CCL:G: Gaussian SCRF error "No solvent atoms in DisRep"



Dear Dr. Zou,

Thank You for the further clarification!

One another thing I am a little curious about -- only in CPCM+SMD calculation the escaped charge is reported (in my case, enormous 0.46984). Is that because of some threshold for things to appear in output, or due to a different algorithm in use (for IEFPCM, even with #P there is no sign of escaped charge)?

Dear Dr. Klamt
,

That's why I was surprised by the results I had got, because I have read before, well, at least the abstract of the article You cited (due to the lack of access) and Your article of 2011 (DOI: 10.1002/wcms.56) where You argued that, although it was proven that the best value of x in the equation for COSMO is 0.5, "[u]nfortunately, several reimplementations of COSMO, including C-PCM, set the value of x to zero either by default or fixed." Can this be the reason? Or is it simply because SMD model in Gaussian is optimized for IEFPCM, not CPCM?
(Maybe Dr. Zou can comment on that.)
You also mention that "in the literature the COSMO approximation is often claimed to be applicable only to polar solvents, it needs to be emphasized that for neutral compounds the COSMO approximation with x = 0.5 provides very accurate results down to ε = 2". Maybe this is why COSMO is not that popular? On the other hand, if, as Dr. Zou said, the differences in computational cost arise only in really large molecules, maybe software developers just feel it is not that urgent to implement COSMO if they already have another methods implemented…

By "the equation" I mean the equation of COSMO scaling factor
for unscreened charge density,

f (ε) = (ε – 1) / (ε + x)

---------------------------------------------------------------------------

To mention some other details, the differing part in the output is the following:

***** CPCM_SMD.out
 
No special actions if energy rises.
 Using charges instead of weights in PCMQM.
 Inv3:  Mode=1 IEnd=     5838075.
 Iteration    1 A*A^-1 deviation from unit magnitude is 2.78D-15 for    865.
 Iteration    1 A*A^-1 deviation from orthogonality  is 1.65D-15 for    711    187.
 Iteration    1 A^-1*A deviation from unit magnitude is 3.11D-15 for    813.
 Iteration    1 A^-1*A deviation from orthogonality  is 1.65D-15 for   1142     64.
 Escaped charge =  0.46984
 Error on total polarization charges =  0.30616
 SCF Done:  E(RB3LYP) =  -492.141763479     A.U. after   13 cycles
            NFock= 13  Conv=0.34D-08     -V/T= 2.0086
 SMD-CDS (non-electrostatic) energy       (kcal/mol) =      -1.55

***** IEFPCM_SMD.OUT
 
No special actions if energy rises.
 Inv3:  Mode=1 IEnd=     5838075.
 Iteration    1 A*A^-1 deviation from unit magnitude is 3.55D-15 for    317.
 Iteration    1 A*A^-1 deviation from orthogonality  is 2.67D-15 for    629    474.
 Iteration    1 A^-1*A deviation from unit magnitude is 3.33D-15 for    317.
 Iteration    1 A^-1*A deviation from orthogonality  is 2.19D-15 for    545    224.
 Error on total polarization charges =  0.01601
 SCF Done:  E(RB3LYP) =  -492.138961313     A.U. after   13 cycles
            NFock= 13  Conv=0.35D-08     -V/T= 2.0086
 SMD-CDS (non-electrostatic) energy       (kcal/mol) =      -1.55


Yours sincerely,
Igors Mihailovs
ISSP UL


On 08/09/17 22:59, Lufeng Zou g09gv5_+_gmail.com wrote:
Hello Igors,

One thing to add is that SMD is a solvation model (IEFPCM using SMD radii for electrostatic part, plus nonelectrostatic terms), so please do not combine SMD with other solvation models. The program should have recognized this error and abort, thank you for catching the bug.

As for the cost, please rest assured that difference between IEFPCM and CPCM will be minor for most calculations. The only exception is that for very large molecules with hundreds of atoms, more MEMORY (RAM) is required for IEFPCM than CPCM.

Lufeng Zou, Ph.D.
 Technical Support
 Gaussian, Inc.
 help . gaussian.com


On 09/09/17 04:16, Andreas Klamt klamt#cosmologic.de wrote:
For the differences of IEFPCM and CPCM see
 Comprehensive Comparison of the IEFPCM and SS(V)PE Continuum Solvation Methods with the COSMO Approach
http://pubs.acs.org/doi/abs/10.1021/acs.jctc.5b00601?src="">

They are indeed essentially identical. Hence I do not really understand why the more complicated IEFPCM is so much in use.

Andreas