CCL:G: Difference Between Two Different Types of Failure to Converge
- From: "Shobe, David"
<dshobe:-:sud-chemieinc.com>
- Subject: CCL:G: Difference Between Two Different Types of Failure
to Converge
- Date: Wed, 18 Jan 2006 17:27:48 +0100
Sent to CCL by: "Shobe, David" [dshobe*o*sud-chemieinc.com]
When you get the ">>>>>>>>>> Convergence
criterion not met" message, this means that the solution to the SCF
equations have not converged. Recall that SCF = self-consistend field: the
equations are recalculated until the changes with each iteration are negligible:
i.e. the equations are self-consistent. Gaussian puts by default a limit on the
number of steps before it "gives up" and prints the error message.
When the geometric convergence fails, one can continue the optimization using
"geom=check", and you can increase the number of steps using
"opt(maxcyc=###)". The analogous commands for SCF convergence failure
are "guess=read" to continue the optimization where it left off, and
"scf(maxcyc=###)" to increase the number of steps before Gaussian
prints the error message. Unless you are doing a single point calculation, you
should use "geom=check" with "guess=read", so that the
geometry optimization will pick up at the point where it was interrupted by the
SCF convergence failure.
If SCF convergence repeatedly fails, you may want to try modifying the SCF
algorithm. I usually try "scf=qc" or "scf(vshift=###)" with
various values of "###". If those don't work there are a few others
mentioned in the Gaussian manual and in the web site Dr. Sukumar recommended.
Hope this helps,
--David Shobe, Ph.D., M.L.S.
Süd-Chemie, Inc.
phone (502) 634-7409
fax (502) 634-7724
Don't bother flaming me: I'm behind a firewall.
-----Original Message-----
> From: owner-chemistry..ccl.net [mailto:owner-chemistry..ccl.net]
Sent: Wednesday, January 18, 2006 3:07 AM
To: Shobe, David
Subject: CCL:G: Difference Between Two Different Types of Failure to Converge
Sent to CCL by: "Dr. N. SUKUMAR" [nagams---rpi.edu] Convergence
failure in link 502 is failure of SCF Convergence. See the page by David Young:
http://ccl.osc.edu/cca/documents/dyoung/topics-framed/converge.shtml
Dr. N. Sukumar
Center for Biotechnology and Interdisciplinary Studies Rensselaer Polytechnic
Institute
==============Original message text=============== On Tue, 17 Jan 2006 20:27:44
EST "Abrash, Samuel sabrash[-]richmond.edu" wrote:
Sent to CCL by: "Abrash, Samuel" [sabrash(a)richmond.edu] Hi CCL
Folks!
I need some help understanding the difference between two different
types of termination because of failure to converge.
The first is the one I understand best. In this case, the optimization
is set to run a maxiumum number of Berny cycles, and after the full number of
allowed cycles (in my case 100), one or more of the four convergence criteria is
unfulfilled. For this type of problem I have a pretty good idea of what to do.
1) Look at the output file to see if the structures are physically reasonable
and moving toward convergence. 2a) If yes, just continue the job 2b) If no,
try a different set of initial conditions, or modify the theory as needed. (Lots
of options depending on the situation.)
The second type of case is one where the failure to converge comes not
on the final Berny cycle but on an early one.
Here are the input file and the portion of the output file indicating
the type of convergence failure for one of these jobs:
Input:
%chk=/home/saabrash/C2H2TCalcs/cyclopropanetrismethylene+_1.chk
%mem=12mw
# UHF/3-21G OPT=(calcall, maxcycle=100) SCF=qc
cyclopropanetrismethylene cation PBEPBE/aug-cc-pVDZ init geom arguslab
low symm
1 2
C -0.317858 1.277419 0.119868
C -0.287771 2.616099 0.000000
C 0.643137 0.346751 0.202150
C 2.040557 0.274690 0.000000
C -0.694918 -0.054486 -0.097643
C -1.569659 -1.098761 0.000000
H 0.676927 3.142444 -0.048150
H -1.227851 3.185096 -0.049928
H 2.597937 1.169980 -0.312708
H 2.570431 -0.676665 0.155427
H -1.248715 -2.043628 0.462842
H -2.595146 -0.994986 -0.384198
--link1--
%chk=/home/saabrash/C2H2TCalcs/cyclopropanetrismethylene+_1.chk
%mem=12mw
# UHF/6-31G Opt=(ReadFC, maxcycle=100) guess=read geom=allcheck scf=qc
--link1--
%chk=/home/saabrash/C2H2TCalcs/cyclopropanetrismethylene+_1.chk
%mem=15mw
# UPBEPBE/aug-cc-pVDZ Opt=(ReadFC, maxcycle=100) guess=read
geom=allcheck
--link1--
%chk=/home/saabrash/C2H2TCalcs/cyclopropanetrismethylene+_1.chk
%mem=15mw
# UPBEPBE/aug-cc-pVDZ Opt=(rcfc, maxcycle=100) geom=allcheck
--link1--
%chk=/home/saabrash/C2H2TCalcs/cyclopropanetrismethylene+_1.chk
%mem=15mw
# UPBEPBE/aug-cc-pVDZ Freq guess=read geom=allcheck
The job runs successfully for the two UHF jobs. Then on the second
Berny cycle of the UPBEPBE/aug-cc-pVDZ there is a failure to converge. The full
output for the second cycle is:
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Internal Forces: Max 0.004030705 RMS 0.001018805
Search for a local minimum.
