CCL: UV-vis in ORCA



Hi, my name is Henrique and I am an undergraduate student in Chemistry doing some theoretical research about Fe(II) in water as a requirement to finish my graduation.

I’ve been using ORCA to perform some calculations and to generate UV-vis spectra of [Fe(OH2)6]2+ and [Fe(OH2)6]3+.

The result for [Fe(OH2)6]2+ is pretty much what I was expecting, but for [Fe(OH2)6]3+ it seems a little weird to me:

Since the d5 Iron(III) have only spin forbidden transitions, I wasn’t expecting it to have more intense Abs than iron(II) (see attachment).

I wasn’t able to put my hands in any [Fe(OH2)6]3+ UV-vis spectra to compare with my results and I’d like to read some opinions about this issue:

·         Is there something wrong with my input?

·         Does this spectra (attached) look weird to you or there is a good explanation for Fe(III) to have a more intense Abs than Imagem inline
 1Fe(II)?

Thank you for any advice and I am very sorry for my poor English.


--------------------------------------------INPUT-----------------------------------------------------------------------------

# ================================================================

# Orca input file made in Gabedit

# ================================================================

!  RI Opt   TightSCF  BP86 

! PrintBasis Def2-TZVP Def2-TZVP/C

%tddft

     nroots 8 # the number of excited states to be calculated.

     maxdim 30 # the maximum dimension of the expansion space in the Davidson procedure.

     # dcorr n

     # n=1-4. The meaning of the four algorithms

     # algorithm 1 Is perhaps the best for small systems. May use a

     #             lot of disk space

     # algorithm 2 Stores less integrals

     # algorithm 3 Is good if the system is large and only a few

     #             states are to be made. Safes disk and main memory.

     # algorithm 4 Uses only transformed RI integrals. May be the

     #             fastest for large systems and a larger number of states

     # TammDanCoff true Tamm-Dancoff approximation for non-hybride

     # Triplets true : do triplets states

     # EWin -3,100  (orbital energy window in Eh)

     # Etol 1e-3  the required convergence of the energies of the excited states (in Eh)

     # Rtol 1e-5  required convergence on the norm of the residual vectors.

                   # essential for metal edges. For ligand edges, the contributions are much smaller.

 end #tddft

%output

     print[p_mos] 1

 end #output

%geom

MaxIter 500

end

%scf

MaxIter 500

end

* xyz 3   6

 H  -2.424829 -0.275250 0.279753

 O  -1.892119 -0.263000 -0.507137

 H  -2.224729 0.402440 -1.098897

 H  -0.919139 -0.831680 2.037573

 H  -0.592969 -2.430170 -0.174157

 H  -0.753899 0.722610 2.113113

 O  -0.385119 -0.088000 1.781863

 O  0.240881 -1.977000 -0.121137

 H  -1.040679 2.169210 0.255553

 H  0.720741 -2.264950 0.647723

 Fe  0.008881 -0.041000 -0.127137

 H  -0.382459 0.048440 -2.580397

 O  -0.216119 1.897000 -0.131137

 O  0.396881 -0.003000 -2.039137

 H  -0.141579 2.272920 -1.000737

 H  1.024291 0.667680 -2.284267

 O  1.909881 0.185000 0.245863

 H  2.443031 -0.318650 -0.359427

 H  2.165121 1.100290 0.221463

*


--
Henrique C. S. Junior
Química Industrial - UFRRJ
Centro de Processamento de Dados - PMP