From owner-chemistry@ccl.net Wed Oct 16 13:29:00 2024 From: "Ye Mei ymei-.-singleparticle.com" To: CCL Subject: CCL: PsiStack A Zero-Maintenance Software Repository for Comput. Chem. Message-Id: <-55230-241016113916-26289-t1JhC2aoTe4uvFszVG2GEg-x-server.ccl.net> X-Original-From: "Ye Mei" Date: Wed, 16 Oct 2024 11:39:14 -0400 Sent to CCL by: "Ye Mei" [ymei:_:singleparticle.com] Dear Computational Chemistry Researcher, Are you tired of the endless hours spent deploying software and managing updates instead of focusing on your research? The Single Particle Team is thrilled to introduce PsiStack, the all-in-one software repository that simplifies everythingletting you set up and manage your computational chemistry tools effortlessly with a single command. Visit https://www.singleparticle.com/psistack to get started for free. Why PsiStack? We understand that deploying and maintaining various software packages, along with their intricate interdependencies like GCC, FFTW, BLAS, CUDA, and others, can be tedious and time-consuming. The constant cycle of updates and version compatibility issues only adds to the frustration, taking your attention away from what truly matters: your research. With PsiStack, you can say goodbye to these headaches. A single command installs, configures, and updates all the software you need. Whether youre working on workstations, servers, or clusters running CentOS 7/8/9, Rocky 8/9, Ubuntu 18/20/22, or other similar operating systems, PsiStack is here to save you time and effort. Seamless Compatibility with Your Favorite Tools PsiStack already supports a wide range of essential software, including AmberTools, Gromacs, NAMD, OpenMM, LAMMPS, PLUMED, Autodock, PSI4, xTB, PySCF, CP2K, Quantum Espresso, and many more. We are constantly expanding this list, ensuring PsiStack continues to support your evolving research needs. Key Features Youll Love: > Unified Repository: Access a comprehensive range of scientific software packages for computational chemistry, including popular tools and frameworks, all in a single repository. > One-Line Installation: Set up your entire software environment with just one commandgetting started has never been easier! > Automated Updates: Regularly integrate new software and update existing ones to the latest versions, saving you from manual maintenance. > On-Demand Loading: Only load software when needed, improving both speed and disk usage. > Multi-Version Support: Accommodate multiple versions of the same software, addressing diverse needs for both current and legacy versions. > Secure and Transparent Downloads: Ensure user data security with one-way HTTP connections for software downloads, allowing easy monitoring by network administrators. Whats in it for You? > No More Manual Software Management: PsiStack automates software setup, updates, and dependency handling. > More Time for Research: Eliminate the distraction of technical overhead and focus entirely on advancing your research. > Faster Performance & Lower Disk Usage: Load software on-demand and free up valuable resources. Get Started Today Free Your Research from Software Maintenance! PsiStack makes software management effortless, giving you the freedom to focus on the science, not the setup. Install it today with just one line of code and experience the difference. Visit https://www.singleparticle.com/psistack to explore PsiStack. We would love to hear from you! If you have any questions or would like to learn more about how PsiStack can be tailored to your specific research needs, dont hesitate to reach out. Best regards, The Single Particle Team https://www.singleparticle.com/ From owner-chemistry@ccl.net Wed Oct 16 16:09:00 2024 From: "Tobias Kraemer Tobias.Kraemer(!)mu.ie" To: CCL Subject: CCL: [EXTERNAL] CCL: ionization / equilibrium / solvation Message-Id: <-55231-241016151832-29991-yKiin7jDsxV+2vDY7VhgTw:+:server.ccl.net> X-Original-From: Tobias Kraemer Content-Language: en-GB Content-Type: multipart/related; boundary="_004_GV1PR02MB8860FEFB153D0E9A8026B10C8B462GV1PR02MB8860eurp_"; type="multipart/alternative" Date: Wed, 16 Oct 2024 19:18:18 +0000 MIME-Version: 1.0 Sent to CCL by: Tobias Kraemer [Tobias.Kraemer---mu.ie] --_004_GV1PR02MB8860FEFB153D0E9A8026B10C8B462GV1PR02MB8860eurp_ Content-Type: multipart/alternative; boundary="_000_GV1PR02MB8860FEFB153D0E9A8026B10C8B462GV1PR02MB8860eurp_" --_000_GV1PR02MB8860FEFB153D0E9A8026B10C8B462GV1PR02MB8860eurp_ Content-Type: text/plain; charset="Windows-1252" Content-Transfer-Encoding: quoted-printable Hello Peter, You are describing a very common problem of how to correctly model the spec= ies in a chemical equilibrium. I am not entirely sure what you mean by obta= ining =93absolute=94 values that are comparable to experiment. At least in = principle you could measure the enthalpy change for the reaction you are in= terested in. Of course your suggestion how to calculate the energy change f= or this reaction (2 M-X =3D M-X-M+ + X-) is correct, and you could do the e= nergy calculations at any level of theory you like. Correction for solvent = are certainly important and need to be accounted for with SMD or other mode= ls. Now, the issue really is what is the solvated state of all species and = especially what is the fate of the anion X-. You could explore the possibil= ity of a contacted dimer pair [M-X-M][X] as you suggested, but this will re= quired a search of the conformational space of this species (where exactly = does X reside relative to the cation). There are ways to do this with Grimm= e=92s crest and the new GOAT algorithm in ORCA. You could then optimise thi= s geometry, also in the presence of explicit solvent. There is a SOLVATOR a= lgorithm in ORCA that can help with the unbiased placement of solvent molec= ules around your molecule.More sophisticated approaches would require Free = Energy calculations via molecular dynamics, possibly with the inclusion of = explicit solvation (and in this case you=92d need to do it for explicitly s= olvated MX and [M-X-M][X]). It might also be that the anion just gets solva= ted, and in this case adding explicit solvent around it would be required (= it=92s never a good idea to use polarisable continuum models on =93naked=94= monoatomic ions, at least in my opinion). For pka values the process of calculating the equilibrium is essentially th= e same, but there are several methods to do this. In the direct method one = simply calculates the proton affinity (well the Gibbs Energy really=85) and= correct for changes in the solvation energies (A- + H+ =3D AH). Alternativ= ely, one can transfer the proton onto another base, for which the pka is kn= own (AH + B =3D A- + HB) and this serves as a reference point. Both methods= can give pretty accurate values compared to experiment. In you case, could you possibly think about some complex that could scaveng= e the anion X=96, ie. 2 MX + M=92 =3D M-X-M + M=92X? Hope this helps. Tobias Dr Tobias Kr=E4mer Dipl.-Chem., DPhil (Oxon), MRSC Assistant Professor of Inorganic Chemistry Department of Chemistry and Hamilton Institute Maynooth University [Diagram Description automatically generated] Maynooth University, Maynooth, Co. Kildare, Ireland. E: tobias.kraemer|,|mu.ie T: +353 (0)1 474 7517 > From: owner-chemistry+tobias.kraemer=3D=3Dmu.ie|,|ccl.net on behalf of Peter Burger burger!^!chemie.= uni-hamburg.de Date: Friday, 11 October 2024 at 17:42 To: Tobias Kraemer Subject: [EXTERNAL] CCL: ionization / equilibrium / solvation *Warning* This email originated from outside of Maynooth University's Mail System. Do= not reply, click links or open attachments unless you recognise the sender= and know the content is safe. Sent to CCL by: "Peter Burger" [burger*|*chemie.uni-hamburg.de] Dear all. I want to calculate the thermodynamics of the following reaction with DFT. 2 M-X =3D M-X-M+ + X- where M-X and M-X-M+ are neutral and cationic metal complexes and X- is an anionic ligand. Certainly, I have to include solvation, e.g. COSMO to obtain a more realist= ic picture, by calculation of MX, M-X-M+ and X-. E=3DE(M-X-M)+E(X-)-2 E(M-X). But, is there also a way to obtain *absolute* values comparable with the experiment? Perhaps, by including X- in the outer sphere in the calculation of M-X-M+ and including explicit solvation with the real solvent and perfor= m MD on top? This would then include two calculations, one for (MX) . explici= t solvation and for (M-X-M,X-) . explicit solvation. This is obviously related to any kind of ionization process of the type M,H-X =3D M,H+ + X- including the calculation of pKs for acids (H-X). But = if I remember correctly, for the pK calculations a fudge factor is usually employed from calibration calculations to obtain the correct experimental value. Many thanks in advance. Best regards Peter -=3D This is automatically added to each message by the mailing script =3D-https://eur02.safelinks.protection.outlook.com/?url=3Dhttp%3A%2F%2Fww= w.ccl.net%2Fcgi-bin%2Fccl%2Fsend_ccl_message&data=3D05%7C02%7Ctobias.kraeme= r%40mu.ie%7C5ffb5b4493ac405829c908dcea13bf9a%7C1454f5ccbb354685bbd98621fd80= 55c9%7C0%7C0%7C638642617772937820%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwM= DAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=3DbSMC= dvn8%2BHZyHsEtqUIEXX07KCCTWoZ9j5sUV%2BEpmPc%3D&reserved=3D0 Before posting, check wait time at: https://eur02.safelinks.protection.outl= ook.com/?url=3Dhttp%3A%2F%2Fwww.ccl.net%2F&data=3D05%7C02%7Ctobias.kraemer%= 40mu.ie%7C5ffb5b4493ac405829c908dcea13bf9a%7C1454f5ccbb354685bbd98621fd8055= c9%7C0%7C0%7C638642617772977476%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDA= iLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=3D2LK7sX= tieTbAY3801baLq3%2BnuGoghJosCBIkF6WysWo%3D&reserved=3D0 Job: https://eur02.safelinks.protection.outlook.com/?url=3Dhttp%3A%2F%2Fwww= .ccl.net%2Fjobs&data=3D05%7C02%7Ctobias.kraemer%40mu.ie%7C5ffb5b4493ac40582= 9c908dcea13bf9a%7C1454f5ccbb354685bbd98621fd8055c9%7C0%7C0%7C63864261777298= 7630%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik= 1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=3DMRH0OWq8pd3UEHQKrIU%2B%2FGPv6J1U0= LOQDCNcVRmMehs%3D&reserved=3D0 Conferences: https://eur02.safelinks.protection.outlook.com/?url=3Dhttp%3A%= 2F%2Fserver.ccl.net%2Fchemistry%2Fannouncements%2Fconferences%2F&data=3D05%= 7C02%7Ctobias.kraemer%40mu.ie%7C5ffb5b4493ac405829c908dcea13bf9a%7C1454f5cc= bb354685bbd98621fd8055c9%7C0%7C0%7C638642617772997755%7CUnknown%7CTWFpbGZsb= 3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7= C%7C%7C&sdata=3De8CEbeou9cN49IM77hKujC0OKsxqF2XiM05hZn1FLcc%3D&reserved=3D0= Search Messages: https://eur02.safelinks.protection.outlook.com/?url=3Dhttp= %3A%2F%2Fwww.ccl.net%2Fchemistry%2Fsearchccl%2Findex.shtml&data=3D05%7C02%7= Ctobias.kraemer%40mu.ie%7C5ffb5b4493ac405829c908dcea13bf9a%7C1454f5ccbb3546= 85bbd98621fd8055c9%7C0%7C0%7C638642617773008024%7CUnknown%7CTWFpbGZsb3d8eyJ= WIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7= C&sdata=3DdtWv%2F9RiUI%2BxxzhjU3N0Q17HW9K4utPRw45inlQyk9M%3D&reserved=3D0 RTFI: https://eur02.safelinks.protection.outlook.com/?url=3Dhttp%3A%2F%2Fww= w.ccl.net%2Fchemistry%2Faboutccl%2Finstructions%2F&data=3D05%7C02%7Ctobias.= kraemer%40mu.ie%7C5ffb5b4493ac405829c908dcea13bf9a%7C1454f5ccbb354685bbd986= 21fd8055c9%7C0%7C0%7C638642617773028313%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4= wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata= =3DGmec6MSeQPJJf5qeOon3u9bBt2nuf%2BypTNj%2BPiYycAE%3D&reserved=3D0 --_000_GV1PR02MB8860FEFB153D0E9A8026B10C8B462GV1PR02MB8860eurp_ Content-Type: text/html; charset="Windows-1252" Content-Transfer-Encoding: quoted-printable

Hello Peter,

 

 

You are describing a very common problem of how to correctly model = the species in a chemical equilibrium. I am not entirely sure what you mean= by obtaining =93absolute=94 values that are comparable to experiment. At least in principle you could measure the = enthalpy change for the reaction you are interested in. Of course your sugg= estion how to calculate the energy change for this reaction (2 M-X =3D M-X-M+ + X-) is correct, and you could do the energy calculations at any level of = theory you like. Correction for solvent are certainly important and need to= be accounted for with SMD or other models. Now, the issue really is what is the solvated state of all species= and especially what is the fate of the anion X-. You could explore the pos= sibility of a contacted dimer pair [M-X-M][X] as you suggested, but this wi= ll required a search of the conformational space of this species (where exactly does X reside relative to the cation)= . There are ways to do this with Grimme=92s crest and the new GOAT algorith= m in ORCA. You could then optimise this geometry, also in the presence of e= xplicit solvent. There is a SOLVATOR algorithm in ORCA that can help with the unbiased placement of solvent mol= ecules around your molecule.More sophisticated approaches would require Fre= e Energy calculations via molecular dynamics, possibly with the inclusion o= f explicit solvation (and in this case you=92d need to do it for explicitly solvated MX and [M-X-M][X]). It = might also be that the anion just gets solvated, and in this case adding ex= plicit solvent around it would be required (it=92s never a good idea to use= polarisable continuum models on =93naked=94 monoatomic ions, at least in my opinion).

