CCL: ZPE in non-stationary points



 Sent to CCL by: Arne Dieckmann [adieckma]|[googlemail.com]
 Dear Sebastian,
 There are ways to do this, but I am not aware of a simple method. You could
 employ (ab initio) molecular dynamics and use metadynamics, thermodynamic
 integration or something like that to sample phase space and construct a free
 energy surface.
 Cheers,
 Arne
 On Nov 4, 2012, at 12:21 PM, "Sebastian Kozuch kozuchs|yahoo.com"
 <owner-chemistry#%#ccl.net> wrote:
 > Jussi, You have a point here. Let me rephrase my question then:
 > Can you calculate the Gibbs energy of a system when you are not at a
 minimum or a TS? In other words, is there a simple way to calculate a potential
 GIBBS energy surface?
 > I'm not a specialist on this, but physically having a stretched molecule
 may only mean being at the geometrical limit of a high vibrationally state. In
 principle, there should be an equivalent to E+ZPE for each point of the curve of
 a reaction (as long as it is permitted by the uncertainty principle). Can
 someone share some light on this?
 >
 > Thanks,
 >
 > Sebastian
 >
 >
 >
 > ________________________________
 > From: "Jussi Lehtola jussi.lehtola,,helsinki.fi"
 <owner-chemistry- -ccl.net>
 > To: "Kozuch, Sebastian " <kozuchs- -yahoo.com>
 > Sent: Saturday, November 3, 2012 7:10 PM
 > Subject: CCL: ZPE in non-stationary points
 >
 >
 > Sent to CCL by: Jussi Lehtola [jussi.lehtola]^[helsinki.fi]
 > On Sat, 3 Nov 2012 16:05:34 -0700 (PDT)
 > "Sebastian Kozuch kozuchs]~[yahoo.com"
 <owner-chemistry{:}ccl.net> wrote:
 >> Dear all,
 >> Does anyone know of a (simple) method to calculate ZPE and maybe
 >> Gibbs energies for geometries that are not stationary points (i.e.
 >> not a stable intermediate or a TS)? How valid is a typical frequency
 >> calculation for these geometries?
 >
 > Please elaborate on what you mean.
 >
 > Zero point vibrations only make sense in cases where the potential can
 > be expanded locally as a Taylor series as
 >     V(r) ~ V(r0) + (r-r0)*d2V/dr2*(r-r0)
 > where d2V/dr2 is the Hessian computed at r0. This means that you must
 > be in a stationary point, since the first derivative (gradient) needs to
 > vanish.
 >
 > Secondly, any stationary point will not do, since otherwise you will
 > have a saddle point, meaning that vibrations do not exist in some
 > directions, instead the system is just unstable: when the system is
 > pushed in this direction, it will not start to oscillate around the
 > configuration in the stationary point, instead the perturbation will
 > just start growing.
 >
 > To calculate ZPE you need a bound system. This is not the case even for
 > all stationary points -- and even less for non-stationary points.
 > --
 > --------------------------------------------------------
 > Mr. Jussi Lehtola, M. Sc.         Doctoral Student
 > jussi.lehtola{:}helsinki.fi         Department of Physics
 > http://www.helsinki.fi/~jzlehtol  University of Helsinki
 > Office phone: +358 9 191 50 632   Finland
 > --------------------------------------------------------
 > Jussi Lehtola, FM                 Tohtorikoulutettava
 > jussi.lehtola{:}helsinki.fi         Fysiikan laitos
 > http://www.helsinki.fi/~jzlehtol  Helsingin Yliopisto
 > TyÃpuhelin: (0)9 191 50 632
 > --------------------------------------------------------> the strange
 characters on the top line to the - - sign. You can also
 >
 >
 > E-mail to subscribers: CHEMISTRY- -ccl.net or use:>
 > E-mail to administrators: CHEMISTRY-REQUEST- -ccl.net or use>
 >
 > =--1377744757-1372404203-1352060508=:29950
 > Content-Type: text/html; charset=iso-8859-1
 > Content-Transfer-Encoding: quoted-printable
 >
 > <html><body><div style="color:#000;
 background-color:#fff; font-family:arial, helvetica,
 sans-serif;font-size:10pt"><div><span>Jussi, You have a
 point here. Let me rephrase my question then:</span></div><div
 style="color: rgb(0, 0, 0); font-size: 13.3333px; font-family:
 arial,helvetica,sans-serif; background-color: transparent; font-style:
 normal;"><span>Can you calculate the Gibbs energy of a system when
 you are not at a minimum or a TS? In other words, is there a simple way to
 calculate a potential GIBBS energy surface?</span></div><div
 style="color: rgb(0, 0, 0); font-size: 13.3333px; font-family:
 arial,helvetica,sans-serif; background-color: transparent; font-style:
 normal;"><span>I'm not a specialist on this, but physically having
 a stretched molecule may only mean being at the geometrical limit of a high
 vibrationally state. In principle, there should be an equivalent to E+ZPE for
