From owner-chemistry@ccl.net Mon Sep 18 07:45:00 2023 From: "Rajarshi Guha rajarshi.guha__gmail.com" To: CCL Subject: CCL: 2024 Herman Skolnik Award winner announced ... Message-Id: <-55005-230918070447-13359-h9+OTiWpjqFEPknEl0uSzQ,,server.ccl.net> X-Original-From: Rajarshi Guha Content-Type: multipart/alternative; boundary="00000000000097f48f0605a010a8" Date: Mon, 18 Sep 2023 07:00:00 -0400 MIME-Version: 1.0 Sent to CCL by: Rajarshi Guha [rajarshi.guha a gmail.com] --00000000000097f48f0605a010a8 Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable The American Chemical Society Division of Chemical Information is pleased to announce that Prof. Alexandre Varnek has been selected to receive the 2024 Herman Skolnik Award for his contributions to the development of chemoinformatics education & training and his contributions to methodologies for molecular representations and modeling of small molecules & reactions. The prize consists of a $3,000 honorarium and a plaque. Prof. Varnek will also be invited to organize an award symposium at the Fall 2024 ACS National Meeting to be held in Denver. Prof. Varnek has been highly committed to education and training. He founded the Chemoinformatics Master Program at the University of Strasbourg and extended this program through student exchange initiatives leading to a joint international Master Program In Silico Drug Design, in partnership with Paris-Cit=C3=A9 and the University of Milan, and then to theEuropean Erasmus Mundus project =E2=80=9CChemoinformaticsPlus=E2=80=9D involving uni= versities of Strasbourg, Kyiv, Ljubljana, Milan, Lisbon, Paris and Bar-Ilan. In addition, he continues to organize the International Strasbourg Summer School in Chemoinformatics that attracts leading investigators in the field and fosters international collaborations. He was involved in establishing the EU-funded BIGCHEM training network further emphasizes his dedication to education. More globally, he has also been invited to build new chemoinformatics laboratories and research units at the Federal University of Kazan, Russia, and Hokkaido University, Japan, and continues to be closely involved in those research programs. In parallel to his work on pedagogy, Prof. Varnek research has a wide variety of topics in QSAR modeling of molecules and reactions. These include the introduction of the ISIDA fragment descriptors, which have proven instrumental in inductive and transductive learning and extensions to conventional QSAR that allow us to model complex systems, such as non-additive mixtures and chemical reactions His work on the Condensed Graph of Reaction (CGR) formalism is a key contribution to the representation of chemical reactions. The CGR-based descriptors have been instrumental in modeling chemical transformations. Prof. Varnek has pioneered the use of Generative Topographic Mapping (GTM) for both the visualization and modeling of chemical and biological property spaces. Beyond academics, Prof. Varnek has served the scientific community by co-founding the French Chemoinformatics Society and was appointed by CNRS to direct the the French National Research Network in Chemoinformatics (GDR Chemoinformatique). In summary, this award recognizes Prof. Varnek as a pioneer in chemoinformatics, contributing key methodological advances in the representation and modeling of chemical structures, and developing curricula and training programs, at the national and international levels that have led to the creation of scientific networks that foster communication, knowledge exchange and partnerships that contribute to further advancing the field. Rajarshi Guha Chair, ACS CINF Awards Committee --=20 Rajarshi Guha | http://blog.rguha.net | :+:rguha --00000000000097f48f0605a010a8 Content-Type: text/html; charset="UTF-8" Content-Transfer-Encoding: quoted-printable
The American Chemical Society Division of Chemical Informa= tion is pleased to announce that Prof. Alexandre Varnek has been selected t= o receive the 2024 Herman Skolnik Award for his contributions to the develo= pment of chemoinformatics education & training and his contributions to= methodologies for molecular representations and modeling of small molecule= s & reactions.

The prize consists of a $3,000 honorarium and a p= laque. Prof. Varnek will also be invited to organize an award symposium at = the Fall 2024 ACS National Meeting to be held in Denver.

Prof. Varne= k has been highly committed to education and training. He founded the Chemo= informatics Master Program at the University of Strasbourg and extended thi= s program through student exchange initiatives leading to a joint internati= onal Master Program In Silico Drug Design, in partnership with Paris-Cit=C3= =A9 and the University of Milan, and then to theEuropean Erasmus Mundus pro= ject =E2=80=9CChemoinformaticsPlus=E2=80=9D involving universities of Stras= bourg, Kyiv, Ljubljana, Milan, Lisbon, Paris and Bar-Ilan. In addition, he = continues to organize the International Strasbourg Summer School in Chemoin= formatics that attracts leading investigators in the field and fosters inte= rnational collaborations. He was involved in establishing the EU-funded BIG= CHEM training network further emphasizes his dedication to education. More = globally, he has also been invited to build new chemoinformatics laboratori= es and research units at the Federal University of Kazan, Russia, and Hokka= ido University, Japan, and continues to be closely involved in those resear= ch programs.

In parallel to his work on pedagogy, Prof. Varnek resea= rch has a wide variety of topics in QSAR modeling of molecules and reaction= s. These include the introduction of the ISIDA fragment descriptors, which = have proven instrumental in inductive and transductive learning and extensi= ons to conventional QSAR that allow us to model complex systems, such as no= n-additive mixtures and chemical reactions His work on the Condensed Graph = of Reaction (CGR) formalism is a key contribution to the representation of = chemical reactions. The CGR-based descriptors have been instrumental in mod= eling chemical transformations. Prof. Varnek has pioneered the use of Gener= ative Topographic Mapping (GTM) for both the visualization and modeling of = chemical and biological property spaces.

Beyond academics, Prof. Var= nek has served the scientific community by co-founding the French Chemoinfo= rmatics Society and was appointed by CNRS to direct the the French National= Research Network in Chemoinformatics (GDR Chemoinformatique).

In su= mmary, this award recognizes Prof. Varnek as a pioneer in chemoinformatics,= contributing key methodological advances in the representation and modelin= g of chemical structures, and developing curricula and training programs, a= t the national and international levels that have led to the creation of sc= ientific networks that foster communication, knowledge exchange and partner= ships that contribute to further advancing the field.

Rajarshi Guha<= br>
Chair, ACS CINF Awards Committee

--
Rajarshi Guha | http://blog.rguha.net=C2=A0| :+:rguha

--00000000000097f48f0605a010a8-- From owner-chemistry@ccl.net Mon Sep 18 14:16:01 2023 From: "Andrew DeYoung andrewdaviddeyoung/a\gmail.com" To: CCL Subject: CCL: What is the best Python IDE for computational chemistry? Message-Id: <-55006-230918141456-18575-1TLKhc9hNx1Z/f1QKoDeEw{:}server.ccl.net> X-Original-From: Andrew DeYoung Content-Type: multipart/alternative; boundary="0000000000000840530605a61ed8" Date: Mon, 18 Sep 2023 14:14:35 -0400 MIME-Version: 1.0 Sent to CCL by: Andrew DeYoung [andrewdaviddeyoung*gmail.com] --0000000000000840530605a61ed8 Content-Type: text/plain; charset="UTF-8" Hi, What is the best Python IDE for computational chemistry? I'm looking to use Python for scripting, data analysis, plotting, and so on. I won't be developing large codes. I'm a computational chemist, not a software engineer. I'm running Windows. Have you ever tried online Python IDEs? Do you have any recommendations? Thanks in advance for any guidance you can provide! Andrew Andrew DeYoung, PhD Department of Chemistry Carnegie Mellon University --0000000000000840530605a61ed8 Content-Type: text/html; charset="UTF-8" Content-Transfer-Encoding: quoted-printable
Hi,

What is the best Python IDE for com= putational chemistry?=C2=A0 I'm looking to use Python for scripting, da= ta analysis, plotting, and so on.=C2=A0 I won't be developing large cod= es.=C2=A0 I'm a computational chemist, not a software engineer.=C2=A0 I= 'm running Windows.

Have you ever tried on= line Python IDEs?=C2=A0 Do you have any recommendations?

Thanks in advance for any guidance=C2=A0you can provide!
<= br>
Andrew

Andrew DeYoung, PhD
=
Department of Chemistry
Carnegie Mellon University
--0000000000000840530605a61ed8-- From owner-chemistry@ccl.net Mon Sep 18 16:39:00 2023 From: "Brian Skinn brian.skinn*|*gmail.com" To: CCL Subject: CCL: What is the best Python IDE for computational chemistry? Message-Id: <-55007-230918163653-28486-cBIVWUkTVT+tYhHlEn9CUw#server.ccl.net> X-Original-From: Brian Skinn Content-Type: multipart/alternative; boundary="00000000000098da4b0605a8190c" Date: Mon, 18 Sep 2023 13:36:27 -0700 MIME-Version: 1.0 Sent to CCL by: Brian Skinn [brian.skinn#gmail.com] --00000000000098da4b0605a8190c Content-Type: text/plain; charset="UTF-8" Content-Transfer-Encoding: quoted-printable Andrew, I'm not deeply familiar with the entire IDE space, but you might look into Spyder. It's specifically intended for a scientific rather than a developer audience, and has a number of data & visualization tools already wired in. https://docs.spyder-ide.org/current/installation.html If the packages it includes by default serve your needs as-is, you can use it by itself. However, it also comes packaged with the various Anaconda/Miniconda distributions, which will afford you more control and flexibility if/when you need to start tweaking the packages/versions you have installed: https://docs.spyder-ide.org/current/installation.html#conda-based-distribut= ions I would also highly recommend keeping an eye on the conda-store tool ( https://conda.store/en/latest/). It's a manager for package installation environments, to facilitate reproducible calculations---it keeps a history of exactly what's in your working environment at any given time, making it much easier to return to a calculation from a few weeks/months/years ago and have it actually work correctly. The conda-store individual-user story is still under active development, I believe in the form of its jupyterlab extension (), so it's not quite ready for single users... but once it is, it'll be invaluable. -Brian On Mon, Sep 18, 2023 at 1:00=E2=80=AFPM Andrew DeYoung andrewdaviddeyoung/a= gmail.com wrote: > Hi, > > What is the best Python IDE for computational chemistry? I'm looking to > use Python for scripting, data analysis, plotting, and so on. I won't be > developing large codes. I'm a computational chemist, not a software > engineer. I'm running Windows. > > Have you ever tried online Python IDEs? Do you have any recommendations? > > Thanks in advance for any guidance you can provide! > > Andrew > > Andrew DeYoung, PhD > Department of Chemistry > Carnegie Mellon University > --00000000000098da4b0605a8190c Content-Type: text/html; charset="UTF-8" Content-Transfer-Encoding: quoted-printable
Andrew,

I'm not deeply f= amiliar with the entire IDE space, but you might look into Spyder. It's= specifically intended for a scientific rather than a developer audience, a= nd has a number of data & visualization tools already wired in.


If the packages it includes by default serve your needs as= -is, you can use it by itself.

However, it also co= mes packaged with the various Anaconda/Miniconda distributions, which will = afford you more control and flexibility if/when you need to start tweaking = the packages/versions you have installed:


I would also highly recommend k= eeping an eye on the conda-store tool (https://conda.store/en/latest/). It's a manager for package = installation environments, to facilitate reproducible calculations---it kee= ps a history of exactly what's in your working environment at any given= time, making it much easier to return to a calculation from a few weeks/mo= nths/years ago and have it actually work correctly. The conda-store individ= ual-user story is still under active development, I believe in the form of = its jupyterlab extension (), so it's not quite ready for single users..= . but once it is, it'll be invaluable.

-Brian<= br>

On Mon, Sep 18, 2023 at 1:00=E2=80=AFPM Andrew DeYoung andrewdavid= deyoung/agmail.com <owner-chemistry^-^ccl.net> wrote:
Hi,
What is the best Python IDE for computational chemistry?=C2=A0= I'm looking to use Python for scripting, data analysis, plotting, and = so on.=C2=A0 I won't be developing large codes.=C2=A0 I'm a computa= tional chemist, not a software engineer.=C2=A0 I'm running Windows.
=

Have you ever tried online Python IDEs?=C2=A0 Do = you have any recommendations?

Thanks in advance fo= r any guidance=C2=A0you can provide!

Andrew
<= div>
Andrew DeYoung, PhD
Department of Chemistr= y
Carnegie Mellon University
--00000000000098da4b0605a8190c-- From owner-chemistry@ccl.net Mon Sep 18 17:14:00 2023 From: "ALFREDO MAYALL SIMAS alfredo.simas\a/ufpe.br" To: CCL Subject: CCL:G: What is the best Python IDE for computational chemistry? Message-Id: <-55008-230918160828-24128-wkALTZx1620obpeaWUDH8Q(~)server.ccl.net> X-Original-From: ALFREDO MAYALL SIMAS Content-Transfer-Encoding: 7bit Content-Type: multipart/alternative; boundary=Apple-Mail-85114D17-98DA-42BB-A7BC-B3B99F08C4E5 Date: Mon, 18 Sep 2023 22:08:00 +0200 Mime-Version: 1.0 (1.0) Sent to CCL by: ALFREDO MAYALL SIMAS [alfredo.simas*ufpe.br] --Apple-Mail-85114D17-98DA-42BB-A7BC-B3B99F08C4E5 Content-Type: multipart/related; type="text/html"; boundary=Apple-Mail-DEFDA971-2DBF-4C35-84FB-9F630FA07B01 Content-Transfer-Encoding: 7bit --Apple-Mail-DEFDA971-2DBF-4C35-84FB-9F630FA07B01 Content-Type: text/html; charset=utf-8 Content-Transfer-Encoding: quoted-printable Hi Andrew,
I like Visual Studio Code wi= th the GitHub copilot.
Give it a try!
Alfredo Simas


Enviado do meu iPhone

Em 18 de set. de 2023, =C3=A0(s) 21:53, Andrew DeYoung andrewdaviddeyoung/a= gmail.com <owner-chemistry|a|ccl.net> escreveu:

=EF=BB=BF
Hi,
What is the best Python IDE for computational chemistry?&n= bsp; I'm looking to use Python for scripting, data analysis, plotting, and s= o on.  I won't be developing large codes.  I'm a computational che= mist, not a software engineer.  I'm running Windows.

=
Have you ever tried online Python IDEs?  Do you have any rec= ommendations?

Thanks in advance for any guidance&nb= sp;you can provide!

