Method Groupings
- Molecular Mechanics, Allinger Force Field version 2
Basis:
XRD & ND StructuresPros:
75 parameters
3rd Order Dihedral term
bond dipoles vs electrostatic
covalentCons:
organic
Ground States
metal bondingAtoms:
excited states
transition states
H, DAccy:
B - F
Si - Cl
Ca, Cr, Co, Cu - Br
Sr, Rh, Pd, Cd, Sn, Te, I
Pb
ΔHf°±0.5, ΔHr±0.4, ΔH±2
D±0.1
l±0.01, a±1, d±8
v±80
MM3 -
Basis: added 4th order dihedral
Atoms:
HPros:
Li, C - O
Na, Mg, P, S
K, Ca
Rb, Sr, I
Cs, Ba
accuracyAccy:
cyclohexylamine conformation
entropy by vibrational analysis
F-C-C-F hyperconjugation
anomeric effect
Bohlmann effect
ΔHf°±0.6, ΔHr±0.4, ΔH±1
D±0.07
l±0.01, a±1, d±5
v±40
ChemX -
Basis:
organicsAccy: ΔHr±1, ΔH±2
inorganics
peptides
Basis:
biomoleculesPros:
atomic
general purpose
harmonic force field
biomoleculesCons:
saturated HCs
inorganicsAccy: ΔHr±1, ΔH±1
unsaturations
nonbond attractions high
2-Cl-THP eq. (no anomeric)
Basis:
biomoleculesPros:
harmonic force field
25 parameters
united atom charges from HF 6-31G*
(CH as united atom in old version)
electrostatic ("disappearing" L-J) H-bond
proteins/DNACons:
aqueous
inorganicno general atom types
Atoms:
HAccy: ΔHr±0.7
C - F
Na, Mg, P - Cl
K, Ca, Fe, Cu, Br
Rb, I
Cs
Basis:
18 parameter force fieldPros:
(CH as united atom in old version)
biopolymersAtoms:
QM-MD
GAMESS or AMPAC QM
HAccy:
C - O
Na - S
K - Fe
Rb
Eu
ΔH±0.9
l±0.01, a±1
OPLS - Optimized Potentials for Liquid Simulation
Basis:
electrostatic ("disappearing" L-J) H-bondPros: condensed phase
protein/DNA
liquids, solutions
ab initio calc'ns on 100 organics
CH as united atom
Atoms:
H
Li, Be, O
Na - Si, Cl
K - Ni, Zn, Ge, Br
Rb - Nb, Cd, Sn, I
Cs- La, Nd, Eu-Tb, Ho, Yb-Hf
Pu
Dreiding -
Basis: UFF - Universal Force Field
Bonds from atomic radiiPros: General organic & main group
angles from hydrides
harmonic force field
Cons:
AccuracyAtoms:
nonphysical charges
2-MeO-THP equilibrium
HAccy:
B - F
Na, Al - Cl
Ca, Fe, Zn - Br
In - I
ΔH±2, ΔHr±1
l±0.03, a±3, d±8
Basis:
OrganicPros: full periodic table
Inorganic
parms calcd from basic props
Cons:
needs charge equilibrationAcc'y: ΔHr±0.9
2-MeO -THP equatorial
Basis:
Class II Force FieldAtoms:
based on ab initio/QM data
nondiagonal force field
crossterms
generalized parameters
HCons:
C-F
Na, Si-S, Ar
Ca, Br
I
2-MeO-THP equatorialnonbond anomaly expands condensed phase
Accy:
ΔHr±0.5, ΔH±0.8
l±0.01, a±1
solubility parameter±0.2
sorption energy±5
PCFF -
Basis:
derived from CFF, QM based FF
optimized for polymer properties
COMPASS - Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies
Basis:
derived from CFF, QM based FFPros:
optimized for condensed phase MD
