CCL Home Page
Up Directory CCL Part13
#! /bin/sh
# This is a shell archive.  Remove anything before this line, then unpack
# it by saving it into a file and typing "sh file".  To overwrite existing
# files, type "sh file -c".  You can also feed this as standard input via
# unshar, or by typing "sh 'Doc/Guide/surfaces.tex' <<'END_OF_FILE'
X\chapter{Surfaces and Atmospheric Effects}
X
XSurfaces are used to control the interaction between light sources and
Xobjects.  A surface specification consists of information
Xabout how the light interacts with both the exterior and
Xinterior of an object .
XFor non-closed objects, such as polygons,
Xthe ``interior'' of an object is the ``other side'' of the object's surface
Xrelative to the origin of a ray.
X
X{\Rayshade} usually ensures that a primitive's surface normal is pointing
Xtowards the origin of the incident ray when performing shading
Xcalculations.  Exceptions to this rule are transparent primitives, for
Xwhich {\rayshade} uses the direction of the surface normal to determine if
Xthe incident ray is entering or exiting the object.
XAll non-transparent primitives will, in effect, be double-sided.
X
X\section{Surface Description}
X
XA surface definition consists of a number of component keywords, each
Xof which is usually followed by either a single number or a red-green-blue
Xcolor triple.   Each of the values in the color triple are normalized,
Xwith zero indicating zero intensity, and one indicating full intensity.
X
XIf any surface component is left unspecified, its value defaults to zero,
Xwith the exception of the index of refraction, which is assigned the
Xdefault index of refraction (normally 1.0).
X
XSurface descriptions are used in {\rayshade} to compute the color of a ray
Xthat strikes the surface at a point \evec{P}. The normal to the surface
Xat \evec{P}, \evec{N}, is also computed.
X
X\begin{defkey}{ambient}{\evec{color}}
X	Use the given {\em color} to approximate those surface-surface 
X	interactions (e.g., diffuse interreflection) not modeled by the
X	ray tracing process.
X\end{defkey}
XA surface's ambient color is always applied to a ray.  The color
Xapplied is computed by multiplying the ambient color by the intensity
Xof the ambient light source.
X
XIf \evec{P} is in shadow with respect to a given light source,
Xthat light source makes no contribution to the shading of \evec{P}.
X
X\begin{defkey}{diffuse}{\evec{color}}
X	Specifies the diffuse color.
X\end{defkey}
XThe diffuse contribution from each non-shadowed light source at \evec{P}
Xis equal to the diffuse color of the surface scaled by the cosine of
Xthe angle between \evec{N}
Xand the vector from \evec{P} to the light source.
X
X\begin{defkey}{specular}{\evec{color}}
X	Specifies the base color of specular reflections.
X\end{defkey}
X
X\begin{defkey}{specpow}{{\em exponent}}
X	Controls the size of the specular highlight. The larger
X	the {\em exponent}, the smoother the apparent finish.
X\end{defkey}
XThe intensity of specular highlights from light sources are
Xscaled by the specular color of the surface.
X
X\begin{defkey}{reflect}{{\em reflectivity}}
X	Specifies the specular reflectivity of the surface.  If non-zero,
X	reflected rays will be spawned.
X\end{defkey}
XThe intensity of specularly reflected rays will be proportional to
Xthe specular color of the surface scaled by the reflectivity.
X
X\begin{defkey}{transp}{{\em transparency}}
X	Specifies the specular transmissivity of the surface.  If
X	non-zero,
X	transmitted (refracted) rays will be spawned.
X\end{defkey}
X
X\begin{defkey}{body}{\evec{color}}
X	Specifies the body color of the object.  The body color
X	affects the color of rays that are transmitted through the
X	object.
X\end{defkey}
X
X\begin{defkey}{extinct}{{\em coefficient}}
X	Specifies the extinction coefficient of the interior
X	of the object.
X\end{defkey}
XThe extinction coefficient is raised to a power equal to the distance
Xthe transmitted ray travels through the object.
XThe overall intensity of specularly transmitted rays will be proportional to
Xthis factor multiplied by the surface's body color
Xmultiplied by the transparency of the object.
X
X\begin{defkey}{index}{{\em N}}
X	Specifies the index of refraction.  The default value is equal
X	to the index of refraction of the atmosphere surrounding the eye.
X\end{defkey}
X
X\begin{defkey}{translucency}{{\em translu} \evec{color} {\em stexp}}
X	Specifies the translucency, diffusely transmitted color,
X	and Phong exponent for transmitted specular highlights.
X\end{defkey}
XIf a light source illuminates a translucent surface from the side opposite
Xthat from which a ray approaches, illumination computations are performed,
Xusing the given color as the surface's diffuse color, and the given
Xexponent as the Phong highlight exponent.  The resulting color is then
Xscaled by the surface's translucency.
X
X\section{Atmospheric Effects}
X
XAny number of atmospheric effects may be associated with the default
Xmedium (``air'').
X
X\begin{defkey}{fog}{\evec{color} \evec{thinness}}
XAdd exponential fog with the specified {\em thinness} and {\em color}.
X\end{defkey}
XFog is simulated by blending the color of the fog with the color of
Xeach ray.  The amount of fog color blended into a ray color is an exponential
Xfunction of the distance from the ray origin to the point of intersection
Xdivided by the specified {\em thinness} for each color channel.
XIf the distance is equal to {\em thinness},
Xa ray's new color will be half of the fog color plus half its
Xoriginal color.
X
X\begin{defkey}{mist}{\evec{color} \evec{thinness} {\em zero scale}}
XAdd global low-altitude mist of the specified color.  The color of
Xa ray is modulated by a fog with density that varies linearly with
Xthe difference in $z$ coordinate\footnote{This all but assumes that
Xthe default up vector (0, 0, 1) is being used.}
Xbetween the ray origin and
Xthe point of intersection.  The thinness values specify the transmissivity
Xof the fog for each color channel.
XThe base altitude of the
Xmist is given by {\em zero}, and the apparent height of the mist can
Xbe modulated using {\em scale}, which scales the difference in
Xaltitude used to compute the fog.
X\end{defkey}
X
X\begin{defkey}{fogdeck}{{\em altitude} {\em offset} \evec{scale} {\em chaoscale}
X \evec{color} \evec{thinness}}
XAdd low-altitude fog, with transmissivity modulated by
Xa chaotic function.
