Preparation and Photochemistry of Homologous Chiral Nitrones, Chiral Sc Liquid Crystals; Chiral N-(p-2-methoxybutoxyphenyl)-α-(p-n-alkoxyphenyl) nitrones, Mortimer M. Labes and John H. MacMillan, Department of Chemistry, Temple University, Philadelphia, Pa 19122

## CHIRAL NITRONES SYNTHESIS

$$\begin{array}{c} \text{CH}_{3}\text{-CH}_{2}\text{-C}^{+}\text{-CH}_{2}\text{-OH} \xrightarrow{\text{PBr}\,3} \text{CH}_{3}\text{-CH}_{2}\text{-C}^{+}\text{-CH}_{2}\text{-Br} \\ \text{CH}_{3} & \text{CH}_{3} & \text{CH}_{3}\text{-CH}_{2}\text{-C}^{+}\text{-CH}_{2}\text{-Br} \\ \text{CH}_{3} & \text{CH}_{3} & \text{CH}_{3}\text{-CH}_{2}\text{-CH}_{3} \\ \text{CH}_{3} & \text{CH}_{3} & \text{CH}_{3} & \text{CH}_{3} \\ \text{CH}_{3} & \text{CH}_{3} & \text{CH}_{3} \\ \text{CH}_{3} & \text{CH}_{3} & \text{CH}_{3} & \text{CH}_{3} \\ \text{CH}_{3} & \text{CH}_{3} & \text{CH}_{3} \\ \text{CH}_{3} & \text{CH}_{3} & \text{CH}_{3} \\ \text{CH}_{3} & \text{CH}_{3$$

### **Chemicals Used**

(-) 2-Methyl-1-butanol
Phosphorous Tribromide
p-Nitro Phenol
Potassium Carbonate
2-Butanone
Zinc Moss
Ammonium Chloride
p-(n-Alkoxy) Benzaldehydes

#### **Procedure**

A series of chiral N-(p-2methoxybutoxyphenyl)-α-(p-n-alkoxyphenyl) nitrones, <u>a-h</u>, was prepared and examined for mesogenic properties. The methyl derivative <u>a</u> showed only a transient cholesteric texture on rapid supercooling, while the ethyl homolog <u>b</u> was a monotropic cholesteric. Propyl and butyl homologs <u>c-d</u> were non mesogenic while pentyl derivative <u>e</u> showed a monotropic chiral Sc mesophase. The higher members of the series were enantiotropic, exhibiting only chiral Sc mesophases. The materials exhibited both thermal and photochemical instability, however, suitable eutectization resulted in lower temperature chiral Sc and cholesteric phases with adequate stability under long wavelength (> 400 nm) illumination.

## **Author's Comments**

We report the synthesis, mesogenic properties, and photochemical isomerization of a series of chiral nitrones <u>a-h.</u> These compounds were prepared with minor modifications by the procedure of Young, <sup>1,2</sup> from 83% optically pure l-amyl alcohol (2-methyl-1-butanol). The hydroxylamine intermediates were not isolated, but reacted <u>in situ</u> with the appropriate p-alkoxy substituted benzaldehyde, resulting in quantitative precipitation of <u>a-h.</u> Recrystallization from cyclohexane gave white crystalline solids, whose IR,NMR and UV spectra were similar to those previously described <sup>1-4</sup> for non chiral mesogenic nitrones. All gave satisfactory combustion analyses (see table <u>1</u>). The optical purity of <u>a-h</u> was determined to be ~80% by NMR

http://cssp.chemspider.com/ArticlesHandler.ashx?type=art&id=52\*

12/28/2011

analyses employing the chiral shift reagent  $Eu(TFC)_3$ . Compounds  $\underline{a-h}$  were examined for mesogenic behaviour by both polarized optical

