CCL:G: Modeling Antiferromagnetic Coupling in Gaussian 09
- From: "M Gh" <mahnaz271163===yahoo.com>
- Subject: CCL:G: Modeling Antiferromagnetic Coupling in Gaussian
09
- Date: Fri, 13 Dec 2013 10:06:36 -0500
Sent to CCL by: "M Gh" [mahnaz271163%x%yahoo.com]
I'm new to Gaussian,so I try to reproduce some example at Gaussian's
website:"Gaussian.com,Tech support, white papers, Modeling
Antiferromagnetic Coupling in Gaussian 09".But I'm confused about one.After
running the 2nd job, the output is different from mine.
The output that mentioned in the Gaussian.com site is as follow:
Stability analysis using <AA,BB:AA,BB> singles matrix:
***********************************************************************
Eigenvectors of the stability matrix:
Eigenvector 1: ?Spin -B2G Eigenvalue=-0.0129755
75A -> 79A 0.68583
76A -> 80A 0.70288
Eigenvector 2: ?Spin -B1U Eigenvalue=-0.0066257
70A -> 79A -0.10926
75A -> 80A 0.37604
76A -> 79A 0.89115
Eigenvector 3: ?Spin -B3U Eigenvalue= 0.0058150
77A -> 80A -0.34398
78A -> 79A 0.92278
The wavefunction has an internal instability.
my output is as follows:
***********************************************************************
Stability analysis using <AA,BB:AA,BB> singles matrix:
***********************************************************************
Eigenvectors of the stability matrix:
Eigenvector 1: 1.000-B1G Eigenvalue= 0.0272861 <S**2>=0.000
78A -> 79A 0.99727
could anyone please help me with this question that where the difference comes
from?
Regards