CCL:G: Help with DFT convergence failure for Fe2CO2 in Gaussian software



Hi,

the following is from chatGPT, what do you guys think ?


When using the 6-311G basis set, it is common to add diffuse functions to improve the description of electron correlation and dispersion interactions. One commonly used set of diffuse functions is the "polarization-consistent basis set" (pcS-n, where n is an integer), which adds diffuse functions to the valence and polarization sets in a consistent way.

For Fe2+ ferrous ion, a suitable choice of diffuse functions would depend on the level of accuracy required and the size of the system. As a starting point, you could consider adding diffuse functions up to the pcS-4 level, which would add 4 sets of diffuse functions to the 6-311G basis set.

To specify the pcS-4 basis set in Gaussian, you can use the following basis set specification:


```
# opt umn15l/6-311++g(d,p) scrf=(solvent=water) geom=connectivity

Fe2CO2_OPT

2 3
 Fe                 2.74538330    8.28679554    5.00000000
 O                  4.55208397    8.06717607    5.00000000
 C                  5.30819317    9.07309328    5.00000000
 O                  5.97838127    9.96470142    5.00000000

 1 2 1.0
 2 3 2.0
 3 4 3.0
 4

Fe S 4
6-311G(d,p)  Fe 4,4,4,4,4,4
****
C S 1
6-311G(d,p)  C 3,3,3,3,3,3
****
O S 2
6-311G(d,p)  O 3,3,3,3,3,3
****
```


In this input file, the "S" keyword specifies that diffuse functions should be added to the basis set, and the "4" after "Fe S" indicates that 4 sets of diffuse functions should be added to the iron atom. The same format is used for the carbon and oxygen atoms.

It is also worth noting that the use of solvent models, such as the SCRF model with water as the solvent, can further improve the accuracy of calculations by including the effects of solvation. However, the choice of solvent model and the level of theory used for the calculation of solvent effects can also affect the accuracy of the results.




From: owner-chemistry+feiphung==hotmail.com{}ccl.net <owner-chemistry+feiphung==hotmail.com{}ccl.net> on behalf of David Shobe shobedavid]^[gmail.com <owner-chemistry{}ccl.net>
Sent: Wednesday, March 1, 2023 7:53 PM
To: Phung, Cheng Fei <feiphung{}hotmail.com>
Subject: CCL:G: Help with DFT convergence failure for Fe2CO2 in Gaussian software
 
Dear Cheng Fei Phung --

Isolated Fe^2+ is a quintuplet in the ground state. The coordination with the CO2 molecule may change it to a different electronic state, most likely to a triplet. 

The charge and multiplicity are specified by replacing the "0 1" line with "2 5" for the quintuplet or "2 3" for the triplet. The "++" in GaussView is a red herring (if you don't know this _expression_, it refers to a misleading clue), as the "++" refers to diffuse functions in the basis set. 

Good luck! Calculations of transition metals are difficult. I should warn you that even if you get a converged SCF, it might not be the correct electronic state. Take a look at the manual under the keywords SCF and stable for more information.


--David Shobe 

On Wed, Mar 1, 2023, 2:48 AM Cheng Fei Phung feiphung-*-hotmail.com <owner-chemistry::ccl.net> wrote:
Hi,

Since my messages contains the image and is longer than a limit for general distribution,
the CCL Admin saved my message under
so please open this link to read my response

Note that I am doing Fe2+ ferrous ion for MOF carbon capture


What do you guys think about the following xtb result from https://calcus.cloud/ ?


4
 energy: -13.349149310898 gnorm: 0.000502022323 xtb: 6.5.1 (579679a)
Fe           2.73292919494009        7.81690557181600        4.99999999991402
O            4.23822629938734        8.62616541285678        4.99975863372067
C            5.28034049639189        9.19333556707946        5.00051367720569
O            6.33254571928068        9.75535975824776        4.99972768915961


Regards,
Cheng Fei  Phung


From: owner-chemistry+feiphung==hotmail.com_-_ccl.net <owner-chemistry+feiphung==hotmail.com_-_ccl.net> on behalf of Igors Mihailovs igorsm_._cfi.lu.lv <owner-chemistry_-_ccl.net>
Sent: Sunday, February 26, 2023 10:50 PM
To: Phung, Cheng Fei <feiphung_-_hotmail.com>
Subject: CCL:G: Re: CCL:G: Help with DFT convergence failure for Fe2CO2 in Gaussian software
 
Dear Cheng Fei  Phung,

I would use something like MN15 or MN15L, and a basis set with at least some polarization (6-311G(d,p), for example). Especially if I had to perform something like a token computation in order to get someone's experimental results published.

