The text file is also avilable here
torsion constants for angle 1 2 3 7 (type 13 80 30 1) unk; set = 0
torsion constants for angle 1 2 3 11 (type 13 80 30 5) unk; set = 0
torsion constants for angle 2 3 7 8 (type 80 30 1 1) unk; set = 0
torsion constants for angle 2 3 7 9 (type 80 30 1 1) unk; set = 0
torsion constants for angle 2 3 7 10 (type 80 30 1 1) unk; set = 0
torsion constants for angle 4 2 3 7 (type 13 80 30 1) unk; set = 0
torsion constants for angle 4 2 3 11 (type 13 80 30 5) unk; set = 0
torsion constants for angle 5 2 3 7 (type 13 80 30 1) unk; set = 0
torsion constants for angle 5 2 3 11 (type 13 80 30 5) unk; set = 0
torsion constants for angle 6 2 3 7 (type 13 80 30 1) unk; set = 0
torsion constants for angle 6 2 3 11 (type 13 80 30 5) unk; set = 0
atom # 1 mmtype 13 charge: 0.000
atom # 2 mmtype 80 charge: 0.600
atom # 3 mmtype 30 charge: 0.933
atom # 4 mmtype 13 charge: 0.000
atom # 5 mmtype 13 charge: 0.000
atom # 6 mmtype 13 charge: 0.000
atom # 7 mmtype 1 charge: 0.029
atom # 8 mmtype 1 charge: 0.000
atom # 9 mmtype 1 charge: 0.000
atom # 10 mmtype 1 charge: 0.000
atom # 11 mmtype 5 charge: 0.038
atom # 12 mmtype 5 charge: 0.000
atom # 13 mmtype 5 charge: 0.000
atom # 14 mmtype 5 charge: 0.000
atom # 15 mmtype 5 charge: 0.000
atom # 16 mmtype 5 charge: 0.000
atom # 17 mmtype 5 charge: 0.000
atom # 18 mmtype 5 charge: 0.000
atom # 19 mmtype 5 charge: 0.000
atom # 20 mmtype 5 charge: 0.000
generalized constants for angle 1 2 3 (type 13 80 30) are used
generalized constants for angle 1 2 4 (type 13 80 13) are used
generalized constants for angle 1 2 5 (type 13 80 13) are used
generalized constants for angle 1 2 6 (type 13 80 13) are used
generalized constants for angle 3 2 4 (type 30 80 13) are used
generalized constants for angle 3 2 5 (type 30 80 13) are used
generalized constants for angle 3 2 6 (type 30 80 13) are used
generalized constants for angle 4 2 5 (type 13 80 13) are used
generalized constants for angle 4 2 6 (type 13 80 13) are used
generalized constants for angle 5 2 6 (type 13 80 13) are used
generalized constants for angle 2 3 7 (type 80 30 1) are used
generalized constants for angle 2 3 11 (type 80 30 5) are used
generalized constants for angle 7 3 11 (type 1 30 5) are used
generalized constants for angle 3 7 8 (type 30 1 1) are used
generalized constants for angle 3 7 9 (type 30 1 1) are used
generalized constants for angle 3 7 10 (type 30 1 1) are used
MMX Energy 28.24
STR 23.76 BND 0.44
S-B 0.02 TOR 0.30
VDW 3.73 DIP/CHRG 0.00
Dipole Moment 10.20
Heat of Formation 16.958 kcal/mole;
Strain Energy 8.077
start WBr4CHtBu
0 * * * * * Energy is minimized within 0.0030 kcal * * * * *
* * * * * MM2 energy is -0.3069 kcal/mol * * * * *
Accumulated movement is 0.2367 ang/atom
------------------------------------------------------------
Heat of Formation, Strain Energies and Entropies at 300 k
(units are kcal or eu.)
Bond Enthalpy (be) and Entropy:
# Bond or Structure Each Total Tot S contrib.
* * * * * error - bond 2- 1 does not have programmed enthalpy increments.
* * * * * error - bond 3- 2 does not have programmed enthalpy increments.
* * * * * error - bond 4- 2 does not have programmed enthalpy increments.
* * * * * error - bond 5- 2 does not have programmed enthalpy increments.
* * * * * error - bond 6- 2 does not have programmed enthalpy increments.
3 C-C SP3-SP3 -0.004 -0.012 -49.200
9 C-H ALIPHATIC -3.205 -28.845 116.100
1 H-C+ 86.300 86.300 0.000
S contrib. above is unk.
1 C-C+ 56.000 56.000 0.000
S contrib. above is unk.
3 C(SP3)-METHYL -1.510 -4.530
---------------- ---------------
be = 108.913 s = 66.900
3 & 4 Ring corrections to entropy are included w/o symmetry corrections.
for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.;
for each 8-ring add 14 eu.; for higher rings add 12 eu. each.
there are no symmetry corrections to the entropy.
Heat of Formation calculation:
Partition Function Contribution (PFC)
Conformational Population Increment (POP) 0.000
Torsional Contribution (TOR) 0.000
Translation/Rotation Term (T/R) 2.400
-------------
PFC = 2.400
Heat of Formation (hf0) = energy + be + pfc 111.006
Strain Energy (energy+environment corrs.)= -2.527
CAUTION, delta hf is not correct because of missing parameters.
Use total energy or strain energy to compare the stabilities of conformers
and diastereomers. Caution, energy parameters for metal systems are
generalized and may not represent a particular metal or oxidation state.
Use heats of formation to compare stabilities of structural isomers like
acetaldehyde and enol or allyl chloride and cyclopropyl chloride. Many
bond contributions to the heat of formation are unknown-these contribute
0.0 to the value given.
MMX Energy -0.31
STR 0.56 BND 0.37
S-B 0.01 TOR 0.30
VDW -1.54 DIP/CHRG 0.00
Dipole Moment 10.10
Incomplete heat of formation 111.006 kcal/mole
end WBr4CHtBu
torsion constants for angle 1 2 3 7 (type 13 80 30 1) unk; set = 0
torsion constants for angle 1 2 3 16 (type 13 80 30 5) unk; set = 0
torsion constants for angle 1 2 4 11 (type 13 80 6 1) unk; set = 0
torsion constants for angle 1 2 4 17 (type 13 80 6 20) unk; set = 0
torsion constants for angle 1 2 4 18 (type 13 80 6 20) unk; set = 0
torsion constants for angle 2 3 7 8 (type 80 30 1 1) unk; set = 0
torsion constants for angle 2 3 7 9 (type 80 30 1 1) unk; set = 0
torsion constants for angle 2 3 7 10 (type 80 30 1 1) unk; set = 0
generalized constants for angle 2 4 11 12 (type 80 6 1 1) are used
0.000 0.000 0.500
torsion constants for angle 3 2 4 11 (type 30 80 6 1) unk; set = 0
torsion constants for angle 3 2 4 17 (type 30 80 6 20) unk; set = 0
torsion constants for angle 3 2 4 18 (type 30 80 6 20) unk; set = 0
torsion constants for angle 4 2 3 7 (type 6 80 30 1) unk; set = 0
torsion constants for angle 4 2 3 16 (type 6 80 30 5) unk; set = 0
torsion constants for angle 5 2 3 7 (type 13 80 30 1) unk; set = 0
torsion constants for angle 5 2 3 16 (type 13 80 30 5) unk; set = 0
torsion constants for angle 5 2 4 11 (type 13 80 6 1) unk; set = 0
torsion constants for angle 5 2 4 17 (type 13 80 6 20) unk; set = 0
torsion constants for angle 5 2 4 18 (type 13 80 6 20) unk; set = 0
torsion constants for angle 6 2 3 7 (type 13 80 30 1) unk; set = 0
torsion constants for angle 6 2 3 16 (type 13 80 30 5) unk; set = 0
torsion constants for angle 6 2 4 11 (type 13 80 6 1) unk; set = 0
torsion constants for angle 6 2 4 17 (type 13 80 6 20) unk; set = 0
torsion constants for angle 6 2 4 18 (type 13 80 6 20) unk; set = 0