X\end{defkey}
X
X\section {The Default Medium}
X
XThe default medium is the medium which surrounds and encompasses
Xall of the objects in the scene; it is the ``air'' through which eye
Xrays usually travel before hitting an object.  The properties of
Xthe default medium may be modified through the use of the {\tt atmosphere}
Xkeyword.
X
X\begin{defkey}{atmosphere}{[{\em N\/}] [{\em atmospheric effects}]}
XIf given, {\em N} specifies the index of refraction of the default
Xmedium.  The default is 1.0.  Any atmospheric effects listed are applied
Xto rays that are exterior to every object in the scene (e.g., rays
Xemanating from the camera).
X\end{defkey}
X
X\begin{verbatim}
X    /*
X     * Red sphere on a grey plane, with fog.
X     */
X    eyep 0. -10. 2.
X    atmosphere fog  .8 .8 .8 14. 14. 14.
X    plane 0 0 0  0 0 1
X    sphere diffuse 0.8 0 0   1.5  0 0 1.5
X\end{verbatim}
X
X\section {Surface Specification}
X
X{\Rayshade} provides a number of ways to define surfaces and to
Xbind these surfaces to objects.  The most straight-forward method
Xof surface specification is to simply list the surface properties to
Xbe used.
XAlternatively, one may associate a name with a given surface.
XThis name may subsequently be used to refer to that surface.
X
X\begin{defkey}{surface}{{\em name\/} $<${\em Surface Definition}$>$}
X	Associate the given collection of surface attributes with the
X	given name.
X\end{defkey}
X
XThe binding of a collection of surface properties to a given object
Xis accomplished in a bottom-up manner; the surface that ``closest''
Xin the modeling tree to the primitive being rendered is the one that
Xis used to give the primitive its appearance.
X
XAn object that has no surface bound to it is assigned a default surface
Xthat gives the appearance of white plastic.
X
XThe
Xmost direct way to bind a surface to a primitive
Xis to specify the surface when the
Xthe primitive instantiated.
XThis is accomplished
Xby inserting a list of surface attributes or a surface name after
Xthe primitive's type keyword and before the actual primitive data.
X
X\begin{verbatim}
X    /*
X     * A red 'mud' colored sphere reseting on a
X     * white sphere. To the right is a sphere with
X     * default surface attributes.
X     */
X    surface mud ambient .03 0. 0.  diffuse .7 .3 0.
X    sphere  ambient .05 .05 .05 diffuse .7 .7 .7   1. 0 0 0
X    sphere mud  1. 0 0 2
X    sphere 1. 1.5 0 0
X\end{verbatim}
X
XHere, we define a red surface named ``mud''.  We then instantiate
Xa sphere, which has a diffuse white surface bound to it.  The
Xnext line instantiates a sphere with the defined ``mud'' surface bound
Xto it.  The last line instantiates a sphere with no surface bound to it;
Xit is assigned the default surface by {\rayshade}.
X
XThe {\tt applysurf} keyword may be used to set the default surface
Xcharacteristics for the aggregate object currently being defined.
X
X\begin{defkey}{applysurf}{$<${\em Surface Specification}$>$}
XThe specified surface is applied to all following
Xinstantiated objects that do not have surfaces associated with them.
XThe scope of this keyword is limited to the aggregate currently
Xbeing defined.
X\end{defkey}
X
X\begin{verbatim}
X    /*
X     * Mirrored ball and cylinder sitting on 'default' plane.
X     */
X    surface mirror ambient .01 .01 .01
X            diffuse .05 .05 .05
X            specular .8 .8 .8 specpow 20  reflect 0.95
X    plane 0 0 0  0 0 1
X    applysurf mirror
X    sphere 1 0 0 0
X    cylinder 1  3 0 0  3 0 3
X\end{verbatim}
X
XFor convenience, the name {\tt cursurf} may be used to refer to the
Xcurrent default surface.
X
XThe utility of bottom-up binding of surfaces lies in the fact that
Xone may be as adamant or as noncommittal about
Xsurface binding as one sees fit when defining objects.  For example,
Xone could define a king chess piece consisting of triangles that have no
Xsurface bound to them, save for the cross on top, which has
Xa gold-colored surface associated with it.  One may then instantiate
Xthe king twice, once applying a black surface, and once applying
Xa white surface.  The result:  a black king and a white king, each
Xadorned with a golden cross.
X
X\begin{verbatim}
X    surface white ...
X    surface black ...
X    surface gold  ...
X    ...
X    define cross
X            box x y z  x y z
X            ...
X    defend
X    define king
X            triangle x y z  x y z  x y z
X            ...
X            object gold cross
X    defend
X
X    object white king translate 1. 0 0
X    object black king
X\end{verbatim}
END_OF_FILE
if test 10369 -ne `wc -c <'Doc/Guide/surfaces.tex'`; then
    echo shar: \"'Doc/Guide/surfaces.tex'\" unpacked with wrong size!
fi
# end of 'Doc/Guide/surfaces.tex'
fi
if test -f 'Doc/quickref.txt' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'Doc/quickref.txt'\"
else
echo shar: Extracting \"'Doc/quickref.txt'\" \(9718 characters\)
sed "s/^X//" >'Doc/quickref.txt' <<'END_OF_FILE'
X                      Rayshade Quick Reference
X
X-------------------------------------------------------------------------------
XKey:
X[thing]  Optional item                Production
XThing    Number or String           (thing)  Default value(s)
Xthing    Keyword
X-------------------------------------------------------------------------------
X
XReals and integers may be written in exponential notation, with or without a
Xdecimal point.  Reals are truncated to integers when need be.  Numbers may also
Xbe written as expressions surrounded by a matched pair of parentheses.
XSubexpressions may be parenthesized to control order of evaluation.  Variables
Xmay be defined and used in parenthesized expressions.  Predefined variables
Xinclude time (current time) and frame (current frame number, 0 - frames-1), pi,
Xdtor (pi/180), rotd (180/pi).  Available operators are '+' (addition),
X'-' (subtraction and negation), '*' (multiplication), '/' (division),
X'%' (remainder), '^' (exponentiation).  Functions include sin, cos, tan, asin,
Xacos, atan, sqrt, hypot.