Trying to converge B3LYP for a transition metal compound may take more time than the options described above...

Best regards,
Igors Mihailovs
former employee at ISSP UL


On February 25, 2023 12:09:02 PM GMT+02:00, "Cheng Fei Phung feiphung=-=hotmail.com" <owner-chemistry^-^ccl.net> wrote:

Sent to CCL by: "Cheng Fei Phung" [feiphung{:}hotmail.com]
With the following gaussian16 gjf input file, I got some convergence failure issues.

Could anyone help ?


Gaussian input gjf file

```
%chk=step_000_DFT.chk
# opt b3lyp/6-31g geom=connectivity

Fe2CO2_OPT

0 1
Fe 2.74538330 8.28679554 5.00000000
O 4.55208397 8.06717607 5.00000000
C 5.30819317 9.07309328 5.00000000
O 5.97838127 9.96470142 5.00000000

1 2 1.0
2 3 2.0
3 4 3.0
4
```


Gaussian log file

```
%chk=step_000_DFT.chk
# opt b3lyp/6-31g geom=connectivity
1/18=20,19=15,26=3,38=1,57=2/1,3;
2/9=110,12=2,17=6,18=5,40=1/2;
3/5=1,6=6,11=2,25=1,30=1,71=1,74=-5/1,2,3;
4//1;
5/5=2,38=5/2;
6/7=2,8=2,9=2,10=2,28=1/1;
7//1,2,3,16;
1/18=20,19=15,26=3/3(2);
2/9=110/2;
99//99;
2/9=110/2;
3/5=1,6=6,11=2,25=1,30=1,71=1,74=-5/1,2,3;
4/5=5,16=3,69=1/1;
5/5=2,38=5/2;
7//1,2,3,16;
1/18=20,19=15,26=3/3(-5);
2/9=110/2;
6/7=2,8=2,9=2,10=2,19=2,28=1/1;
99/9=1/99;
Fe2CO2_OPT
Symbolic Z-matrix:
Charge = 0 Multiplicity = 1
Fe 2.74538 8.2868 5.
O 4.55208 8.06718 5.
C 5.30819 9.07309 5.
O 5.97838 9.9647 5.


GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Initialization pass.
! Initial Parameters !
! (Angstroms and Degrees) !
-------------------------- --------------------------
! Name Definition Value Derivative Info. !
! R1 R(1,2) 1.82 estimate D2E/DX2 !
! R2 R(2,3) 1.2584 estimate D2E/DX2 !
! R3 R(3,4) 1.1154 estimate D2E/DX2 !
! A1 A(1,2,3) 120.0 estimate D2E/DX2 !
! A2 L(2,3,4,1,-1) 180.0 estimate D2E/DX2 !
! A3 L(2,3,4,1,-2) 180.0 estimate D2E/DX2 !
Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 EigMax=2.50D+02 EigMin=1.00D-04
Number of steps in this run= 20 maximum allowed number of steps= 100.
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Input orientation:
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
1 26 0 2.745383 8.286796 5.000000
2 8 0 4.552084 8.067176 5.000000
3 6 0 5.308193 9.073093 5.000000
4 8 0 5.978381 9.964701 5.000000
Distance matrix (angstroms):
1 2 3 4
1 Fe 0.000000
2 O 1.820000 0.000000
3 C 2.680720 1.258400 0.000000
4 O 3.642478 2.373800 1.115400 0.000000
Stoichiometry CFeO2
Framework group CS[SG(CFeO2)]
Deg. of freedom 5
Full point group CS NOp 2
Largest Abelian subgroup CS NOp 2
Largest concise Abelian subgroup C1 NOp 1
Standard orientation:
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
1 26 0 -1.018287 -0.652610 -0.000000
2 8 0 -0.000000 0.855864 0.000000
3 6 0 1.255302 0.767619 0.000000
4 8 0 2.367956 0.689403 0.000000
Rotational constants (GHZ): 37.1744583 2.4897380 2.3334561
Standard basis: 6-31G (6D, 7F)
There are 42 symmetry adapted cartesian basis functions of A' symmetry.
There are 14 symmetry adapted cartesian basis functions of A" symmetry.
There are 42 symmetry adapted basis functions of A' symmetry.
There are 14 symmetry adapted basis functions of A" symmetry.
56 basis functions, 160 primitive gaussians, 56 cartesian basis functions