Andrew

Andrew DeYoung, PhD
Department of Chemistry
Carnegi= e Mellon University
= --Apple-Mail-DEFDA971-2DBF-4C35-84FB-9F630FA07B01 Content-Type: image/png; name=complex_build_icon_0.png; x-apple-part-url=F51580E8-948C-40EB-82D0-5D396F2791B7 Content-Disposition: inline; filename=complex_build_icon_0.png Content-Transfer-Encoding: base64 Content-Id: iVBORw0KGgoAAAANSUhEUgAAAaYAAAHWCAYAAAA8Uy3CAAAAAXNSR0IB2cksfwAAAAlwSFlzAAAL EwAACxMBAJqcGAABCf9JREFUeJzsvQlYVWl+5w8Xq6pr6XQl6SXTnfTUTDLTmaQ7XZPppDP/dCY1 nWSeyUwn00lm8v/3k6RT1ckUihtyDoLsqwoIogiKCKKIioqAoiICssguyL6DrMq+KIgi8P2/73nP ufec68Wl0hYX/X2e5/ucru4uhXvPvZ/7fd/fOdfBgSAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAI giAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiAIgiBeLZYfDhQuz7YA9+uBuTZgvncaC6M/Xu2fiyAI gnhNWJq7jcWJEiwMncRC30Es9EZj4XYEHt8Ow2JvBBb7orDUvx9LQ4lYHssCpsuBh4OZq/1zEwRB EK8YC9MNmB9Iw1znXlaMgjHX4om5ZgkP1My3SHjYKvKIZaHdHY87ffC4OwSLA/FYmioDFiY+WO3f gyAIgljjLMzextxAFqZbwjDd4IWpOgnT9SIzDRLusdxvFJltEpnTyUoRVpsHHnWFYGEwGUv3W7Ha vxNBEASxRpmfrMdk20GM3fLF6E0JYzUi47UiE7ckTDJRTanRZGUQVpNFWA9Yy5rv3ovH44UkJ4Ig COLFmBurwXB9OIYqt7NIuMNyt0pkuFrCCAuXlbWwJjRh3bISVr2Q1b1Gd8y2BuLhnUySE0EQBPF8 PJhqx2BtGHpLJfSVifSXSxjgqZAwyKLJ6o4qq7vVqrBuioyqshrTtytdw5pu8sODO9kkJ4IgCOLp PJobdr3TdBRdRRK6iiV0s/SUiNy+IaIIi6W/TGRAlZYirAouLNnSsBRhyZaGpQhLVqQ11bwLD8er SE4EQRDEyox0ZaO9yAtt1yUl7YUSOniYqDpVWSnCUmXVo5OV1rD6dQ1r8CkNa+Tmdky2xeLRTCfJ iSAIgniSicFKtBYFovGahKY8Cc08+RJaeAoktBaoslpBWN0rCKtvBWEp7eqmD6Z7z5OYCIIgCCMP 7t0N6LqZiFs5kpK6qxLqeXIlNLBwWdkSVusKwupcQVi3n2hYMobr92J+uo3kRBAEQVi401WAmqs+ qL4k4SbPZQk1V0RqrwhZ3bpqJSxNVtdkIax8TViyWVZCWLIQliarItm8HMjTW+GLids0CEEQBEGo zM3ciW4pP4yyLAnlFyRU8FyUUMlSlS3ChVWtCeuyUVh1OmE1GIQlWQlLbVjXLQ1LtCt3DNbHY2Ge 7gxBEARBMCaH21B2yQ/FGRJKWG5kipQyUXFZlV1QhXVRFVa2SJVOVjd1sqrNsRKWjeXAJqv9q+6K MNwbbaDWRBAEQTg49LcXouCczCLhOkthukjReQnFPC8grKrPICzesFoL/THSlUNiIgiCeN15cH/i g+aqNOSelnAtTSTvjEj+WQkFZ7msZCthyYqwSszCkg3CKr8gWwlLtloOlA3CupUjM0l5oK/xFImJ IAjidef+9LDrzcIkXE6VcOUkyykJOSxXeZisctOMwuKysgiLJd2qYWXohSVkZREWy0WrhqXJ6pKM zuojJCaCIIjXnZnJoeTS3IO4cFzCxRSR7BMSLrFwWZmFddIiLN6urBtW/hkhK7Ow1IZVlK4uB563 ElamuhyoCYuluTQWDx/QAARBEMRrzeRYf13BxWicT5aQwXNMQiZLFhMVl9UFnawUYamyunzSqmGp sspdYTnQ1v6VoWExUTUUH8CD2bGPVvsxIQiCIFaRqfHBzIKLB3DmiISziRLOJUlIT5JZJJw/KqnC kpGZrBeWbG5Yol3JloalCEtGjqFhyeaGlZfG25Vs1bDEHlZdURwt5REEQbzuzEyNfFxy7RhOHpZw iuV0goQ0HiYqLqsziRZhKdI6qheWKitdw7r4jIaVY9Ww9MuBtYWHSEwEQRCEg0NVSQaOH5SQwnLi kITUeJGTPFxYCVbCSjQKi8tKE1aGtbCOqUuCWsNKEftXWsO6ou5hXT3tjls3kklMBEEQhIND860i HD0gKUmOlXCMJ07C8TghK7OwDlmEdWqFhnVWL6ykpwjLqmFdO+ePjoZcEhNBEATh4NDf24qUw/44 sl9Skhgjs0hIMstKFsKKU4V1UDbLSjQsWQjLLCtZCOuI1rBkq+VAWQhLk1WyjPzMcAwPNJOYCIIg CAeHibG7ARfT43EoSsKhvRLio0UOsyTskyzCYknSC0trWHFWDUsVVlKMG8KDNyPAeyN2BWxmf56r UVhaw2Kyup59AHP3J99f7ceCIAiCsBNKi7JxYI+kJDZSQhzLwSgRLitNWJqsDMKKEcLSLwfyf47c uRWbNzpjw3pnbHRxhqe7Cw5EuD6xHJiR4o/Gm1eoLREEQRAW+ns7kHo0EtFhEvaFS9jPEhMhosjq BYV1MMqNNaVN+PTTT81ZzwTlIbuwP9NVaVfawMWlc1EYH+nrXe3HgCAIgrAzyktymZg8ELVLZpGw d7dIdJiMfQZhyQZhxUXKVsKSWTNyg5+XUUxmOUku7M9zVdrVqUR/1FZcprZEEARBPMmdob7etNRD CA+RlESEsuyUsGcnX5ZjYbKK2q0XlpCVoWGpy4H8P4cGbMVGl/U25PQptjM58X/nSkY8piaGXVf7 dycIgiDslPa2RhyJj8TOQAm7gkR2B0sIC5aMwgq1CIu3K2PDkpSGtSd0GzzdNz4hJq05Bfh5orSY RsQJgiCIZ9BQX4OYvaEI9pcQEiASykTFZbVTJytFWKqswnWy2qO2Ky6t0ABXuG7dYFNOGzduxIGY /RgYGChc7d+ZIAiCsHMa6msRfzAaAb4SAn1lBPpJCOJhsgr2lxGiSis0gAtLNjes3UG8XcnmhsWP /t62l/R4Nm/ejMOHD2NoaCh5tX9ngiAIws5pa21GUuIh+HpJ8PWW4Mfi7yPChaVIyyCsJxsWl1WI vxvcpU1wdn5STDxbt25FUlIShodpr4kgCIJ4Bt3dnTiTdhLhYSHw2iHBm8XHS4TLShGWDVkF6mSl JNADAf6+NsXEs23bNhw/fhxjY/S1FwRBEMQzGB8f/7C1tQUZGemI3BMGz+0SPD0k7ODxlODlKYSl SUtrWAG+7oiMCMLZtBTU1lSiuroKAQEBNsXk7OwMSZJw8uRJTEzQlwUSBEEQz8HU1OT7PT09KC8r w5kzadi/Pxq7doUiMMAPPt6e8PfzRlRkGBKPHML59DOorChFf3/v9MS4pQVdunQJmzY9eX2TJid3 d3f2Z5+hST2CIAjixeCtZnBwMLO3t3e6p6cbXV2d6O7uwkB/f93w8N2AyUnb973j/058fPyKS3pc Th4eHjh//jzJiSAIgvh8aGlpQUhIyIpyWr9+PXbs2IELFy6QnAiCIIjPh/z8fGXg4Wly8vb2xpUr dHNXgiAI4nOAj4YnJyevKCZNTr6+vsjNpbtDEARBEJ8D7e3tCAsLe6ac/Pz8cP36dZITQRAE8fIp KyvD9u3bnyqnDRs2KGPmJSUlJCeCIAji5cKvkeLXLj1NTJqcgoKCwEW22j8zQRAE8YrT3d2NqKio 55ITn+arrKwkOREEQRAvl9raWnh5eT2XnEJDQ1FdXW2Q09L9JiyN52Fp+CyWBhOwNBCLpaFELA+n YnksE5gpBR50kdAIgiCI5yc9Pf2ZYuJxcXHBnvAgdNWfx8Ohs5jvisJ8x07Mt/vjYZsXHrVtx8NW GQvt21k88bjTG4+7A7F4excW+2OwPH4Zyw8HM1f79yUIgiDsnL6+vt6YmJinSmnzRmdEhmxAwVlX jNR4Y6bJCzMNEu41SrjPMsvTJGGuWcIDNfMtEhOVyKM2dzzq8MXjvhgsTd2gBkUQBEE8naamJvj7 +9uUkuzqjDMJm9FW4IahCjdM3JKUTN6SWSRM1bHUS5ipl1mYrMzCkhVpzZmFJeNBC2tVnUF4NJCE pdk2EhRBEASxMvxGr/zbbfVS8pDWIztlC7qK3XC3SsJwtcjITQmjLGM1IuO1IkJYqqxYputFlHbV INqV0rCaPfGgKwqPJ2najyAIglgB6xu9esrrkZO6FZ1FbhgolzBYITJUKXKHh8tKFdaITlijXFaq sCZ0wprksqrTZOWO2Y5IPJ6uIzkRBEEQtmltbVVGw7dsckbC3k1ov+6GnhIJt2+I9JZK6OMpk9DP woWlSWuoQpUVC29Xd20IS9+wuLAm67bjXscBPL7fQ3IiCIIgbFNclI/YPW64edkNHYUSa0wiXcUy i4RuHi6rEhk9XFZmYckGYQ2Wy2ZhiYYlWzUsWRHWWK0HpjsO4/GDoeTV/t0JgiAIO2TsbjvKsn3R nC+hhadAQut1CW1q2pmsuLA6iizS0mTVo0ZrV1rD4rLqL7dqWJWWhjVyKwCzd/KpNREEQRBPcqfj Muqubkd9roQGlsZrIk15IlxWXFqtBSJtBRZh8XQWag1LMjYsbTlQa1hlIgM8Fe4YbYrBwtxQ8mr/ /gRBEIQdMT3Sgobroai5IimpzRG5dVVispJQz6MKq0EnrOY8ydiwNFnZaFh6WSkNSxXWQFUApgeo NREEQRA6ehrSUZHtjsqLEqqyZRYJ1ZdEbl6WWZiorojcypFZhLB4GnJlq4YlmxtWi9KwZLOweDoK Zas9rO0YrI/F44e2vx6eIAiCeM2Ym7kbUF+0HzcyJZRmiZRdkFDOUnFRhAurksmq6pJeWJKlYSnC sshK37AaV2hY+uXA7vIQzAzfpNZEEARBODjMTPROl2T5oChdUlJ8XqQkQ6Q0U6QsS6RclValKi3e rvQNq+aySK1OWMaGZRQWl1VrgScGm1JJTARBEISDw92+WuSdkVkk5J+VUMBy/ZxIYbpIkSqrYlVW vF09tWFlG4V1U2tYVsKqU4VVnyujuyqWxEQQBEE4OHQ15SHnpISrp0VyT8ssEq6lSUJWTFr5Z4Sw CriszsmKtIrMwpItDUtpV7KlYSnCks0NSwhLt4elyEpWhNVWFk1iIgiCIBwcGirPIfuEpORyqsiV kyI5p5isTmnCErLShJWnycpWw0o3LgfeyLA0LGU5MMvSsCrVNBVH4eHs+Ier/XgQBEEQq8jsvbGP yvMTkXlMQtZxkQspItkpQlaXeFRhXeaysiGsXC4rc8OyLAmKhmWRlX5J0CwrVVh11/dg7t7dgNV+ TAiCIIhV5N7UsOv17AM4lyQh/aiE8zzJEjLUKMJiuXBc5GKKSLZeVlrDOmURliYrfcMyy0prWFbt qqYgCvOzEx+s9mNCEARBrCL3Z8Y/LMk9itMJEtKOiJxNlHEmUcI5Hi6sJFmRVsZRVVbJsrFhHZdF wzqhNSxZkZZ5OfCkLISl7mFdOy0blgOVPSwmq5v5tMdEEARBMKpKzuPEIQmp8RJO8hyWcIqHy0oV FhdXykE3HIvdpsjKVsPS2lWW2q4u6NpVttVyoK39q8q8/SQmgiAIwsGh4WYekmMlHI+TcCyOC0iE y+p4nBti97gi0Hsj3FzXQ9q2AaH+m5B6yE3XsET0wko/alwO1Desi1bC4rK6mrYDDeWnSUwEQRCE g8NAbytSDvsiMUZCEsvRA+IYt2cbgnw2Yevm9diwwdn8RYKuW9YjevfWJxrWaV3DOmMlrPRnNKzc c0HobadvtSUIgiAYU5OjP76UcRiHoyUlcZESQvw2Q3LdABedkLRsdHFmrWmz0rCOKw1LNjcsnpPx siKsU2ZhyYq0zpiFJRsa1vmjMq5lhGNyrK93tR8LgiAIwk6oqczH/nA3Jpwt2C65KPJxdv70CSnx bN60HhEhW0XDOiAaVjJPrIRjsWI58Li6JHhCFVaqbg9LkZWuYZ1L9kR5QQq1JYIgCMJCWWkxfL3d sGmjM9avICQe3qB8d2xircrN3LAS9okk7hdJ0i0J8nBZ8WNMhCt8PDbCQ97Aji6I3rWF/W9uyEwN Rk8H3cCVIAjCbsDD8Q+XJ+uxPHgZyx0JWK4PxnKtF5ab9wCdSUB/JjBSBMy0/9zfvHt7e6fPnj0L b28vuLhsWFFIPOvXOzOpbET0bjfERoolv4M8URIO8eyVEL9XlZUqrCM8TFYH9myDvG0D+zM+VZoY P25mEnR3c0Hc/l3o7uogMREEQawmS2PVWGyNxeOiv8fjy/8FCxf+Ex5n/BYen/0Ai2lfw+NTX8bi ma9j8dwHWMr4Fpayvo3l7N/Dcv5fAHX+QN85YKr5M7+Zj4+Pf3jlyhWEhITA1dX1qULicXZ2hpur C3YHb8O+MAn7wiXs54lg0uHZIyGWRxVWnJWsona52lwa5P/dls2b4Ofnh/j4eFRXV5OgCIIgPi+W xm9hoSECD6//HeYzfxfzad/E/LF3MJ/ESlOSI4uDkkdHRRZ0ecyT7IDF4+uwePorWDr/G1jiorrx MZZZo3qRn6OkpAT79++HLMuKcJ4pJXVfKdB3KyJCJUTu5KIR2btbJJrLSiesmAgRTViRO7cxAa3c yPjPsXHjRmzfvh07d+5EVlYW+vpoGIIgCOKlsHSvBw/rIzB34Q9xP/XruH/0Hdw/4oDZI44s6jHR AXOJjiwOeMCOD5ig5pms9NJ6dNRRFZajkFWyCY9PvIfFjP+AxZKfMkFlPFVQdXV1SEpKgoeHB1xc XJ4pJMu+0np4eWzBzkCJNSYJYcEywkIkhLNwUe0JlbFnpxBWpCIsGVFcVmZhyUxebvD33vJcf9/6 9euVFufr64tDhw6hoqKCWhRBEMTPg+WHk+8/bEvE/St/gekTv4qpBCdMH3ZUMsOT4IB7CY66OOB+ gk5W7Dh3RJOVyHyiJiu1XSVxWZnwKOU9LJz/TSze+ATLw0WGN/Kuri6cPn0a3t7e2Lx583MLiWfD eme4y5tZW3JDcICEEJZQJqidanYFCVkJYQlZhYcKYSnSUmXFpRUR6oZAn63Y5LL+uf5urUW5u7sj NDQUmZmZ6O7u/rlIavnR2EdL05VYHL2AxaFjWOzbh6XecCwNxGD5TgKWR9KAmUpgYfTHP4+/jyAI YtV5PFaL+0XOmEj9txhP+ALGDzlg4pAjJuIdMBnvyKIeDztgiklqih2FtByspCVkdd+mrBxVYQlZ zTNBzR//Ihay/xALHccxPDzsevHiRQQGBj7XPpKt5iK5bYWvF2s7PhICfEUC/USCefyFrBRhqdLi slKEpUqLtyueCJaYSD9kpJ9EQkLCC/8s/Hfgco2Li0NpaSn4PtmLPi8Lk5V4OJCCB+3BmG/zY/HC w1YPFnc8apNZ3PG4fTsed3hiscsXiz07sXQnGcszVdTaCIJYu8z3ZGAi4yOMHHkfI3GOSkZ5DoqM qRk/ZImQlqNZWlPxjoqwniorq4Y1p0nr6JuYOfXvUHH0byFJ0nPtI1ln69atSExMRElRIfaEh8B7 hwQfL4lJisVbgh8Pk5UmrEBVWEE8/hZhabLaHeyO+NgwVFWINselcv36deXveZGfi/8ufBmS748F Bwfj/PnzaGtre6Y0FmaaMdt7DDNNfphp9MRMg4R7LPcbJcw2iczxNEt40CJhnuUhTyuTVbsHFjr9 8LhvP5Ymi7G8QHdAJwhijbD0cPL92cY4jKT+FoZi38CdA464E6vFAcPsOBynxUFI66AmLAchLNas hKyebFhCVsaGNcOllWAlrSP8n024c+g95IT+9gtLadOmTUor4Y2L/163b/cg+2IWoqLC4ekhwctT ZpEUWQlhyYq0/FRh+fvIhoYVttMHWRmn0Xu76wmBNDc3IyIi4oV/Rq1FcbHt2LEDMTExKCoqMv/M emYHLmC8PgDjtzwxXitholbGxC0JkyxTdRKm62RM10uYqReyutcgC2E1asKSFWHNt7hjvt0Pj/rj sTTXSQ2KIAj7Z7Y9FUPJ/wb9+x0xwBPjiEFdhg6I3NHCRHVXjSYt64ZlblcHdc1KjbYcOKXFvByo 7mGx3D34BWQFf/f595Q2bMCuXbvQ2fnkG29/f19vfn4ekpKOIDgwAB7bJXjyMFnt4PGUzMIK8PNE /MH9yLlyEa2tTU99Ex8cHMxMT09X/u7PIihlQIO1KDc3NwQEBCAtLQ2NjY2Ym7kbMNV1AsM3vXC3 SsJwtcjITZHRGgljLFxWirB0slKEVS/C25XSsBrVhtW8HQ+69mBxpp7kRBCE/TI/VIKB47+J2/sc 0atlv0ifmv4YkQE1gwdEzMJSm5VZVvpmZW5YDi/UsPh/7jvwHlJ9/+C53uB5+6ipqXnqG+7ExMQH /f39dTU3b6Kw8DquXs3BhQuZuJR9EaU3StDc1IiBgf66iYkX2wNqaGhQxPJZ5aQt9W3ZsgU7gzxR XxCCgQpPDJRJGCiXMFghMsRyp5KFyUoRVpVFWKMsYzethFUrhDWpCUuRljtmO6Ox+GAw81925hAE QbwEHt/r672b/bfoinZE914WduzRhcvKWlhmWe23klWMlax0y4FGYeka1kEb+1e6hjV2yISOfe8j 0fsHT31T59NvBQUFq9oCenp6lL2tf4mcXLc440TcZnQUSugpkXD7hkhvqUgfE1W/KiuDsCqFsO5q wqq2EpauYQlZuWOmIwaLD0c+Xs3HjCAIwsDig9Efj5X6ovPAl9ARxQQQ5YiOvezIBNXFjl38GG0S 0orWpGVCzz69sEwGWfXtN6FPJyslBxyMDYs1K4OwWKMyyIr9s37gYjjOhOa9v4RDnh/ZfDPny2AX Llywi6Up3shu3LgBLy+vF5bSlk3OiI/chIarboqYeDqLZBYJXcUSunlKZLOwehVhyejThKXISjYL i8tqqFK2CEuRlYwRVVhjt7xw7/ZJu3jcCIIgFKabj6Pj4NfRuscRrZGOaIs0sTgqaY/iUWWlCMsR nWqEsPSycjTISt+w+j5Dw7Leu+K5E+uEqoh/Be8tf/vEBN7Jk/b35sr3ufgdKp57n2mDM8ICXXDz khua8yS05Iu0Foi0XZfQfl3SCYvJqkiVVbFoV9YNq2+FhmVZDmSSqgvG3Ah9lxRBEHbAo+ke9J77 n2iKMLE4iiMTVPMe1k7YsYUdWyK5sEwWaamyaldkZVJlZVJlpTUrkyosk5W0TBZhPYesjA1LCKtz 39tI8f19wwQev0cdbymr/Xja4u7duwG8yfFlxmeJyW2rM9IOb0H9VQn1uRIaeK5JaGRpyhNpVmXV YiWrdlVWHUWSuV0pDatEpMfGcqDWsAYrmJwa9mLhwd2A1X68CIJ4zRmriUFj9JdQH+6IhjATGvgx 3IRGdmzkR01W7NgcoclKpHWPJiu1XakNq0MXQ7t6RsMyt6t9Olmp0QurP8aEqvCvIND1x8oUXHh4 OG7fvm33n/bb29ufOlbOv2F3V8BGlF9wQ81lCTVXJNSquZUjoY7LSo1BWCzNemHlWwnrORtWf6Uv pvqu2P3jSBDEK8yDkTq0Hf/PqN3tyGJSjrfY8VaYI+qYpOrYsZ4d61VZNTxFVlrD0mT1/A3L0dCw zAMX+yx7WKJdGfewOqLfwhm/7yp3UaivXzsjzwMDA4WpqanK1J2tgYdjB7ag4qKEyosyKrMlVLFU X+KRcZPLyiwsGbU5emHJ5obVqAhLFu3KLCzZ0LDarsvmhtVZJPawuoplDNyKXjOPJUEQrxiPH4x/ OFQShJsR76B6pwk3d2lxRA071iii0smKpW63TlZhlobVaG5YjublwGZFWo6W5UBFWsY9LOuG1Rll 1a72GttVt9qwRNjfeeADlF5JXJNvpFVVVcodyA0ThdvWIztlG25kSijlyZJQdkFiDUpCBQ8XVrZk FlYVFxYTlUFYmqw0YeVaLQlqy4GasAqM+1fd5aGYHW9Zk48pQRBrnIdT3WhN/TNUhJpYHFHJjpU7 HVHFJFXFjlxW1UxSBlntsmpW/Bhm1bDCrRpWhFXD0u9dGZYDtYGLpzesTnUPi08J9sT/Csaq1+4n fP6VGPxO6fzuDxvWf4pAHxcUnJVQmC6hiOe8hGKWkgwJN3j0wsoSwirXhHVRsmpYVsJSlwO1hlWn 28Nq1O1htRX5YqT78pp9TAmCWMPM3q1BVeRXURZiQlmwSTmWq6ng4aJSU8XDRaXmptqwanTRlgO1 dvVZlgM1WbWozapVlZVhHyvK0rK6Yt7FcM4/rOk3UX6/vby8POwKDcT+sM3IOyMpyWeC4pK6fk6E y6pQlZUirAxVWJmqsLKsGtZFq4alk9VNVVa2GlZDngf66o6t6ceUIIg1ykjDCRQHO6EkyKTkRjCP I0rZsVQVVVmIo0VW+mbFjzufo2G9wN6Vcoywali6vatms7RMOmk5oTfld7Ewbf+DD8+i73YHzp8I Qc5JCTmnJFw9JSP3tIRrPGlMVmmyENYZIayCs7IQ1jlNWLLSrswNK1M2N6wyRViysWFly2I5UGtY l2WzsNpK124LJQhijfJoduTjrqsyCgNMKAw0oYiHyamYHYtVUSmyUoVVqou+WSkJNbaryp0mVVYm K1mZLMuBu7T9K7EcKPauTAZpNVhJq1GRlm4Pa4/Yv+qI/zVMt9rf9Usvytz9yffL8xKQfUJScilV wmWWKydFuKwUYTFR5aqyUoRlkJXthlW8QsOyXg7UlgQbiiLW/ONJEMQa48FkD2qT/wT5/iYUBDix mHBdjUFWgRZZaVGkFaw1LFVYrFkZGhZrVCvtXb1ow7qlyqpObVj1VrJqPfBljJQGrPk30rn7Ex/c uHoImcckZPEcl3CB5WKKiCKrFYR19ZSQlS1haUuCBc8hLG3/qjZvN+Zm7kSv9mNCEMRrxOxYK27s +xau+Zlwjckpjx3z2DFfTYEiLCtZqSmyIa2VGtZKe1eG/SvrhqXbw7ppcw9LSEuTVePe99B/+ZM1 L6b7M2Mf5V+IxrkkCeks54+KZCSLaMK6sIKwLr+gsGw1LG3govpaGOZnX/wLDAmCID4z94cbkRf6 S8jxNeGqrxOLCbnsmMtFpSbPz8kgq3x/JytpOT21YQlZOZplZdjDCrHawwq1vYelNaxq3rDUZnVT XQ7k4+y8Yd0KfxOdp3645sXEl/KKc5NwOkFC2hEJZ47ILBLOJkqKrM4lyRZhKbKSLcJSZCWbhSWW A2VLw1JkJVuEdZpHNgsrTxGWbG5Ylbm0lEcQxOfMVH8FLvu8gcveJnY04Yq3E66wY46aqzy+JlVY TFS+FmEJaemF9eyGVayPvl09o2GVP6VhVZv3sExoTvzwlXgjrS7NxIlDElJZTsaLnDosCVmp4bI6 kyiEpUkr/aixYWW+YMPKsWpY5TmRr8TjSRDEGmKk/Qou7nDCRS8Tsr2cWEy4xI6XuKiYpC5rRy4t H01aTis0LCerhuX0hLAM0gq0alhBtpcDDcJ6yh4WP9Yf/Pd4MNqw5t9Mm+uKkRwr4VichOM8ByWk sGiySlVldfKwRViWhmURlmhYQljp5oYlZGVrDytbJ6yraZ6oK01d848lQRBrjP6a48j0NCHL0wlZ O0y4wCR1gR01WV1UZcWldUmRlkmVlsgVHhsNK9eqYeXpYpCVrYYVaLV/ZS2s4CcnBLUpwVtx32Ji alzzb6Z3h7qRuF9CYoyEJJajByQk83BZvaCw0lYQVrq+YSVbGlaWKqyrZwPQ2053GScI4nPmbstF nPdwYjEhgx0zmKQyPMUxkx0zmaSydlhJy8uqYXkbG5ahWfGjr1XD8nv6HlaBv5NVu3Iyt6uVpgT5 HhaXVk3cf8D8ZM+afzOdmR7/MCvtAOKjJRyOlpGwT8IRHi6r/bJBWEcPyFbCkg3COnFINgvrlCIs 2aphyRZhJVr2sK6e24nJsb7e1X4sCIJ4zZgcrEG61zs46+6Ec9tNSN/uZAmTFZdWhhZNVjYblskg q2xzs3IytyttOVBrVzm+xv2rXKu9Ky6rJyYE/YWsVloSrI77bSzcH3Zd7cf150FZ0UXERkqIYzkY JeHQXpF4Hi4sJiqDsGKsGlasVcNSZWWrYSntStewzh31RGk+3fWBIIhV4N5oG7J3/gbSZBPSmJzS 3E04w45n2JHL6iyT1bntOmmpstI3rJVkpRy9rBqWt1XDesre1VV178rSsJyspKXbw1JlVRX7nVfm zbS/rwOJcYHYHy4hJkLCAZ49EmL3CFmZhRVlEdbhaBFjw2L/3V439r+7qQ3rySVBa2GdTwnE7Y6a V+axJAhiDTE7cRt5cX+Ck5ITTmmRnXBaTRqPIioRo6y0dsVktV3ISjQsIa3MpzYsTVYmq4EL3f6V j9X+la8xQlq6lsUEVRH33VfqzfR6Xib27paURIeJ7GOi0mQVo8pKEZZOVlrDiolwww53F2za6Iyt W9ZjZ8AWg7CUdmW1h3Ui3hOFOcmv1ONIEMQa4sHM3YCyUz9DipsJJ9yclKTySCZFVmZhsUYlZGVS ZWVpVj+vhqUfuHhaw7qsNqwrasPKURtWfvAvoCnjn16pN9TRkaHkY0f2IiJUwh6WyJ0su2RE7WKy 2qUJSxbCCtOEJSvCig5zg4/nJqx3tnydxuZN6xHqv9XYsPZZ9rC4rE4fDUZPZ90r9TgSBLHG6ChP wDFXJyXHebY5IUXNiW06WbGcdHMytKvTklW7ki3tyiIrJ6OseLvarpMVb1ceOllZSeuicjRZTQmK PaxLuj2sgrBvYKjuxCv3hlpTfQPhoR7YHSwhjCU8RITLShHWTpFIJqooVVY8e0Ld4OG+8YkvIdyy eT3Cg13NS4LmhsWSfNAX1eU5r9xjSBDEGmN8oBanfX8VR7c6KUl2FbEtK5NZViImq4ZlembDUmTl btWs+NHDqmF5GhtWpjodmKXtYXkZR9qvR34Lc+Mdr+Sb6rWcLIQESAhl2RkositIRBNWmJWwwkPc sGP7pifE5MwalLTNhcnLTWlY+9Ulwfh9O5CXc/qVfPwIglhjzE4NZuYl/h8c2eKERDVJPKqoFFlt NcrKLCxXS7t6kYaVZqNhnbWxh3VOXQ5M99DtYakj7doeFpdVtt97qD75/76yb6qTE+MfZp4/hUBf CUF+IsH+IisJiyfQ1xXOVmLi2bDBGV4em8wNKy7aB8XXL7yyjx9BEGuQ+vwoHN7khMObnZCweR2L