28883397D-0= 3 EMin=3D 5.45649275D-02
Quartic linear search produced a step of -0.27= 572.
Iteration 1 RMS(Cart)=3D 0.11082651 RMS(Int)=3D 0.00968836
= Iteration 2 RMS(Cart)=3D 0.01008655 RMS(Int)=3D 0.00002336
Iteration= 3 RMS(Cart)=3D 0.00002996 RMS(Int)=3D 0.00000000
Iteration 4 RMS(C= art)=3D 0.00000000 RMS(Int)=3D 0.00000000
ClnCor: largest displaceme= nt from symmetrization is 3.37D-09 for atom 3.
Variable Old X= -DE/DX Delta X Delta X Delta X New X
= (Linear) (Quad) (Total)
R1 3.82794 0.00252= -0.05323 0.09099 0.03776 3.86570
R2 2.29202 0.01740= 0.01413 -0.00542 0.00871 2.30074
R3 2.23126 0.00426= -0.01140 0.02206 0.01067 2.24192
A1 2.09349 -0.00809= 0.00292 -0.02802 -0.02510 2.06839
A2 3.48040 -0.01548= -0.05726 -0.11944 -0.17670 3.30370
A3 3.14159 0.00000= 0.00000 0.00000 0.00000 3.14159
Item Val= ue Threshold Converged?
Maximum Force 0.017402 0.00= 0450 NO
RMS Force 0.010266 0.000300 NO
= Maximum Displacement 0.128723 0.001800 NO
RMS Displac= ement 0.114165 0.001200 NO
Predicted change in Energy=3D-1= .691720D-03
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGra= dGradGradGrad