ESP from 6-31G*
integral for cutoff tail sums
6-9 L-J term
long range/nonbonded interactionAccy:
condensed phase properties
ΔHr±0.4
a±1.8
Xtal densities +6%
Basis:
general purposeCons: anomeric effect w/ 2-MeOTHP
Morse function stretch term
nondiagonal force field
crossterms
empirical parametrization
Acc'y: ΔHr±1
Basis:
diagonal valencePros:
rule based:
electronegativity
atomic radii
hardness
scaling
d-p π bonding
organics, inorganic, organometallic & biomolecules
any elementCons: accuracy
organometallic complexes
Atoms:
H
Li - F
Na - Cl
K - Br
Rb - I
Cs - At
MMFF94 Merck Molecular Force Field
Basis:
small moleculePros: ions
ab initio & experimental
-
Basis:
"Tight Binding Approximation"Pros:
π-orbitals only
Hµµ= alpha
Hµv = beta, adjacent atoms only
Sµv = 0
orbital symmetryCons:
resonance energy
back of envelope
flat, π orbitals only
polars poor
EHT -
Basis:
valence s & psPros:
Hµµ= -IPµ (ionization potential)
Hµv = 1.75(IPµ + IPv)Sµv
Sµv computed
C2H6 rotational barrierCons:
Woodward-Hoffman rules
includes AO overlap terms
Fock matrix diagonalized once
Frontier orbitals
Walsh Diagrams
All elements
valence only
geometry poor
partial charges high
singlet & triplet same (no e- spin)
no e-/e- or nuclear repulsions
IEHT -
Basis:
Iterate to consistent chargePros:
Hµµ= -IPµ - Qa(IPa-EAa)
reasonable, but low chargesCons:
better dipoles
better orbital order
valence only
convergence poor
benzene asymmetric
Fenske-Hall -
Basis:
parameter free
minimal basis
all electron
spectroscopic Slater terms
(2-Electron MO Methods)
- Complete Neglect of Differential Overlap
Basis:
all 2 e- overlap OrbitalsPros:
IP & EA
XµXvdt = 0
Hµv ° ßabSµv fit to minimum basis set
bond lengthsCons: dissociation energies poor
bond angles
Accy: ΔHf°±200
Basis:
one 2pπ STO per conjugationPros: aromatic species
single CI
valence π & sigma separate
Cons:
valence only
ignores many e-/e- repulsions
INDO/1 -
Basis:
minimal basis setPros:
valence s, p, & d orbitals
2-center integrals 0
includes 1-center exchange integrals
Hµµ= -(IPµ - EAµ/2 + . . .
Hµv from STO-3G SCF
transition metalsCons:
bond lengths
bond angles
singlet-triplet splitting
better electron spin
SCRF
small rings favoredAtoms:
dye absorbances low
no double excitations
dissociation energies poor
no SCRF for spectra
HAccy:
Li - F
Na - Cl
K - Zn
Y - Cd
ΔHf°±100
l±0.08
INDO/S -
Basis:
parameterized for spectraPros: UV spectra
single CI
Cons: metals w/ unpaired e-
Atoms:
Li, B - F
P, S
Sc - Zn
(2 Electron NDDO Methods)
-
Basis:
32 molecule parameterizationPros:
1-center integral parameters
3 & 4-center integrals on same
resonance integral from exp.