 

For pka values the process of calculating the equilibrium is essent= ially the same, but there are several methods to do this. In the direct met= hod one simply calculates the proton affinity (well the Gibbs Energy really=85) and correct for changes in the = solvation energies (A- + H+ =3D AH). Alternatively, one can transfer the pr= oton onto another base, for which the pka is known (AH + B =3D A- + HB) and= this serves as a reference point. Both methods can give pretty accurate values compared to experiment.

 

In you case, could you possibly think about some complex that could= scavenge the anion X=96, ie. 2 MX + M=92 =3D M-X-M + M=92X?  

 

Hope this helps.

 

Tobias

 

 

Dr Tobias Kr=E4mer

Dipl.-Chem., DPhil (Oxon), MRSC

Assistant Professor of Inorganic Chemistr= y

Department of Chemistry

and Hamilton Institute

Maynooth University  

 

3D"Diagram=0A==

 

Maynooth University, Maynooth, Co. Kildar= e, Ireland.

E: tobias.kraemer|,|mu.ie T: +353 (0)1 474 7517

 

From: owner-chemistry+tobias.kraemer=3D=3D= mu.ie|,|ccl.net <owner-chemistry+tobias.kraemer=3D=3Dmu.ie|,|ccl.net> on = behalf of Peter Burger burger!^!chemie.uni-hamburg.de <owner-chemistry|,|c= cl.net>
Date: Friday, 11 October 2024 at 17:42
To: Tobias Kraemer <Tobias.Kraemer|,|mu.ie>
Subject: [EXTERNAL] CCL: ionization / equilibrium / solvation

*Warning*

This email originated from outside of Maynooth University's Mail System. Do= not reply, click links or open attachments unless you recognise the sender= and know the content is safe.

Sent to CCL by: "Peter  Burger" [burger*|*chemie.uni-hamburg= .de]
Dear all.

I want to calculate the thermodynamics of the following reaction with DFT.<= br>
2 M-X =3D M-X-M+ + X-

where M-X and M-X-M+ are neutral and cationic metal complexes
and X- is an anionic ligand.

Certainly, I have to include solvation, e.g. COSMO to obtain a more realist= ic
picture, by calculation of MX, M-X-M+ and X-. E=3DE(M-X-M)+E(X-)-2 E(M-X).<= br>
But, is there also a way to obtain *absolute* values comparable with the experiment? Perhaps, by including X- in the outer sphere in the calculation=
of M-X-M+ and including explicit solvation with the real solvent and perfor= m
MD on top? This would then include two calculations, one for (MX) . explici= t
solvation and for (M-X-M,X-) . explicit solvation.

This is obviously related to any kind of ionization process of the type
M,H-X =3D M,H+ + X-  including the calculation of pKs for acids (H-X).= But if I
remember correctly, for the pK calculations a fudge factor is usually
employed from calibration calculations to obtain the correct experimental value.

Many thanks in advance.

Best regards

Peter



-=3D This is automatically added to each message by the mailing script =3D-=       https://eur02.safelinks.protection.outlook.com/?url=3Dhttp%= 3A%2F%2Fwww.ccl.net%2Fcgi-bin%2Fccl%2Fsend_ccl_message&data=3D05%7C02%7= Ctobias.kraemer%40mu.ie%7C5ffb5b4493ac405829c908dcea13bf9a%7C1454f5ccbb3546= 85bbd98621fd8055c9%7C0%7C0%7C638642617772937820%7CUnknown%7CTWFpbGZsb3d8eyJ= WIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7= C&sdata=3DbSMCdvn8%2BHZyHsEtqUIEXX07KCCTWoZ9j5sUV%2BEpmPc%3D&reserv= ed=3D0
      https://eur02.safelinks.protection.outlook.com/?url=3Dhttp%= 3A%2F%2Fwww.ccl.net%2Fcgi-bin%2Fccl%2Fsend_ccl_message&data=3D05%7C02%7= Ctobias.kraemer%40mu.ie%7C5ffb5b4493ac405829c908dcea13bf9a%7C1454f5ccbb3546= 85bbd98621fd8055c9%7C0%7C0%7C638642617772955772%7CUnknown%7CTWFpbGZsb3d8eyJ= WIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7= C&sdata=3Ds5PcJFaU3%2F9hVkE%2BRyGgs3Ka2%2FP7P5DTOIOObgtdQxc%3D&rese= rved=3D0

Subscribe/Unsubscribe:
      https://eur02.safelinks.protection.outlook.com/?url=3Dhttp%3A%= 2F%2Fwww.ccl.net%2Fchemistry%2Fsub_unsub.shtml&data=3D05%7C02%7Ctobias.= kraemer%40mu.ie%7C5ffb5b4493ac405829c908dcea13bf9a%7C1454f5ccbb354685bbd986= 21fd8055c9%7C0%7C0%7C638642617772966929%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4= wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sd= ata=3Dxw4DvJilf%2F4gQT5plbm06FvfJKn4olwgvLG7qpsf%2BTs%3D&reserved=3D0

Before posting, check wait time at:
https:/= /eur02.safelinks.protection.outlook.com/?url=3Dhttp%3A%2F%2Fwww.ccl.net%2F&= amp;data=3D05%7C02%7Ctobias.kraemer%40mu.ie%7C5ffb5b4493ac405829c908dcea13b= f9a%7C1454f5ccbb354685bbd98621fd8055c9%7C0%7C0%7C638642617772977476%7CUnkno= wn%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVC= I6Mn0%3D%7C0%7C%7C%7C&sdata=3D2LK7sXtieTbAY3801baLq3%2BnuGoghJosCBIkF6W= ysWo%3D&reserved=3D0

Job: https://eur02.safelinks.protection= .outlook.com/?url=3Dhttp%3A%2F%2Fwww.ccl.net%2Fjobs&data=3D05%7C02%7Cto= bias.kraemer%40mu.ie%7C5ffb5b4493ac405829c908dcea13bf9a%7C1454f5ccbb354685b= bd98621fd8055c9%7C0%7C0%7C638642617772987630%7CUnknown%7CTWFpbGZsb3d8eyJWIj= oiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&a= mp;sdata=3DMRH0OWq8pd3UEHQKrIU%2B%2FGPv6J1U0LOQDCNcVRmMehs%3D&reserved= =3D0
Conferences: https://eur02.safelinks.protection.outlook.com/?url=3Dhttp%3A%2F%2Fserver.c= cl.net%2Fchemistry%2Fannouncements%2Fconferences%2F&data=3D05%7C02%7Cto= bias.kraemer%40mu.ie%7C5ffb5b4493ac405829c908dcea13bf9a%7C1454f5ccbb354685b= bd98621fd8055c9%7C0%7C0%7C638642617772997755%7CUnknown%7CTWFpbGZsb3d8eyJWIj= oiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&a= mp;sdata=3De8CEbeou9cN49IM77hKujC0OKsxqF2XiM05hZn1FLcc%3D&reserved=3D0<= /a>

Search Messages:
https://eur02.safelinks.protection.outlook.com/?url=3Dhttp%3A%2F%2Fwww= .ccl.net%2Fchemistry%2Fsearchccl%2Findex.shtml&data=3D05%7C02%7Ctobias.= kraemer%40mu.ie%7C5ffb5b4493ac405829c908dcea13bf9a%7C1454f5ccbb354685bbd986= 21fd8055c9%7C0%7C0%7C638642617773008024%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4= wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sd= ata=3DdtWv%2F9RiUI%2BxxzhjU3N0Q17HW9K4utPRw45inlQyk9M%3D&reserved=3D0
     
= https://eur02.safelinks.protection.outlook.com/?url=3Dhttp%3A%2F%2Fwww.ccl.= net%2Fspammers.txt&data=3D05%7C02%7Ctobias.kraemer%40mu.ie%7C5ffb5b4493= ac405829c908dcea13bf9a%7C1454f5ccbb354685bbd98621fd8055c9%7C0%7C0%7C6386426= 17773018334%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJ= BTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=3Dy2jLwIfFms9OEXF2cUSbJV= %2Bk90Oiz7nijUHp3CBNgPo%3D&reserved=3D0

RTFI: https= ://eur02.safelinks.protection.outlook.com/?url=3Dhttp%3A%2F%2Fwww.ccl.net%2= Fchemistry%2Faboutccl%2Finstructions%2F&data=3D05%7C02%7Ctobias.kraemer= %40mu.ie%7C5ffb5b4493ac405829c908dcea13bf9a%7C1454f5ccbb354685bbd98621fd805= 5c9%7C0%7C0%7C638642617773028313%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMD= AiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=3DG= mec6MSeQPJJf5qeOon3u9bBt2nuf%2BypTNj%2BPiYycAE%3D&reserved=3D0