microscopy and differential scan calorimetry. The results are summarized in table 1 and figures 1-3. Compound a showed a transient cholesteric texture with "peacock" colors only on extremely rapid supercooling to ~55°C. The phase change was not detectable via DSC. Compound b showed monotropic behaviour, also exhibiting "peacock" colors. The oily streak texture and low isotropic transition enthalpy (0.29kcal/mol) indicated a cholesteric mesophase. Compounds c and d were non mesogenic while the n-pentyl derivative e showed a monotropic Sc mesoophase with well developed striated fan shaped or Schlieren textures. The higher homologs f-h showed enantiotropic behaviour with textures identical to 5e. The mesophases of e-h were classified as chiral Sc due to their high viscosity, high isotropic transition enthalpies (~1.4kcal/mol) and failure to exhibit grandjean texture when placed in wedged cells with SiO coated glass<sup>5</sup>. Texturally the phases were identical to published pictures of the chiral Sc mesophase<sup>6</sup>. Careful cooling of the mesophases failed to show further transitions to Sb, Sg or Se phases prior to crystallization. Thus f-h constitute materials with pure chiral Sc phases, there also being no evidence for higher temperature Sa or cholesteric phases.

The chiral Sc phases showed no visible reflection, probably due to the pitch band being in the ultraviolet. This conjecture was verified with a 1:1 wt% mixture of a and f, which possesses both a chiral Sc and a cholesteric phase (see Table 2). The cholesteric phase showed blue reflection and on cooling to the Sc phase, only a blue-colorless change was observed, that is, the reflection band was further blue shifted.

Figure 1 shows odd-even effects in the isotropic points for n= 1-4, with a merger point at n=5. This behaviour is typical for homologous mesogenic substances and has been discussed elsewhere<sup>7</sup>. The branched 2-methylbutoxy group has the

expected deleterious effect on chiral nematic stability. Thus <u>a</u> is a non-mesogen while the nitrone described by Young <sup>2</sup> with n=1 and a n-pentyloxy group in the p' position is an enantiotropic nematic with clearing points some 25°C higher than for <u>a</u>. All of Young's mesogenic nitrones show higher clearing points and wider mesogenic ranges than <u>a-h</u>.

The qualitative thermal and photochemical stability of <u>a-h</u> were next investigated. Thermally, the materials slowly developed yellow colors while held for ~1-2 hours in the mesogenic range (~105  $^{\circ}$ C), with concurrent slight decreases (~1  $^{\circ}$ C) in the isotropic points. At lower temperatures as in various mixtures of <u>a-h</u> (see Table <u>2</u>), the thermal degradation was negligible. Photo chemically the materials slowly degrade in fluorescent light (see Figure <u>5</u>), with rapid degradation under a mercury lamp. The UV spectra (Figure <u>5</u>) showed the characteristic decrease in the 330nm chromophore, with concurrent growth of bands at ~280nm. The 280nm chromophore is attributed to the amides <u>2</u> resulting from the thermal isomerization of an intermediate oxazirane. In two cases the crystalline photoproducts were identified as amides by the characteristic infrared absorbances at 3350 and 1660cm<sup>-1</sup>. The photoproducts were non-mesogenic.

## **Conclusions**

We have prepared a series of chiral nitrones whose higher homologs possess enantiotropic chiral Sc mesophases. These materials are pure chiral Sc mesophases. Although these materials exhibit both thermal and photochemical instability, eutectic mixtures under long wavelength, > 400nm irradiation are reasonably stable. Due to the strong dipole associated with the nitrone moiety, these materials may prove useful for studies of pyroelectric behavior<sup>8</sup>.

### Acknowledgements

This work was supported by the National Science Foundation under grant number DMR-07811. We thank Dr. Hosull Lee for assistance with the chiral shift reagent NMR studies.

| 1 | A | В | LE | 1 |  |
|---|---|---|----|---|--|
|---|---|---|----|---|--|

## TRANSITION TEMPERATURES, ENTHALPIES AND COMBUSTION ANALYSES FOR THE (+)-N-[p-(2METHYL BUTOXY) PHENYL]- $\alpha$ -(p-N-ALKOXYPHENYL) NITRONES, <u>a-h</u>

