From tony@wucmd.wustl.edu Tue Mar 23 04:34:38 1993 Date: Tue, 23 Mar 93 10:34:38 -0600 From: tony@wucmd.wustl.edu (Tony Dueben) Message-Id: <9303231634.AA25862@wucmd> To: chemistry@ccl.net Subject: summary of cartesian to z-matrix Thanks to all who responded to my request concerning programs to convert cartesian coordinates to z-matrix form. I was asked to summarize responses --- >from Mark A. Zottola: Gaussian 92 has a utility Newzmat that converts PDB files to z-matrix form. >from Leslie Glasser (009LGZS@WITSVMA.WITS.AC.ZA): Prof. Glasser has written a MathCAD file that converts crystal to cartesian coordinates or internal coordinates. You need MathCAD (either DOS or Windows) to use the script. >from Gregory L. Durst: QCPE has a program EXTOIN (QCMP070) for PC's that converts MM2 external cartesian coordinates into a z-matrix. It is in Fortran. >from James Stewart: MOPAC has a subroutine XYZINT that can form the core of a program to perform this conversion. Feel free to use it. >from Frank Jensen (frj@dou.dk): Dr. Jensen has put together a short program to perform this conversion by assembling subroutines from MOPAC. The text follows: PROGRAM carint IMPLICIT REAL*8(A-H,O-Z) C PROGRAM TO CONVERT cartesian coordinates to z-matrix character*4 test DIMENSION xyz(3,100),na(100),nb(100),nc(100),geo(3,100),iz(100) DEGREE = 57.29578d+00 c open(unit=5,form='formatted',status='old',file='xx') c open(unit=6,form='formatted',status='unknown') i=0 30 read(5,*,end=40,err=40)x,y,z i=i+1 xyz(1,i)=x xyz(2,i)=y xyz(3,i)=z goto 30 40 continue numat=i call XYZINT(XYZ,NUMAT,NA,NB,NC,DEGREE,GEO) do 50 i=1,3 50 write(6,*)' ' do 60 i=1,numat if (geo(3,i).gt.180.d0) geo(3,i)=geo(3,i)-360.d0 write(6,103)na(i),geo(1,i),nb(i),geo(2,i),nc(i),geo(3,i) 60 continue write(6,*)' ' 110 format(a4,3f15.10) 103 format(i5,f12.5,i5,f12.5,i5,f12.5) 200 stop END SUBROUTINE DIHED(XYZ,I,J,K,L,ANGLE) IMPLICIT DOUBLE PRECISION (A-H,O-Z) DIMENSION XYZ(3,*) ********************************************************************* * * DIHED CALCULATES THE DIHEDRAL ANGLE BETWEEN ATOMS I, J, K, * AND L. THE CARTESIAN COORDINATES OF THESE ATOMS * ARE IN ARRAY XYZ. * * DIHED IS A MODIFIED VERSION OF A SUBROUTINE OF THE SAME NAME * WHICH WAS WRITTEN BY DR. W. THEIL IN 1973. * ********************************************************************* XI1=XYZ(1,I)-XYZ(1,K) XJ1=XYZ(1,J)-XYZ(1,K) XL1=XYZ(1,L)-XYZ(1,K) YI1=XYZ(2,I)-XYZ(2,K) YJ1=XYZ(2,J)-XYZ(2,K) YL1=XYZ(2,L)-XYZ(2,K) ZI1=XYZ(3,I)-XYZ(3,K) ZJ1=XYZ(3,J)-XYZ(3,K) ZL1=XYZ(3,L)-XYZ(3,K) C ROTATE AROUND Z AXIS TO PUT KJ ALONG Y AXIS DIST= SQRT(XJ1**2+YJ1**2+ZJ1**2) COSA=ZJ1/DIST IF(COSA.GT.1.0D0) COSA=1.0D0 IF(COSA.LT.