atom # 1 mmtype 13 charge: 0.000
atom # 2 mmtype 80 charge: 0.600
atom # 3 mmtype 30 charge: 0.933
atom # 4 mmtype 6 charge: 0.153
atom # 5 mmtype 13 charge: 0.000
atom # 6 mmtype 13 charge: 0.000
atom # 7 mmtype 1 charge: 0.029
atom # 8 mmtype 1 charge: 0.000
atom # 9 mmtype 1 charge: 0.000
atom # 10 mmtype 1 charge: 0.000
atom # 11 mmtype 1 charge: 0.127
atom # 12 mmtype 1 charge: 0.000
atom # 13 mmtype 1 charge: 0.000
atom # 14 mmtype 1 charge: 0.000
atom # 15 mmtype 1 charge: 0.000
atom # 16 mmtype 5 charge: 0.038
atom # 17 mmtype 20 charge: -0.140
atom # 18 mmtype 20 charge: -0.140
atom # 19 mmtype 5 charge: 0.000
atom # 20 mmtype 5 charge: 0.000
atom # 21 mmtype 5 charge: 0.000
atom # 22 mmtype 5 charge: 0.000
atom # 23 mmtype 5 charge: 0.000
atom # 24 mmtype 5 charge: 0.000
atom # 25 mmtype 5 charge: 0.000
atom # 26 mmtype 5 charge: 0.000
atom # 27 mmtype 5 charge: 0.000
atom # 28 mmtype 5 charge: 0.000
atom # 29 mmtype 5 charge: 0.000
atom # 30 mmtype 5 charge: 0.000
atom # 31 mmtype 5 charge: 0.000
atom # 32 mmtype 5 charge: 0.000
atom # 33 mmtype 5 charge: 0.000
atom # 34 mmtype 5 charge: 0.000
atom # 35 mmtype 5 charge: 0.000
atom # 36 mmtype 5 charge: 0.000
atom # 37 mmtype 5 charge: 0.000
atom # 38 mmtype 5 charge: 0.000
generalized constants for angle 1 2 3 (type 13 80 30) are used
generalized constants for angle 1 2 4 (type 13 80 6) are used
generalized constants for angle 1 2 5 (type 13 80 13) are used
generalized constants for angle 1 2 6 (type 13 80 13) are used
generalized constants for angle 3 2 4 (type 30 80 6) are used
generalized constants for angle 3 2 5 (type 30 80 13) are used
generalized constants for angle 3 2 6 (type 30 80 13) are used
generalized constants for angle 4 2 5 (type 6 80 13) are used
generalized constants for angle 4 2 6 (type 6 80 13) are used
generalized constants for angle 5 2 6 (type 13 80 13) are used
generalized constants for angle 2 3 7 (type 80 30 1) are used
generalized constants for angle 2 3 16 (type 80 30 5) are used
generalized constants for angle 7 3 16 (type 1 30 5) are used
generalized constants for angle 2 4 11 (type 80 6 1) are used
generalized constants for angle 2 4 17 (type 80 6 20) are used
generalized constants for angle 2 4 18 (type 80 6 20) are used
generalized constants for angle 3 7 8 (type 30 1 1) are used
generalized constants for angle 3 7 9 (type 30 1 1) are used
generalized constants for angle 3 7 10 (type 30 1 1) are used
MMX Energy 39.96
STR 17.12 BND 3.56
S-B 0.16 TOR 17.39
VDW 5.29 DIP/CHRG -3.55
Dipole Moment 9.32
Heat of Formation 111.006 kcal/mole;
Strain Energy -2.527
start WBr3(OCH2CME3)CHtBu
0 * * * * * Energy is minimized within 0.0057 kcal * * * * *
* * * * * MM2 energy is 5.8256 kcal/mol * * * * *
Accumulated movement is 0.3877 ang/atom
------------------------------------------------------------
Heat of Formation, Strain Energies and Entropies at 300 k
(units are kcal or eu.)
Bond Enthalpy (be) and Entropy:
# Bond or Structure Each Total Tot S contrib.
* * * * * error - bond 2- 1 does not have programmed enthalpy increments.
* * * * * error - bond 3- 2 does not have programmed enthalpy increments.
* * * * * error - bond 4- 2 does not have programmed enthalpy increments.
* * * * * error - bond 5- 2 does not have programmed enthalpy increments.
* * * * * error - bond 6- 2 does not have programmed enthalpy increments.
7 C-C SP3-SP3 -0.004 -0.028 -114.800
20 C-H ALIPHATIC -3.205 -64.100 258.000
1 C-O ETHER & ALC. -16.668 -16.668 -4.000
1 H-C+ 86.300 86.300 0.000
S contrib. above is unk.
1 C-C+ 56.000 56.000 0.000
S contrib. above is unk.
1 NEO (ALKANE) -0.707 -0.707
6 C(SP3)-METHYL -1.510 -9.060
---------------- ---------------
be = 51.737 s = 139.200
3 & 4 Ring corrections to entropy are included w/o symmetry corrections.
for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.;
for each 8-ring add 14 eu.; for higher rings add 12 eu. each.
there are no symmetry corrections to the entropy.
Heat of Formation calculation:
Partition Function Contribution (PFC)
Conformational Population Increment (POP) 0.000
Torsional Contribution (TOR) 0.000
Translation/Rotation Term (T/R) 2.400
-------------
PFC = 2.400
Heat of Formation (hf0) = energy + be + pfc 59.963
Strain Energy (energy+environment corrs.)= -1.244
CAUTION, delta hf is not correct because of missing parameters.
Use total energy or strain energy to compare the stabilities of conformers
and diastereomers. Caution, energy parameters for metal systems are
generalized and may not represent a particular metal or oxidation state.
Use heats of formation to compare stabilities of structural isomers like
acetaldehyde and enol or allyl chloride and cyclopropyl chloride. Many
bond contributions to the heat of formation are unknown-these contribute
0.0 to the value given.
MMX Energy 5.83
STR 2.05 BND 5.86
S-B -0.47 TOR 2.06
VDW 0.09 DIP/CHRG -3.76
Dipole Moment 9.31
Incomplete heat of formation 59.963 kcal/mole
end WBr3(OCH2CME3)CHtBu
torsion constants for angle 1 2 3 7 (type 13 80 30 1) unk; set = 0
torsion constants for angle 1 2 3 21 (type 13 80 30 5) unk; set = 0
torsion constants for angle 1 2 4 11 (type 13 80 6 1) unk; set = 0
torsion constants for angle 1 2 4 22 (type 13 80 6 20) unk; set = 0
torsion constants for angle 1 2 4 23 (type 13 80 6 20) unk; set = 0
torsion constants for angle 1 2 5 16 (type 13 80 6 1) unk; set = 0
torsion constants for angle 1 2 5 24 (type 13 80 6 20) unk; set = 0
torsion constants for angle 1 2 5 25 (type 13 80 6 20) unk; set = 0
torsion constants for angle 2 3 7 8 (type 80 30 1 1) unk; set = 0
torsion constants for angle 2 3 7 9 (type 80 30 1 1) unk; set = 0
torsion constants for angle 2 3 7 10 (type 80 30 1 1) unk; set = 0
generalized constants for angle 2 4 11 12 (type 80 6 1 1) are used
0.000 0.000 0.500
torsion constants for angle 3 2 4 11 (type 30 80 6 1) unk; set = 0
torsion constants for angle 3 2 4 22 (type 30 80 6 20) unk; set = 0
torsion constants for angle 3 2 4 23 (type 30 80 6 20) unk; set = 0
torsion constants for angle 3 2 5 16 (type 30 80 6 1) unk; set = 0
torsion constants for angle 3 2 5 24 (type 30 80 6 20) unk; set = 0
torsion constants for angle 3 2 5 25 (type 30 80 6 20) unk; set = 0
torsion constants for angle 4 2 3 7 (type 6 80 30 1) unk; set = 0
torsion constants for angle 4 2 3 21 (type 6 80 30 5) unk; set = 0
torsion constants for angle 4 2 5 16 (type 6 80 6 1) unk; set = 0
torsion constants for angle 4 2 5 24 (type 6 80 6 20) unk; set = 0