 each point of the curve of a reaction (as long as it is permitted by
 > the uncertainty principle). Can someone share some light on
 this?</span></div><div style="color: rgb(0, 0, 0);
 font-size: 13.3333px; font-family: arial,helvetica,sans-serif; background-color:
 transparent; font-style:
 normal;"><br><span></span></div><div
 style="color: rgb(0, 0, 0); font-size: 13.3333px; font-family:
 arial,helvetica,sans-serif; background-color: transparent; font-style:
 normal;"><span>Thanks,<br></span></div><div
 style="color: rgb(0, 0, 0); font-size: 13.3333px; font-family:
 arial,helvetica,sans-serif; background-color: transparent; font-style:
 normal;">Sebastian<br><span></span></div><div
 style="color: rgb(0, 0, 0); font-size: 13.3333px; font-family:
 arial,helvetica,sans-serif; background-color: transparent; font-style:
 normal;"><span></span><br></div><div
 style="font-family: arial, helvetica, sans-serif; font-size:
 10pt;"> <div style="font-family: times new roman, new york,
 times, serif; font-size: 12pt;"> <div dir="ltr">
 <font
 > face="Arial" size="2"> <hr size="1">
 <b><span
 style="font-weight:bold;">From:</span></b> "Jussi
 Lehtola jussi.lehtola,,helsinki.fi" &lt;owner-chemistry-
 -ccl.net&gt;<br> <b><span style="font-weight:
 bold;">To:</span></b> "Kozuch, Sebastian "
 &lt;kozuchs- -yahoo.com&gt; <br> <b><span
 style="font-weight: bold;">Sent:</span></b> Saturday,
 November 3, 2012 7:10 PM<br> <b><span style="font-weight:
 bold;">Subject:</span></b> CCL: ZPE in non-stationary
 points<br> </font> </div> <br>
 > <br>Sent to CCL by: Jussi Lehtola [jussi.lehtola]^[<a
 target="_blank" href="http://helsinki.fi/";>helsinki.fi</a>]<br>On Sat, 3 Nov
 2012 16:05:34 -0700 (PDT)<br>"Sebastian Kozuch kozuchs]~[<a
 target="_blank" href="http://yahoo.com/";>yahoo.com</a>"
 &lt;owner-chemistry{:}ccl.net&gt; wrote:<br>&gt; Dear
 all,<br>&gt; Does anyone know of a (simple) method to calculate ZPE
 and maybe<br>&gt; Gibbs energies for geometries that are not
 stationary points (i.e.<br>&gt; not a stable intermediate or a TS)?
 How valid is a typical frequency<br>&gt; calculation for these
 geometries?<br><br>Please elaborate on what you
 mean.<br><br>Zero point vibrations only make sense in cases where
 the potential can<br>be expanded locally as a Taylor series
 as<br>&nbsp;&nbsp;&nbsp; V(r) ~ V(r0) +
 (r-r0)*d2V/dr2*(r-r0)<br>where d2V/dr2 is the Hessian computed at r0. This
 means that you must<br>be in a stationary point, since the first
 derivative (gradient) needs
 > to<br>vanish.<br><br>Secondly, any stationary point will
 not do, since otherwise you will<br>have a saddle point, meaning that
 vibrations do not exist in some<br>directions, instead the system is just
 unstable: when the system is<br>pushed in this direction, it will not
 start to oscillate around the<br>configuration in the stationary point,
 instead the perturbation will<br>just start growing.<br><br>To
 calculate ZPE you need a bound system. This is not the case even
 for<br>all stationary points -- and even less for non-stationary
 points.<br>--
 <br>--------------------------------------------------------<br>Mr.
 Jussi Lehtola, M. Sc.&nbsp; &nbsp; &nbsp; &nbsp;  Doctoral
 Student<br>jussi.lehtola{:}helsinki.fi&nbsp; &nbsp; &nbsp;
 &nbsp;  Department of Physics<br>http://www.helsinki.fi/~jzlehtol&nbsp; University of
 Helsinki<br>Office phone: +358 9 191 50 632&nbsp;
 Finland<br>--------------------------------------------------------<br>Jussi
 Lehtola, FM&nbsp;
 > &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;
 &nbsp;  Tohtorikoulutettava<br>jussi.lehtola{:}helsinki.fi&nbsp;
 &nbsp; &nbsp; &nbsp;  Fysiikan laitos<br><a href="http://www.helsinki.fi/~jzlehtol"; target="_blank">http://www.helsinki.fi/~jzlehtol</a>&nbsp; Helsingin
 Yliopisto<br>TyÃpuhelin: (0)9 191 50
 632<br>--------------------------------------------------------<br><br><br><br<br<br>the
 strange characters on the top line to the - - sign. You can
 also<br<br><br>E-mail to subscribers: <a ymailto="mailto:CHEMISTRY-
 -ccl.net" href="mailto:CHEMISTRY- -ccl.net">CHEMISTRY-
 -ccl.net</a> or use:<br>&nbsp; &nbsp;
 &nbsp;<br><br>E-mail to administrators: <a ymailto="mailto:CHEMISTRY-REQUEST- -ccl.net"
 > href="mailto:CHEMISTRY-REQUEST-
 -ccl.net">CHEMISTRY-REQUEST- -ccl.net</a> or
 use<br>&nbsp; &nbsp; &nbsp; <a href="http://www.ccl.net/cgi-bin/ccl/send_ccl_message";
 target="_blank">http://www.ccl.net/cgi-bin/ccl/send_ccl_message</a><br><br<br>&nbsp;
 &nbsp;
 &nbsp;<br><br<br><br<br<br><br<br><br<br>&nbsp;
 &nbsp;
 &nbsp;<br><br<br><br><br><br><br>
 </div> </div>  </div></body></html>