24 alpha electrons 24 beta electrons
nuclear repulsion energy 178.7145642873 Hartrees.
NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F
Integral buffers will be 131072 words long.
Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.
One-electron integrals computed using PRISM.
NBasis= 56 RedAO= T EigKep= 1.76D-03 NBF= 42 14
NBsUse= 56 1.00D-06 EigRej= -1.00D+00 NBFU= 42 14
ExpMin= 4.11D-02 ExpMax= 6.11D+04 ExpMxC= 9.18D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00
Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess.
HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14
ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T
wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Initial guess orbital symmetries:
Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A')
(A') (A") (A') (A') (A') (A') (A') (A") (A') (A")
(A') (A') (A") (A')
Virtual (A") (A') (A') (A") (A') (A") (A') (A') (A') (A')
(A") (A') (A') (A") (A') (A') (A') (A") (A') (A')
(A') (A") (A') (A') (A') (A") (A") (A') (A') (A')
(A') (A')
The electronic state of the initial guess is 1-A'.
Keep R1 ints in memory in symmetry-blocked form, NReq=2159799.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
EnCoef did 3 forward-backward iterations
EnCoef did 100 forward-backward iterations
EnCoef did 2 forward-backward iterations
EnCoef did 2 forward-backward iterations
SCF Done: E(RB3LYP) = -1451.84990065 A.U. after 22 cycles
NFock= 22 Conv=0.66D-08 -V/T= 2.0016

**********************************************************************

Population analysis using the SCF Density.

**********************************************************************

Orbital symmetries:
Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A')
(A") (A') (A') (A') (A') (A') (A") (A') (A') (A")
(A') (A') (A") (A')
Virtual (A") (A') (A") (A') (A') (A") (A') (A') (A') (A')
(A") (A') (A') (A") (A') (A') (A') (A") (A') (A')
(A') (A") (A') (A') (A') (A") (A') (A") (A') (A')
(A') (A')
The electronic state is 1-A'.
Alpha occ. eigenvalues -- -256.04016 -29.99951 -25.87326 -25.85859 -25.85805
Alpha occ. eigenvalues -- -19.31120 -19.28742 -10.45249 -3.41064 -2.20510
Alpha occ. eigenvalues -- -2.17421 -2.16694 -1.26882 -1.17261 -0.64217
Alpha occ. eigenvalues -- -0.58881 -0.57965 -0.57594 -0.44473 -0.43175
Alpha occ. eigenvalues -- -0.22416 -0.22137 -0.20382 -0.15336
Alpha virt. eigenvalues -- -0.07558 -0.07420 -0.03518 -0.03067 -0.02764
Alpha virt. eigenvalues -- -0.00807 0.00082 0.10567 0.12952 0.29804
Alpha virt. eigenvalues -- 0.31948 0.36712 0.41870 0.45104 0.54770
Alpha virt. eigenvalues -- 0.63606 0.74556 0.85137 0.88355 0.92857
Alpha virt. eigenvalues -- 0.96917 1.00808 1.01595 1.25495 1.50958
Alpha virt. eigenvalues -- 1.51252 1.55992 1.59723 1.70732 1.86833
Alpha virt. eigenvalues -- 2.01356 20.37339
Condensed to atoms (all electrons):
1 2 3 4
1 Fe 26.065938 -0.058002 0.083106 -0.030239
2 O -0.058002 8.304619 0.168196 0.010116
3 C 0.083106 0.168196 4.724609 0.417125
4 O -0.030239 0.010116 0.417125 7.724230
Mulliken charges:
1
1 Fe -0.060803
2 O -0.424929
3 C 0.606964
4 O -0.121232
Sum of Mulliken charges = -0.00000
Mulliken charges with hydrogens summed into heavy atoms:
1
1 Fe -0.060803