-1.0D0) COSA=-1.0D0 DDD=1.0D0-COSA**2 IF(DDD.LE.0.0) GO TO 10 YXDIST=DIST* SQRT(DDD) IF(YXDIST.GT.1.0D-9) GO TO 20 10 CONTINUE XI2=XI1 XL2=XL1 YI2=YI1 YL2=YL1 COSTH=COSA SINTH=0.D0 GO TO 30 20 COSPH=YJ1/YXDIST SINPH=XJ1/YXDIST XI2=XI1*COSPH-YI1*SINPH XJ2=XJ1*COSPH-YJ1*SINPH XL2=XL1*COSPH-YL1*SINPH YI2=XI1*SINPH+YI1*COSPH YJ2=XJ1*SINPH+YJ1*COSPH YL2=XL1*SINPH+YL1*COSPH C ROTATE KJ AROUND THE X AXIS SO KJ LIES ALONG THE Z AXIS COSTH=COSA SINTH=YJ2/DIST 30 CONTINUE YI3=YI2*COSTH-ZI1*SINTH YL3=YL2*COSTH-ZL1*SINTH CALL DANG(XL2,YL3,XI2,YI3,ANGLE) IF (ANGLE .LT. 0.) ANGLE=6.2831853D0+ANGLE IF (ANGLE .GE. 6.2831853D0 ) ANGLE=0.D0 RETURN END SUBROUTINE BANGLE(XYZ,I,J,K,ANGLE) IMPLICIT DOUBLE PRECISION (A-H,O-Z) DIMENSION XYZ(3,*) ********************************************************************* * * BANGLE CALCULATES THE ANGLE BETWEEN ATOMS I,J, AND K. THE * CARTESIAN COORDINATES ARE IN XYZ. * ********************************************************************* D2IJ = (XYZ(1,I)-XYZ(1,J))**2+ 1 (XYZ(2,I)-XYZ(2,J))**2+ 2 (XYZ(3,I)-XYZ(3,J))**2 D2JK = (XYZ(1,J)-XYZ(1,K))**2+ 1 (XYZ(2,J)-XYZ(2,K))**2+ 2 (XYZ(3,J)-XYZ(3,K))**2 D2IK = (XYZ(1,I)-XYZ(1,K))**2+ 1 (XYZ(2,I)-XYZ(2,K))**2+ 2 (XYZ(3,I)-XYZ(3,K))**2 XY = SQRT(D2IJ*D2JK) TEMP = 0.5D0 * (D2IJ+D2JK-D2IK) / XY IF (TEMP .GT. 1.0D0) TEMP=1.0D0 IF (TEMP .LT. -1.0D0) TEMP=-1.0D0 ANGLE = ACOS( TEMP ) RETURN END SUBROUTINE DANG(A1,A2,B1,B2,RCOS) IMPLICIT DOUBLE PRECISION (A-H,O-Z) ********************************************************************** * * DANG DETERMINES THE ANGLE BETWEEN THE POINTS (A1,A2), (0,0), * AND (B1,B2). THE RESULT IS PUT IN RCOS. * ********************************************************************** PI=2.0D0* ASIN(1.0D00) ZERO=1.0D-6 IF( ABS(A1).LT.ZERO.AND. ABS(A2).LT.ZERO) GO TO 10 IF( ABS(B1).LT.ZERO.AND. ABS(B2).LT.ZERO) GO TO 10 ANORM=1.0D0/ SQRT(A1**2+A2**2) BNORM=1.0D0/ SQRT(B1**2+B2**2) A1=A1*ANORM A2=A2*ANORM B1=B1*BNORM B2=B2*BNORM SINTH=(A1*B2)-(A2*B1) COSTH=A1*B1+A2*B2 IF(COSTH.GT.1.0D0) COSTH=1.0D0 IF(COSTH.LT.-1.0D0) COSTH=-1.0D0 RCOS= ACOS(COSTH) IF( ABS(RCOS).LT.4.0D-4) GO TO 10 IF(SINTH.GT.0.D0) RCOS=6.2831853D0-RCOS RCOS=-RCOS RETURN 10 RCOS=0.0D0 RETURN END SUBROUTINE XYZGEO(XYZ,NUMAT,NA,NB,NC,DEGREE,GEO) IMPLICIT DOUBLE PRECISION (A-H,O-Z) DIMENSION XYZ(3,*), NA(*), NB(*), NC(*), GEO(3,*) *********************************************************************** * * XYZGEO CONVERTS COORDINATES FROM CARTESIAN TO INTERNAL. * * ON INPUT XYZ = ARRAY OF CARTESIAN COORDINATES * NUMAT= NUMBER OF ATOMS * NA = NUMBERS OF ATOM TO WHICH ATOMS ARE RELATED * BY DISTANCE * NB = NUMBERS OF ATOM TO WHICH ATOMS ARE RELATED * BY ANGLE * NC = NUMBERS OF ATOM TO WHICH ATOMS ARE RELATED * BY DIHEDRAL * * ON OUTPUT GEO = INTERNAL COORDINATES IN ANGSTROMS, RADIANS, * AND RADIANS * *********************************************************************** DO 10 I=2,NUMAT J=NA(I) K=NB(I) L=NC(I) IF(I.LT.3) GOTO 10 II=I CALL BANGLE(XYZ,II,J,K,GEO(2,I)) GEO(2,I)=GEO(2,I)*DEGREE IF(I.LT.4) GOTO 10 CALL DIHED(XYZ,II,J,K,L,GEO(3,I)) GEO(3,I)=GEO(3,I)*DEGREE 10 GEO(1,I)= SQRT((XYZ(1,I)-XYZ(1,J))**2+ 1 (XYZ(2,I)-XYZ(2,J))**2+ 2 (XYZ(3,I)-XYZ(3,J))**2) GEO(1,1)=0.D0 GEO(2,1)=0.D0 GEO(3,1)=0.D0 GEO(2,2)=0.D0 GEO(3,2)=0.D0 GEO(3,3)=0.D0 RETURN END SUBROUTINE XYZINT(XYZ,NUMAT,NA,NB,NC,DEGREE,GEO) IMPLICIT DOUBLE PRECISION (A-H,O-Z) DIMENSION XYZ(3,*), NA(*), NB(*), NC(*), GEO(3,*) *********************************************************************** * * XYZINT