Step number 2 out of a maximum of 100
All quantities printed in internal units (Hartrees-Bohrs-Radians)
Update second derivatives using D2CorX and points 1 2
Trust test= 9.84D-01 RLast= 1.76D-01 DXMaxT set to 4.24D-01
Eigenvalues --- 0.00363 0.00457 0.00637 0.00716 0.00970
Eigenvalues --- 0.01542 0.03555 0.03561 0.03740 0.08693
Eigenvalues --- 0.09833 0.09905 0.11931 0.11966 0.12082
Eigenvalues --- 0.15236 0.15836 0.16085 0.33837 0.33897
Eigenvalues --- 0.37796 0.40451 0.40476 0.40507 0.40534
Eigenvalues --- 0.40557 0.42351 0.42412 0.47209 0.49435
Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000
Eigenvalues --- 1000.000001000.000001000.000001000.00001000.00000
Eigenvalues --- 1000.000001000.00000
RFO step: Lambda=-9.49095729D-05.
Quartic linear search produced a step of 0.03710.
Iteration 1 RMS(Cart)= 0.00420970 RMS(Int)= 0.00000257
Iteration 2 RMS(Cart)= 0.00000342 RMS(Int)= 0.00000178
Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000178
Variable Old X -DE/DX Delta X Delta X Delta X New X
(Linear) (Quad) (Total)
R1 2.63333 0.00137 -0.00069 0.00371 0.00302 2.63635
R2 2.65714 0.00191 0.00154 0.00325 0.00479 2.66192
R3 2.72881 0.00062 0.00278 -0.00162 0.00116 2.72997
R4 2.07080 0.00174 0.00171 0.00319 0.00491 2.07571
R5 2.07026 0.00186 0.00172 0.00341 0.00513 2.07539
R6 2.63334 0.00137 -0.00069 0.00370 0.00301 2.63635
R7 2.72882 0.00062 0.00278 -0.00163 0.00116 2.72997
R8 2.07080 0.00174 0.00171 0.00319 0.00491 2.07571
R9 2.07026 0.00186 0.00172 0.00341 0.00513 2.07539
R10 2.55046 0.00403 -0.00217 0.01109 0.00891 2.55937
R11 2.06913 0.00170 0.00168 0.00298 0.00466 2.07379
R12 2.06913 0.00170 0.00168 0.00298 0.00466 2.07379
A1 2.56260 0.00008 -0.00069 0.00018 -0.00051 2.56210
A2 2.65828 0.00019 0.00043 0.00084 0.00127 2.65956
A3 2.10190 -0.00016 0.00002 -0.00138 -0.00136 2.10054
A4 2.10755 0.00022 0.00019 0.00124 0.00143 2.10897
A5 2.07374 -0.00006 -0.00021 0.00014 -0.00007 2.07367
A6 2.56260 0.00008 -0.00069 0.00018 -0.00050 2.56210
A7 2.65829 0.00019 0.00043 0.00083 0.00127 2.65956
A8 2.10189 -0.00016 0.00002 -0.00138 -0.00136 2.10054
A9 2.10755 0.00022 0.00019 0.00124 0.00143 2.10898
A10 2.07374 -0.00006 -0.00021 0.00014 -0.00007 2.07367
A11 2.63309 -0.00027 0.00025 -0.00101 -0.00077 2.63233
A12 2.63309 -0.00027 0.00025 -0.00102 -0.00077 2.63233
A13 2.10983 0.00000 0.00017 -0.00111 -0.00094 2.10889
A14 2.10983 0.00000 0.00017 -0.00111 -0.00094 2.10889
A15 2.06352 0.00001 -0.00034 0.00223 0.00189 2.06541
D1 0.00000 0.00000 0.00000 0.00001 0.00001 0.00001
D2 3.14159 0.00000 0.00000 0.00001 0.00001 -3.14159
D3 -3.14158 0.00000 0.00000 0.00001 0.00001 -3.14157
D4 0.00001 0.00000 0.00000 0.00001 0.00001 0.00002
D5 0.00001 0.00000 0.00000 0.00000 0.00000 0.00001
D6 -0.00001 0.00000 0.00000 0.00000 0.00000 -0.00001
D7 0.00000 0.00000 0.00000 0.00001 0.00001 0.00001
D8 -3.14159 0.00000 0.00000 0.00000 0.00000 -3.14158
D9 -3.14159 0.00000 0.00000 0.00001 0.00001 -3.14158
D10 0.00001 0.00000 0.00000 0.00001 0.00001 0.00002
D11 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