Input orientation: =
Center Atomic Atomic Coordinates = (Angstroms)
Number Number Type X Y = Z
1 26 0 2.587635 8.230504 5.= 000000
2 8 0 4.627577 8.077882 5.0= 00000
3 6 0 5.286906 9.101397 5.00= 0000
4 8 0 6.081924 9.981983 5.000= 000
Distance matrix (angstroms):
= 1 2 3 4
1 Fe 0.000000
2 = O 2.045643 0.000000
3 C 2.836286 1.217497 0.000000
= 4 O 3.908674 2.395981 1.186375 0.000000
Stoichiometry = CFeO2
Framework group CS[SG(CFeO2)]
Deg. of freedom 5
Ful= l point group CS NOp 2
Largest Abelian subgroup = CS NOp 2
Largest concise Abelian subgroup C1 NOp = 1
Standard orientation: =
Center Atomic Atomic Coordinates (Angstroms)
= Number Number Type X Y Z
--_000_SEYPR06MB551453E53F57FE6C7CAB8FB0C1B29SEYPR06MB5514apcp_-- From owner-chemistry@ccl.net Thu Mar 2 17:13:00 2023 From: "Frank Jensen frj() chem.au.dk" To: CCL Subject: CCL:G: Help with DFT convergence failure for Fe2CO2 in Gaussian software Message-Id: <-54864-230302131511-10037-6SLrDRQxOh+itWchY96Wzg..server.ccl.net> X-Original-From: Frank Jensen Content-Language: en-US Content-Type: multipart/alternative; boundary="_000_DB9PR01MB9054BBAD04A8DEF3690104EB9CB29DB9PR01MB9054eurp_" Date: Thu, 2 Mar 2023 18:14:39 +0000 MIME-Version: 1.0 Sent to CCL by: Frank Jensen [frj###chem.au.dk] --_000_DB9PR01MB9054BBAD04A8DEF3690104EB9CB29DB9PR01MB9054eurp_ Content-Type: text/plain; charset="us-ascii" Content-Transfer-Encoding: quoted-printable Looks like there still will be room for some human knowledge in comp. chem.= for a while.... It is difficult to find anything correct in the free flowing text below. Frank [https://mail.au.dk/owa/14.2.318.2/themes/resources/clear1x1.gif] Frank Jensen Assoc. Prof. Dept. of Chemistry Aarhus University https://tildeweb.au.dk/au23758/ > From: owner-chemistry+frj=3D=3Dchem.au.dk _ ccl.net On Behalf Of Cheng Fei Phung feiphung|hotmail.com Sent: Thursday, March 2, 2023 2:38 PM To: Frank Jensen Subject: CCL:G: Help with DFT convergence failure for Fe2CO2 in Gaussian so= ftware Hi, the following is from chatGPT, what do you guys think ? When using the 6-311G basis set, it is common to add diffuse functions to i= mprove the description of electron correlation and dispersion interactions.= One commonly used set of diffuse functions is the "polarization-consistent= basis set" (pcS-n, where n is an integer), which adds diffuse functions to= the valence and polarization sets in a consistent way. For Fe2+ ferrous ion, a suitable choice of diffuse functions would depend o= n the level of accuracy required and the size of the system. As a starting = point, you could consider adding diffuse functions up to the pcS-4 level, w= hich would add 4 sets of diffuse functions to the 6-311G basis set. To specify the pcS-4 basis set in Gaussian, you can use the following basis= set specification: ``` # opt umn15l/6-311++g(d,p) scrf=3D(solvent=3Dwater) geom=3Dconnectivity Fe2CO2_OPT 2 3 Fe 2.74538330 8.28679554 5.00000000 O 4.55208397 8.06717607 5.00000000 C 5.30819317 9.07309328 5.00000000 O 5.97838127 9.96470142 5.00000000 1 2 1.0 2 3 2.0 3 4 3.0 4 Fe S 4 6-311G(d,p) Fe 4,4,4,4,4,4 **** C S 1 6-311G(d,p) C 3,3,3,3,3,3 **** O S 2 6-311G(d,p) O 3,3,3,3,3,3 **** ``` In this input file, the "S" keyword specifies that diffuse functions should= be added to the basis set, and the "4" after "Fe S" indicates that 4 sets = of diffuse functions should be added to the iron atom. The same format is u= sed for the carbon and oxygen atoms. It is also worth noting that the use of solvent models, such as the SCRF mo= del with water as the solvent, can further improve the accuracy of calculat= ions by including the effects of solvation. However, the choice of solvent = model and the level of theory used for the calculation of solvent effects c= an also affect the accuracy of the results. ________________________________ > From: owner-chemistry+feiphung=3D=3Dhotmail.com:-:ccl.net on behalf of David Shobe shobedavid]^[= gmail.com Sent: Wednesday, March 1, 2023 7:53 PM To: Phung, Cheng Fei Subject: CCL:G: Help with DFT convergence failure for Fe2CO2 in Gaussian so= ftware Dear Cheng Fei Phung -- Isolated Fe^2+ is a quintuplet in the ground state. The coordination with t= he CO2 molecule may change it to a different electronic state, most likely = to a triplet. The charge and multiplicity are specified by replacing the "0 1" line with = "2 5" for the quintuplet or "2 3" for the triplet. The "++" in GaussView is= a red herring (if you don't know this expression, it refers to a misleadin= g clue), as the "++" refers to diffuse functions in the basis set. Good luck! Calculations of transition metals are difficult. I should warn y= ou that even if you get a converged SCF, it might not be the correct electr= onic state. Take a look at the manual under the keywords SCF and stable for= more information. --David Shobe On Wed, Mar 1, 2023, 2:48 AM Cheng Fei Phung feiphung-*-hotmail.com > wr= ote: Hi, Since my messages contains the image and is longer than a limit for general= distribution, the CCL Admin saved my message under http://www.ccl.net/large_message/2023-02-28-LongMessage.html so please open this link to read my response Note that I am doing Fe2+ ferrous ion for MOF carbon capture What do you guys think about the following xtb result from https://calcus.c= loud/ ? step_000_DFT.Geometrical_Optimisation_Result.xyz : 4 energy: -13.349149310898 gnorm: 0.000502022323 xtb: 6.5.1 (579679a) Fe 2.73292919494009 7.81690557181600 4.999999999914= 02 O 4.23822629938734 8.62616541285678 4.999758633720= 67 C 5.28034049639189 9.19333556707946 5.000513677205= 69 O 6.33254571928068 9.75535975824776 4.999727689159= 61 Regards, Cheng Fei Phung ________________________________ > From: owner-chemistry+feiphung=3D=3Dhotmail.com_-_ccl.net > on behalf of Igors Mihailovs igorsm_._cfi.lu.lv > Sent: Sunday, February 26, 2023 10:50 PM To: Phung, Cheng Fei = > Subject: CCL:G: Re: CCL:G: Help with DFT convergence failure for Fe2CO2 in = Gaussian software Dear Cheng Fei Phung, I would use something like MN15 or MN15L, and a basis set with at least som= e polarization (6-311G(d,p), for example). Especially if I had to perform s= omething like a token computation in order to get someone's experimental re= sults published. Trying to converge B3LYP for a transition metal compound may take more time= than the options described above... Best regards, Igors Mihailovs former employee at ISSP UL On February 25, 2023 12:09:02 PM GMT+02:00, "Cheng Fei Phung feiphung=3D-= =3Dhotmail.com" > wrote: Sent to CCL by: "Cheng Fei Phung" [feiphung{:}hotmail.com] With the following gaussian16 gjf input file, I got some convergence failur= e issues. Could anyone help ? Gaussian input gjf file ``` %chk=3Dstep_000_DFT.chk # opt b3lyp/6-31g geom=3Dconnectivity Fe2CO2_OPT 0 1 Fe 2.74538330 8.28679554 5.00000000 O 4.55208397 8.06717607 5.00000000 C 5.30819317 9.07309328 5.00000000 O 5.97838127 9.96470142 5.00000000 1 2 1.0 2 3 2.0 3 4 3.0 4 ``` Gaussian log file ``` %chk=3Dstep_000_DFT.chk ________________________________ # opt b3lyp/6-31g geom=3Dconnectivity ________________________________ 1/18=3D20,19=3D15,26=3D3,38=3D1,57=3D2/1,3; 2/9=3D110,12=3D2,17=3D6,18=3D5,40=3D1/2; 3/5=3D1,6=3D6,11=3D2,25=3D1,30=3D1,71=3D1,74=3D-5/1,2,3; 4//1; 5/5=3D2,38=3D5/2; 6/7=3D2,8=3D2,9=3D2,10=3D2,28=3D1/1; 7//1,2,3,16; 1/18=3D20,19=3D15,26=3D3/3(2); 2/9=3D110/2; 99//99; 2/9=3D110/2; 3/5=3D1,6=3D6,11=3D2,25=3D1,30=3D1,71=3D1,74=3D-5/1,2,3; 4/5=3D5,16=3D3,69=3D1/1; 5/5=3D2,38=3D5/2; 7//1,2,3,16; 1/18=3D20,19=3D15,26=3D3/3(-5); 2/9=3D110/2; 6/7=3D2,8=3D2,9=3D2,10=3D2,19=3D2,28=3D1/1; 99/9=3D1/99; ________________________________ Fe2CO2_OPT ________________________________ Symbolic Z-matrix: Charge =3D 0 Multiplicity =3D 1 Fe 2.74538 8.2868 5. O 4.55208 8.06718 5. C 5.30819 9.07309 5. O 5.97838 9.9647 5. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ________________________________ ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- --------------------= ------ ! Name Definition Value Derivative Info. = ! ________________________________ ! R1 R(1,2) 1.82 estimate D2E/DX2 = ! ! R2 R(2,3) 1.2584 estimate D2E/DX2 = ! ! R3 R(3,4) 1.1154 estimate D2E/DX2 = ! ! A1 A(1,2,3) 120.0 estimate D2E/DX2 = ! ! A2 L(2,3,4,1,-1) 180.0 estimate D2E/DX2 = ! ! A3 L(2,3,4,1,-2) 180.0 estimate D2E/DX2 = ! ________________________________ Trust Radius=3D3.00D-01 FncErr=3D1.00D-07 GrdErr=3D1.00D-06 EigMax=3D2.50D= +02 EigMin=3D1.00D-04 Number of steps in this run=3D 20 maximum allowed number of steps=3D = 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: ________________________________ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z ________________________________ 1 26 0 2.745383 8.286796 5.000000 2 8 0 4.552084 8.067176 5.000000 3 6 0 5.308193 9.073093 5.000000 4 8 0 5.978381 9.964701 5.000000 ________________________________ Distance matrix (angstroms): 1 2 3 4 1 Fe 0.000000 2 O 1.820000 0.000000 3 C 2.680720 1.258400 0.000000 4 O 3.642478 2.373800 1.115400 0.000000 Stoichiometry CFeO2 Framework group CS[SG(CFeO2)] Deg. of freedom 5 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: ________________________________ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z ________________________________ 1 26 0 -1.018287 -0.652610 -0.000000 2 8 0 -0.000000 0.855864 0.000000 3 6 0 1.255302 0.767619 0.000000 4 8 0 2.367956 0.689403 0.000000 ________________________________ Rotational constants (GHZ): 37.1744583 2.4897380 = 2.3334561 Standard basis: 6-31G (6D, 7F) There are 42 symmetry adapted cartesian basis functions of A' symmetry= . There are 14 symmetry adapted cartesian basis functions of A" symmetry= . There are 42 symmetry adapted basis functions of A' symmetry. There are 14 symmetry adapted basis functions of A" symmetry. 56 basis functions, 160 primitive gaussians, 56 cartesian basis fu= nctions 24 alpha electrons 24 beta electrons nuclear repulsion energy 178.7145642873 Hartrees. NAtoms=3D 4 NActive=3D 4 NUniq=3D 4 SFac=3D 1.00D+00 NAtFMM=3D = 60 NAOKFM=3DF Big=3DF Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis=3D 56 RedAO=3D T EigKep=3D 1.76D-03 NBF=3D 42 14 NBsUse=3D 56 1.00D-06 EigRej=3D -1.00D+00 NBFU=3D 42 14 ExpMin=3D 4.11D-02 ExpMax=3D 6.11D+04 ExpMxC=3D 9.18D+03 IAcc=3D3 IRadAn= =3D 5 AccDes=3D 0.00D+00 Harris functional with IExCor=3D 402 and IRadAn=3D 5 diagonalized f= or initial guess. HarFok: IExCor=3D 402 AccDes=3D 0.00D+00 IRadAn=3D 5 IDoV=3D 1 U= seB2=3DF ITyADJ=3D14 ICtDFT=3D 3500011 ScaDFX=3D 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=3DF IPFlag=3D 0 FMFlag=3D 100000 FMFlg1=3D = 0 NFxFlg=3D 0 DoJE=3DT BraDBF=3DF KetDBF=3DT FulRan=3DT wScrn=3D 0.000000 ICntrl=3D 500 IOpCl=3D 0 I1Cent=3D 200= 000004 NGrid=3D 0 NMat0=3D 1 NMatS0=3D 1 NMatT0=3D 0 NMatD0=3D 1 NMtDS= 0=3D 0 NMtDT0=3D 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') Virtual (A") (A') (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A") (A') (A') (A') (A') (A') The electronic state of the initial guess is 1-A'. Keep R1 ints in memory in symmetry-blocked form, NReq=3D2159799. Requested convergence on RMS density matrix=3D1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=3D1.00D-06. Requested convergence on energy=3D1.00D-06. No special actions if energy rises. EnCoef did 3 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 2 forward-backward iterations EnCoef did 2 forward-backward iterations SCF Done: E(RB3LYP) =3D -1451.84990065 A.U. after 22 cycles NFock=3D 22 Conv=3D0.66D-08 -V/T=3D 2.0016 ********************************************************************** Population analysis using the SCF Density. ********************************************************************** Orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') Virtual (A") (A') (A") (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') The electronic state is 1-A'. Alpha occ. eigenvalues -- -256.04016 -29.99951 -25.87326 -25.85859 -25.85= 805 Alpha occ. eigenvalues -- -19.31120 -19.28742 -10.45249 -3.41064 -2.20= 510 Alpha occ. eigenvalues -- -2.17421 -2.16694 -1.26882 -1.17261 -0.64= 217 Alpha occ. eigenvalues -- -0.58881 -0.57965 -0.57594 -0.44473 -0.43= 175 Alpha occ. eigenvalues -- -0.22416 -0.22137 -0.20382 -0.15336 Alpha virt. eigenvalues -- -0.07558 -0.07420 -0.03518 -0.03067 -0.02= 764 Alpha virt. eigenvalues -- -0.00807 0.00082 0.10567 0.12952 0.29= 804 Alpha virt. eigenvalues -- 0.31948 0.36712 0.41870 0.45104 0.54= 770 Alpha virt. eigenvalues -- 0.63606 0.74556 0.85137 0.88355 0.92= 857 Alpha virt. eigenvalues -- 0.96917 1.00808 1.01595 1.25495 1.50= 958 Alpha virt. eigenvalues -- 1.51252 1.55992 1.59723 1.70732 1.86= 833 Alpha virt. eigenvalues -- 2.01356 20.37339 Condensed to atoms (all electrons): 1 2 3 4 1 Fe 26.065938 -0.058002 0.083106 -0.030239 2 O -0.058002 8.304619 0.168196 0.010116 3 C 0.083106 0.168196 4.724609 0.417125 4 O -0.030239 0.010116 0.417125 7.724230 Mulliken charges: 1 1 Fe -0.060803 2 O -0.424929 3 C 0.606964 4 O -0.121232 Sum of Mulliken charges =3D -0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 Fe -0.060803 2 O -0.424929 3 C 0.606964 4 O -0.121232 Electronic spatial extent (au): =3D 453.0609 Charge=3D -0.0000 electrons Dipole moment (field-independent basis, Debye): X=3D 1.6708 Y=3D 1.8514 Z=3D = -0.0000 Tot=3D 2.4938 Quadrupole moment (field-independent basis, Debye-Ang): XX=3D -35.0872 YY=3D -34.7815 ZZ=3D = -32.5686 XY=3D 0.8912 XZ=3D 0.0000 YZ=3D = 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX=3D -0.9415 YY=3D -0.6357 ZZ=3D = 1.5772 XY=3D 0.8912 XZ=3D 0.0000 YZ=3D = 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX=3D -8.4875 YYY=3D 8.6001 ZZZ=3D = -0.0000 XYY=3D 3.5470 XXY=3D 