X
XStrings are written as non-quoted strings that may include include the
Xspecial characters '/' ("slash"), '-' ("dash"), '_' ("underscore), and '.'
X("period"), in addition to upper and lowercase letters and non-leading digits.
X
X-------------------------------------------------------------------------------
XCommand-line options (override options set in input file):
X
X-A frame       First frame to render 
X-a             Toggle alpha channel   -C cutoff      Adaptive tree cutoff 
X-c             Continued rendering    -D depth       Maximum ray tree depth.
X-E eye_sep     Eye separation         -e             Exponential RLE output
X-F freq        Report frequency       -f             Flip triangle normals
X-G gamma       Gamma exponent         -g             Use gaussian filter
X-h             Help                   -j             Toggle jittered sampling
X-l             Render left eye view   -m             Produce sample map
X-N frames      Total frames to render -n             No shadows
X-O outfile     Output file name       -o             Toggle opaque shadows 
X-P cpp-args    Arguments for cpp      -p             Preview-quality
X-q             Run quietly            -R xres yres   Resolution
X-r             Right eye view         -S samples     Use Samples^2 samples
X-s             Toggle shadow caching  -T r g b       Contrast threshold
X-u             Toggle use of cpp      -V filename    Verbose file output
X-v             Verbose output         -W lx hx ly hy Render subwindow
X-X l r b t     Crop window
X-------------------------------------------------------------------------------
X
XFile: /* Input file consists of...*/
X         [ ... ]
X
XItem:
X        
X        
X        
X        
X        
X        
X
XObjItem: /* Items used in object definition blocks */
X        
X        
X        
X        
X
XViewing:
X        eyep Xpos Ypos Zpos     /* Eye position (0 -10 0) */
X        lookp Xpos Ypos Zpos    /* Look position (0 0 0) */
X        up Xup Yup Zup          /* "up" vector (0 0 1) */
X        fov Hfov [Vfov]         /* Field of view in degrees (horiontal=45) */
X        aperture Width          /* Aperture width (0) */
X        focaldist Distance      /* focal distance (|eyep - lookp|) */
X        shutter Speed           /* Shutter speed (0 --> no blur) */
X        framelength Length      /* Length of a singelf frame (1) */
X        screen Xsize Ysize      /* Screen size */
X        window Xmin Xmax Ymin Ymax /* Window (0 xsize-1 0 ysize-1) */
X        crop left right bot top /* Crop window (0 1 0 1) */
X        eyesep Separation       /* eye separation (0) */
X
XSurfDef: /* Give a name to a set of surface attributes. */
X        surface Name  [ ...]
X
XSurface: /* Surface specification */
X                        /* Use gven attributes */
X        Surfname [ ...] /* Use named surface w/ optional mods. */
X        cursurf  [ ...] /* Use cur. surface w/mods - see ApplySurf */
X
XSurfSpec: /* Surface attribute specification */
X        ambient R G B           /* Ambient contribution */
X        diffuse R G B           /* Diffuse color */
X        specular R G B          /* Specular color */
X        specpow Exponent        /* Phong exponent */
X        body R G B              /* Body color */
X        extinct Coef            /* Extinction coefficient */
X        transp Ktr              /* Transparency */
X        reflect Kr              /* Reflectivity */
X        index N                 /* Index of refraction */
X        translu Ktl R G B Stpow /* Translucency, transmit diffuse, spec exp */
X        noshadow                /* No shadows cast on this surface */
X
XEffect: /* Atmospheric Effects */
X        mist   R G B Rtrans Gtrans Btrans Zero Scale
X        fog    R G B Rtrans Gtrans Btrans
X
XAtmosphere: /* Global atmosphere */
X        atmosphere [Index]  [...] /* Global index, effects */
X
XApplySurf:
X        applysurf  /* apply surf to all following objs w/o surface */
X
XInstance: /* Instance of an object */
X         [] [] 
X
XObject:
X        Primitive        /* Primitive object */
X        Aggregate        /* Named aggregate */
X
XObjDef: /* define a named object */
X        name Objname 
X        
XPrimitive: /* Primitive object */
X        plane    [] Xpos Ypos Zpos Xnorm Ynorm Znorm
X        disc     [] Radius Xpos Ypos Zpos Xnorm Ynorm Znorm
X        sphere   [] Radius Xpos Ypos Zpos
X        triangle [] Xv1 Yv1 Zv1
X                             Xv2 Yv2 Zv2  Xv3 Yv3 Zv3/* flat-shaded triangle */
X        triangle [] Xv1 Yv1 Zv1 Xn1 Yn1 Zn1
X                             Xv2 Yv2 Zv2 Xn2 Yn2 Zn2
X                             Xv3 Yv3 Zv3 Xn3 Yn3 Zn3/* Phong-shaded triangle */
X        polygon  [] Xv1 Yv1 Zv1
X                             Xv2 Yv2 Zv2  Xv3 Yv3 Zv3 [Xv3 Yv4 Zv4 ...]
X        box      [] Xlow Ylow Zlow
X                             Xhi  Yhi  Zhi
X        cylinder [] Radius Xbase Ybase Zbase Xapex Yapex Zapex
X        cone     [] Rbase Xbase Ybase Zbase  Rapex Xapex Yapex Zapex
X        torus    [] Rswept Rtube Xpos Ypos Zpos Xnorm Ynorm Znorm
X        blob     [] Thresh Stren Rad Xpos Ypos Zpos
X                             [Stren Rad X Y Z ...]
X        heightfield [] Filename
X
XAggregate:
X        Grid
X        List
X        Csg
X
XGrid:
X        grid X Y Z  [ ...]  end
X
XList:
X        list  [ ...] end
X
XCsg:
X        union        [ ...] end
X        intersect    [ ...] end
X        difference   [ ...] end
X
X        /* CSG will only work properly when applied to closed objects, e.g.:
X         * sphere, box, torus, blob, closed Aggregate, other Csg object
X         */
X
XTransforms: /* Transformations */
X        translate  Xtrans Ytrans Ztrans
X        scale      Xscale Yscale Zscale
X        rotate     Xaxis Yaxis Zaxis Degrees
X        transform  A   B   C
X                   D   E   F
X                   G   H   I
X                  [Xt  Yt  Zt]
X
XTextures:
X        texture  [Transforms] [ [Transforms] ...]