WORKS OUT THE INTERNAL COORDINATES OF A MOLECULE. * THE "RULES" FOR THE CONNECTIVITY ARE AS FOLLOWS: * ATOM I IS DEFINED AS BEING AT A DISTANCE FROM THE NEAREST * ATOM J, ATOM J ALREADY HAVING BEEN DEFINED. * ATOM I MAKES AN ANGLE WITH ATOM J AND THE ATOM K, WHICH HAS * ALREADY BEEN DEFINED, AND IS THE NEAREST ATOM TO J * ATOM I MAKES A DIHEDRAL ANGLE WITH ATOMS J, K, AND L. L HAVING * BEEN DEFINED AND IS THE NEAREST ATOM TO K * * NOTE THAT GEO AND XYZ MUST NOT BE THE SAME IN THE CALL. * * ON INPUT XYZ = CARTESIAN ARRAY OF NUMAT ATOMS * DEGREE = 1 IF ANGLES ARE TO BE IN RADIANS * DEGREE = 57.29578 IF ANGLES ARE TO BE IN RADIANS * *********************************************************************** NAI1=0 NAI2=0 DO 20 I=1,NUMAT NA(I)=2 NB(I)=3 NC(I)=4 IM1=I-1 IF(IM1.EQ.0)GOTO 20 SUM=100.D0 DO 10 J=1,IM1 R=(XYZ(1,I)-XYZ(1,J))**2+ 1 (XYZ(2,I)-XYZ(2,J))**2+ 2 (XYZ(3,I)-XYZ(3,J))**2 IF(R.LT.SUM.AND.NA(J).NE.J.AND.NB(J).NE.J) THEN SUM=R K=J ENDIF 10 CONTINUE C C ATOM I IS NEAREST TO ATOM K C NA(I)=K IF(I.GT.2)NB(I)=NA(K) IF(I.GT.3)NC(I)=NB(K) C C FIND ANY ATOM TO RELATE TO NA(I) C 20 CONTINUE NA(1)=0 NB(1)=0 NC(1)=0 NB(2)=0 NC(2)=0 NC(3)=0 CALL XYZGEO(XYZ,NUMAT,NA,NB,NC,DEGREE,GEO) RETURN END . From nauss@wrair-emh1.army.mil Tue Mar 23 12:27:00 1993 Message-Id: <199303232308.AA16850@oscsunb.ccl.net> Date: 23 Mar 93 17:27:00 EST From: nauss@wrair-emh1.army.mil Subject: What about simulated annealing? To: "chemistry" Good day, all - I am trying to refine some structural homology models of proteins. One approach I am considering is simulated annealing. However, I want to ensure that I understand the concept first. Please correct me if I am in error. As I understand it, simulated annealing is simply a molecular dynamics simulation where the protein is heated to a rather high temperature then slowly cooled down to zero. The protein is then locked into some low energy conformation which it was close to at the higher temperature. In order to get accurate results, one needs to perform the simulation several times and obtain a consensus structure. How am I doing so far? Okay, so here are my questions. (1) Can the procedure be implemented using the standard MSI CHARMM package or is a special (and maybe proprietary) version needed? Has anyone a script file I can use to learn by example? (2) How high a temperature is needed? 300K, 600, 900, more? (3) Any good references for learning how to use simulated annealing? (4) Am I missing anything in my understanding of the technique? Thanks for your time. Jeff Nauss +----------------------------------------------------------------------+ | Mailing Address: | E-mail address: | | | nauss@wrair-emh1.army.mil | | Department of Gastroenterology | | | Division of Medicine | Telephone number: | | Walter Reed Army Institute of Research | 202-576-3485 | | ATTN: Major Jeffrey Nauss, PhD | | | Washington, D.C. 20307-5100 | FAX: 202-576-0703 | +----------------------------------------------------------------------+