E47wKKJaZ5BV0tZ1RmlZN6xtPCaLrPTNSmlXloalDVvYalhpuj0sLquzasOyJavsoK+is2jPK/3G Oj09+X7R9Tz4ecvw85HgzxLgyyMjUJVVkCIrGcEBQliBfm5w3eryhJh4Nrqsh7/3VhzY64/KsoJX +rEjCGINMtp3E6n+/w6HNjopiefholKTwKPJSo2hXT2jYVnvXaXolgP1wjqpixCWbg/LLCutYYll wXSPN5G///u4P9r+Wry5VlWWI3LPLnjvkODjJeLL4uctWYTlIyntiovLc/tWm2LicZfdcD2f9pQI grBD+FcblGV4ItbFCXEu61iccHDjOhYuqnVCWJvYcRMX1jpVWuvUhqVJa91zLQcaGtY2rWGp4mLN KsVNJy3WrFLVvauT6t7VKbVZaQ0r0+8raMkLea3eXEeGh12vXM5GRPgueHpI2OEpwYuHycpaWN6e 2+DC2pEtMW3atAlHjya9Vo8dQRBriNG+WpwJ/0PEbHDCgQ3rWJwQy+PipApLzUYnRVgH1XYlZKVr WAZZqe3KRsM6utUY20uCKzcsRVTub+Jq9O/j3mvSlqwZHRn5uKAgH0lJiQgM9IfHdkmJIitVWJ4e fDlvs00xOTs7w93dHQUFtJRHEISdUl8YhwOb3kH0eifsX7+ORT0yQcUwWZmlpchqnaVhbbRqWDpZ WRqWJizbe1iJ5j2sJ2WV7GoyyErbw0rz/goac1+vtrQS4+PjHzY3N6OiogKFhdeRk5OD3Nwc3Kyu QkV5ObZutb2kx+Xk6+uLtrY2ehwJgrA/pkY6cSHubxD16TrsdXZiWYdodtSyj/3zPkVWIjHrNVk5 qQ1rnaFdHXSxalcb9cKyNCybLWuFhpWsHlPkd1GQ+NfgFwmv9uNm70xNTr5/9OjRFfeaXFxcsG/f PhITQRD2yVBXGdIi/gR7/u867PnUCZFMUpHsyGUVxY57VWlFq9KyyGqdQVbP27AOqg3rkNqseMMS wlpnlNUWyx5WkutbyIr4PUwM3qI30+ekrq5uRTHxbNu2DRkZGfR4EgRhn/S1FuBY0O8h/J/XsTgh gh0juKiUMFn936fLih/3qdLab5CWk2EP64CNPayVGtZh3XLgSb8PMNSeT2+iL8DY2NhHERERK4qJ L+l5enqisrKSHleCIOyT7sYcxHv/Fnb/0zoWJ4SxYxiTlFFWToqwInSyeqJhOVs1rPWiYe3T9rA2 WBqWIisXS8MSwxbGhpXi9WvovnWO3jw/A3l5eU9tTVxOAQEBGBgYKFztn5UgCMImXE7JoT/Azk/W YefP1mGXmt0/08lKTbgqrQgtTFZ71JZl3bBs7WEZZKU2K01WSstikkr2+gD9Lbkkpc/I0NBQsoeH x1PlxEfIk5Pp7uIEQdgxA53lyD76KUKYnEI+cUIoO4byI5NT6M+cFGHtZEdFWkxWz2pY2nLgHl3D 0mQV5WzVsFRZ8UnBjOj/hqHOYnrD/Bdy+vTpp4qJR5Zl8Ha12j8rQRDEiozfacO1NA/scv4Sgj5e h2BdhLDWqcJapwhr5890DUsRlYixYa1TG5aQlllW6rJglCqt/Zu/iEuHf4LxoSZ6o/w5wEfKnyUm vqTn7e2NpiZ6zAmCsGOmx/t6y3OicdD3e/D/RycE/OM6BGr52EkRlllarFEZhKVrVkJYomHtfkrD ilr/DlJC/gCVV8IxM947vdq//6vC5OTk+zExMc+UEx8hj4qKAv//r/bPTBAEsSIPZiff7+8sx7Uz PohjgvL76Tr46xLAoxNW0D+ue2bD2mnVsCI+fQfJwd9H+aXdmLjTivnZiQ9W+/d+1SgqKnqmmHhc XV1x7hwNmhAEsQa4Pz3s2t9ZgWtnfRHr83vw/emb8P2HdUr8eJ4iK9Gw1qkNy8ncsHY7fxEn9/w5 yq/swTgT0oP7JKSXxfDwsKufn99zLenxYYny8nKSE/Hqs/Ro/MPF+x1YvNeMJZ7ZViw/Gvl4tX8u 4sW4Pz3y8dDtWtSVnsTF41txyP8P4f/Je/D5+3XwUUWll5W1sIJ+9jYO+vxH5J5yR0fdZUwMd4K3 stX+vV4H0tPTn6s1cTlxifX20nIq8QqycL93+sFoGWYHs3C/Owmznfsx17kX89178bAnGgsDCVi8 m4blySIsz9F9u9YaM5ODmXf7G3E95xh+7zdN+M+/bcIf/Y4JP/yPJvy375nwP74vjn/0HRN+9Mdf R23JSfS0FmJkoAm8ga32z/+60d7eruwjPY+c+Ah5YmIivSaJV4e5yRZM3s7CaHMcRutCMVrjibGb EiZqJUzVSZhpkHC/UcJcs4SHre5Y6ArCYl80lu4eB6aKgYXRH6/270A8Py0tzXjrTQe8/ZYD3mF5 9wsOeO9tB3zxHXF85wuO+PB3/gO9ydkBBw8efC4x8UiShNxcuoaMWOMszE++PzlQhIHaaNwu24He Ugn9ZRKGKiTcqZQwUi1hrIYJ6pZRUA+4oFokLLS7Y7E7CMt3jwEPXs+vNViL8E/ib7zxBn++bMbJ yQnf//736fm0A27cuPHcYuJLel5eXmhsbKTnjlibPJgZKBxqOYuO0hC0XZfQUSihq1jC7RIJfUxQ A+VCUHermKBuWgQ1zQR1jwlqVhNUKxeUB5YGYrF8r45eEGuAzs5OfPGLX1xRTFxaf/Znf0bPpR3A 758XGhr63HLasmULzp49S88dsfa4N96FrpokNOR7oSFXQlOejJZ8ySyo7mIZPTd0gqqUDYKavCUr DUoRVBMTVIuMh23b8bhvH5ZnW+hFYed0d3fjy1/+8opi+sIXvoC/+Zu/oefRTsjMzHz69UwbPkWo 3wakJ25G0bkt6Cz2wOPbO7HYE4ylvkgsD8ZhWVt2n++m55WwP2anh5JbKxJQfXk7bl6WUHtFQt1V SRWUhNYCCe1MUJ2KoFiD4oIq0wQlYZgJapQJalwRFGtQ9UxQjaqgWrdjoS8OS3M9dPLbMbdv38av /uqvriimd955B5988gk9h3YCf77c3NwMMtqw/lME+6xHdspmtOS5stejm/JavN8g9oLnW2VlNeNR m4xH7e5YaGcfHDs8sdjphcXbIVieLKTnl7AfepqyUXphO8qyJFRclFCVLRkFdU1CsyYoJqfOIiao EqOg7ugFVWsU1FyzJx71H8PyAo0U2yt8rPg3fuM3VhQTX+bjF26u5s9IGDly5IjYR2Jx2+qMswmb 2GvSTVnBUPZ/68UKxj11H5gvtc81ifAld575FpGHrVxWTFB9sVii5XditRkdbETppRAUnpNQfF7C jUzJLKhqJqgaJqhbTFD1TFCNXFD5FkF1MUH1MEH13hADEoOaoKotgtJeILMtflgYo+/isVf6+/vr vv3tb68opi996Uvw9/en58+O4F/HzpfsokJcUH3JFUOVQkr8dcfD93/5B8TJOvE65B8UefjAEg// 0HhfXdng4a3qQYs75tvZa3WYvnyQWEVulRxD7mkJeWdkFJyVUJiuCUpWBFVpFpSMWzlMULmaoGRF UB1mQckWQfEJvipZEZQyIMEFVe+O+x17sTRP177YI/y7fL73ve+tKKZf/MVfRGRkJL1Z2RFTk2Mf pSWHsNegG3vNycqHQr7vy1cuRqplZYKWf0AcVfaBZWWpnb8WJ2rFnvCkOlk7rXx4lI0Nq8kDc50R 7PV6J3q1f0/iNWN4oBm5Z/xwOVVCzilJFZSE60xQRemWBlV+QRXUJSYovryXI/afuKCUAQmDoCQx Yl4uBKUMSKiCmmzwxcPREnpzs0P4d/784Ac/WFFMfDCCLx2t5s9IGOHXGnYVuyvL6fwDIX/NDaiv Oz49y/d/NVkpwqoWGVFlNVoj2WxYU+aGJeN+ezg958TnS82NNGQmS8g6LiH7hGQQVD4TlLlBZUgo 1QSVLQTF959uqYJqshZUsaRM8PVaj5jXeGCmi65Et0fu3LkT/ad/+qcriumrX/0qzpw5Q8+dnbDw YPzD2+X+yl4vH0jqUfd8+WuuV52e7dNkpS6zD6qyUoRlQ1YjmqzUZXhlmKnOA/d7jtHzTnx+XDkb hnOJEs4flZB5TMIFK0FdUwV1/ZxoUCVcUFlPCkprUHyCTxsx5wMSXdoEn27EfLRhF53kdgi/QeiP fvSjFcX0K7/yK7h69So9d3bC3bYzyqSskkLxgVB5zamvO01WmrA0aZmFpQ4taQ1rcIWGpax23PLG 7MAFeu6Jl8/U+J3otCOeOH1YwpkjEs4lyVaCkhVBXeWCSmOCOisLQZ3XBCUrglIm+BRByVYj5rJZ UGLEXFZeFHdqAvFwpotOcjtjZGTk4//9v//3imL6+te/TnerthPG+orQUuCpvM74MFJLvni98T1f /pprU2QlK7LqKNI+JMpCWGZZyZaGpchKtjQsRVay0rI0WY3WheDRPbreiXjJDNxuwfE4CScOSjgZ L+F0giYoCRlMUFlMUBeZoC6xBnXlJBPUaU1QokEVq4JaacSc7z8ZroFSBdVX6Yf7I5V0gtsZ/G4C f//3f7+imPg1Ti0tdKG0PdBeFq2sUvDXWb36YbBR3fNtUl93zerqRYs6RdumSqtdvWBe37C6n9Gw lIGmyh2Y7Emn5594uXS31yIpRkJyrCQEdcgoqHS9oFKYoFKNglL2n2yMmFddEoJSJvi0EXOdoHpK fTA9VEwnuJ0xPj7+4T//8z+vKKZvfvObGBwczFzNn5FwcBjuKWSvL3flNcbDh5G0/d5bqqwUYeVa BpS0D4nGhiVZNSyLrLRleGPDYk2qOggPZ6g1ES+RztZaHI6WcGS/9ISgTjFBpTFBnU1UBaUOSOgF pUzwpUlWI+ZMUBfUa6AuqddA5Rivgeoo8cHUIInJ3uBfxc2/JsFhBTF98MEH9JzZAY3F+5Ql9Ap1 Upbv9fLVimp1z1eRlU5YtTph1euE1aATVrNOWC06YbVbNazuG14Y78mm84B4eXQwMcVGSji0V1IF JRsElXpIxsnDOkEdlQ2CupwqI+ekZcS84JxsnuATI+ayZcRcEZSsvChaCn0w0U9iskdkWbYpJUdH R3zrW9+i52yVmR7rwo0sd2UJnV9nWKquVJRliddbufqhsFJZWpeFsC5pwpKV12GtuWHJBmE15MpW DUu2Wg7ke8YyeirD6DwgXh79vR3YHy7hwB4JcQZBSTh6QMIxLqiDXFCsQXFBHdEEJRqUMiCRohsx T1OvgTonGlSJjRFz/imuscAP08N0yxN7xMfHx6aY+FdeqBffEqtIX1u++fXFo11ryD8MlqjhHwr5 5GypWVhCVpqwlIZ1SS8s8brULwmalwO1hnXNIqy2Yj/MDN+ic4F4OUxOjP44Nsob0WHSk4LaJyFR ExRrTylcUPFGQSkTfMk2RszTnj5iXp8fiLmZgcLV/v2JJwkJCVnxKy9++MMf0pvRKnOr+Ijy+spT X2PatYYF6kBSofqaMwvrvJWwDA1LtxyoDi9pDeumusphbFgiTfneGOnOo3OBeHkcOxKFPTslRO2S zIKKVQUVzwSVwAUVYxTUSVVQ2gSf9TVQyoDECoIquyCj/jpdSW6v7Nmzx6aY3nrrLfzVX/0VPW+r zI3Lkcrri38A5K8xPojEl9L5asU1dcWCJ18nK0PDOi9SrJOVoWFdsGpYqqyqdO3qVq4XBtsu0rlA vDxyLqVjd7CE8BCJCUpWBLWPCSpGEZSMg1FMUNGaoGRFUPoR8+Nxbuz/uxWxEVuYuLYpglIGJBRB yVaCknEjawe66mjk1F6JjY21Kaa3334b//iP/0jP2yqTlx6svL74B8BLqbLyOrusDiPlnBJ7vmZh pcmKtDRh8esQDQ0rXTY2rAzZ3LBuqNcp6htWxUWxh1V92RM99XQHEOIl0tbaiN0hHtgZKJkFFcka 1N7dqqAiJGVAggvqsCooZUDiAD+6IcB7I7ZtXa/E28OFCWqrGJAwCEq8UPLYC+XGxUBMjnbQSW2n JCYm2hTTu+++q3wL6qr+cITDxVRv5fXFPwDy1xgfRLqgDiNpwhLSsgjLVsO69gINy3o5sOyiJzpq TtK5QLw8pqcm3z+WdBBBfhJCAiRFUGFMUBGhOkGFC0HFWQlqf7grNqx3Nn9JmbPzp5Bc1yM8eDNr U25GQaXyT3CeaKygE9qeSU1NtSkm/l1Mvr6+9NytInP3J99PP+quLJ/z8CEknvPJkllWmaqsFGHZ kJXSsLis1P3gHPVD41V1eOmaOmGbp15IrzSsc5ZLQnjD4qsenbTqQbxsWpobERURjEBfCUH+EkKZ oHYF6QS1Swhqv5Wg9u7exmTk/MRXOm/a6Ax/r404ss/VMsGX4o6ii3swNXabTmg7Jj093aaY+Hcx RURE0HO3ypw/7qfcQoxfBJ+mXgh/Rh1G4ve8VISl7vueV197+oZ1wUbD0pYDbTWsXBsNqyjDCz1N V+hcIF4+V3MuwddLhp+PpAgqmAsqUBaCChGCitolmwV1III3KTfWkFyeEBPPetaePOQN2Be2BWfY C+bCCW90NNCXBNo7ly5dsikm/l1Mhw8fpudvlclI3alcAM+TGi8r+7z8WsNTiqxkISyzrGQhLHPD kq1kJZu/WUDISlZuQWZpWLJ5KV6/h5Wf7o3brQV0LhAvn5HhYdfUlGPw8pSYoCT4c0H5aYISDSrc LCgxwcf3oHYFbsXWzRtsyokv7fG9p7AgV+RfTqYTeQ2Qn59vU0y//Mu/TF95YQdcOLNX2d/l1xjy Kdnjavi0rFlY6q3FzMJSL5LXhGVuWEkrN6wsGw0rW21Yeef8aeWD+Pzo7+vrTUpKwA4mJ+8dTFDe RkEpAxJB2gSfEFQUa1BBfluwyWW9TTmJpb0NiIoMQ2trK53Mdk5ZWZlNMX3lK1+hr7ywA6pKLykX wCeqtxFLUi/l4OF3bEnWCYvLyiCseMulHqfU5cDTVsuBxoZluZjevBx4XEZhNn2LMfE5c/t2D06c OA4/Xy+zoPxUQekHJCwj5iyhbvDx3GwYhLDOhg0bEB4ejqKiIjqp7Zja2lqbYuJfElhRUUHP3Spz d6hHuQA+Xr1LizaIxKMJK1EVVpJOWIaGpRNWqk5YJ3XCMjQsnbCyju9AfWUmnQfE5w//iu1r13IR GRkBj+2SsrznowhKRoCvTlBBshBUKG9SbvCQN60oJmXfaf16eHt74+TJk3SXajtF/VqLJ8K/JJAa r31wMT1BvQheVgaRDuxxQ3TYNhyKkq2EJRuElRQjWzUsWdx2zNywZEPDOqnuYZ3S7WFlpPjhzgCd B8Qq0tragmu5uUhJOcYkFQYfbw9VUJIQlL8QFN9/ity9A4fjIhC2e+dT5cSzefNmxMTEoL6+/jOf 4MsPJ99fmmzC8pQu0y3A/NhHP8eH4LWjp6fHppj4lwTyr15f1R+OUGisK1P2eHcFucJT3ogNG5zh 4uLMPhhuRPTubcp1h3FRYnL2UJS4xVh8tLFhcVkZGtYB45Igb1fHrPavTiV4oDiX9ooJO4G/IbW1 taKivAwXL2bixPEknDyRhFOpR3H29DEU5F1CY/1N3O7pQDMfPY+Keqac+NLezp07ce3atec60R+P 3sTDjuOYv7ULD0o2YO7qX2Au+7/iQfZHeHiZ54+xcPm/4vG1H2Gx3AVLLfuwPHARmGqmF9ILMDAw UPjmm28+IaZvfOMb9DjaCS3NTQj036EsnfMBI/Nriv2zj+cmZWpWu7SDT8/ydqXdZky71IMLK36F JcHEFfawTh/xxe2OWjoPCPvkztBg5p07Q8l3WYaHn/wUzZd8+M1AnyUnvrTn4eEBfreB27efnPJZ mGjCXNtxzJRsxWTGH2Hi5LcwefzrmDzyLqbiHTF92AH3Djvi/hEHzB5xxFyiA+aTTHiY8i4WznwT j7N+B0tXf4jlOj/gDm3cPw98iZVfs+Rg9ZUXv/7rv06P3yrT1dWFEydOYOvWrcprx9YUrLzNxTyU xC/t4M1KmaDVyUoR1h6RWJ2sDqrtSt+wNFkdjfXAteyjdA4Qa5vq6mrs2LHjmXLicXFxwd69e8H/ Hf7vPr7X1ztTG4WRjB/ibspv4s7hX8CdWEcMxzliJM4BYwcdMX7IAZNMTlPxDkxQjphJcGCCcmSC csCDREcmKAc8OuqIhWQTFk9/FUsXfxfLN/4B6D4OzI98vMoPj93C2/HXvvY1g5hMJhM+/PBDelNa Jbq7uxUhubq6Kq+VlT/o8ca0RRlK0u59uUe9gwtP1G5xL0xFWModXWTlkg+tYR3YI4tbkGkNK0o2 Syt+rwdSUxLpHCDWPny8mN9f7XnkxD8BhgT5ofxCOO5c+gn6E7+J2/sd0cfSH+OIQZYhJieLoBwx dogLyhETTE5Kg0pwxL0E0aDmmKQeJDmognLA42RHLJ54G0sZ32KC+hi4S7ftt8Xdu3cD/vW//tcG Ma1btw5//Md/TI/XM8DsbWDiFvDgbsDP48/jQuK3iOJC2rhx41NfP/wOLO7SJuWuLTvV6w55+HBS mDpBq12HyLNHlRW/q4smK33D0i8HRoe5wcN9o7L8zoeXCgsL6Vwg1i78q7pPnz79XGLavP5jxHv+ P6jY86vo2PcOOvc6ojvahJ59jujdJwQ1wOQ0cIDJiSfWQQjqoFWDOuyAmcNcUGJ5b5Yv7xkaFBNU 6ntYuvR9LDdFADPt9CLTMTw87Kp+U605fM/pL//yL+lx0rE81Yilxggsljlj8eqfYjH917F45utY TPsalthx6dw3sZz9PSwX/AVwyxsYynnupv4iQjJfyO66URlI4tcc8qGkYHVylodfIK8Ii8tKvdRj t3pHlzB1qtZy6YeQlWhY4lIQd2mjeS+LC5APL8XFxYHvR77cR5kgXhJ8aSg+Pn7lF9Wn/xeuLn+P pB2/i/JdX0TLHhNaIx3RztLB5NSlCMoRt1l6bTSou2qDGlUb1ASLWOITy3vWDephkqPaoEzsjeQb WM7/n8DkZ58OfNUYHR398Xe/+12DmL7whS/gpz/96Wv/GC2NVeNxYyQeXf3veHjqX+HhiS/h4fF3 8Sj5DeVDDz+vFrQks3PsmBMeH3+TNfV3sXj6l5isfg3L1/8ay427ASY26z//RYXEw/9/hw/HI/fq ZeWOLXxiVrvukEeRlXqJR5B6oXywOk2rtauVGha/BMTN1cUwYKFf4di2bRsyM+maJmKNwgcbbE3q cSlJLj/BMa/voHznO2gIN6ExwhHNESYmKEe0RZrQHuWIziiTIqgeGw1q8ICD0qC4oPjy3ihrUONq g5qy0aDm1Ab1MIm/gTiyN463sMTfLGba6AXGGBsb++gP/uAPDGJ65513lE/Jq/yjrRqLd4swX/QJ ZlP/Fe4f+xJmk95S9jLn2Hk0p+5pPlAGb1gzV48P1YauHRVpsba+wET1OPWLWDz7a1i66Y7Hw2XQ hMTf6J9XSNre7MGDB83PS3HxdYQG+ysXxfP4eMks4g4uQlayWVaiXcnmu7oIWcnmluXtuRWuW1be z9L/DHzQqamp6bU9P4g1TFtbG4KDg62k9P/hhNdvojT0bdTuNuFWmAn1LA3hjmhicmpmchKCYg2K yalT36D2iQbVrwpq6IDYfzI3qIP6BqUNSLD2lGAckHjIl/dS2BtFyU+xPNs7vdqP02ozPj7+4Ucf ffTEdzH5+Pi8dm88S1OteFDhjpnjX8NM0jvKOaScR/zDToL4sKM0ct3gjZY5VVZaFGkpjd1BlZUJ j1LewYMTX0F5zO8jdPtPnltI2uUWkZGR4A1X/zPzqcqszAwEB/nD00PCDjX8InkvTVg7xP0wNWFp DSsk0ANnTh1DY30tLl68+Nw/C1/e43vJycl0jROxBrl58yY8PT3FJy3nTxDn/j2UBL+Fqp0mVO9y RM0uExOUI+q4oJicGtUGxZf3WiJ1DWova1DRvEEJQemX9wY1QcU5WBqUfkDisHgzuacu72kj5o9S fwmLlfRFeBMTEx/8+Z//+RPfxfS6feXFw44TmDrzHYwfeU/5cDPBGvhEvDjypWL+YWfqsGUqdFqV 1Yx2fqmyuq/tdT6lYd078ga6Yn4Z0dv//PkHhVhL6e/vr1vp57/D796Sm4u4uFhsd5eU8Lu48HBh eaqy8vFyR8z+SORdy8HgQF+v/s/Iysp6IVlyQbm5ueHGjRuv1blCvALkshfL1s0uCNry33HV/xdQ FmxCeagJlSxcUDdZanab1AblKBpUhKVBtTJJtTE5dSiCYu2JL/Hts2pQBywNapgv8fH2dFCd4Dvk qLyhmEfME8SAxAN+/dPpb2CxNe61flHxgZW/+qu/MojpF37hF16rr7yYazqI0aQvs/NmnXLujOrC W7g2DSo+8IgYZKWeX2ZZJVjJ6oiuYSWKD0ezR0wYOvgeDnn9yTPf/L28vNDe/mJDO42NjaiqqkJR YaFyM97S0hvgd3YZGRl2fdq/d/78+ReSk7bvxdvcv+xZIIjPkcnJiQ/ST+zHqR2/huJAE0qCHFHK 5FQWYkJFCBeU41MbVJPaoMSAhHWDMj3RoIYOOBgGJFZqUMqAROI6zJ//NhaHcl/rF9VPfvITg5je f/99pKWlvRaPyf1bUbh75JfNH2zuqOePdg4Nx4omzq+nU2SlXlc3pp5X4+yoNSxFVtpep9qs9A3r nlXDusdkNRT3DpJ9frDimz7fh6qrq/tcnwv+5ZEvKicuUD7EoX6/13OBRyMfL882A9MlwOR1YKYS mG0E5ukrNojPgYZLO5Dr9yauB5hQyFIcxAVlEoKy2aAccYs1qDp1D6pRbVAtSoNytNmgtAEJ3qAG 1QZ110aDmjykH5Bggkp8E/OX/gTL0x2v7Yvhk08+eeJLAnNycl75x2OmOgSDh39R+VAzEKMN11jO HyWxlr1MJXGqsNRr6/QNa8zcsBysGpa2HOioNiwHy/4VOwf7Y9/FLre/fOLNnt/xoby8fFWeh7Nn z76wnLRlR97w+vqMy4Sc5UdjHy1OlmOhPwkPW2UWCY/aRB63iyx28MhYuh2M5bEMRVSr8OsTrzpz E90oO/BdXPMzId/fhAJ/IafCQCtBhTiiIlQ0qGouKNaganeLBlWvNagIqwYVZVIE1cUalDYgwdOv NSi9oNRPvGPaJ9x4y5vD/eQv4VFt4Gv7AuCTVg5WXxK4Wm+InxezHefQd+h985Kw9sFGa9/akI1Z VnppxYpmfkeTVhw/xxxUYTkosjI3LH7d3SFdw7KxdzXJzsHu/V9EoOtfm9/g+XDB9evXV/U54K35 s8iJh0918rtXaH/W/FAm7jXISu43SkrmmkQeNIvMt4g8ahVZYMJaaN+Oxf4DWJ6pfqXPR+JzZqDm KK76fwFXfUysNZkMgrrO5FSkCuoGF1QIa098iU9tUNW7uKDEHpTSoJicDCPmkdoEn2hQfHnPPMHH 32h0byzKiHmcNmIuPt1qewVTCU64f/a3sTTT9Vqe/HwD20Enpi9/+cuv9FdePJpowcDJ3zdPfGrh wzXa/qV2DmnX0hmk9ZSGdceqYRnaVZzV/tVBy/7V2CH2oWvvL8Nny/9R3tSvXLliF4//814wbyub Nm3AmaP+mG6LwsQtGZO3JEzViUzXi8w0SExWkllWs00ic1ayeti2HQt9sVi6T2PqxM+BquM/xiUv J1z2NiHHxwk5vkxQvpqgnFCgLu8VBYr2dCPYUVneKwsRcqrcaWxQ5gGJcOOABG9QHbxBGUbMTU+M mA/FOliNmIsGNZX0RTxsinktT3q+9OJg9e21/FZFq/tTvTzu5v4T2ve+Kc4X/qGGNe5OtXkrlyhE a+eQaOJcVj3q+fTshuVgblhCVmqzUps7v4OJaFhCVPqGdTduHcoi/z0yzqfb1XnIr7l6YSm5OON0 /GbcqZIwUi0yWiNj9KaE8RoRLquJWgmTTFRcWtP1siItLqsZJq17jbIiLUVWvGE1y5hr2YGFkeff xyKIJxjrKcaloC/jwg4TLjI5XWJy4oK6wtrTVV/RoPLUBnVdXd5bqUFVqQ3KPCCxmy/vmVZsUJ1q gzKPmO+zfNK11aDGD7+Bmaz/guX58Q9X+3H7vAkKCjKISb2p6yvJZN0htO57j50r4sOMlrYoMVij hX/A4elUo8hK3672WbWr/ZYowoqxtKt+9dZag8/RsO4mvI+ZxiS7e/z5styLSOlMwmb0l0sYrBC5 Uylyt0pkWJXVCBMVl9VYjch4rQgXlXXDmtEaVqMH5gdO2N1jRKwROkuike5hQoanEzKZnC7scGKC MjFBsQblIxrUVaU9OSFPXd57skGpAxIhjuqAhKNY3tslBiSUBhVu1aDYm06b2qA6dZ98taUZTVDm EXNVUOPJX8XCYMFrd8KHh4cbvvJCvanrK8fC7J3orpTfV/YqG9Xzhe9ZNrPG3axdP6eeP63qnUi0 i73btUauToVqDcvcrPaKD0FaU++JtpLWc+xhKedj3BuYyPyhXT7+x44de6aUXDZ8iriITegpkdBb KtJXxsKOXFRmWbHjUKUIFxWXFpfVsCorLi0uqlFNVkrDElFkVe+FR+MVdvk4EXbOzfQNOOvuhHMe TjjPkuFpQhaT1AUmp2y1QV3hS3y+Kzeo4kD9gIRoUJU7TeqIudqgwkzGEXP1DhKtaoPq0H3qVd4w VriL+UjCFzHXcOC1O9n5tws76L7y4jvf+c4r+RiMVEWifs9b7FwRH2bq1T3LBnWwRpv+FLJyVO9E ImTVom9XkWIytO3n0LBs7V0NHX4fs02H7PI54Hd7WHki71OEBbqg/bqEziIJXSzdxSJcVDy3b4go wuKyKhMZKBfh0hqyaljDuoY1qmtY43XeeDj5+Y7SE68A+XE/xGnZhDNMTme3m5C+nQvKhEwmpyy+ vMcaVLbNBmVSG5STIij98p6yBxWiHzFXG5R5xNw4IGFuUFH6BqWNmIs9KPNdzA+9jZni1+8ecQkJ CYavvPjBD37wyj0GDye70Hzk20rT1qY9+S2xbqnXzZllFWYlK900KG9W5oalyErXsNTlQHPDUveu tMsahKxMhoGLnn3GadLe/ep1eTHrcPf079ntc8C/6PMJKTl/igCvDSjP2obWAklJ23WZRUJ7oYSO Qi4rWQirWKSnREa3QVaypWEpspLNshLLgbK5YYnlQHeMNezC4sOxj1b7MSHWCA9nxz5KD/gGTro5 4ZTshDQWRVAsfHmPN6jMpzQobUCCNyj98p7SoIJNxot0eXvaqU7w7RLLe3XqgISlQdm+i3mP7i7m A7FvYvzCf7fbN4SXRUpKillMb7zxBn70ox+9co/BUEkQqne/KZo2H6hRJz61ZWHt7iPKgI0qrTpz LMvFTzYsR6OszG3dZGlXkY7G/SudrPQNSz8h2HvoFzHXZV9DEHqOHDnyxL5S2uEtaMiV0HBNQiNL U56EZp58CS35kk5YktKqNGEJaQlZ6RuWWVg3RLvqKzM2LEVWVZ6Y7suy28eJsDPm74/+OEV6Cynb