Hi,
the following is from chatGPT, what do you guys think ?
When using the 6-311G basis set, it is common to add
diffuse functions to improve the description of electron correlation and
dispersion interactions. One commonly used set of diffuse functions is the
"polarization-consistent basis
set" (pcS-n, where n is an integer), which adds diffuse functions to the
valence and polarization sets in a consistent way.
For Fe2+ ferrous ion, a suitable choice of diffuse
functions would depend on the level of accuracy required and the size of the
system. As a starting point, you could consider adding diffuse functions up to
the pcS-4 level, which
would add 4 sets of diffuse functions to the 6-311G basis set.
To specify the pcS-4 basis set in Gaussian, you can
use the following basis set specification:
```
# opt umn15l/6-311++g(d,p) scrf=(solvent=water)
geom=connectivity
Fe2CO2_OPT
2 3
Fe
2.74538330 8.28679554 5.00000000
O
4.55208397 8.06717607
5.00000000
C
5.30819317 9.07309328
5.00000000
O
5.97838127 9.96470142
5.00000000
1 2 1.0
2 3 2.0
3 4 3.0
4
Fe S 4
6-311G(d,p) Fe 4,4,4,4,4,4
****
C S 1
6-311G(d,p) C 3,3,3,3,3,3
****
O S 2
6-311G(d,p) O 3,3,3,3,3,3
****
```
In this input file, the "S" keyword
specifies that diffuse functions should be added to the basis set, and the
"4" after "Fe S" indicates that 4 sets of diffuse functions
should be added to the iron atom. The same format is used
for the carbon and oxygen atoms.
It is also worth noting that the use of solvent models, such as the SCRF model
with water as the solvent, can further improve the accuracy of calculations by
including the effects of solvation. However, the choice of solvent model and the
level of theory used
for the calculation of solvent effects can also affect the accuracy of the
results.
From:
owner-chemistry+feiphung==hotmail.com{}ccl.net
<owner-chemistry+feiphung==hotmail.com{}ccl.net> on behalf of David Shobe
shobedavid]^[gmail.com
<owner-chemistry{}ccl.net>
Sent: Wednesday, March 1, 2023 7:53 PM
To: Phung, Cheng Fei <feiphung{}hotmail.com>
Subject: CCL:G: Help with DFT convergence failure for Fe2CO2 in Gaussian
software
Dear Cheng Fei Phung --
Isolated Fe^2+ is a quintuplet in the ground state. The
coordination with the CO2 molecule may change it to a different electronic
state, most likely to a triplet.
The charge and multiplicity are specified by replacing the
"0 1" line with "2 5" for the quintuplet or "2 3"
for the triplet. The "++" in GaussView is a red herring (if you don't
know this _expression_, it refers to a misleading clue), as the
"++" refers to diffuse functions in the basis set.
Good luck! Calculations of transition metals are difficult. I
should warn you that even if you get a converged SCF, it might not be the
correct electronic state. Take a look at the manual under the keywords SCF and
stable for more information.
--David Shobe
Hi,
Since my messages contains the image and is longer than a limit for general
distribution,
the CCL Admin saved my message under
so please open this link to read my response
Note that I am doing Fe2+ ferrous ion for MOF carbon capture
4
energy: -13.349149310898 gnorm: 0.000502022323 xtb: 6.5.1
(579679a)
Fe 2.73292919494009
7.81690557181600 4.99999999991402
O 4.23822629938734
8.62616541285678 4.99975863372067
C 5.28034049639189
9.19333556707946 5.00051367720569
O 6.33254571928068
9.75535975824776 4.99972768915961
Regards,
Cheng Fei Phung
Dear Cheng Fei Phung,
I would use something like MN15 or MN15L, and a basis set with at least some
polarization (6-311G(d,p), for example). Especially if I had to perform
something like a token computation in order to get someone's experimental
results published.
Trying to converge B3LYP for a transition metal compound may take more time than
the options described above...
Best regards,
Igors Mihailovs
former employee at ISSP UL
On February 25, 2023 12:09:02 PM GMT+02:00, "Cheng Fei Phung
feiphung=-= hotmail.com" <owner-chemistry^-^ ccl.net> wrote:
Sent to CCL by: "Cheng Fei Phung" [feiphung{:}hotmail.com] With the following gaussian16 gjf input
file, I got some convergence failure issues.