D12 3.14158 0.00000 0.00000 0.00002 0.00002 -3.14159
D13 -0.00002 0.00000 0.00000 0.00002 0.00002 0.00001
D14 -0.00002 0.00000 0.00000 0.00002 0.00002 0.00000
D15 3.14158 0.00000 0.00000 0.00002 0.00002 3.14159
Item Value Threshold Converged?
Maximum Force 0.004031 0.000450 NO
RMS Force 0.001019 0.000300 NO
Maximum Displacement 0.010397 0.001800 NO
RMS Displacement 0.004210 0.001200 NO
Predicted change in Energy=-5.395842D-05
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Input orientation:
---------------------------------------------------------------------
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
---------------------------------------------------------------------
1 6 0 -0.237228 0.763057 -0.028393
2 6 0 -0.534705 2.125159 -0.078167
3 6 0 0.767704 -0.223151 0.013368
4 6 0 2.135799 -0.495591 0.032816
5 6 0 -0.618580 -0.629581 0.017521
6 6 0 -1.567594 -1.595472 0.044403
7 1 0 0.272986 2.869305 -0.098334
8 1 0 -1.576033 2.473585 -0.097891
9 1 0 2.865548 0.325046 0.009436
10 1 0 2.503343 -1.529786 0.071622
11 1 0 -1.289422 -2.656312 0.083505
12 1 0 -2.633950 -1.336829 0.027627
---------------------------------------------------------------------
Distance matrix (angstroms):
1 2 3 4 5
1 C 0.000000
2 C 1.395096 0.00000 0 1.148793 -1.871634
0.000001
5 6 0 -0.876500 -0.000009 -0.000001
6 6 0 -2.230861 -0.000022 0.000000
7 1 0 2.245813 1.817045 -0.000012
8 1 0 0.667953 2.859072 0.000009
9 1 0 2.245853 -1.816996 0.000015
10 1 0 0.668017 -2.859059 -0.000011
11 1 0 -2.793270 -0.942353 0.000002
12 1 0 -2.793287 0.942299 0.000000
---------------------------------------------------------------------
Rotational constants (GHZ): 4.1801422 3.8590844
2.0066012
Standard basis: Aug-CC-pVDZ (5D, 7F)
There are 192 symmetry adapted basis functions of A symmetry.
Integral buffers will be 262144 words long.
Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.
192 basis functions, 324 primitive gaussians, 204
cartesian basis functio
ns
21 alpha electrons 20 beta electrons
nuclear repulsion energy 186.6386459511 Hartrees.
NAtoms= 12 NActive= 12 NUniq= 12 SFac= 1.00Dáf? NAtFMM=
60 Big=F
One-electron integrals computed using PRISM.
NBasis= 192 RedAO= T NBF= 192
NBsUse= 192 1.00D-06 NBFU= 192
Initial guess read from the read-write file:
Initial guess orbital symmetries:
Alpha Orbitals:
Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A)
Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
(A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
<S**2> of initial guess= 0.8964
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
EnCoef did 4 forward-backward iterations
EnCoef did 5 forward-backward iterations
EnCoef did 2 forward-backward iterations
EnCoef did 85 forward-backward iterations
Rare condition: small coef for last iteration: -0.666D-15
EnCoef did 5 forward-backward iterations
Rare condition: small coef for last iteration: 0.222D-15
EnCoef did 6 forward-backward iterations
Rare condition: small coef for last iteration: 0.000Dáf?