nJDK5HRSMuG05KQ0qLPPaFCXWYNSBiTUBpWn24OyblClwWJ5r5zfQUJtUDVPaVDaXczb1LuYd+rv Ys4+sQ4l/9vX7iQ/d+6cWUxvvfUW/u7v/u6VewxaTvyp0rLL1evlKtj5wj/QaHceqVJlVa028Juq rD5Lw3ra3pV2/j29YbFmFfM2RvPX2/XzoH29DW9Lgd4uqLkioZblVo5I3VURRVa5QlaasHhabAiL Ry8rY8N6cjmQZ7DSB/PTnXb9WBF2AhfT0a1OOObqhONMThZBGRvUue28QTkhQ21Q2oCEEJSY4DOO mNsekDA3qFBjg1ppxNxyF3Njg+o7/OpOpK1Edna24buY1AtuXxnmp3pQvvs983minSvanqU2+ald P6fdhaRKPY+0c+mmetusml3a/R0drRqWejutz7CHZdi/4uclk1PPkX9j988D/xqOjawtnTi4BZXZ EqouSahmuclzWVJkpReWJqt6Hn270hpWvrFhabJqNywJiv0rrWH1lHpgrOuc3T9WhB3AxZS4ZR2S mJySeVyFnFLcTGZBneaCchcN6tx2k2FAgjcovryX7a1rUL5OVgMSTsaLdJU3HUfLiLmNe/DpL9K1 dRfz2/Fffe1O8Pz8fLOY3n77bajXNb0yjDanKUvA/BwpDnRUPsxoH2huqPduNMtKPX/MslKnQc3N Stewbr7khtV+4Bdxvyfb7p+LxIRY5J9xQ1mWzCKh/IJI5UUZFReZrLJFqi/JirRqLovUXpENDav+ qmzVsGRFWs3qkmBLvmxoWO3qHlZHoYzeql12/zgRdgAX0+HNTkhgSdzihKQtQk5agzrBGxRvT6qg zsh8eU9rUCbRoJQRc5MYMffSBiTEBN81XzEgYWhQQVYj5qEWQa18F3NHw13Muw+9fmIqLS01fEmg Oj7+ytB5xVVZAtbu1ai1bS3a5KdZWLoWrt3PUd+unt2wHHX7V3pZiTuY6GWlNawG8x6Wo3ngoiX6 XYyWBdn9czHcX4ui8xKKeTIklLDcyBQpzRLRZMVFxVOpysrcsC4bG5b1cmC9KqsGq+VArWG1F3tj buLF7sBOvIbMz45/mLz9qzi0iclp0zqLoNQGdUxtUCd4e+IDEpJJWd5bqUFd2KEfkBANKtfcoJxW HDEvVQckKp7zLubtca+fmGpra81ieu+998D3Dlb7Z/p5cjPxj8wtW/sgo+1XaueMdv9G5SLvIEsL V+7nGCzuiq80LPWcKlWnQ/k9Hl9k76pabVbanUxq1GZlblhcVuFCWo2Rb2PwqrPdPxfttemsMUko OCtyPZ3lnISidBEuKy6tElVaiqyYtHi74uGiEg1LhMtKNCwRRVaXxXIgDxeVaFgiXFZN+Z4Y7Xm9 vyWAeE6y9v03xLk44eBGJ8QzQfEGdUQV1NGtlgaVsmKD0g1IeIjlvQvaiDnfg7LRoLQ3nBe7i7l2 o9h1uBr+n1BQUICRkZGPV/vx+zxYmhx2bcnNsnxJ4DtvI22XD9BRAwyv/W/4XXgw+X5x1L8V18n5 Wu7XqE18aq3bIK0AK2np21WQ5bwyLwfa2LsyN6xQq3a109KutGvxLBOC6nKg1q4i3kR3+v+y+zfb imv7cfW0hFyWa2kieWdE8jVZnRMpTBfRGlaJjYZV9pSGVW2jYSmyyvVAX8Mpu3+sCDugPMsXMRuc EOuyDnFMToc2rlMExdvTEWV5T92D0gvKzSQGJHQNSlne2y6W95QGtcOqQfF78KkNyngXcycbF+k6 mr8HqlptULXqZnZx6PsIlH6ifOsuv+j0VbqR6fLUyMdLBWlYPLETi/s247Hf3+Dxpj/Ews++i66/ /nXLlwS+wR7Pj76GpX/4FpY++TaW/vm7WHb5Ayx7/g9g10+BRCat/FSgs3ZNPDYLc+MfXg14V1yG 4OOkDtM4qR9onMwXdueqdyDRrqHLU+/laGxYToaGZZCVeo4Vs2YlGpY43/h1d6JhmawalumZDatm 9xtoSf79/5+984DL6jof/zvQDGNjVpNm2jRpdmLSzKZNTZs2TX8d6b9p0zbNMg4UUfBeVGQoIHsj Q1AREXCggogD3KgoKA7cW8GN4t7j+Z/nnHPve+597wsYNQzv8/k8nxOzPoz33u/9Ps9zzm3xP+dF MyJhZo4Es/NkmJUrwZwJJPMkAisZSshfl05i0Jo3WYZ5kxis5lNYyRRaDljJDsOisJJhaYGjHFhe JKuGxWAlq4a1cpYPbFme0uJ/Vma0gNheNRUSe9khicApubcbAZSdGhSW91RAoUH1dxhUNgJqgDDB JyGchAk+NKjB4oi5TTMgMcfoFHMXI+YrhE26K8LaQebgLtDbvQc7WqVPHwgNDQXef2mVgTC6Mm8C XIzuBRe+ewPO/+spuPDXH8OFT+6FC7+/Ey50tcGF31ig5l0LWDmY7nWzwLI3LHC5K8nfsPXKhza4 8vv2cPWPHeDqX+6Hq/98DK7971m41vN1uBbXG2BxPsDBlvlytzPHdpDPh509xNDN3DZ+ZqNdnfpU PjeKfat2FaCzK8GwFghHaN0MwzLsXYXZYc2IJ1rkz1WMksnDoChbojljPMtiAiqEFYIKc3YegxVC i8LKwLA05UDBsCisDAxrmc6wVs9t+f04M1pAnKjbBRkDn4CEXm6Q6G6HEe5u1KBSnQzKjRsUAxTa 0zhe3ssZwOA0QbbxEXObdkCCj5gX8QGJmZpTzO0uTzFfoja18QmWQG3Yg+Dj8bnTWzkDAgJg+vTp UFfXOnaXXztxtMvlskK4kDwAzvZ4C85+9hSc/fhHcObXFpJWOEvWsx9Y4RxZz/F1/3tWuNPG315L wFT9lhUufmCBi78hK4HTJbJewrWrlcPKCld+w4H1p44EVE/A1W9egmuR3eDasqIWdXM4tqecGvZ0 5XPCDxSeoUx98pNHZg4RYWVXDUs1K27kytmOGmiRz1dTelhGhqXASnmz81IOKzZdaoeqpJYPpsLs wTB1rAQFWSwLx7Gcns1ShBUFVi5LhNVsDisKrIksjcqB812UAxdzWJUVyLCyNLTF/6zMaCExK/Nr iO1ph7iebgRQdmJQbtyg7Nyg3CDO42EI7/McRHi8AEl9H6HlPVcGNZEblDogMZCV9zSbdMVTzP11 Z/ANdT7FvCykPaT4vAW9evYwfGW0JEmQmpoKW7e27KmfizMz4cyAj+HUP5+Gk5/cBycJiE7+ygqn fmVxJPl7pwmMTlNQsdz3HgOShYNpz3sILQuc53lBzN9YKKwYsFhSWH1IYEWM6sq/O8PVsK8IoFrG bvwj2+fRHiUtA/PN3IXK50UoC9P9cxxaxXwfndawbN/LsObrDGuhaFfDtHalN6ylIW6wOvWFFvFz bCgKsv1h8miJZv4YCaZkspxKctpYlhRYJKePYykaVvF4ZldGhlViYFi0HKg3rKkETPNiW/zPyowW EttWF0BMrzsgugeDUxyBlGJQSb3bQ6j7M+Dd62/Qr9fnJP8NPu7/B2medzOD6u8G4ibdHAooGx+Q YGfwaQxqsHaT7kw/x3ugSoQegjpiHmSnfagC/0fAq/cXDZ6a7OHhAWFhYS3yza4XiSGdHvZfOP73 J6H+N+2h/n0rSQscJ1A6ztcTZD3BV4TVSQ4phFUtMaZH2vPXqhMw1ZN/foablZFhnScrBRYxqQt8 dRgWsauPO8Dlz5+Cq6FfwdWlzQuoM0d30M8HPsTgRu6pfJ3GPy/KSh9ufPkxWb580GaIYFgIKz/B sBBU/oJhGfauHGc/KmalfP7ooM4wu3bgIsiuKQeWhbSD1aNa7pl5SsyZGg956RJMyJBJSjBxFMvJ o2WYxGHFgCUzYKmwkjWGVZQt6wxLVg2LwUrWGFYp9rAUWE32gapFLfPgWzNaYJw+fiAhJ/wDiPzO DaJ6uEEMSTSo2J53wNBer4Jnz39qD4Ps+S1E9nkaMrDE1083Yu7tAJRyBp9mk67hKeY2dcTc6RRz chOYO7Q9xA34ZZPeM6OU9vhJCc0el9YshtOxfeHYZ0/D0d92gLpfWkha4ShZj5L1GFmVVGBFgUVT gRXrMXW+k/WZHr3DokLr9K+YWbHVqhqWFlaO1BgWQurju+Hiv56Cy8P/RwBV2Cw/s4tnj3WePuwR tU+pPMwoe+Y00OKfHw2sButgpe6tY7CaoX7G7Fq74rBSDSvAYVfqwIU4IThUOyFIQRXcHtZktcxX YIixeM44yE6TYDzPnJES5KazRGDlCbCahIl2NUYEFoOVAizMQg4s0bBUYCmGleswrNKJA2F9xaQW /7MyowXFijlxENbNDhEETpHd3SCseyfw7fEOePT8r/MpxQim3k/xEXM3PmLuphkxzxYNStIalP4M vkJe3jN6D1RJoBvkDX4M+rl/2eSXoCGcZFkGPJF7x47meRX75d2b4FR6ANT9+3k4/NG9cIgYz+H3 LCTZeoRA6Qhf697jsHqPwQqhdex9Di2EFVn3vmuF5+62gI2A6fm7HWaF60kDwzqtQsuq9q5Ewzon GhZa1R86wIV/dYbL6YPhWjOMoM8d8St6ViM+yOC050SZfV4QVpME80ZY5XMDFw1LA6tBWlgphn6z DEucDpwf1B7W5vy1xd9sVy4rhswREoxNZpmVwjI7laUILMw8Diy0K61hOcqBYklQLAdqDcsBrFkT fOHA3nUt/mdlRguKY4e3Q07URxDarR0M++5RGNDjd9C751fON/2ePcCr118hwf1uSMEhCTogwSf4 +rIRcxVQ3KDG6wzqek4xn+nfHsL7f3Ddr42mpyn37UtLe5WVlT/oxXBh5Xyo8/wIDn78EOwnpnOA QOUAXw+S9SBZD5EVYXXoPYsGWnpYKYa15x0LvHaPBexWC7z9IwuFlcOwrDrDYpBypKOHpRjWGV1S wyKAOven++BC/w/h6rIZP+jPrDzvW/oZyeG9SqVfqUx9KnvnJvLPD9um4DAsdugwg5WydYEZlq0J hmVXTy+ZMUQcuGi4d4WGNS+4A+xeGtPib7YH9u2EjEQJRpEcncRyzAiWmTpYjUtlma2DlWpYOlih XYmGpfavFMPisJqZ5w/nztR3au6fhRmtLLasKYYgj9fBs8enBEDdDG72PaBvz/9AcM+fsgEJd8eI eVofNwqoDNWg7E4GpRwSm3sdp5jP8GsPiQPI1+Rx/WBS7CkwMBBmz579g9w8zpbkwoF/Pge1v7oD aglMat+xwj6y7uPrfgKl/Xw9IEDrIIcWhdW7FifD2k3++18RILkRMH3USSgHvq81rHpuWCqseA9L 07t6X4CVzrCoWX3YHs7962m4lBv5g91wtyxJVvuU2V42dmYjf6DJ8bZpYcX30eVxs7pVhqWYlbIf TzF60bDmhnSC4zUtr6dpFBPGRsDIOBnS4iRIj2eZkSCTZMDCHDNChjEEWmhX1LBSZAqtcSkss9Nk jWHlpstawxrFeliTeElw8hiZGtaUTB9YUjKqVfyczGhhMW/ubOjXwIBBr57fgV+P1yC6x53aAQl3 ZYLPjZb3VINSN+naQX+KeY7TKeY2F6eYu0FxxMuweN50wFOS0YK+D5wGDhwI2dnZUFNTs/ZW/fxO jIuA2k9/CnveJobztgX2klXJGvLnGgKXWjUVaLF0wMqqgdZBnmhe81+1wlsdLTDmOZ1hvSeUA416 WO9bNLBSe1i/cvSwFLNSLIv2r/76MJyP6nHLbybFxTMgLKA3/YwomSVs6h4nlIbHC3l9hmXT2pUK K7tqWNPU/hWDVYEwHViomQ5kWeznBgtinm01N9uFpVNgRLQEyTEsU2IlSCWJoMIcGc8yPUHSwEo0 LKNy4DgX5UCxf5U/dgjs3r6q1fyszGghgcMCfn5+DUCpO0g9fgVh3e+BqO52OiARQ+AU39MN4nGD rrubZpNumocb3aSboZ7B50Y36So3nGzNKeY2w1PMcZPujIAOsHV+CP1AHzhwIGHJkiX0xAeEzfUC ytPTEyIiImDVqpt7gVypP/zNoUGfwZ6PH4Gdb1lh11sWklbYTdbdb7OVwoqvexFa77AVYYXQorBS VjSsd7WGhZDCv7+sixV2kH/v4HtawzrsoodVx8uCRwVYNdmw0Kp+3xHOeHa9JTeUI0eOfDp27Fjo 378feLh/C0l9f0wtezQfplGGaujWBC+HfWfxPXSqYXmz7QrjiVkxWNno0Vm5glnhA5BqWNyslJ7n JG5WqmFhOXBQ44ZV5HcHVE3+qtXcbA8f3p+VkRwECRESJEaRjJQgiYAqKYrDKprBKoX8dWocgxaF VRyDFTWsRAYtCqtEXg5MYuVAhBaCihpWqmJYCCsfmDfDnMYz4zpi7969e8aNG0eHBRqCUv/uf4Bh 3e6DsG5uENGNDUhEkcQR81gCqbheds0m3WR+ggQdkPBgZ/CJp5iPbeAU80n8FPNpQ+6CNQV94PzJ /Vni17xv375CfA1EQkLC9y7tlZbenMMkz2+ogJqv3oYd798F298k0BCTwGknWRmstLkbk8LKymGl pIUblpUblsOs1LKgQTnwoNjDMigHHtH3sHRmpTUsbe/qRNc74MyQv9/UG8vGjRvpCemKAbsTGw/p /Sqd9FQ+K0qO7ufoXWpg1V8LK9WwvAVgcWjlCEmhJQmGJTumRyfy3tUk3XRgvtN0IDEo/3tgT+WY VnXDrVyxEGLCJIjFDJcgjmR8BMuESA6rKJZoV4phpbgwLFYOdDYssRyYkz4Edm4xbcmMJkZ1dTXE xsZCv379GriZ94C+3f8G/t88BMHfuMFwzG/tFFDh39nZiDk3qFhuUAncoOgZfC4Nyi6cwWfTDEjg k+3kwXfB2iIJztS7PkantrZ2EQIGv4fvU9rLzc2FY8eOdf6+Pz80pd3/ehm2/MJC0gpbMQmItpE/ b+Mrwmo7X3e8aaGwwnUnhZaFg8qFYanlQMeqMSyhd2VkWAfedZiVK8MSpwONDIuZFQHVRx3hbIrP Tbm5LF68mD4I9e7dW/PwM6jX7+jnhJaD+yolYTf1cOEMfgKJCivFxBVY8ZKxaFjjKLBsOsOyccOy 6wzLrjEsV70rejbk4PawOOP3rfJmmz9hFEQOl2hGh8oQRVaEFQVWuEyhFafCSnYYFoWV7DAsCitZ NSwGK9lhWAloUoNh6QLzBYG3dVw5fyDhyumtcOVkNc2rp6rh2rldhh+KpUuXwvDhwxssifUi2d+z J/h+9zwEfuUGw0gGfe0GwSRDvnWDUJIOg7JDdHe+B6oHK+8pAxIjsAfFT5AQDUo9g6+f9pDYPJ+7 Ye1MPzh7vHZRU75v7BvhcENkZOR1AQqBHB0dDevWfb8R1hrvT2HTG1aamzF/4Vi38NwqJIUVz+08 nQzrLauuHKgkg9aet62OciA3K6MeljJwsd+ghyVOB9J0YViakXa0qT8+AGfTBt/QTWbatGng7e1t +Pvo3fNrupkbH2SUMxtpetjV3uVID8c5jhRYCrQ8Hec6NtWwxnnpyoE6w1J6Vxq74oaV79sR9q7O a5U33IMHahdFhg6GsCCJZngwy4gQAiuSCKooCi0Cq1BJNay4JhhWsmBYaXE+MG3iiFb5MzLjBuN8 fTWcrp0BJ3dmwsntaXB6WwKc2RYD57bHwPkdMXBxTxJcrh0DV49Mh6snVsD5E7vphBpuQm3sxo0n KcwqLoSFRdEwwrcL+H/pBkO/YkkB9Y2d2BMCyg7hCChiUFHdmUHFKgbVS2dQeAZfH+0ZfHhDYeW9 9jAj5i3YuDAezp08kHC9PwssS86YMYOOiF+PPQ0bNgzmzp17XRfQQfJkuOGdO2H961bYgEmAtPF1 C2ykq5UDywKbKKwsDFZvWDiwLBxWFmPDEsxqBzcrvWEpZqXvYe0Velg1jRjWfiPDMigHqoaFFvWn h+BsXtx132yw/JqRkdGonXv1/BRi3TuSz4obe6Dp7fjcpCgrhZUbLxUrhuWmMyw3blh2nWHZnQxL gZXDsBioRGjlCD2sPJnY0phPW/UNd3XVCggKlCBkKMvhw1iGBrEUYUWBpRoWB5ZqWCxFWCXQ3pUP ZGWYb6y97eL04ZVQt2UcHK6OgUNVfnB4pQRHqiQ4tlqC+rUSnFwnwan1EpzdIMH5TRJc3DoELu0K g/M7k2BhgT9EBfdu8IaNJ3dPmMDenXL2VF3XnRsXQF7iv8CPwCmApGpQ3xB7ouU9ZlDh37nRTbq0 /9SdDUjE9RQMysUp5mO87oTFud2gbm8lXDh7Y3sddu/eDQUFBRQ4TYXToEGDYOLEiU26kOomp8KG 3zwA67pYaVa/7sj1PDeIibDiqTGsN1wb1jbFsH5hbFhK78phWNreldrDelvbw3LAyrmHJZoVTgHq e1h0/xXa1F8ehfMluU2+6axZs4baOT7oNPa7cO/ZDfx6vkUfZmjPEj837o7pT2rgHFbJwnmOomGl 6QxLY1d9df0rT51d9dPalZFh5Q3qCDXrW8Y5gzcSK5YvhUB/CYaSHBYgQRAmgVUwpgCsUJ6iYSl2 pRpWqMOwEiIHQXHh+Fb/8zHjOuLC6f1ZdTtnwt6VEbB7qQ/sXSZD7XIJ9q+Q4GClBIdXyVDHAXUc AVUtw2kE1EYGqAubZfLPBsC2hV6Qm+oBAwc4l/Kw9j9y5Ein07oP1ayHJTPjICfhM4jo+zgFFNrT sK/ttLyHPSiEU2g3rUGpAxJ8xDxBOMV8ZP8OMD3xI1g3LxZO1t3cUxp27doFU6ZMaXDaUEwvLy9I TEyEnTt3uvw6Ti6bA+v/8ASsJkBa8xpJsq7tYiFppbnudYSVha7VCrTIn1VgvYGwsnDD4sAif1aB pTEsDqw3LNpyIDes7aJhvantXTFgGRvWHrGHpZsOrHExHagduCD29GlnuLhqYaO/r3nz5tEDdt3d 3ZtssX16fgkhPZ9kBwv3Yp8bNG98uElw5wcNK7Dq7aaFVR/BsLhZKT3OVG5Wag+Lm1W6WA7s56Yd uOjvpikHZst3w+qZAW3mpntg/77CURkp4D9EohnoJ5NksGLAkim0gjmwQobKGsMKC5JVw4oIkSEm whdmzzCPHbqt4tTRrbC7Kg22LgmErQsl2L5Ygp1lEgGURAAlaQFFDEoDKGJQpwWDurBZgkOV3rB8 ej8IC3TYE95AsFezf//+LFdfx6HaDbC5agYUZXlCqv+bENL9Xg4orUGFcYPSDkiQG4x7e8gJfh0W 5PSGLSuyoa527Q1bUkOBxxKhDfn4+DT+xE6+/5CQEMAGvf7/c/Fg7aIt330Iq1610qx6zZGreSqw ckCLA4tDq1pYnQyLw8qlYXGrasiwtrvoYTkblraH5YCVcw9LWw7kPaxfusFR7z/B1ZOuh0cmTZpE YX89fT+lpOfZ818Q0etB8lDD+pYx+HDT0009BV+EFQWWACvVrjislEzmsFINy8PRvxJhpRqWp3ZC MNPrDpg76v+1yZtuyZxZEBYaBEN8ZRgyWAI/X0mFVQAmgZVqV4phBUq8HEjgFDwQskYnwcYNa9rk z8cMF3H80HrYUp4I60olWD9Xgo3zJdi8QIKtiziglnBAlXNAVSgGxQG1RjEoSWNQZwioNs71gtCh vWlJC98M29RhgON1e07s3VYOm6qmQ1lRBBSM6g6ZoV0hdchrMNKvC6T7vQYZAV1gdODrkJ/wF5iT 3RuWF4fChvJxcGDncjh59Id9cR2+EiMnJ6eRPgcr7fn6+kJ+fr7m6zuUkwAr37wLKl+xQiUB00qe FFSvOdaqVw2A1UULLa1hKWalLwlauGE5zEoLLItqWFv0Paw3WQ/LpWG95WxYuwx6WE77r4TpwNqu HeHk6CCn3yGWUpOTk+m+seuHEg6leMKEvByoXlEIUT3bkwcbR+8SQRWt7KPjsIrhp+J/X8NKbkLv KsOzHeQNaz2bab9P1NfXdyqZMxuioyJg8CCZpu8giSbCygEsmZrVUH8fCB46GMaOToWlSxa06Z+N GQZRf3AjrF8cBytnSlA1W4I1cySo5oDaxAG1bZHOoBoC1DoOqA0MUOdIbiBwigjyvO4hACXOnj7W +dihHbB/1yrYu20Z1PCs3V4OtTvK4UjtejhRtxvOnW7el/nhePj69esB926J48quSnv4jqdDBw8O u3CwZu26z7rAcgKlFUJWYBIQKbBSUg+tqtcaNiyElJNhddGalSvDUkBlaFhvOOzKlWFt1xtWA/uv dik9LATWOzao/eMjcK7Mca4enkuI+8SwR3m9QMLfB2643bx5s/r/27xyCtua0I3Zt9LDVA4bxmnQ KHVPHSsbN2ZYCb10sHJXYGXX9K6SVbNyg7ygF2+rGy8+XMydWwojR6ZBfFwshIUNJ79XPwgdHgwZ 6WlQMG0KVKwov6HtFma04jh/5ljn6iWp9PXEK4okqCiWKaBWE0CtpYCSCVQYoLZQQMmwgwBqFzGo PQRQNeUy7COAOlCBpTsckGA9qHpuUKfWsx4UmlP1/EA4efyQV3N/zz9EHD16tMvq1ath9OjRjQ6B hA8PgVVRg6D89Ttg2cs2KH/ZCuUERMvJuvwVG185rF61MWC9yqBVSf6sMazXbAxYrwnlQNGwumgN i4LqNecelmJYFFQGPSyn6UBdD0sLK+celmJWDe2/wh7W7vfc4JD3n+lNG6c9sZ90vadyYPkUj5vC IQmj39X2dbNoaZgO2HRjU6AIKzwNn8KKn4qPPU0KqyYalgIrpfcZz2ElQiul751QmvXNbQUlM8xo NHZvmguLCwZB2TQJlhZKUE4AtZwAqrJYglWzOKBKmEFtmMcBtZAZ1I4yDqhlCCgJ9q3ggMIJPmJQ R1czQJ3ACT5iUKc2DIFLRxfdVhchHotTUVFBzcjVjdP7my9g7m+egCUvWdVcikmAtEzIciFFWC1v wLBWioZlUA5cLRqWi96VpodlYFYaw9KZlVEPS7//Sr8PS29XOz7oCKUhA667n4RAio+Pb9KLHWu3 L4M0v1fpgE2I0MdUpkGVPXVKOmDF7YpDK0pNu9C/MjaspD53wZKpg26r68EMMxqNk8dqFy2ZEUpf U4yvJl40VWKAKmCAWjFDANQcDqi5HFALOKCIPVGDWsoNajkHVCUHVBUH1FoElAxntkbAlbM/bO+n JcShQ4e8ysvLnY45cu/RHWL//EtY8LIbLH7RCotfstG1jKxlfKWwepmtS8mK0EKzWvaSAK1XmGkt 56a14hWbtiSoGpZVZ1hWZ8PSwcrJsHSwEntYCrDWC9OBYg9LhZUwHSj2sLYa9LC2vmmDeR8/3WQg oVGFh4fDwoWNT/WJUXdgM2RH/VHd6B2E06Df8A3f3zj21YWQNfRbdkKJYljh12FYCKr0gZ1hVen1 79cyw4w2H1vXldA3P7JXFOOriR2AWsINarkeUE01KBeAOr5uIJw/OOu2vSDxoNiysjJ6jhvtM339 BUx780FY8IIVFhAQLSTrQrIu0iWDFoKK5RJhXfKys2GVi5bFrUrfv9IYlq535aqHtVpMV9OBuinB puy/0vSvhBMuFMuqfvsOiPzXx40CaejQoTBnzpzv/fk6feKQ18JpwZAgP0f30tEN31+ziVAlcTI0 6Bu2faEphhXOk+6/63knzMzsBodrzOkyM8wwjPmF0VA0XobiHAlm5UlQgoCaJFNALZwiwWI0qAKZ AQr7TwRQK2fKqkGtK8EBCZkCajM3qO2LZQooHJDYQ0fMZQqogxxQdVU+cGJL/G1/UeJJBQvnz4OM Lz6B0hfdYN4LNpj/vBXm4/oCWxms2LqQrAxYNg4rtjoMSwGVTYWV1rC0ZoWwKhd6WCuEHlaFQQ9r pdDDWmXQwzKClcOwLLqRdm0Pq/p1Fz0sdeiC/PlNO0z9/c9dAgk3MOOm58OHD39zM34/Rw9ug5KJ gyHK80nw/x/b9K1s/A780q6eUEJh9ZWdGxaHFTEtDayIYYV91x6yhv8S1pebG0PNMMNl7NtdDdOy fNTXFOOriWcSQM3OYwY1d5IE89GgpjhKfMs4oFZQQDkm+Bigmj5ifmSNH1w6bXzG3u0Wi7/oCiUE SKU0bTCXrEoirOa9YKUpwgr/WjWsF7WGtbgBw1J6V0Y9LLF/5Ri8cDYrV4alwuo114a1posjnUqC uhMujCyr6u27wPfLf2qg1L9/f3qCyJ49t+Z17Qf3roNFRZEwPu7/0U3ffgRSeHSW/5c6WH3lpoUV hVR7SPF9BUpyB8DO9d9vGtUMM26rWL18Bn0DJL6qeGomezXxdB2gSgRAKQa1pMABqAoFUMSg1pRw QBF72ogGReyJbtIt4yPmy/gmXVreGwhnDl5f/b8txrl9u2HuLzrBnOesJG1sJXAqIWsJXxFWCK25 L3Bo8ZVCSzAsxaw0hvWCYFjcrDQ9LI1h2TishB6WBlaO6UCxh6WB1SsGwHK1/6pLA1OC3Kz0+7DW vm6HjL+8rQ426Ee/b3VgmW97dSnMnxZCN39PSf8WJiT9C7Ki/g9GD/8QcuL+DjOy+sKi6aGwumws 3c7wQ31tZpjRJqKkMBlyR0rsNcWjOaDGckBlc0DlckBN5IDK54CaxgHFJ/gqinUG1cgm3ZpyHzi6 bdxtf9EemDUZZv7cStIGs8g66znHOptAaTYFFoMWg5VVhVYptyzVrii0rDrDcphVQ4aFZtWQYaFZ Kak3LBVWRtOBr7jef+Vq4MJp03AXcR8W+b4/eLTB0W8zzDCjFUduhh99A+T4kTJ9RbEKqEyZGlQh AVQRAipHZoDC/tMEHJCQmUFNZYBaWigzg5rBALVqlkwBhQMS6+iAhEwBhf2nrXRAQqYDErUrg2/7 G8v6IA+YQaA041krXYvJWsxXhNVMPax+jrCycWAxwyoRDet5wbCe15qVUhbUG5ZiVmoP6yVnwyoT e1gv23QDF8bTgeI+rBUvi9OBxvuwHLAy2IcllgTf6QCHq5be9p8dM8xok6G8thhfVYyvKc5JkzSA mqIzqGJiUHSCTzAoZYJPMSiXI+aluhHzRThe7nvb31zm/u5ZmP6MFaY/ayNphSKyFvFVhdXPcbXS tZjDigJLMKtZ3K5mK+XA57RmZdTDUmA136CHpeTCRgyrTG9YwnSgOHAhTgeWv9zAhOCrjUwIIpje vAOO5Cbd9p8dM8xokzGSv7J4NH9FMQIqGwE1UoI8AqiJoySYjIAi9jRtLBuQQIPCCb6ZuhHz+eIe qEIDQBmMmG8ru7EXwrX2OF69Cgqeaw/TnrFBwc+sUEDWQgKpwmfZSmFlAC3FsIpFw0JYPdeIYT3v bFilBj0s0bDmG/SwRMMymg5c3Mj+K7q+LPSwhOlAI2iJ+69wXdnFDbb3b93vKjLDDDNcRFr8IEiN xVcVf39AqXugJvE9UMoEXwEHFJ/gq5zpvEl308LbG0ybU8Nhys9sJK10nUrWqWSdRlYKq2ccqwqt ZxywQkhNNzIsAVYOw9L3rnQ9rOcdPaxSoRyo9rBeUAzL0bvS97AWvtiIYb1kYFhKH+tlF6dcGBnW