Could anyone help
?
Gaussian input gjf file
``` %chk=step_000_DFT.chk #
opt b3lyp/6-31g geom=connectivity
Fe2CO2_OPT
0 1 Fe
2.74538330 8.28679554 5.00000000 O 4.55208397
8.06717607 5.00000000 C 5.30819317 9.07309328
5.00000000 O 5.97838127 9.96470142 5.00000000
1 2 1.0 2 3 2.0 3 4 3.0 4 ```
Gaussian log
file
``` %chk=step_000_DFT.chk # opt b3lyp/6-31g
geom=connectivity 1/18=20,19=15,26=3,38=1,57=2/1,3;
2/9=110,12=2,17=6,18=5,40=1/2;
3/5=1,6=6,11=2,25=1,30=1,71=1,74=-5/1,2,3; 4//1; 5/5=2,38=5/2;
6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/18=20,19=15,26=3/3(2);
2/9=110/2; 99//99; 2/9=110/2;
3/5=1,6=6,11=2,25=1,30=1,71=1,74=-5/1,2,3; 4/5=5,16=3,69=1/1;
5/5=2,38=5/2; 7//1,2,3,16; 1/18=20,19=15,26=3/3(-5); 2/9=110/2;
6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; Fe2CO2_OPT Symbolic
Z-matrix: Charge = 0 Multiplicity = 1 Fe 2.74538
8.2868 5. O 4.55208 8.06718 5. C
5.30819 9.07309 5. O 5.97838 9.9647 5.
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization. Initialization pass. !
Initial Parameters ! ! (Angstroms and Degrees)
! --------------------------
-------------------------- ! Name Definition Value
Derivative Info. ! ! R1 R(1,2) 1.82
estimate D2E/DX2 ! ! R2 R(2,3) 1.2584
estimate D2E/DX2 ! ! R3 R(3,4) 1.1154
estimate D2E/DX2 ! ! A1 A(1,2,3) 120.0
estimate D2E/DX2 ! ! A2 L(2,3,4,1,-1) 180.0
estimate D2E/DX2 ! ! A3 L(2,3,4,1,-2) 180.0
estimate D2E/DX2 ! Trust Radius=3.00D-01 FncErr=1.00D-07
GrdErr=1.00D-06 EigMax=2.50D+02 EigMin=1.00D-04 Number of steps in this run=
20 maximum allowed number of steps= 100.
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Input orientation: Center Atomic Atomic
Coordinates (Angstroms) Number Number Type X
Y Z 1 26 0 2.745383 8.286796
5.000000 2 8 0 4.552084 8.067176
5.000000 3 6 0 5.308193 9.073093
5.000000 4 8 0 5.978381 9.964701
5.000000 Distance matrix (angstroms):
1 2 3 4 1 Fe 0.000000 2 O
1.820000 0.000000 3 C 2.680720 1.258400 0.000000 4 O
3.642478 2.373800 1.115400 0.000000 Stoichiometry CFeO2
Framework group CS[SG(CFeO2)] Deg. of freedom 5 Full point group
CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest
concise Abelian subgroup C1 NOp 1 Standard
orientation: Center Atomic Atomic
Coordinates (Angstroms) Number Number Type X
Y Z 1 26 0 -1.018287 -0.652610
-0.000000 2 8 0 -0.000000 0.855864
0.000000 3 6 0 1.255302 0.767619
0.000000 4 8 0 2.367956 0.689403
0.000000 Rotational constants (GHZ): 37.1744583 2.4897380
2.3334561 Standard basis: 6-31G (6D, 7F) There are 42 symmetry
adapted cartesian basis functions of A' symmetry. There are 14 symmetry
adapted cartesian basis functions of A" symmetry. There are 42
symmetry adapted basis functions of A' symmetry. There are 14 symmetry
adapted basis functions of A" symmetry. 56 basis functions, 160
primitive gaussians, 56 cartesian basis functions 24 alpha electrons
24 beta electrons nuclear repulsion energy 178.7145642873
Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60
NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti
2 integral format. Two-electron integral symmetry is turned on.