torsion constants for angle 4 2 5 25 (type 6 80 6 20) unk; set = 0
torsion constants for angle 5 2 3 7 (type 6 80 30 1) unk; set = 0
torsion constants for angle 5 2 3 21 (type 6 80 30 5) unk; set = 0
torsion constants for angle 5 2 4 11 (type 6 80 6 1) unk; set = 0
torsion constants for angle 5 2 4 22 (type 6 80 6 20) unk; set = 0
torsion constants for angle 5 2 4 23 (type 6 80 6 20) unk; set = 0
torsion constants for angle 6 2 3 7 (type 13 80 30 1) unk; set = 0
torsion constants for angle 6 2 3 21 (type 13 80 30 5) unk; set = 0
torsion constants for angle 6 2 4 11 (type 13 80 6 1) unk; set = 0
torsion constants for angle 6 2 4 22 (type 13 80 6 20) unk; set = 0
torsion constants for angle 6 2 4 23 (type 13 80 6 20) unk; set = 0
torsion constants for angle 6 2 5 16 (type 13 80 6 1) unk; set = 0
torsion constants for angle 6 2 5 24 (type 13 80 6 20) unk; set = 0
torsion constants for angle 6 2 5 25 (type 13 80 6 20) unk; set = 0
atom # 1 mmtype 13 charge: 0.000
atom # 2 mmtype 80 charge: 0.600
atom # 3 mmtype 30 charge: 0.933
atom # 4 mmtype 6 charge: 0.153
atom # 5 mmtype 6 charge: 0.153
atom # 6 mmtype 13 charge: 0.000
atom # 7 mmtype 1 charge: 0.029
atom # 8 mmtype 1 charge: 0.000
atom # 9 mmtype 1 charge: 0.000
atom # 10 mmtype 1 charge: 0.000
atom # 11 mmtype 1 charge: 0.127
atom # 12 mmtype 1 charge: 0.000
atom # 13 mmtype 1 charge: 0.000
atom # 14 mmtype 1 charge: 0.000
atom # 15 mmtype 1 charge: 0.000
atom # 16 mmtype 1 charge: 0.127
atom # 17 mmtype 1 charge: 0.000
atom # 18 mmtype 1 charge: 0.000
atom # 19 mmtype 1 charge: 0.000
atom # 20 mmtype 1 charge: 0.000
atom # 21 mmtype 5 charge: 0.038
atom # 22 mmtype 20 charge: -0.140
atom # 23 mmtype 20 charge: -0.140
atom # 24 mmtype 20 charge: -0.140
atom # 25 mmtype 20 charge: -0.140
atom # 26 mmtype 5 charge: 0.000
atom # 27 mmtype 5 charge: 0.000
atom # 28 mmtype 5 charge: 0.000
atom # 29 mmtype 5 charge: 0.000
atom # 30 mmtype 5 charge: 0.000
atom # 31 mmtype 5 charge: 0.000
atom # 32 mmtype 5 charge: 0.000
atom # 33 mmtype 5 charge: 0.000
atom # 34 mmtype 5 charge: 0.000
atom # 35 mmtype 5 charge: 0.000
atom # 36 mmtype 5 charge: 0.000
atom # 37 mmtype 5 charge: 0.000
atom # 38 mmtype 5 charge: 0.000
atom # 39 mmtype 5 charge: 0.000
atom # 40 mmtype 5 charge: 0.000
atom # 41 mmtype 5 charge: 0.000
atom # 42 mmtype 5 charge: 0.000
atom # 43 mmtype 5 charge: 0.000
atom # 44 mmtype 5 charge: 0.000
atom # 45 mmtype 5 charge: 0.000
atom # 46 mmtype 5 charge: 0.000
atom # 47 mmtype 5 charge: 0.000
atom # 48 mmtype 5 charge: 0.000
atom # 49 mmtype 5 charge: 0.000
atom # 50 mmtype 5 charge: 0.000
atom # 51 mmtype 5 charge: 0.000
atom # 52 mmtype 5 charge: 0.000
atom # 53 mmtype 5 charge: 0.000
atom # 54 mmtype 5 charge: 0.000
atom # 55 mmtype 5 charge: 0.000
atom # 56 mmtype 5 charge: 0.000
generalized constants for angle 1 2 3 (type 13 80 30) are used
generalized constants for angle 1 2 4 (type 13 80 6) are used
generalized constants for angle 1 2 5 (type 13 80 6) are used
generalized constants for angle 1 2 6 (type 13 80 13) are used
generalized constants for angle 3 2 4 (type 30 80 6) are used
generalized constants for angle 3 2 5 (type 30 80 6) are used
generalized constants for angle 3 2 6 (type 30 80 13) are used
generalized constants for angle 4 2 5 (type 6 80 6) are used
generalized constants for angle 4 2 6 (type 6 80 13) are used
generalized constants for angle 5 2 6 (type 6 80 13) are used
generalized constants for angle 2 3 7 (type 80 30 1) are used
generalized constants for angle 2 3 21 (type 80 30 5) are used
generalized constants for angle 7 3 21 (type 1 30 5) are used
generalized constants for angle 2 4 11 (type 80 6 1) are used
generalized constants for angle 2 4 22 (type 80 6 20) are used
generalized constants for angle 2 4 23 (type 80 6 20) are used
generalized constants for angle 2 5 16 (type 80 6 1) are used
generalized constants for angle 2 5 24 (type 80 6 20) are used
generalized constants for angle 2 5 25 (type 80 6 20) are used
generalized constants for angle 3 7 8 (type 30 1 1) are used
generalized constants for angle 3 7 9 (type 30 1 1) are used
generalized constants for angle 3 7 10 (type 30 1 1) are used
MMX Energy 50.84
STR 2.03 BND 4.51
S-B -0.20 TOR 50.17
VDW -2.01 DIP/CHRG -3.67
Dipole Moment 15.92
Heat of Formation 59.963 kcal/mole;
Strain Energy -1.244
start WBr2(OCH2CME3)2CHtBu
0 * * * * * Energy is minimized within 0.0084 kcal * * * * *
* * * * * MM2 energy is 20.2924 kcal/mol * * * * *
Accumulated movement is 0.2760 ang/atom
------------------------------------------------------------
Heat of Formation, Strain Energies and Entropies at 300 k
(units are kcal or eu.)
Bond Enthalpy (be) and Entropy:
# Bond or Structure Each Total Tot S contrib.
* * * * * error - bond 2- 1 does not have programmed enthalpy increments.
* * * * * error - bond 3- 2 does not have programmed enthalpy increments.
* * * * * error - bond 4- 2 does not have programmed enthalpy increments.
* * * * * error - bond 5- 2 does not have programmed enthalpy increments.
* * * * * error - bond 6- 2 does not have programmed enthalpy increments.
11 C-C SP3-SP3 -0.004 -0.044 -180.400
31 C-H ALIPHATIC -3.205 -99.355 399.900
2 C-O ETHER & ALC. -16.668 -33.336 -8.000
1 H-C+ 86.300 86.300 0.000
S contrib. above is unk.
1 C-C+ 56.000 56.000 0.000
S contrib. above is unk.
2 NEO (ALKANE) -0.707 -1.414
9 C(SP3)-METHYL -1.510 -13.590
---------------- ---------------
be = -5.439 s = 211.500
3 & 4 Ring corrections to entropy are included w/o symmetry corrections.
for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.;
for each 8-ring add 14 eu.; for higher rings add 12 eu. each.
there are no symmetry corrections to the entropy.
Heat of Formation calculation:
Partition Function Contribution (PFC)
Conformational Population Increment (POP) 0.000
Torsional Contribution (TOR) 0.000
Translation/Rotation Term (T/R) 2.400
-------------
PFC = 2.400
Heat of Formation (hf0) = energy + be + pfc 17.253
Strain Energy (energy+environment corrs.)= 8.372
CAUTION, delta hf is not correct because of missing parameters.
Use total energy or strain energy to compare the stabilities of conformers
and diastereomers. Caution, energy parameters for metal systems are
generalized and may not represent a particular metal or oxidation state.
Use heats of formation to compare stabilities of structural isomers like
acetaldehyde and enol or allyl chloride and cyclopropyl chloride. Many
bond contributions to the heat of formation are unknown-these contribute
0.0 to the value given.