|         |                                         |            |            |          |                               |      | ANAI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>ANALYSES</b> |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|-----------------------------------------|------------|------------|----------|-------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | T                                       |            | ENTHALPY   |          | CALC                          |      | and haved freder spense of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FOUND           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         | MARKET MERCHAN CHINESE AND              | TRANSITION | TRANSITION | CHANGE   | С                             | H    | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C               | H -      | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| POUND   | n<br>n                                  | TYPE       | T°C        | Kcal/Mol | 1 100700 10000 Janes 1000     |      | DISSES AND SERVICE PRINTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |          | Minist proper layers decomplete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a       |                                         | К-1        | 95.3       | 7.08     | 72.82                         | 7.4  | 4.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 73.01           | 7.45     | 4.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| b -     | 2                                       | К-1        | 111.6      | 5.33     | 73.36                         | 7.7  | 4.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 73.23           | 7.89     | 4.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | station admini lightin has              | Ch-I       | 94*        | 0.29     | * 100004 100004 100000 1000   |      | NAMES POSSES AND ADDRESS AND A |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| c       | 3                                       | K-1        | 106        | 4.49     | 73.87                         | 7.97 | 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 73.75           | 7.89     | 4.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| d       | *************************************** | K-I        | 111.5      | 4.15     | 74.33                         | 8.22 | 3.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.21           | 8.34     | 3.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| e -     | 5                                       | К-1        | 103        | 4.19     | 74.76                         | 8.46 | 3.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 74.87           | 8.6      | 3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | NAMES AND ADDRESS AND                   | Sc-I       | 100*       | 1.44     | - Marie Marie Marie Ma        |      | Denies Solice Ments better                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | <u> </u> | MARIN MARIN MARIN MARIN MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | 6                                       | K-Sc       | 96.5       | 5.83     | 75.16                         | 8.67 | 3.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75.06           | 8.76     | 3.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         |                                         | Sc-I       | 106        | 1.33     | - 10000 10000 miles non       |      | NAMES ASSESS ASSESS ASSESSED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 | h        | NAME AND DESCRIPTION OF THE PARTY NAMED AND DESCRIP |
| g       | 7                                       | K-Sc       | 100        | 5.81     | 75.53                         | 8.87 | 3.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 75.48           | 8.88     | 3.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | MARINE MARKET MARKET MAR                | Sc-I       | 107.5      | 1.41     |                               |      | NAMES ADDRESS  |                 | T        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| h       |                                         | K-Sc       | 101.5      | 5.6      | 75.87                         | 9.06 | 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 76.05           | 9.25     | 3.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|         | makes thereto resides the               | Sc-I       | 109        | 1.28     | a record section measure many |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| * = Mon | otropic Tra                             | ansition   | Pm         | T        | N MARKET MARKET STATES STATES |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | T        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| NAMES AND ADDRESS ASSESSED.                | NAMES AND POST OFFICE ADDRESS ASSESSED.                                                              | TABLE 11                   |                         |                              | lain main moin |
|--------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------|-------------------------|------------------------------|----------------|
| 0000 0000 0000 0000<br>0000 0000 0000 1000 | ANDRES SERVICE SERVICE SERVICE<br>SERVICE SERVICE SERVICE SERVICE<br>SERVICE SERVICE SERVICE SERVICE | CHIRAL<br>TRANSITION<br>°C | NITRONE<br>TEMPERATURES | MIXT                         | URES           |
| n some some some                           | WT % s                                                                                               | K-Sc                       | Sc-Ch                   | Ch-l                         | Sc-l           |
| 1,5                                        | EQUAL                                                                                                | 76                         | 78                      | 79.5                         |                |
| 1,6                                        | EQUAL                                                                                                | 52.8                       | 67                      | 82                           |                |
| 2,6                                        | EQUAL                                                                                                | 65                         | 93                      | 98.1                         |                |
| 1,2,6                                      | EQUAL                                                                                                | 53.5                       | 74                      | 89.5                         |                |
| 1,6,7                                      | EQUAL                                                                                                | 49                         | 78                      | 88.5                         |                |
| 5,6,7,8                                    | EQUAL                                                                                                | 82                         |                         | NAME AND ADDRESS ASSESSED AS | 104            |
| 1 through                                  | EQUAL                                                                                                | 60                         | 91.5                    | 93                           | <u> </u>       |