EnCoef did 7 forward-backward iterations
Rare condition: small coef for last iteration: 0.000Dáf?
Restarting incremental Fock formation.
EnCoef did 100 forward-backward iterations
Matrix for removal 1 Erem= -223.464925078448 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Rare condition: small coef for last iteration: -0.432D-15
Matrix for removal 1 Erem= -225.612036927259 Crem= 0.000Dáf?
EnCoef did 48 forward-backward iterations
Matrix for removal 2 Erem= -230.056216034563 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: 0.444D-15
Matrix for removal 1 Erem= -230.957780613922 Crem= 0.000Dáf?
EnCoef did 48 forward-backward iterations
Matrix for removal 3 Erem= -231.371944287973 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: -0.222D-15
Matrix for removal 6 Erem= -231.413745729862 Crem= 0.000Dáf?
EnCoef did 6 forward-backward iterations
Matrix for removal 1 Erem= -231.416133716719 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: 0.000Dáf?
Matrix for removal 13 Erem= -231.418900867161 Crem= 0.000Dáf?
EnCoef did 59 forward-backward iterations
Matrix for removal 18 Erem= -231.419070999074 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: -0.444D-15
Matrix for removal 11 Erem= -231.419112348980 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Matrix for removal 18 Erem= -231.419148641413 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Rare condition: small coef for last iteration: 0.000Dáf?
Matrix for removal 19 Erem= -231.418778276146 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Matrix for removal 9 Erem= -231.419169067006 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Rare condition: small coef for last iteration: 0.554D-15
Matrix for removal 19 Erem= -231.418942288017 Crem= 0.000Dáf?
EnCoef did 6 forward-backward iterations
Matrix for removal 14 Erem= -231.419290263368 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: 0.000Dáf?
Matrix for removal 19 Erem= -231.419107556261 Crem= 0.000Dáf?
EnCoef did 6 forward-backward iterations
Matrix for removal 11 Erem= -231.420445394300 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: -0.222D-15
Matrix for removal 19 Erem= -231.419071776551 Crem= 0.000Dáf?
EnCoef did 6 forward-backward iterations
Matrix for removal 12 Erem= -231.420604168141 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: -0.222D-15
Matrix for removal 19 Erem= -231.419149178448 Crem= 0.000Dáf?
Restarting incremental Fock formation.
EnCoef did 100 forward-backward iterations
Matrix for removal 13 Erem= -231.420647898230 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Rare condition: small coef for last iteration: -0.111D-14
Matrix for removal 19 Erem= -231.418949995443 Crem= 0.000Dáf?
EnCoef did 6 forward-backward iterations
Matrix for removal 17 Erem= -231.420648694361 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: 0.111D-15
Matrix for removal 19 Erem= -231.419096135031 Crem= 0.000Dáf?
EnCoef did 6 forward-backward iterations
Matrix for removal 9 Erem= -231.420657719207 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: 0.000Dáf?
Matrix for removal 19 Erem= -231.419104154891 Crem= 0.000Dáf?
EnCoef did 6 forward-backward iterations
Matrix for removal 14 Erem= -231.420671893769 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: 0.000Dáf?
Matrix for removal 19 Erem= -231.419081387961 Crem= 0.000Dáf?
EnCoef did 6 forward-backward iterations
Matrix for removal 19 Erem= -231.420658305176 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: 0.111D-15
Matrix for removal 19 Erem= -231.419145661317 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Matrix for removal 17 Erem= -231.420673187415 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Rare condition: small coef for last iteration: -0.444D-15
Matrix for removal 19 Erem= -231.418960715007 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Matrix for removal 16 Erem= -231.420675973150 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Rare condition: small coef for last iteration: -0.444D-15
Matrix for removal 19 Erem= -231.419021266252 Crem= 0.000Dáf?
EnCoef did 14 forward-backward iterations
Matrix for removal 16 Erem= -231.420681296646 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: -0.444D-15
Matrix for removal 19 Erem= -231.419335961191 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Matrix for removal 18 Erem= -231.420587572061 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Rare condition: small coef for last iteration: -0.440D-15
Matrix for removal 19 Erem= -231.418544675637 Crem= 0.000Dáf?
EnCoef did 14 forward-backward iterations
Matrix for removal 11 Erem= -231.420684293649 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: 0.000Dáf?
Matrix for removal 19 Erem= -231.419477236327 Crem= 0.000Dáf?
Restarting incremental Fock formation.