2 O -0.424929
3 C 0.606964
4 O -0.121232
Electronic spatial extent (au): <R**2>= 453.0609
Charge= -0.0000 electrons
Dipole moment (field-independent basis, Debye):
X= 1.6708 Y= 1.8514 Z= -0.0000 Tot= 2.4938
Quadrupole moment (field-independent basis, Debye-Ang):
XX= -35.0872 YY= -34.7815 ZZ= -32.5686
XY= 0.8912 XZ= 0.0000 YZ= 0.0000
Traceless Quadrupole moment (field-independent basis, Debye-Ang):
XX= -0.9415 YY= -0.6357 ZZ= 1.5772
XY= 0.8912 XZ= 0.0000 YZ= 0.0000
Octapole moment (field-independent basis, Debye-Ang**2):
XXX= -8.4875 YYY= 8.6001 ZZZ= -0.0000 XYY= 3.5470
XXY= 1.7153 XXZ= 0.0000 XZZ= 0.7336 YZZ= 1.9407
YYZ= -0.0000 XYZ= -0.0000
Hexadecapole moment (field-independent basis, Debye-Ang**3):
XXXX= -415.5041 YYYY= -171.1039 ZZZZ= -55.1637 XXXY= -84.4690
XXXZ= 0.0000 YYYX= -75.7822 YYYZ= 0.0000 ZZZX= 0.0000
ZZZY= 0.0000 XXYY= -90.7121 XXZZ= -70.9019 YYZZ= -36.9432
XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= -24.7602
N-N= 1.787145642873D+02 E-N=-3.807626875025D+03 KE= 1.449497603530D+03
Symmetry A' KE= 1.287179877057D+03
Symmetry A" KE= 1.623177264732D+02
Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0.
***** Axes restored to original set *****
Center Atomic Forces (Hartrees/Bohr)
Number Number X Y Z
1 26 -0.048820174 0.005157682 0.000000000
2 8 0.068584660 0.015861998 0.000000000
3 6 -0.104728901 -0.126023309 0.000000000
4 8 0.084964415 0.105003629 -0.000000000
Cartesian Forces: Max 0.126023309 RMS 0.066118707

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4.
Internal Forces: Max 0.134986320 RMS 0.059949734
Search for a local minimum.
Step number 1 out of a maximum of 20
All quantities printed in internal units (Hartrees-Bohrs-Radians)
Mixed Optimization -- RFO/linear search
Second derivative matrix not updated -- first step.
The second derivative matrix:
R1 R2 R3 A1 A2
R1 0.22791
R2 0.00000 0.80209
R3 0.00000 0.00000 1.62060
A1 0.00000 0.00000 0.00000 0.25000
A2 0.00000 0.00000 0.00000 0.00000 0.05456
A3 0.00000 0.00000 0.00000 0.00000 0.00000
A3
A3 0.05456
ITU= 0
Eigenvalues --- 0.05456 0.05456 0.22791 0.25000 0.80209
Eigenvalues --- 1.62060
RFO step: Lambda=-2.30438557D-02 EMin= 5.45649275D-02
Linear search not attempted -- first point.
Iteration 1 RMS(Cart)= 0.10911805 RMS(Int)= 0.00403264
Iteration 2 RMS(Cart)= 0.00524126 RMS(Int)= 0.00001569
Iteration 3 RMS(Cart)= 0.00001737 RMS(Int)= 0.00000000
Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000
ClnCor: largest displacement from symmetrization is 2.67D-10 for atom 3.
Variable Old X -DE/DX Delta X Delta X Delta X New X
(Linear) (Quad) (Total)
R1 3.43930 0.04909 0.00000 0.19560 0.19560 3.63490
R2 2.37803 -0.02868 0.00000 -0.03476 -0.03476 2.34327
R3 2.10780 0.13499 0.00000 0.08213 0.08213 2.18993
A1 2.09440 0.00265 0.00000 0.00969 0.00969 2.10408
A2 3.14159 0.01018 0.00000 0.13112 0.13112 3.27271
A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159
Item Value Threshold Converged?
Maximum Force 0.134986 0.000450 NO
RMS Force 0.059950 0.000300 NO
Maximum Displacement 0.164913 0.001800 NO
RMS Displacement 0.111408 0.001200 NO
Predicted change in Energy=-1.225354D-02
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Input orientation:
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
1 26 0 2.658115 8.232499 5.000000
2 8 0 4.576263 8.089032 5.000000
3 6 0 5.284531 9.106861 5.000000
4 8 0 6.065132 9.963375 5.000000
Distance matrix (angstroms):
1 2 3 4
1 Fe 0.000000
2 O 1.923506 0.000000
3 C 2.768135 1.240008 0.000000
4 O 3.821478 2.393719 1.158859 0.000000
Stoichiometry CFeO2
Framework group CS[SG(CFeO2)]
Deg. of freedom 5
Full point group CS NOp 2
Largest Abelian subgroup CS NOp 2
Largest concise Abelian subgroup C1 NOp 1
Standard orientation:
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
1 26 0 -1.022093 -0.757193 -0.000000
2 8 0 0.000000 0.872286 0.000000
3 6 0 1.239558 0.838897 0.000000
4 8 0 2.392133 0.959419 0.000000
Rotational constants (GHZ): 40.3135828 2.2660782 2.1454781
Standard basis: 6-31G (6D, 7F)
There are 42 symmetry adapted cartesian basis functions of A' symmetry.
There are 14 symmetry adapted cartesian basis functions of A" symmetry.
There are 42 symmetry adapted basis functions of A' symmetry.
There are 14 symmetry adapted basis functions of A" symmetry.
56 basis functions, 160 primitive gaussians, 56 cartesian basis functions
24 alpha electrons 24 beta electrons
nuclear repulsion energy 172.3989508234 Hartrees.
NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F
Integral buffers will be 131072 words long.
Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.
One-electron integrals computed using PRISM.
NBasis= 56 RedAO= T EigKep= 1.76D-03 NBF= 42 14
NBsUse= 56 1.00D-06 EigRej= -1.00D+00 NBFU= 42 14
Initial guess from the checkpoint file: "step_000_DFT.chk"
B after Tr= 0.000000 0.000000 -0.000000
Rot= 0.999288 -0.000000 -0.000000 -0.037733 Ang= -4.32 deg.
Initial guess orbital symmetries:
Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A')
(A") (A') (A') (A') (A') (A') (A") (A') (A') (A")
(A') (A') (A") (A')
Virtual (A") (A') (A") (A') (A') (A") (A') (A') (A') (A')
(A") (A') (A') (A") (A') (A') (A') (A") (A') (A')
(A') (A") (A') (A') (A') (A") (A') (A") (A') (A')
(A') (A')
ExpMin= 4.11D-02 ExpMax= 6.11D+04 ExpMxC= 9.18D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00
Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess.
HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14
ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T
wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Keep R1 ints in memory in symmetry-blocked form, NReq=2159799.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
SCF Done: E(RB3LYP) = -1451.86533909 A.U. after 18 cycles
NFock= 18 Conv=0.23D-08 -V/T= 2.0018
Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0.
***** Axes restored to original set *****
Center Atomic Forces (Hartrees/Bohr)
Number Number X Y Z
1 26 -0.021775369 0.002114287 0.000000000
2 8 0.036955110 0.014737157 0.000000000
3 6 -0.039695691 -0.040384091 0.000000000
4 8 0.024515951 0.023532647 -0.000000000
Cartesian Forces: Max 0.040384091 RMS 0.023135364

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Using GEDIIS/GDIIS optimizer.
FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4.
Internal Forces: Max 0.033908365 RMS 0.018980685
Search for a local minimum.
Step number 2 out of a maximum of 20