One-electron integrals computed using PRISM. NBasis= 56 RedAO= T EigKep=
1.76D-03 NBF= 42 14 NBsUse= 56 1.00D-06 EigRej= -1.00D+00 NBFU=
42 14 ExpMin= 4.11D-02 ExpMax= 6.11D+04 ExpMxC= 9.18D+03 IAcc=3 IRadAn=
5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5
diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00
IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX=
1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0
FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T
BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl=
0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1
NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in
FoFCou. Initial guess orbital symmetries: Occupied (A') (A') (A')
(A') (A") (A') (A') (A') (A') (A') (A') (A") (A')
(A') (A') (A') (A') (A") (A') (A") (A') (A')
(A") (A') Virtual (A") (A') (A') (A") (A') (A")
(A') (A') (A') (A') (A") (A') (A') (A") (A') (A')
(A') (A") (A') (A') (A') (A") (A') (A') (A')
(A") (A") (A') (A') (A') (A') (A') The
electronic state of the initial guess is 1-A'. Keep R1 ints in memory in
symmetry-blocked form, NReq=2159799. Requested convergence on RMS density
matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density
matrix=1.00D-06. Requested convergence on energy=1.00D-06.
No special actions if energy rises. EnCoef did 3 forward-backward
iterations EnCoef did 100 forward-backward iterations EnCoef did 2
forward-backward iterations EnCoef did 2 forward-backward iterations
SCF Done: E(RB3LYP) = -1451.84990065 A.U. after 22 cycles
NFock= 22 Conv=0.66D-08 -V/T= 2.0016
**********************************************************************
Population analysis using the SCF Density.
**********************************************************************
Orbital symmetries: Occupied (A') (A') (A') (A') (A") (A') (A')
(A') (A') (A') (A") (A') (A') (A') (A') (A') (A")
(A') (A') (A") (A') (A') (A") (A')
Virtual (A") (A') (A") (A') (A') (A") (A') (A') (A') (A')
(A") (A') (A') (A") (A') (A') (A') (A") (A') (A')
(A') (A") (A') (A') (A') (A") (A') (A") (A') (A')
(A') (A') The electronic state is 1-A'. Alpha occ. eigenvalues --
-256.04016 -29.99951 -25.87326 -25.85859 -25.85805 Alpha occ. eigenvalues
-- -19.31120 -19.28742 -10.45249 -3.41064 -2.20510 Alpha occ.
eigenvalues -- -2.17421 -2.16694 -1.26882 -1.17261 -0.64217 Alpha
occ. eigenvalues -- -0.58881 -0.57965 -0.57594 -0.44473 -0.43175 Alpha
occ. eigenvalues -- -0.22416 -0.22137 -0.20382 -0.15336 Alpha virt.
eigenvalues -- -0.07558 -0.07420 -0.03518 -0.03067 -0.02764 Alpha
virt. eigenvalues -- -0.00807 0.00082 0.10567 0.12952 0.29804
Alpha virt. eigenvalues -- 0.31948 0.36712 0.41870 0.45104
0.54770 Alpha virt. eigenvalues -- 0.63606 0.74556 0.85137 0.88355
0.92857 Alpha virt. eigenvalues -- 0.96917 1.00808 1.01595 1.25495
1.50958 Alpha virt. eigenvalues -- 1.51252 1.55992 1.59723 1.70732
1.86833 Alpha virt. eigenvalues -- 2.01356 20.37339
Condensed to atoms (all electrons): 1 2 3
4 1 Fe 26.065938 -0.058002 0.083106 -0.030239 2 O
-0.058002 8.304619 0.168196 0.010116 3 C 0.083106 0.168196
4.724609 0.417125 4 O -0.030239 0.010116 0.417125
7.724230 Mulliken charges: 1 1 Fe -0.060803
2 O -0.424929 3 C 0.606964 4 O -0.121232 Sum of
Mulliken charges = -0.00000 Mulliken charges with hydrogens summed into
heavy atoms: 1 1 Fe -0.060803 2 O