1.7153 XXZ=3D 0.0000 XZZ=3D = 0.7336 YZZ=3D 1.9407 YYZ=3D -0.0000 XYZ=3D -0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX=3D -415.5041 YYYY=3D -171.1039 ZZZZ=3D = -55.1637 XXXY=3D -84.4690 XXXZ=3D 0.0000 YYYX=3D -75.7822 YYYZ=3D = 0.0000 ZZZX=3D 0.0000 ZZZY=3D 0.0000 XXYY=3D -90.7121 XXZZ=3D = -70.9019 YYZZ=3D -36.9432 XXYZ=3D 0.0000 YYXZ=3D 0.0000 ZZXY=3D = -24.7602 N-N=3D 1.787145642873D+02 E-N=3D-3.807626875025D+03 KE=3D 1.449497603530D= +03 Symmetry A' KE=3D 1.287179877057D+03 Symmetry A" KE=3D 1.623177264732D+02 Calling FoFJK, ICntrl=3D 2127 FMM=3DF ISym2X=3D1 I1Cent=3D 0 IOpClX= =3D 0 NMat=3D1 NMatS=3D1 NMatT=3D0. ***** Axes restored to original set ***** ________________________________ Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ________________________________ 1 26 -0.048820174 0.005157682 0.000000000 2 8 0.068584660 0.015861998 0.000000000 3 6 -0.104728901 -0.126023309 0.000000000 4 8 0.084964415 0.105003629 -0.000000000 ________________________________ Cartesian Forces: Max 0.126023309 RMS 0.066118707 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=3D4. Internal Forces: Max 0.134986320 RMS 0.059949734 Search for a local minimum. Step number 1 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. The second derivative matrix: R1 R2 R3 A1 A2 R1 0.22791 R2 0.00000 0.80209 R3 0.00000 0.00000 1.62060 A1 0.00000 0.00000 0.00000 0.25000 A2 0.00000 0.00000 0.00000 0.00000 0.05456 A3 0.00000 0.00000 0.00000 0.00000 0.00000 A3 A3 0.05456 ITU=3D 0 Eigenvalues --- 0.05456 0.05456 0.22791 0.25000 0.80209 Eigenvalues --- 1.62060 RFO step: Lambda=3D-2.30438557D-02 EMin=3D 5.45649275D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)=3D 0.10911805 RMS(Int)=3D 0.00403264 Iteration 2 RMS(Cart)=3D 0.00524126 RMS(Int)=3D 0.00001569 Iteration 3 RMS(Cart)=3D 0.00001737 RMS(Int)=3D 0.00000000 Iteration 4 RMS(Cart)=3D 0.00000000 RMS(Int)=3D 0.00000000 ClnCor: largest displacement from symmetrization is 2.67D-10 for atom = 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.43930 0.04909 0.00000 0.19560 0.19560 3.63490 R2 2.37803 -0.02868 0.00000 -0.03476 -0.03476 2.34327 R3 2.10780 0.13499 0.00000 0.08213 0.08213 2.18993 A1 2.09440 0.00265 0.00000 0.00969 0.00969 2.10408 A2 3.14159 0.01018 0.00000 0.13112 0.13112 3.27271 A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.134986 0.000450 NO RMS Force 0.059950 0.000300 NO Maximum Displacement 0.164913 0.001800 NO RMS Displacement 0.111408 0.001200 NO Predicted change in Energy=3D-1.225354D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: ________________________________ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z ________________________________ 1 26 0 2.658115 8.232499 5.000000 2 8 0 4.576263 8.089032 5.000000 3 6 0 5.284531 9.106861 5.000000 4 8 0 6.065132 9.963375 5.000000 ________________________________ Distance matrix (angstroms): 1 2 3 4 1 Fe 0.000000 2 O 1.923506 0.000000 3 C 2.768135 1.240008 0.000000 4 O 3.821478 2.393719 1.158859 0.000000 Stoichiometry CFeO2 Framework group CS[SG(CFeO2)] Deg. of freedom 5 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: ________________________________ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z ________________________________ 1 26 0 -1.022093 -0.757193 -0.000000 2 8 0 0.000000 0.872286 0.000000 3 6 0 1.239558 0.838897 0.000000 4 8 0 2.392133 0.959419 0.000000 ________________________________ Rotational constants (GHZ): 40.3135828 2.2660782 = 2.1454781 Standard basis: 6-31G (6D, 7F) There are 42 symmetry adapted cartesian basis functions of A' symmetry= . There are 14 symmetry adapted cartesian basis functions of A" symmetry= . There are 42 symmetry adapted basis functions of A' symmetry. There are 14 symmetry adapted basis functions of A" symmetry. 56 basis functions, 160 primitive gaussians, 56 cartesian basis fu= nctions 24 alpha electrons 24 beta electrons nuclear repulsion energy 172.3989508234 Hartrees. NAtoms=3D 4 NActive=3D 4 NUniq=3D 4 SFac=3D 1.00D+00 NAtFMM=3D = 60 NAOKFM=3DF Big=3DF Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis=3D 56 RedAO=3D T EigKep=3D 1.76D-03 NBF=3D 42 14 NBsUse=3D 56 1.00D-06 EigRej=3D -1.00D+00 NBFU=3D 42 14 Initial guess from the checkpoint file: "step_000_DFT.chk" B after Tr=3D 0.000000 0.000000 -0.000000 Rot=3D 0.999288 -0.000000 -0.000000 -0.037733 Ang=3D -4.= 32 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') Virtual (A") (A') (A") (A') (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') ExpMin=3D 4.11D-02 ExpMax=3D 6.11D+04 ExpMxC=3D 9.18D+03 IAcc=3D3 IRadAn= =3D 5 AccDes=3D 0.00D+00 Harris functional with IExCor=3D 402 and IRadAn=3D 5 diagonalized f= or initial guess. HarFok: IExCor=3D 402 AccDes=3D 0.00D+00 IRadAn=3D 5 IDoV=3D 1 U= seB2=3DF ITyADJ=3D14 ICtDFT=3D 3500011 ScaDFX=3D 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=3DF IPFlag=3D 0 FMFlag=3D 100000 FMFlg1=3D = 0 NFxFlg=3D 0 DoJE=3DT BraDBF=3DF KetDBF=3DT FulRan=3DT wScrn=3D 0.000000 ICntrl=3D 500 IOpCl=3D 0 I1Cent=3D 200= 000004 NGrid=3D 0 NMat0=3D 1 NMatS0=3D 1 NMatT0=3D 0 NMatD0=3D 1 NMtDS= 0=3D 0 NMtDT0=3D 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=3D2159799. Requested convergence on RMS density matrix=3D1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=3D1.00D-06. Requested convergence on energy=3D1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) =3D -1451.86533909 A.U. after 18 cycles NFock=3D 18 Conv=3D0.23D-08 -V/T=3D 2.0018 Calling FoFJK, ICntrl=3D 2127 FMM=3DF ISym2X=3D1 I1Cent=3D 0 IOpClX= =3D 0 NMat=3D1 NMatS=3D1 NMatT=3D0. ***** Axes restored to original set ***** ________________________________ Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ________________________________ 1 26 -0.021775369 0.002114287 0.000000000 2 8 0.036955110 0.014737157 0.000000000 3 6 -0.039695691 -0.040384091 0.000000000 4 8 0.024515951 0.023532647 -0.000000000 ________________________________ Cartesian Forces: Max 0.040384091 RMS 0.023135364 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=3D4. Internal Forces: Max 0.033908365 RMS 0.018980685 Search for a local minimum. Step number 2 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 DE=3D -1.54D-02 DEPred=3D-1.23D-02 R=3D 1.26D+00 TightC=3DF SS=3D 1.41D+00 RLast=3D 2.52D-01 DXNew=3D 5.0454D-01 7.5596D-= 01 Trust test=3D 1.26D+00 RLast=3D 2.52D-01 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.18668 R2 0.04604 0.76870 R3 -0.08608 0.12904 1.50110 A1 0.00316 0.00128 0.01538 0.25104 A2 -0.00501 0.00702 -0.00784 0.00077 0.05407 A3 0.00000 -0.00000 0.00000 0.00000 0.00000 A3 A3 0.05456 ITU=3D 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.05364 0.05456 0.17607 0.25109 0.75296 Eigenvalues --- 1.52783 RFO step: Lambda=3D-2.40357398D-03 EMin=3D 5.36398691D-02 Quartic linear search produced a step of 0.74433. Iteration 1 RMS(Cart)=3D 0.12055350 RMS(Int)=3D 0.00970928 Iteration 2 RMS(Cart)=3D 0.01171440 RMS(Int)=3D 0.00007671 Iteration 3 RMS(Cart)=3D 0.00008339 RMS(Int)=3D 0.00000000 Iteration 4 RMS(Cart)=3D 0.00000000 RMS(Int)=3D 0.00000000 ClnCor: largest displacement from symmetrization is 4.24D-12 for atom = 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.63490 0.02187 0.14559 0.04745 0.19304 3.82794 R2 2.34327 -0.02250 -0.02587 -0.02538 -0.05125 2.29202 R3 2.18993 0.03391 0.06113 -0.01980 0.04133 2.23126 A1 2.10408 -0.00172 0.00721 -0.01780 -0.01059 2.09349 A2 3.27271 0.00495 0.09759 0.11009 0.20769 3.48040 A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.033908 0.000450 NO RMS Force 0.018981 0.000300 NO Maximum Displacement 0.157853 0.001800 NO RMS Displacement 0.126480 0.001200 NO Predicted change in Energy=3D-2.644271D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: ________________________________ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z ________________________________ 1 26 0 2.586226 8.170844 5.000000 2 8 0 4.611490 8.130764 5.000000 3 6 0 5.237660 9.169515 5.000000 4 8 0 6.148665 9.920644 5.000000 ________________________________ Distance matrix (angstroms): 1 2 3 4 1 Fe 0.000000 2 O 2.025661 0.000000 3 C 2.833275 1.212885 0.000000 4 O 3.968976 2.359359 1.180730 0.000000 Stoichiometry CFeO2 Framework group CS[SG(CFeO2)] Deg. of freedom 5 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: ________________________________ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z ________________________________ 1 26 0 -0.994550 -0.879340 -0.000000 2 8 0 -0.000000 0.885361 0.000000 3 6 0 1.212831 0.896868 0.000000 4 8 0 2.322666 1.299844 0.000000 ________________________________ Rotational constants (GHZ): 47.4271405 2.0987230 = 2.0097869 Standard basis: 6-31G (6D, 7F) There are 42 symmetry adapted cartesian basis functions of A' symmetry= . There are 14 symmetry adapted cartesian basis functions of A" symmetry= . There are 42 symmetry adapted basis functions of A' symmetry. There are 14 symmetry adapted basis functions of A" symmetry. 56 basis functions, 160 primitive gaussians, 56 cartesian basis fu= nctions 24 alpha electrons 24 beta electrons nuclear repulsion energy 168.0152669884 Hartrees. NAtoms=3D 4 NActive=3D 4 NUniq=3D 4 SFac=3D 1.00D+00 NAtFMM=3D = 60 NAOKFM=3DF Big=3DF Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis=3D 56 RedAO=3D T EigKep=3D 1.76D-03 NBF=3D 42 14 NBsUse=3D 56 1.00D-06 EigRej=3D -1.00D+00 NBFU=3D 42 14 Initial guess from the checkpoint file: "step_000_DFT.chk" B after Tr=3D 0.000000 -0.000000 -0.000000 Rot=3D 0.998838 -0.000000 -0.000000 -0.048193 Ang=3D -5.= 52 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A") (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') ExpMin=3D 4.11D-02 ExpMax=3D 6.11D+04 ExpMxC=3D 9.18D+03 IAcc=3D3 IRadAn= =3D 5 AccDes=3D 0.00D+00 Harris functional with IExCor=3D 402 and IRadAn=3D 5 diagonalized f= or initial guess. HarFok: IExCor=3D 402 AccDes=3D 0.00D+00 IRadAn=3D 5 IDoV=3D 1 U= seB2=3DF ITyADJ=3D14 ICtDFT=3D 3500011 ScaDFX=3D 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=3DF IPFlag=3D 0 FMFlag=3D 100000 FMFlg1=3D = 0 NFxFlg=3D 0 DoJE=3DT BraDBF=3DF KetDBF=3DT FulRan=3DT wScrn=3D 0.000000 ICntrl=3D 500 IOpCl=3D 0 I1Cent=3D 200= 000004 NGrid=3D 0 NMat0=3D 1 NMatS0=3D 1 NMatT0=3D 0 NMatD0=3D 1 NMtDS= 0=3D 0 NMtDT0=3D 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=3D2159799. Requested convergence on RMS density matrix=3D1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=3D1.00D-06. Requested convergence on energy=3D1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) =3D -1451.86779894 A.U. after 19 cycles NFock=3D 19 Conv=3D0.32D-08 -V/T=3D 2.0018 Calling FoFJK, ICntrl=3D 2127 FMM=3DF ISym2X=3D1 I1Cent=3D 0 IOpClX= =3D 0 NMat=3D1 NMatS=3D1 NMatT=3D0. ***** Axes restored to original set ***** ________________________________ Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ________________________________ 1 26 -0.002475531 0.002170910 0.000000000 2 8 -0.009275511 -0.015400826 0.000000000 3 6 0.012873515 0.005174131 0.000000000 4 8 -0.001122473 0.008055785 -0.000000000 ________________________________ Cartesian Forces: Max 0.015400826 RMS 0.007028017 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=3D4. Internal Forces: Max 0.017401591 RMS 0.010265616 Search for a local minimum. Step number 3 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 3 DE=3D -2.46D-03 DEPred=3D-2.64D-03 R=3D 9.30D-01 TightC=3DF SS=3D 1.41D+00 RLast=3D 2.91D-01 DXNew=3D 8.4853D-01 8.7386D-= 01 Trust test=3D 9.30D-01 RLast=3D 2.91D-01 DXMaxT set to 8.49D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.14042 R2 0.04009 0.84593 R3 -0.15330 0.08559 1.42002 A1 0.01583 -0.02335 0.04566 0.25643 A2 0.00387 -0.03883 0.02611 0.01417 0.08070 A3 0.00000 -0.00000 0.00000 0.00000 0.00000 A3 A3 0.05456 ITU=3D 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.05456 0.07570 0.11658 0.25847 0.84223 Eigenvalues --- 1.45052 RFO step: Lambda=3D-2.28883397D-03 EMin=3D 5.45649275D-02 Quartic linear search produced a step of -0.27572. Iteration 1 RMS(Cart)=3D 0.11082651 RMS(Int)=3D 0.00968836 Iteration 2 RMS(Cart)=3D 0.01008655 RMS(Int)=3D 0.00002336 Iteration 3 RMS(Cart)=3D 0.00002996 RMS(Int)=3D 0.00000000 Iteration 4 RMS(Cart)=3D 0.00000000 RMS(Int)=3D 0.00000000 ClnCor: largest displacement from symmetrization is 3.37D-09 for atom = 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.82794 0.00252 -0.05323 0.09099 0.03776 3.86570 R2 2.29202 0.01740 0.01413 -0.00542 0.00871 2.30074 R3 2.23126 0.00426 -0.01140 0.02206 0.01067 2.24192 A1 2.09349 -0.00809 0.00292 -0.02802 -0.02510 2.06839 A2 3.48040 -0.01548 -0.05726 -0.11944 -0.17670 3.30370 A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.017402 0.000450 NO RMS Force 0.010266 0.000300 NO Maximum Displacement 0.128723 0.001800 NO RMS Displacement 0.114165 0.001200 NO Predicted change in Energy=3D-1.691720D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: ________________________________ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z ________________________________ 1 26 0 2.587635 8.230504 5.000000 2 8 0 4.627577 8.077882 5.000000 3 6 0 5.286906 9.101397 5.000000 4 8 0 6.081924 9.981983 5.000000 ________________________________ Distance matrix (angstroms): 1 2 3 4 1 Fe 0.000000 2 O 2.045643 0.000000 3 C 2.836286 1.217497 0.000000 4 O 3.908674 2.395981 1.186375 0.000000 Stoichiometry CFeO2 Framework group CS[SG(CFeO2)] Deg. of freedom 5 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: ________________________________ Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z ________________________________ --_000_DB9PR01MB9054BBAD04A8DEF3690104EB9CB29DB9PR01MB9054eurp_ Content-Type: text/html; charset="us-ascii" Content-Transfer-Encoding: quoted-printable