carbocationsCons:
amides flat
valence s & p onlyAtoms:
small rings favored
resonance energy low
no H-bonds
lone pair repulsion low
rings flat
transition states poor
HAccy:
B - F
Si - Cl
ΔHf°±5, ΔHr±13
D±0.5, IP±0.7
l±0.02
MNDO - Minimal Neglect of Differential Overlap
Basis: 32 molecule parameterization
Pros:
multiple bondsCons:
EAs for ions
better lone pair repulsion
better angles
valence s & p onlyAtoms:
no H-bonds, no H2O dimer
spurious H-H interaction
S, Cl, & Br IP high
activation barriers high
bond dissociation enthalpies low
conjugation low
3-center B bonds low
-O-O- bond ~ 0.17Å short
C-O-C angle 9° large
Ar-NO2 out of plane
amides pyramidal
no Van der Waals attraction
steric crowding disfavored:
neopentane unstable
4-membered rings too stable
hypervalent unstable
HAccy:
Li - F
Al - Cl
Cr, Zn, Ge, Br
Sn, I
Hg, Pb
ΔHf°±11, ΔHr±13, ΔHdiss-20, ΔH±16
D±0.5, IP±0.8
l±0.07, a±5, d±17
v+11%
MNDO/d -
Basis:
adding d-orbitals to MNDOAtoms:
split valence
11 parameters for sp elements
15 parameter for spd elements
d orbitals for 2nd row main group
Na - ClPros:
Ti, Fe, Ni, Cu, Zn, Ge - Br
Zr, Pd, Ag, Cd, Sn - I
Hf, Hg
Heat of formationCons:
hypervalent shape
IPAccy:
dipole moment
overpredicts agostic interaction
metal-ethylene short
no insertion barrier
ΔHf°±6
D±0.5, IP±0.6
l±0.06, a±2
AM1 - Austin Model 1
Basis:
100 molecule parameterizationPros:
1-center from spectroscopy
minimal basis set
Gaussian patches
7-21 parameters per element
theoretical consistency
H-bond energiesCons:
H-bond lengths
proton affinities
better activation barriers
hypervalent P
Heat of Formation 40% better
2-Cl-THP axial (anomeric)
valence s & p onlyAtoms:
no hypervalent compounds
P orbitals irregular @ 3Å:
P4O6 asymmetric
P-O bonds
conjugate interactions low
-CH2- ΔHf ~ 2 kcal low each
Heat of Hydrogenation low
bond dissociation enthalpies low
activation enthalpies high
-NO2 energies high
-O-O- bond ~ 0.17Å short
H-bond angles, H2O H-bond geometry wrong
C-C-O-H gauche in ethanol
H+ transfer barrier high
acrolein, glyoxal
HAccy:
Li, B - F
Al - Cl
Zn, Ge, Br
I
Hg
ΔHf°±8, ΔHr±5, ΔHdiss-20, ΔH±7
D±0.5 ,IP±0.6
l±0.06, a±4, d±13
v+4.7%
SAM1 -
Basis: AM1 w/ d-orbitals
Pros:
theoretical consistencyAtoms:
transition metals
HAccy:
C - F
Si - Cl
Fe, Cu, Br
I
ΔHf°±8, ΔHr±5
D±0.4, IP±0.4
l±0.04, a±3
v±13%
PM3 -
Basis:
657 molecule parameterizationPros:
minimal basis set
18 parameters per element
2 Gaussians for each element
all 2 e- integral parameters optimized
hypervalent includedCons:
HOF 40% better
-NO2 better
ground state geometries better
reproducing experimental data
H2O H-bonds: lengths & angles
partial charges on N unreliableAtoms:
bond dissociation enthalpies low
amides pyramidal, barrier low
no barrier to formamide rotation
spurious minima
D2d symmetry for CBr4
CH4 LUMO symmetry A1
IPs poor
Proton Affinity
H+ transfer barrier high
wrong glucose geometry:
H-bonds 0.1Å short
C-C-O-H gauche in ethanol
VdW attraction high/H-H core repulsion low, H-H 1.7 vs 2.0 Å
HAccy:
Li, Be, C - F
Mg - Cl
Zn - Br
Cd - I
Hg - Bi
ΔHf°±9, ΔHr±7, ΔHdiss-20, ΔH±9
D±0.6, IP±0.7
l±0.05, a±9, d±15
v±20%
PM3(tm) -
Basis:
PM3 with d-orbitalsPros:
minimal basis set
optimized for geometries
transition metalsCons: energies
geometries
Atoms:
H
Li - F
Mg - Cl
Ca, Ti, Cr - Br
Zr, Mo, Ru - Pd, Cd - I
Hf - W, Hg
Gd
Basis: Kohn-Sham theory