X
XTexture:
X        checker    
X        blotch    Scale 
X        bump      Bumpscale
X        marble    [Colormapname]
X        fbm       Offset Scale H Lambda Octaves Thresh [Colormapname]
X        fbmbump   Offset Scale H Lambda Octaves
X        wood
X        gloss     Glossiness
X        cloud     Offset Scale H Lambda Octaves Cthresh Lthresh Transcale
X        sky       Scale H Lambda Octaves Cthresh Lthresh
X        stripe     Width Bumpscale
X        image     Imagefile [ [ ...]]
X
XImageTextOption:
X        component 
X        range     Lo Hi
X        smooth
X        textsurf  
X        tile      U V
X        
X
XSurfComp:
X        ambient
X        diffuse
X        reflect
X        transp
X        specular
X        specpow
X
XMapping:
X        map uv
X        map cylindrical [Xorigin Yorigin Zorigin Xup Yup Zup Xu Yu Zu] 
X        map planar      [Xorigin Yorigin Zorigin Xv  Yv  Zv  Xu Yu Zu]
X        map spherical   [Xorigin Yorigin Zorigin Xup Yup Zup Xu Yu Zu]
X
XLight:
X        light R G B  [noshadow]
X        light Intensity  [noshadow]
X
XLightType:
X        ambient
X        point       Xpos Ypos Zpos
X        directional Xdir Ydir Zdir
X        extended    Radius Xpos Ypos Zpos
X        spot        Xpos Ypos Zpos Xat Yat Zat Coef Thetain Thetaout
X        area        Xorigin Yorigin Zorigin Xu Yu Zu Usamples Xv Yv Zv Vsamples
X
XRenderOption:
X        samples      Nsamp [jitter | nojitter]
X                                /* Use Nsamp^2 pixel samples (3^2 jittered) */
X        background   R G B      /* Background color (0 0 0) */
X        outfile      Filename   /* Output file name (written to stdout) */
X        frames       Nframes    /* Number of frames to render (1) */
X        starttime    Time       /* Time corresponding to start of frame 0 */
X        contrast     R G B      /* Maximum contrast w/o supersampling */
X        maxdepth     Depth      /* Maximum ray tree depth (5) */
X        cutoff       Factor     /* Minium spawned ray contribution (.001) */
X        report [verbose] [quiet] [Freq] [Statfile]
X                                /* Reporting mode (false false 10 stderr) */
X        shadowtransp            /* Toggle object opacity affects shadows */
X
XDefinition: /* Variable definition */
X        define Name Expr        /* Assign value for Name */
END_OF_FILE
if test 9718 -ne `wc -c <'Doc/quickref.txt'`; then
    echo shar: \"'Doc/quickref.txt'\" unpacked with wrong size!
fi
# end of 'Doc/quickref.txt'
fi
if test -f 'libray/libobj/geom.c' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'libray/libobj/geom.c'\"
else
echo shar: Extracting \"'libray/libobj/geom.c'\" \(9408 characters\)
sed "s/^X//" >'libray/libobj/geom.c' <<'END_OF_FILE'
X/*
X * object.c
X *
X * Copyright (C) 1989, 1991, Craig E. Kolb
X * All rights reserved.
X *
X * This software may be freely copied, modified, and redistributed
X * provided that this copyright notice is preserved on all copies.
X *
X * You may not distribute this software, in whole or in part, as part of
X * any commercial product without the express consent of the authors.
X *
X * There is no warranty or other guarantee of fitness of this software
X * for any purpose.  It is provided solely "as is".
X *
X * $Id: geom.c,v 4.0.1.1 91/09/29 15:43:15 cek Exp Locker: cek $
X *
X * $Log:	geom.c,v $
X * Revision 4.0.1.1  91/09/29  15:43:15  cek
X * patch1: GeomBounds now inflates bounds by EPSILON.
X * 
X * Revision 4.0  91/07/17  14:37:47  kolb
X * Initial version.
X * 
X */
X#include "geom.h"
X#include "list.h"
X#include "libcommon/sampling.h"
X
Xstatic void GeomBounds(), GeomBoundsAnimated();
Xvoid GeomResolveAssoc();	/* probably static */
X
XGeom *
XGeomCreate(objptr, methods)
XGeomRef objptr;
XMethods *methods;
X{
X	Geom *obj;
X
X	if (objptr == (GeomRef)NULL)
X		return (Geom *)NULL;
X		
X	obj = (Geom *)share_calloc(1, sizeof(Geom));
X	obj->obj = objptr;
X	obj->methods = methods;
X	obj->animtrans = FALSE;
X	obj->trans = obj->transtail = (Trans *) NULL;
X	obj->frame = -1;	/* impossible value */
X	BoundsInit(obj->bounds);
X#ifdef SHAREDMEM
X	/*
X	 * If the counter is in shared memory, processes will
X	 * be modifying it left-and-right.  So, we cheat and
X	 * make counter a pointer to a non-shared location and
X	 * store the value there.
X	 */
X	new->counter = (unsigned long *)Malloc(sizeof(unsigned long));
X	*new->counter = 0;
X#endif
X	return obj;
X}
X
X/*
X * Return a copy of the given object.
X * Note that surface, texturing, and transformation information
X * is copied by reference.
X */
XGeom *
XGeomCopy(obj)
XGeom *obj;
X{
X	Geom *new;
X
X	new = GeomCreate(obj->obj, obj->methods);
X	/* Share texturing, name, #prims, surface info */
X	new->name = obj->name;
X	new->texture = obj->texture;
X	new->surf = obj->surf;
X	new->prims = obj->prims;
X	new->trans = obj->trans;
X	new->animtrans = obj->animtrans;
X	new->transtail = obj->transtail;
X	/* copy bounds */
X	BoundsCopy(obj->bounds, new->bounds);
X	return new;
X}
X
X/*
X * Report bounding box and number of primitives in object.
X */
Xvoid
XAggregatePrintInfo(obj, fp)
XGeom *obj;
XFILE *fp;
X{
X	if (fp) {
X		if (obj->name && obj->name[0])
X			fprintf(fp,"%s \"%s\":\n", GeomName(obj), obj->name);
X		else
X			fprintf(fp,"%s:\n", GeomName(obj));
X		if (!UNBOUNDED(obj))
X			BoundsPrint(obj->bounds, fp);
X		fprintf(fp,"\t%lu primitive%c\n",obj->prims,
X			obj->prims == 1 ? ' ' : 's');
X	}
X}
X
X/*
X * Convert the given object from a linked list of objects to
X * the desired aggregate type.