Looks like there still will be room for some human k= nowledge in comp. chem. for a while….

It is difficult to find anything correct in the free= flowing text below.

 

Frank

 

Frank Jen= sen
Assoc. Prof.
Dept. of Chemistry
Aarhus University
https://tildeweb.au.dk/au23758= /

 

From: owner-chemistry+frj=3D=3Dchem.au.dk _ ccl= .net <owner-chemistry+frj=3D=3Dchem.au.dk _ ccl.net> On Behalf Of Cheng Fei Phung feiphung|hotmail.com
Sent: Thursday, March 2, 2023 2:38 PM
To: Frank Jensen <frj _ chem.au.dk>
Subject: CCL:G: Help with DFT convergence failure for Fe2CO2 in Gaus= sian software

 

Hi,

the following is from chatGPT, what do you guys think ?

 

 

When using the 6-311G basis set, it is common to add di= ffuse functions to improve the description of electron correlation and disp= ersion interactions. One commonly used set of diffuse functions is the "polarization-consistent basis set&qu= ot; (pcS-n, where n is an integer), which adds diffuse functions to the val= ence and polarization sets in a consistent way.

 

For Fe2+ ferrous ion, a suitable choice of diffuse func= tions would depend on the level of accuracy required and the size of the sy= stem. As a starting point, you could consider adding diffuse functions up to the pcS-4 level, which would add 4 sets of = diffuse functions to the 6-311G basis set.

 

To specify the pcS-4 basis set in Gaussian, you can use= the following basis set specification:

 

 

```

# opt umn15l/6-311++g(d,p) scrf=3D(solvent=3Dwater) geo= m=3Dconnectivity

 

Fe2CO2_OPT

 

2 3

 Fe             &nbs= p;   2.74538330    8.28679554    5.00000000

 O              = ;    4.55208397    8.06717607    5.00000000

 C              = ;    5.30819317    9.07309328    5.00000000

 O              = ;    5.97838127    9.96470142    5.00000000

 

 1 2 1.0

 2 3 2.0

 3 4 3.0

 4

 

Fe S 4

6-311G(d,p)  Fe 4,4,4,4,4,4

****

C S 1

6-311G(d,p)  C 3,3,3,3,3,3

****

O S 2

6-311G(d,p)  O 3,3,3,3,3,3

****

```

 

 

In this input file, the "S" keyword specifies= that diffuse functions should be added to the basis set, and the "4&q= uot; after "Fe S" indicates that 4 sets of diffuse functions should be added to the iron atom. The same format is used for the carbon a= nd oxygen atoms.

 

It is also worth noting that the use of solvent models,= such as the SCRF model with water as the solvent, can further improve the = accuracy of calculations by including the effects of solvation. However, the choice of solvent model and the lev= el of theory used for the calculation of solvent effects can also affect th= e accuracy of the results.

 

 

 


From: owner-chemistry+feiphung=3D=3Dhotmail.com:-:ccl.net= <owner-chemistry+feiphung=3D=3Dhotmail.com:-:ccl.net> on behalf of D= avid Shobe shobedavid]^[gmail.com <owner-chemistry:-:ccl.net>
Sent: Wednesday, March 1, 2023 7:53 PM
To: Phung, Cheng Fei <feiphung:-:hotmail.com>
Subject: CCL:G: Help with DFT convergence failure for Fe2CO2 in Gaus= sian software

 

Dear Cheng Fei Phung --

 

Isolated Fe^2+ is a quintuplet in the ground state. = The coordination with the CO2 molecule may change it to a different electro= nic state, most likely to a triplet. 

 

The charge and multiplicity are specified by replaci= ng the "0 1" line with "2 5" for the quintuplet or &quo= t;2 3" for the triplet. The "++" in GaussView is a red herri= ng (if you don't know this expression, it refers to a misleading clue), as the "++" refers to diffuse functions in the basis set. 

 

Good luck! Calculations of transition metals are dif= ficult. I should warn you that even if you get a converged SCF, it might no= t be the correct electronic state. Take a look at the manual under the keyw= ords SCF and stable for more information.

 

 

--David Shobe 

On Wed, Mar 1, 2023, 2:48 AM Cheng Fei Phung feiphun= g-*-hotmail.com <owner-chemistry::ccl.net> wrote:<= /p>

Hi,

 

Since my messages contains the image and is longer than= a limit for general distribution,

the CCL Admin saved my message under<= /p>

so please open this link to read my response=

 

Note that I am doing Fe2+ ferrous ion for MOF carbon ca= pture

 

 

What do you guys think about the following xtb result f= rom https://calcus.cloud/ ?

 

 

4

 energy: -13.349149310898 gnorm: 0.000502022323 xt= b: 6.5.1 (579679a)

Fe           2.73292919494009 =        7.81690557181600        4.99= 999999991402

O            4.2382262993= 8734        8.62616541285678        = ;4.99975863372067

C            5.2803404963= 9189        9.19333556707946        = ;5.00051367720569

O            6.3325457192= 8068        9.75535975824776        = ;4.99972768915961

 

 

Regards,

Cheng Fei  Phung

&n= bsp;


From: owner-chemistry+feiphung=3D=3Dhotmail.com_-_ccl.net <owner-c= hemistry+feiphung=3D=3Dhotmail.com_-_ccl.net> on behalf of Igors Mihailovs igorsm_._cfi.lu.lv <owner-chemistry_-_ccl.net>
Sent: Sunday, February 26, 2023 10:50 PM
To: Phung, Cheng Fei <feiphung_-_hotmail.com>
Subject: CCL:G: Re: CCL:G: Help with DFT convergence failure for Fe2= CO2 in Gaussian software

 

Dear Cheng Fei  = Phung,

I would use something like MN15 or MN15L, and a basis set with at least som= e polarization (6-311G(d,p), for example). Especially if I had to perform s= omething like a token computation in order to get someone's experimental re= sults published.

Trying to converge B3LYP for a transition metal compound may take more time= than the options described above...

Best regards,
Igors Mihailovs
former employee at ISSP UL

On February 25, 2023 12:09:02 PM GMT+02:00, "Ch= eng Fei Phung feiphung=3D-=3Dhotmail.com" <owner-chemistry^-^ccl.net> wrote:


Sent to CCL by: "Cheng Fei  Phung" [feiphung{:}hotmail.com]
With the f= ollowing gaussian16 gjf input file, I got some convergence failure issues.<= br>
Could anyone help ?


Gaussian input gjf file

```%chk=3Dstep_000_DFT.chk
# opt b3lyp/6-31g geom=3Dconnectivity

Fe= 2CO2_OPT

0 1
Fe        &= nbsp;        2.74538330   = ; 8.28679554    5.00000000
O    &nbs= p;             = 4.55208397    8.06717607    5.00000000
C&= nbsp;           &nbs= p;     5.30819317    9.07309328 &nb= sp;  5.00000000
O        &= nbsp;         5.97838127  = ;  9.96470142    5.00000000

1 2 1.0
2 3 2.0=
3 4 3.0
4
```