MMX Energy 20.29
STR 2.46 BND 20.55
S-B -0.83 TOR 2.77
VDW -0.49 DIP/CHRG -4.16
Dipole Moment 14.24
Incomplete heat of formation 17.253 kcal/mole
end WBr2(OCH2CME3)2CHtBu
torsion constants for angle 1 2 3 7 (type 13 80 30 1) unk; set = 0
torsion constants for angle 1 2 3 26 (type 13 80 30 5) unk; set = 0
torsion constants for angle 1 2 4 11 (type 13 80 6 1) unk; set = 0
torsion constants for angle 1 2 4 27 (type 13 80 6 20) unk; set = 0
torsion constants for angle 1 2 4 28 (type 13 80 6 20) unk; set = 0
torsion constants for angle 1 2 5 16 (type 13 80 6 1) unk; set = 0
torsion constants for angle 1 2 5 29 (type 13 80 6 20) unk; set = 0
torsion constants for angle 1 2 5 30 (type 13 80 6 20) unk; set = 0
torsion constants for angle 1 2 6 21 (type 13 80 6 1) unk; set = 0
torsion constants for angle 1 2 6 31 (type 13 80 6 20) unk; set = 0
torsion constants for angle 1 2 6 32 (type 13 80 6 20) unk; set = 0
torsion constants for angle 2 3 7 8 (type 80 30 1 1) unk; set = 0
torsion constants for angle 2 3 7 9 (type 80 30 1 1) unk; set = 0
torsion constants for angle 2 3 7 10 (type 80 30 1 1) unk; set = 0
generalized constants for angle 2 4 11 12 (type 80 6 1 1) are used
0.000 0.000 0.500
torsion constants for angle 3 2 4 11 (type 30 80 6 1) unk; set = 0
torsion constants for angle 3 2 4 27 (type 30 80 6 20) unk; set = 0
torsion constants for angle 3 2 4 28 (type 30 80 6 20) unk; set = 0
torsion constants for angle 3 2 5 16 (type 30 80 6 1) unk; set = 0
torsion constants for angle 3 2 5 29 (type 30 80 6 20) unk; set = 0
torsion constants for angle 3 2 5 30 (type 30 80 6 20) unk; set = 0
torsion constants for angle 3 2 6 21 (type 30 80 6 1) unk; set = 0
torsion constants for angle 3 2 6 31 (type 30 80 6 20) unk; set = 0
torsion constants for angle 3 2 6 32 (type 30 80 6 20) unk; set = 0
torsion constants for angle 4 2 3 7 (type 6 80 30 1) unk; set = 0
torsion constants for angle 4 2 3 26 (type 6 80 30 5) unk; set = 0
torsion constants for angle 4 2 5 16 (type 6 80 6 1) unk; set = 0
torsion constants for angle 4 2 5 29 (type 6 80 6 20) unk; set = 0
torsion constants for angle 4 2 5 30 (type 6 80 6 20) unk; set = 0
torsion constants for angle 4 2 6 21 (type 6 80 6 1) unk; set = 0
torsion constants for angle 4 2 6 31 (type 6 80 6 20) unk; set = 0
torsion constants for angle 4 2 6 32 (type 6 80 6 20) unk; set = 0
torsion constants for angle 5 2 3 7 (type 6 80 30 1) unk; set = 0
torsion constants for angle 5 2 3 26 (type 6 80 30 5) unk; set = 0
torsion constants for angle 5 2 4 11 (type 6 80 6 1) unk; set = 0
torsion constants for angle 5 2 4 27 (type 6 80 6 20) unk; set = 0
torsion constants for angle 5 2 4 28 (type 6 80 6 20) unk; set = 0
torsion constants for angle 5 2 6 21 (type 6 80 6 1) unk; set = 0
torsion constants for angle 5 2 6 31 (type 6 80 6 20) unk; set = 0
torsion constants for angle 5 2 6 32 (type 6 80 6 20) unk; set = 0
torsion constants for angle 6 2 3 7 (type 6 80 30 1) unk; set = 0
torsion constants for angle 6 2 3 26 (type 6 80 30 5) unk; set = 0
torsion constants for angle 6 2 4 11 (type 6 80 6 1) unk; set = 0
torsion constants for angle 6 2 4 27 (type 6 80 6 20) unk; set = 0
torsion constants for angle 6 2 4 28 (type 6 80 6 20) unk; set = 0
torsion constants for angle 6 2 5 16 (type 6 80 6 1) unk; set = 0
torsion constants for angle 6 2 5 29 (type 6 80 6 20) unk; set = 0
torsion constants for angle 6 2 5 30 (type 6 80 6 20) unk; set = 0
atom # 1 mmtype 13 charge: 0.000
atom # 2 mmtype 80 charge: 0.600
atom # 3 mmtype 30 charge: 0.933
atom # 4 mmtype 6 charge: 0.153
atom # 5 mmtype 6 charge: 0.153
atom # 6 mmtype 6 charge: 0.153
atom # 7 mmtype 1 charge: 0.029
atom # 8 mmtype 1 charge: 0.000
atom # 9 mmtype 1 charge: 0.000
atom # 10 mmtype 1 charge: 0.000
atom # 11 mmtype 1 charge: 0.127
atom # 12 mmtype 1 charge: 0.000
atom # 13 mmtype 1 charge: 0.000
atom # 14 mmtype 1 charge: 0.000
atom # 15 mmtype 1 charge: 0.000
atom # 16 mmtype 1 charge: 0.127
atom # 17 mmtype 1 charge: 0.000
atom # 18 mmtype 1 charge: 0.000
atom # 19 mmtype 1 charge: 0.000
atom # 20 mmtype 1 charge: 0.000
atom # 21 mmtype 1 charge: 0.127
atom # 22 mmtype 1 charge: 0.000
atom # 23 mmtype 1 charge: 0.000
atom # 24 mmtype 1 charge: 0.000
atom # 25 mmtype 1 charge: 0.000
atom # 26 mmtype 5 charge: 0.038
atom # 27 mmtype 20 charge: -0.140
atom # 28 mmtype 20 charge: -0.140
atom # 29 mmtype 20 charge: -0.140
atom # 30 mmtype 20 charge: -0.140
atom # 31 mmtype 20 charge: -0.140
atom # 32 mmtype 20 charge: -0.140
atom # 33 mmtype 5 charge: 0.000
atom # 34 mmtype 5 charge: 0.000
atom # 35 mmtype 5 charge: 0.000
atom # 36 mmtype 5 charge: 0.000
atom # 37 mmtype 5 charge: 0.000
atom # 38 mmtype 5 charge: 0.000
atom # 39 mmtype 5 charge: 0.000
atom # 40 mmtype 5 charge: 0.000
atom # 41 mmtype 5 charge: 0.000
atom # 42 mmtype 5 charge: 0.000
atom # 43 mmtype 5 charge: 0.000
atom # 44 mmtype 5 charge: 0.000
atom # 45 mmtype 5 charge: 0.000
atom # 46 mmtype 5 charge: 0.000
atom # 47 mmtype 5 charge: 0.000
atom # 48 mmtype 5 charge: 0.000
atom # 49 mmtype 5 charge: 0.000
atom # 50 mmtype 5 charge: 0.000
atom # 51 mmtype 5 charge: 0.000
atom # 52 mmtype 5 charge: 0.000
atom # 53 mmtype 5 charge: 0.000
atom # 54 mmtype 5 charge: 0.000
atom # 55 mmtype 5 charge: 0.000
atom # 56 mmtype 5 charge: 0.000
atom # 57 mmtype 5 charge: 0.000
atom # 58 mmtype 5 charge: 0.000
atom # 59 mmtype 5 charge: 0.000
atom # 60 mmtype 5 charge: 0.000
atom # 61 mmtype 5 charge: 0.000
atom # 62 mmtype 5 charge: 0.000
atom # 63 mmtype 5 charge: 0.000
atom # 64 mmtype 5 charge: 0.000
atom # 65 mmtype 5 charge: 0.000
atom # 66 mmtype 5 charge: 0.000
atom # 67 mmtype 5 charge: 0.000
atom # 68 mmtype 5 charge: 0.000
atom # 69 mmtype 5 charge: 0.000
atom # 70 mmtype 5 charge: 0.000
atom # 71 mmtype 5 charge: 0.000
atom # 72 mmtype 5 charge: 0.000
atom # 73 mmtype 5 charge: 0.000
atom # 74 mmtype 5 charge: 0.000
generalized constants for angle 1 2 3 (type 13 80 30) are used
generalized constants for angle 1 2 4 (type 13 80 6) are used
generalized constants for angle 1 2 5 (type 13 80 6) are used
generalized constants for angle 1 2 6 (type 13 80 6) are used
generalized constants for angle 3 2 4 (type 30 80 6) are used
generalized constants for angle 3 2 5 (type 30 80 6) are used
generalized constants for angle 3 2 6 (type 30 80 6) are used
generalized constants for angle 4 2 5 (type 6 80 6) are used
generalized constants for angle 4 2 6 (type 6 80 6) are used
generalized constants for angle 5 2 6 (type 6 80 6) are used
generalized constants for angle 2 3 7 (type 80 30 1) are used
generalized constants for angle 2 3 26 (type 80 30 5) are used
generalized constants for angle 7 3 26 (type 1 30 5) are used
generalized constants for angle 2 4 11 (type 80 6 1) are used
generalized constants for angle 2 4 27 (type 80 6 20) are used
generalized constants for angle 2 4 28 (type 80 6 20) are used
generalized constants for angle 2 5 16 (type 80 6 1) are used
generalized constants for angle 2 5 29 (type 80 6 20) are used
generalized constants for angle 2 5 30 (type 80 6 20) are used
generalized constants for angle 2 6 21 (type 80 6 1) are used
generalized constants for angle 2 6 31 (type 80 6 20) are used
generalized constants for angle 2 6 32 (type 80 6 20) are used
generalized constants for angle 3 7 8 (type 30 1 1) are used
generalized constants for angle 3 7 9 (type 30 1 1) are used
generalized constants for angle 3 7 10 (type 30 1 1) are used
MMX Energy 29.25
STR 2.64 BND 5.94
S-B -0.96 TOR 31.22
VDW -2.33 DIP/CHRG -7.26
Dipole Moment 77.99
Heat of Formation 17.253 kcal/mole;
Strain Energy 8.372
start WBr(OCH2tBu)3CHtBu
0 * * * * * Energy is minimized within 0.0111 kcal * * * * *
* * * * * MM2 energy is 7.3149 kcal/mol * * * * *
Accumulated movement is 0.1088 ang/atom
------------------------------------------------------------
Heat of Formation, Strain Energies and Entropies at 300 k
(units are kcal or eu.)