-0.424929 3 C 0.606964 4 O -0.121232 Electronic
spatial extent (au): <R**2>= 453.0609 Charge=
-0.0000 electrons Dipole moment (field-independent basis, Debye): X=
1.6708 Y= 1.8514 Z= -0.0000 Tot=
2.4938 Quadrupole moment (field-independent basis, Debye-Ang): XX=
-35.0872 YY= -34.7815 ZZ= -32.5686 XY=
0.8912 XZ= 0.0000 YZ= 0.0000 Traceless
Quadrupole moment (field-independent basis, Debye-Ang): XX=
-0.9415 YY= -0.6357 ZZ= 1.5772 XY=
0.8912 XZ= 0.0000 YZ= 0.0000 Octapole moment
(field-independent basis, Debye-Ang**2): XXX= -8.4875 YYY=
8.6001 ZZZ= -0.0000 XYY= 3.5470 XXY=
1.7153 XXZ= 0.0000 XZZ= 0.7336 YZZ=
1.9407 YYZ= -0.0000 XYZ= -0.0000 Hexadecapole
moment (field-independent basis, Debye-Ang**3): XXXX= -415.5041
YYYY= -171.1039 ZZZZ= -55.1637 XXXY=
-84.4690 XXXZ= 0.0000 YYYX= -75.7822 YYYZ=
0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY=
-90.7121 XXZZ= -70.9019 YYZZ= -36.9432 XXYZ=
0.0000 YYXZ= 0.0000 ZZXY= -24.7602 N-N=
1.787145642873D+02 E-N=-3.807626875025D+03 KE= 1.449497603530D+03 Symmetry
A' KE= 1.287179877057D+03 Symmetry A" KE= 1.623177264732D+02
Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1
NMatS=1 NMatT=0. ***** Axes restored to original set ***** Center
Atomic Forces (Hartrees/Bohr) Number Number
X Y Z 1 26 -0.048820174
0.005157682 0.000000000 2 8 0.068584660
0.015861998 0.000000000 3 6 -0.104728901
-0.126023309 0.000000000 4 8 0.084964415
0.105003629 -0.000000000 Cartesian Forces: Max 0.126023309 RMS
0.066118707
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization. FormGI is forming the generalized inverse of G from
B-inverse, IUseBI=4. Internal Forces: Max 0.134986320 RMS
0.059949734 Search for a local minimum. Step number 1 out of a maximum
of 20 All quantities printed in internal units
(Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second
derivative matrix not updated -- first step. The second derivative
matrix: R1 R2 R3 A1
A2 R1 0.22791 R2 0.00000
0.80209 R3 0.00000 0.00000 1.62060 A1
0.00000 0.00000 0.00000 0.25000 A2 0.00000
0.00000 0.00000 0.00000 0.05456 A3 0.00000
0.00000 0.00000 0.00000 0.00000 A3
A3 0.05456 ITU= 0 Eigenvalues --- 0.05456 0.05456
0.22791 0.25000 0.80209 Eigenvalues --- 1.62060 RFO step:
Lambda=-2.30438557D-02 EMin= 5.45649275D-02 Linear search not attempted --
first point. Iteration 1 RMS(Cart)= 0.10911805 RMS(Int)= 0.00403264
Iteration 2 RMS(Cart)= 0.00524126 RMS(Int)= 0.00001569 Iteration 3
RMS(Cart)= 0.00001737 RMS(Int)= 0.00000000 Iteration 4 RMS(Cart)=
0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from
symmetrization is 2.67D-10 for atom 3. Variable Old X -DE/DX
Delta X Delta X Delta X New X
(Linear) (Quad) (Total) R1 3.43930 0.04909 0.00000
0.19560 0.19560 3.63490 R2 2.37803 -0.02868 0.00000
-0.03476 -0.03476 2.34327 R3 2.10780 0.13499 0.00000
0.08213 0.08213 2.18993 A1 2.09440 0.00265 0.00000
0.00969 0.00969 2.10408 A2 3.14159 0.01018 0.00000
0.13112 0.13112 3.27271 A3 3.14159 0.00000 0.00000
0.00000 0.00000 3.14159 Item Value Threshold
Converged? Maximum Force 0.134986 0.000450 NO RMS
Force 0.059950 0.000300 NO Maximum Displacement
0.164913 0.001800 NO RMS Displacement 0.111408 0.001200
NO Predicted change in Energy=-1.225354D-02
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Input orientation: Center Atomic Atomic
Coordinates (Angstroms) Number Number Type X