qzZY84fOt/Vnxwwz2mzg2x/xdcXJMbIOULIOULIWUGNlDaBm5soUUCXcoObny7TEh+W9MjogIVOD wv5TJR2QkGHNHBm2Lb+99zIt/uYTmPy0FSYTGOGaT9b8pxmkpigrwuoZBi2E1DRuVophFRgYFjWr Zxo2LAVWomHNFqA1x5VhieVAI8NCWL3YtB6WOB242KCH5SgHOu/DqnizA1w8vK+wuX+HZphhxk2O afljIC5CgkR8TTEBVEqMBKlxHFCJ3KCSOaDSuEFlcECNYQaljJgXXc+IOS3v+UDNpoLbGkyzP3kV JvzUBhMxn7bBpJ9aYdLTCCkbXxm08slf5wuwmkqBxQ2LwsrmZFZiWXC6zqyMeljFvG8100UPy2FX xj0sh10597CcJgSFKUG9XS16qRHD4maFh90eX1pyW39+zDCjTca80kL6quLYMAniwwmgCJxGRBNA EXtKI5mewAwKByTQoHBAAg0KByTydCPm065zxHxF8UCoq115W99YCt/vDLmdrZBHwJTH1wkEThP4 irCayGHlgJYLwxLLgUaG9YzrHpYKK2E6cIbBdODM57Qj7bN5D6ux/VeueljzFWi5MKxFDRhW2Wvt oHZM1G39+THDjDYZO7ZvhuiwwRAZIjkAxQ2KAooYVBoxqHRiUKNwgo8Y1FhiUHTEXDfB1+geKD4g sZAPSKwsGQ4Xzt26N8q2hpj4cicY39kGObrMxURY8ZygS9WwRLPipoWZz6Gl7105DMu4d6Ua1jMG vSsnw3LuXbHVeTpQLQfy6cASjWEJPSxXe7AMeliLX2kHO2MGmmAyw4y2GHk5oyA0SIbwYAkih3NA hcsMUKpByQxQCQxQmSNkBqhUBqi8dFkDqGljZQqoIg6oWbkyBVQpN6iFU31gS9Xk2/6mkv1TNxj3 lBWyCYiyhRVhNZ6sDFRk/amNmlUuXxXDUsxqAjerhgwr30UPSw8rV4bV6Ei7OB3YkGFxszKaEhTN ypVhqWb1shtsCexx23+GzDCjTcb66jUQGjwYQoZKBFCSDlDEoCIZoIb5ecJg2QOCAzwJrLxhVJJj DxSW98aPZAbVlAm+eZMHwrFDW27rm8rZwwcSxj5pA8wsYc16ykZgxTJbTAorm8awcsXUlANtunKg YliOHtbkp4VyIE+HYdlUw6Kwesa5h6UY1nSDHhYzLKujHKjuwRIGLnjOdtHDMjrhQoTV/JfsUN3/ s9v6M2SGGW068iflwDB/CYIDJQqoMA6oKA6owCH9wKMPe2Morr4+HtSg6IBEIhuQQIOiAxJpzgMS 0/ghsXRAgtjT2qU5t/0N5fi2TTCGgGjME1Z1zSRrJlkZsMj6FMLKSmGFKwOWlcPKymHlbFi5gmHl NWJYillNUsuBWsMymg7UlAMNpgM1hqWbDnSaEtRNBxpNCYpmpaylL9ihqvsfb/vPkRlmtNk4eGB/ VmJCFAT6ETMKYIAaPowBKsjfi8DIXXOac+/evSA+fMB174EqyJJhfmEknKzfn9Xc33Nzx+Gqchj1 uA0ynrDBKJ6jeY7BfNKxZvIcqzMrJfWGpZiVkkaGlWfQw5qoplXtX4k9LGU60FUPSy0H6vZfOY20 G0wJ6mFlONIumtXzbrDy2z+YYDLDjLYcq1ZWQER4MPgPIYbkL6sGNcDLw+DdNz2JTXlDUjTugcIB CVkzYj42WaaAGs9HzCdkyBRQU7MGwbYN5oniGIfXVMBIAibMdJpWyEBQPc5BRf6sBZZVhZViViqw nhINi8NKNKzOzoaV04hhTejsPB2oMayfWrXlQCPDEsqBUwVoGcFKhFaRgVlpDItCyg4VJpjMMKPt x/LlyyA8LBiGDJYooAb59Ad3915OYHKnYBoAceGOCb5kvgdKGZBQJ/jogIQMU7ICYcNq8300Spw5 sK8w9TEbYKbxHPmYA1QOYNkcwHrcASonw3pCgJYrw3rSYVfjDHpX+glBB6wUu7LqpgOtmunAhnpY U25yD6uYgGnFN783P09mmHE7xPLl5ZAQFwMDfQaAR5/ehm8L7dPHHSJ0I+YJrkbMR0gwZXwYbFlv ngatj4znOkHyozZIIUBK4WvqowxWFFiPc2A9LkDrMQFYTyCwuFmp0LI6gKXrXWUKvauxQu9KNCyj 6cDxynRgZ+PpwIb2X00Ue1jC/qvJ3KzyXZxwMZX3rlwZ1vSf22Glxz/Mz5QZZtwusX3bNhg6NBB6 GUAJs59nH+MJvgjtJt2R8TLMKhwFe3dtMG8gBpHT9RVIIiAa8ROSjzoymacKK12mcWiJhpWuN6wn tIY12qCHZWRXRtOBrnpYrvZfiT0spz1YCKunrUL/SrsPixlWI5uGEVI/d4PqkP7m58oMM26X2LVr F3h7extCCdPbqy8EBUgQMoyPmIfIbJNuGANUQqQME8bFw5IFBXD0yP6s5v5+WmoUfvkXSHjEBgk/ sUMigZOSSY/aIckFrJwMS4WVVWdYVge0uFkxw9L2sCisNNOBNp1h2XSGxUHVgGHluJgSFKcD81wZ FoeU3rAUs8pXIPWsG2zPjDPBZIYZt0uMGzfOJZQwJe9+EOAnwVB/CYLoBJ8M8VGBMH7sCJhdPAnW VC2F/bW74dTJ2/tkh8Zi/hBPiCNgUjIe8ycIKpaJukyi0GoAWAaGleaih6XvX7kyLM104BPOdiUO XOgtS+1hGUwIasqCP224hzVR6GGpZvVsO9g3Z5oJJjPMuB0CX1c9YMAAl1Dq1asXFEybCvPmlcCC +SWwcEEJVK5YAtu3bSIw2nOivr6ua3N/D60lVqbFQszDNoghQMI19hE7xD7sAFUcMSkFVvGPcGA9 IsDqUQesVMP6iQAswaxSHm24HDjyMVflQEcPS5kOHP2kONKuTAey/VeZBj2scRRabP/VOFeGxSHV oGE97TCsyc+0gzM1O00wmWFGW4/6+vpOUVFRDdqSu7s7HDhwIKG5v9a2EFuLp0Hkj20QhUmAFM0z RkwColgKLZ1ZNWJYSQaG1Xg5UEg+GWg0HahCy9UerIZ6WC4My+iEC8M9WAipp+0w8w8vm1Ayw4zb IebMmQN9+vRpEEzYe2rur7OtxLljR7tE/qQ9RPzYDhEP2chqo6CKfNiuwgrXaPLn6B8L0OJmFcuh FUf+rC0H2nnvSgGWXWdYds3ABZpVQ4bFeldWnWFZNdOB6QY9LLEcaLQPSx220PWwcO3+oBU+7WSF 0EeZWamGRY3KDiuHepqfQzPMaAtx9eKRT6+c3gxXTlXDlZPVcJWs185sgWsXj3bZs3sXDBkypEEo YQ4fPty8IdzEmPSfP0MYgZKS4QRA4XyN+LEAK54UVg+7NiwKq0dcG1aCgWElCdnQdKChYRmNtD+u H2k3PuFC7WE9qTUsv4etcI/NAneRfLK9BeSHrRrDwsNva+cXm59DM8xorXHhxGY4e6AUTu/OhdM7 M+D0tng4sz0GzpE8vzMGLuyKh8s1GXBg3QjIH90X4kJ7g1c/5021Sn9p1KhR5g3hJsa6idkQ8pAd hj9og+FkDSVrKK4UVHYGLGJUDFaKWdk5sOw6w1LMys6ARUxKWw4kZiX0sOKFHpZiWImPiNOBQjnw JwbAekxbFhQNK5VDSoWWDlbp3KwyDE64SCPr7+6x4ucMbCTvtVvguwccvauJbzxifgbNMKM1xpnD K+HY9glwZH08HF4dCIdXyVBXJcGxNRLUr5Xg5DoJTq2X4MwGCc5tlOAsybpVA2BnmRdUzOgHeSP7 QsBgdycwFRUVmTeFmxjn6o91jnrmQQgmQFIyhOdwMR+yUViFinbViGGJ5UAjw4ptyLAEWBka1qPO E4J6aLncgyXAypVhJZB/pyuHEyYa1N/vtULmU3aY39M8VdwMM1pVnKnbAIc250DtqgjYWz6IpAT7 Vsiwv0KCQyslAigJjq6W4dhqCY4TQJ0ggDq9XqaAOr9JggubyUry8MoBUF3iBYnhfTRgWr58uXlT uMkxpccXMOx+Gwx7wE7SBkEP2iGIr8EPIKzYGkLWEG5WTob1oMOwwl0allIOtOtgpRiWdjrQASs7 NyylHGjXlAUTH7VrDGuEbh9W8mNaw0p10cNSDCud97DiyL/z6w4OOGFpr2tHG5Qnm2+uNcOMVhOH dsyCXZWxsK1sEGxfLMGOMgl2L5VgzzIJapYjoCQ4UOkAlGJQCKiT1QgoZk4KoC5skWDXEm/ITfVQ wbRjxw7zpnCTY11+HgQQMAViEjgNJetQAqKhAqwosDSwUtKuNSxeBgxtwLAidKk3rGgXPawGDauB HpYWWjq7eqxhw4oh/+yXdzvgdIfNCn/49ftQXV1tfg7NMKOlR+3GKbBxYQCsnyvBpvkSbF4gwdZF EgXUziUEMARQaE815RxQGoNigEJ7ooAi9nR2AzMnBNShSm+YkN6Xjoo39/fZFuPc8fpOUS8/Cf73 28H/PhuBlB0C+KrAKpDCSoGWAiutYQULhsVgpTWsUMGwlN6VaFgResN62K4xrGhhFXtYsdy00Kw0 wBLMKp73rhJcwMqVYaFZRZN/9o4Ap/bt28Mrr7wCOEXa3L87M8www0XsWT8V1pT6werZEqwtkaC6 VIIN8yTYiIBaqAWUYlC1OoM6UsUAVY8Ghf0nnUEdWjkApo4dYN4IblHM9JNgSCcbDLnPDn4ESn7C irBCaKFVBfA1UIHW/TYdrGwqtJhh2VTDCtGl2rt6UGtWTTKsh7VTgtF6w3pEOyVodMJFg3uwdD2s SPLfvN3BrsLJbrfDQw89BGPGjDE/k2aY0dKiZnMpVM72hxUzJFg5U4JVsyRYM0dmgJrLALVpgUwN ahsH1K4lMgUUNSgCqP0VMjUotKcjq9CeZAooxaDObJApoI5U+cCVExXmjeAWxIl9tYvi33sVBhM4 DSYw8iWrL18RVhpo3e+AVVMMi5rV/SKstIYVIhjWcL1hidOBDzkbVjifDozQwIqZllISRLPS97Bi +HRgLDcrox5Woq6HVeTdHT7//HMVTpj33XcfhISEmJ9JM8xoKXHs0FaomB0CSwokWDZdguVFElQU M0BVEXtaPUeCdaUCoIhBbVnIAIX9JzQotCcEFBrUfmJQBytx8IH1n6hB8QEJZYLv/PZwuHpmu3kj uAWxLCMFBt5rV3PQvTYY1MnOYMVX304OaGkNi6W/Ci2baliKWamweoD1sESz0vSwNNOBDFKiYRlN CGr2YbnYg2VkWDGNGJYCq9RnO8GR6io4evRol3/84x8aOHXs2JGWmfHkkmb+FZphhhlVC1NhQb4E i6ZKsHiaBEsLGaDQniigiD1VUYNiJb71HFBoTxRQOCCxmPWf0KBqFEBVcECtYiU+dcS8mpX4zu8e CdcumTeBmx1n6491Hv2PP4FMoCT/yAY+ZPW5l60DyTqwkwNWuA4WoKWHFa5+BoalmJWmHGhkWLrp QL1hUXA9ZNzDClNMy6CHpTUsgx4WB5W+h7XAt6/6MIRw+tvf/qaB01133QV/+tOfzKEIM8xoztiz ZQnMnTSQpATzJkuwYAoDVFkBA1Q5GhQBVKVgUGu4QSGgsP+0CQckBIPaxQ1KGZCggDKc4BsEl44u M28AtyC2zCuBQY90hAE/soOkpg0kDiuZw6p3Rzt4kT8PFKHVSWtYvnrDuk/bw6KwMuhhBXJoidOB imlpJgSVHlZDe7BcGJa4/8pwD5ZwwkXyCw9B3RbtO70QTn/+8581cMKhiJdffhlmz55tfjbNMKM5 oqw4FmblSjA7T4KSiTKUEkDNz2eAWjxNhrJpDkCtmCFTg8L+UxUdkJBhHRoUDkhQg5KpQTlGzGXd iLlMDeoIB1T9GhlO70g1L/5bFJO9+4BXRxsBjx28yerNV4TVAAKjP95lg4fsVnilvZVCS29YCKmG DMv3voYNy9/IsO5zGNZQV4ZlNCX4oMOwhhsZFjcrY8NiuWCobPhZO3LkyKd//OMfNXDCoYgHHnjA PKHEDDN+6Ni7fSUUZfuQlKA4R4KZCKgJCCgJ5k5mgFrIDWqJYlBFrMRXyQckcIJvDZ/gW69M8Ikj 5mV8xFwEFB8xpwMSa4fA5dO7zIv/FsTR3bsg9I0XoB+BUX9iRkoirP5xtw062thN+FG7hUJrAE9q Vj9CSNlVWDHDsjuVA0VoGZUDfalduehh3a/tYQU00sMSDStY6GEp0BINS78Ha1r3zxv8jOFJ9x99 9JEGTpj33nsvBAUFmZ9PM8z4oWLZ3EyYmilBQZYEheMkKBrPADUrjxlUKQKKGNQCDijsP5XxAYly PiCBJT46IMFHzNcJI+ZblBHzMgYo/Yj5QT5ifmafWTK5VbFyYi5ID98Lnh1s4HmPnaQN/kmgdJ/N cfN9tz2Ci5gVh5a3YFgDBMNSyoEirIwMa5BoWJ20hjWYm5U6JXif1rD8uFn5iz2sBxoxrAfZGuxi SnDUh2/AqQP7sxr7We3du3fPhx9+6ASne+65h24Mv5W/JzPMMIPH9LwQmDRagvwxEkwdK8E0Aqjp IqCIQc2ZwAA1jxuUMiChmeATRsxX8wEJx4i5Y4JP3AO1VxiQOLY5zbzob2HMiQoDj3vcwKODHT4n UPoxMSQrv+k+62aF7h3sFFr9MNGq7lHsysYNi6UKKzVtOsNy9K5kYeCCQuteAVqdDKYEdbDS78Py 18HKYVcKrBS70u7Dwt5V7Yqm9zF37twJv/71r53ghEMRn3zyCaxfv978rJphxq2MCaMGQW66BBNH SRRQUzJljUHNGC9TQKE9IaDmTpJh3iTWf0KDKiuQdSPmMi3xOUbMZXWTLhsxl6lBOUbMZVri27/S 37zYb2GcOXa0y4T+HvCfu+20bGfjN9uHbFb4ioDKg4DIgxhVX7L25SualWdHtiKs+t3Dy4H32NRy IPauvPS9K9Gw7nUYlsTNSm9YPhxWA3nvSt/DEg3LryHDMtg0jGa1blLOdX+2tm7dCu+9954TnNq1 awcvvfQSzJo1y/y8mmHGrYijR2oXjUuVITtNgpyREuRlOAClGBQCano2Aor3n/K0BmU0Yr5cHDGf 7TxivkkcMecTfGhQF8/sK2zun0lbjrXl5fDcffeCXZk8s1rgkzts4E5g1RuTWFMfXXrwdMDK7oCW xrAcZiVCyxstSzNwYddBi/ewVLOya8uCnZzLgRrDUvtX4gkXjh7WrMFe3xsgGzduhLfeessJTjab jW7GzcjIMOFkhhk3O2p2b4TMETJkJkswLlWC7FQOKI1BMUChPWGJbwYOSGgMigFqoTBivoQPSKBB KSPmq4UR82pxxHwRK/Fh/+ncCXOz7a2KgwcPDvvss8+gvZubeoN9q50VuhEg9bzLBr3I2ouv7sSg 3DuwFWHVm6wUVMrawdmwPAVYGRmWFy8LGhmW948aMax7jXtYqmHxEy705cD0P/4azt3gRtl169bB 66+/7gQnzB/96EcwdOhQ8zNrhhk3M7ZuXAkZiTKMSpRgzAgJxhJAZaVIMF5nUJPHMEBN4wZVpDOo Ej4goYyY6/dAreB7oJQR8zUl2j1Qm/keqHPHTTDdqvjmm2+gQ4cO6k31zSceh//dZYfud5Ikaw9d 9sREWPF0F7ODs2F5iIbFraqvaleOVAyrX0dHD8tL6GGp0BLNSth/pQ5eGPSuRGhN+O6/cOrQgYSb 8bNbtWoVvPrqq4Zwwp/pd999Z35uzTDjZsWalYshLc6HpAQZCRIFFBrUWMWgCKBy02VqUGhPk0lO zZQpoKhB0RFzmQJqDh8xnzdZ1hjUkgJZN2IuM4Oawwyqeq6sAupsvQmmWxEeHh706d7Cb6bvvPMO bCYmUBgyDL67ux10u9NG0g7fYd6Fq43CygEsG/S42wEr1bBUWLkwLMGsRMPy4IbVl5uV3rD6NWZY LnpYSu+qOGAgnDl65NOb+TOsqKiAF1980RBOd955J+AeKHMowgwzbkJsqq6EETE+kBwjQWqsBCPj GaBGJzGDQntCQI2ngJJgQoaj/0QNShkxz3ae4FMMymjEXDQoccT8/Omb84RrhiMGDhwInTp1Um+i 999/v/qKh9NHj3apmDIZ+j35KHx7hx2+IWD6lmc3nt8J63ccVt11ZtWoYfGk0DLoX2nKgqpdKbBS DMsm7MHSmpU3LwcOeawTLElPvmVwWLp0KTz77LOGcMKhiBdeeME8KcIMM240Dh2oWZsQ5QMJkRKM iJYooNCeKKASGaCw/4QGhfakB9RkccQ82xlQJfoR86ms/4QGtZwDShkxX7/ArNXf7MBNoXhygUW4 gUZFOb+xdXfVKkj6/J/w9Z1u8DUB1NccUt8IKwXWHTYHsLhZsZUDi/xZNCxctYbFBi16uTCs3tys XPWwXBkWmlXUe11gw6yiW/4ZWrRoETz99NOGcMKhCNyMm56ebn6WzTDjRiItKQhiwyWIj5AgMYoB KoXYUyoBVLoIKG5QyoAEBZQywZfpmOBjI+aOTbrUoCY5JvgWYv9JvweK2NO2SnPC6WYGAgjfMWQR bpzYZ8Jz4Yz+/aM1NWtzpAHw1Z3t4Mv2dvgK8w7HqgKLZ0OGpcBKNCyNZYllQQPLUszKlWH11fWw Mr/8HA5s2vCDfX7mzZsHTz75pCGcLHwzbmBgoPl5NsOM7xtTJ42BqFAZYsIkCqiESBkS0aCIPaWg QcXL1KBGcUCNTZYZoPiARFqsF8SF9YOMeC9a4ps2VlZHzIvogIRMDQrtCUt88/Nl3Yi5TAG1b1up eSHfpEhKSoJHHnlEc7N8//33AU81aOi/O3n48Dclyckw/Hcfwv/ucIP/tbPD/9qz/JIng5WNrSqw bA5gcbPSAouZVTejHtbduDKz6mHUw+rg2rAS//QRVEwYD6eP3Nx+UlMCy6GPPvqoSzjhZtxu3bqZ n2kzzPg+sWb1CggP8YGIEIkASqKAiuMGlSQYFJb40vmABPafsMSXGNEfZO/e0N/THXwG9Ibo4Z50 QEIzYq5M8PER8xJhxFyZ4KuYHQxnTx3yau6fRVsIPHD0scce09wkH374YSgrK2vyTfLIrl1QkjIC Qj76Lfy3vRv8lwDqC0wOKWXVAEswKy207FpoubKsO7V2ZWRYCqxC3nkd5o2IhxMHm7cnWVxcDD/+ 8Y9dwumOO+6A3//+94D7oZrz6zTDjFYZI1OiITRIgjCSkcMJoEjGckBh/wlLfNh/SuEDEhRQxJ78 BnnQ88OU9OzbCxLC+2lHzLO0I+azhBFz5RTzrVX55oV7EyInJweeeOIJsFqtmhtkfHz89/r5Htm9 mwAqBYJ/91v4DwHUf9zs8J92LP9LQPRfDisVWqJh3eEwrC+FsqDYw/qaw8oBLW0Pqxs3KwVaPs88 CQVDA6C+tmbtTf3B3UAUFhbSgRKLCzi5ubnB888/bw5FmGHG9cbCBSUQMlQmKVFAhQcTQBGDilYM KoIBKokPSCgTfGhLIpgwvfq5Q3K0l+EeKHGCTznFfGFBIJyo221etDcYU6dOhc6dOztBqXv37i77 Sk0NBNSc1BQI+t3v4IsOd8PnBFD/xkRICbCiwBLyC51dGUFLNCv94AXCyv3+H0H83/4PikKDYffq VS3yc5Kfn68Zx9cnDkXgm3HNkyLMMOM6or7+WOexY9JgWIAMwXpADZdpiQ/7T3F0QEKmJT4ElP/g vk5gwhzg1RvS4rwgdyQOSMgUUMqIeUGWrDnFfPPqGebFeoMxc+ZM+NnPfuYEpa5duzbaV7qeOLJn z4lNixfD9OgoiP38c+jz9E8JnNzgc7udwooCi/z53wqs6OqmAdYX3LScSoICrPo99Tikf/s1LByd DrUb1sOJQweH3azv4VbFxIkT4e6773YJJwvfjOvvb54JaYYZTY4tmzdCZHgQDPWXCaAkCAqUYPgw EVDMoJQJPjSo6OFe0KuXM5gwB8l9ICPB23APlDJivrQkFc6evrGn+ds9FixYAD//+c+doPT444/D 2rVrb9lN8Nj+/VkHtm2DioICyB40CPw/+AD+RSD0TwKjf/H8XJdoWP/W2VWfxx8D/3ffhrjP/h+M 698PVk0vBOxxnar74QcabjTGjx9P33xraQBOuBkXpyOb8cs0w4zWFSUlsyDAzwf8h0gEUBIFVDCx pxACqLBgBqgoDig6IEHSu38fQzC5E2AF+vaFMSMG0E26yoi5cgbfzIkhcLDGbArfSJSXl8Mrr7zi BCXMlJSUH+xne+ro0S5oU7UbN8L2igqonjcPKgsLoYzcqEvS0qAwKgqiv/0WvuryGnz99lvwLTG5 SUlJULNhAxzeuROO1tasRSs6faz1P6RkZWXRvpKlATghvPCFhOZQhBlmNCGOH6/vNDV/EgzxlcHP VyKQkiDQn9kTAgoNCgck6ATfcNZ/GurXz6U19endC0IC+6qnSCgj5oW5IbBzywrzoryBWLNmDbz7 7rv09d8W3Y2vd+/ecOzYsc7N+gXqYu7MmdCLwKkHsYUe3brB3JKSNvv7x8nIxuCE/xxNVzmFwwwz zGgg6urquubljgffwTJJidiTDAGCQeGQxHBuUAgotCiPPu6GYMLs69GL/Dv91FMk8seFwPZNJpRu JDZv3kyfuPEYHIvuhofjyTU1LWdqTQk8MQGBqXwucJqtub+mWxlpxBQbgxMORWDfyTwpwgwzmhCH Dh3yKi6eARERYRRQQwigFIMaKhgUHTEnYPKRjIcglOzX150YVn+YPX0U7NxaZV6ENxB79uw58be/ /Y32Kiy6Gx1O5SG0mvcrNA7shYlgys7ObpFf582M5OTkRuFk4ZtxAwIC2vzPwwwzbkqsX18NmWNG Q4C/LwweJHGDYoBSBiSw/xTo53oIQsn+/XpD5Yol5sV3A4EPDP/97381r68QE/sbzfoFNhB4jI8I ph+yB9ackZCQ0CQ44Wbcr7/++rb4mZhhxg3Hvn37CisrK2DqlHxISkpgBuXLABWIBoWAIunpaTwE ISZepHhzbe7vqbVGjx49XO6X8fT0bNE3tblz52rAFB4e3qK/3psZsbGxTYITlmZ/97vfmUMRZpjR 1MBNmrt27YLly8thZnERjM/OhMT4aEhKiIIRiVEQOnwosaZeDYKpT58+t0UJ51aEt7e35vUVYn7y ySctsq8kRklJiQZMvr6+t9XnIDIy0rAnqE8cZsFXa5hDEWaY8T3i4IEDCTt37oCdO7fDLrJu27oF /Pz8GoWTl5cXzJhhbqq9nsBNmfj6CqOxcLyJtdS+khh4JI8Ipr59+7b4r/lmR2hoaJPghL9n3Kxr nhRhhhk3ISZPngzu7q4n9JTEl9ddz6Git3OEhYXRg0KNoIRTXdOmTWsVP0c8nUIEEz7ANPfX1BwR HBzcJDhZ+GZc86QIM8y4wdixYwct1zUGJky0q+b+elt6xMXFwU9+8hNDKGEOGDCg1fwM0ZJFMGHu 378/q7m/ruYIfFdTU+GEm3HNoQgzzLjBwAGHxsp5Sq5dUwmXTu+CS8cq4eLhOSRnw+Ujs+HKkVlw 9cRyuHZ2O8DllrVR9IeK1NRUeqyQKyj95S9/gdra2kXN+TVeT0yfPt0JTK2hBHmrYsiQIU2GEw5O fPjhh7f1z8sMM24osETXVGuqmBMO9ZsT4MSmcDi5IRBObwqEs5sD4dyWQLiwPRQu7Y6DyzWpcO3w FLh2ciXApbquzf39/RAxduxYeOqpp1xC6cUXX2x1NyncUKsHU2VlZav6Hm52YEm7qXDCoYhnnnnG HIoww4zvG1iqaMyawof1hu2LB8DhlRIcqZLg2BoJ6kmerJbgFMkzGyQ4u1GCC5sluLhtCFzZHQ5X a5MB6kvbNKAmTJgATz/9tEsoYWkHR6+b9Yv8HoG9MD2YcG9Tc39dzR1Yjm0qnPAzgX2n7zsUQZ4A AXZlw7VKT7g27xO4uugzuLqsG1yp9IKrqwPg6o5xcK2uAuBCfaeb9O2ZYUbLCXwFgP4mJOaISA9Y XuQFNcsl2F8hwUECp8OrJKhDQK2W4PhaCU6sI4BazwB1bhMD1KUtElzZOQyu7c8AOF3d5m5qaBU4 ZecKSpgI/eb8Gr9vTJkyxekzUVBQ0Cq/l5sd/fv3bzKcLPzhpKknRcDB+QAresO1gp/D1fHt4co4 O1weZ4NLWVaaFzDH2uA8yXOZNjhL0w5np7wAFxZ/C1f2lZq/IzPaRmCZycPDwwlIfgN7Q26qJ1QW e8POJRLsWSYROMlQSwB1AAFVSexplcwAtYYB6mS1TAGF9oSAurhFhktbBxKDioRrx1qfObgKLNHg m04bgtLf//73VjswgC/T04Np3Lhxbeb3d6OB10tTNuEqiSBzNRQBF+q6wrZ0uFr6EVzNuZOC6HIW gdFYC0kCokzyr2Ra4dwYC4GRFc6MtsCZMVY4TdbTo61wcpSFpBVOZGDa4PTM35PrruWeKmKGGU2O vLw8zY0oKsQDSiZ4wdo5A2DrQgm2LZYonHYt5YAql2DfCgaoQ9ygjq4WASXBaQ6o89ygLu8YBleP tv4nOjzg9KWXXqLj3xYXN6LXXnsNtmzZ0mq/10mTJjmBCc+Sa+6vqyUFlr+vB07Yd/rtb3+r6Tde 2zYKrhS8AJez2zEzIjC6ONZCYXSew+gsSQqj0QxGp0ZpYXScZH26BY6lW+HoSCvUkTySRv5+4a/h Yk3bPRXejNsgtq5fAKMSvCA9zhPGjvCEBfnesLZEgg3zJNg4X4ItBE4IqO0EUDvKJNjNAYX2RAFV yQCF/Sc0qHoOqFMCoKhBbR8GV1oxnFasWAG/+MUvGoQSno1XUVHRar9HDKPy7u10LFFT47vvvrsu OOHnBt9evGJ6FFya+1e4NP4uAiIrzfMaGFlVGJ0axWB0IsPCQEQghDA6NlKBkYXDyEKBdCjVQtIK B1MscCCFQGz5EPP3Zkbri9P1tYvWLoqDRVMkkgNgWeEAWDVLgtVzJAqn6rkMUJsIoDYvIIBaxACF BoWA2lsusf6TCChuUAgo7D9Rg+IDEue3EXM6sbLVXSzr1q2DDz74oNEbUUxMTKv73vShN2hMHJlu 7q+rJQaW6K4HTvL/EdiMdmO9okxWnjsrwOg0h9FJDYzQihBGLBFEdWnMjA5TGBEQkUQQYe5PtsI+ krUjWB6e+mu4VLfO/P2Z0Xpi44rxsKTAh6QEy6bLsLxIgopiCSpnSlA1W4bVsyVYV0oAVYqAkh0G tQjtSYad3KD2UoOSqUEd5ICqq5I1gDpVLVODOr8jCq6eP5DQ3N97U2Pr1q30jDs8VdrSwE3n888/ bxMH3+bk5DiBqaUfPNuc8cUXXzQJTgM+scDRNC2MTo/S94oYjLA8V8+NiJbo0pgZHSZGpIFRMjOj fRxGNSMsJK2wNwnTBrsTrTT3570Bl0/sMH+HZrT82LVxHiwq8IcF+cSWpkqweJoESwoRUBIsn8EA tRIBRQxqjd6gFjBAbeMGtUswqFplgo8ASh0xR0CtdQDqwoHWMeW1d+/ePf/85z/peWiWBm46WOJr