Gaussian log file

```
%chk= =3Dstep_000_DFT.chk

 # opt b3lyp/6-31g geom=3Dconnectivity

 1/18=3D20,19=3D15,26=3D3,38=3D1,57=3D2/1,3;
2/9=3D110,12=3D2,17= =3D6,18=3D5,40=3D1/2;
3/5=3D1,6=3D6,11=3D2,25=3D1,30=3D1,71=3D1,74=3D-5= /1,2,3;
4//1;
5/5=3D2,38=3D5/2;
6/7=3D2,8=3D2,9=3D2,10=3D2,28= =3D1/1;
7//1,2,3,16;
1/18=3D20,19=3D15,26=3D3/3(2);
2/9=3D110/2= ;
99//99;
2/9=3D110/2;
3/5=3D1,6=3D6,11=3D2,25=3D1,30=3D1,71=3D= 1,74=3D-5/1,2,3;
4/5=3D5,16=3D3,69=3D1/1;
5/5=3D2,38=3D5/2;
7//= 1,2,3,16;
1/18=3D20,19=3D15,26=3D3/3(-5);
2/9=3D110/2;
6/7=3D2,= 8=3D2,9=3D2,10=3D2,19=3D2,28=3D1/1;
99/9=3D1/99;

 Fe2CO2_OPT

 Symbolic Z-matrix:
Charge =3D  0 Multiplicity =3D 1
Fe &= nbsp;           &nbs= p;      2.74538   8.2868  = ;  5.
 O         = ;            4.55208=    8.06718   5.
 C    &nbs= p;            &= nbsp;   5.30819   9.07309   5.
 O&nb= sp;            =         5.97838   9.9647 =    5.
 

 GradGradGradGradGradGradGradGradGra= dGradGradGradGradGradGradGradGradGrad
Berny optimization.
Initializ= ation pass.

           &nbs=
p;            &=
nbsp;  !    Initial Parameters    !
&= nbsp;           &nbs= p;            &= nbsp; ! (Angstroms and Degrees)  !
-------------------------- = ;            &n= bsp;            = ;  --------------------------
! Name  Definition  &= nbsp;           Value&nbs= p;         Derivative Info. &n= bsp;            = ;  !

 ! R1    R(1,2)      &nbs=
p;           1.82 &n=
bsp;         estimate D2E/DX2 =
            &nb=
sp;  !
! R2    R(2,3)     =              1.= 2584         estimate D2E/DX2 =             &nb= sp;  !
! R3    R(3,4)     =              1.= 1154         estimate D2E/DX2 =             &nb= sp;  !
! A1    A(1,2,3)    &nbs= p;         120.0   &= nbsp;        estimate D2E/DX2  = ;            &n= bsp; !
! A2    L(2,3,4,1,-1)    &nbs= p;    180.0         =    estimate D2E/DX2       = ;         !
! A3  &nb= sp; L(2,3,4,1,-2)         180.0&nbs= p;           estimate D2E= /DX2            = ;    !

 Trust Radius=3D3.00D-01 FncErr=3D1.00D-07 GrdErr=3D1.00D-06 EigMax=3D=
2.50D+02 EigMin=3D1.00D-04
Number of steps in this run=3D  &n= bsp;  20 maximum allowed number of steps=3D    100.
= GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
           &nb= sp;             = ; Input orientation:        &n= bsp;            = ;    

 Center     Atomic    &nb=
sp; Atomic           =
;  Coordinates (Angstroms)
Number     Number&n= bsp;      Type      =        X      &= nbsp;    Y        &n= bsp;  Z

      1      &n=
bsp;  26           0=
        2.745383    8.286=
796    5.000000
      2 &nb= sp;        8    &nbs= p;      0       = ; 4.552084    8.067176    5.000000
 &= nbsp;    3        &n= bsp; 6           0 &= nbsp;      5.308193    9.073093&nbs= p;   5.000000
      4  &nbs= p;       8      = ;     0        5.978= 381    9.964701    5.000000

           &nbs=
p;        Distance matrix (angstroms):            &=
nbsp;       1     &n=
bsp;    2        &nb=
sp; 3          4
 &nbs= p;   1  Fe   0.000000
     = 2  O    1.820000   0.000000
  &n= bsp;  3  C    2.680720   1.258400 &= nbsp; 0.000000
     4  O    3.64= 2478   2.373800   1.115400   0.000000
Sto= ichiometry    CFeO2
Framework group  CS[SG(CFeO2)]<= br> Deg. of freedom     5
Full point group &nb= sp;            =    CS      NOp   2
Largest= Abelian subgroup         CS &= nbsp;    NOp   2
Largest concise Abelian subgr= oup C1      NOp   1
   = ;            &n= bsp;         Standard orientation:&= nbsp;           &nbs= p;            <= /o:p>

 Center     Atomic    &nb=
sp; Atomic           =
;  Coordinates (Angstroms)
Number     Number&n= bsp;      Type      =        X      &= nbsp;    Y        &n= bsp;  Z

      1      &n=
bsp;  26           0=
       -1.018287   -0.652610 &=
nbsp; -0.000000
      2    =       8       &= nbsp;   0       -0.000000 &nbs= p;  0.855864    0.000000
    &nb= sp; 3          6  &n= bsp;        0    &nb= sp;   1.255302    0.767619    0.000= 000
      4      =     8         &= nbsp; 0        2.367956   = ; 0.689403    0.000000

 Rotational constants (GHZ):       =
   37.1744583        &nbs=
p;  2.4897380         &nb=
sp; 2.3334561
Standard basis: 6-31G (6D, 7F)
There are  &= nbsp; 42 symmetry adapted cartesian basis functions of A'  symmetry. There are    14 symmetry adapted cartesian basis function= s of A"  symmetry.
There are    42 symmetry ad= apted basis functions of A'  symmetry.
There are   = 14 symmetry adapted basis functions of A"  symmetry.
 &n= bsp;  56 basis functions,   160 primitive gaussians, &n= bsp;  56 cartesian basis functions
    24 alpha elec= trons       24 beta electrons
  =      nuclear repulsion energy    &n= bsp;  178.7145642873 Hartrees.
NAtoms=3D    4 NActi= ve=3D    4 NUniq=3D    4 SFac=3D 1.00D+00 NAt= FMM=3D   60 NAOKFM=3DF Big=3DF
Integral buffers will be =    131072 words long.
Raffenetti 2 integral format.
Two-e= lectron integral symmetry is turned on.
One-electron integrals computed= using PRISM.
NBasis=3D    56 RedAO=3D T EigKep=3D = 1.76D-03  NBF=3D    42    14
NBsUse= =3D    56 1.00D-06 EigRej=3D -1.00D+00 NBFU=3D  &n= bsp; 42    14
ExpMin=3D 4.11D-02 ExpMax=3D 6.11D+04 ExpM= xC=3D 9.18D+03 IAcc=3D3 IRadAn=3D       =   5 AccDes=3D 0.00D+00
Harris functional with IExCor=3D  402 = and IRadAn=3D       5 diagonalized for initia= l guess.
HarFok:  IExCor=3D  402 AccDes=3D 0.00D+00 IRadAn=3D=          5 IDoV=3D 1 UseB2=3DF ITyA= DJ=3D14
ICtDFT=3D  3500011 ScaDFX=3D  1.000000  1.000000=   1.000000  1.000000
FoFCou: FMM=3DF IPFlag=3D  &nb= sp;        0 FMFlag=3D   =    100000 FMFlg1=3D        &nb= sp;  0
         NFxFlg= =3D           0 DoJE=3DT = BraDBF=3DF KetDBF=3DT FulRan=3DT
      &nb= sp;  wScrn=3D  0.000000 ICntrl=3D     &n= bsp; 500 IOpCl=3D  0 I1Cent=3D   200000004 NGrid=3D &nb= sp;         0
   =       NMat0=3D    1 NMatS0=3D =      1 NMatT0=3D    0 NMatD0=3D &nb= sp;  1 NMtDS0=3D    0 NMtDT0=3D    0
= Petite list used in FoFCou.
Initial guess orbital symmetries:
 = ;      Occupied  (A') (A') (A') (A') (A"= ) (A') (A') (A') (A') (A')
       &nb= sp;         (A') (A") (A') (A'= ) (A') (A') (A') (A") (A') (A")
     =             (A') (A'= ) (A") (A')
       Virtual  = ; (A") (A') (A') (A") (A') (A") (A') (A') (A') (A')
 = ;            &n= bsp;   (A") (A') (A') (A") (A') (A') (A') (A") (A'= ) (A')
           = ;      (A') (A") (A') (A') (A') (A") (A&= quot;) (A') (A') (A')
        &n= bsp;        (A') (A')
The electronic= state of the initial guess is 1-A'.
Keep R1 ints in memory in symmetry= -blocked form, NReq=3D2159799.
Requested convergence on RMS density mat= rix=3D1.00D-08 within 128 cycles.
Requested convergence on MAX density = matrix=3D1.00D-06.
Requested convergence on    &nbs= p;        energy=3D1.00D-06.
No spec= ial actions if energy rises.
EnCoef did     3 forwa= rd-backward iterations
EnCoef did   100 forward-backward iter= ations
EnCoef did     2 forward-backward iterations=
EnCoef did     2 forward-backward iterations
S= CF Done:  E(RB3LYP) =3D  -1451.84990065     A= .U. after   22 cycles
      &nbs= p;     NFock=3D 22  Conv=3D0.66D-08  &nb= sp;  -V/T=3D 2.0016

******************************************= ****************************

      &nb= sp;     Population analysis using the SCF Density.
<= br> **********************************************************************<= br>
Orbital symmetries:
       Occupie= d  (A') (A') (A') (A') (A") (A') (A') (A') (A') (A')
 &nb= sp;            =    (A") (A') (A') (A') (A') (A') (A") (A') (A') (A"= ;)
           &nb= sp;     (A') (A') (A") (A')
   &= nbsp;   Virtual   (A") (A') (A") (A') (A') (A= ") (A') (A') (A') (A')
       &n= bsp;         (A") (A') (A') (A= ") (A') (A') (A') (A") (A') (A')
     = ;            (A') (A= ") (A') (A') (A') (A") (A') (A") (A') (A')
  &n= bsp;            = ;  (A') (A')
The electronic state is 1-A'.
Alpha  occ. ei= genvalues -- -256.04016 -29.99951 -25.87326 -25.85859 -25.85805
Alpha&n= bsp; occ. eigenvalues --  -19.31120 -19.28742 -10.45249  -3.41064=   -2.20510
Alpha  occ. eigenvalues --   -2.17421&nb= sp; -2.16694  -1.26882  -1.17261  -0.64217
Alpha  o= cc. eigenvalues --   -0.58881  -0.57965  -0.57594 = -0.44473  -0.43175
Alpha  occ. eigenvalues --   -0= .22416  -0.22137  -0.20382  -0.15336
Alpha virt. eigenva= lues --   -0.07558  -0.07420  -0.03518  -0.03067&n= bsp; -0.02764
Alpha virt. eigenvalues --   -0.00807 &nbs= p; 0.00082   0.10567   0.12952   0.29804
= Alpha virt. eigenvalues --    0.31948   0.36712&nb= sp;  0.41870   0.45104   0.54770