--_000_GV1PR02MB8860FEFB153D0E9A8026B10C8B462GV1PR02MB8860eurp_-- --_004_GV1PR02MB8860FEFB153D0E9A8026B10C8B462GV1PR02MB8860eurp_ Content-Type: image/png; name="image001.png" Content-Description: image001.png Content-Disposition: inline; filename="image001.png"; size=25992; creation-date="Wed, 16 Oct 2024 18:52:07 GMT"; modification-date="Wed, 16 Oct 2024 18:52:07 GMT" Content-ID: Content-Transfer-Encoding: base64 iVBORw0KGgoAAAANSUhEUgAAAM8AAAB0CAIAAACt7vG+AAAfbHpUWHRSYXcgcHJvZmlsZSB0eXBl IGV4aWYAAHjarZtpdmM3koX/YxW9BCAwLwfjObWDXn5/F5TSmS67yvZpyylSFPkegIi4QwBy53// dd3/8F+NyVzKtZVeiue/1FO3wZPmP//19z349L6//9b9+l349XVX09cvjJcij/HzYx1f7x+8nn/7 wPc9wvz1dde+fmPt60Jfv/i+YNSdjSf750Hyun1eD18Dcf18npTe6s9DnfY1le8Rt9/+2eeduthn EPzsfn4hVVZpZ24UzU4M0b/vXx+K+hfi4DHx3XgP442F5/zn3i++58qC/DK970fvf16gXxb5+5n7 /eq3+8eLb+PrHfF3a1m+1ognf/iLkP948d8S/3Tj+GNE9usvaiWwv5/O1797d7v3fGY3UmFFy1dG efe9OvoMb+QiKb6PFb4q/zLP6/vqfDU//CLk2y8/+VqhByMq14UUdhjhhvMeV1gMMdmxyqPZIlB6 rcVq3VZUnJK+wrUae9yxEb9lxxG5FO3HWMK7b3/3W6Fx5x14qwUuFhTyP/ty/+mXf+fL3bu0REGL SejDJ8CmFGUYipy+8y4CEu5X3PJb4O+vr/D7nxKLVCWC+S1zY4LDz88lZg6/5VZ8cY68L/P4KaHg 6v66AEvEvTODCZEI+BJiDiX4alZDYB0bARqM3ECfSQRCzrYZpKUYi7lqzXRvPlPDe69lK6aXwSYC kammSmx6HAQrpUz+1NTIoZFjTjnnkmtuLvc8Siyp5FJKLQK5UWNNNddSa22119FiSy230mprrbfR rUcwMPfSa2+99zHMDW40uNbg/YNXps0408yzzDrb7HMs0mellVdZdbXV19i24wYmdtl1t933OMEd kOKkk0859bTTz7jk2o033XzLrbfdfsePqH1F9d++/kbUwlfU7EVK76s/osarrtbvSwTBSVbMiJil QMSrIkBCm2LmW0jJFDnFzHejKLIxyKzYuB0UMUKYTrB8w4/Y/Ra5vxQ3l9tfipv9t8g5he7/I3KO 0P173P4gals8t17EPlWoNfWR6juhnJjd3WDXSnOWO05kYjePVi8LZjsDh43Vv7x935xnPKHGMLlV nT61NsC1BP4sWGSvXO5et1UmM/vqdRY/9t0nEblxy14jhlpKu6ZVZjIxdpt5M/c9R7I1R0vLBT6Y JyvDpOGltIvFG9Jui/jVGaP17muGA8vsuxPC2cOdk2UpMWUAPOfAtBzTb/nkbuWSEP1sizP2G6n6 VWNuTDeWFXOud+9eT1o7+m133xRqH3etW+adlalpBdbNhVFxoXMiy9LrIhzQ9rqH/CGDQ6m2V7i9 SmAwAYIV51oAfSQfLtwfV4esN9e1vCK/4KLByKBZuoosxLPLIF/RB4E4lDu7bk54d579hDZbL47P 87HYSyBnduGqo3Z/Jy/lvPWBSZpxparMZXBWuU8rPnZWrazZc9H8ScjOFW6Fdvzxp5Fqm2RidYpx iXxCJnoUXAHSB6rMGKMRjoNoOPNGEpFsCM7invksrX+n4lbJ6c00gSY913nKmCGuPdLeKYfRVUWd kgl7HZvLn0TqhOOM4BEFrjR2X1tBpnrKWiFXC218pWO1ev24jOBQI+JHlmyGMeoqysDluEPPlD7J OMo1yPH4xvgqE2GtUyEKxxrl0mcsyKI9Wa1xTtmkBXdamyxbw3XGZjcbr5A5UDAfDD0uf8c4/TL6 6+vqrGs724MVI7Vepa8apA/CWT0j5cLUzm0EK12F+5COxvowkETos5+dVI2ggIExoaw2Ul2zZVaI PBpbSRVzv8slPj8ngHZAM6quDbL5VWi6MxGINQPsv0oaPRyprXpZmlw3lWCBt0TAuA7XrHDTpOQj c1mBmVpY9QAiYDLws30HFi7hHBU8Ion9jCuCeAuUunlu8Mw35PGpfq9VZ0Yg7zv8IMUv6QLC3uZv jaNCvAytjDvIYio8+bDmjAk5RFAredCcR/gsrekiTOf0WYBJ8NWuYHESkMbcByxYTzGvGPt0jLTK kc+Tbg9YsyMa8+j6OxcqGhQBgyGjA+q2NdcU55wMiA3ql5w7h7Ro5ECqZ3FbS83WyW7tVZACZyzI LI91uD/ZFivyitxLFCFjDIlBbaCxV4hj7blISMp4AVH3aKqOxGGSCRwq/voFK4CKDGMJAgGTAwzu YaasqYym9uVJ5q7SoQQukAzYl+tG2eAmPHf2LsD8vCSO+IM3E3cKKXQ4cMa2gLJ1B9VCenjCurbV Ffvw3G26RLJFShEMALkYBXBIOFkmUKOSdrGN3chSwsh8CqNHP6vSQJfMjNMGD3dwPafGyChM4FYK 9sKWzMRLslIchdgQIW49T+Si5AfoEhbqNgoIE3V71kkuwKDMmY+tC+zPmQdKGTojefMgoUhxWITP 7zspPpueCs7wSr4g7W3rgCfVI49ZHOg3Tc278WRRHKGfxvI3qAcCTjwH6j0Ei34gs0n7Pm8ahGFw q5r7dO2ixUHkdsOG3TewQ3WpCNrJyXeGc7dmClpQc8NmA0aZPKyOQrjLyDLQyqlOkfZAoSJWziAv YWDcWeLj4EN9LKMI3UP6871hX0MFZPZAIvS+IYbusu8BXiO7WY/ew94EXPQ9iVlGVe2MDF6V/AK6 F1W0511MZ/S8x4zA6hrgnVsyLVEwSsl5wN2Tt8Ro7AQUQCRhpzLaUZpPT0JWURXVROU1ecklVUX1 a5YeMgQP0RFRGY2muGYg/Z6oKkSA17pA5BcQzGhMcmkjz29q825JBGQfgr2h6SpLskMRn6tMkWx9 UVXM7+j2JwB9lbyjvHawBVMFUpHKhYtKYemKYwkSULOppAL5U7kBltgx5ISoQSoybvInH8Brk37z UNsBSYOdmkIbU8b6hRhlxNwdHXUTOiPkS+TLYaUo+ZtxXABRigBVpM5JA/J/58YAHiLZAam4o4sA A1qJWj1SdeA64IuoJckXd60+zNxr5FZhH7D61lYqoeYVJoroamd5mMoprzCnG20An7WDZT9ADj8l ZGeBKuLKmEAynKAPwtFjRewxgSkyptRMAtAVYojc85dZD+pY5In+ZPTiSFAESBgbwoibbKDMW4ck bjqkSqL+iSCKaU+3wqZ8xwbRkcTME5htEAqrz2wL6h9yhx/7QS+DDQndSBm1M1F0o18S4+6uzKYc JsocdIMBAQuRS4Sunx2bCQykgGA81SZDULXEwyLYHnmynFehRLEBlzlQRAoekROnw/XI28wNE5Q/ fD2oPUoS9/fg+ivhUHE4PdBuBvLUhdw+iWoP3AKUgMOeTZr5xR2c8me1kwJgu/AE4GSWDBJU5bsZ wcpxuKNsMwAFRdyhQVQXAu5UOCyW3FslVZgYdQz/6G3bU1R41n76Otc2BgTTuRzq9s5GTUHV8Tap AqiwwUdksw2yp69pqIQZwaW5lbfxyWByDnm/xXlxTAfmoac8w4Je9jGwA6XQOmIT7EFCkbUZEE2t xghaL9RRhg/APrl4VKd0bIlOKEC9JJbqCgSluA1fECJ12VlrYeZs6G4SaI0kqZ0oHEp3L3gKVYws sO0S9+wAeY/A+kQtkfgHrATLhft94Bc8ELYw9CUifoC0ONGQ0ETDmU2+wfNIv4CpQrs0SMD8eAoa tMTn4XmYmrQzMp/iWPPpYIwhGeRrZa0Q4JQeuoGERIcG2J7MJj0TnqqhZzbrwDKUlJ5OpkZY2IQs pi64sbQ5hLAiEjlIop3iySOW08PvRL5tqhcVhmZC+2GVmK1JlQfujPDdcGBBAnMdVKeYHt+BZbQ6 tqNoqC+0s4Bz1lRsQEeo91QLqkkpQWGsjF5h1ldwiIdBS5wDqJpqQboiAP6IlixqoPilmdFfqJXQ 0d9UL2qDoDGFQxG3ykIXMTH2FLNHxk2rbxJYCOBUWrdQiCdheQavgHlMh3JluZH9ht+C1GBPfDJB krgf8cIiRUUbQSLvWN/kcR3ghoqVapzkKepLlA0FolNIr5NIzcBdCs7tMnGIicATtsuvZXpRtcgG dIpnmSIoXR6E4ZHQp5UKZeVQDr0KFSv4PM4SBuATS5HSGCAubrZjaoQqvJc4GZKA8jgCpASmLCK2 EehGiUPlKH4UKtMi3wdaJ5lKvLJeGDbUCEsLasgcgtgFZikwxUQzzgV1Z4pgMnrS2dBCJikOBDVF CpXxBJqHBd1BknGHQ1ETXhge2mSeQ+oUH90LjqL4yVyBPDK46oEfMygqHYn/UGCGQ3nWA6qpCAcU fXFPIAyghtHBJIKBKXlkwpWaW4cI4bbsa3kWKDYT/AZmI3t5De2KrcSM4mtygEnrS86kxAriBGCx Jjg4P6wdAZrCuQ9VRE+pULToIPU+T0RJEnZ5hkMhrodFQDW8RCbUJDFHJsmqYSeB4DDxeCYMo8Cy 65SC1ogbYdEs42jhs0nCUzmhFEzTGgvOgJoQ2rgTKdYh3AOrO4yCsp2yEBj0C2kvNWeQiRGDExl6 Tki0DQPPdqERzY5JI5guwcJCRWplgplIZ3AtdyfDC7Id9bQYDYpNNKrE81fEesCGibqTJ8D2oPbn kEXpABjOGGmMYSPUDkt2EtyHSpf12wAY5BQ+yptirBE7JdmLXY5+ME9uUTfKyHso2kPqwH3H1BDF 1hB2eEapvINuNVzCUOxIfs8KMwAKAZHNnQ4ycj41EwE8XzqVSbpXMhsfOZJ0GiuMhOhVNhC1ZXzD 6LBAeTHOWOV24Wdkkcx9lN1KsKXmY9FxiepBZ5Q8aplVuCQZIgOc16YKfugKi9BB0mtE25DgTLSz 8s0jaXApmIngILJ5n1vmH9jchU5PQwYA4DVTuPGnidD9e/RIS+b/aKIwN9w4XoQHaQwkmwaIQJ8y n1eOUwK81o8Az2F1oJ3MxiJE6QKPwcZQZUgzlZacHVJCW0QdO0YSo7SpmAUQom1NIpyx4ni5yQF0 uU9cvC+g9vpMCy5fUiGJhKR0iBM5RBEV446z+NcYwAhWeHQjLUqXfAWPwzEUG/BL/VvBZShv0R0H v+bVSEiYM6EPqqrcao/zDjavoQs6Pp7Qs0ChJhSmiA+8KEohWV1hOLXWNY+tbSMQDcPR4QVExUYS gRWYAF5XNsO1rcG8WBrE7saPb7OCUQA34EkH7oO1F+VIVqmZhEf14ExEGOGNsd1c5fZEvpoUNIxd 1LUoeBdrIAE5Bw9jjhHfoHhnVFM9DgQOTPAKEURoECGrz52D8lgtW4qkL2mdtdX9ywCWJLQrk5qA e0AhGKtxM9aEsXTtvhUV7WVwlFNWbwN3JO9BjcFuF6SEjZWuuOxAfVav4LJCivm6SE+pb3UXLxMB RtRfQZJguadEJhmm5ihF2D5rz2I6tZi2mDEAA3A5c0TnXFCLNU4pLaQ570YI+KomFfoIvTKEmUSx FHhxeFbBIZtHAymA3Akyrd4wSONunDBMVATNGTo01cPg06KxjqeY+Mms6mYZFoFyXuDUPlOhuJeM