zX0lMfDwXj2YbtdjiZoa//73vxuEk/cfCVhSLdyKLMSarBREJzMYjFivyKqW546KVpTqANFBtKJk rRXV8EQY7UmyqjDalWCFnSR3xFthO8nayV3h8tnW/+BkRhuOs2fqOy0uCoeSCTLMnSTBvMkSLJjC AFVG7AkNqpzYExpUpQKo2QxQ1KDmsv7TpvkOQGH/aRef4ENA7dMBCvtPaFDHcQ/UxqFw5ezuW3qz u3J8M1zeNxcubRkNF1b6wsXl/WleWtEPLpO8UjWY7Qc5sgLg/NEu+v/+8OHD35CAjh07NgglPEl8 1apVbebGjRN4RlsIWtPpFc0R//jHPwzh1P9jCxxK5oMLGcyM1F5RukUDI6Ne0UFanrNQGNHyHJpR EoPRHg6jXYksd1IY2SiItsfbYFuclaQNtsRaSdqgpuAvbeZzakYbjD3bK2BW3iCYmSvB7DwJSiZK FFDz8wVAEYNaSgyqnBjUCm5Q2H8SAbWeA2ozNyhlQEIBlDjBJwIKDersvpv7yu5r5491vrh3Fpyp DIAT07vCiSm/gBOTXoSTuU/ByewH4dS4TnAmuxOcJXl+fCe4kPsAXMx/Ci4XvAxXit+Gq0u+hGub kwDqWT0ex4IROg2NhWO2tZOl8TQLIzBt2rSpTX2ftyLwjcUinLq+YIF9SY7BBcWK1F7RSG2v6JBi RQa9opokrRWJMNqRYOUwssLWOJYIo80kN8Ww3BCNaYODC1rPuY1m3GZRPj8TpmcPJClBcY5EATWH 2FPJBA4oYlALp8gUUGhPFFBFMi3xYf9pJQ5IzJYpoKpVQMm0xKeOmJfJWkAtl6lBHapkI+bHqoPg 8rl9hTf6vVysWwcnqyLgaNEncDj3BTic+RC50G30gsfaPN4E6vkTKj6x4pPrmVGsxo9TULhP5GKm BS7ndIArkx+Fq9NfgU3jPoIef7gPHupoJWByDSWczML3X93o99CSYsyYMYZgwqnE5v7aWnrgZ+HP f/4zhdN9HSxQLFtoSU6ZoqO9ojRHr4gakTC4sI+YkQijvRxGtDyXZKPluV28PLcjgRsRMSMGIxsF 0WZiRgiijTE2FUbVUVaSNlgbaSVpg/qNOebv0oyWFWdOHes8Iy8IpmTKMC1LgsJxEhSNZ4CaxQ2q VDCohVN4/0kFFDMoBBSd4JvN+086g1In+HBAwsCgcEDi/LEbK4Gd2jAGDkx6B2rH/ARqktvRixmf NPEiP5TCnkApoPhEEz6xnkhn5RSl8Xx2NGtI4/4R3EdyeSzCyw12xFhgurcFPn7FAm42Zyi98847 sH379jZ3gY8aNcoQTOaxRE0LHID5+OOPIezfdvpZdJqgS3G2IrFf1FiviJXntFaEMNpIYcTMaD2H 0ToBRmsibLCaZFU4+XfSn4PzR9tGT9SMNhK1u9fD5MzBMGm0BJPHSDB1rATTSE5HQGkMipX4sP80 XxmQEAxqOQfUSheAUkbMty0UAMUn+JQR89P7vt9Bl2drFsGh0u6wJ/Np2JVopxcvXsR7E9nFvU8B VDK7GeATKt4ccCoKn1yxrHKCGxTCCZvSaFDn0aDGWuESGlQW+/tbyQXe7w8WaO/mgNJDDz0EVVVV bfLCxtKkEZhay/ukWkLsW5sPB0Z2MOgVkUxx3StiMLLxXpHVuFcUx4xoE8IompnReg6jdToYrY6w UhitIjBaFW6DlWFWkjaoCCX//+LvzN+nGS0n1laWQG7GIMhNl2DCKIkCKh8BlSlBgd6g8higSjmg FugMik7w4Yg5N6gqcQ8UjphzQG3hBrVDtwfq2Pa86744TmyeALuy34BtI35EL9btcewCxgsZa+57 EtlTZ20Su/gPCAaFE074BIuN5npuUEpDGg0KNzVieQ/3mFzkBnUlywK1CRYY8aUFXnjUAjarBXAT 6q343bSEGDlypCGYzGOJmh4nyzzgUNodxr0iwYr2JDr6Rfpekd6KWK+IwQjLcwgjLM9RGEUyGK3h MKrSwMgGlRRGNlhBcvlwlpUxD8A505rMaCmxcM54yE4bSFKG8WkS5CGgMog9jZYZoMYyQE3PlqlB zeQlPpzgEwG1aKpMAbVUBZSsMag1s2UKqPWlyiZdGTZrRsxlOLh+5HVdGPWbJsC2MS+RC9NOnxTx YsVpo62xrNa+gwNqdwJe+DYGKMWgUtiTKy3vpbLyHk5D1QsGdSpDKO9xg8Kd+XhczDECtJmSBaIH fw4nT7TdU53x/VJGbzc2jyVqWlw+vhUOjn6Qw8ji3Cvi5bldiTbeK3KYUVN7ResimRmtiWAwqhJg tDIcQWSlMFpBzEiE0bIQK0kbLAkmSdaaJWHm79SMlhElRaMhM9mHpARZKRJkp0qQM5IBaiI3qCmZ AqCIQc0YzwA1mxvUXA2gtBN8ikGJe6DWlbDynn4P1L61Tb/ZIZQ2jXqJPBna6UW5PspKnxrxCRLL GvhkiRc2GhRe8Lv0BjWCPbmiQR3k9nQ4TTCodLbLXh2QGM32nTCDYgMSp8k/q8t5Ea4eXNRmL+iU lBRDMJnHEjUtTq4cDrWpdzXYK9qhtyIOo02xVt4rsvFekVUDI9YrYuW5KtovIkakwohYURizIgVG 5RRGNliqwIjk4iCWi0iuynjL/J2a0TJiduEYGJXoQ1KC0UkSjOWAQnuigMpggML+ExrUNA4otCcF UFjiwwm+Uj7BpwEUN6gV/BSJVeIeKAFQm+dLsLeqaWCq31oI6zNeJk+EdnpB4sWJFylerFhb38Br 7Ztj2EW+LY49gTJA2bhBsZq+YlAHeBOaGZSFD0g4DArLe6eMBiTGtYfLha/CtX2z2+RFjWZkBCbz WKKmxaEpH5DPmhuFUYP7iuLY5/V6ekU4uFCl9IrCWa+Iwmi4FZaHIoisFEZLiRkZwWjhMJYLhpIk 67xAGxzZZPYOzWgBUTxtDIyM84G0OAnSEyQKqDEjGKDGEXvKJoDC/pMIKDQoBFQhLfFxQOn3QOGI uYFB0Qm+YmXEXAuo3asaB9PZw9VQPfpNWBHmRuvkWDPH2vnqcHaxKmUNNCgsd2D5A58+t3KDUsol 6oAEL6vsMzAoNiDBDOq4fsRcMyBhg0vTu8C1+vVt7qJOSkoyBFPfvn3b3Pd6s+PyqZq1u9Pua0Kv SJmg0/WKorS9Ija4YGuwVyRakQKjsmCHFYkwmk9yHsm5BEilmAE22FUWYf5ezWj+KFtQBCmxgyA5 RiarBCPjGaBGJ8kMUCkMUONHytSgJnBA5Y+WHYCiE3wyBZQ6Ys5PkWB7oHCCT6aAWqYCSqaAUgxq 7RwZaqpzG70ots3oAcvC7oJl9EJkNfPKUPbEuIrDSTGoam5QtLzHDWqrYFA741l5jwHKxgwqWRwx t3BAsZ34ikGJI+ZnuEGdH+sGl5f3a3MXdUJCgiGY8Fii+vq221u7GXFm5wzYmdzRsFe0SegV4UNU dbTQK+IwokYkDC4ovaIKtVdk5b0iG70elgRbaa+ojMNo0TARRnYKovkcRHMD7RREmHP8SQbYYZYf uWamftvmPsNmtMLYtKEKkmN9ISFSgqRoiQBKgtQ4BqiMBFbeyxQBhQbFATWJGxRO8Kl7oHDEnANq DjeoeQZ7oJQJPsWgcEDi8J6yBi+K2opkWBbzCLno7PRJEJ8Iy0PYkyI+OWIZA8sa1KAi2F4NvNjx CZTdBKzcoPiABDcoZUBCMShxxNxR3rPqRsytzgMSOffDld1T2tSFHRcXZwgmzJqamrXN/fW15Khb 6g9bEu4SBhe0+4o0vaJIvq9IHVxQrEgZXGi4V6Ra0TCW1IqGaa0IsySAJcJoNkmE0Sw/O8wka/EQ 8v9Me79NfX7NaKVx5PD+rKQYP4gNlyA+QoLEKAYotKdUkuk6QGXxEl8OL/EpgMrnJb4CblAzsh2b dJURczQoZcS8TAEU36SLAxKnjro+8fj0kY1QnvQCLAxyoxcdPgmW8YtyWTCrpesNqoob1NoI9iRa HSUYlDogYeMDEopB2TQj5vuSBUClWPiAhIWPmLPy3gle3kODOj+zK1w7uz/rh/sN3tqIjY11CaaN GzeaN7EGoqbwU9gU117tFelPXGi0V8TNyNErMh5cMOoVzRPMiMHITkE029+uwghBVDzEDkW+Nigi 6/TB5O+HPGT+Ts1oGZEzdgREh/pATJikAdQIBBQxqDRuUKNEQOkm+ERAoUElhHvC8AAPCPLzgNjQ vuS/7Q/5o73pkMQ8DqhFgkGtXhDV4AWxe1kszAvuoF50C/jFiBdmGcmlBgaFT5qrwti0kjJKKxqU OiDB7WlbvGBQiY4BCVcGxY6XsWo26Z7KvBMubhzRZi7u6Ohol2AyjyVqOPZM+yusj2ln2CuqMthX VKG3ouHX1yuaJ/SKqBUF2DiMbNSIFCuaQZLCyJfBqHCwHQrIOm2QHQr97oKL58wSrRktIMqXzIfo MF+ICJYgarhEICVBXLhMAZWkAkqmJT5qUDggkSRrAZUmU4OaSACVFNkPvPq5Q2/3XuDeqyd4evSC Af3dYbDcG4b69qGgGpPYH6aO8VZPkdhZPb3Bm9yK0V3JhdaOPvmV8ifB+YF6QFmZQYWwCxunkxig 2E1Ab1DKgAQa1Ga9QSXY1AGJPfwECcWg6IAEjpenWBxn8KU7DOrMjN+0mRt2ZGSkSzCVlrbeNxD/ ELFryt9gbXR7pxMXnHtFNjpFp+wrUh6y8PNMe0U6GLFekV0tz9FeEbkelF6RYkYzhyCM7BREM9CI CIymExgVchhNG8RgNHWgDaaSNd+HwGrYw+bv1IyWEUfrjnyanBgOocNkCCNwighhgEKDiiMGlSAC KlbSTvDhiLnOoAJ8PaBXL+cbGWua94S+AqgCKag8oWRWPuzetcvwojiyrQRKhz9ELzIsQ+CFV8Ib t/iUiBfqQhFQweziXsbtiZX3FIOy8hFzm9OABPYANvNNutuUEyT4Hqg9idoRc8Mz+PgBncfH3A2X 9hS1iQs8IiLCJZimTp3aJr7HWxU7CJiqIts3uq9I7BeVCfuKGuoVlQq9IsxZvF9ErYjDqIiCyAGj Ag2M7DBlIIPRZB87TCI5USb/Xdgz5u/UjJYTJbOLIDRoEIQMlWD4MAnCgxigokVARToAlcoBlREv AAr7TwRQ/oP7uASTUSKofAcPguHDhwM22/F13osXL4YdO1jPae10TygOuJteaPjkhxffLH/2hIgG NTeAXbTzeYlvEQfUkiB2weOT6HLFoMQBiXBWXlnLy3vUoGJs2gGJeGZQOwWDcj6Dj50KLZ7Bd2ZR tzZxgYeFhbkEU1ZWVpv4Hm9VbMv/G1RG3GHQKzLeV6RM0am9Igoj+/fqFSGMCjiMpg5iRjSFmBHC aLICI9lGYTRBspG0Q+4A8v+Led38nZrRcuLo0bquaSnxEBToQ1KigApFQBGDikSDCpUgFgEV4QBU MgfUSG5Qo/keqJRob/An1uTu3nQ4idmvXz8YPHgwBAcHQ0xMDEQN+TekSz+DaYPb0SdArI0X8zLF bD/2xMjKGVqDWsT7T2V0QMLZoFby/lMVL+9Rg4rSjpizzY9Wh0EZnCChNygcMT+aeR9cObG11V/k +LDgCkwjRrSdXtqtiN1z+sGKiLtc9or0gwtir0jZW6TvFc3S9IrsLntFDhgRK6IwclgRg5Ed8iiM 7JBDcrw3yzlJbacMbUYbiWVLFkPQUF8I9JNgmL9MATUcARWEgJKZQYUyg4oPlymgRkTxEfNYmRkU L/Glxg6A8GGeIHv3vi57MsrevbqBd+/PIcHrJZgyqD0tS+AT4Qxf9qTIynuKQdm4Qdnpxb6QGxSb 4LM6BiRCWY2/khtUVQRrTGsGJKKsDZzB5zhBwjFibtEMSFzY2fpHx0NCQuieJaPfi3ksUcNxcFUq LI/o6NhXFGS8r4gN9NjVh6s5AbxXxCsDbHDB0StSYKTpFQ3mvSJenkMYoRExGDEzyiNmhDDKUWFk ozAa50WSrGP7kwe2AvPFgWa0wJg6ZRIE+g8C/yESA1SABMGBrLzHAMUMKpobFJ3gi2TlPc0eqEQc lBhAwOUNQ/360nLdjcAJM8zzXZg0sD19EizACaLBdkd5bwh7kqQGxftP+NSpDEgsEgxKOyDBDGpl mGJQfECCAko5g4+932YTn+Br6hl8p5a3/mN7goKCXILJPJao4ajfUQpLIzqpMFqgDi4IVqSboNPv KxJhhNUCR6+IpVKeU60IYSRYERrReJLZ3g4ryuYwyvJCGLHMJDmmnx12rLr+E/7NMOOWR11dXdf8 /EkQ4DcIhvhKEMABFaQAihsUTvBFYv8pVBgxFwAljpijPUUP7weD5OvrPekztO+7MMHnDvpEiBfj tIHsIsWLtUgxKD+HQZX4s2mluby8pxjU4mHaAYnyENYDUAzKMSDhOIOvWn8GX6z2DD7HKeaOAQl8 i25z/z5vNIYOHeoSTJ6enq3++7uVce7YDiiLfID3ipz3Fc0x6hX5sc9xkTBFV6AbXGiwVySzXlGu hECywcevW+H+eyzwamcrfPd7G2T0dcAIQYQ5ylNJNzhx2Hz1hRktNCicJk8CvyGDwHewBH4cUEN1 BhUW5Jjgi+YDEiKglD1QOGI+Eu0p2huCAzzBR/Z2ebNrKBP7PUMuuHb0IpwsY8mCTRehQRUOsgkG ZaMGNctPOW6FlfdUQOkGJPQGpT2Dz8YNquEz+Lbrz+AjuW/0I3D1/LHOzf37vJEIDAx0+bvCv9/W XiV/s6Ny9K9h7rB2jfSKhH1Fvo5ekX5wQbGiyS56RWK/CK0IQXRnO+2blj973wYpvR0wQlClkxzp QcAX/Z4JJTNadiCcFi1aCImJ8QROPjBkkOwAlD8alAzBfECCAUpmI+bcoBIiZLpJN1kdMZdham4s VCwrgQ0bqiErayz8//beAy7L897/Fx40iWY3o2mSJm3S092mbZrfOck5Tfpvuk6bNm3a06ZtEjPU qEk03hciGwTZG5kyVVBBFEUQRJElKBsVBAUVlS2Iorj9/q91Tx6Gqcq6Pq/X9/VkKMrz3Dfv+/Nd 14IFC0bfuTfvXxCz+H564yXjIE+G5EmR3KTEQaXZsCdKcjOTQjB54pQbJBigZAclN0iYYLczS+8V cDgVL7fQNUgQB8UAZX4H30GzO/gslA0Sx0Ks4NpA15tj/Vn+O3JwcBj2IeL48eN9Y/13HM86WuQH O1zvZXNFvFZkbFwYbq4oVeOMBteKLHWNC4mLLVmKbhFL073ybQuwMunBROI3P7GE4HlWEIFhFLHQ CsIXmCB84XSoyBELXIUmiFpaWo6nbNgA3t6eGFCIOigHAih7Dii5g4/XnwbNQGH3tDbOFwp2boL2 1mPKhU/Al5eXBz4+PmZPSDXGsvm/gtjFd8PqxewmJE+H5OZcL5loTp24J3ITk5uaTrAvYzl5bYOE 7KByuHsigMozOijNBokSGVAe+i3mcoNE7aAWcwvdDj7ioCY6mOzt7YcF04EDk2+j+q3U+dNHINfz KxRE6mzR8HNFqbyDTqkVIe6KdI0Laq1IWy+K4+m5GBzv/X/YMc0YDCYSP/ueBfh9ZIKV2D2FzreC uGVPQ1/n0CvBhITGnUi65ujRZsjN3QGxMdGwwt0VuyfmoJw4oJZrWszJkG54sBtsSomDstI8aDt1 bMgL/uTJk/kpKSmAEBr2B6DHwu/hm20GxPMbkdyUa2VALWFPkrKD2sgd1Gae3iMOKsPO0GLuaOIN EibmoFz0LeZFvAY13A6+6qF28Gkc1EQHE2lwGO5zKSkpET/MRtD+9AWQ4ThrVLUiAiRjrUh2Rqs5 jBIMjQtyrSjmUwIkK5qei/7UCsI+NsGL3zDvmkj8BP8/r/etIGieCfLXLxafo9DEVVtbW1BT0xEo K9sL2dszIXVDMo4k2JiSBGmpSbBzxzaortoHLceb4HR3x+LRfE1yfEJ5eTk9rttcem/hvHcg9JOH aHGW3ICkg4ikKxK5e1qzROOgkOqg5AYJ1UHJLeaW6gYJrYMyNkiMagefpZkdfGoH37ULnbNv80dy W0XmyYZzsjk5OeIH2gjqbMyBDOeHDHNFMoxGrhXJjkhxRWYaF5RaEa8XhZNYYAL3d03w/BMWYLI0 D6dvP20Bjv+YDi0NBeJzFJo8IoO5p7txnGbx73yt9vZ2l4yMDCAFd+1Q57KPfw7hn9xDb7zoT9mT YSx+Moz/jN2sMqDWfs6eMMkTp+ygGKAYnDbrGiRMHFDMQeUoDkpuMTfplsSSc27kLea0QcJj+C3m 8g6+qxMcTEuXLh0WTGIt0ehUs2URpNnNNDtXJMPIOFeUsMiSXt9xFEZWND0X85naQRelaVyIlGtF C6xoem4lfg3BjilkvhVIb1nCow9MAwsL83D6wXefhaqqSvE53mbB5Y7F0L8fbvTkwvWuzXCtc5Ma p3fB9fONcP2yaCYat2poaIBt27bR1UTbM1IgZNFXIWwBu/HITUhuxlUcUCSnHr9IzbVTQPEGiWRe f9pA03vcQWkaJJQalHYHn6ZBQuegzOzgK12hcVCezEFVyS3mGE4N0V+HawMT+0KztrYeFkxiLdHo dK67EbZ5fhPWoemDNi5oa0XGuSItjMhDmQwj1rjAXFEYh1EoDgqjj60gGL+SFF0gDSuY81tLmHmX eTCR+N73vgek5juW79FkFFw8ikG0HW6cCIHrTbZw7bAEVxpxNEhwicQhCQbqcdRJcIHEER+4eDIJ rvTsheuX/r0HfaHbJJLiO9fX/VqMzdO0QEtuPnITRhBAfcJy6eTJkQKK39DkCXO1xkElcwe1gbaY W+oaJIiDIuk97ZCudgffDr5BQjukq9/BZ2l2B18lb5BoTv3dhL/RSe1vODCJtUSjV0NRCKy3fQCD yNIsjPS1IpNSK6KO6BO1iy6MwyiUNy7IMCIgCsIQCphrggD86j/HBP5zrcD3IxP4zrGCv/5s6GYI Ek8//TRs3Djxt5WMB904VwE32tdgGDnA1UYGo8scRhfrGYwIiM7j6D8gwTkS+yU4i6OvRoIzOM42 BMCF1m1wpb9ZfCbjUeu9/weCF9yFnwLxzfgx6yQiT4rkRo3SOqjP9A5KbpDQt5ib1AaJpQxOSou5 soPPcvgdfC7qDj7jFnN1BsoCTu6c+AXlkcBElryO9d9xIql0w3xYg2YNqhXFDFErUl0RSc+ZOIyY MwrmMAqUYTSXwcgPQ8gXv/p8ZAXeJD60Ai8cnjh+/aIl3DV9aDjdf//9sGrVKvGZfkHduNL74PWu dLh6eBl1RZe5K9LB6KAKIwqiWgaiXhLVEpyuwlEpQReJCgm6a1yh/1Q2XLs0sbMvk075KdYQ8sl9 EDiXPRGSm5I8KYbNZzl1CijFQeEb/VOWk5cbJKiDWsK6nFiLOet+SuEbJKiDWsaGdLdoNkgQB7Xd zBZzlt4zDWoxV7aY8w0SnRUhE/4GHwlMYi3Rzatsiw0kSvcpjQssPWfFQSTPFam1ItkZBXMYBRpg 5Mdh5PMRh9GHJgokzw9MFEYe+HXFB1bgPtsE7u9bwSvfnw4zplsOCScSZIxjDN+iCanr52rhastK 7IqWwsVDSE3PHSQwQgxEJGoJjJACox4CoioE3RxGneUSdJQjaC+ToA1H6z4JTu1DcLohHi6dFe5p 3Kjl0G4IXfQovfnIzUhuyuB57KlRvnkjNA5KbZAw0QYJcy3mpAtKO6S7kW+Q0DZIbOUdfLTF3EF1 UPIGCe0Wc90MFIZTmfcsOHeicMJfRCOBSawl+mKqzHKD2CX3G2pF/Hqeb6VxRfhhTIYRcURzWXqO uSItjLgrwhDywBAiIFqBIURA5IZj+Wwc70+H5R/cDft2RsH//fXPcPfddw8LJzJcPYZv0YTStTN7 4WKDvQIjxRXx9ByDEQdRNYNRNwkCogoGo3YSHEQkTu7FUSrBCRwtJRIc34P/vcIDLvTUic9lvCgt 9E/gN+8eejOSdAV5UiQOijxBMkBxB7XQijdIMAdF5joGtZgvZnMhxEGt0zioL7aDz9wWc0uoX/97 uHJ+YnfkEY0EJjLj1NU1sWe1xkoHCyIg1voxDqLBtaJA/hCm1IrmmHQw8sLOyIs7Igqj900URm7Y GblhELm+hwO/urxLXmdAtMt/wf7S9fSH2okTJ2peffVVmD59+rBwIg8ePT0Te63W7dbV3r1w4ZA9 nD+ghxFN0dWy9FwPT9ERGJH0HIFRB4dRGwfRqb0MRidKVBCROFYswVEczYUSNBXg/1fuAxfOiGHo caHawjgI+ORh+mRIbkoyte4/R715mYOSGyRMrEFioVxA1jgoTYPEal5/kh2Ufgef5SAHpTRIaHbw 7dDOQGmGdNsroyfFhTMSmEgcOzb0ALXQ8GpvLoX00N9B6MJ71MYFQ63Il9aKWHpOrhUREHloXdFs 5ooojN5jMHIm8R52SR/eBzvWL4OB870Pav9sMjv4/PPPg6Xl8Gm9d955Rzx8DKErvWXQX2evgEhu XOitllN0zBVpYUTSc200PcdhVKqHEQVREQZREYPRERIYSI35OHZLcCgP/5qKELh47lT6WH//U14D /d2vJfv9Brzn3ANeH7CblDw5+skOah570lQaJBaw7qUIjYNa9Ym+QYLMiSR+rm0xtxy0g8/YYq49 pHCoLeZlET+Ei2cmxw/r0YBp//79k+J7HUuVbHWBCOkr2BlNV7roaK3oQ7VWRB3RBwxE7jQ9Z9LB yPldE4WR4ztW4PTeDHB6925Y7fcHOFq3e8jPJzMzEx599NFhwUTiD3/4A7S2tibc/ndi4ujq+aNw 7pAnBhGCXhw6EFUiXiuSeK0I8VqRnJ5DDEQkigmMkAKjJgojBIfzGYwaCIx2I6jfJUHdTgkO4jiQ i399VTRcvqh/2BAaAx2u2QYh0tfwk+J0fLOyJ0efD1lagwKKp/fkBomQ+Sa1xXyh6qBIwTnwkyfB a+G3wPuTb0Pc4rvM7uCjDspabjE36TZIyFvMt/EW8+18gwRxUM27l0+aH9SjAdOePXsmzfc7ljrf 1xZUUxADG4PfAJ95sxRHZHRFMoxc3mOuyInA6N3p+HU6OLw7A7w+/Spsif8EjtaPbptDfHw8PPzw wyPC6bXXXoODBw+Kz5qrvzkWeqqX6l2RFkYkRbdX44pKDa6oWAURSdEdJkFAxGFUj50RgdHBXQxG +3Nx7JCgJodFdTb+s5rF7Nm4UFGGJ3h//AC9UckTJAGU7KB8uYMKmMPSe0E8vSc7qHDuoLwXPAeL 570Fn8z7B45/woqFP4BYDCe1QcJS2cG3zswOvk2aHXxb+XJO2UFVJ78FA71HJ83FMhowZWdnT5rv d7yovaUaKnZFwNaYDyDC/gfg9uHd4DJ7OrjiIOk5Z+qIWLjPewSiXP8H0qI/gpKclXC2tzXhZv88 b29veOCBB0aE049//GMoKiqa8p/3+VMZ0F1lO2ytSIGRuVoRT88RGJH0XANP0REY1XEYHchlMKrd oYKoarsElTgqsnBk4l+T7wUXzrYmjPX7MeV1/mzn7PTo98Fjzr30yZE+URL39AHLv/tQQKkFY2OL efD8WSDN+z0smPsefDz3Q5g39yNYMu9NiPxs1vA7+CTNDJR2SFfjoApCfgh9rZNrtctowCSGMm+/ zp/rerPlcDF2Qfk8Cmj0dN669mFJkuDee+8dEU7PPfccbNmyZcp+5lcvdr3ZVeuOXRHSw8hMrUip F2lgpNSKOIzqeIruwE49jKplGGWrMCrHMCrbJsE+HHszcGzFX7s6Zcp+FuNKPZ1NkOT/Brh9cA+F E0lxEAfl8T7LxXvz9J7ioDQNEi7zvg/zMZQIkObOnUN/sBJAhX1yv67FnO3gs1RbzCW220zZwbdU 76DI9uiWsphJdYGQbqzRgImkgsb67yp0a/T222/DPffcMyKcHnnkkSm7jqq/LR/ayu0VR8RghHit SG5cQDQ9d4Sn5xrzEa8VsfRc3S7EakU8RVebi5grUmCEGIgUGCHYx0FUiqNkC4I96RIUb8b/L9sd SA1+rN8XIay241UQ5/ELWI7hRHLtMqCIg/Kg6T3ZQZl4izkB1F3w2dy/KECS47N5f4PQhfeyDRKa BgmjgzJ28MlDupvtZsKhnW5w6fzk6lwix52MBkwhIRN/kFiIiZy/Npo2chIzZsyAwMDAKffZd9VH QkvpUl16TnFFWhhpU3S7eIpOdkU7DCk6rSviMJJdUSmH0Z4tEoVR0WYWBZtwpEmweyOGY8PQDS5C d1jHG4sh0uW/wGX23eDMO5MIoMiE+wruoLw0Dsp5zjewO5o96Afr0nm/gJAFMw07+EyDdvAlmtnB t9nxEfw05AcXz7W7jPX7catFWoRHAyZPT09xU0wiVVRUjKqNXA5nZ+cpM+t08cxhaNnr+MVrRSQ4 iJR6UebgFF1pBnFFDEbFHEaFHET5HEZ5qRLsSpFgJ47yvDBxD44nHd6fA6vcfg7O799Du5PoMOF7 zD25va93UIvmvMFTePofrE7zXoDgj+8adgefdgZKbjHf5Po0HCmJhEv9k8spyero6Fg8GjCJtUST T6SN/Mtf/jJYWFiMCk6ff/75F5p1gsttQdBfBTdOZ8GN7gy43sXiGnk9N/5ORz7bugeO7rEfnSsy Ni4Ya0UcRnKtqGQrg1Exh1GhAUZ5BhjlbpBgx3oJctZJkI2j73TL8bF+f4Q06jh5ALbGLwTXD++n MxzO77BWWtf3TNxBWYHjh0/D/LnvmP3B6j73KQj8eDqEzNPs4FsobzGXAaXfYp4V9AocrUyCyxcm 75MiORRyNGD67LPPxt0PEKF/X6SGRGacRgun999/H8iZaiN9XTh/AKBzA1w/5gnXD1vT7dtXGxFd eHqZb9++WI/YnrlD9jBwLBoud+6AawNjP1DaeXgTNBYsU+eKlNkipKTnamk7N1JhRDrospACI1or ykCsVsRTdMVbEHNFPEWXvwkprojBCCkgYjBCkJ0swfYkCbJwZK5FcLK5XNyH4019PSfzS3eEwUqH n4LT7LvB6R0r1UFhMC3+6HXslj4c9EN1/tx3wWvOg6yDz7BBQtkisZABiqT4EtD9sGfDfOhprZ30 FwEZqCRgWvrJvyBg6e9gvcvLUOD9Ldjn/5wafuz1fP6HcO1QBFzvKIAbFyeng5yKIm3kDz300KjA ROKtt96CkydP5pv7WnBmN1w/GQrXjixlR0EQEB0avH37gmH79lm+UaHvgCOcP7YGLveOXefrsYpQ qM+zHrFWxGCkSdHx9JxSK8JRlK6pFW3SpOhw7ErVuyISxBVtT2YgIrFtLY41EmxdzaK+ctuk/5k0 YXWiaR9sX2cDYQ4vYUCx9J7d7C/D/Dn/MP+0P+cN8Pxo1pA7+ORzoIiD2uT3CjSUxEF/74masf4+ b7egqwTOFS2CpsivQXf0vdAXcw+ci50BA3HTcZhgINYKzseacFhBP369mDgTLq55AC4mPQoXkp+A