Pros:
static correlation includedCons:
less basis set sensitivity
less spin contamination
no dynamic correlation
quasiparticle functions, not true MOs
overstabilizes low spin state of metal complexes
Basis:
Local Spin Density/functionalsPros:
Slater style exchange
alpha ~ 0.7
geometriesCons:
EA's
no dynamic correlation: VdW/dispersionAcc'y:
H-bonds
N2 orbital order
bond energies high
IP's low
bandgap low
delocalized 3e- bonds too stable
exchange functional only
l±0.02, a±3
v±35
SVWN -
Basis:
Local Spin Density functionalsPros:
Slater exchange
Vosko-Wilk-Nusair correlation
scales as big x n^2Cons:
no parameters
bonds shortAccy:
bond energies high
proton affinities
H-bonds
H-abstractions poor
radical Rxn barriers low
long range dispersion
band gap low
spurious e- self interaction
overstablizes lo spin states of metal complexes
ΔHf+90, ΔHr±9, ΔHdiss+16, ΔHatom+80, ΔH±7
D±0.1
l±0.02, a±2
v±7%
LYP
Basis:
Lee-Yang-Parr gradient correctionCons:
correlation functional from He atom
charge transfer complexes
excited states
1 e- correlation 0
nonuniform e- gas limit
parallel = opposite spin e- pairs
P86
Basis:
Perdew gradient correctionPros:
correlation functional
parameter free
uniform e- gas limitCons: 1 e- correlation 0
parallel opposite spin pairs
Basis:
Becke gradient correctionPros:
exchange functional
1 parameter fitted to calculated atomic data
1 e- correlation =0Cons:
parallel opposite spin pairs
nonuniform e- gas limit
inhomogeneity limits interpolation
BP - Becke-Perdew
Basis:
nonlocal/Generalized Gradient Approximation methodPros:
B88 exchange w/ P86 correlation
scales as n^3
transition metalsCons: overstablizes high spin state of metal complexes
better metal spin state preference
Acc'y:
ΔHf+16, ΔHr±5, ΔHdiss+5, ΔHatom+20
D±0.2
l±0.02, a±0.9
BLYP - Becke Lee-Yang-Parr
Basis:
nonlocal/Generalized Gradient Approximation methodPros:
B88 exchange w/ LYP correlation
scales as n^3
heavy atom BDE'sCons:
IR scaling
better metal spin state preference
popular, well tested/validatedAcc'y:
overstablizes high spin state of metal complexes
transition states for: F + H2, N + O2, O + HCl
ΔHf±7, ΔHr±5, ΔHdiss±5, ΔHatom±9, ΔH±6
D±0.2
l+0.03, a±1
v±6%
GGA91
Pros:
parallel opposite spin pairsCons: 1 e- correlation 0
uniform e- gas limit
no fit parameters
H-bonds
Basis:
nonlocal gradient correctionsPros:
hybrid HF exchange for part of DFT
transition states
H-bonds
Basis:
hybrid nonlocal methodPros:
3-parameter exchange fitted to G2 thermochemistry data:
Becke exchange
HF exchange
LYP correlation
favors greater density
favors greater inhomogeneity
good rxn barriersCons:
nondynamic correlation
radical hyperfine coupling
eliminates overbinding
agostic interactions
transition metal geometries
transition metal complex spin preferences
naphthalene cation geometry
O3 frequencies
popular, well tested/validated
bonds slightly longAccy:
no dynamic correlation: dispersion interactions
transition state for: F + H2
harder to converge for transition metals
scales as n^4
ΔHf°±3 , ΔHr±4, ΔHdiss±5, ΔHatom±3, ΔH±4
D±0.2, IP±0.1
l±0.007, a±0.9
v+4.0%
B3P86 -
Basis:
B3 hybrid exchange w/ P86 correlationAccy: v+4.6%
Basis:
Hartree-FockPros:
Self Consistent Field
single Slater determinant/e- configuration
isodesmic energiesCons:
relative activation enthalpies
homolysis & atomization enthalpies low
ΔHs high w/o correlation