Alpha virt. e= igenvalues --    0.63606   0.74556   0.8= 5137   0.88355   0.92857
Alpha virt. eigenvalues --=     0.96917   1.00808   1.01595 &nb= sp; 1.25495   1.50958
Alpha virt. eigenvalues --  &= nbsp; 1.51252   1.55992   1.59723   1.70732&n= bsp;  1.86833
Alpha virt. eigenvalues --    2.01356=   20.37339
          C= ondensed to atoms (all electrons):
      &= nbsp;        1    &n= bsp;     2       &nb= sp;  3          4
&nbs= p;    1  Fe  26.065938  -0.058002  = 0.083106  -0.030239
     2  O  = -0.058002   8.304619   0.168196   0.010116     3  C    0.083106  = 0.168196   4.724609   0.417125
   &n= bsp; 4  O   -0.030239   0.010116   0.417= 125   7.724230
Mulliken charges:
    &= nbsp;          1
 &nbs= p;   1  Fe  -0.060803
     2&nbs= p; O   -0.424929
     3  C  &nbs= p; 0.606964
     4  O   -0.12123= 2
Sum of Mulliken charges =3D  -0.00000
Mulliken charges with = hydrogens summed into heavy atoms:
      &= nbsp;        1
   &nbs= p; 1  Fe  -0.060803
     2  O &n= bsp; -0.424929
     3  C    0.60= 6964
     4  O   -0.121232
Electr= onic spatial extent (au):  <R**2>=3D    &nbs= p;       453.0609
Charge=3D  &n= bsp;          -0.0000 electron= s
Dipole moment (field-independent basis, Debye):
   = X=3D           &nbs= p;  1.6708    Y=3D      &= nbsp;       1.8514    Z=3D&nbs= p;            -0.000= 0  Tot=3D          &= nbsp;   2.4938
Quadrupole moment (field-independent basis, De= bye-Ang):
   XX=3D       &n= bsp;    -35.0872   YY=3D    &n= bsp;       -34.7815   ZZ=3D &n= bsp;          -32.5686
&nbs= p;  XY=3D          &= nbsp;   0.8912   XZ=3D     &nb= sp;        0.0000   YZ=3D = ;             0= .0000
Traceless Quadrupole moment (field-independent basis, Debye-Ang):=
   XX=3D         = ;    -0.9415   YY=3D     =         -0.6357   ZZ=3D &= nbsp;            1.5= 772
   XY=3D        &n= bsp;     0.8912   XZ=3D   &nbs= p;          0.0000  = YZ=3D           &nb= sp;  0.0000
Octapole moment (field-independent basis, Debye-Ang**2= ):
  XXX=3D         &n= bsp;   -8.4875  YYY=3D       &= nbsp;      8.6001  ZZZ=3D  &nb= sp;          -0.0000  XYY= =3D            =   3.5470
  XXY=3D       &nb= sp;      1.7153  XXZ=3D   &nbs= p;          0.0000  XZZ= =3D            =   0.7336  YZZ=3D        &= nbsp;     1.9407
  YYZ=3D   &nbs= p;         -0.0000  XYZ=3D&nbs= p;            -0.000= 0
Hexadecapole moment (field-independent basis, Debye-Ang**3):
XXXX= =3D           -415.5041 Y= YYY=3D           -171.103= 9 ZZZZ=3D           = -55.1637 XXXY=3D         &nbs= p;  -84.4690
XXXZ=3D       &nbs= p;      0.0000 YYYX=3D    &nbs= p;       -75.7822 YYYZ=3D   &n= bsp;          0.0000 ZZZX=3D&n= bsp;            = ; 0.0000
ZZZY=3D          =     0.0000 XXYY=3D      &= nbsp;     -90.7121 XXZZ=3D     = ;       -70.9019 YYZZ=3D   &nb= sp;        -36.9432
XXYZ=3D &nb= sp;            0.000= 0 YYXZ=3D           =    0.0000 ZZXY=3D        =     -24.7602
N-N=3D 1.787145642873D+02 E-N=3D-3.80762687= 5025D+03  KE=3D 1.449497603530D+03
Symmetry A'   KE=3D 1= .287179877057D+03
Symmetry A"   KE=3D 1.623177264732D+02=
Calling FoFJK, ICntrl=3D      2127 FMM=3DF IS= ym2X=3D1 I1Cent=3D 0 IOpClX=3D 0 NMat=3D1 NMatS=3D1 NMatT=3D0.
***** Ax= es restored to original set *****

 Center     Atomic      &=
nbsp;           &nbs=
p;Forces (Hartrees/Bohr)
Number     Number &nb= sp;            X&nbs= p;             = Y            &n= bsp; Z

      1       2=
6          -0.048820174 &=
nbsp;  0.005157682    0.000000000
   =    2        8   = ;        0.068584660    0= .015861998    0.000000000
      = 3        6     =      -0.104728901   -0.126023309  &= nbsp; 0.000000000
      4   &nbs= p;    8         = ;  0.084964415    0.105003629   -0.000000000<= o:p>

 Cartesian Forces:  Max     0.126023309 RMS&n=
bsp;    0.066118707

GradGradGradGradGradGradGradGrad= GradGradGradGradGradGradGradGradGradGrad
Berny optimization.
FormGI= is forming the generalized inverse of G from B-inverse, IUseBI=3D4.
In= ternal  Forces:  Max     0.134986320 RMS = ;    0.059949734
Search for a local minimum.
Step nu= mber   1 out of a maximum of   20
All quantities pr= inted in internal units (Hartrees-Bohrs-Radians)
Mixed Optimization -- = RFO/linear search
Second derivative matrix not updated -- first step. The second derivative matrix:
      &nb= sp;             = ;      R1      =   R2        R3   &nb= sp;    A1        A2
&n= bsp;          R1  &n= bsp;        0.22791
   = ;        R2     = ;      0.00000   0.80209
  =          R3    =        0.00000   0.00000  = ; 1.62060
           A= 1           0.00000 =   0.00000   0.00000   0.25000
   = ;        A2     &nbs= p;     0.00000   0.00000   0.0= 0000   0.00000   0.05456
    &nb= sp;      A3      &nb= sp;    0.00000   0.00000   0.00000 =   0.00000   0.00000
      &= nbsp;           &nbs= p;       A3
     =       A3       =     0.05456
ITU=3D  0
     E= igenvalues ---    0.05456   0.05456   0.= 22791   0.25000   0.80209
     E= igenvalues ---    1.62060
RFO step:  Lambda=3D-2.30= 438557D-02 EMin=3D 5.45649275D-02
Linear search not attempted -- first = point.
Iteration  1 RMS(Cart)=3D  0.10911805 RMS(Int)=3D = ; 0.00403264
Iteration  2 RMS(Cart)=3D  0.00524126 RMS(Int)= =3D  0.00001569
Iteration  3 RMS(Cart)=3D  0.00001737 RM= S(Int)=3D  0.00000000
Iteration  4 RMS(Cart)=3D  0.00000= 000 RMS(Int)=3D  0.00000000
ClnCor:  largest displacement fro= m symmetrization is 2.67D-10 for atom     3.
Variab= le       Old X    -DE/DX =   Delta X   Delta X   Delta X   &nb= sp; New X
          &n= bsp;            = ;          (Linear)  = ;  (Quad)   (Total)
    R1  &nbs= p;     3.43930   0.04909   0.00000&= nbsp;  0.19560   0.19560   3.63490
  =   R2        2.37803  -0.02868&= nbsp;  0.00000  -0.03476  -0.03476   2.34327
&n= bsp;   R3        2.10780 =   0.13499   0.00000   0.08213   0.08213&= nbsp;  2.18993
    A1     &= nbsp;  2.09440   0.00265   0.00000   0.0= 0969   0.00969   2.10408
    A2 =        3.14159   0.01018  = ; 0.00000   0.13112   0.13112   3.27271
&n= bsp;   A3        3.14159 =   0.00000   0.00000   0.00000   0.00000&= nbsp;  3.14159
         Ite= m            &n= bsp;  Value     Threshold  Converged?
Max= imum Force           = ; 0.134986     0.000450     NO
=  RMS     Force      =       0.059950     0.000300&nb= sp;    NO
 Maximum Displacement   &n= bsp; 0.164913     0.001800     NO <= br> RMS     Displacement     0= .111408     0.001200     NO
&nb= sp;Predicted change in Energy=3D-1.225354D-02
GradGradGradGradGradGradG= radGradGradGradGradGradGradGradGradGradGradGrad

   &n= bsp;            = ;          Input orientation:&= nbsp;           &nbs= p;             =

 Center     Atomic    &nb=
sp; Atomic           =
;  Coordinates (Angstroms)
Number     Number&n= bsp;      Type      =        X      &= nbsp;    Y        &n= bsp;  Z

      1      &n=
bsp;  26           0=
        2.658115    8.232=
499    5.000000
      2 &nb= sp;        8    &nbs= p;      0       = ; 4.576263    8.089032    5.000000
 &= nbsp;    3        &n= bsp; 6           0 &= nbsp;      5.284531    9.106861&nbs= p;   5.000000
      4  &nbs= p;       8      = ;     0        6.065= 132    9.963375    5.000000

           &nbs=
p;        Distance matrix (angstroms):            &=
nbsp;       1     &n=
bsp;    2        &nb=
sp; 3          4
 &nbs= p;   1  Fe   0.000000
     = 2  O    1.923506   0.000000
  &n= bsp;  3  C    2.768135   1.240008 &= nbsp; 0.000000
     4  O    3.82= 1478   2.393719   1.158859   0.000000
Sto= ichiometry    CFeO2
Framework group  CS[SG(CFeO2)]<= br> Deg. of freedom     5
Full point group &nb= sp;            =    CS      NOp   2
Largest= Abelian subgroup         CS &= nbsp;    NOp   2
Largest concise Abelian subgr= oup C1      NOp   1
   = ;            &n= bsp;         Standard orientation: =             &nb= sp;           <= /o:p>

 Center     Atomic    &nb=
sp; Atomic           =
;  Coordinates (Angstroms)
Number     Number&n= bsp;      Type      =        X      &= nbsp;    Y        &n= bsp;  Z

      1      &n=
bsp;  26           0=
       -1.022093   -0.757193 &=
nbsp; -0.000000
      2    =       8       &= nbsp;   0        0.000000 = ;   0.872286    0.000000
   &nbs= p;  3          6 &nb= sp;         0   &nbs= p;    1.239558    0.838897    = 0.000000
      4     &= nbsp;    8        &n= bsp;  0        2.392133  =   0.959419    0.000000

 Rotational constants (GHZ):       =
   40.3135828        &nbs=
p;  2.2660782         &nb=
sp; 2.1454781