i5k/h8tVLnC9R2yFmOhasmQJ3HfffaOG0+uvvw6NjY3K536jvw6un1gJVxqXsgPyDmkOyKtnC091 R0HUqkdBnOHbt3v4EGs337595kgcXOm/c9tVTp06lZ6VlQnVOXZ6GOXoZ4tI48KwtaJ0np6TQZTG HZExRbeBp+iSVRhlchBlcBhtSZQgHcfmBAk2xeM/a5fojh3XOnem3aXj5EG6RXn9yn+AzYLfmHVL JNBHL8OKD+7R7eDTtpivcf0+5K39GBr2rYXe9vpJ/cHDQFsQNCfCjYK/wfWNT8PVpHvhcoIJriZM gyvx0+AyjktxLC7iGIizgAux03BYwPmYadAfYwH9q6bBuVUWGGLT4VzCvXB27VfgQtF8uNq6c1K/ d5Ndo20jl+Oll16C6qoyuNK5HS4ftlNdkWb7Ngn5gLw+DYzM7pkzs1GhvXoFnGvLv23XFUlL7t69 m25Z/8EPfgCPPHwf7Eiapw66Gl2RpovObOPCJkPjQqoBRLxetJ07o0wOowwOoy0cRgREJNLiWWyM kyA1Fn+9raI7dsKobn8JoCWfDGoRl8P2w2+B+/t38QYJE4RJT8N6/1/CrnWLYH/hKug+WQvnz7Qm jPX3cbt1oy4Arm/9EVxb9yhcXXM3hpElh5EFh5EFXIw1D6NzHEZno6dBX7QFnImaBmfway9+7Ymy gB7stnrivwTnct+Gq10V4uaZgLqZNnISM++eDsnBf4G+ms85jJBu+/a5/Ui38LS3GrED8vj27a4K REHUwTcqtO1DdIiVxAm+a07evn266dYNeJMGDrLc1s/PD372s5/Rlnj5e3ryyw9ADn5IZbUiPlck g2gr4rUiDqLNiNeKcGwkMEIqjDYQGCFWK5JTdOsQc0U8RZexFhlcEaKuKC1OBhGClBgJNpBYJcH6 aPz10gWYJoxIdxEpzg9VuC/euQ72l6yD6oIYOFKzDTpaqqC3swnO902+9m9zutGWC9fz/gTX1j8K V7A7uqyBEXVFBEaxDEYMRCqMzmIY9ckwoiDCEOIwOh1pAd04uiJYdIbj16i7oTv5W/gHVZS4gSag RruN/J67rSDC7ddwumIRBZFyFIQmPae4osrB27cVVzTERgXtBu4m3rLd3Zzxha8p0up+6NAhiIyM pMtqhzqn6vlnH4Gs1R/rXVG6xhVtHrpWtJO7IrlWRCKLp+i2cRht5Sm69NX6FJ0KI4nBiIAIx7po CZJxJEXhiMRfc5MA04QQGRB1cXGhZwaZg5KjoyOc7p74ZyZ9EcFAu8v1Wne4uvHrcDnxbrikwMhC hRGG0PlYlp4zCyMMIQqjSBlG0ziMpnEYTaNA6gibBu34tW0ljnATtEXfD2fy58O1c8f7xvp9ELo5 kQe9J598cshOvbvvsoIw119BZ/kiCqKzw9WKOIwIiHQH5JWyaOEw0q72oTAq4EtP8/nSU96y3XX0 5nY2krpRUlISvPvuu3RP4Ejdh888+TBkJHys1oo0INLByFytSG5cSOa1Ip6i28pTdARGFEQJanpu IweRAqNoDiMOorU41kRIsDpcgsQw/LXTQgWYxouuDpxKv9JXA5c6suFyRyZc6c6Fa71FcP1sFVSU bIWlaBHMG8ItrVq1akp+kDfONsDVvLfgcvKXMJAsFRjJrug8qRXF8PScAiMLJT3HYMRdUcQ0xRl1 4ugIZ9EehiEUxmDUiuMUjpOhFnBCjvB7oD31Zbh46vbVCIRuj8gKqscff3zQD/LpVpZgt/AVOFXy 6U3Viozbt1s0e+aazW1UyB96dqi3bfiWaVI3Sk9Pp1mUZ555Bkwm06jrZlb4+1sX/uHgIddhZou0 jQsZazW1Iq0rStDXiuQUneKKolgQEK3lICKREMYibiWOUPznb5uaK6LGjS6fa4b+tlzobQiH3no/ OFPnAWcPOsG5Okc4f8gZLjS6wqUj7nC61glfzEugKO0ziA9ZCNZL5mH3NLW3Yl/vqYHL2b+Ci6vv 5Sk687UiCiNNrUh2RgqMSIqOOCIKo2k6GLWunMZgFMqBFMJg1BLC4lgwj5DpcHL1d+DCscwp9zlM dHl5ecGXvvQlBU6Wlhbwl99+G5rzFxpqRZKhViQptSJz27eP8Y0KzXyjwhG+UUE+IE9Zeso3Khzg Q6x06Wk2BtfelXB5QD9bSOpGO3fupIPgL7zwwqjrZOZiufUfICd5sdq4kCIZakWSoVbEO+hkECXy 9JwxRRdrSNHJrihC44o4jOI5iGJxxIRIsCpYguggCWrKxVqiMdGF0weh+/A6aK/xg/YKZ7rdl1zw 5OInNwI5vph09pDZB9LxQ7p/SCdQ//4l+EltCX66WgxpsZ/Acof5MP/juVBbO/lnkbS63rUXLmW8 DBfi7+GuaOhaUa+mVsRgpNaKOmVXFM5dUZjeFcnOiEDoOA8ZRkeDLKAZR1MgjyATHIt5Bs4dTp1S n8VkEGkjv//+++kP7O9841EoSpkNHWVLhqwVneK1ohNmakW69T7mNirsHHmjQiXvkDtRvw26u9qC SktL6bos0rRx1113fWEYaeODv/83bEn41LwrStKk6IyuSNtBF8dBxFN06ziM5FrRGg6jRJ6iIyAi EWsGRlE4IgPxa7ANtJ4Ux63fUQ30He/ratoCx8t84NgeW3raY8seRJ+4yAVPboCOcgRdlQxQvWQY rxbRgivpBCJdQRcPIToz0Vu9BI4VLcYXyhI409OxeKy/tzul6x2FcGHTD+F83AyztSIKJE2tSHZG OhjJtSKNM9LBiDui48EERpYMRMEMRM1BlgqMjgRYwOFAS2j0t4DGAEtoCDDB4fBHoO+gSEVMNJE2 8pkzZ4I052U4svtTDYyQUisyt337KN++rdaKkFIrIiCq59u3lQPy+PbtGsP2bbldu1zTJVeUbgNz Zr8Fs/Dfa9otgJE2/vulb8C6iPkYRMhQK0JKrSg9gXXRURApMEL6FN0qxFwRT9GtiURKrYi5IsRc UYgMIsRAFMgiMgBBRIAEYf44/PDXXB0g7p07qTPtldBcFgwNhQ74omXHDZOLmVzc5CInOWly8ZOn srYyVkwlgOqpZjluUnw9xx0UAZQ83Ef+39W21QAXDk2JD3Rg51/gXOw9NE13hsLIQpee07oiGUZy eq7d4Iq09SI5PSe7oqMaGDXhOBLI4nAAi0YcDRhGhzCUSNT7WUCdnyUcxHEk7ttwsbN6Snwek0Wk jfxXr78G2Ynv4YfFz/WNC+bOJPoC27dJyEtPKwyzQ3szJLNdcnP++d8YTDNuOZhmzbobfJzexvD5 fPCQq6FxITVWBRGJZJ6iW8thtJqn6BKMKboQgysKZK6IgCicg4hEqK8EITiCffD3XSDS4XdM3Sf2 wqFiX3yBWtOLlVy05AImFzMFVCG74ElKgAJqLwMUeWojRVZScCXFV1KIpYA6wAFVz+B05bAtXDvm ATf6ayb1h3qp1gfOrn5UbenW1ooizdWKpikgag3T1IqMMNKk51QYWXIYWXIYMWdEYeRHYGSpwsjX Aocl7PexwEFereDE9g/h2sXJu39wMupgWRocK7GlIGoZqVaUP3StSIFRtuG0Vs32bS2MCIhK+BBr Md+oUMi75KJ934HHH70fLCxuLZhIvPW7lyAp4hMVRsPViqINHXQ8RUdgREHEU3QxJDiIFBhhEEX4 qzBaKcMIgyjYW4IgHIFe+P8F2MOpE7fuwEihYUR20e3P98FPR9ZQlcUuVLIcUQYUubAJoMgFTwFF boY9LG1AntjaOKBI/ambOygKqP0MUBc4oMiurqvN7nDj3OR8Ur9ycgf0rXsOeqJMzBnJrugmakUn DK5IVyvi9SLqigKZI6KuyJ+F6opUGB3QwKjW2wJqvC2hGr9W49cav7uhu2ZyHbg42UXqvsdLlo1c K8rTuyKlcYGn56oNtSLtnjn1gLzRb1T41avfhbtmWP1bECJde2TjBWknJ4cjfuUrX4HXfvYShswS DCNkfrZoiHbu+DADjGRXFKzWimRXRIKAaCUHEYkgDqMADKMATwn8PFhkbV0n7pc7oQtn211qC4Lx hWhNn4zIxVmRiehFSwG1g1zUiF7k5IInT2FHCpDOQZ0oYZPiBFCsQQIpDRIMUIgO/hFAkQaJK00r 4Mb5hkn1AV+/1Pvg2az/he7ouziM5LkiDqOV0wwwmqbUiqgzCtbCyFLfuECckVwrCuC1In/VEdXj 1zriiDCMDmhgVIthVCPDyAvDyMsSKvFrJX6t8LTAgX9f7I/hYs/k+iwms05WBeB7z9owV4R4rUi/ fZs2LpjZvl3Jt2+X8+3b+7Yh/QF5fPu2uvSUbd9WYcS2b6tLTxEs+fg3cN+95odljUGGhslgLdkJ SLoNn3jiCfjqV78KP/3pT4HU0ZycnOiJvYWFhUDmn/aXZ8Om1Y4sRUdrRYjXiuQOOsTScwqMEAOR AiOkT9EFIOaKfGVXhJgr8mKuKMATgT8B0QoJfHH4uCPwdsf/388BGurFPsrbroHzPc/WFEZB4eal ULSJPRmRp6S9GWwXFckvE0CRvDMBFHn6quPpvUaNgyKpBAIofYMEd1BVrMZEAHWulk2mD2BAXTkR N6k+4EtNKdCd8ASbLQpT60WtYYNni4zpOX3jgsYVaWtF3BGp6TkLJT1HYMRApMKIOKIqDKEqCiMc ngxG5fi1zIPFvhU4PKfDqSLXSfVZTFZdHuh6s7l0ua5WVG+oFe03Uysyt317yD1zho0Kuzeqs0Na GOXwDjm5S87f5R/w0IOzBgGIdOjde++98PDDD9N5rKeeegp++MMfwl/+8hewtbWF2NhYyM/PhxMn hl/WvDMjApKjl46qnXuV1hVxGMmNC6E8RRfMU3SBHEb+2BURGPkqMJLA200Cr+USeOLwcreGHds3 i/vkTqihagvkpdnRC49cgGSYjVycFFBb2cVLzjQhFzW5yMnFTi78g7nshlAdFBvO0zVI7GUNEtoW cwIosrOLNkjU2cKV7l2T5oPuy30HOqJmUmdEYTSqWpGlrovuZmpFB0h6zpel58zCCEOIwshDhpEF hdHeFRY4LKHU3QKHJexxw18n7j/hcn9b0Fi/h0LDq7+7DhoLnVmKzlgrkmG0Xd+4cDO1Igqj1KE3 KmhhRLrktEtPk8IXwrNf/TI8+OCD9FwpsrHiO9/5Dl07RI5ziY6Ohry8PDh+/IttIDlx9ACkrVmB YYSUIddYXivStXMHaBoXeIqOwIjWinzUWlEAB5GfhwFEbgxEJDxcJVjhIoG7M/66K32gvW3sz6ia 9Oo/2zm7IMMLstexBYdkv1SeDKhNDFDkSYoAirgnAijy5FW1XQMorYPiDRIKoLQOiqf4ujmgzvAZ qP56F7h2fuIXEi+374GOxGcxkCwH1YuGrBUFqbWiw2ZrRZa8VmQxYq2oSknPsSj3YCG7or08CIhK KIxYFOMoWo7DfQZ0HVw/4T+Hya7Tx/OhfreDekCesXHh39i+nWdmz5y5jQq62SHDURAuDksgPCwM cnNz4ejRo7f8eqou2wHrYl2xM0K0VqRrXAjQNy6E8HpRkI++VuTP60U+ZmCkgAiHmzMLVycMLi9n KNtXLO6PO6FjDXsge4MjvdDInAC5ACmgUshFiuiWXgqodJZzJhc4SQGUZ7IcdbXsoHJZTrs+T9vB h9QWcwooxFbnKx18iHbwkRmogdYtE/4DP1tqBycj74cWZdDVUueMdHNFgYNrRQ3+zBlRGPlyZ+Qz BIy8OIw89bWicu6I9mFHtI84I+KIVjAQlXBnpIAIvxa6WkAh/ud8VxaH0t+HKxdOvzDW76XQ0Gpv yob9O+3xvYd4rUg/V7SPg6iUb9/ew7dvF/Ht2wXmtm9TZ4R0B+Rl8+3bygF5fPv2Vj7Emp7Itm9v ktu1+dxQS1PVbb+XK/flwpro5RARiCA8QAYR0rVzB/kg5op4is7PEzFXpMAIKSBiMELUFblhCC3H 4eqIwMVRAmcH/Gs9nKGwYPJkdsa99uYlwpY1NvSphzwBkQuQPBmRC5PYd8VBpbEnLHKBkycvcuGT JzIKKE2DBAFUHW8xb5QBxWegjvMU3yk+A9WhaTE/c9Adrl0wfwrnRND1ga43W9d+B8PIpM4WcWfU HGjGFRnmimRnxFzRUI0Llmp6jjsjbXpun8YRaV1RscYVEQgVuLKgMHKxhN048nDscsa/xucJuNA9 NebMJqpO1m+Bqhy7oWtFZrZvF5ipFe3U1orWf8GNCpqlp+v50tPjdwBMROWluZAQ5UaBZEzR+Wtc kQwj0rigdUUkZFe03JnBiIDIBYPIyZ6Fgx3+9SucoCBfQOmOqf/s6ReyUjzpkw650MhFRy5AcjFm ckARG08sPXNQzPYXmmmQKM+SDB18DFBKi7lhBoq0mOs7+KzhQlvOhP3wB07shJZVTwyqFR0x1or8 R18rkp3RcLWifYZaUQl2RHvwa/FyC/MwcmFAytPAaJezCXKdLHGYaHTWb5qwn8NU0LH9KVCWZWu+ VsRhpN2+vZvXirSNCyPViuSlp4MOyIs1LD2NZut9tBsVjh2+M2Aiqq3aA6tjvLFLWqa0c/t6cEdk TNEt16fomCuSFFdEQOTIYWRvi/+b4zLw8XaH/Pw8cT/cSZ04uh82rXamTzrkIiNPQOTiI09GxEFt 0wBKcVAp7ELPNzRIlGaoDqqKA2p/jh5Q1EEVsLkLAqgWDqhWDqjewxN383hfhR8cjXiIDbpyV9To r9aLhp0r8jFfK6pU0nOaWpHHyLWiQg2MCIR2a1yRDKOdzpYcRpaww9EScnBkk3DAUM33mLCfw1RQ c+1GKN1ma7ZWpJstGsX27SFrRQnq0tNUzUaFDXxuSNkzF2WYHcJx9PCdnU882dIEW9ISICzIBUPJ moHIjYOI14vcXNRakSsHEQkCIkc7FUa2yySws0Ww3NURVifGQ2OjGKG446relw3rYu3phUWmpdev YjliAqhN8SyHvFV2UEnkgkbU8pMLnXXwIZoiKFQAhTQzUARQiBZm5Q6+ul1IARRxUM1FSK0/YUB1 VLnBtUu9D471+/JF1Lr1T3A4+B59rYg4I99hhlx9NLUijTOSa0UURnKtSOOMdDDCzojCyNUcjEyQ 56yCaKfijGQYmSiIsh1MkGVvCVn4NdMOu7XUd+Hy+e7Xxvo9FTKvtuZiKNnmSOeK8jdqGxcQTc/t 1MwVKQfkJbEa8jYOI1YrQrxWJMMI8VqRvFEB6YZY10UjOsSqLj1FdIhVXXqK6OzQqZax+WFevq8Q 1sSvhOAAV/BasQw7I8RcEU/ROTsi5ooUECGwwyCytWHhYL8M3Ja7QGCAP+zYMXGzNxNee/JSYU2U LX3KIWs7kvgZJORiJGs+0hRAsQuZXNAEUORCz+ENErtSBreYl/IUXzmfgdJ28BEHVc8d1GG5xbxQ bjG3hkvnJl533rULXW82x32TpuioK+LpOQojHxZm03OGuSJtB90+gyvS1oto44LBFckwUtNzqiva wSNHdkYYRtsdCIgsKZAycWyzN0EGhhKJwrD/BxfPipbY8arezsOwZ5uL6ooMc0XZySPXitINtaKN fPt2imbP3HAbFYbaM5cUsxz6z43tw+WB2irYtDEJQoO9wMfLBdxd7bAzQoorkmHkYG8DLs4O4Obm Cp6eKyAxMQFKSvZAd7d4KBtTleRvhsQIOzoHQC4yAqg1HFDkoiSAIk9O1EElcEDxBoksDiilxdwA KFKA1XfwmZ+BashTGyRIi/n57om3Q+9iRyU0Rj6t1Iq0jQu15mpFXiPUilZoakVGGBlqRYNgxGtF xBHtwK85Gme0XXZG9swZURjZEhiZYAt+3WJrgvRl+L+7PAAXem59m6/QrREZiC/etsJ8rYjDaKha 0SYztSItjHQH5EWaOSAvlEVMiGG9D9+okLN1/Gyr72hvC6oo3wdb0jfCytBACAr0haAAX+yI/CAA x2oMouzt24EcX9/cPPEeiCetykqyIT7cnl5Y5AKL44BazQGVLAMqhl3E5ILexBskyNNXJgdUTrIK KJLik1vMi/kM1F4DoKq5gzqwY/CS2HOdlRPuAhlo2weHIp5mMPJmMKrWwKjK3FzRF6gV5d9krWiQ KyIwsmPOaKutHkabl5lgk40lDvzv9rPg/Glxo45nVRXGQc56m8G1ojX6DrrNZmpFZo8NN1MrMrdR Qbv0NJLDKDxA3jOHoLJMNAoI/ZuqriiAmJWO9MIiFxjZJUUuPnIhkotydTjbRUUuWtYggRRA0Q6+ RAQZHFDbkyR1SFfp4EOsg4+0mKezuQodoLKRsiSWNUggONsx8cB0AYOpLuypIRoXDLUidwsDjCx4 rUg/V6TtoqMwciYwMsEuJy2MTCqMSK0IO6Ptcq2IwshEYUQc0VYMoa3EGWEIpWMYbTbAaONSSxwm SLXGsHJ5FM4LxzSu1XK4BHJSnZS5oi2GuSICojR54Snfvr1hFTI0LiD9AXn4fpcPyGMwQspqH7ZR AemGWMP9Ed0zJy89jQpxhLZTx8R1I/Tv6fjRBogJc6VDaWRALYIDilyIBFDkAqWAipCUBglyUadw B7UpTgaU2mKepWkx3yUDaqOkAEpxUGZmoAig+tonIJha98GBsKdpvahcM+RaJm9bIHNFK4apFbkO rhXJMJLTc9p60aBakZye464oQwMj4oqII0pfxmBEIJSGYZRGYWRSYJRibYINJBD+fe7PwPle8QNm POtCf8+zuZs8IT1BD6N1UYshMexTWBuxCP/z50PXiiL0rih+pfk9c1F8x5xuo4Kv4SgIvmcua2uS uGaEbo1iwlfQi4pcZBRQ/uwiJBcluTiV+pMWUFEsDUA7+GJ5g4R2BipJnYHKXc8bJIaYgSrTNEgQ QPWfPjzhLu7zGEw1oU+rGxdW8I0LfK5o0MaFEWtFJl4rsrzpWtFWTXqOwog4IvyatlSGEXNGKTKM kCUF0jrJEtZhKCXj123e38Vgajk+1u+r0PA6UJ4B6WvsaA14w6olEBe8ED745y/gpR9/A/7+5/8B N9t/QsLKxcPWimLN1Iq0MNIekEeXnnqbWXpKwmsp1B2omHD3rtA41YakSAjAFxUZTiNT02R6muyY IoCi59oHsQs3VuOg1oQzQK3jKb5UXYu5pLSYZ/EZqB18Bkrbwae0mGsAVZWzDC72d84e6/fkZjVw +hBUr3yWOiPqitz09aJiM0Ouo64VOTJXtH1QrchyxFpRmpye40FAlMJd0XpEYMQiGUfSEhOs5ZEV 8FO4cGbibuGYKurtPpmfmeKJHxSXQMDy9+E/X/wmzNCchfStbzwFAe5zdbWiODO1InOntQ51QN6g pad8o8Ka+FABJaFbp4K8LAj0sacXmZ8HonulyEVI9k2RYia5UEleOZo6KKQAijgoMsdA0gNyBx+Z e1AAlcDmJMiQLu3gS2ZzFTuVGSh2vovSwYcBVbvbCy4NTMw5psqwb6hzRW5m2rk1c0UqjIaeK9qu cUZyrYg2LthyGC0bAUbYEVEYcUe0Hr8yGFkqIErCr2s/t4Q1+J9Xf84icTH+u8b/DQbOdSwe6/dU aGTVVe+GFY4fwLf/42mwsjLpjpuwsLCAJQvewuBZTEFEl54GqUdBRAYi/QF5fLWPekAeoiBSD8hD dKOCuvQU0bU+vp62sL+6TIBJ6Nbp2NEjEBKwnK7sIE8+5AmIPBERQAXzi5Q8QcmAog6Kp/gSeIv5 Wk2LudZBbeYOKmO1psVc08GnbDHnLeaHK5Mn7MVdm/gq3c5tdg+ddsjVaZhakcYVqY0LlqxxgTsj uVbEYGTSpedSFUckw8jE03N6V7TmcxYURDgSFrOIX8Siars4l2miaOPGVHjuua/RM4+mGQ7ie/ih +8HT6SOlVqRzRf4GV2Q8CsJTfxSEj5k9c2SjgsfypZCdJc4nEroN2pAcD55uNnR9hwwoXw4ocqES Kx/KU3zhPMUXzVN8agcfB1SkfgYqbYgGCd0MVCpJ7dlAd2vthL3AD21+D4o87h3UuMC66EwcRqOo FdkNXSuiMDLUilK1tSKSotPUihiMLDmMLBmMFpuHUexnLGI+NcHR6o0T9nOYSlq1ahU982iamdNh p0+3gt/84qfg775w6FqRz+BakXxAnjffNScfkEdBxJeekiAbFdxdrCE2OhS6uyde+l1oAqiqch89 a4Rs2CU7pTw4oHw4oMgTlAIo3sFHWsyjAlnBNFYG1EoNoHiDhHYGSgso45BuTVEMXLwwMdN4RM27 7KHA8yEFRjRF58ibF4atFY08V0S66FgHneXItSJJrRUprmgxCwoiDqM4A4xW4YjGkbD0YejrbBRg Gufy8vKip8FOGwJKv3ztp+CzfOHwtSIz27e9NQfkyXvmdEtP+XofVydriIoIguPHxFiB0G3Utq2b wMPNnl507GmIAApR+04A5UcBxc43CVY6+BDr4CMt5kEEUAjitQ4qErEOvlW8gy+OtbaqgELUQe1I sYXWoxO7o6etJhEKvJ9QGhdy5LkiBzZXZLZWZDd8rYg6I7lWpHFGcq2Iwgg7Ij2MLPUwWsRgFEdh ZMVA9BkD0apPrSD6ExONyIU4PrGCzQGvQr9ofBjXIifB3n///WahRI4w/+XP/x94uSzEMEK8VsQP yPNCvFYkwwgZTmtFhgPyEF14qi49RXTPnIvTUogID4ZjAkpCt1u9PadfSIhfhS86G3oREkCRi5Nc pJ6u7OL1VQCFn7q81RbzcD4DFc1noLQNEqvDNS3mq8y3mNfuTZnwF/il/o7Fe6NehhynGcqQaxbd QWepH3IlrkgzV7TZhsHI3FyR1hXJzkhpXDC4IhlG2vSc7IpiNDAirijqExaROCIWsgjHEbbABJXZ nhP+s5isIqfBvvvuuzBr1iyzULr77rthzkcfwOrYQAgPcsAPkUhxRdrTWr0Mp7W6G12R8SgIzfZt Fyc7SIhbBS3HxZyb0B1SU9MRCA8LBieHpXQdPLkwXTmgyJMUrT+5sQucXOi0xZzPQJGhO22DhG4G St7Bp2kxl7eY794WDH09rQlj/b3fCh3JWw45bg/TWpEeRiYVRjaqMxqyVmQ9XK3IxLroFluahxFJ zy1i6TkVRlYcRlbMGS20gogFBEZWFEZhC6xg5Xz8tRyeh952cUjgeFRZWRn8+te/pvCZNgSUFi9e DKdPs9OH9+7ZBVGh7hhMNoNqRR6GWpFyQJ6j/oA8Ena2LOztltKjILIyt4nrQ+jOi5w/ErYyGBzs l4KDLTuvhJzoSHLLWkApDoo0SPAZKF2DhNJirh/SXaNpkMjc4HFHjmG+U+o7VQG5Pl9TGhe0MFI2 LsiuSJeeu/W1omhzrmiBiYPIREEUSsMKQj42QfDHVpCXvBAG+sVm5fGmzMxM+OEPfwhWVlZDQmnR okWDtmI3Nx2CrZuTISTAFT9MLqNHhxtrReYOyKPbt3Ess0Hg6LAMXFwcITo6EmprJ96CZaFJJAKn 8LBQ/JRkQy9ScsGSi9fFkZ1vogKK5ajVDj5EC6xsBoo0SCC1g48uiUVKi3lmqj+cPLp/0l3o1Wlz IcPpfhVG3BGNXCtS54r0MLJUakUUSJ+pMAr40ASf/N4SPnvDEkLncWe0UAsjKw4j5ohW4tdQDKEQ DKNgDqMg/PsC5+F/X3APHN2fNek+j4muxMREePzxx80CaRqH0qeffjrsUQ0nTxzv27ljG4QEeoLn Cgdwd7UFZ0drehQEAZEMIztba3rPOznagbOzI3h6rIDU1BQ4ePCguC6ExodOnjxRk5a2EV+k9vTs EmLnHWVAOfAGCWfWueM1VIu5r/kW8+3pEdDe2jQpL/aupjzIWvFVpV7EdtDp54rM1oqWDFMr+kxf L1rFndFzT1jAPTOm0Xge/7P0J+aCtOk58u/EEYV8zGDEQMRgFDDXBP5zrcBvjgkyY96F831tQWP9 /gmpCggIgEceeWRYKC1cuBC6urreHO3XbDhUBzuyMyFmVTh4e7ljULnCCvflNMhxEElJayE3Nxdq amrEuURC41cle/bAytAQDCYbCijydEUclLO9ZOjgk5QOPnOAIi3mG1b7QeXeHdB7ut1lrL+v26n6 3OWw2elLQ2xcsGQwGrRxYbhakZWhccEKFvzOEh6cpf6QsrScBs8+bgFL/4Kd0DwrFUYYQkH4NXDu YBj5zbEC348wFD1eht4O0SI+nmRvbw8PPvjgkFAi3Xfz58+/KSgJCU0qdXZ2zi4uLoa4uBhwdLBV AEUdlIMZQC1XW8xJV1ByYhAU52dAZ8eJmrH+Xu6ELp3vfq0w7o+wYdksmp4zu3FhsX7Idcha0afm a0XWf7aEh+/T/7CytJgG//GkBdj/HUMIw4c4owD86q+BkS+Gkc9HLLw/xBBb9BgcqhADteNFra2t CXPmzIH77rtvWCjNmzcPyH05hn9VIaHxIdLxU1NdDdnZWbB2TSIEB/lhMNmoHXxOrLjq52kP8auC IHPLOthfsw+6uya3QzKnU3UZsMn1af1cEd24YKmZKzLCiM8VKTCy0tWKwhdYQRipFc1nTujFb1jA DCv9Dy0Tdk7fe9YCnP/JYfSRDCOTAiOvD63A8wMTeOLXoi2uMNDPOrmExlYkffb73/8e7rnnnmGh RMAloCQkZEa9vT3PdnZ0LCa1qOamI1BfdwCqq8uh7kANtJ5qOX76tEgxHNjpBevsH9XNFcV9NrhW pO2gizTMFckddARGcr1Iblz47I+DXdM0DqcfP2cBjv/EIMIw8lJgZAUeOFa8jwO/ZsbPgXO9p9LH 9l0SIiJ1nRdffBGmT58+LJQ++ugj6OgQC3aFhIT+DdXmekKS3WNmNy4oc0XcGRnniuRWbl2tSNO4 4Iuh84f/tIRZd5uH00vftAT7f5g4jEwUSO6zTeCGXzPi5kDf6amRWv13BRcaAXp3w42OZLh+MgJH GFw7EQZXW3C0roVrZ0rh+sXWhC/69devXw9PPfUU3QY+bQgozZgxAz744AMBJSEhoVujmh1esHrZ Y+rGBU2tSJ4tWrnAOFfEOuiC5g1XK2Kw+bGZlB4JK9M0ePm7lmD7thW4zbaC5ThccWyNJVASBwEO JzhfBzc618P1Znu4dliCq40SXGlgcekQjnoJBupYnD/I4sIRP7jUvg2uXTjeN9o/JywsDB577LEh gTSNQ2n27NnQ3j71UuJCQkK3UVU5XhC/9PHBc0WGIVcFRhhCAfjVf85gGMm1Ipqm+8AE898wwZfu N/9DjcDp1R9Ygs3frcDlPSvYEiOgNJxunCnCjigEw8gGwwjBZQwiEgREF+sRBdEFBUYIzu2XaPTV kkDQWy1Bb80yONccCxdP7xu2qcTV1XXIRazTNFAia4gElISEhG6Lmqs3QXrwryD801nKXJE6W8TS c9QZya3ctJ2bwYjViqzUxgVNvYg4od//P/MpvWkcTn9+/RkoyAyH82dF7c+cblw6lX6tbS1cOWLL