acrolein isomers
naphthalene cation symmetry
O3, F-O-O-F
radical hyperfine coupling too high x2
organic bonds short
M - π bonds long
favors metal s over d
wrong N2 orbitals order
overstablizes hi spin states of metal complexes
no e- correlation:
no static correlation: singlet methylene
no dynamic correlation: dispersion energy (π - π stacking) low
scales as n^2.7
MP2 - 2nd Order Moller Plesset ( = Many Body Perturbation Theory)
Basis:
Rayleigh-Schrodinger perturbation theoryPros:
Taylor Series expansion, truncated at 2nd order
size consistentCons:
dynamic correlation for dispersion forces:
CH4 - CH4 binding
π - π stacking interaction
bond breaking
anomeric effect
not variationalAcc'y:
transition metals
overbinds CO2, PO
free radicals too stable
O3 frequencies
bonds long
greater BSSE
diverges for e- gas
diffuse orbitals, extended system
scales as n^5
ΔHf°±3, ΔHr±4, ΔHdiss±7, ΔHatom-22, ΔH±11
l+0.01, a±1
v+6.0% w/ 6-31G*, +6.7% w/ 6-31G**, +5.3% w/ 6-311G**
MP4 - 4th order Moller-Plesset
Cons: scales as n^7
Basis: double excitations "coupled" to reference configuration
Pros:
includes correlation
complete to ° order for double excitations
CCSD - Coupled Cluster, singles, doubles
Basis: single & double excitations "coupled" to reference configuration
Pros:
includes correlation
complete to ° order for single and double excitations
includes most quadruple & hextuple excitation effects
scales as n^6
CCSD(T) - Coupled Cluster, singles, doubles with approximate triples
Basis:
single & double excitations "coupled" to reference configurationPros:
triples contributions perturbatively
includes correlationCons:
size consistent
popular for high level method
less spin contamination
transition metals
O3 frequencies
overbinds CO2
not variational
greater BSSE
scales as n^5-7
CCSDT - Coupled Cluster, singles, doubles, & triples
Basis: single, double, & triple excitations "coupled" to reference configuration
Cons: scales as n^8
Basis:
HF reference determinant/e- configurationPros:
expand reference configuration into series of excited configurations
interaction with excited configurations used as many e- basis set
dynamic correlationCons: truncated forms not size consistent
more flexible wavefunctions
Basis:
CI w/ single excitation configurations onlyPros: electronic spectra
HF reference determinant
Cons:
no e- correlation
not size consistent
excited state properties
potential energy surfaces
CID -
Basis:
CI w/ double excitation configurations onlyCons: not size consistent
HF reference determinant
Basis:
CI w/ single and double excitation configurationsPros:
HF reference determinant
includes correlationCons:
single & double excitations
variational
not size consistent
scales as n^6
QCISD(T) - Quadratic Configuration Interaction, singles, doubles, approximate triples
Basis:
CI w/ single and double excitation configurationsPros: size consistent
HF reference determinant
terms added to CI to make size consistent
Cons: scales as n^7
Acc'y:
l+0.01, a±1
v+5%
MRCI - Multi-Reference Configuration Interaction
Basis:
more than 1 reference determinant/e- configurationPros:
interaction w/ excited configurations used as many e- basis set
a multireference methodCons: scales as n^8
biradicals
Basis:
more than 1 reference determinant/e- configurationsPros: a multireference method