Bond Enthalpy (be) and Entropy:
# Bond or Structure Each Total Tot S contrib.
* * * * * error - bond 2- 1 does not have programmed enthalpy increments.
* * * * * error - bond 3- 2 does not have programmed enthalpy increments.
* * * * * error - bond 4- 2 does not have programmed enthalpy increments.
* * * * * error - bond 5- 2 does not have programmed enthalpy increments.
* * * * * error - bond 6- 2 does not have programmed enthalpy increments.
15 C-C SP3-SP3 -0.004 -0.060 -246.000
42 C-H ALIPHATIC -3.205 -134.610 541.800
3 C-O ETHER & ALC. -16.668 -50.004 -12.000
1 H-C+ 86.300 86.300 0.000
S contrib. above is unk.
1 C-C+ 56.000 56.000 0.000
S contrib. above is unk.
3 NEO (ALKANE) -0.707 -2.121
12 C(SP3)-METHYL -1.510 -18.120
---------------- ---------------
be = -62.615 s = 283.800
3 & 4 Ring corrections to entropy are included w/o symmetry corrections.
for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.;
for each 8-ring add 14 eu.; for higher rings add 12 eu. each.
there are no symmetry corrections to the entropy.
Heat of Formation calculation:
Partition Function Contribution (PFC)
Conformational Population Increment (POP) 0.000
Torsional Contribution (TOR) 0.000
Translation/Rotation Term (T/R) 2.400
-------------
PFC = 2.400
Heat of Formation (hf0) = energy + be + pfc -52.900
Strain Energy (energy+environment corrs.)= -9.455
CAUTION, delta hf is not correct because of missing parameters.
Use total energy or strain energy to compare the stabilities of conformers
and diastereomers. Caution, energy parameters for metal systems are
generalized and may not represent a particular metal or oxidation state.
Use heats of formation to compare stabilities of structural isomers like
acetaldehyde and enol or allyl chloride and cyclopropyl chloride. Many
bond contributions to the heat of formation are unknown-these contribute
0.0 to the value given.
MMX Energy 7.31
STR 3.44 BND 11.91
S-B -1.56 TOR 3.92
VDW -2.90 DIP/CHRG -7.51
Dipole Moment 78.23
Incomplete heat of formation -52.900 kcal/mole
end WBr(OCH2tBu)3CHtBu
torsion constants for angle 1 2 3 7 (type 6 80 30 1) unk; set = 0
torsion constants for angle 1 2 3 33 (type 6 80 30 5) unk; set = 0
torsion constants for angle 1 2 4 11 (type 6 80 6 1) unk; set = 0
torsion constants for angle 1 2 4 34 (type 6 80 6 20) unk; set = 0
torsion constants for angle 1 2 4 35 (type 6 80 6 20) unk; set = 0
torsion constants for angle 1 2 5 16 (type 6 80 6 1) unk; set = 0
torsion constants for angle 1 2 5 36 (type 6 80 6 20) unk; set = 0
torsion constants for angle 1 2 5 37 (type 6 80 6 20) unk; set = 0
torsion constants for angle 1 2 6 21 (type 6 80 6 1) unk; set = 0
torsion constants for angle 1 2 6 38 (type 6 80 6 20) unk; set = 0
torsion constants for angle 1 2 6 39 (type 6 80 6 20) unk; set = 0
generalized constants for angle 2 1 26 27 (type 80 6 1 1) are used
0.000 0.000 0.500
torsion constants for angle 2 3 7 8 (type 80 30 1 1) unk; set = 0
torsion constants for angle 2 3 7 9 (type 80 30 1 1) unk; set = 0
torsion constants for angle 2 3 7 10 (type 80 30 1 1) unk; set = 0
torsion constants for angle 3 2 1 26 (type 30 80 6 1) unk; set = 0
torsion constants for angle 3 2 1 31 (type 30 80 6 20) unk; set = 0
torsion constants for angle 3 2 1 32 (type 30 80 6 20) unk; set = 0
torsion constants for angle 3 2 4 11 (type 30 80 6 1) unk; set = 0
torsion constants for angle 3 2 4 34 (type 30 80 6 20) unk; set = 0
torsion constants for angle 3 2 4 35 (type 30 80 6 20) unk; set = 0
torsion constants for angle 3 2 5 16 (type 30 80 6 1) unk; set = 0
torsion constants for angle 3 2 5 36 (type 30 80 6 20) unk; set = 0
torsion constants for angle 3 2 5 37 (type 30 80 6 20) unk; set = 0
torsion constants for angle 3 2 6 21 (type 30 80 6 1) unk; set = 0
torsion constants for angle 3 2 6 38 (type 30 80 6 20) unk; set = 0
torsion constants for angle 3 2 6 39 (type 30 80 6 20) unk; set = 0
torsion constants for angle 4 2 1 26 (type 6 80 6 1) unk; set = 0
torsion constants for angle 4 2 1 31 (type 6 80 6 20) unk; set = 0
torsion constants for angle 4 2 1 32 (type 6 80 6 20) unk; set = 0
torsion constants for angle 4 2 3 7 (type 6 80 30 1) unk; set = 0
torsion constants for angle 4 2 3 33 (type 6 80 30 5) unk; set = 0
torsion constants for angle 4 2 5 16 (type 6 80 6 1) unk; set = 0
torsion constants for angle 4 2 5 36 (type 6 80 6 20) unk; set = 0
torsion constants for angle 4 2 5 37 (type 6 80 6 20) unk; set = 0
torsion constants for angle 4 2 6 21 (type 6 80 6 1) unk; set = 0
torsion constants for angle 4 2 6 38 (type 6 80 6 20) unk; set = 0
torsion constants for angle 4 2 6 39 (type 6 80 6 20) unk; set = 0
torsion constants for angle 5 2 1 26 (type 6 80 6 1) unk; set = 0
torsion constants for angle 5 2 1 31 (type 6 80 6 20) unk; set = 0
torsion constants for angle 5 2 1 32 (type 6 80 6 20) unk; set = 0
torsion constants for angle 5 2 3 7 (type 6 80 30 1) unk; set = 0
torsion constants for angle 5 2 3 33 (type 6 80 30 5) unk; set = 0
torsion constants for angle 5 2 4 11 (type 6 80 6 1) unk; set = 0
torsion constants for angle 5 2 4 34 (type 6 80 6 20) unk; set = 0
torsion constants for angle 5 2 4 35 (type 6 80 6 20) unk; set = 0
torsion constants for angle 5 2 6 21 (type 6 80 6 1) unk; set = 0
torsion constants for angle 5 2 6 38 (type 6 80 6 20) unk; set = 0
torsion constants for angle 5 2 6 39 (type 6 80 6 20) unk; set = 0
torsion constants for angle 6 2 1 26 (type 6 80 6 1) unk; set = 0
torsion constants for angle 6 2 1 31 (type 6 80 6 20) unk; set = 0
torsion constants for angle 6 2 1 32 (type 6 80 6 20) unk; set = 0
torsion constants for angle 6 2 3 7 (type 6 80 30 1) unk; set = 0
torsion constants for angle 6 2 3 33 (type 6 80 30 5) unk; set = 0
torsion constants for angle 6 2 4 11 (type 6 80 6 1) unk; set = 0
torsion constants for angle 6 2 4 34 (type 6 80 6 20) unk; set = 0
torsion constants for angle 6 2 4 35 (type 6 80 6 20) unk; set = 0
torsion constants for angle 6 2 5 16 (type 6 80 6 1) unk; set = 0
torsion constants for angle 6 2 5 36 (type 6 80 6 20) unk; set = 0
torsion constants for angle 6 2 5 37 (type 6 80 6 20) unk; set = 0
atom # 1 mmtype 6 charge: 0.153
atom # 2 mmtype 80 charge: 0.600
atom # 3 mmtype 30 charge: 0.933
atom # 4 mmtype 6 charge: 0.153
atom # 5 mmtype 6 charge: 0.153
atom # 6 mmtype 6 charge: 0.153
atom # 7 mmtype 1 charge: 0.029
atom # 8 mmtype 1 charge: 0.000
atom # 9 mmtype 1 charge: 0.000
atom # 10 mmtype 1 charge: 0.000
atom # 11 mmtype 1 charge: 0.127
atom # 12 mmtype 1 charge: 0.000
atom # 13 mmtype 1 charge: 0.000
atom # 14 mmtype 1 charge: 0.000
atom # 15 mmtype 1 charge: 0.000
atom # 16 mmtype 1 charge: 0.127