EnCoef did 100 forward-backward iterations
Matrix for removal 18 Erem= -231.420534345081 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Rare condition: small coef for last iteration: -0.442D-15
Matrix for removal 19 Erem= -231.418796677540 Crem= 0.000Dáf?
EnCoef did 6 forward-backward iterations
Matrix for removal 10 Erem= -231.419651241752 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: 0.111D-15
Matrix for removal 19 Erem= -231.419280599829 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Matrix for removal 18 Erem= -231.420608902185 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Rare condition: small coef for last iteration: 0.221D-15
Matrix for removal 19 Erem= -231.418906193179 Crem= 0.000Dáf?
EnCoef did 6 forward-backward iterations
Matrix for removal 19 Erem= -231.420586795007 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: -0.222D-15
Matrix for removal 19 Erem= -231.419285531894 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Matrix for removal 12 Erem= -231.420684711108 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Rare condition: small coef for last iteration: 0.221D-15
Matrix for removal 19 Erem= -231.418892731624 Crem= 0.000Dáf?
EnCoef did 6 forward-backward iterations
Matrix for removal 19 Erem= -231.420585363376 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: 0.000Dáf?
Matrix for removal 19 Erem= -231.419289049853 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Matrix for removal 14 Erem= -231.420702235767 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Rare condition: small coef for last iteration: 0.331D-15
Matrix for removal 19 Erem= -231.418882803565 Crem= 0.000Dáf?
EnCoef did 6 forward-backward iterations
Matrix for removal 19 Erem= -231.420581194769 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: -0.222D-15
Matrix for removal 19 Erem= -231.419299060760 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Matrix for removal 13 Erem= -231.420723664654 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Rare condition: small coef for last iteration: -0.441D-15
Matrix for removal 19 Erem= -231.418855077350 Crem= 0.000Dáf?
EnCoef did 14 forward-backward iterations
Matrix for removal 12 Erem= -231.420727388183 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: -0.222D-15
Matrix for removal 19 Erem= -231.419324576409 Crem= 0.000Dáf?
Restarting incremental Fock formation.
EnCoef did 100 forward-backward iterations
Matrix for removal 18 Erem= -231.420570563941 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Rare condition: small coef for last iteration: 0.110D-15
Matrix for removal 19 Erem= -231.418780647653 Crem= 0.000Dáf?
EnCoef did 14 forward-backward iterations
Matrix for removal 11 Erem= -231.420730549360 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: 0.000Dáf?
Matrix for removal 19 Erem= -231.419384341437 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Matrix for removal 18 Erem= -231.420545387770 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Rare condition: small coef for last iteration: -0.665D-15
Matrix for removal 19 Erem= -231.419018218195 Crem= 0.000Dáf?
EnCoef did 14 forward-backward iterations
Matrix for removal 18 Erem= -231.420693067494 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: 0.444D-15
Matrix for removal 19 Erem= -231.419466794992 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Matrix for removal 18 Erem= -231.420508813558 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Rare condition: small coef for last iteration: -0.665D-15
Matrix for removal 19 Erem= -231.419030539317 Crem= 0.000Dáf?
EnCoef did 14 forward-backward iterations
Matrix for removal 18 Erem= -231.420688269172 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: 0.777D-15
Matrix for removal 19 Erem= -231.419448841266 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Matrix for removal 18 Erem= -231.420516657136 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Rare condition: small coef for last iteration: 0.440D-15
Matrix for removal 19 Erem= -231.418503747344 Crem= 0.000Dáf?
EnCoef did 15 forward-backward iterations
Matrix for removal 13 Erem= -231.420736420738 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: 0.111D-15
Matrix for removal 19 Erem= -231.419515644416 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Matrix for removal 18 Erem= -231.420488445027 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Rare condition: small coef for last iteration: -0.220D-15
Matrix for removal 19 Erem= -231.418673619125 Crem= 0.000Dáf?
EnCoef did 14 forward-backward iterations
Matrix for removal 9 Erem= -231.420739298607 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: 0.222D-15
Matrix for removal 18 Erem= -231.420515847041 Crem= 0.000Dáf?
Restarting incremental Fock formation.
EnCoef did 100 forward-backward iterations
Matrix for removal 18 Erem= -231.419453081651 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Rare condition: small coef for last iteration: 0.144D-14
Matrix for removal 19 Erem= -231.419131280349 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Matrix for removal 18 Erem= -231.420653956973 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Rare condition: small coef for last iteration: 0.222D-15
Matrix for removal 19 Erem= -231.419031179958 Crem= 0.000Dáf?