Y Z 1 26 0 2.658115 8.232499
5.000000 2 8 0 4.576263 8.089032
5.000000 3 6 0 5.284531 9.106861
5.000000 4 8 0 6.065132 9.963375
5.000000 Distance matrix (angstroms):
1 2 3 4 1 Fe 0.000000 2 O
1.923506 0.000000 3 C 2.768135 1.240008 0.000000 4 O
3.821478 2.393719 1.158859 0.000000 Stoichiometry CFeO2
Framework group CS[SG(CFeO2)] Deg. of freedom 5 Full point group
CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest
concise Abelian subgroup C1 NOp 1 Standard
orientation: Center Atomic Atomic
Coordinates (Angstroms) Number Number Type X
Y Z 1 26 0 -1.022093 -0.757193
-0.000000 2 8 0 0.000000 0.872286
0.000000 3 6 0 1.239558 0.838897
0.000000 4 8 0 2.392133 0.959419
0.000000 Rotational constants (GHZ): 40.3135828 2.2660782
2.1454781 Standard basis: 6-31G (6D, 7F) There are 42 symmetry
adapted cartesian basis functions of A' symmetry. There are 14 symmetry
adapted cartesian basis functions of A" symmetry. There are 42
symmetry adapted basis functions of A' symmetry. There are 14 symmetry
adapted basis functions of A" symmetry. 56 basis functions, 160
primitive gaussians, 56 cartesian basis functions 24 alpha electrons
24 beta electrons nuclear repulsion energy 172.3989508234
Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60
NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti
2 integral format. Two-electron integral symmetry is turned on.
One-electron integrals computed using PRISM. NBasis= 56 RedAO= T EigKep=
1.76D-03 NBF= 42 14 NBsUse= 56 1.00D-06 EigRej= -1.00D+00 NBFU=
42 14 Initial guess from the checkpoint file:
"step_000_DFT.chk" B after Tr= 0.000000 0.000000
-0.000000 Rot= 0.999288 -0.000000 -0.000000 -0.037733 Ang=
-4.32 deg. Initial guess orbital symmetries: Occupied (A') (A')
(A') (A') (A") (A') (A') (A') (A') (A') (A") (A')
(A') (A') (A') (A') (A") (A') (A') (A") (A') (A')
(A") (A') Virtual (A") (A') (A") (A') (A') (A")
(A') (A') (A') (A') (A") (A') (A') (A") (A') (A')
(A') (A") (A') (A') (A') (A") (A') (A') (A')
(A") (A') (A") (A') (A') (A') (A') ExpMin=
4.11D-02 ExpMax= 6.11D+04 ExpMxC= 9.18D+03 IAcc=3 IRadAn= 5 AccDes=
0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5
diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00
IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX=
1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0
FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T
BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl=
0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1
NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in
FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=2159799.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06. Requested convergence
on energy=1.00D-06. No special actions if energy rises. SCF
Done: E(RB3LYP) = -1451.86533909 A.U. after 18 cycles
NFock= 18 Conv=0.23D-08 -V/T= 2.0018 Calling FoFJK, ICntrl= 2127
FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes
restored to original set ***** Center Atomic Forces
(Hartrees/Bohr) Number Number X Y
Z 1 26 -0.021775369 0.002114287 0.000000000
2 8 0.036955110 0.014737157 0.000000000 3
6 -0.039695691 -0.040384091 0.000000000 4 8
0.024515951 0.023532647 -0.000000000 Cartesian Forces: Max
0.040384091 RMS 0.023135364
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the
generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max