X */
Xint
XAggregateConvert(obj, objlist)
XGeom *obj, *objlist;
X{
X	if (!IsAggregate(obj)) {
X		RLerror(RL_ABORT, "A %s isn't an aggregate.\n",
X			GeomName(obj));
X		return 0;
X	}
X
X	return (*obj->methods->convert)(obj->obj, objlist);
X}
X
X/*
X * This should really be called
X * GeomInitialize
X * or something.
X */
Xvoid
XGeomComputeBounds(obj)
XGeom *obj;
X{
X	if (obj->frame == Sampling.framenum)
X		return;
X
X	if (!obj->animtrans) {
X		/*
X		 * If it isn't animated,
X		 * just compute bbox directly 
X		 */
X		GeomBounds(obj, obj->bounds);
X	} else {
X		/*
X		 * Animated things are gonna get a bbox
X		 * which is large enough to enclose all
X		 * the places where the object goes.
X		 */
X		GeomBoundsAnimated(obj);
X	}
X	/*
X	 * Enlarge by EPSILON in each direction just to
X	 * be on the safe side.
X	 */
X	obj->bounds[LOW][X] -= EPSILON;
X	obj->bounds[HIGH][X] += EPSILON;
X	obj->bounds[LOW][Y] -= EPSILON;
X	obj->bounds[HIGH][Y] += EPSILON;
X	obj->bounds[LOW][Z] -= EPSILON;
X	obj->bounds[HIGH][Z] += EPSILON;
X	/*
X	 * Mark the fact that that the obj is initialized
X	 * for this frame.
X	 */
X	obj->frame = Sampling.framenum;
X	obj->counter = 0;
X}
X
Xstatic void
XGeomBoundsAnimated(obj)
XGeom *obj;
X{
X	int i, m;
X	Float newbounds[2][3];
X	Float window, subwindow, jitter, subjitter;
X
X	/*
X	 * For each possible screen sample,
X	 * choose TIME_SUB_SAMPLES times and recompute the
X	 * bounds of obj at that time,
X	 * expanding the computed bounding box appropriately.
X	 */
X	BoundsInit(obj->bounds);
X	jitter = Sampling.shutter / Sampling.totsamples;
X	subjitter = jitter / (Float)TIME_SUB_SAMPLES;
X	window = Sampling.starttime;
X	for (i = 0; i < Sampling.totsamples; i++, window += jitter) {
X		subwindow = window;
X		for (m = 0; m < TIME_SUB_SAMPLES; m++, subwindow += subjitter) {
X			/*
X			 * Set the current time.
X			 */
X			TimeSet(subwindow + subjitter*nrand());
X			/*
X			 * Resolve the objects geometric associations
X			 */
X			GeomResolveAssoc(obj);
X			/*
X			 * Compute bounds and expand current bounds.
X			 */
X			GeomBounds(obj, newbounds);
X			BoundsEnlarge(obj->bounds, newbounds);
X		}
X	}
X	/*
X	 * Also sample at time extremes, as for many
X	 * movements, extremes occur at beginning/end times.
X	 */
X	TimeSet(Sampling.starttime);
X	GeomResolveAssoc(obj);
X	GeomBounds(obj, newbounds);
X	BoundsEnlarge(obj->bounds, newbounds);
X
X	TimeSet(Sampling.starttime + Sampling.shutter);
X	GeomResolveAssoc(obj);
X	GeomBounds(obj, newbounds);
X	BoundsEnlarge(obj->bounds, newbounds);
X}
X
Xvoid
XGeomResolveAssoc(obj)
XGeom *obj;
X{
X	/*
X	 * PrimResolveAssoc(obj);
X	 */
X	TransResolveAssoc(obj->trans);
X}
X
X/*
X * Set "bounds" of object to be the extent of the primitive.
X */
Xstatic void
XGeomBounds(obj, bounds)
XGeom *obj;
XFloat bounds[2][3];
X{
X	Trans *trans;
X
X	if (!obj || !obj->methods->bounds)
X		RLerror(RL_ABORT, "Can't compute bounds of \"%s\".\n",
X			GeomName(obj));
X	(*obj->methods->bounds) (obj->obj, bounds);
X	bounds[LOW][X] -= EPSILON;
X	bounds[LOW][Y] -= EPSILON;
X	bounds[LOW][Z] -= EPSILON;
X	bounds[HIGH][X] += EPSILON;
X	bounds[HIGH][Y] += EPSILON;
X	bounds[HIGH][Z] += EPSILON;
X	if (obj->trans) {
X		for (trans = obj->trans; trans; trans = trans->next)
X			BoundsTransform(&trans->trans, bounds);
X	}
X}
X
Xchar *
XGeomName(obj)
XGeom *obj;
X{
X	if (obj->methods->name)
X		return (*obj->methods->name)();
X
X	return "unknown";
X}
X
Xvoid
XGeomStats(obj, tests, hits)
XGeom *obj;
Xunsigned long *tests, *hits;
X{
X	if (obj && obj->methods->stats)
X		(*obj->methods->stats)(tests, hits);
X	else {
X		*tests = *hits = 0;
X	}
X}
X
X/*
X * Push an object onto the head of the given stack, returning
X * the new head.
X */
XGeomList *
XGeomStackPush(obj, list)
XGeom *obj;
XGeomList *list;
X{
X	GeomList *new;
X	/*
X	 * Pretty simple.
X	 * Make new element point to old head and return new head.
X	 */
X	new = (GeomList *)Malloc(sizeof(GeomList));
X	new->obj = obj;
X	new->next = list;
X	return new;
X}
X
X/*
X * Pop the topmost object off of the given stack, returning the new head.
X * The old head is freed, but the object it points to is not.
X */
XGeomList *
XGeomStackPop(list)
XGeomList *list;
X{
X	GeomList *ltmp;
X
X	ltmp = list->next;	/* Save new head. */
X	free((voidstar)list);	/* Free old head. */
X	return ltmp;		/* Return new head. */
X}
X
XMethods *
XMethodsCreate()
X{
X	return (Methods *)share_calloc(1, sizeof(Methods));
X}
X
X/*
X * Call appropriate routine to compute UV and, if non-null,
X * dpdu and dpdv at given point on the given primitive.  The
X * normal is used to facilitate computation of u, v, and the
X * partial derivatives.