Figure-1
Phase Transition
Temperatures
for
Chiral N-(p-2-

Chiral N-(p-2methoxybutoxyphenyl)-α-(p-n-alkoxyphenyl) nitrones

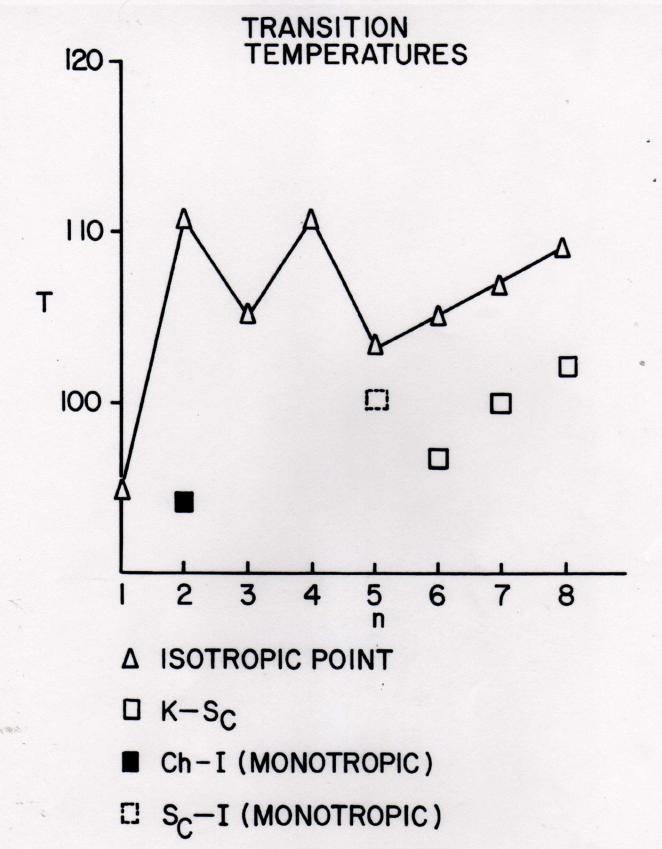



Figure-11 **Transition Enthalpies** for Chiral N-(p-2methoxybutoxyphenyl)-α-(p-n-alkoxyphenyl) nitrones

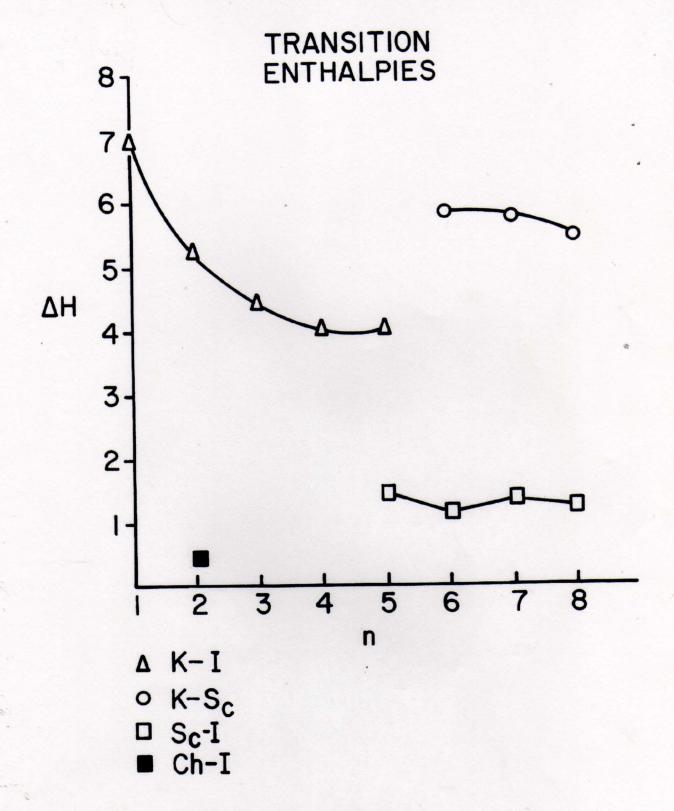



Figure-111 Chiral Sc Mesophases for Chiral N-(p-2methoxybutoxyphenyl)-α-(p-n-alkoxyphenyl) nitrones