atom # 17 mmtype 1 charge: 0.000
atom # 18 mmtype 1 charge: 0.000
atom # 19 mmtype 1 charge: 0.000
atom # 20 mmtype 1 charge: 0.000
atom # 21 mmtype 1 charge: 0.127
atom # 22 mmtype 1 charge: 0.000
atom # 23 mmtype 1 charge: 0.000
atom # 24 mmtype 1 charge: 0.000
atom # 25 mmtype 1 charge: 0.000
atom # 26 mmtype 1 charge: 0.127
atom # 27 mmtype 1 charge: 0.000
atom # 28 mmtype 1 charge: 0.000
atom # 29 mmtype 1 charge: 0.000
atom # 30 mmtype 1 charge: 0.000
atom # 31 mmtype 20 charge: -0.140
atom # 32 mmtype 20 charge: -0.140
atom # 33 mmtype 5 charge: 0.038
atom # 34 mmtype 20 charge: -0.140
atom # 35 mmtype 20 charge: -0.140
atom # 36 mmtype 20 charge: -0.140
atom # 37 mmtype 20 charge: -0.140
atom # 38 mmtype 20 charge: -0.140
atom # 39 mmtype 20 charge: -0.140
atom # 40 mmtype 5 charge: 0.000
atom # 41 mmtype 5 charge: 0.000
atom # 42 mmtype 5 charge: 0.000
atom # 43 mmtype 5 charge: 0.000
atom # 44 mmtype 5 charge: 0.000
atom # 45 mmtype 5 charge: 0.000
atom # 46 mmtype 5 charge: 0.000
atom # 47 mmtype 5 charge: 0.000
atom # 48 mmtype 5 charge: 0.000
atom # 49 mmtype 5 charge: 0.000
atom # 50 mmtype 5 charge: 0.000
atom # 51 mmtype 5 charge: 0.000
atom # 52 mmtype 5 charge: 0.000
atom # 53 mmtype 5 charge: 0.000
atom # 54 mmtype 5 charge: 0.000
atom # 55 mmtype 5 charge: 0.000
atom # 56 mmtype 5 charge: 0.000
atom # 57 mmtype 5 charge: 0.000
atom # 58 mmtype 5 charge: 0.000
atom # 59 mmtype 5 charge: 0.000
atom # 60 mmtype 5 charge: 0.000
atom # 61 mmtype 5 charge: 0.000
atom # 62 mmtype 5 charge: 0.000
atom # 63 mmtype 5 charge: 0.000
atom # 64 mmtype 5 charge: 0.000
atom # 65 mmtype 5 charge: 0.000
atom # 66 mmtype 5 charge: 0.000
atom # 67 mmtype 5 charge: 0.000
atom # 68 mmtype 5 charge: 0.000
atom # 69 mmtype 5 charge: 0.000
atom # 70 mmtype 5 charge: 0.000
atom # 71 mmtype 5 charge: 0.000
atom # 72 mmtype 5 charge: 0.000
atom # 73 mmtype 5 charge: 0.000
atom # 74 mmtype 5 charge: 0.000
atom # 75 mmtype 5 charge: 0.000
atom # 76 mmtype 5 charge: 0.000
atom # 77 mmtype 5 charge: 0.000
atom # 78 mmtype 5 charge: 0.000
atom # 79 mmtype 5 charge: 0.000
atom # 80 mmtype 5 charge: 0.000
atom # 81 mmtype 5 charge: 0.000
atom # 82 mmtype 5 charge: 0.000
atom # 83 mmtype 5 charge: 0.000
atom # 84 mmtype 5 charge: 0.000
atom # 85 mmtype 5 charge: 0.000
atom # 86 mmtype 5 charge: 0.000
atom # 87 mmtype 5 charge: 0.000
atom # 88 mmtype 5 charge: 0.000
atom # 89 mmtype 5 charge: 0.000
atom # 90 mmtype 5 charge: 0.000
atom # 91 mmtype 5 charge: 0.000
atom # 92 mmtype 5 charge: 0.000
generalized constants for angle 2 1 26 (type 80 6 1) are used
generalized constants for angle 2 1 31 (type 80 6 20) are used
generalized constants for angle 2 1 32 (type 80 6 20) are used
generalized constants for angle 1 2 3 (type 6 80 30) are used
generalized constants for angle 1 2 4 (type 6 80 6) are used
generalized constants for angle 1 2 5 (type 6 80 6) are used
generalized constants for angle 1 2 6 (type 6 80 6) are used
generalized constants for angle 3 2 4 (type 30 80 6) are used
generalized constants for angle 3 2 5 (type 30 80 6) are used
generalized constants for angle 3 2 6 (type 30 80 6) are used
generalized constants for angle 4 2 5 (type 6 80 6) are used
generalized constants for angle 4 2 6 (type 6 80 6) are used
generalized constants for angle 5 2 6 (type 6 80 6) are used
generalized constants for angle 2 3 7 (type 80 30 1) are used
generalized constants for angle 2 3 33 (type 80 30 5) are used
generalized constants for angle 7 3 33 (type 1 30 5) are used
generalized constants for angle 2 4 11 (type 80 6 1) are used
generalized constants for angle 2 4 34 (type 80 6 20) are used
generalized constants for angle 2 4 35 (type 80 6 20) are used
generalized constants for angle 2 5 16 (type 80 6 1) are used
generalized constants for angle 2 5 36 (type 80 6 20) are used
generalized constants for angle 2 5 37 (type 80 6 20) are used
generalized constants for angle 2 6 21 (type 80 6 1) are used
generalized constants for angle 2 6 38 (type 80 6 20) are used
generalized constants for angle 2 6 39 (type 80 6 20) are used
generalized constants for angle 3 7 8 (type 30 1 1) are used
generalized constants for angle 3 7 9 (type 30 1 1) are used
generalized constants for angle 3 7 10 (type 30 1 1) are used
MMX Energy 12.99
STR 4.66 BND 15.66
S-B -1.84 TOR 5.38
VDW -1.12 DIP/CHRG -9.74
Dipole Moment 78.42
Heat of Formation -52.900 kcal/mole;
Strain Energy -9.455
start W(OCH2tBu)4CHtBu
0 * * * * * Energy is minimized within 0.0138 kcal * * * * *
* * * * * MM2 energy is 10.1920 kcal/mol * * * * *
Accumulated movement is 0.1447 ang/atom
------------------------------------------------------------
Heat of Formation, Strain Energies and Entropies at 300 k
(units are kcal or eu.)
Bond Enthalpy (be) and Entropy:
# Bond or Structure Each Total Tot S contrib.
* * * * * error - bond 2- 1 does not have programmed enthalpy increments.
* * * * * error - bond 3- 2 does not have programmed enthalpy increments.
* * * * * error - bond 4- 2 does not have programmed enthalpy increments.
* * * * * error - bond 5- 2 does not have programmed enthalpy increments.
* * * * * error - bond 6- 2 does not have programmed enthalpy increments.
19 C-C SP3-SP3 -0.004 -0.076 -311.600
53 C-H ALIPHATIC -3.205 -169.865 683.700
4 C-O ETHER & ALC. -16.668 -66.672 -16.000
1 H-C+ 86.300 86.300 0.000
S contrib. above is unk.
1 C-C+ 56.000 56.000 0.000
S contrib. above is unk.
4 NEO (ALKANE) -0.707 -2.828
15 C(SP3)-METHYL -1.510 -22.650
---------------- ---------------
be = -119.791 s = 356.100
3 & 4 Ring corrections to entropy are included w/o symmetry corrections.
for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.;
for each 8-ring add 14 eu.; for higher rings add 12 eu. each.
there are no symmetry corrections to the entropy.
Heat of Formation calculation:
Partition Function Contribution (PFC)
Conformational Population Increment (POP) 0.000
Torsional Contribution (TOR) 0.000
Translation/Rotation Term (T/R) 2.400
-------------
PFC = 2.400
Heat of Formation (hf0) = energy + be + pfc -107.199
Strain Energy (energy+environment corrs.)= -11.428
CAUTION, delta hf is not correct because of missing parameters.
Use total energy or strain energy to compare the stabilities of conformers
and diastereomers. Caution, energy parameters for metal systems are
generalized and may not represent a particular metal or oxidation state.
Use heats of formation to compare stabilities of structural isomers like
acetaldehyde and enol or allyl chloride and cyclopropyl chloride. Many
bond contributions to the heat of formation are unknown-these contribute
0.0 to the value given.