X */
Xvoid
XPrimUV(prim, pos, norm, uv, dpdu, dpdv)
XGeom *prim;
XVector *pos, *norm, *dpdu, *dpdv;
XVec2d *uv;
X{
X	/*
X	 * Call appropriate inverse mapping routine
X	 */
X	if (prim->methods->uv == NULL) {
X		uv->u = uv->v = 0.;
X		if (dpdu) {
X			dpdu->y = dpdu->z = 0.;
X			dpdu->x = 1.;
X		}
X		if (dpdv) {
X			dpdv->x = dpdv->z = 0.;
X			dpdv->y = 1.;
X		}	
X	} else
X		(*prim->methods->uv)(prim->obj,pos,norm,uv,dpdu,dpdv);
X}
X
Xint
XPrimNormal(prim, pos, norm, gnorm)
XGeom *prim;
XVector *pos, *norm, *gnorm;
X{
X	/*
X	 * Call appropriate normal routine
X	 */
X	return (*prim->methods->normal) (prim->obj, pos, norm, gnorm);
X}
X
Xint
XPrimEnter(obj, ray, mind, hitd)
XGeom *obj;
XRay *ray;
XFloat mind, hitd;
X{
X	/*
X	 * Call appropriate enter/leave routine
X	 */
X	if (obj->methods->enter == NULL) {
X		Vector pos, nrm, gnrm;
X		/*
X		 * Sleazy method:  Use hit point, find normal 
X		 * and take dot prod with ray 
X		 */
X		VecAddScaled(ray->pos, hitd, ray->dir, &pos);
X		PrimNormal(obj, &pos, &nrm, &gnrm);
X
X		return dotp(&ray->dir, &gnrm) < 0.0;
X	}
X	else
X		return (*obj->methods->enter) (obj->obj, ray, mind, hitd);
X}
X
X/*
X * Walk through a linked-list of objects.  If the object is unbounded,
X * unlink it it from the list and add it to the 'unbounded' list.
X * If the object is bounded, enlarge the given bounding box if
X * necessary.  Return pointer to unbounded list.
X */
XGeom *
XGeomComputeAggregateBounds(bounded, unbounded, bounds)
XGeom **bounded, *unbounded;
XFloat bounds[2][3];
X{
X	Geom *ltmp, *prev, *nextobj;
X
X	BoundsInit(bounds);
X
X	prev = (Geom *)0;
X
X	for (ltmp = *bounded; ltmp; ltmp = nextobj) {
X		nextobj = ltmp->next;
X		GeomComputeBounds(ltmp);
X		if (UNBOUNDED(ltmp)) {
X			/*
X			 * Geom is unbounded -- unlink it...
X			 */
X			if (prev)
X				prev->next = ltmp->next;
X			else
X				*bounded = ltmp->next;
X			/*
X			 * And add it to unbounded object list.
X			 */
X			ltmp->next = unbounded;
X			unbounded = ltmp;
X		} else {
X			/*
X			 * Geom is bounded.
X			 */
X			BoundsEnlarge(bounds, ltmp->bounds);
X			prev = ltmp;
X		}
X	}
X	return unbounded;
X}
X
X/*
X * Find 'highest' animated object on the hitlist.
X */
Xint
XFirstAnimatedGeom(hitlist)
XHitList *hitlist;
X{
X	int i;
X
X	for (i = hitlist->nodes -1; i; i--)
X		/*
X		 * If object itself is animated, have
X		 * to check other flag, too...
X		 */
X		if (hitlist->data[i].obj->animtrans)
X			return i;
X	return 0;
X}
END_OF_FILE
if test 9408 -ne `wc -c <'libray/libobj/geom.c'`; then
    echo shar: \"'libray/libobj/geom.c'\" unpacked with wrong size!
fi
# end of 'libray/libobj/geom.c'
fi
if test -f 'libshade/shade.c' -a "${1}" != "-c" ; then 
  echo shar: Will not clobber existing file \"'libshade/shade.c'\"
else
echo shar: Extracting \"'libshade/shade.c'\" \(10451 characters\)
sed "s/^X//" >'libshade/shade.c' <<'END_OF_FILE'
X/*
X * shade.c
X *
X * Copyright (C) 1989, 1991, Craig E. Kolb
X * All rights reserved.
X *
X * This software may be freely copied, modified, and redistributed
X * provided that this copyright notice is preserved on all copies.
X *
X * You may not distribute this software, in whole or in part, as part of
X * any commercial product without the express consent of the authors.
X *
X * There is no warranty or other guarantee of fitness of this software
X * for any purpose.  It is provided solely "as is".
X *
X * $Id: shade.c,v 4.0 91/07/17 14:47:36 kolb Exp Locker: kolb $
X *
X * $Log:	shade.c,v $
X * Revision 4.0  91/07/17  14:47:36  kolb
X * Initial version.
X * 
X */
X#include "rayshade.h"
X#include "libtext/texture.h"
X#include "libsurf/surface.h"
X#include "liblight/light.h"
X#include "libsurf/atmosphere.h"
X#include "options.h"
X#include "stats.h"
X
XMedium	TopMedium;
XAtmosphere *AtmosEffects;
X
Xstatic void shade(), LightRay(), Lighting(), ReflectRay();
Xstatic int TransmitRay();
X
X/*
X * Calculate color of ray.
X */
Xvoid
XShadeRay(hitlist, ray, dist, back, color, contrib)
XHitList *hitlist;		/* Information about point of intersection. */
XRay *ray;			/* Direction and origin of ray. */
XFloat dist;			/* Distance from origin of intersection. */
XColor	*back,			/* "Background" color */
X	*color,			/* Color to assign current ray. */
X	*contrib;		/* Contribution of this ray to final color */
X{
X	Vector norm, gnorm, pos; /* surface normal, point of intersection */
X	Surface surf, *stmp;	/* surface properties */
X	int enter, smooth;	/* entering ?, gnorm != snorm ?*/
X
X	if (hitlist->nodes == 0) {
X		/*
X		 * No valid intersection.  Set distance for atmospheric
X		 * effects and set color of ray to background.