OYFSZxSQ5jqwG2nU1f+keiJiFjwHmxFyEAWXrY14gEd4FjOSowTJNvHEUX2iOEAnTBEJA9rLygq/ UJmMvePhcOAoRerz4CasOTy+emXSJy3dhHmCvYyVUt82SOLCS8lgBy2vj0dSv4rQLwARCsWVwrbs MjYSBwiSoLqpN9ZXCDkihhidjXyLbT4rBeeMi4wERKkqhNhE28QbUQxIYAe+TnH9RnCVUaGebBjx gIYvnkliDEes0mi3U7uJErPUWF/NXB5Sio3bOGR8P0w8Ik/DRkUiPyqCL5F3uMmpXlZ9ehmski5V fxznvZDUxaN041RDvrmpNgwGYkMe1QP1eDXmEtRfhPiBwaELJ49vrImK1F4RBAxSJ2SY9E7WXinh HyQJtgfskixDfcWcBkMjXQLmpggHlzQbOKkGE4vC5TdlWYHjB8ZhmKtXuw/3EHW16IA7BHRW/Jq6 RRg/EuKZDDJZXEemoQuFihQwlhx8J7zVdVCsVHgwYxIsoxER1Gp89VCAwyEOMgjkwq3bFFMpjSd4 1tv84Spox+EwHAwG7QcUDRwsaBVgReUu3g58hmU7SotlnwsBbDBaykZurqHm8PQtIMwQ7F7rM/AO zE4OL8OhIdVAli5lMaiHb/6oa25AjWzEKeSoljbu4XCpPiryGHRlpAMMu1Axqi4gDvo+s/eJ/e8y HFMuBWlmMCsOA/jd7fVl1GMU3AyXpZ9bGqR2wbGiOCtr1qSCDes4xbzB25KhhEMRNehy5guYXpnY JXOQDwjJqnIt0l6d0VPVIAJTzpza7Iwy7EU+YalrlOT1GB5jObhl3p2Ltk6oO4e81H4Asi0m9ewo bQMs8WOnvmYiRFZT1GSkR8YYpNTZfjyFqdWmZFh5twpWqFvi6kUtbygE3yXYj+StPgvIwbcA8AFD GfERHme5X0LYMoFexMPBw02QShmogYY/4oKEs5Dc1DrxHPu8jRaYITevzq8FcC8aE9IZC+CbULrK zywaBpxsOBXfCxgTyTYr+RML6zWuSVIChPsK0EBA6FKyGMk4mQ+J4x3WG1008N7dbLzG2xG7Ew5Y GVMKjmGpoTQKO4YGBL/lJcAiQ489UwtlOsR1RdES0AIRKUcBdKq1T8CIrHsetQtRwjO1BWwg02sB 3bya7qAyqg9POy7ptEnnmkvmFSs6aYDnXQ1JiF3Ca8GY1C8akDxllUjTceS1PwJMrRvvsJcom1HS orJanJVgHoqfOFNojJZXxVsHZwIky3+TUWi0ilSDsZlZx7l5d7N8SU2HBDxqf5AdxB7F+A4kkGHE 99z+OtPITZ3hSFWtS7Llp86rU+uVYvXvCBCXR83f35ThtzDc6FCwE/n2Z4/u6wk003ee2oyCne5B okBlaroAO3BpFIzHLUuAvwmG5AWs8U5TyI+CdfmmTX0D0F1+ncBnuZ8cbVaoSh5Nm5qnorXUjX17 ATg1YJGFl76nsNSJ8AIBQajKFFpuEozasYZV0f8dYEbA5ATILLUBIk6EN8aA8vPd0DJdp62us7fH ueC1pF4fGkL9euT8RDGR4OhWybyr/R7oBJUStQWVvQCnwQAdLiS67oLUsyd4ggmRyeSEUHYQ+mtE JgGagHPUSFkr8RuKAH6SwjrrDo0VcpJiY4nu1jIxAllsCLMhpYZ8s6QLE/20g4o6dbPg7ilN2IxU QzFR3Zhnh+kGEIoKGgMakOF9zYiwjV6b4Ng3lBVKHL0cqIFcqWS0QY94YCk9pglKr+CmOtO4Jz4A 6YCMgA8vASkeWU6Go2TRGA3jRAGCvthjnPPpCFyANKQAc8eAqj2FXFCfEynb5DES8sfUepxMjLxG tc0ZZUG0/8DCBMbaOpjKcpO5candgBVNRnCRvHyo13gLvhojCW1qWw1pQ32r8Vt9MXvOiexRXnlZ F0Sdb2P25XRkBv/FzWGA3N/+JxFF1QFt0rknUlcwSe9v5zYhJa6c6GJYuBfAsOM9NlNDCj0jDpCP vI/asyfp3uW1SpRn6v13nd5YR0Y3qHdDnE0T+TTnoxtohL4pcvXKUWIjJaQaMImhLRRM0BYH+NRI JT4YEGVDjRrUQbo2MxU3J6ZXm5mULROH2gkXyrnv6ck4cvh1VLEx2hO2JizUmSOILSB50gHyE5hR g3b/HYNWQ6ThTYfq+JaFzVUrhYl59eowjNrlVwwI3zxASkQsQQ7as9cxCRIZhPycKiy43CTSX57K gNKr9hs6Bg5AQRhgDbysPsaUtUf6awqALlyKiEXAu6ldk3S0KUs2Qm43F4lkZCgsiIRGZfsVKimN PkFMGGlPNBgJbI79kiQue6lZR5QgmaV9tsN7Mn5U23m4TCgXzkPlQPE6XAUHloe5UAowyLj4kTtu W45PrKdWRRykI7hhoXVtM3i1uQZwuDFATUSmlVFfhGWb2rm76Ak0dkfNOMoYO7bfflbSbj2D/xzn oSK6pLT8bMIZvXZIWQbiU6yxgsOg0dApItSCC3I+YPW+82UcwVSvmGtFHUjwTCsoyP/t0X0/AZaj zIq8A0SJXEzqcYylrVidcSnFPph04UEQCrOhZoF0I8DdteHLcBFX+z1DyTbtCWHtk0FDHURAaPnQ LtldMgiJjBH1IIraQEcswo60/R6R/UJUqdT8dk+9fLn3lEpqOgoHvCTtvoFiXb0LVi1/Puj+nPL+ 3uN/utAgT46aYUPtIm0qrj4zKCpXus+ykafoWoceDHOszT/iiWOnNlZm1bXvDTvi6MA1EF84ph2k TSKDUayol5CLVSTDokJQ14HAm7yuxzyOnJLAj6QqZXTzgk646MWMbFggdgZ3wNe3eTIkqrTpBNWT KE7WS8d7SFGPIRvaRlsRJjqBzJLWIBExNQCgDlgcqR6vHa6EClgNPTAaMW0OxQFbIGiyNLpOa5BE 4CPJqKY4jOvhhTp0aqKcVxejT6+TZ7PxeyQADslTtFdiDLWX8ypdG6fAJxmDL0VSATio/fzZQMRG r9wYknZcDfatSZtxEBL3ce0A6+pvZJgvUlxiCZy93aHuBTiuI1Rh4WhDL6CA1AQQi9FGa4EA6O9T QnO7qjkFDdemrYJ1uSXwweJ06DgNmUr1dktWW0un3RCz2DqRS6RKcRmIgZzcZHmxMKfq9KBNL4+h PgulYBgpnWnCchFFAKBkhA5CKshp+6yTN3gBOEYNTQtSK3htVKOUv125F3Wnuo7ZUJAbGYG1QrR5 LK2H8pSUiC8onLupLVpHcnnqJEoBA+HGi8/ziGE1nVDGTecjdRqjvrNeqE1vyCryXZ26oQ0ppKvO iK3khjp+S+1EAtGRKBgTED6hVihvHTRnxXVs4dqDkYaf0/a3hN3iCl2JgkN3HQHuG1ItVJU2nq2o y87ioHDTucBR4ceC5DPhljYRik4EMQO1rbvnfpCOQzQjQMJBR2TMR5b3PjvIhujcxcU28z+K6dEe tKnTvijeorUhH8isMmatjqpsdiSHYVO8XZYhelv68Z1FirLYgH4Bo6E7wDCrxR7ArFx1NAp80pFf 954lNcH/0WOQ9wokqOPCFNhGfBBeAHrVWym6q2Y9YLKDFFhhhDXfuF+fXKdUkbLAaIsbb7dRzdMB 3nYROl766W2lADntvMM8oyw1VbWRJl2i84dcUKCzwB5KoVttq+q83XbAGOaVyCARQRgCGd5hI3Wf 1J/QuQxtUWqrSlsbF7jYTxwkHcDXEar8piZl1vtkUPFin0jUerVtGoNaHVnitIgcotpFslZMYQdS H+OrHRRDMve8p4v9BjnaBSBjqnBZTVu4s3hJUv2QAWeyyj9vu1+3FJUV1YIroSKns7S0A8aAUuA1 IYdSIMGqzp6UqLNMLWEmQE20D0nx/tBB/ScsMKlmWX0LsFWHZqNDQGFGgZ2LxjQdkmK5rMFWOjrA 0NVMkn4lRQeEuRFGGEC1MvlkX8gJHXa5jliUFpHirzfVNgXFtfo7c8gAZ7536vgOUwTXwWEsVlan DxOEv9IJVIWtO5AMKUxs0eJRGYx8gq0wI8hdHBmJTS4jAyBrnQPwQxhCRLVvlTMCFwQar8eGoL3a F9DhTagG1XYIIu/xcZG6BVPCxXTiF9eOAgWiMmtNRWql1enQyVFH+unAC+IKQMNWgmaS+dDdxPyR veon4L7b3TCIAIEyUDs8q/Uatb1ERRfCv8W8daq9J2ryahqS39wapbQXVoW0QZ9X8BFJUqw1tXSg B6/TDOp1aC8Jna1NAHiKcDashJIOpX0bToEEwouz/Np2BysuCaixpaXRAMoeCO6WMU3FwQPcSucd wwIovapRNbGU5beksSTCLtkZgxn8CiZtYSHivZAwPesU6NaJKIN6oZ7zUUq42KdGhv7w5288up9e oG4uUBl1wPWtEXocz5IBRn/iuARMxiWD75OyuGoJrkRGQXrJee3JDq+W4qPry6yxCtikTsZe3pim zhAgrUGRuD+Jqq1wWZysTfGwuJSbZsKLyJIoHYCCgzNbZIm8FbKcKkG3pLfRg4PF6ES0eNXfNhyd +W6wGNrAqWlTAUzgEX15yO6K8lJfYy6sLlWAeUXak1cTewrpST50fC2MHV+bUf3c5jCm0WtnqC+D kufb9IB11JfsLWOVAP8tWgxBdLtGuSgkKHOr0xF12A2mp0Tu0l64TnSoeaeDn+vTq2S6YJUd5SME Y7skTCr2UYzX1EBHsvHtsLJ2HAI8Iv7xldCRDN49YSMQDnlDeWRtOg3ok3FPo6yMdVTOM2cdJwSz ZKBPwRwDCqxq0TFYMbrpmPTS2D8HITrKtCX4dpEY2ijlRqzAEtYqIVAzaDtz2ROoCJ6PgEc9uP4A /Xs1dpCwcIds/l/gOPdPyBHlIMEBR8vUEkr0n7p+Bpam2ko5mLC51Kvd+suqWDGDCNlBbg01+Ukl PgycK2lNjYATUX0wTzSHQxUi21CDZWtHCv5L2m0+0hSVkKLrEQLkCzybWoIQytbRgHe4C8AYEr4u 5EH8QResPKVgocAjUkUbKRpwb9jlsbVpvtSD0l9Z4IfhRXU6UOvwn2C4gZA6FAJF4Z2R7r23RvyU wDnoPBXuIR0ddaWMwA+dbxk6Vo49wsV7BBBOpHYWO5BoPZOo3B9khgcbTEdiJx2GKmp2Iw9QxFSq dtA73Bcop+bhJ5ayqyEM06a8qUf9QRk08jrWvWuPer7zE5QlVdKASdIjNp1qXTrdl6AnTAfWdR6v k9lAbaqCnqWDUp101ckTbTfFctQ8OAAd+a7dLu0PQ5yRldLh8KAmoyS9zuDX7U45SmhtoevPWkJB blCjXjYJ/oIpMV44WJ3YaNJS+9SpbUX1qwelWT4GD8HeTvmn7hE+hsK9+z8Ep2j76eSZsgAAAYRp Q0NQSUNDIHByb2ZpbGUAAHicfZE7SMNAHMa/PqQilQ4WEXHIUJ0siC8ctQpFqBBqhVYdTC59QZOG JMXFUXAtOPhYrDq4OOvq4CoIgg8QNzcnRRcp8X9JoUWMB8f9+O6+j7vvAH+jwlQzOAaommWkkwkh m1sVQq8Ioh8RCJiSmKnPiWIKnuPrHj6+3sV5lve5P0evkjcZ4BOIZ5luWMQbxNObls55nzjKSpJC fE48atAFiR+5Lrv8xrnosJ9nRo1Mep44SiwUO1juYFYyVOJJ4piiapTvz7qscN7irFZqrHVP/sJw XltZ5jrNISSxiCWI1JGMGsqowEKcVo0UE2naT3j4Bx2/SC6ZXGUwciygChWS4wf/g9/dmoWJcTcp nAC6Xmz7YxgI7QLNum1/H9t28wQIPANXWttfbQAzn6TX21rsCIhsAxfXbU3eAy53gIEnXTIkRwrQ 9BcKwPsZfVMO6LsFetbc3lr7OH0AMtRV6gY4OARGipS97vHu7s7e/j3T6u8Hp0xyvF073C0AAAAG