CI w/ single & double excited configurations
Cons: not dissociation consistent
Basis:
more than 1 reference determinant/e- configurationsPros: a multireference method
both, configuration and orbital, coefficients optimized
a limited type of CI
Basis:
full CI "in active space"Pros:
select # of e- and orbitals
includes correlationCons: selection of active space
a multireference method
Basis:
limited type of MCSCF/a multireference methodPros: dissociation consistent
use excitations w/i e- pairs
Basis:
GVB
CI restricted to doubles
GVB-RCI - GVB Restricted Configuration Interaction
Basis:
GVB
CI w/ singles and doubles
QMC - Quantum Monte Carlo
Basis:
correlated basis functionsPros:
evaluate integrals numerically numerical via Monte Carlo
includes correlationCons: long calculation
most accurate
-
Basis:
minimal basis setPros: Pauling point
Slater type orbitals
3 Gaussian to fit exponential
Atoms:
H, HeAccy:
Li - Ne
Na - Ar
K - Kr
Rb - Xe
ΔHdiss±3, ΔH±5
D±0.5
l±0.09, a±5, d±8
STO-3G* -
Basis:
STO-3GAtoms:
set of polarizing d-functions (5D) added to heavy atoms
Na - ArAccy:
K - Kr
Rb - Xe
Basis:
Pople style (Gaussian Type Orbital) basis setPros: Gaussians reduce 4-body mathematical problem to 2-body problem
Valence Double Zeta:
3 Gaussians function primitives for each core basis functions
Split Valence:
2 Gaussians with linked coefficients for each inner valence e-
1 "uncontracted" (variable) primitive for each outer valence e-
Cons:
cis vs trans acroleinAtoms:
amine N too flat
M-O short
adsorption energy high
H, HeAccy:
Li - Ne
Na - Ar
K - Kr
Rb - Xe
ΔHf°±7, ΔHr±15, ΔHdiss-30, ΔH±4
D±0.4
l±0.06, a±3, d±20
v+10.9%
3-21G* = 3-21G(d) -
Basis:
3-21GAtoms:
set of polarizing d-functions (6D) added to atoms past 1st row
Na - ArAccy:
K - Kr
Rb - Xe
Atoms:
Li - Ne
Na - Ar
K - Kr
Rb - Xe
3-21++G* -
Atoms:
H, He
Li - Ne
Na - Ar
K - Kr
Rb - Xe
4-21G -
Atoms:
H, He
Li - Ne
4-21G* -
Basis:
4-21G
set of polarized d-functions (6D) added to heavy atoms
4-21G** -
4-31G -
Atoms:
H - HeAccy: l±0.04
Li - Ne
P - Cl
Basis:
4-31G
set of polarizing d-functions (6D) added to heavy atoms
4-31G** -
6-21G -
Atoms:
H - He
Li - Ne
Na - Ar
6-21G* -
6-21G** -
6-31G -
Basis:
Pople style (GTO) basis setPros:
Valence Double Zeta:
6 Gaussian function primitives for each core basis function
Split-valence:
3 Gaussian primitives (linked coefficients) for each inner valence basis function
1 "uncontracted" (variable) primitive for each outer
Gaussians reduce 4-body mathematical problem to 2-body problemAtoms:
popular
H - He
Li - Ne
Na - Ar
6-31+G -
Pros:
negative ionsCons: convergence difficult w/ diffuse
Rydberg states
less BSSE w/ diffuse (3rd) primitive Gaussian
Basis:
6-31GPros:
set of polarizing d-functions (6D) added to heavy atoms
anomeric effectaccuracy
most popular, widely used/validated
Atoms:
H, He
Li - Ne
Na - Ar
Accy:
ΔHf°±4, ΔHr±7, ΔHdiss-20, ΔHatom-120, ΔH±7
D±0.5
l±0.03, a±1
v+11.7%
6-31G** = 6-31G(d,p) -
Basis:
6-31G*Pros: less BSSE w/ diffuse (3rd) primitive Gaussians
set of polarizing p-functions added to H, too
Cons: convergence w/ diffuse (3rd) primitive Gaussians
Accy: v+11.2%
Basis:
6-31G*
set of diffuse s- and diffuse p-functions added to heavy atoms
6-31++G* = 6-31++G(d) - Augmented 6-31+G*
Basis:
6-31+G*
set of diffuse s-functions added to H, too
6-31+G** = 6-31+G(d,p)-
6-31++G** = 6-31++G(d,p)-
6-311G -
Basis:
Pople style (GTO) basis setCons: less flexible than real triple-zeta
Valence Triple Zeta:
6 Gaussian primitives for each core basis functions
Triple split valence:
3 primitives (linked coefficients) for each inner valence basis function
1 uncontracted primitive for 2nd layer of valence
1 uncontracted primitive for outer layer of valence
Accy: v+10.5%
Basis:
6-311GAtoms:
set of polarizing d-functions (5D) added to heavy atoms
H - He
Li - Ne
Na - Ar
6-311G** = 6-311G(d,p) -
Basis:
6-311G*Accy: v+10.5%
set of polarizing p-functions added to H, too
Basis:
6-311G
diffuse s- and p-functions added to heavy atoms
3 d- and 1 polarizing f-function added to heavy atoms
2 polarizing p-functions added to H
Basis:
correlation consistent basis setPros:
Valence Double Zeta
set of polarizing d-functions (5D) added to heavy atoms
use with correlated methodsAtoms:
series converges exponentially to complete basis set limit
H-Ne
B-Ne
Al-Ar
cc-pVDZ+ - Augmented cc-pVDZ
Basis: add diffuse functions
Atoms:
H
C-F
Si-Cl
cc-pVDZ++ -
Basis:
correlation consistent basis setPros: CH4 - CH4 binding
Valence Triple Zeta
set of polarizing d-functions (5D) and f-functions added to heavy atoms
Atoms:
H-He
B-Ne
Al-Ar
cc-pVTZ+ -
Basis: add diffuse functions
Atoms:
H
C-F
Si-Cl
cc-pVTZ++ -
cc-pVQZ - Correlation Consistent, polarized Valence Quadruple Zeta
Basis:
correlation consistent basis set
Valence Quadruple Zeta
cc-pV5Z - Correlation Consistent, polarized Valence Quintuple Zeta
Basis:
correlation consistent basis set
Valence Quintuple Zeta
MIN -
Basis:
minimal basis setPros: DFT
numeric
Atoms: not limited to set
Basis:
Double Zeta
numeric basis set
exact numerical function from spherical atom
DND -
Basis:
Double ZetaPros: more accurate than 6-31G*
numeric basis set
set of polarizing functions (p- and d-) on heavy atoms
Atoms: not limited
Basis:
Double ZetaPros:
numeric basis set
set of polarizing functions (s-, p-, d-) on all atoms
DFTCons: sensitive to orientation
more accurate than 6-31G**
speed
Atoms: not limited
Basis:
Double ZetaAtoms:
contracted Gaussians, optimized for (local) DFT
H - He
Li - Ne
Na - Ar
K - Kr
Rb - Xe
DZ94P - Double Zeta with Polarization
Basis:
DZ94Atoms:
polarization functions (1 angular momentum # higher than valence) added
H - He
Li - Ne
Na - Ar
K - Kr
Rb - Xe
DZV - Double Zeta Valence
Basis:
Dunning/Hay & Binning/CurtissAtoms:
Valence Double Zeta
H - He
Li - Ne
Al - Ar
Ga - Kr
DZVP - Double Zeta Valence with Polarization
Basis:
Valence Double ZetaAtoms:
contracted Gaussians, optimized for (local) DFT
(~ 6-41G* ?)
polarization d-functions added to heavy atoms
H - He
Li - Ne
Na - Ar
K - Kr
Rb - Xe
DZVP2 -
Basis:
DZVPAtoms:
polarization functions added to H, too
H - He
Li - Ne
Al -Ar
Sc - Zn
D95 -
Atoms:
H
Li - Ne
Al - Cl
D95* -
Basis:
D95
set of polarizing functions (6D) added to heavies
D95V -
Atoms:
H
Li - Ne
D95V* -
Basis:
D95V
set of polarizing functions (6D) added to heavies
TZ94 - Triple Zeta
Basis:
Triple ZetaAtoms:
contracted Gaussians, optimized for (local) DFT
H - He
Li - Ne
Na - Ar
K - Kr
Rb - Xe
TZ94P - Triple Zeta with Polarization
Atoms:
H - He
Li - Ne
Na - Ar
K - Kr
Rb - Xe
TZV -
Basis:
Triple Zeta ValenceAtoms:
6-311G & McLean/Chandler
Gaussian primitives
Li - Ne
Na - Ar
K - Zn
TZVP - Triple Zeta Valence with Polarization
Basis:
Triple Zeta ValenceAtoms:
(~ 6-311G* ?)