MMX Energy 10.19
STR 4.46 BND 15.66
S-B -1.80 TOR 5.27
VDW -1.97 DIP/CHRG -11.44
Dipole Moment 78.81
Incomplete heat of formation -107.199 kcal/mole
end W(OCH2tBu)4CHtBu
torsion constants for angle 1 2 3 5 (type 6 80 6 1) unk; set = 0
torsion constants for angle 1 2 3 41 (type 6 80 6 20) unk; set = 0
torsion constants for angle 1 2 3 42 (type 6 80 6 20) unk; set = 0
torsion constants for angle 1 2 4 10 (type 6 80 6 1) unk; set = 0
torsion constants for angle 1 2 4 43 (type 6 80 6 20) unk; set = 0
torsion constants for angle 1 2 4 44 (type 6 80 6 20) unk; set = 0
torsion constants for angle 1 2 21 20 (type 6 80 80 6) unk; set = 0
torsion constants for angle 1 2 21 22 (type 6 80 80 6) unk; set = 0
torsion constants for angle 1 2 21 23 (type 6 80 80 6) unk; set = 0
generalized constants for angle 2 1 15 16 (type 80 6 1 1) are used
0.000 0.000 0.500
torsion constants for angle 2 21 20 34 (type 80 80 6 1) unk; set = 0
torsion constants for angle 2 21 20 78 (type 80 80 6 20) unk; set = 0
torsion constants for angle 2 21 20 79 (type 80 80 6 20) unk; set = 0
torsion constants for angle 2 21 22 24 (type 80 80 6 1) unk; set = 0
torsion constants for angle 2 21 22 80 (type 80 80 6 20) unk; set = 0
torsion constants for angle 2 21 22 81 (type 80 80 6 20) unk; set = 0
torsion constants for angle 2 21 23 29 (type 80 80 6 1) unk; set = 0
torsion constants for angle 2 21 23 82 (type 80 80 6 20) unk; set = 0
torsion constants for angle 2 21 23 83 (type 80 80 6 20) unk; set = 0
torsion constants for angle 3 2 1 15 (type 6 80 6 1) unk; set = 0
torsion constants for angle 3 2 1 39 (type 6 80 6 20) unk; set = 0
torsion constants for angle 3 2 1 40 (type 6 80 6 20) unk; set = 0
torsion constants for angle 3 2 4 10 (type 6 80 6 1) unk; set = 0
torsion constants for angle 3 2 4 43 (type 6 80 6 20) unk; set = 0
torsion constants for angle 3 2 4 44 (type 6 80 6 20) unk; set = 0
torsion constants for angle 3 2 21 20 (type 6 80 80 6) unk; set = 0
torsion constants for angle 3 2 21 22 (type 6 80 80 6) unk; set = 0
torsion constants for angle 3 2 21 23 (type 6 80 80 6) unk; set = 0
torsion constants for angle 4 2 1 15 (type 6 80 6 1) unk; set = 0
torsion constants for angle 4 2 1 39 (type 6 80 6 20) unk; set = 0
torsion constants for angle 4 2 1 40 (type 6 80 6 20) unk; set = 0
torsion constants for angle 4 2 3 5 (type 6 80 6 1) unk; set = 0
torsion constants for angle 4 2 3 41 (type 6 80 6 20) unk; set = 0
torsion constants for angle 4 2 3 42 (type 6 80 6 20) unk; set = 0
torsion constants for angle 4 2 21 20 (type 6 80 80 6) unk; set = 0
torsion constants for angle 4 2 21 22 (type 6 80 80 6) unk; set = 0
torsion constants for angle 4 2 21 23 (type 6 80 80 6) unk; set = 0
torsion constants for angle 5 3 2 21 (type 1 6 80 80) unk; set = 0
torsion constants for angle 10 4 2 21 (type 1 6 80 80) unk; set = 0
torsion constants for angle 15 1 2 21 (type 1 6 80 80) unk; set = 0
torsion constants for angle 20 21 22 24 (type 6 80 6 1) unk; set = 0
torsion constants for angle 20 21 22 80 (type 6 80 6 20) unk; set = 0
torsion constants for angle 20 21 22 81 (type 6 80 6 20) unk; set = 0
torsion constants for angle 20 21 23 29 (type 6 80 6 1) unk; set = 0
torsion constants for angle 20 21 23 82 (type 6 80 6 20) unk; set = 0
torsion constants for angle 20 21 23 83 (type 6 80 6 20) unk; set = 0
torsion constants for angle 21 2 1 39 (type 80 80 6 20) unk; set = 0
torsion constants for angle 21 2 1 40 (type 80 80 6 20) unk; set = 0
torsion constants for angle 21 2 3 41 (type 80 80 6 20) unk; set = 0
torsion constants for angle 21 2 3 42 (type 80 80 6 20) unk; set = 0
torsion constants for angle 21 2 4 43 (type 80 80 6 20) unk; set = 0
torsion constants for angle 21 2 4 44 (type 80 80 6 20) unk; set = 0
torsion constants for angle 22 21 20 34 (type 6 80 6 1) unk; set = 0
torsion constants for angle 22 21 20 78 (type 6 80 6 20) unk; set = 0
torsion constants for angle 22 21 20 79 (type 6 80 6 20) unk; set = 0
torsion constants for angle 22 21 23 29 (type 6 80 6 1) unk; set = 0
torsion constants for angle 22 21 23 82 (type 6 80 6 20) unk; set = 0
torsion constants for angle 22 21 23 83 (type 6 80 6 20) unk; set = 0
torsion constants for angle 23 21 20 34 (type 6 80 6 1) unk; set = 0
torsion constants for angle 23 21 20 78 (type 6 80 6 20) unk; set = 0
torsion constants for angle 23 21 20 79 (type 6 80 6 20) unk; set = 0
torsion constants for angle 23 21 22 24 (type 6 80 6 1) unk; set = 0
torsion constants for angle 23 21 22 80 (type 6 80 6 20) unk; set = 0
torsion constants for angle 23 21 22 81 (type 6 80 6 20) unk; set = 0
atom # 1 mmtype 6 charge: 0.153
atom # 2 mmtype 80 charge: 0.600
atom # 3 mmtype 6 charge: 0.153
atom # 4 mmtype 6 charge: 0.153
atom # 5 mmtype 1 charge: 0.127
atom # 6 mmtype 1 charge: 0.000
atom # 7 mmtype 1 charge: 0.000
atom # 8 mmtype 1 charge: 0.000
atom # 9 mmtype 1 charge: 0.000
atom # 10 mmtype 1 charge: 0.127
atom # 11 mmtype 1 charge: 0.000
atom # 12 mmtype 1 charge: 0.000
atom # 13 mmtype 1 charge: 0.000
atom # 14 mmtype 1 charge: 0.000
atom # 15 mmtype 1 charge: 0.127
atom # 16 mmtype 1 charge: 0.000
atom # 17 mmtype 1 charge: 0.000
atom # 18 mmtype 1 charge: 0.000
atom # 19 mmtype 1 charge: 0.000
atom # 20 mmtype 6 charge: 0.153
atom # 21 mmtype 80 charge: 0.127
atom # 22 mmtype 6 charge: 0.153
atom # 23 mmtype 6 charge: 0.153
atom # 24 mmtype 1 charge: 0.127
atom # 25 mmtype 1 charge: 0.000
atom # 26 mmtype 1 charge: 0.000
atom # 27 mmtype 1 charge: 0.000
atom # 28 mmtype 1 charge: 0.000
atom # 29 mmtype 1 charge: 0.127
atom # 30 mmtype 1 charge: 0.000
atom # 31 mmtype 1 charge: 0.000
atom # 32 mmtype 1 charge: 0.000
atom # 33 mmtype 1 charge: 0.000
atom # 34 mmtype 1 charge: 0.127
atom # 35 mmtype 1 charge: 0.000
atom # 36 mmtype 1 charge: 0.000
atom # 37 mmtype 1 charge: 0.000
atom # 38 mmtype 1 charge: 0.000
atom # 39 mmtype 20 charge: -0.140
atom # 40 mmtype 20 charge: -0.140
atom # 41 mmtype 20 charge: -0.140
atom # 42 mmtype 20 charge: -0.140
atom # 43 mmtype 20 charge: -0.140
atom # 44 mmtype 20 charge: -0.140
atom # 45 mmtype 5 charge: 0.000
atom # 46 mmtype 5 charge: 0.000
atom # 47 mmtype 5 charge: 0.000
atom # 48 mmtype 5 charge: 0.000
atom # 49 mmtype 5 charge: 0.000
atom # 50 mmtype 5 charge: 0.000
atom # 51 mmtype 5 charge: 0.000
atom # 52 mmtype 5 charge: 0.000
atom # 53 mmtype 5 charge: 0.000
atom # 54 mmtype 5 charge: 0.000
atom # 55 mmtype 5 charge: 0.000
atom # 56 mmtype 5 charge: 0.000
atom # 57 mmtype 5 charge: 0.000
atom # 58 mmtype 5 charge: 0.000
atom # 59 mmtype 5 charge: 0.000
atom # 60 mmtype 5 charge: 0.000