YktHRAD/AP8A/6C9p5MAAAAJcEhZcwAACE4AAAhOAYwxAOwAAAAHdElNRQflBBYPIQX9BihDAAAg AElEQVR42u1dd3gU1do/Z8r23WxJdtN7IQESU0AghCahCCgg0hELoNd2lYtXULlXxYIKKIiAFI30 pvTeO6RCEkJ6TzabZLO9TP/+GFgjTYr3u1fM+/DwbHZmz8yc+c1bfu973oHLfj7X3GZDEAgeRjhU LXFOS7wCAcdx4OGGojDvVFQ7CICbT8lsNq9Zs8bpdDIM07Nnz4EDB6Ioym/asWNHQUEBAECtVk+c OFGtVoP/DXE6nTRN4zguFosBABkZGVVVVT179hw8eDCE9zTn27Zte/bZZ8EjITD46Y9rW92AYx9q GBqP8m4s/tsaBAW3Rxt3K3jucEIiQKhfFiZ8ByB606by8vL4+HiXywUASE5OPnjwoLe3NwDAYrH0 6NGjuLgYABAQEHD06NFOnTr9j8zvjBkzsrKy+vTps3jxYgBAUlJSXl7etGnTVqxY4XlU7i5PPvnk /v37b7uJoqjz5883Nzf36NEjKCiI/zIzM7OxsdHPz+/xxx9/mDOvq6vLy8tTKBR9+vQ5c+aMyWQa MGCAQqEgCILjOKFQeI9PS3vB5GIhYCz3hzaWBRABEACOA/whGVaIowQjpAjiZrRxAOISKFCy9kaA /P7YUhYAjfC2mxAEkUgkPNry8vKqq6t5tOXm5ra2tvL7SCSSe7yL/z9SUVFx+fLl4ODg61cnld7v SUokkjttcjgc//znPzMzM9euXTtlyhT+y88//3z//v2DBw/evXv3w5z5wYMHZ8yYERoaWlxcPHv2 7IsXL+bl5UVFRb3xxhutra3ff/+9n5/ffaPtvu0ezWh9lCzDtLZaMbGAZn4fphDBhX5DXGU//IF3 kWXZnTt3pqSkAADOnTtnNBp/hTfH8f//9NNPu3btamlpUSqVqampr732mtFoXLBggVgsfu655+Lj 4wEAV65cWbFihUql+uCDDxYsWOB0Ol944YX169efOXNGrVa/9tprAwYM4B/i2trar7/++sqVK0Kh MD09/W9/+xtvHHkd8/333+/bt8/lcsXFxb311lvR0dEtLS2rV68uKSkBABQUFPzjH/+YPXs2PxSC IJs3b87IyIAQjho16vnnnxcIBA9oVGjac8m8MAxDkuRDOzRg2LBhR48elUgkTqeToij+tAEAp0+f rqurewDFBgDA7m93hvXVKh/vEnL0Ukn3x8IFOHo2uwzgvzMIxxCYJglpOMg670m9/Q52IfTz89Pr 9du2bfvoo49sNtv58+c5jouIiKioqOB3AABMnTp13bp1YrFYJpPZbLZ9+/Zdvnx55cqVGRkZTqdT KBR27doVQvjTTz+tWLFiyJAhYrF46dKlRqPxhx9+sFgsEEKCIHbt2pWVlZWUlHTu3LnRo0c3NzfL ZDKapg8ePLhx48bDhw+r1erm5uYJEyYcP35cIBAIBIJTp04tX75827ZtSUlJGzdubGxs9CB16tSp /CWsW7du5cqVLMu63e6DBw+iKPriiy8+2P3zaH0eZyiK8p89yNu7d+/WrVv1er2Xl9eoUaMmTJhA kuTSpUubmpqmTp26bNmykpKSkSNHvvDCC999993hw4ejo6NnzpwZGxur1+sPHTrk5+fXuXNn/hD1 9fXffPNNS0sLwzBvvfXWiBEjJk2aVFlZuXr16rNnz8pkshEjRowdO1aj0ZSXly9YsCApKUmhUPz0 008Mw7zyyitPPfUU0h5JgGYBy4I7PRUsF+irig3VXas2dO8cIhULSmtbAv3UQsGdnLV2EMHluE93 7o/QaiiK9unTJywsrLS0NDMzs7W1NTMzU61WT5o0ybPDtWvXfv7559jY2M2bN9fV1WVkZAAAjh49 yrLszJkzAQDnz59va2ujaXrXrl0AgGnTpkEIJRIJy7L+/v4bNmxYuXKlr68vy7K//PILwzD//Oc/ m5ubR44ceeTIka1btyYkJOTk5MyePRsAsHz58uPHj+t0ug0bNpw4cWLcuHEQwpdffhlCuG/fvm7d ugEAevfufe3atfj4eF7lCASCBQsWbNu2jdev+/fvJwjiYeZkx44dn3322eeff/7555/z2pTH7ttv vz1y5MiDBw+KRKLMzMypU6e+8847AIBNmzZ98803gwYNOnLkyIULF2bOnNmvX78vv/yyvLx89erV TzzxhNlsLigo+Oqrr5YuXSoUCnm0ORyOc+fOud1ulmVzcnKKiooqKiqGDBny+eeft7W1FRUVvfrq qxMmTHA6nfX19d9///0rr7wyY8aM+vr6I0eOPPPMM+fOnUM85icm3DcqxEchEwMAAEkDigEM+yuM WNZbJQ31V7sIyksmchEUisC+SRHdOodAAAH4XSBBXJOMYNI/xIxGRkZ2794dALB27drCwkKj0Thw 4MDIyEiPkQ0MDMzNzd2wYYOfn9+BAwd4LxtFUafT+fzzzwMALl68aDQas7OzKysro6KiEhMTPabn rbfeGjNmzKRJk9LT0wEABoPBaDSeP39eJpN99tlnPXr0GDFixPTp0zEM27Rpk9lsPnPmDADgzTff HDNmTEpKyocffqhSqWw22/Hjx4ODgxUKBQBAqVTGxMR4zn/o0KEvv/zy8OHDX3jhBQCA3W5n2YeK 0n755Zf3339/7ty57733XnFxMYSQ180KhWLmzJmHDh3av3//5MmTIYQXLlwAAPA+wMSJEzMzM6dP n44gSE1NzbFjx7Zv387bjczMTKlUimGYXC7nZ4am6fDw8L179/r7++M4vmXLllmzZn399ddlZWUz Zsw4dOjQ7t2709LS+KfRy8sLQiiXy48dO7Z3797JkycDANavX3/DCJJ0mJ86MTrASVBmu8tgtNY0 mQ1tNrPVxVI0AJzG2+vxzsE0y5IkIxBgJquzrK6l1ewk3CQNAID47/EaHCKPROUhtKXoIaHGcZxc Lu/bt+/27dt37NhRWloKAHjuuec8rhu/w5o1azIyMkwmE03Tcrnc4+WEhITwUd6JEyeqqqoAAGlp aXxAx3EchFCr1fJ78rcEx/Hq6moAQFBQkEql4scJCgqSSCQEQej1ej5ASUhI4Df5+voKhUKr1drW 1sZD3/O/R2QyGf8hICCA10MPY0b5J2TgwIEsy6Io+tFHH2VmZrIsKxQK//Wvf23dunXJkiWFhYXF xcUcx+E47jmZCRMm+Pj4hIeHQwijo6NTUlIcDodEIoEQ3hb9KIpqtVreUnt5eYlEonPnzgEAXnrp pYCAgICAgPT09DNnzhw6dCg5OZnjuNjY2MceewxBEP5Js1qtN9CGwGaTjQMAQxGdSu6vUSR3CqJo xmx3NRnttU0miQivbGhrNdvtLtLlcPHOAkCQe+M1OAA4iMtx7+60uQRA5uFDhAEDBmg0GoPBYDAY /P39ExISDh06xG8VCoVr16796quv1Gr1l19++eSTTxqNxtTUVM+UjRkzZv/+/RkZGY2NjWKxeNCg QTiO3+pWe55pHn+tra18OAwAMBqNBEEgCKJSqby8vAAAPHB5RUXTNG+X2/uaN4388F58e+nZs+ew YcP4z6tXr+Yv0+VyDRky5PTp08HBwcOGDQsODr4pSuVDE/5M+Bj57iq2/WnzV8THKB5PEcOwmy7W E7FdR5lnPoxmJ7zuv7EkzbhJmmE5pUzSJcJ3cI+Y3Gt110rrW9psLoIEOAZwDKC/BzXuhoFFRABC wDG4Tyoij4DiQCjyh7gSQPzXfe4zEIuOjo6KivLMNQ8I/lIxDMvPzwcAxMbGTpo0KTIyMjMz0zML EMLU1NTQ0NCLFy/W1tYGBQX16dPntpjg/2QYJjAwkI8xly1bVltbW1hYuGXLFoIg+vXr5+vry3tm y5cvLyoqMhgMS5cuNZlMAoGgb9++nvvX3NyclZXFsuxD6rA7idvtbh8Z8Dc+Pz+/oKBAIBAcO3Zs 2bJlvKfB69GbQHDrtd8dcyRJlpSUOBwO/hnesmWL1Wqtqak5deoUACA1NZVH4a3hHeb5aHG4KYaF 8DceP8OyLMVRFIOgCMAxcO8pBxZAoRci7wQlwYjIFyACwJBQ7CvwHUiTNkQSCGgHRzs40shai1lb MeDA74arLMsSBMEwDD+548ePP3v2LG8KBQIBH6W7XC4eBwsXLszMzBw8eDCO41lZWXwqgiRJAEBw cHCfPn14+9ivXz8Pb+RwODiO83AKvOfucrkwDJs3b96kSZMWLFiwZ88et9tdU1MTHBz89ddf83Zk 7969RUVF6enpXl5eJSUlLMt++umnXbp0AQCEh4efPHny4sWLffr0yc7Odjqd7cHBn7Pb7X4wVcdx HD9U+7vLH8JutwcHB0skEpPJ9NJLL0ml0iNHjnAcx2tofn/+SSBJkmEYu93uuWp+EiiKomna4XAA APipYFkWx/Hg4OCqqqopU6a8+OKLb7zxxs8//7xgwYLjx4+7XK5r164lJSVNmTIlLy/Pc5ntZxL1 6ZLeYnYAwNEs1yXcVyTAbrpwCCHLcrkl9RTNgDs9ASyqVbinJ15hWQZwACIoquuPB41H5LGI0AfB pajYG0IEABYRaRhnKyLyhpgCoCKOMgGWwPyGAsbOuY0AAgEGOK/HMd1gAJFbVZrBYIiMjExPT4+N jQ0NDW1oaOjevftzzz3n7e1ttVpbWlp69uzZv3//5ORkPz+/qqoqh8Ph4+OzcOFCHx8frVabnp6u 0WgwDNPr9UeOHGFZdvHixTz1CiGsqakJCQkZPny4n58fx3FGo5GiqEGDBnXr1i0uLq5///5NTU1G oxHH8aeffvrHH3/ktYWPj8/IkSMpimpoaKBpOj4+fvny5R6yo0+fPhRFMQzj7+8/fvx4l8ulVCoH Dhz42GOPQQgdDkdjY2O/fv3S0tLuxPdu3bp17Nixd3r89Hq9QqEYMWJEaGgo/6XBYFAoFL179x4y ZEhKSkpNTU1DQ4NWq33zzTelUmmnTp3S0tLMZrNarR41apRKpbJYLCRJpqamDhgwgOO4urq6oKCg 4cOHy+Vyq9Xao0eP9PT0uro6nU43cuRIrVYbHx/vcDgYhundu/eIESOGDh1qtVpra2sxDHv++eeX L1+uUqlcLpder+/Zs+eAAQMQBLFYLC6Xa8CAATBu/BdF1c2AYwFFTxnRw9/Hi2aYm9BGUcyqXRec LvKOuo3GuwSaM1/4iaIIIAnFdINZogUKVKjYH0AUQkSgjoYQBYADECVNZbSllLVdZS2FHOnAQ8Yg 6u6QY+jm07ThsFTIMMFvCuMX3Zq5uumxfjCrZDabt2/fvmXLlqNHj8bHx1+5cuV/PLc4ZsyY7du3 /z8c6AGm9H5/grV3s0w2R6DOCzyEEw8FGizgaSjUIZIgjrYBjuFB0+6cIIIwVNUPvLuGapIQZTKg nRwAqLYfgBCY9t9pcJIky8rKKIry8fHhozleyZeVlZEkGRYW5okZb5vkqaioEAgEBEFMnz4dAKBQ KD799NM//J61tbXV1dUJBIKYmJj2ROufIGV+/0/v/f4Ea/9Tg8mR8DBuLAdQZSwUBwHGBTgWohI+ BOAAy5BWVKgEAAEcjcpCUXkEbalAJBrMdyjgKAAggAhg3Yg0HLq0d/Jh9Hr9xIkTLRbLxIkTP/vs M/7Lmpqa8ePH6/X65cuX38niAAAuX748adIkFEVPnz793XffsSz7+OOP8w7+Hyu7du366KOPJBJJ dna2RCL55ptvmpubu3fvPnLkyP+ENuLtoJeXF8/BPrAwDGMymTAMUygU/7mHpN24EBgtDvBwMRNE xay1hHM1cYz712iTA5SlgTRVsqQNQAhRsUDXG0CA+Q4HqBhwLOBoxllPt+WxRAvEFXeZkfr6+rq6 