0.033908365 RMS 0.018980685 Search for a local minimum. Step number
2 out of a maximum of 20 All quantities printed in internal units
(Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update
second derivatives using D2CorX and points 1 2 DE= -1.54D-02
DEPred=-1.23D-02 R= 1.26D+00 TightC=F SS= 1.41D+00 RLast= 2.52D-01 DXNew=
5.0454D-01 7.5596D-01 Trust test= 1.26D+00 RLast= 2.52D-01 DXMaxT set to
5.05D-01 The second derivative matrix: R1
R2 R3 A1 A2 R1 0.18668
R2 0.04604 0.76870 R3 -0.08608 0.12904
1.50110 A1 0.00316 0.00128 0.01538 0.25104
A2 -0.00501 0.00702 -0.00784 0.00077 0.05407 A3
0.00000 -0.00000 0.00000 0.00000 0.00000
A3 A3 0.05456 ITU= 1 0 Use linear search
instead of GDIIS. Eigenvalues --- 0.05364 0.05456 0.17607
0.25109 0.75296 Eigenvalues --- 1.52783 RFO step:
Lambda=-2.40357398D-03 EMin= 5.36398691D-02 Quartic linear search produced a
step of 0.74433. Iteration 1 RMS(Cart)= 0.12055350 RMS(Int)=
0.00970928 Iteration 2 RMS(Cart)= 0.01171440 RMS(Int)= 0.00007671
Iteration 3 RMS(Cart)= 0.00008339 RMS(Int)= 0.00000000 Iteration 4
RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement
from symmetrization is 4.24D-12 for atom 3. Variable Old X
-DE/DX Delta X Delta X Delta X New X
(Linear) (Quad) (Total) R1 3.63490 0.02187 0.14559
0.04745 0.19304 3.82794 R2 2.34327 -0.02250 -0.02587
-0.02538 -0.05125 2.29202 R3 2.18993 0.03391 0.06113
-0.01980 0.04133 2.23126 A1 2.10408 -0.00172 0.00721
-0.01780 -0.01059 2.09349 A2 3.27271 0.00495 0.09759
0.11009 0.20769 3.48040 A3 3.14159 0.00000 0.00000
0.00000 0.00000 3.14159 Item Value Threshold
Converged? Maximum Force 0.033908 0.000450 NO RMS
Force 0.018981 0.000300 NO Maximum Displacement
0.157853 0.001800 NO RMS Displacement 0.126480 0.001200
NO Predicted change in Energy=-2.644271D-03
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Input orientation: Center Atomic Atomic
Coordinates (Angstroms) Number Number Type X
Y Z 1 26 0 2.586226 8.170844
5.000000 2 8 0 4.611490 8.130764
5.000000 3 6 0 5.237660 9.169515
5.000000 4 8 0 6.148665 9.920644
5.000000 Distance matrix (angstroms):
1 2 3 4 1 Fe 0.000000 2 O
2.025661 0.000000 3 C 2.833275 1.212885 0.000000 4 O
3.968976 2.359359 1.180730 0.000000 Stoichiometry CFeO2
Framework group CS[SG(CFeO2)] Deg. of freedom 5 Full point group
CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest
concise Abelian subgroup C1 NOp 1 Standard
orientation: Center Atomic Atomic
Coordinates (Angstroms) Number Number Type X
Y Z 1 26 0 -0.994550 -0.879340
-0.000000 2 8 0 -0.000000 0.885361
0.000000 3 6 0 1.212831 0.896868
0.000000 4 8 0 2.322666 1.299844
0.000000 Rotational constants (GHZ): 47.4271405 2.0987230
2.0097869 Standard basis: 6-31G (6D, 7F) There are 42 symmetry
adapted cartesian basis functions of A' symmetry. There are 14 symmetry
adapted cartesian basis functions of A" symmetry. There are 42
symmetry adapted basis functions of A' symmetry. There are 14 symmetry
adapted basis functions of A" symmetry. 56 basis functions, 160
primitive gaussians, 56 cartesian basis functions 24 alpha electrons
24 beta electrons nuclear repulsion energy 168.0152669884
Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60
NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti
2 integral format. Two-electron integral symmetry is turned on.