optimized for (local) DFT
H - He
B - Ne
Al - Ar
LAV1S ( = LANL1MB ?) -
Basis:
Los Alamos (Hay-Wadt) Effective Core PotentialsAtoms:
Minimal basis set: Valence only
STO-3G for non ECP atoms
Na - Ar
K - Kr
Rb - Xe
Cs - La, Hf - Bi
LAV2D (= LANL1DZ ? LANL2DZ ?) -
Basis:
Los Alamos (Hay-Wadt) ECP'sAtoms:
Double Zeta: Valence only
D95V basis for non ECP's
Na - Ar
K - Kr
Rb - Xe
Cs - La, Hf - Bi
LAV2P -
Basis:
Los Alamos Effective Core PotentialsAtoms:
Double Zeta: Valence only
6-31G basis for non ECP's
Na - Ar
K - Kr
Rb - Xe
Cs - La, Hf - Bi
LAV3D -
Basis:
Los Alamos Effective Core PotentialsAtoms:
Triple Zeta: Valence only
D95 basis for non ECP's
Na - Ar
K - Kr
Rb - Xe
Cs - La, Hf - Bi
LAV3P -
Basis:
Los Alamos Effective Core PotentialsAtoms:
Triple Zeta: Valence only
pseudospectral
6-31G for non ECP's
Na - Ar
K - Kr
Rb - Xe
Cs - La, Hf - Bi
LACVD -
Basis:
Los Alamos Effective Core PotentialsAtoms:
Double Zeta: Valence and outermost core
D95 basis for non ECP's
K - Cu
Rb - Ag
Cs - La, Hf - Au
LACVP -
Basis:
Los Alamos Effective Core PotentialsPros:
Double Zeta: Valence and outermost core
6-31G basis for non ECP's
pseudospectral
correlated wavefunctionsAtoms:
charge transfer effects
3rd row & higher elements
d(0) metals
K - Cu
Rb - Ag
Cs - La, Hf - Au
LACV3P -
Basis:
Los Alamos Effective Core PotentialsPros:
Triple Zeta: Valence & outermost core
6-311G for non ECP's
pseudospectral
atomic state splittingsAtoms:
correlated wavefunctions
3rd row & higher elements
d(0) metals
charge transfer
K - Cu
Rb - Ag
Cs - La, Hf - Au
LACV3P++ -
Basis:
LACV3PPros:
diffuse added to all atoms, including H & He
low spin M(0), late 1st row transition metal complexes
anions
CEP = SBK - Stevens-Bash-Krauss-Jasien-Cundari
Basis:
Effective Core PotentialsAtoms:
Double Zeta: valence only
-31G splits
Li - Ne
Na - Ar
K - Kr
Rb - Xe
Cs - Rn
CEP-4 -
CEP-31 -
CEP-121 -
HW - Hay - Wadt ECP's
Basis:
Double Zeta: valence onlyAtoms:
-21 splits
Na - Ar
K - Kr
Rb - Xe
MSV -
Atoms:
H - He
Li - Ne
Na - Ar
K - Ru, Pd - Xe
MSV* -
Basis:
MSV
set of polarizing d-functions (5D) added
(Grain of Salt)
The information above has been collected from various published results, documentation, and personal experience. This list is updated as information comes to my attention and as time allows, but as rapidly as methods evolve, some info is no doubt out of date and/or incomplete. (Accuracies are averages of typical literature comparisons, for instance, which, of course, is dependent on the systems included in the published study.) Consequently, this compilation is meant more as an aid to help remember the strengths and limitations of each method, rather than as a complete and authoritative reference.
Back to Modeling Reference Page