OpvN1t6Z0+v1bW1tHnritiIQCJRKpVqt1mg0r7766muvvfafgBqfd5fL5T4+Pvxzv2zZsi+//HLv 3r3/iWNZrdann35ap9Pt2LHjAX6emZn5008/FRUVAQDKy8v9/f2HDRvGkzvbtm3bsWNH+3m+7e04 evTo+vXrm5ub71+3IYjN4XYTtCdCfhAmjGhFFPGAZW4uMIKApRykuQoRSDGJFlV1EfgNQGRhgOOD KQ4RekNJMEdbOMuRuyD+d1V3XV2dSCSSSqUNDQ0GgyEgICA4OBhF0cTExJMnT0IIhUJhc3Oz2+1W qVQ86+twOEwmE4Ig/v7+AACbzdbY2NjS0uLr6xsQEMBzvFar1Ww2KxQKkUhUU1ODomhkZKTJZGpt beX9dH9/fx5hI0eOTE9PR1EUw7C2tjYEQViWpSjKbrfzqghBEI1Gw6sim81mMpkkEolGo3kAQ8Zx HA+IWxNf9+JRffvtt+vXr//444/j4uKEQmFKSkpsbKxAIHA4HGPHjvXy8srKyvIQ47floebMmZOd nX38+HEPA3Ufus3mJNwU/eC2FALWVsZRJij2g6gIAAgg+mtoCREAEZZ0kJZqhmJRn/7tfohBVAI4 mmk+wRFtD3Z8FEXz8vK6du06fPjwl156KS4uLi0trUePHitWrAAAZGVlJSYmJicnkyT57rvvRkdH e5y2VatWJSQkTJw4kS8JmTx5ckJCQlpaWkpKymuvvdbc3Myy7Jo1a2JiYt54441Zs2bFxcXNmzcv Ozt7zJgxXbt27du3b2Ji4hNPPPHTTz8BADZv3vzYY4/17t378uXLvXr1Ki0t5Thu/fr1ffv2PXr0 aGJiYmpq6p49e/hD//vf/46Ojv744495KuSBnS1eQRw6dOjIkSOVlZVr165dtGjRkSNHPMPm5eWt WbNm0aJFmzdvrq+v57PGBoOB12r79+/XarWzZ89+8cUXzWbz3r17JRIJhmH79u2rrKzMzc3dvn17 TU0NT9mcOnVq586djY2NO3fu5O3JuXPneKaNJMkTJ04sXrx46dKlly5dulVn/cZvo0ja7iRkIgEL HlC3cbSdrtuO+Q5ClMkcbedIEwAQEakBQD22FkDIUs52ZAoCUCFHGmn9PtZyFYgf3LJQFGWxWDIz M/V6/ezZsw8cOJCTkzNr1qzJkyfzZAGGYQiC9OrVKyMjY9u2bZ9++qnD4Th16lRbW9uQIUMcDse0 adOys7PHjRuXmJi4ZcuWH3/8EQDwww8/2O12t9u9bds2giCCgoJ8fHzef//948ePDxw48P3339+z Z8+iRYtef/31tLQ0kiQbGxsJgvDx8Zk5c+bcuXNbWlpSUlJefvnlQYMG+fv75+fnHzt2bNSoURzH bdq0iSCI1NRUHMcfyoGB0O12v/XWW62trVKplEeGRCL59ttvX3zxxV9++eWVV15xOp0CgcBkMvXo 0WPZsmWzZs3iq53XrVuXk5OzZ8+eUaNGDRw4cNKkSdOnT6coyuVyvf3223K5/OLFi6tXr87IyHju uedcLtfcuXMzMzO3bNnCF7rxz0x6enrfvn3ffffdVatW8RSdUqn86quvpk2bdgfdBgDHcVaHG8ce ohoRAo6yUnXbqeo1rK0IcAwi0gEoABC5YVtZxlYOIK/2MIAIAGNnmo+R5UtZy9WH9RpvIPjgwYPz 5s3jk1dut7u+vp7HGYZhNE337t07ICCgsrLy8uXLPDr5MpC9e/dmZ2cPHTo0IyODnzg/P78ff/yx tbWVT/IQBPH999/X1tbOmzevpaWFJ1E1Gs0nn3yybds2vk6Oz+SgKOrj4zNjxgzexCQnJ7/44otS qfSVV14BAOTm5ra1tZ08ebKpqalz584pKSl/SI6BpunW1takpKRLly7NnDnT6XR+//33AIAlS5a0 tLQsXbq0tbV15syZV65cOXr06KFDh8aMGQMAmDVr1oEDB/jKjra2tn79+p07d04mk2m12iNHjkyY MMFsNrdPPFAURRCEt7f3+fPn+frCtWvXZmRk/Pzzz9988023bt2uXr16/PhxiUTy97//va6u7s5o AzD7Wl1uSX2b1UnRDIAAgRBB7jNnDAGAgLWW0/U7aP1uxnCANV9hnbUcaeQYF2sr40gjR5pYWwlj PE9V/0SUfk03Hga084GhdtPp8Rlinnflb/9NmbugoCC+inrbtm3l5eWNjY2DBg3SaDR8yuHSpUtd u3aNiop69tln+Ym+cOEC770lJCTMmDGDr6EYN26ct7f3xYsX4+PjQ0JCDh8+HBkZqVarPalG/qD8 TWJuUJiTJk2Sy+U5OTm1tbWbNm0CAHTv3t1DzD58iAoA+Oyzz7p37/7SSy/J5fLKykoAAJ/imzNn zsyZM3v06HHp0qXXX39dp9MplUoAgFarDQoK4n/LsqxYLI6KiuKfzLCwMIlEcpNB5K8LwzA+VwEA CAkJ0el0O3fuBADExcVlZmaWlZWFh4c7nc6jR4/ewZICwEFQ19hW12AUiHBvL6lOo/DVyHVquUws vG8kIAAAwLn0tFMPAAAIChDcQ/AyhsOAowB7A533pkyFQiGGYRzH8WkWj/A+slAo9EwZf8vvlPyW yWR9+vTZuXPn3r17ed/lmWee8RRiBAYG9u/fn59QmUxGUZS/vz9faaLT6Tz39d133+3Vq9eZM2eu XLly8eLFVatWrV+//tChQ7etwvVwCgqFYuzYsWvWrPnpp5+OHDkiFouffPLJP7C0HcMwT0WxUCjk M3Xz588PCgo6fPjw6tWrFy9eHBISsnDhwmeeecZTn9J+lvg0KD917QtYbltYwG+iaZplWd4d3Ldv 37Fjx/gikR49etxEFNxSdosiAACSYhpbrI0tVhRBxAJMIhUSd0lb/Z6e4+NlwDK/XhS8VbH+vgQE BAQGBhoMhpMnT544cSI1NdVqtS5btowHX0pKCn/B9yJ9+vTRarXXrl2rqKjQarU9e/YEAPC1jRiG LVq0CEEQs9n8xRdf1NbWxsXFHTlypL2Kamxs/OCDD4xG47x589577736+vqEhASr1Zqfn88XtN2p CAIAMHny5DVr1qxZs8blcoWFhfFVdH8gA+dRrhzHYRhGEMSmTZv8/f03bdpEUdRXX321YsWKjRs3 jho1it8TRdFbbRcPJl518WGp2WzmKx48k+x5mKVSKR+knzx5ctasWZMmTeI47vLly1lZWQMHDrwr 2m6oSx4QDODsJGUnqHa4eRjH6mEHeOedd8aPH19dXT1kyBCdTmez2XhjN3ny5NDQUE/Zz+9KYmJi ZGRkU1OT2+3u169fYGAgAGDIkCHx8fG5ubndu3dPSUm5cOFCfn5+enq6WCxmfpvN0+l0xcXFFy9e LC8vf/fdd69cuWKz2UQiUefOnW86BxRFOY7buHGjXq9fsWKFn59fp06dUlJSsrOzAQAjRozgC5b+ c8koHMfXrl2blZU1a9asMWPG8AjT6XQIgvCHXrx4cVNTE+8heBQkiqJ6vX78+PGffPJJjx491q5d +/XXX5vN5nPnznlcMQihSCTiXd7nnnvuhRdeyMjI+Ne//uVyuQwGw6pVq2ianjBhwm8NHryBrbv8 Q8Dv7AABByBNA4ZG6If7x1AIy94RlePGjVu6dGlERIRUKjWZTAzD+Pn5TZw48ZtvvoEQ4jiuVqt9 fHx4y4VhmFarVavVPPvl5+fn4+PjGWrs2LG8shw0aBDv3vn4+Pzwww89e/asqKjIyMiora0dMmTI +vXrWZblOVtPZgzDsB9//DE1NbW5ufmll15asWKFTqd78803+/Xrh6JoQECAZ0HrzJkzg4ODBQJB RUUFb9d8fX0HDRrEb+Vrdx8mKtJoNDKZTCQSQQi9vb11Oh1vl1EU1el0PI23Zs0angnq2bPnli1b 0tPT+XL5iRMnRkREOByOffv2CYVCjUbj7e0NIVQqldOnT9dqtbm5ufn5+RMmTEhLS2tra/vyyy/1 en3//v19fHwwDBMIBJMnTw4ODq6rqzt06FCvXr2++OILpVI5d+7cZcuW6XS6tWvXehabXT/hTv9Y UGxoBQ9XqQwgFoI4Pjftohn64QYCIhSGD3s+ZcaH8M75E4PBUFhYyPsEoaGhfG0PX2xTW1uL43ho aCiKogRB1NfXUxQVHh7OsmxtbS2EMCIigscivzOKon5+fp5iWv777Oxss9ms1WqTk5N5bsJoNBoM Brlc7lm2ydNLly9fbmpqEolEUVFRYWFhAACLxdLU1MS72PyBGhoa6urqxGJx586d29raiouLV65c uWHDhscff/zixYsPk5XnL8rpdAYGBsrl8qqqKv5icRwnSZLnQfgQwel05ufnt7a26nS6+Ph4T5qr ra2tqqpKLpeHhYVVVFSIRKKgoCAer2VlZWazOTIyUqVSmc3mrKwsHMdTUlJcLldra2tYWBiv2Orr 6/V6va+vLz8ztbW1xcXFKIp26dLF4+b+CpO4jxYV8WjjfQuOu75W9P6oVSyAcL528jBF09xdFTtD USiOQXhHJOEIkjx18qAP3oV/qpT2Pcr27dsnT57Mu+F79+71FNw+GNr+dIJdr55lOalIiAAoFwuN did5V9DcNh8POYCiHHPnnBfvtAYnxzeXlZN2+53AhCIchBx4REWj0QQHB6vV6hkzZgwdOhT8xQRr 78F38vWBAKglYqPd0WS1/zH3nOM4jkMwDLBseFrvgISurZVVHMcBjkMQ5I8tz//fl/79+/Nkyl9T fl2XYHe5W+0OCKFUKFBJJRE+GsCy6E2V4/eLNJaFKOrXOS4oOYllWYgiNEkBjgMcpwzw18XFsnyJ 870dwuFwtGcLz58/fxOdw3EcX+1dV1d3v2WS/BJo/nNVVZUntDSZTHyyob2UlJTce+GDR4qKiqqq qjiO44u5/8JoAwAgSL3ZaidIq8ttcRMxOh+1XOojkwpx7MFwxtI0RBGRQhGe1luq8ZYolSKFguM4 wAFMKAzulqLw8+NY9jppcw9knsFgmDJlyrfffsv/+f777/PcrEfcbveaNWsaGhoaGxv5JOC9ywcf fOBhqvbs2eOpESouLr616LK0tJRfwHdfUlJSUldXV19fv27dur8m2n6DJJplSJqJ0GpcJHW6vKpX eEhhY1OIWlVmaIEIwt6zkuNYVqxUhvXqYa5vMNfWchwn9dF0HfkUxodCENAEcc57O0EAACAASURB VO3QEbFCgaCoSC73jYutz7vM/F4dhNvtjouL27RpU9++fePj43lCQa/Xf/PNN3q9/p133rHZbKtX r7ZaraNGjeLLhzIyMk6ePJmUlPTmm2+eP3++trb26NGjISEhM2fORBDkk08+aWpqGj58+KhRo9pX YTAM4yE8WZbl8487d+68fPkyjuMffvhhSEiIyWTatGnThAkTaJrevXv3008/vXHjxgMHDjz11FPj x4/fsWMHwzAMw0RERHz//fdeXl7/+Mc//P39EQSZP39+YWEhhmHR0dFpaWktLS25ubkDBgx4yMT8 nw9tHAfKW1pJltHJpX4Keb3JIhMKcRSRiYVamazC0Aox9F48LYamNaEh2pgYt82ui43lOA4TCuEN w8oTRZTTSTocCILIfX3FKuW9nCtN0yqV6osvvpg9e/b+/fsRBMFxfPPmzTExMYMHD542bdru3buT k5N79OiRl5eXlZXldDpzcnLmzJmzbt26L774wul0FhYWfvbZZxkZGbt27aqqqgoMDBw5cuSSJUv4 7PJNVFb7P4uLi9etW7d48eKDBw9+8sknwcHBnTp1WrBgwYABA+rq6rKyskiS/Pnnn+fPn//xxx9H R0evWrUKALBw4cIXX3xx/vz5BoNh7969dXV1vr6+Q4cOxTAsKSnprbfeOnXqVFZWVn5+/oABA/5i