Standard basis: 6-31G (6D, 7F)
There are  &= nbsp; 42 symmetry adapted cartesian basis functions of A'  symmetry. There are    14 symmetry adapted cartesian basis function= s of A"  symmetry.
There are    42 symmetry ad= apted basis functions of A'  symmetry.
There are   = 14 symmetry adapted basis functions of A"  symmetry.
 &n= bsp;  56 basis functions,   160 primitive gaussians, &n= bsp;  56 cartesian basis functions
    24 alpha elec= trons       24 beta electrons
  =      nuclear repulsion energy    &n= bsp;  172.3989508234 Hartrees.
NAtoms=3D    4 NActi= ve=3D    4 NUniq=3D    4 SFac=3D 1.00D+00 NAt= FMM=3D   60 NAOKFM=3DF Big=3DF
Integral buffers will be =    131072 words long.
Raffenetti 2 integral format.
Two-e= lectron integral symmetry is turned on.
One-electron integrals computed= using PRISM.
NBasis=3D    56 RedAO=3D T EigKep=3D = 1.76D-03  NBF=3D    42    14
NBsUse= =3D    56 1.00D-06 EigRej=3D -1.00D+00 NBFU=3D  &n= bsp; 42    14
Initial guess from the checkpoint file:&nb= sp; "step_000_DFT.chk"
B after Tr=3D     = 0.000000    0.000000   -0.000000
  &n= bsp;      Rot=3D    0.999288 &= nbsp; -0.000000   -0.000000   -0.037733 Ang=3D  -4= .32 deg.
Initial guess orbital symmetries:
    &= nbsp;  Occupied  (A') (A') (A') (A') (A") (A') (A') (A') (A'= ) (A')
           = ;      (A") (A') (A') (A') (A') (A') (A"= ) (A') (A') (A")
        &n= bsp;        (A') (A') (A") (A')
=        Virtual   (A") (A') (A&= quot;) (A') (A') (A") (A') (A') (A') (A')
    &= nbsp;            (A&= quot;) (A') (A') (A") (A') (A') (A') (A") (A') (A')
 &nbs= p;            &= nbsp;  (A') (A") (A') (A') (A') (A") (A') (A") (A') (A'= )
           &nbs= p;     (A') (A')
ExpMin=3D 4.11D-02 ExpMax=3D 6.11D= +04 ExpMxC=3D 9.18D+03 IAcc=3D3 IRadAn=3D     &nbs= p;   5 AccDes=3D 0.00D+00
Harris functional with IExCor=3D&nb= sp; 402 and IRadAn=3D       5 diagonalized fo= r initial guess.
HarFok:  IExCor=3D  402 AccDes=3D 0.00D+00 I= RadAn=3D         5 IDoV=3D 1 UseB2= =3DF ITyADJ=3D14
ICtDFT=3D  3500011 ScaDFX=3D  1.000000 = 1.000000  1.000000  1.000000
FoFCou: FMM=3DF IPFlag=3D =           0 FMFlag=3D &nb= sp;    100000 FMFlg1=3D      &= nbsp;    0
       &nbs= p; NFxFlg=3D           0 = DoJE=3DT BraDBF=3DF KetDBF=3DT FulRan=3DT
     =     wScrn=3D  0.000000 ICntrl=3D    = ;   500 IOpCl=3D  0 I1Cent=3D   200000004 NGrid=3D=            0
 &nb= sp;       NMat0=3D    1 NMatS0= =3D      1 NMatT0=3D    0 NMatD0=3D=     1 NMtDS0=3D    0 NMtDT0=3D  &nb= sp; 0
Petite list used in FoFCou.
Keep R1 ints in memory in symmetr= y-blocked form, NReq=3D2159799.
Requested convergence on RMS density ma= trix=3D1.00D-08 within 128 cycles.
Requested convergence on MAX density= matrix=3D1.00D-06.
Requested convergence on    &nb= sp;        energy=3D1.00D-06.
No spe= cial actions if energy rises.
SCF Done:  E(RB3LYP) =3D  -1451= .86533909     A.U. after   18 cycles
 = ;           NFock=3D 18&n= bsp; Conv=3D0.23D-08     -V/T=3D 2.0018
Calling FoF= JK, ICntrl=3D      2127 FMM=3DF ISym2X=3D1 I1Cent= =3D 0 IOpClX=3D 0 NMat=3D1 NMatS=3D1 NMatT=3D0.
***** Axes restored to = original set *****

 Center     Atomic     &n=
bsp;            =
; Forces (Hartrees/Bohr)
Number     Number &nb= sp;            X&nbs= p;             = Y            &n= bsp; Z

      1       2=
6          -0.021775369 &=
nbsp;  0.002114287    0.000000000
   =    2        8   = ;        0.036955110    0= .014737157    0.000000000
      = 3        6     =      -0.039695691   -0.040384091  &= nbsp; 0.000000000
      4   &nbs= p;    8         = ;  0.024515951    0.023532647   -0.000000000<= o:p>

 Cartesian Forces:  Max     0.040384091 RMS&n=
bsp;    0.023135364

GradGradGradGradGradGradGradGrad= GradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Using = GEDIIS/GDIIS optimizer.
FormGI is forming the generalized inverse of G = > from B-inverse, IUseBI=3D4.
Internal  Forces:  Max  = ;   0.033908365 RMS     0.018980685
Searc= h for a local minimum.
Step number   2 out of a maximum of&nb= sp;  20
All quantities printed in internal units (Hartrees-Bohrs-R= adians)
Mixed Optimization -- RFO/linear search
Update second deriv= atives using D2CorX and points    1    2
= DE=3D -1.54D-02 DEPred=3D-1.23D-02 R=3D 1.26D+00
TightC=3DF SS=3D = 1.41D+00  RLast=3D 2.52D-01 DXNew=3D 5.0454D-01 7.5596D-01
Trust = test=3D 1.26D+00 RLast=3D 2.52D-01 DXMaxT set to 5.05D-01
The second de= rivative matrix:
          =             &nb= sp;   R1        R2 &= nbsp;      R3      &= nbsp; A1        A2
   =         R1     =       0.18668
     &nb= sp;     R2       &nb= sp;   0.04604   0.76870
    &nbs= p;      R3      &nbs= p;   -0.08608   0.12904   1.50110
 &n= bsp;         A1   &n= bsp;       0.00316   0.00128 &= nbsp; 0.01538   0.25104
       &= nbsp;   A2        &n= bsp; -0.00501   0.00702  -0.00784   0.00077 &= nbsp; 0.05407
         &nbs= p; A3           0.00000&n= bsp; -0.00000   0.00000   0.00000   0.00000            &= nbsp;           &nbs= p; A3
           A3&nb= sp;          0.05456
ITU= =3D  1  0
Use linear search instead of GDIIS.
  =    Eigenvalues ---    0.05364   0.05456&= nbsp;  0.17607   0.25109   0.75296
  =    Eigenvalues ---    1.52783
RFO step:  = Lambda=3D-2.40357398D-03 EMin=3D 5.36398691D-02
Quartic linear search p= roduced a step of  0.74433.
Iteration  1 RMS(Cart)=3D  0= .12055350 RMS(Int)=3D  0.00970928
Iteration  2 RMS(Cart)=3D&n= bsp; 0.01171440 RMS(Int)=3D  0.00007671
Iteration  3 RMS(Cart= )=3D  0.00008339 RMS(Int)=3D  0.00000000
Iteration  4 RM= S(Cart)=3D  0.00000000 RMS(Int)=3D  0.00000000
ClnCor:  = largest displacement from symmetrization is 4.24D-12 for atom  &n= bsp;  3.
Variable       Old X &= nbsp;  -DE/DX   Delta X   Delta X   Delt= a X     New X
      &n= bsp;            = ;            &n= bsp; (Linear)    (Quad)   (Total)
  &= nbsp; R1        3.63490   0.02= 187   0.14559   0.04745   0.19304  = 3.82794
    R2       = 2.34327  -0.02250  -0.02587  -0.02538  -0.05125 &= nbsp; 2.29202
    R3      &= nbsp; 2.18993   0.03391   0.06113  -0.01980 &= nbsp; 0.04133   2.23126
    A1   = ;     2.10408  -0.00172   0.00721  = -0.01780  -0.01059   2.09349
    A2 &= nbsp;      3.27271   0.00495  = 0.09759   0.11009   0.20769   3.48040
&nb= sp;   A3        3.14159 &= nbsp; 0.00000   0.00000   0.00000   0.00000&n= bsp;  3.14159
         Item=             &nb= sp;  Value     Threshold  Converged?
Maxi= mum Force           = 0.033908     0.000450     NO
&= nbsp;RMS     Force      &= nbsp;     0.018981     0.000300&nbs= p;    NO
 Maximum Displacement   &nb= sp; 0.157853     0.001800     NO  RMS     Displacement     0.= 126480     0.001200     NO
&nbs= p;Predicted change in Energy=3D-2.644271D-03
GradGradGradGradGradGradGr= adGradGradGradGradGradGradGradGradGradGradGrad

   &nb= sp;            =           Input orientation:&n= bsp;            &nbs= p;            <= o:p>

 Center     Atomic    &nb=
sp; Atomic           =
;  Coordinates (Angstroms)
Number     Number&n= bsp;      Type      =        X      &= nbsp;    Y        &n= bsp;  Z

      1      &n=
bsp;  26           0=
        2.586226    8.170=
844    5.000000
      2 &nb= sp;        8    &nbs= p;      0       = ; 4.611490    8.130764    5.000000
 &= nbsp;    3        &n= bsp; 6           0 &= nbsp;      5.237660    9.169515&nbs= p;   5.000000
      4  &nbs= p;       8      = ;     0        6.148= 665    9.920644    5.000000

           &nbs=
p;        Distance matrix (angstroms):            &=
nbsp;       1     &n=
bsp;    2        &nb=
sp; 3          4
 &nbs= p;   1  Fe   0.000000
     = 2  O    2.025661   0.000000
  &n= bsp;  3  C    2.833275   1.212885 &= nbsp; 0.000000
     4  O    3.96= 8976   2.359359   1.180730   0.000000
Sto= ichiometry    CFeO2
Framework group  CS[SG(CFeO2)]<= br> Deg. of freedom     5
Full point group &nb= sp;            =    CS      NOp   2
Largest= Abelian subgroup         CS &= nbsp;    NOp   2
Largest concise Abelian subgr= oup C1      NOp   1
   = ;            &n= bsp;         Standard orientation:&= nbsp;           &nbs= p;            <= /o:p>

 Center     Atomic    &nb=
sp; Atomic           =
;  Coordinates (Angstroms)
Number     Number&n= bsp;      Type      =        X      &= nbsp;    Y        &n= bsp;  Z

      1      &n=
bsp;  26           0=
       -0.994550   -0.879340 &=
nbsp; -0.000000
      2    =       8       &= nbsp;   0       -0.000000 &nbs= p;  0.885361    0.000000
    &nb= sp; 3          6  &n= bsp;        0    &nb= sp;   1.212831    0.896868    0.000= 000