EnCoef did 14 forward-backward iterations
Matrix for removal 18 Erem= -231.420688123736 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: -0.666D-15
Matrix for removal 18 Erem= -231.420517077761 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Matrix for removal 18 Erem= -231.419447848080 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Rare condition: small coef for last iteration: -0.666D-15
Matrix for removal 19 Erem= -231.419123693065 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Matrix for removal 18 Erem= -231.420655788332 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Rare condition: small coef for last iteration: 0.111D-15
Matrix for removal 19 Erem= -231.419006604895 Crem= 0.000Dáf?
EnCoef did 14 forward-backward iterations
Matrix for removal 12 Erem= -231.420741474519 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: -0.222D-15
Matrix for removal 19 Erem= -231.419483006932 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Matrix for removal 18 Erem= -231.420501705978 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Rare condition: small coef for last iteration: 0.221D-15
Matrix for removal 19 Erem= -231.418891457091 Crem= 0.000Dáf?
EnCoef did 6 forward-backward iterations
Matrix for removal 19 Erem= -231.420584815358 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: -0.222D-15
Matrix for removal 19 Erem= -231.419290379712 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Matrix for removal 17 Erem= -231.420697653495 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Rare condition: small coef for last iteration: -0.662D-15
Matrix for removal 19 Erem= -231.418878558166 Crem= 0.000Dáf?
EnCoef did 6 forward-backward iterations
Matrix for removal 19 Erem= -231.420579763623 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: 0.000Dáf?
Matrix for removal 19 Erem= -231.419302558715 Crem= 0.000Dáf?
Restarting incremental Fock formation.
EnCoef did 100 forward-backward iterations
Matrix for removal 17 Erem= -231.420741463049 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Rare condition: small coef for last iteration: 0.000Dáf?
Matrix for removal 19 Erem= -231.418842382202 Crem= 0.000Dáf?
EnCoef did 14 forward-backward iterations
Matrix for removal 12 Erem= -231.420745177864 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: -0.111D-14
Matrix for removal 19 Erem= -231.419335069289 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Matrix for removal 18 Erem= -231.420566191137 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Rare condition: small coef for last iteration: -0.220D-15
Matrix for removal 19 Erem= -231.418736422553 Crem= 0.000Dáf?
EnCoef did 14 forward-backward iterations
Matrix for removal 16 Erem= -231.420746777662 Crem= 0.000Dáf?
Rare condition: small coef for last iteration: -0.444D-15
Matrix for removal 19 Erem= -231.419414870194 Crem= 0.000Dáf?
EnCoef did 100 forward-backward iterations
Matrix for removal 18 Erem= -231.420532350979 Crem= 0.000Dáf?
>>>>>>>>>> Convergence criterion not met.
SCF Done: E(UPBE-PBE) = -231.418804396 A.U. after 129 cycles
Convg = 0.3553D-03 -V/T = 2.0061
S**2 = 0.7575
Annihilation of the first spin contaminant:
S**2 before annihilation 0.7575, after 0.7500
Convergence failure -- run terminated.
Error termination via Lnk1e in /usr/global/g03/l502.exe at Thu Dec 29
17:09:52
2005.
Job cpu time: 0 days 4 hours 5 minutes 9.7 seconds.
File lengths (MBytes): RWF= 51 Int= 0 D2E= 0 Chk=
7 Scr=
1
So I have two questions:
1) Is this a failure in geometric convergence, convergence of the
integrals or what? I really don't understand WHAT it is that isn't converging.
2) What types of remedies are available when this occurs? If you saw
this in one of your jobs what would you do next?
Thanks, and once again I appreciate your help.
Best,
Samhttp://www.ccl.net/cgi-bin/ccl/send_ccl_messagehttp-:-//www.ccl.net/chemistry/sub_unsub.shtmlJob
advertisements: http://www.ccl.net/jobshttp-:-//www.ccl.net/spammers.txt===========End
of original message text===========http://www.ccl.net/cgi-bin/ccl/send_ccl_messagehttp-:-//www.ccl.net/chemistry/sub_unsub.shtmlhttp-:-//www.ccl.net/spammers.txtThis
e-mail message may contain confidential and / or privileged information. If you
are not an addressee or otherwise authorized to receive this message, you should
not use, copy, disclose or take any action based on this e-mail or any
information contained in the message. If you have received this material in
error, please advise the sender immediately by reply e-mail and delete this
message.
Thank you.