lvRGrOAkSAxB/ZWKBrNFIsCbrLbHggIABDKx0Essuhc3CwLAMAxNUdqYaP+EeN5Ruzm5iyAIigII W8vKyo6fZG63AvFWBDgcjpSUlF69ei1btgxCSNN0cnJya2srv7xRoVCEhYWFh4cLhUKBQFBeXj51 6tSYmJj33nuvsrLS6XS+8847MTExw4YNa2tr69u3L0mSJ0+eJAii/XpMHtaeNXO8ykFRdPz48Y89 9tiLL75IkiRPpb700kvr16+vrKwcOHDgsWPH/Pz8zpw5I5FIcnJy/P39//3vf8fGxk6fPn3fvn2N jY39+/cXi8VSqTQ2NtbPzy8xMTE8PPzgwYO1tbW9e/f+Kyi226CNBcDidltdboVY9GSXTgzL2t1k J613k80RrvWWCnDAcZJ7aP90PcUAIcswtyNMfgMihiTvMVDgVc60adOysrIKCgpYll21atXAgQOH Dx/OqzqKotAb6hPDMB5GBEG4XC6ecOcNpcvlWrp0ad++fUeNGsWv+Wt/FF9f36tXr/Kfa2trlUql QCDwpKj5xKLNZpsyZcrRo0fz8/Pj4uJYlk1NTR07duzo0aOjoqJQFJXJZHwB8KxZszp16rRr1y6K ovjFlTzrO3PmzIULF9bX17dvEfIXsqTXKXKKLmpqrjGZRRhG0LQAQ5ttDpIgQ9UqfZtFgGNdAnSZ FTXgISoX4C0gukcuhVc5vr6+kydP3rBhA47jEMLs7Oz8/PyampqLFy86HI5NmzaFhIRwHJeamjp/ /nyTybRmzZrJkycXFxfz6U5+FS7LspmZmS6X6/Dhw4MHD27flGDcuHE//PDD/PnzAwMDv/rqq/Xr 15vNZs+qZr7GhG8vwlPwfn5+f/vb39544w2xWLxy5cqFCxfy5WJqtXrhwoUTJ050OBz8NzxYd+7c OXz48K5du2IYhmFY+3zaoy0w7sMbuYR2d1UiECQE+vkrFVKBwOh0Hi0q9VHI0yLDtmddjg3wVYhE 58oq5VKJzeW+rpFQLJBwvnH2EE8LMyQZmPhYRN8+9C318giO56zf6LZY4B3AKkCQxCmT09+ffSv9 63A4qqur+XZiAICcnJz4+Hij0bh9+/bk5GRvb2+O49RqdV5eXkJCgtPpDA0Nzc3NPXPmTEpKSmpq Kq+lFAoFv2heLBZv3LhRo9GkpKQwDON0Ort06eJx15xO5+bNm10u15NPPhkWFmYymVwul7+/P0mS 9fX1YrFYLBYrlUqj0ehyufikfkFBwbFjx9LS0pKTk0tKSgIDA6VSqcVi2bx5s0QiGT16tNlsxjDM 29v77NmzISEhKpVqzpw5zz//PN+v6a+QS7gd2sD1FqdeYpEQw4QY2mCy+nrJQjWq82VVU1K7Xaio NtmdfiqvooYmDkIIIYsggYTr3tHmsliQ+0fbIybfffed1WqdM2fO3Xd7tDJXd0ChCMe7+vuGaVRi Ie4mqdo2y9nyKq2XQiURN1hs0VoNiqAsy8YG+FW2Gon7TMX/ga1XqqurAwMDMQwjSdLpdPL1qDf7 BiRJEMRdlg95xG634zjOJ63dbjdFUZ5f8VV07fP3DykjRox4gNa1j1SU4IGDm6LOllVszc0/UlRW 2mzEUVSM41E+mmar3e0mwr297W5CKBRGaDUERd/vUR8mXeUpzQUAzJo1a8WKFTxVlpmZ+eGHH3o8 PNCutPDKlSs8JdH+t+C3Zat8zWpGRgbfTw8AcPDgweHDh/P1cwRBPP/883yzKs+wN5W88t+3H/C2 x2pubt6wYQMA4I033ngAiviR1G0AcEAhkYZolEIMJRm6zuRSSsVWgsyqrvOSiLVy6WmrLc5XK8JQ QDMAu1sAz9tE7iGLmgDgb9Xu3bsRBElLS2NZ9uDBg0uWLOFro1mWZRjGaDTm5OTY7fZ+/frt37/f 4XCMGDECRVGWZZuamg4ePMgwTGpqqlKpzMnJqaurUygUTz/9tNvt3rt3L0VRZWVlXbt2vW7TBYLi 4uKrV6+mpqZWVVUVFhb27dvXarXu3r3bbrcPHDiQDznDwsKysrIkEkllZaXBYJBKpXwTmv3795tM pl69eiUkJJSWlp45cwZCOGLEiIKCgvXr13fu3JnjOJ4ETktL45sA/1V12w31ZnY4EQgDvLxSQgOH d431U8orm1ujfbUuijKTZHyAr8Fqv7sSQ1DEbbG6rbY/xA977733ePd82bJlbrdbq9V6SrUghCiK nj17dvXq1SqVatGiRTabTalUfvzxxzzjsGfPHp1OFxAQsHDhwry8vB9//DE0NLS0tHTXrl3z58/H MCwgIKCiouLX1nYI8tRTT/FZpuzs7OjoaG9v75MnTxqNRpVKxTeD5tNoGzZs0Ov1c+fODQsLO3Hi xOXLl9esWVNcXBwTE/Phhx9WVlZ+/fXXKpWK47h33nnHx8dHp9MpFAqn08n3I1q5cuXdF/o/OrqN Ye9o1kiG0dvsLQ4nx+n5vlocy3AUhSKwurVNKRbrFPKjJeV3aeqGYKjD2HZ17z5cLO769Aj03jhM lr1935uSkhKGYfhuzqWlpTKZLDAwMCkp6TfXg2FTp07t37//nDlzunTpIhQK9Xo9743FxsZu376d 4ziXy8UwzNixY4cMGQIhPHXqFEEQ48aNQxCEX2zs8fb4fqt1dXWXL1/u3bs3QRApKSn79+8vLCwk CCI9PX3dunUHDhyIiIjw9vYePHjwE0880djYWF9fn52dvWzZMi8vrzNnzmzcuBHH8dGjRwMAdu3a xbczDwkJEYlEM2bMkEgkFy5cYBjmL4G2MG9VidF0p9pdmUDweFhwiEaFIQhB0S6SbLLZChsNJocr OSTASZEtNge4i9KC0NZsoFwuwHGUy4XeoIXhXdWh/JaaT174Jm0sy7pcLrPZLBAIGIZp7xtxHIei KM/u+vn5ffDBB76+vhs3bkRRtKWlZevWrS+//HJISAi/qJNXeCzLyuVyg8FAEASEsLW11TMgwzBi sXjixInTpk3r3bt3p06dLBbLvHnzJkyYEB4ezr/bZeDAgQsXLvz8888ZhuG1LP+eFH61iJeXl8Fg 6N+/f21tLcMwfGcGhULBO5q86WT/CAfjT4O2L0YPLV6+vtpk5rXKTZy+2ek6VHhNIRYHq1Q6L5mX WByqUUtwwb7C4mC1qqbNTBIkuOtqZwiR6+TtjR4C4HbvIYIAoBCyAGi7xMWkD7yt2dVoNIMHD377 7bcDAwN9fHyCgoJ0Op3H3RGJRD4+PhKJhIfRpEmTlixZIpFIRCJRnz59/P395XL5mTNn1q9fzzBM Q0MDX9gtFosjIyNDQkLmzp0bExNz9erVp556ih9QLpfb7fZRo0Z9+eWXgwYNslgsLMsmJiZeuHAh Nze3oqKitrY2PT19w4YNAQEBRqNRo9Hwv5JKpa+++uqSJUvCwsIwDHv22Wf5Bc9tbW0vvPCCQqFo amo6d+5cYGAg/3oDT+vk28qjFLdCjuNKm1v3FRTvuHLtTHkNwDBAtcsjcZyXRBysVAgxjGRZkmEZ hrGTVJvD2TsitKLVWN1iBAhyJ3aXZRjDteLyU6dxoTDhmdESjYp0unI3b21fu4sAgCMIBWBErx6R A5+I6t/X60ZvtttKQUEBQRBdu3YVCoVGo1GtVvOAIwjC6XTy6Sm+ZP7q1atutzsxMZFhGIIgWJa9 evWqTqfz9vZ2u91yuVwsFvNWVSaTFRQUUBQVGhoqk8n4NaGeTbyjxvcrFYlE2dnZPj4+fIP3HTt2 GAyG9957j29l4OXlxfclkEqlFRUVLS0tiYmJQqGQoii+BS6/hMJgMPC6UKlUQggtFgv/4bbX29ra yr9g6RFBG6//7QSZV9e48mzW5uwrDIp7MIciMEStig/wC1Z7SYUCluUYjrW5yaPFZVWtputlSHdD 27XyU2dwkShm0ECrvqm5pNRts11fTgqhACI0jnUd+VTSuLHe4eECqQT8eUIzi8Wybt260aNH89VN HXKvaGsvNUbz0pPnN2bnNzvcNEUCDgCWARwnFAi0CpmfQuEtk8hFwjqT5VJlDXO7zBVNkkGJj0X0 68sxTFPRtfJTpxEEARDSBIli19fK4hgm8/OLHzM6efxYiUbTcSf+omi7/uC63Ftz8n+5XJRTp2+x OwHgAE1fd+w4DgAIUPTXaPQm3UZRgY8lBKWktFVV6YuKHC2tAELAcRiCcAAotFrvzrGdhw/rlD4Q F4s77kEH2q6Li6QKGpv25BfvLCgubGoFAACKvM1+v0Ubx7IipReKog5jGx8n4gjCcUAbF9vpySFh qb20MdHoX6Oiq0PuA2280CxrcblPllZ9e/z8qapaABBAk3dBm4ePQCAUICjNMWFpfbq/8FxAfLxQ Lnvk0+0d8lBoay9ZNfVLjp0/cK3M7CYYmga3ixJ4+4rjuEjpFTNoULfnJmkiIjrmukMesMVutdG0 KevK3sKSgkaDjaQARAJd9tfPHmQZFgAo9vJSR0d1GjwwdsgQuU7bMcsd8lBou04F2R1X6vU7Lxdt LyihGxpmndkvCQjsMnxYeL8+vnGxwj+uOKdDOtB2XSiGaXG4dp88l+y0dBkySCiTIRjWMbMd8h9B W4d0yD1KR3jYIR1o65AOtHVIh3SgrUM60NYhHdKBtg7pQFuHdKCtQzrkj5NHl/TnOJahGIpgGZpy 2ki3FcPFCt/wW2uDGZo0N5R4+UVigo5iu/+sPIK5BMplNdYUGqvyHc0VNkO1y9pCuRwcQ6iCOvd9 ax2C3uYBu3ZkjakyN/6ZOTLvwA5MdOi2exKXyVB84qeGy0c4wka6ne3fMIUid3uuXOZmw7Uz55ZV Jo7/SBvdvQMWHWi7m9F0mptKjqypPL9dgHJu8jYLsvlO0rf9Nem0mGou0wxnNzac+W5a4ti54b3G gL9An4QOtD2A3bSXn9lUcWo95zazLOdi7tsxMFZdsTSUcgAwLIdAWPDzJ23VV7o89Q+RXEXaTaTL JvMJvh3CQbW+laDoqCAt+ttq5Caj1eEmIgJ8OuD1SKHNVHcte8P7tqYKlmXZB/U/S46ugdz1tWMs x7ndVM3FX1BcrAmNd7RU4wgn1EYFJd/83pYmo2Xcv36sa7Vu/3hqanwkx3Erd53pHOaXmhD1zbYT hy9czf3pvQ54PToMiKHk4rnvpln1ZTTz4FBrLDxlr7tC3dCICIp5+UUEJg0Xi0TOphLS5bTbHURT cWtF3s2BRbW+uEZvbDPtOn0FAFDZ2DpzyfbjOaX6VovTRTgJwuYkDl0qajHZAAAcACab8+DFq3kl tSRFsyxX02S0O4msazXn8yvcJAUAaLM6TuWVHbx4tdVs79Bt/1tSfnpj4c6vWIZhHqKNBkOTeds+ o6jrQwjlGt/IFKnan2UZgrz++gQIocNFsGWXFL7hAqnXDTPKHcku7tk5VOMlOZ5bzrLszMXbnC7y 2+0n8svro4N09c2mtJe/LKlr1qrkF1e/W2cwjZ+72t/bq8bQ9ky/pM9eebr3ywuUcrHN6a4xmP/+ bP+v/z5m9nc7yhuaW80ON0kd/fatYJ26Q7f9T0jpibVXd39N0TTNPhR9U35qI2nWUzcGoRyW1uor pNt2aztDhrCbqq+0c9q4vWcLnuzVZfpTaVfK68obWlb8c5JOLZv7/JMr3p3kIEiWBbu+em3rJ9Pr jY595wqWbD+VEBW484u/ffD80MVbjxnarBBFH+8clrVmzoynUlfuPG13El+//eySmeNnjOxd1tiW WVTdodv+J6Tx6qmruxbRDPOQPCFhN9Xn7G2PVw5whN3cUp4b0KUP+9sXPFA001p6URkUJ1R483az sKrxgxW7MAyhGe50XunUJ3tBCMVCXOMlY1gu2FcV4qtmGVYtF5fXNxdX669VNcaM+xfDcoDjLA4X