X		 */
X		*color = *back;
X		VecAddScaled(ray->pos, FAR_AWAY, ray->dir, &pos);
X		if (!ray->media && AtmosEffects)
X			Atmospherics(AtmosEffects, ray, FAR_AWAY, &pos, color);
X		return;
X	}
X
X	/*
X	 * Compute normal, surface properties, etc.
X	 */
X	stmp = GetShadingSurf(hitlist);
X	surf = *stmp;
X	enter = ComputeSurfProps(hitlist, ray, &pos, &norm, &gnorm, &surf,
X			&smooth);
X	Stats.HitRays++;
X
X	/*
X	 * Calculate ray color.
X	 */
X	shade(&pos, ray, &norm, &gnorm, smooth, enter, &surf, back, color,
X			contrib);
X	if (!ray->media && AtmosEffects)
X		Atmospherics(AtmosEffects, ray, dist, &pos, color);
X}
X
X/*
X * Perform lighting calculations based on surface normal & other properties,
X * incident ray direction and position, and light source properties.
X * Spawn any necessary reflected and transmitted rays.
X */
Xstatic void
Xshade(pos, ray, nrm, gnrm, smooth, enter, surf, back, color, contrib)
XVector *pos, *nrm, *gnrm;	/* hit pos, shade normal, geo normal */
Xint smooth;			/* true if shading norm and geo norm differ */
Xint enter;			/* TRUE if entering surface */
XRay *ray;			/* indicent ray */
XSurface *surf;			/* properties of hit surface */
XColor *back, *color;		/* background color, computed color */
XColor *contrib;			/* contribution to final pixel value */
X{
X	Float	k;		/* -ray . normal */
X	Color	newcontrib;
X	Vector	refl;		/* reflected direction */
X	Color	reflectivity,	/* effective surface reflectivity */
X		intens;		/* reflected/transmitted intensity */
X	Light *lp;		/* current light source */
X	extern Light *Lights;	/* list of defined sources */
X
X	/*
X	 * Ambient color is always included.
X	 */
X	ColorMultiply(surf->amb, Options.ambient, color);
X
X	/*
X	 * Calculate direction of reflected ray.
X	 */
X	k = -dotp(&ray->dir, nrm);
X	VecAddScaled(ray->dir, 2.*k, *nrm, &refl);
X
X	/*
X	 * Calculate intensity contributed by each light source.
X	 */
X	for (lp = Lights; lp; lp = lp->next)
X		LightRay(lp, pos, nrm, gnrm, smooth, &refl, surf,
X				ray->depth, ray->sample, ray->time, color);
X
X	if (ray->depth >= Options.maxdepth)
X		/*
X		 * Don't spawn any transmitted/reflected rays.
X		 */
X		return;
X	/*
X	 * Specular transmission (refraction).
X	 */
X	ColorScale(surf->reflect, surf->spec, &reflectivity);
X
X	if (surf->transp > EPSILON) {
X		ColorScale(surf->transp, surf->body, &intens);
X		ColorMultiply(intens, *contrib, &newcontrib);
X		if (newcontrib.r > Options.cutoff.r ||
X		    newcontrib.g > Options.cutoff.g ||
X		    newcontrib.b > Options.cutoff.b)
X			/*
X			 * Transmit ray.  If TIR occurs, add transmitted
X			 * component to reflected component.  Kinda strange, but...
X			 */
X			if (TransmitRay(ray, pos, nrm, k, surf->index,
X			    surf->statten, enter, back, &newcontrib, &intens, color))
X				ColorAdd(reflectivity, intens, &reflectivity);
X	}
X
X	if (reflectivity.r > EPSILON ||
X	    reflectivity.g > EPSILON ||
X	    reflectivity.b > EPSILON) {
X		ColorMultiply(reflectivity, *contrib, &newcontrib);
X		if (newcontrib.r > Options.cutoff.r ||
X		    newcontrib.g > Options.cutoff.g ||
X		    newcontrib.b > Options.cutoff.b)
X			ReflectRay(ray, pos, &refl, back, &reflectivity,
X				&newcontrib, color);
X	}
X}
X
X/*
X * Lighting calculations
X */
Xstatic void
XLightRay(lp, pos, norm, gnorm, smooth, reflect, surf, depth, samp, time, color)
XLight *lp;			/* Light source */
XVector *pos, *norm, *gnorm;	/* hit pos, shade norm, geo norm */
Xint smooth;			/* true if shade and geo norm differ */
XVector *reflect;		/* reflection direction */
XSurface *surf;			/* surface characteristics */
Xint depth, samp;		/* ray depth, sample # */
XFloat time;
XColor *color;			/* resulting color */
X{
X	Color lcolor;
X	Ray newray;
X	Float costheta, cosalpha, dist;
X
X	newray.pos = *pos;
X	newray.depth = depth;
X	newray.sample = samp;
X	newray.time = time; 
X	newray.media = (Medium *)NULL;	
X
X	LightDirection(lp, pos, &newray.dir, &dist);
X
X	costheta = dotp(&newray.dir, norm);
X
X	if (smooth) {
X		cosalpha = dotp(&newray.dir, gnorm); 
X		/*
X		 * If shading normal indicates self-shadowing
X		 * and geom normal indicates no self-shadowing,
X		 * trust the geom normal.
X		 */
X		if (costheta <= 0. && cosalpha > 0.)
X			costheta = cosalpha;
X		/*
X		 * If geom normal indicates self-shadowing and
X		 * geom normal doesn't, then have to do something
X		 * clever ala Snyder & Barr.
X		 */
X	}
X
X	if (costheta <= 0.) {
X		/*
X		 * Light source is on opposite side of surface,
X		 * hence light must be transmitted through...
X		 */
X		if (surf->translucency < EPSILON)
X			return;
X		if (!LightIntens(lp, &newray, dist,
X			(int)surf->noshadow, &lcolor))
X			return;
X		cosalpha = -dotp(reflect, &newray.dir);
X		Lighting(-costheta, cosalpha, &lcolor, &surf->translu,
X				&surf->body, surf->stexp, color);
X		ColorScale(surf->translucency, *color, color);
X	} else {
X		if (!LightIntens(lp, &newray, dist,
X			(int)surf->noshadow, &lcolor))
X			return;  /* prim is in shadow w.r.t light source */
X
X		cosalpha = dotp(reflect, &newray.dir);
X		Lighting(costheta, cosalpha, &lcolor, &surf->diff,
X				&surf->spec, surf->srexp, color);
X	}
X}
X
X/*
X * Compute shading function (diffuse reflection and specular highlight)
X *
X * This function *adds* the computed color to "color".