One-electron integrals computed using PRISM. NBasis= 56 RedAO= T EigKep=
1.76D-03 NBF= 42 14 NBsUse= 56 1.00D-06 EigRej= -1.00D+00 NBFU=
42 14 Initial guess from the checkpoint file:
"step_000_DFT.chk" B after Tr= 0.000000 -0.000000
-0.000000 Rot= 0.998838 -0.000000 -0.000000 -0.048193 Ang=
-5.52 deg. Initial guess orbital symmetries: Occupied (A') (A')
(A') (A') (A") (A') (A') (A') (A') (A') (A") (A')
(A') (A') (A') (A') (A") (A') (A') (A") (A') (A')
(A") (A') Virtual (A') (A") (A') (A") (A') (A")
(A') (A') (A') (A') (A") (A') (A') (A") (A') (A')
(A') (A") (A') (A') (A') (A") (A') (A') (A')
(A") (A') (A") (A') (A') (A') (A') ExpMin=
4.11D-02 ExpMax= 6.11D+04 ExpMxC= 9.18D+03 IAcc=3 IRadAn= 5 AccDes=
0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5
diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00
IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX=
1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0
FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T
BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl=
0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1
NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in
FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=2159799.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06. Requested convergence
on energy=1.00D-06. No special actions if energy rises. SCF
Done: E(RB3LYP) = -1451.86779894 A.U. after 19 cycles
NFock= 19 Conv=0.32D-08 -V/T= 2.0018 Calling FoFJK, ICntrl= 2127
FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes
restored to original set ***** Center Atomic Forces
(Hartrees/Bohr) Number Number X Y
Z 1 26 -0.002475531 0.002170910 0.000000000
2 8 -0.009275511 -0.015400826 0.000000000 3
6 0.012873515 0.005174131 0.000000000 4 8
-0.001122473 0.008055785 -0.000000000 Cartesian Forces: Max
0.015400826 RMS 0.007028017
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the
generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max
0.017401591 RMS 0.010265616 Search for a local minimum. Step number
3 out of a maximum of 20 All quantities printed in internal units
(Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update
second derivatives using D2CorX and points 1 2 3 DE= -2.46D-03
DEPred=-2.64D-03 R= 9.30D-01 TightC=F SS= 1.41D+00 RLast= 2.91D-01 DXNew=
8.4853D-01 8.7386D-01 Trust test= 9.30D-01 RLast= 2.91D-01 DXMaxT set to
8.49D-01 The second derivative matrix: R1
R2 R3 A1 A2 R1 0.14042
R2 0.04009 0.84593 R3 -0.15330 0.08559
1.42002 A1 0.01583 -0.02335 0.04566 0.25643
A2 0.00387 -0.03883 0.02611 0.01417 0.08070 A3
0.00000 -0.00000 0.00000 0.00000 0.00000
A3 A3 0.05456 ITU= 1 1 0 Use linear search
instead of GDIIS. Eigenvalues --- 0.05456 0.07570 0.11658
0.25847 0.84223 Eigenvalues --- 1.45052 RFO step:
Lambda=-2.28883397D-03 EMin= 5.45649275D-02 Quartic linear search produced a
step of -0.27572. Iteration 1 RMS(Cart)= 0.11082651 RMS(Int)=
0.00968836 Iteration 2 RMS(Cart)= 0.01008655 RMS(Int)= 0.00002336
Iteration 3 RMS(Cart)= 0.00002996 RMS(Int)= 0.00000000 Iteration 4
RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement
from symmetrization is 3.37D-09 for atom 3. Variable Old X
-DE/DX Delta X Delta X Delta X New X
(Linear) (Quad) (Total) R1 3.82794 0.00252 -0.05323
0.09099 0.03776 3.86570 R2 2.29202 0.01740 0.01413
-0.00542 0.00871 2.30074 R3 2.23126 0.00426 -0.01140
0.02206 0.01067 2.24192 A1 2.09349 -0.00809 0.00292
-0.02802 -0.02510 2.06839 A2 3.48040 -0.01548 -0.05726
-0.11944 -0.17670 3.30370 A3 3.14159 0.00000 0.00000
0.00000 0.00000 3.14159 Item Value Threshold
Converged? Maximum Force 0.017402 0.000450 NO RMS
Force 0.010266 0.000300 NO Maximum Displacement
0.128723 0.001800 NO RMS Displacement 0.114165 0.001200
NO Predicted change in Energy=-1.691720D-03
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Input orientation: Center Atomic Atomic
Coordinates (Angstroms) Number Number Type X
Y Z 1 26 0 2.587635 8.230504
5.000000 2 8 0 4.627577 8.077882
5.000000 3 6 0 5.286906 9.101397
5.000000 4 8 0 6.081924 9.981983
5.000000 Distance matrix (angstroms):
1 2 3 4 1 Fe 0.000000 2 O
2.045643 0.000000 3 C 2.836286 1.217497 0.000000 4 O
3.908674 2.395981 1.186375 0.000000 Stoichiometry CFeO2
Framework group CS[SG(CFeO2)] Deg. of freedom 5 Full point group
CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest
concise Abelian subgroup C1 NOp 1 Standard
orientation: Center Atomic Atomic
Coordinates (Angstroms) Number Number Type X
Y Z
|