atom # 61 mmtype 5 charge: 0.000
atom # 62 mmtype 5 charge: 0.000
atom # 63 mmtype 5 charge: 0.000
atom # 64 mmtype 5 charge: 0.000
atom # 65 mmtype 5 charge: 0.000
atom # 66 mmtype 5 charge: 0.000
atom # 67 mmtype 5 charge: 0.000
atom # 68 mmtype 5 charge: 0.000
atom # 69 mmtype 5 charge: 0.000
atom # 70 mmtype 5 charge: 0.000
atom # 71 mmtype 5 charge: 0.000
atom # 72 mmtype 5 charge: 0.000
atom # 73 mmtype 5 charge: 0.000
atom # 74 mmtype 5 charge: 0.000
atom # 75 mmtype 5 charge: 0.000
atom # 76 mmtype 5 charge: 0.000
atom # 77 mmtype 5 charge: 0.000
atom # 78 mmtype 20 charge: -0.140
atom # 79 mmtype 20 charge: -0.140
atom # 80 mmtype 20 charge: -0.140
atom # 81 mmtype 20 charge: -0.140
atom # 82 mmtype 20 charge: -0.140
atom # 83 mmtype 20 charge: -0.140
atom # 84 mmtype 5 charge: 0.000
atom # 85 mmtype 5 charge: 0.000
atom # 86 mmtype 5 charge: 0.000
atom # 87 mmtype 5 charge: 0.000
atom # 88 mmtype 5 charge: 0.000
atom # 89 mmtype 5 charge: 0.000
atom # 90 mmtype 5 charge: 0.000
atom # 91 mmtype 5 charge: 0.000
atom # 92 mmtype 5 charge: 0.000
atom # 93 mmtype 5 charge: 0.000
atom # 94 mmtype 5 charge: 0.000
atom # 95 mmtype 5 charge: 0.000
atom # 96 mmtype 5 charge: 0.000
atom # 97 mmtype 5 charge: 0.000
atom # 98 mmtype 5 charge: 0.000
atom # 99 mmtype 5 charge: 0.000
atom # 100 mmtype 5 charge: 0.000
atom # 101 mmtype 5 charge: 0.000
atom # 102 mmtype 5 charge: 0.000
atom # 103 mmtype 5 charge: 0.000
atom # 104 mmtype 5 charge: 0.000
atom # 105 mmtype 5 charge: 0.000
atom # 106 mmtype 5 charge: 0.000
atom # 107 mmtype 5 charge: 0.000
atom # 108 mmtype 5 charge: 0.000
atom # 109 mmtype 5 charge: 0.000
atom # 110 mmtype 5 charge: 0.000
atom # 111 mmtype 5 charge: 0.000
atom # 112 mmtype 5 charge: 0.000
atom # 113 mmtype 5 charge: 0.000
atom # 114 mmtype 5 charge: 0.000
atom # 115 mmtype 5 charge: 0.000
atom # 116 mmtype 5 charge: 0.000
generalized constants for angle 2 1 15 (type 80 6 1) are used
generalized constants for angle 2 1 39 (type 80 6 20) are used
generalized constants for angle 2 1 40 (type 80 6 20) are used
generalized constants for angle 1 2 3 (type 6 80 6) are used
generalized constants for angle 1 2 4 (type 6 80 6) are used
generalized constants for angle 1 2 21 (type 6 80 80) are used
generalized constants for angle 3 2 4 (type 6 80 6) are used
generalized constants for angle 3 2 21 (type 6 80 80) are used
generalized constants for angle 4 2 21 (type 6 80 80) are used
generalized constants for angle 2 3 5 (type 80 6 1) are used
generalized constants for angle 2 3 41 (type 80 6 20) are used
generalized constants for angle 2 3 42 (type 80 6 20) are used
generalized constants for angle 2 4 10 (type 80 6 1) are used
generalized constants for angle 2 4 43 (type 80 6 20) are used
generalized constants for angle 2 4 44 (type 80 6 20) are used
generalized constants for angle 21 20 34 (type 80 6 1) are used
generalized constants for angle 21 20 78 (type 80 6 20) are used
generalized constants for angle 21 20 79 (type 80 6 20) are used
generalized constants for angle 20 21 22 (type 6 80 6) are used
generalized constants for angle 20 21 23 (type 6 80 6) are used
generalized constants for angle 2 21 20 (type 80 80 6) are used
generalized constants for angle 22 21 23 (type 6 80 6) are used
generalized constants for angle 2 21 22 (type 80 80 6) are used
generalized constants for angle 2 21 23 (type 80 80 6) are used
generalized constants for angle 21 22 24 (type 80 6 1) are used
generalized constants for angle 21 22 80 (type 80 6 20) are used
generalized constants for angle 21 22 81 (type 80 6 20) are used
generalized constants for angle 21 23 29 (type 80 6 1) are used
generalized constants for angle 21 23 82 (type 80 6 20) are used
generalized constants for angle 21 23 83 (type 80 6 20) are used
MMX Energy 98.77
STR 5.43 BND 34.70
S-B -1.39 TOR 69.74
VDW -5.14 DIP/CHRG -4.57
Dipole Moment 44.57
Heat of Formation -107.199 kcal/mole;
Strain Energy -11.428
start Chisholm complexes
0 * * * * * Energy is minimized within 0.0174 kcal * * * * *
* * * * * MM2 energy is 49.6699 kcal/mol * * * * *
Accumulated movement is 0.1417 ang/atom
------------------------------------------------------------
Heat of Formation, Strain Energies and Entropies at 300 k
(units are kcal or eu.)
Bond Enthalpy (be) and Entropy:
# Bond or Structure Each Total Tot S contrib.
* * * * * error - bond 2- 1 does not have programmed enthalpy increments.
* * * * * error - bond 3- 2 does not have programmed enthalpy increments.
* * * * * error - bond 4- 2 does not have programmed enthalpy increments.
* * * * * error - bond 21- 20 does not have programmed enthalpy increments.
* * * * * error - bond 21- 2 does not have programmed enthalpy increments.
* * * * * error - bond 22- 21 does not have programmed enthalpy increments.
* * * * * error - bond 23- 21 does not have programmed enthalpy increments.
24 C-C SP3-SP3 -0.004 -0.096 -393.600
66 C-H ALIPHATIC -3.205 -211.530 851.400
6 C-O ETHER & ALC. -16.668 -100.008 -24.000
6 NEO (ALKANE) -0.707 -4.242
18 C(SP3)-METHYL -1.510 -27.180
---------------- ---------------
be = -343.056 s = 433.800
3 & 4 Ring corrections to entropy are included w/o symmetry corrections.
for each 5-ring add 26 eu.; for each 6 &7-ring add 16 eu.;
for each 8-ring add 14 eu.; for higher rings add 12 eu. each.
there are no symmetry corrections to the entropy.
Heat of Formation calculation:
Partition Function Contribution (PFC)
Conformational Population Increment (POP) 0.000
Torsional Contribution (TOR) 0.000
Translation/Rotation Term (T/R) 2.400
-------------
PFC = 2.400
Heat of Formation (hf0) = energy + be + pfc -291.125
Strain Energy (energy+environment corrs.)= 20.431
CAUTION, delta hf is not correct because of missing parameters.
Use total energy or strain energy to compare the stabilities of conformers
and diastereomers. Caution, energy parameters for metal systems are
generalized and may not represent a particular metal or oxidation state.
Use heats of formation to compare stabilities of structural isomers like
acetaldehyde and enol or allyl chloride and cyclopropyl chloride. Many
bond contributions to the heat of formation are unknown-these contribute
0.0 to the value given.
Poor convergence
MMX Energy 49.53
STR 6.66 BND 46.85
S-B -2.66 TOR 9.08
VDW -5.57 DIP/CHRG -4.81
Dipole Moment 44.32
Incomplete heat of formation -291.125 kcal/mole
end Chisholm complexes
MMX Energy 49.53
STR 6.66 BND 46.85
S-B -2.66 TOR 9.08
VDW -5.57 DIP/CHRG -4.81
Dipole Moment 44.32
Incomplete heat of formation -291.125 kcal/mole
end Chisholm complexes
back to up page