YHSIgIgFAdEFAqIDEvQfYCA6y2F0pkaiMOrBcbpKgu5KCboqJOjE0VGOf01zElwd0DcqkPkgMn80 1CLWaRoo/etf/4K2NjFfJiQkdBtFhlj3bnODyCWPmYeRpotO37igqRV9oNaKlvMUncO/TPCj582n 9EjMmG4JAf6+oi3cjK73lcGVphVw6RBSYXSQRT+H0dlaFgREJHqqWBAQkejkMGovY9G6j8WpUgyo Wj8438ncU319Pbz11lswc+bMEaH0j3/8Q0BJSEjozunYge2QueqfEPLpg9wVkQ46DCPZFX3IHJHs itzfZ3Uiba2IpOZIOL/LYs7/muCRB8iR2uZ/2N17771ADpcb0298nOlabzFcOuzMUnS8VqS4olqD K6oyuKJy5ooIiNpkGO2V4GQpi5YSHHskOFbMorIwFl772X9R6EwbAUpvv/02kJmmMXtjhISEpq6O 1++E3ORFsHLJU+D10QwMItUZMRiZGIze4zB616SDkdM7VuD4DnFMVmD3r+nw1i8eh/tmDd1y/MQT T8CGDRsEnLCu9hTDhUPOFEasVoR4rYiBqLcaURCRICDqqkQURCqMEJzCIDrFYXSiFFEQHVdghKC5 UKJxpECCmuzP4K+/+z7cO+uuIT8f0i7+t7/9TUBJSEho7NXRUg1FW90gJeTPsHLpN2HFh/dQELnK rojDyOldBiIZRq4f3A9hDi/BhvB3oTQ3DLo7jvcNtzmAtCQ///zzkJU1tRe2XjldDP31zoNd0RC1 og6NK5JhdILAqISBSIbR0SIGoiYOo8P5EjTulqABx6E8CQpS58GvX/0PuPuuwZvCCZT++te/wqlT YrZMSEhonOnCue7XOk7UwoG9G2DnRkfIXreUh43yWpITCk0Hd8LZ3tYE4+8nGwTIMQmWlpZm4UT+ O/n/RUVFUxJO1y4chbP1K1itiMNoqFpRm6ZWdJKDiMKomMGIgIhEE4cRARGJBg6j+l0sDu5ksT9X gnUr/wVfe/ph3dwSgRKpPZ08KU4PFhISmqSKiYmBL3/5y0OmjAicXnnlFaitrZ1ycOo/tgZ6apYx V1SpuiJd44KmVnSC14qOFw/jivJVV0RAVCfDKJfBaP8OCWpyWFRlS2D98c/hSw/NUqD0pz/9SUBJ SEho8mvBggXDtiSbTCb41a9+BeTI7rH8e95JXejIg9M1TrxxAdH0HE3R7SWBeK2IgahlD1IaF5oJ jIoQBRGJRgojREGkwgjBAQyhAxxEtTsQ1GAIVeOo2k4CQUWmBBVZEuxcvxBe/c/nYdbMu+GPf/wj tLSI2TIhIaEpINKaTPavEQBNGwJO5FTUP//5z1Piaf3apZ5nTx/0o00LbdwVaWtFLcPVigr0roiE 7IpkGNUSGOUwEMkwqsQQIjAqx1G2TYJ9GRLsxVG6VQKPZX+A99/7Oxw7dmzKPBgICQkJTUtISKCd eNOGaU8mcHrnnXcmfSfY+c490FbpwmBUom9cGLFWlMeibqcKI5KiIyDSwoiAiEQ5hxEB0b5tDEQk 9mxhUbRZgtwNn0Nna52AkpCQ0NTTokWL4IEHHhgWTqTOQc74mcyrb7rqY7E7stG7oqLha0XGxoX9 3BXV5BhcUZZ5V1TCYVSczmBUiKNgkwT5aRLs3oj/7NoMASYhIaGpp6amJnj55ZepM5o2ApyWLFky Kc/6udh3BE5WeOjmio4UIF4rwjCi6TlE03NK48JOxGtFcuMC4rUiBqKKLERBRGIvhRGCEgyhEg6i 4nQEhRhCJArSCIwQhVEejl0pJBDszQmAC+fEmighIaEpqLVr18KTTz45LJimcTg5OjoCORRy7P62 t15n20rhaKmLMlfUKLsiXiuq4x10Sq1oh8EVbTe4om0aV7TF4Io4jGRXlJfKgsBoZwpJ4UmwY70E OeskyMbReeqgcE1CQkJTU5IkwYMPPjginMhKHC8vL+jt7X1Q+/vhas+zcPF4Hww0ww05Lk6Mpomu pi1wuMhehdFOQ+PCSLWibUPXiop4eo6m6DbqYbSTw4iAiEQ2h1FWEotta7GDq88XYBISEpqaIp13 r7766rCnpMrxwH0zITXRFQaOJ8CNE4FwvdkBrh1ZBlcP28CVRhu43GADl3BcPGQDA4fs4OLRELjc mgpXz1SNyx+yLdVR2BktVRsXblGtqIC7IhlG1BVt0LgiDqPtyQxEmRxGGWsk2Lpagi04ako3jsv3 TEhISOiOKDU1FZ5++ukhgfT8sw+C9OGLULzhbejf/zlcbbSm5xJdoecSIX4ukcTPJULqURAHEJw9 YA19tUuh/0goXOoaX1slDpf6YxghdchVniviMGK1IsRrRQxEJVsRrxXJMEI0PZevwAjxWhEDUe4G RNNzORxE25MRZGIIZXIQZaxBFEQk0hMk2JyAIC0ef+3sKLjQ3/PsWL9HQkJCQmMmGxsbeOihhwZB 6U+//AbsS/sXnKtdhAG0hJ5JdImfSzRQrx6Qx0CkP5NIXu9D98xVIRzW0FvnBwPdwx+Wd6d0qNj3 pmpFJAo3q7Uibb1oqFqR4orWGlxRIovNGEabcBAYpcVJkBrLIjc9EPrPdr821u+RkJCQ0JiJdN29 /vrryvELX350FrgufgVaij7GAFqiwmikoyBqDEdBVLKjIDqV9T5kkNUazhxNGVM4XRroefZAgc+w taLizWrjwhetFZEgICKRnshCgREG0UYNjDasYrEuGoNtUyCc6xNgEhISmuLasmULPPPMM/Dsk/fD uqA3oKv8U92x4UOd1DriuUSajQrKnrkSBO21QXDxTMOYAOr82daEmjwvPYzSDY0Lt6BWRGFEQBTP YqMGRikxDETrOYySoyRIipRgLY6sjQJMQkJCQlSBvs6wLe4dDKXP+EmtyAAjpDsK4jRJ0WmPgijH wNmnhREybFRAykYFMjvUUu4FF3rq7zicKvYVQvFWFzpXpDQupJFACoxorSgV8VoRA1HOesRrRQxE mUmI14pkGCHqiDYrMEKwMVYFUUoMoiAiQUCUHIUoiEisDieBICEMAy41CM6eEWASEhKa4rp+pffB viPRcGb/UgoimqKrMZzWWjn4XCLdURA6V6TfM3fUsFFBnh9q3usJ/advH5w6OjoWZ2ZmgoODA5B0 Jdl4QY6XCHX/O+xOXTJ8rUjripL1rojEltVqrUiGkbZWpLiiaI0rimIgWhPBYJSIg8AofqUEcaES xOLIzYyH/nP61nwhISGhKaeLbdvg7EFHtVakOSBPl6IrM6ToSg0wKjas9ykYvN5Hey4RmR86UuoD F8/dmsPw6urqIC4uDsjhiC+88ALcdZf502E/n/s6bFv96ahrRRmkVrSGgchYK0oz1opiGIhIJHEY ERCRSOQwIiDSwigmWIJVOKKDJKjat3NcNIgICQkJjZku91ZCX537zdeKtNu35aMgClUYNcqnteYN PpdIPQqCtWufqPtiDRH5+fng6ekJb775Jjz11FMjrlmS4//+8FNIiZ4/qFakwGiNoXGBg0h2RcPW irSuKELvikgQEMWGMBDJMIoKlCAyAEegNbQcvfPpTSEhIaFxo6sDrQlnDvljGCEMI2SAETLACBlg hHRHQZBdc4d3a4+CQNQR1SkbFZBhowKi7dq0ZXu7NZw+VT7sD+Tjx4/3bdiwAT7//HP47//+b5g5 c+aoIGQufvS9r0Jc4Ee8VsRAROaKdI0LicjQuIB4rUjitSLEa0USrxUhXitiIEoIQ9QRxa1kIIoN QQxEwQxEUYEIIjCMSIT5kUCwITEAzvSIXXlCQkJTWP2nsqCrynHEWhFN0RUNcVrrbsNprTul0W9U kFu2M/DvLQmHi+fVon9FRQWEhobSIzi+/e1vK+3styKsTJbg8PkfYVPcYqVWlK6tFcUbXFHMMK7I TK0ojruiGA4ixRUFMhCF+zMYrcQR6itBiI8Ewd4SFOaJ7eJCQkJTWFcvds7uOuA3YuOC8SiIYWG0 Qw8j/fZtBiISe43rffgQa4gPgj+88Tt47LHHhj3Q8FbEG7/6McQHf0xhNKhWFDO6WlGCmVpRTAgD EYlIDiMCIhIrOYwIiEgEebMI8MT/3d8ejjUfEmASEhKauupvL4LWChcdiHSntRYYXNEoakUjbd9W 1vtoNioog6xpEth99lt47JH7biuQ5Hj26Uch0G22+VpRtPlaUaKZWpG2cSEqyOCK/A2uiMMo0IvB yB+Hn4cEviuwW0uNh7N9ohtPSEhoCquzfhUG0lJN4wIywAgZYIQMMEIGGCH9seFk19xWdb1PyRak 26hQuEndNcc2KiBIiZoH33r+CbC0sLitUCIt45aWlvDWG/8FqwIXUBAlR6tzRQxGiNeKZBghBiKl cQHxWpHEa0WI14oYiEJ9EQURCQKiQC9EQURhtILACIG3u0TD18MGqir2CLckJCQ0dXVloOvNk5W+ g13R7iFcUa7BFWXrXZFuA7cGRtqNCsoBedqNCqmDZ4f+8vsX4d5Z5tu8byZk+JCUIOnWI1vUSZ3q S1/6EvzoRz+CP//5z7DUegnEhNphGFnrOuh0s0UaGI22VqS4Ii8GIn/uikhQGLlJ4LVcAk8a1pCx Zb2AkpCQ0NTW+Z4GOLbP4+YaFwwwkhsXjLUiWi+S1/uk6df77OIw0m9UkJSNCqRd+5MPXoeHH7p3 1PCRAaSFEKlRvfTSS/D3v/8dbG1tISoqCnJycqCxsXEQANpbm2Bzkjd1RHLjQkzIF6wVyTDyUFN0 Pis4iNxkEEmwwoWFmzMGXbg/tJ46UXMHP34hISGh8afek0VwuNh1xFqR0kVndEUZeldkrBXpNipo XdEG/UYFZb2PZqPC8qV/gSceG3yAoRFCTzzxBG0bf++998DFxQUSExOhoKAATpy4+R/yh+vLYH28 O03P3UytKIjXigJ4rYgEAZGPOwORDCMPVwYidw6j5U4SuDri/7bcFvaWjq8jQYSEhITGRK2H0qB+ t70BRkjfuJCFdK5obwYywAgZYIRgt+7YcKRsVGBHQSDYnsTX+9BzidiuOXmjwpZEtmsuwucjeOap RyiEyFlRP//5z+Gjjz6ig7Rkjmnfvn3Q1XXrZ30a6spgbcwKViuiMEK8ViTDCPFakdy4gHitiIHI xx3R9JwXB5GHK6IgIkFAtNwJgQuGEQknBwwoV1vYs6dAQElISEiIqGV/MtTm2irpuUGuaIhziXRH QQzlirTrfTQbFTLljQqac4mU9T6G2aGq8sIx+YF96GAZJEavwO4I6TroAs3UinwMtSKzrsiJgcgZ g8jJXgJHGghcXWyhuChfQElISEhIVnNlPIaSzYiNC4POJRoGRjRFl2w4CmKN+XOJjEdB6DcqSHC6 q+X4WL03x5rrISVpJYT62w5uXHBjYa5WRMKVw4iAiIQjh5GDrQT2tuSfl0JIsD92fXsFlISEhIS0 atgbhWFkPfpakdy4YDyXaJ0BRmvl9T76c4ludqNCd+fYgUlWQd42CA9yxUCyHrpW5Kx3RQqM7BiI SNguI6/W4OiwDNatS4K2ttaEsf7ehISEhMadDhSG0LkiPYyQAUbI0LiADI0LyAAjBFsTtet9kAIj tlEBGTYqIGWjwlqyUYHvmiMt290dYw8mouYjhyBjyzoI8nMBTzcbDCNEU3SsVoRoes6Jg8jBDlEQ 2REY2ZBA+J9tMJDsICIiHPbsKRYuSUhISGgoNVYkw56ttkOm53QpunWG01rXGk5rNdaKtNu35fU+ ho0KSZFm1vvw2aHVkbbYMY2v9un2tlPpebuyISoiEDzcHbBTssHuyBpDyRoDiQVxRQ52NuBgv4zC yMPDHVJSUoAcxTHWf38hISGhca+WQzthT4bzkI0LSoou6QvCyLjeJ9Kw3ifMsN4nRD0KYmvKSjjT 2zl7rN+jodTe3ppQWlIM69etgYT4GBrxcTEQFxcLW7dugbKyMiCb0Mf67ykkJCQ0odRxohqKt7nf 8lqRrl4UadjAPcqNCoW70oTDEBISEppq6jvdcrw408cAI2SAETLACBlghHQgSo5CSoqOnUuk7ppj GxWQYaMCUjcqkEHWAESHWA/WlAgwCQkJCU1F1Zasg+z1thREm+M/h/jgeeDr/A9IjvyUHRuucUUy jGQQ6VxRhMEVGY+CCBl5+zZd7+OLf/8qD+jubE0Y6/dGSEhISGgMdLK5AnakuYP94jfhB9/+Ksya eRfMmG4Fr738HQj3maM0LhiPghgVjAxHQcgntSow8jWs9+FDrLtyNgq3JCQkJDRVVVFeCn//y2/g oQdmgaWleswE2UMnLfgjhs7im68VBetdET023F97FAQDUbC3CqMAPsQa4msLTYdFB5uQkJDQbRdc bIYbfXvgxpl8uN67m8a1HvzafxBuXFaPEr+TiomJgeeffx6srExgYWZr9+y3fwGrgj41wAgZYIQM jQvIcBQE2zVHUnQERMHe6q45AiJ/D6Q7CmJzagKcOXP6hbF4P4SEhIQmteDSyXzo3QE3TkXCtaNu cK3JEa4esYMrh+3gcqMtXGqwhYs4BhrsYeCQIww0+cOlUylw9Vz9bXcLu3fvpucQPfTQQ3RJ6jQz UPraVx+HFfbv6V2RoVYkw0gGkQIj4op8zJxL5Gk4CsJdfxREoK8jNNTvF25JSEhI6FYK+mvhRkcS XD/mDlcP22IQLYUrDRJcPiTBpXoJLuIYqJPgwkEJzh+QoB/Huf0SnN2PoG+/DfQdsIf+o/Fwubf6 lv+AJkdBODs7023d5LyiaUOcb/ToIw+Co/U/sSNaclONC4MOyfPUw4ht31aPgmDbtyVl+3Z21mYB JSEhIaFbpRsXmuB62xq42uQKVxpt4HID0oFo4KAGRhhE52ol6CNRI8GZagl6qyTowXG6UoLuyqXQ VWUHfc346104mX8r/n7kqAhyaN7MmTOHdEkknnziEfh03p8g3G+RUiuiKboAw2mtvkOc1iofG651 Re6GM4lc9du3SayKDITOznaXW/G9CgkJCU15XTudC1eOemIY2cClQ0jvig4i1RVRGCE4g2HUW81B VIUwiCToqpCgs1yCjnIE7WUStO3DUbYUOvf7wvn2PV/YSZSXl9NzjB5//HHa0DBtmJNgX3zxRYhY 6Q1xYY6axgWknNbKGheQCiNaK0KqK6K1ImSAEVJhRLZvuyBl+7a8ay7QbwXUHRQpPCEhIaFboqtt 6+HSYWcYqEdwwWyKTuOKqjWuqEIDIwyi9n0MRq17JThZiqNEghM4WkoQtJTaQk/zppv+wR0WFgbP PfccTJ8+fViXRIKcAksO3yO/r6J0B8SFO5tPz42iViSDiG7g1mzfdnUcfC6Rv6+AkpCQkNAt0+VT G2jjwmBXJKmuqJq4Ikl1RRXEFUmKK2rFcUoDoxYcx/ewOFYswdEiCZoLcRTbQNeR0a3pycrKgt/+ 9rfwwAMPjAgkEr/85S/hwIEDuq9dVpIL0SudRw+j5YYUnbmjIOz0R0H4+3rCwQMCSkJCQkK3RKSD rr/OEcMIqTDSuiItjGRXVKa6olOlDEbUFREQFRtAhONIAY58CRpJ7JagId8GOhqHhlNnZ+dsOzs7 eOqpp8BkMo0IJBJvvPEG1Neb7wQ8fuwwpKfGQbCv3bC1It1prUZXRI+CYCCyW8aOgliGY/XqeDh1 6lT6Lf9ghISEhKaiLnUVwLl6N+yKEAYR0ruiSqS4IuaMkOKKGIyQAUZIgVETAVEBgsMyiPIkOJSH oH6XBHU4Du4kr9g5HcsbBJLVq1fD97//fbjrrrtG5ZJI/N///R80NDSM6FiqK0sgLjoAg2kphhEy NC4gA4yQAUZIgZGNNYaYmyvs2rlTuCQhISGhW6UrZxugr8EPwwjxDjpDiq5cn6IjoYBIhpEMIhlG GESHCYg4jOpJEBhhEB3MlWA/iR0S1OZIUJONf01JAAycawsif5+amhp499134dFHHx2xuUEb5Pcc OXLkpgBRvq8YoiMCMJiWgouDvlakc0XLOIiWSrAUw8gaR2CgP+zYkQMdHR2Lb+XnISQkJDSlde1y z7Nnm2Khu2qZrlY0ZIquZHCtqImn6BRXtJu4IgYj2RUd0MCoBsOoOptF1XYJKrMkqMiyhhP1W8Hb 0wW+/vWvj6q5QRtz586Fo0ePfmHXUl+3H3JzMiExYRV4eriAvZ31IBi5uDhCeHgYbNq0CfbvF3Uk ISEhoduige690FXrzkBUxkEkNy4QGO0xUy8q0rgibYpul8YVyTCSXVGOEUQ4MiUo2ybBvgwJ9uLI Xb8Y/uc/v4mhNPSgrLlYtGgRtLTcniPL29vbXY4dOwZdXV1v3o6vLyQkJCRkUM/hBAykZQqMWIoO 6V1REVJdUQFpXECKK2IwQjoQ7d+BlBRd9XYCI6TAqJzCCCkwKt0qQckWBHvSJSjaLMGnH/wcHnn4 3lEBiTgqGxsb0XAgJCQkNFk00HsQ2qu9dPUiUisalKIrMJOi47UiAqMDmlpRtQwj7ogIiMqJK+LO iICodIsEe0hwGBVukqAAR36aBPGBs+H5rz02IpTItgc3NzcgjmbM3kAhISEhoVur3mNboaXUQU3P aWtF+RxEuw2NC8YUnbFWlCm7IgYj1RUxGBWbgdHujRLkpUqwK5Wk85bA22++BPffd8+QUHr44Ych ICBApNeEhISEJpvaD8ZCU5G1HkZ53BVp2rkP7JRTdJI+RZelgRGGUFkGrxdtVWFEQFRMQMRhRECU v1EDoxQJdm7AQMKxY70EOeskcPz8D/CVxx80C6WvfOUrEBUVBT09Pc+O5XsnJCQkJHSLdeVS74Mt VcG8cQGpMKKuCKmuiHbRIdUVbSe1IqS6IlorQqorIiBKR6orIiBKQwxEG5kr2pWCDDBCkJ0swXYc WUkShHq8A19/5tFBUCKriNauXSu64YSEhIQmoy6caYLmvT4URNp6kQIjbYpuuyFFJ7uiLRoYYRAV bdLAiLiiVI0rSlFBtAO7oux1Kogy10qwDUfGGgm24kiO/AS+/Y0ndVD67ne/C+np6QJKQkJCQpNV Z9rKobF4hfl27u2aDrpMQ61oq75WpIXR7mFglDMcjFZLsCVRgnQcmxMk2BQvwSsvkbZxtoLoJz/5 CeTm5gooCQkJCU1mdbcUQV3+ct7Orc4W0VqRZrZIgVG6oXFBUyuiMNLUinLXqzAiINpOQMRhRECU QUC0Wg8iEmlxEmzEkRorwf++/mOYOfMueOWVV6CkpERASUhISGiyq71pF9TucuGuCCmuiDUuIMUV MRghTb2IwAgZGheQ6oporQiproiAaA1irkiBEWIgimcg2hiHKIw2xEiwfhUJBL99/Sfwhzd+B1VV VQJKQkJCQlNBJxu2Q2WOE3NFGYZ27nR9OzeFUaqhi47XihQYYRBlrdXACENoayJP0RFXlKBxRbHM FaXEqDBaFy1BcpQESTjWRkqw3OETqKsTa3+EhISEpoxa6rOgbLuT2rgwzGyRrla0fvjGBV2KjsNI Ts8pMCKuKFoDIwyitRESrMGxOlyCRBy1FbsElISEhISmkjqO74OybHcoTNPXixQYbTDAKNkAI9kV rVZd0eaEwbUiBUQcRgREyZHMFSkgCpMgAUf8SgnicMSGStBwsFSASUhISGgq6UzXESjb4ctBhFRX tIGACKmuKJk0LiDFFbEuOqTCiDYuIAOMkAIj5ooQc0UyjCIQdUUqjBCFUUyIBKuCMagiHaH9VLMA k5CQkNBU0sD50y+U7QxWYaRt5042k6LTtHNTGGEIpcXyelEMc0YyiNZFqSk6AqI1PD2XyEEUz10R AZEMo+ggCaICJYjEsSUlDHq62dlMQkJCQkJTSAf2rsNQsqXpudHMFg1K0Q3RuKCtFSmuKFTSuSIC Ii2MIgIkCPeXIMxPgsJdm4VbEhISEpqKOtG0F/I2uysg0sHIOFsUM8rGBVIvWqmBEXFFwQZXFKAH 0Uocob4ShPjg/xZoC4311QJMQkJCQlNR5892v1aQGYxBhFRXFK/OFamuCOlBFIkUEDEYIV3jQmwI ojCKVmCE9DDyRzoYBfsgCPKWINALAzElBk53i6PKhYSEhKas6iq3Q0ay0+DZomhDis6cKwplrijO UCuKDmTOSAZROHdFKwmIfAmIJAVEATj8PSXw85DAd4UE5XvzhVsSEhISmso63XW8b8dmf7VWFG2o FUWojQtaGMUO0bgwVIou2FsDIwwifw8VRj44vN3xnxUXDO3tJ/PH+j0REhISEhpjNR4sgs1r3fQw 0swW0TRdiKZeFGSoF/lrYIRBFOqjwoiAKNBTAyMMIV8MIR8c3m4SeOHwXE5eEewrLRBuSUhISEiI aU/eekhaZcdhhAyuCBkaF5DBFSFeK5JdEWIgUlJ0iMLIW4ERojDycJVghYsE7i4I0lJWw+nuztlj /T4ICQkJCY0TtZ08ApuT/FQYGdu5zbkib56i8zKk6FbwFJ0MouWSCiJXAiIJ3JwlWO4kgSuO4EAP aDrSKNySkJCQkJBeLUfrIWW1j75W5G++VmSEke9wMCKuyFkPIxdHCZwd8O/1dYOqyjIBJSEhISEh 8zqO4ZSc4MNckdLObcYVaetFvFZEYYRB5OHCXJE7B9FyRwYiFwwiJxyO9hI42OHf6+0GlQJKQkJC QkIjqeVoA6SnroKV/rYcRsjQuIAMrgjxWpHsihC4OqquyMkBKTCyt5XAzhZBYIAPVFdVCigJCQkJ CY1eJYU5EBHiylJ0bpoUHXdFSorOiafouCtytmeuyNFOA6NlEtjaSLAMx5o1CdB66lT6WH9/QkJC QkITUI2H9kNaSjz4e9mbbVxQXJEWRhxECoyWSmBjjcHm7Ql5eeKcJSEhISGhW6DmpkbIykgDP28X 5opkGHEQ6VwRARGHkd0yG4iKioTi4mLo6el5dqy/DyEhISGhSabe3tMvNDYegsLCPEhNSYaoyFAI DPAGjxWu4OhgBy7OTrByZShs3LgR/5pCONoszlUSEhISEhISEhISEhISEhISEhISEhISEhISEhIS EhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEhISEpqC+v8BG15+B6K/ Oq8AAAAASUVORK5CYII= --Apple-Mail-DEFDA971-2DBF-4C35-84FB-9F630FA07B01-- --Apple-Mail-85114D17-98DA-42BB-A7BC-B3B99F08C4E5-- From owner-chemistry@ccl.net Mon Sep 18 17:49:00 2023 From: "ALBERTO BACH BENAIGES abach5||xtec.cat" To: CCL Subject: CCL: What is the best Python IDE for computational chemistry? Message-Id: <-55009-230918161023-24762-4k0EUdY1aoD4C9YJeSeqxQ(0)server.ccl.net> X-Original-From: ALBERTO BACH BENAIGES Content-Type: multipart/alternative; boundary="0000000000007e56160605a7baf6" Date: Mon, 18 Sep 2023 22:09:54 +0200 MIME-Version: 1.0 Sent to CCL by: ALBERTO BACH BENAIGES [abach5|xtec.cat] --0000000000007e56160605a7baf6 Content-Type: text/plain; charset="UTF-8" Hi, I would like to recomend you Sublime Text. It' s a powerful IDE with a lot of customize options. Albert Dpt chemistry Ins puig Cargol Calonge (Spain) El dl., 18 de set. 2023, 21:56, Andrew DeYoung andrewdaviddeyoung/agmail.com va escriure: > Hi, > > What is the best Python IDE for computational chemistry? I'm looking to > use Python for scripting, data analysis, plotting, and so on. I won't be > developing large codes. I'm a computational chemist, not a software > engineer. I'm running Windows. > > Have you ever tried online Python IDEs? Do you have any recommendations? > > Thanks in advance for any guidance you can provide! > > Andrew > > Andrew DeYoung, PhD > Department of Chemistry > Carnegie Mellon University > --0000000000007e56160605a7baf6 Content-Type: text/html; charset="UTF-8" Content-Transfer-Encoding: quoted-printable
Hi,

I would = like to recomend you Sublime Text. It' s a powerful IDE with a lot of c= ustomize options.

Albert=

Dpt chemistry

Ins puig Cargol=C2=A0
Calonge (Spain)

El dl., 18 de set. 2023, 21:56, Andrew DeY= oung andrewdaviddeyoung/agmail.com <owner-chemistry . ccl.net> va= escriure:
Hi,
What is the best Python IDE for computational chemistry?=C2= =A0 I'm looking to use Python for scripting, data analysis, plotting, a= nd so on.=C2=A0 I won't be developing large codes.=C2=A0 I'm a comp= utational chemist, not a software engineer.=C2=A0 I'm running Windows.<= br>

Have you ever tried online Python IDEs?=C2=A0 = Do you have any recommendations?

Thanks in advance= for any guidance=C2=A0you can provide!

Andrew

Andrew DeYoung, PhD
Department of Chemi= stry
Carnegie Mellon University
--0000000000007e56160605a7baf6--