# NEW CHIRAL SC MESOPHASES

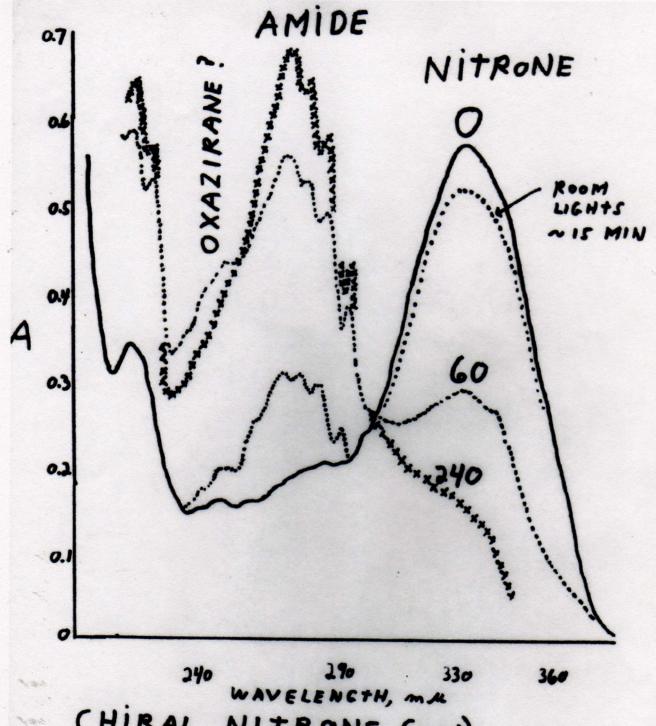
$$n=5-8$$

- ( I ) POLYGONAL TEXTURES
- (2) HIGH VISCOSITIES
- (3) HIGH MESOPHASE— ISOTROPIC TRANSITION ENTHALPIES

Figure-4
Photochemistry

of

Chiral N-(p-2-oxybutoxyphenyl)-


methoxybutoxyphenyl)-α(p-n-alkoxyphenyl)
nitrones

## PHOTOCHEMISTRY OF CHIRAL NITRONES

$$C_{n}H_{2n+1}-O-\bigcirc -C=\stackrel{+}{N}-\bigcirc -O-CH_{2}-\stackrel{+}{C}^{*}-CH_{2}-CH_{3}$$
 $\downarrow hv$ 
 $C_{n}H_{2n+1}-O-\bigcirc -C-\stackrel{+}{N}-\bigcirc -O-CH_{2}-\stackrel{+}{C}^{*}-CH_{2}-CH_{3}$ 
 $UNSTABLE$ 
 $\downarrow \Delta$ 
 $C_{n}H_{2n+1}-O-\bigcirc -C-\stackrel{+}{N}-\bigcirc -O-CH_{2}-\stackrel{+}{C}^{*}-CH_{2}-CH_{3}$ 
 $\downarrow hv$ 
 $C_{n}H_{2n+1}-O-\bigcirc -C-\stackrel{+}{N}-\bigcirc -O-CH_{2}-\stackrel{+}{C}^{*}-CH_{2}-CH_{3}$ 
 $\downarrow hv$ 
 $\downarrow$ 

NON-MESOMORPHIC

Figure-5 **Ultraviolet Spectra** of **Irradiated** Chiral N-(p-2methoxybutoxyphenyl)-α-(p-n-alkoxyphenyl) nitrones



CHIRAL NITRONE (m=1)

C = 2×10-5 (cycloHEXANE)

IRRADIATION TIMES (H, LAMP) IN SECONDS

## **Lead Reference**

1) W.R. Young, Mol Cryst. Liq Cryst., <u>10</u>, 237 (1970).

## **Other References**

- 2) W.R. Young, I. Haller and A. Aviram, Mol Cryst. Liq Cryst., 13, 357 (1971).
- 3) K. Shinzawa and I. Tanaka, J. Phys. Chem, <u>68</u>, 1205 (1964).
- 4) K. Koyano, H. Suzuki, Y. Mori and I. Tanaka, Bull Chem. Soc Japan, 43, 3582 (1970).
- 5) G.W. Gray and P.A. Windsor, "Liquid Crystals and Plastic Crystals", Ellis Horwood LTD, Chichester, 1974, Vol 1, p41.
- 6) D. Demus, L. Richter, "Textures of Liquid Cystals", Verlag Chemie, Weinheim, New York, 1978, Plates 162, 164.
- 7) G.W. Gray, Molecular Structure and the Properties of Liquid Crystals", Academic Press, Inc., New York, 1962.
- 8) L.J. Yu, H. Lee, C.S. Bak and M.M. Labes, Phys. Rev. Lett., 36, 388 (1976).