X */
Xstatic void
XLighting(costheta, cosalpha, lcolor, diff, spec, coef, color)
XFloat costheta, cosalpha, coef;
XColor *diff, *spec, *color, *lcolor;
X{
X	Float intens;
X
X	/*
X	 * Diffuse reflection.
X	 * Falls off as the cosine of the angle between
X	 * the normal and the ray to the light (costheta).
X	 */
X	color->r += diff->r * costheta * lcolor->r;
X	color->g += diff->g * costheta * lcolor->g;
X	color->b += diff->b * costheta * lcolor->b;
X	/*
X	 * Specularly reflected highlights.
X	 * Fall off as the cosine of the angle
X	 * between the reflected ray and the ray to the light source.
X	 */
X	if (coef < EPSILON || cosalpha <= 0.)
X		return;
X	/*
X	 * Specular highlight = cosine of the angle raised to the
X	 * appropriate power.
X	 */
X	intens = pow(cosalpha, coef);
X	color->r += spec->r * intens * lcolor->r;
X	color->g += spec->g * intens * lcolor->g;
X	color->b += spec->b * intens * lcolor->b;
X}
X
X/*
X * Spawn a transmitted ray.  Returns TRUE if total internal reflection
X * occurs, FALSE otherwise.
X */
Xstatic int
XTransmitRay(ray, pos, norm, k, index, statten, enter, back, contrib, intens, color)
XRay *ray;
XVector *pos, *norm;
XFloat k, index, statten;
Xint enter;
XColor *back, *contrib, *intens, *color;
X{
X	int total_int_refl = FALSE;
X	Ray NewRay;
X	Float dist;
X	Color newcol;
X	HitList hittmp;		/* Geom intersection record */
X
X	NewRay.pos = *pos;		/* Origin == hit point */
X	NewRay.media = ray->media;	/* Media == old media */
X	NewRay.sample = ray->sample;
X	NewRay.time = ray->time;
X	NewRay.depth = ray->depth + 1;
X
X	if (enter) {
X		/*
X		 * Entering surface.
X		 */
X		if (Refract(&NewRay.dir,
X		    NewRay.media ? NewRay.media->index :
X		    TopMedium.index, index, &ray->dir, norm, k)) {
X			total_int_refl = TRUE;
X		} else {
X			/*
X			 * Push information for new medium.
X			 */
X			NewRay.media = MediumPush(index, statten, NewRay.media);
X		}
X	} else {
X		/*
X		 * Exiting surface
X		 * Pop medium from stack.
X		 */
X		if (NewRay.media != (Medium *)0)
X			NewRay.media = NewRay.media->next;
X		if (Refract(&NewRay.dir, index,
X		    NewRay.media ? NewRay.media->index :
X		    TopMedium.index, &ray->dir, norm, k)) {
X			total_int_refl = TRUE;
X		}
X	}
X
X	/*
X	 * At this point, NewRay.media is the medium into which
X	 * the new ray is entering.
X	 */
X
X	if (!total_int_refl) {
X		Stats.RefractRays++;
X		hittmp.nodes = 0;
X		dist = FAR_AWAY;
X		TraceRay(&NewRay, &hittmp, EPSILON, &dist);
X		ShadeRay(&hittmp, &NewRay, dist, back, &newcol, contrib);
X		ColorMultiply(newcol, *intens, &newcol);
X		/*
X		 * Attenuate transmitted color.  Note that
X		 * if the transmitted ray hit nothing, we still
X		 * perform this computation, as it's possible
X		 * that 'air' has a non-unit statten.
X		 */
X		statten = NewRay.media ? NewRay.media->statten :
X			TopMedium.statten;
X		if (statten != 1.0) {
X			statten = pow(statten, dist);
X			ColorScale(statten, newcol, &newcol);
X		}
X		ColorAdd(*color, newcol, color);
X		/* Free pushed medium */
X		if (enter)
X			free((voidstar)NewRay.media);
X	}
X
X	return total_int_refl;
X}
X
Xstatic void
XReflectRay(ray, pos, dir, back, intens, contrib, color)
XRay *ray;
XVector *pos, *dir;
XColor *back, *intens, *contrib, *color;
X{
X	Ray NewRay;
X	HitList hittmp;		/* Geom intersection record */
X	Color newcol;
X	Float dist;
X
X	NewRay.pos = *pos;		/* Origin == hit point */
X	NewRay.dir = *dir;		/* Direction == reflection */
X	NewRay.media = ray->media;	/* Medium == old medium */
X	NewRay.sample = ray->sample;
X	NewRay.time = ray->time;
X	NewRay.depth = ray->depth + 1;
X	Stats.ReflectRays++;
X	hittmp.nodes = 0;
X	dist = FAR_AWAY;
X	(void)TraceRay(&NewRay, &hittmp, EPSILON, &dist);
X	ShadeRay(&hittmp, &NewRay, dist, back, &newcol, contrib);
X	ColorMultiply(newcol, *intens, &newcol);
X	ColorAdd(*color, newcol, color);
X}
END_OF_FILE
if test 10451 -ne `wc -c <'libshade/shade.c'`; then
    echo shar: \"'libshade/shade.c'\" unpacked with wrong size!
fi
# end of 'libshade/shade.c'
fi
echo shar: End of archive 13 \(of 19\).
cp /dev/null ark13isdone
MISSING=""
for I in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 ; do
    if test ! -f ark${I}isdone ; then
	MISSING="${MISSING} ${I}"
    fi
done
if test "${MISSING}" = "" ; then
    echo You have unpacked all 19 archives.
    rm -f ark[1-9]isdone ark[1-9][0-9]isdone
else
    echo You still need to unpack the following archives:
    echo "        " ${MISSING}
fi
##  End of shell archive.
exit 0

  
Modified: Wed Dec 11 17:00:00 1996 GMT
Page accessed 1282 times since Sat Apr 17 21:59:33 1999 GMT