APCxqGAflTwmWEfRtIuk5izfmbH/QrivBnAsTT+ajY/+ZLqtrfZqVsY7LMc+PCVtbiy16Mvbj8Ox DA5JXUwPv4SBN4WZHMdhGFqbtZfvsLl2/0WlXPrJy08tfHNMfKT/piM5GIqwHHDfsL/Xu+LdYFFU CunAbrH56/9VuvWjql8+C/PzJimaYVkAAMOyQhzLK639Yd/FA4tev7J+rkoueVTplz+TbiNsbZkZ 7zCkm/kDwAasjeUo5Nq3DEYQCITKuOFvoJjAVJnHmA382liGIhFM4CYoAdvaUnpR26nXkm0nkmKC 33i2P4IgLWb77JUH6ppNUUG+//xu14WCKp230u4keCS5adZFUK+P7vPs3DVD3lqs8pKpZOKtn85w EBTJMAAAgqQdJOOtkMnEwne/+wVwnMnJtNkezZf8oZ7OyP/jwnFs4b7vDNfOPhjUEAjFXtrQnqM9 K/UxoaSp6Azpsv06FxBGD3xJG90NQVCIYM7mCopw242NqECA4gIePcBlZsQ6kVQ+9cmeoX7eAIBA H5VSiseG+o3qk0AyTHyE/xMpMQlRAUkxwSiCqGXCfknRQ3p0HpgSbXMS3kr5s08kxwT7ykRYv8ei /L2VQgEWFeg9sl9i38eiWsy2CYO6j+rdJSLAmx/8EZM/TZ7Uqq84uXgK4bQ92PliKFQGxvZ7e0P7 PKnTpD/3/etWfRmPYAgRXVQ3L98IinCwNOVoa2JpGgBW7hMkkCn5t5PjOCaWqwK79sW9wwC8fZvE LUezS2sNKIoOejz2WrVhRO8uboI+eOlaz84hMSG+m47mBPl49U6I3Hg4y+4ixj2R7CUTXyioKKxq mjy4m1goOJFTolHK4iMCOizpf00KD3wHSMf9Qg1CIMJRPsaEyM19biQqP4k6mCUclpZ6AAGC4oTV aKZIDnCA7z8PIQAI6bIJ5RoAOLFIAADgIG53uhUMg96uKeec5TuW7Tjb77GIFrM9xFc1/cstK+gx Oo3ipfkbBqdELXxzzNTPNmS8O/4crJg2fwNBUXKxYMKg7tuP5y365fylq5Wr50z5ZO2hHnEhHWj7 r4m5vri18Jibur9ITYChHC7Rde0fkDhIHdwFF4puKgChXDbaaRXItHKI21urUVzIIRj9a8Nl3lfn cJFEKMQZlhOoQ7Uxj0s0d8PB2csVgVrVincn+Wm8GlvMKrnoUlF1TIgOA2y1vjWnuJZxOwc9Hrd8 x+noADWOYwcvXZswqDtEAKRda/ZenDEyTSLEkUc0TPhzoK3o0Mp2rZNYlqbA9XdO4neym0KFNqzX 2IjUZ4RyzV3CDsBRLMsIpSoUE1CEgzeXv1GNco0ysJM6LMHLP8bD7t5F3ps6ZOqna8NGfzBjZNqn Lz8V5ae+UFBhdbqf7NX50MWiQ5euJkQFeStlhzOLR/ZLZll2y/E8F0FyHOif3EnfYn7liw1K+SPb 0eJPgDaHscFUmU1QLE+JYbgoZuirmFBSeX67pbEMxYU37S/EEHlg55SJ8xR+v9NYyWlpwVCUohnA MqhAjGKim8pEMBTxS3giJOVJBBPcy6lyHBjaq0vRhn+tO3hp5tKdnYK1fRKjFm06anG4V7w7cefp K/vOF74+pr/Z5sotqc4vq0UQYLYTDS1mFEXUXvI5Uwalv/0dBrne8eEdfNt/R1oqcij39dQh7XYm Pfs+Tdjbqgsef+5zTUjXm5qg4xiU6KL6vvnj70INAOA2GxiWhR6k3Gq+OCBV+d0j1Hhd+OX6wztP X3YTJAAchHDQ43EumhMI8O6xoSG+apODGtqz88FLhW6S2fjxS9s+fUUsFOw/f1UsxF0EObBb7PAe sTSCd+i2/46wLN1amcu/G5SlSU1oV1wsqzi7jWVoU31xUGK6qaEY3oAJAqFIGdDnte9vVXi315qm JhQBEEM4AFmOAxxAMPxGM3koEEkk3oFy3/tTM2V1zYezSwUofGN02pQhPQAEKdH+3TtHqBTSp3on FFY3dQn3/+Vk3uQhPZ5I6YRj6PPDehZV65NigqxOkmaYr954pu5fawJ8vB5JtP2vMyCU23Fu+cst VVc4DrAMJVH7p4ybK5SqLq6djQklPpHJZac2epwtoUCQNPHToOQh94RjmsrfsQjFMVVIvFCmQgUi wHEILkAQjONf3SwQC2TK+12sQNGM0eJAEKhVXX/5n9nuxFBUJhY6CZKiGC+Z2O4kAeRkYiEAwOEi KJoRCDCGYWUSEQTA6nCLBQIcRzp02/+3MJTb3lJ7XXVhOMcw51a9JVJozA2lXZ96U1901qPYIAAS bXhAwoB71ZoMFd77WYXfH+Ah2Zprba2NPuFdcZEUx1BfjaL9VqVMzIe3EqEACAHHsq6mYk1IHL9V Kr5ZDaOkxdLc4h3WpQNt/9/itrQQTgvgAOA4TCBJnf6NzVCFi+VOU5NFX2ZtLIfIddJLiCPB3Ubc u4+FCSV/CNQAAFePbeAoUl90wTsiXqLUOU1NSr9wh6mZdFqVAZHm+lJcouAYGhOKfWO6NVdcPr1q dq8pc+XaYEebXihTcizrbGuU+4ZbGivluuDqzAMILuhA238DbbYWFHIMABzgJGr/ttrCy9vnx4+a VZO1N27Q9Ipz2zyePc1xgY+l/3dCLQRVBEQaKi4TDovCNxRwbOPV86TLodAGYQJhY9EFscLbrK/C RGKf8PianMNybZC+OLM696i5vszLP0LpH95cki2QqVSBUY1FF+U+jyCv++eISSmnA0cRAAAEkHCY Ks5uBxCpyz1ME06roYq90U4fQ6FA4SdV/3deCYWguKWpQihVKfzCAuJ6NhZdkKh8JUpvdUhcU0l2 W22x2MsHAE4dFMPQNOG0D/jbIgwXuWxtkb1Hib00tpYGoVQBIFQFRquDouryT0H00Vzn+78eJZSd 2lC8+0sXyQKOE0iVuk49MIGEA5xPRFL1hR2G0ku86RRgUOYfN/CdzQ9zLI5lCIeZY3/35Y0QcJxQ rvJwyzTpJl02idf1ZS+Uy46LZb+SKAByLEuTLoYiRXLV7Vg6lnY5cIncExjhImkHA/JfEPoG0wYg 4FjG0drAsnSXYa+TDou1qdLjtIGHe3s4L06TPm/TXJfV9Lt7CnCk69h56pDO1ydRIMIEol85P7Hs N9AEACIILpLeCUMQIh6oAQAeVaj9CdAm1QTdSBpCwm5CULz7c5/WZR8oO7sZwyUetHEcYCniYa22 y26qL3U5rPeANgx2LDh99Pw2TCBkbrxlUKzU9v/7DwBAidqv+6R5QUmDacp9nShhOXtrrSfl8IC6 zWwgnL8PNQgAw96kwDrkkUCbQKamaL74DFIu25EFEy6te8/WUotgAl2nHih6ne9gOSBAmObSrIc5 Vmt5Nobeg8aCAOJCgUzVgZ5HDW0SlS8mvF6nTxPOiF5j+ryyzC+2d9XFHS6TXhkY44lyKJqtPL/9 IWIErjZn/72sF0QhFEi8BGJ5B3oeNb8NE0olSl+yqQIAwNKUJiwhb/vndZcPAwDk2hBhOwVDM5y5 Os9YXaAJ7foAByo5vha6Wu+lDB3HoDYyuQM6j6BuQwUiuV/E9Xc144LCfd/FDHguOGVY3KAZQY8N aqsu4LhfCQvSZSs9uvoBjmKqLyk5tNxJ3lO1JgKhb1zvDug8imjDBMrgLgiKAp5EbSwrOrwmJPlJ sZdP2ZnNqS8vkar8OY69ESuAlqITVw8sv69DkE5L7uZ/E+57KkOHELpIxrdTagd0HkG0AQB8wpPx G2wWggnaqvML9iwBACQ9M7s+91DckJdp16+hqJvmKo6suHpwOV/f+7visrRkrX/f3nDtHkluDIG6 2F73UsTbIX8+vw0AoAntKlQHUe4SmuUA4AQSRbdJHxcdXoUJpc2lWYTD4t+1X1PxeRQXAQAAB9wU W3JgubW+OHboq8qAmLuMXJO9r/TISkdzFUnfKzfMAS44ZXgHbh5ZtAEIo594vmjL+3Y3AwCgCKep phACePXAMpFSF5k2jmNZyu0w1xd7WvzRLNdYcKKh8FRw0tDoAVO9AqLbLzhgabKx8FTxkR8t9YX3 uzpV5h3kE5HSgZsHvJN/lvWk+z8aRpjqKIbjOFaq9lf4RlibKnq9tKjm0p7ay4ej+owv2PMtRNCb MlgiHAEAIDKdly5EKNcAlrG3NVr0FQLWTTIsdXMvEe5O/SuvO5EIDE+bmDhmdgduHnG0NRaevLj6 TZrhAAAsQ2EiWfK4D2ou7Ykb8nJb7dXm0szGghMM5YYo3j5l6XG2kOv5L44DkGHYm2DGsQxDuiAm QBC0fe71plAUE4oHvbdbotJ14OaRjRJ40UY/7h3dE4GAD05Zishc/wEuUTiM9blbP2nIPypWars+ 9VZA/ACGJm/SUDTLkTRL0CxBcyR9C9QYBsWF3SZ/2uvFhSKvO7YvlQiRUTkzygAAA/JJREFULiP+ 3gG1vwTaMIE4buirYqnCkw2HEMq9Ay/vWIhgQk1oQtory1zmJt+41C5DX0UxAQCA41hwJ83NcRzL sCyN4kKvwOhe075uKb3UePW0LvpxlrlNMIujUBaSEtlnYgdi/hKWlJfSE+tK9y7w0LA80wYhkjzu g/IzW1srsgGChaYM8+2clrnuA5FcBQB021o5lsFEMoZ0swwNEQRyHCoUy7VhmtB4TVhCU9FZmnBF 9ZtobihV+EWUn9rYVHyh/ap6CIDYy6fP66sUvhEdiHnUY9J2Et1/isNYV3dhi5u8jjNeywGIOE2N qEDMkG7/+P4t5dkuiyF1xuLS42u9AqKVvhHFxzJ843qrAmMc5mZlQIx/5zRzQ6m5vhgXyyyGCrGX 1lhTKJAqMtd90H3yPHNjKWEzebohCXAk4ZnZHVD7C1lSjySMfMc7pg+KwPaOV232/qRn35f7hEo1 AV7+UT4RSWkzvhVKVa0VOZFp44K7DUcwQWSfCWZ9RXDSEFN1fk3WXlNdUcGexRKVf/yIvztaGwr3 LBHJNUKZ8tTS6aTdzEMNQoBjSKdhM4MSB3Vg5eHlT9O/7Ve7hqC62N5WfRlrqecpDAihrbna3lwr kHr5xvZqqy7I/Xl+SLfhtTn7BRKFWKkTK3UN+cdUwXEM4RQrfGpzD9hbaiNSn63LO+S2tir9oyGC ePlHFR9ezVIkRBCet4MQoiiaMHpOVL/JHUD5i+o2AIBAoug1fYkueaT4xhJfFBNYmyqM1fkNBSdr cvZLlDpcJGu4fKzz0L8xNCn20krV/oClacKFiaUoJnC01gHISdX+huJzhMNCOsz1V46wNEWTrl/5 DhQkT5wXkTa+AyV/Xd12IyBF/Lv2o1ng1BczFHVdxUFIOa0cy0CIttUWSlVaTCTLXDsHF8kkSi2C i+ovHyUdFplPoKnmqlCudpr0NOGqyztobaqEEN5QaQBFoFSt6zn9O/8u/Tog8teNSW+V5tJLRQeW W2vyaIb7tUE4x7EMjeIClmUAx4nk3rhIClHUZWnhWAYXy93WFo5hIILe9D4rIY5QNBeeOiZ28Ayx 0rcDHx1ou1lowlGXe6hg9zcIZXGR7O0uiLue0LqOrdtkqDAUClBEGtg1YfS7qqDYO2UUOuSvjjZe GIooOfpjbc5e0tpMEe7rrzvg7rjyjwcehBBCRCASS7WR0U88F5iQ3oGJDrTdq1Bue0t5bmtFtrk2 36KvIOwWIQ4BAJ4FBxAAFAEsADSLSpRaZWAnZUi8NqqbKrhLx6K9DrQ9iHAsy1BuhnLbW+udxgZr c5WtuYalKcBxAonCyz9S6h0k0wSJFBpUIL7HZm8d8vDyf4wChNDp1j9DAAAAAElFTkSuQmCCAAAA --_004_GV1PR02MB8860FEFB153D0E9A8026B10C8B462GV1PR02MB8860eurp_--