      4      =     8         &= nbsp; 0        2.322666   = ; 1.299844    0.000000

 Rotational constants (GHZ):       =
   47.4271405        &nbs=
p;  2.0987230         &nb=
sp; 2.0097869
Standard basis: 6-31G (6D, 7F)
There are  &= nbsp; 42 symmetry adapted cartesian basis functions of A'  symmetry. There are    14 symmetry adapted cartesian basis function= s of A"  symmetry.
There are    42 symmetry ad= apted basis functions of A'  symmetry.
There are   = 14 symmetry adapted basis functions of A"  symmetry.
 &n= bsp;  56 basis functions,   160 primitive gaussians, &n= bsp;  56 cartesian basis functions
    24 alpha elec= trons       24 beta electrons
  =      nuclear repulsion energy    &n= bsp;  168.0152669884 Hartrees.
NAtoms=3D    4 NActi= ve=3D    4 NUniq=3D    4 SFac=3D 1.00D+00 NAt= FMM=3D   60 NAOKFM=3DF Big=3DF
Integral buffers will be =    131072 words long.
Raffenetti 2 integral format.
Two-e= lectron integral symmetry is turned on.
One-electron integrals computed= using PRISM.
NBasis=3D    56 RedAO=3D T EigKep=3D = 1.76D-03  NBF=3D    42    14
NBsUse= =3D    56 1.00D-06 EigRej=3D -1.00D+00 NBFU=3D  &n= bsp; 42    14
Initial guess from the checkpoint file:&nb= sp; "step_000_DFT.chk"
B after Tr=3D     = 0.000000   -0.000000   -0.000000
   &= nbsp;     Rot=3D    0.998838  = -0.000000   -0.000000   -0.048193 Ang=3D  -5.52 d= eg.
Initial guess orbital symmetries:
     =   Occupied  (A') (A') (A') (A') (A") (A') (A') (A') (A') (A'= )
           &nbs= p;     (A") (A') (A') (A') (A') (A') (A") (A'= ) (A') (A")
         &= nbsp;       (A') (A') (A") (A')
 = ;      Virtual   (A') (A") (A') (A&= quot;) (A') (A") (A') (A') (A') (A')
     =             (A"= ) (A') (A') (A") (A') (A') (A') (A") (A') (A')
  &nb= sp;            =   (A') (A") (A') (A') (A') (A") (A') (A") (A') (A')
=             &nb= sp;    (A') (A')
ExpMin=3D 4.11D-02 ExpMax=3D 6.11D+04 E= xpMxC=3D 9.18D+03 IAcc=3D3 IRadAn=3D      &nb= sp;  5 AccDes=3D 0.00D+00
Harris functional with IExCor=3D  4= 02 and IRadAn=3D       5 diagonalized for ini= tial guess.
HarFok:  IExCor=3D  402 AccDes=3D 0.00D+00 IRadAn= =3D         5 IDoV=3D 1 UseB2=3DF I= TyADJ=3D14
ICtDFT=3D  3500011 ScaDFX=3D  1.000000  1.000= 000  1.000000  1.000000
FoFCou: FMM=3DF IPFlag=3D  =          0 FMFlag=3D  &nb= sp;   100000 FMFlg1=3D       &= nbsp;   0
         NFx= Flg=3D           0 DoJE= =3DT BraDBF=3DF KetDBF=3DT FulRan=3DT
     &nbs= p;   wScrn=3D  0.000000 ICntrl=3D    &nb= sp;  500 IOpCl=3D  0 I1Cent=3D   200000004 NGrid=3D&nbs= p;          0
  &= nbsp;      NMat0=3D    1 NMatS0=3D&= nbsp;     1 NMatT0=3D    0 NMatD0=3D&nbs= p;   1 NMtDS0=3D    0 NMtDT0=3D    = 0
Petite list used in FoFCou.
Keep R1 ints in memory in symmetry-bl= ocked form, NReq=3D2159799.
Requested convergence on RMS density matrix= =3D1.00D-08 within 128 cycles.
Requested convergence on MAX density mat= rix=3D1.00D-06.
Requested convergence on     &= nbsp;       energy=3D1.00D-06.
No special= actions if energy rises.
SCF Done:  E(RB3LYP) =3D  -1451.867= 79894     A.U. after   19 cycles
 &nb= sp;          NFock=3D 19 = Conv=3D0.32D-08     -V/T=3D 2.0018
Calling FoFJK, = ICntrl=3D      2127 FMM=3DF ISym2X=3D1 I1Cent=3D 0= IOpClX=3D 0 NMat=3D1 NMatS=3D1 NMatT=3D0.
***** Axes restored to origi= nal set *****

 Center     Atomic     &n=
bsp;            =
; Forces (Hartrees/Bohr)
Number     Number &nb= sp;            X&nbs= p;             = Y             &= nbsp;Z

      1       2=
6          -0.002475531 &=
nbsp;  0.002170910    0.000000000
   =    2        8   = ;       -0.009275511   -0.015400826=     0.000000000
      3 &nb= sp;      6      &nbs= p;    0.012873515    0.005174131  &= nbsp; 0.000000000
      4   &nbs= p;    8         = ; -0.001122473    0.008055785   -0.000000000<= /o:p>

 Cartesian Forces:  Max     0.015400826 RMS&n=
bsp;    0.007028017

GradGradGradGradGradGradGradGrad= GradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Using = GEDIIS/GDIIS optimizer.
FormGI is forming the generalized inverse of G = > from B-inverse, IUseBI=3D4.
Internal  Forces:  Max  = ;   0.017401591 RMS     0.010265616
Searc= h for a local minimum.
Step number   3 out of a maximum of&nb= sp;  20
All quantities printed in internal units (Hartrees-Bohrs-R= adians)
Mixed Optimization -- RFO/linear search
Update second deriv= atives using D2CorX and points    1    2 = ;   3
DE=3D -2.46D-03 DEPred=3D-2.64D-03 R=3D 9.30D-01
Ti= ghtC=3DF SS=3D  1.41D+00  RLast=3D 2.91D-01 DXNew=3D 8.4853D-01 8= .7386D-01
Trust test=3D 9.30D-01 RLast=3D 2.91D-01 DXMaxT set to 8.49D-= 01
The second derivative matrix:
      = ;            &n= bsp;       R1     &n= bsp;  R2        R3   = ;     A1        A2           R1 &nbs= p;         0.14042
  &= nbsp;        R2    &= nbsp;      0.04009   0.84593
 &= nbsp;        R3   &n= bsp;      -0.15330   0.08559  = 1.42002
           A1=            0.01583  = -0.02335   0.04566   0.25643
    = ;       A2      = ;     0.00387  -0.03883   0.02611 &= nbsp; 0.01417   0.08070
      &n= bsp;    A3        &n= bsp;  0.00000  -0.00000   0.00000   0.00000&n= bsp;  0.00000
         = ;            &n= bsp;    A3
       &nbs= p;   A3         &nbs= p; 0.05456
ITU=3D  1  1  0
Use linear search instead= of GDIIS.
     Eigenvalues ---    0.= 05456   0.07570   0.11658   0.25847 &nbs= p; 0.84223
     Eigenvalues ---    1.= 45052
RFO step:  Lambda=3D-2.28883397D-03 EMin=3D 5.45649275D-02 Quartic linear search produced a step of -0.27572.
Iteration  1= RMS(Cart)=3D  0.11082651 RMS(Int)=3D  0.00968836
Iteration&n= bsp; 2 RMS(Cart)=3D  0.01008655 RMS(Int)=3D  0.00002336
Itera= tion  3 RMS(Cart)=3D  0.00002996 RMS(Int)=3D  0.00000000
= Iteration  4 RMS(Cart)=3D  0.00000000 RMS(Int)=3D  0.000000= 00
ClnCor:  largest displacement from symmetrization is 3.37D-09 f= or atom     3.
Variable    &nbs= p;  Old X    -DE/DX   Delta X   Del= ta X   Delta X     New X
   = ;            &n= bsp;            = ;     (Linear)    (Quad)   (To= tal)
    R1        3.8= 2794   0.00252  -0.05323   0.09099   0.0= 3776   3.86570
    R2    &n= bsp;   2.29202   0.01740   0.01413  -0.0= 0542   0.00871   2.30074
    R3 =        2.23126   0.00426  -0.0= 1140   0.02206   0.01067   2.24192
 &= nbsp;  A1        2.09349  -0.0= 0809   0.00292  -0.02802  -0.02510   2.06839<= br>    A2        3.48040&= nbsp; -0.01548  -0.05726  -0.11944  -0.17670   3.3= 0370
    A3        3.1= 4159   0.00000   0.00000   0.00000  = ; 0.00000   3.14159
       =   Item          &nbs= p;    Value     Threshold  Converge= d?
Maximum Force         &= nbsp;  0.017402     0.000450   &nbs= p; NO
 RMS     Force    &n= bsp;       0.010266     0= .000300     NO
 Maximum Displacement &nbs= p;   0.128723     0.001800   &= nbsp; NO
 RMS     Displacement  &nbs= p;  0.114165     0.001200     = NO
 Predicted change in Energy=3D-1.691720D-03
GradGradGradGra= dGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

 &nbs= p;            &= nbsp;           Input ori= entation:           =             &nb= sp; 

 Center     Atomic    &nb=
sp; Atomic           =
;  Coordinates (Angstroms)
Number     Number&n= bsp;      Type      =        X      &= nbsp;    Y        &n= bsp;  Z

      1      &n=
bsp;  26           0=
        2.587635    8.230=
504    5.000000
      2 &nb= sp;        8    &nbs= p;      0       = ; 4.627577    8.077882    5.000000
 &= nbsp;    3        &n= bsp; 6           0 &= nbsp;      5.286906    9.101397&nbs= p;   5.000000
      4  &nbs= p;       8      = ;     0        6.081= 924    9.981983    5.000000

           &nbs=
p;        Distance matrix (angstroms):            &=
nbsp;       1     &n=
bsp;    2        &nb=
sp; 3          4
 &nbs= p;   1  Fe   0.000000
     = 2  O    2.045643   0.000000
  &n= bsp;  3  C    2.836286   1.217497 &= nbsp; 0.000000
     4  O    3.90= 8674   2.395981   1.186375   0.000000
Sto= ichiometry    CFeO2
Framework group  CS[SG(CFeO2)]<= br> Deg. of freedom     5
Full point group &nb= sp;            =    CS      NOp   2
Largest= Abelian subgroup         CS &= nbsp;    NOp   2
Largest concise Abelian subgr= oup C1      NOp   1
   = ;            &n= bsp;         Standard orientation:&= nbsp;           &nbs= p;            <= /o:p>

 Center     Atomic    &nb=
sp; Atomic           =
;  Coordinates (Angstroms)
Number     Number&n= bsp;      Type      =        X      &= nbsp;    Y        &n= bsp;  Z

--_000_DB9PR01MB9054BBAD04A8DEF3690104EB9CB29DB9PR01MB9054eurp_--