All quantities printed in internal units (Hartrees-Bohrs-Radians)
Mixed Optimization -- RFO/linear search
Update second derivatives using D2CorX and points 1 2
DE= -1.54D-02 DEPred=-1.23D-02 R= 1.26D+00
TightC=F SS= 1.41D+00 RLast= 2.52D-01 DXNew= 5.0454D-01 7.5596D-01
Trust test= 1.26D+00 RLast= 2.52D-01 DXMaxT set to 5.05D-01
The second derivative matrix:
R1 R2 R3 A1 A2
R1 0.18668
R2 0.04604 0.76870
R3 -0.08608 0.12904 1.50110
A1 0.00316 0.00128 0.01538 0.25104
A2 -0.00501 0.00702 -0.00784 0.00077 0.05407
A3 0.00000 -0.00000 0.00000 0.00000 0.00000
A3
A3 0.05456
ITU= 1 0
Use linear search instead of GDIIS.
Eigenvalues --- 0.05364 0.05456 0.17607 0.25109 0.75296
Eigenvalues --- 1.52783
RFO step: Lambda=-2.40357398D-03 EMin= 5.36398691D-02
Quartic linear search produced a step of 0.74433.
Iteration 1 RMS(Cart)= 0.12055350 RMS(Int)= 0.00970928
Iteration 2 RMS(Cart)= 0.01171440 RMS(Int)= 0.00007671
Iteration 3 RMS(Cart)= 0.00008339 RMS(Int)= 0.00000000
Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000
ClnCor: largest displacement from symmetrization is 4.24D-12 for atom 3.
Variable Old X -DE/DX Delta X Delta X Delta X New X
(Linear) (Quad) (Total)
R1 3.63490 0.02187 0.14559 0.04745 0.19304 3.82794
R2 2.34327 -0.02250 -0.02587 -0.02538 -0.05125 2.29202
R3 2.18993 0.03391 0.06113 -0.01980 0.04133 2.23126
A1 2.10408 -0.00172 0.00721 -0.01780 -0.01059 2.09349
A2 3.27271 0.00495 0.09759 0.11009 0.20769 3.48040
A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159
Item Value Threshold Converged?
Maximum Force 0.033908 0.000450 NO
RMS Force 0.018981 0.000300 NO
Maximum Displacement 0.157853 0.001800 NO
RMS Displacement 0.126480 0.001200 NO
Predicted change in Energy=-2.644271D-03
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Input orientation:
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
1 26 0 2.586226 8.170844 5.000000
2 8 0 4.611490 8.130764 5.000000
3 6 0 5.237660 9.169515 5.000000
4 8 0 6.148665 9.920644 5.000000
Distance matrix (angstroms):
1 2 3 4
1 Fe 0.000000
2 O 2.025661 0.000000
3 C 2.833275 1.212885 0.000000
4 O 3.968976 2.359359 1.180730 0.000000
Stoichiometry CFeO2
Framework group CS[SG(CFeO2)]
Deg. of freedom 5
Full point group CS NOp 2
Largest Abelian subgroup CS NOp 2
Largest concise Abelian subgroup C1 NOp 1
Standard orientation:
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
1 26 0 -0.994550 -0.879340 -0.000000
2 8 0 -0.000000 0.885361 0.000000
3 6 0 1.212831 0.896868 0.000000
4 8 0 2.322666 1.299844 0.000000
Rotational constants (GHZ): 47.4271405 2.0987230 2.0097869
Standard basis: 6-31G (6D, 7F)
There are 42 symmetry adapted cartesian basis functions of A' symmetry.
There are 14 symmetry adapted cartesian basis functions of A" symmetry.
There are 42 symmetry adapted basis functions of A' symmetry.
There are 14 symmetry adapted basis functions of A" symmetry.
56 basis functions, 160 primitive gaussians, 56 cartesian basis functions
24 alpha electrons 24 beta electrons
nuclear repulsion energy 168.0152669884 Hartrees.
NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F
Integral buffers will be 131072 words long.
Raffenetti 2 integral format.
Two-electron integral symmetry is turned on.
One-electron integrals computed using PRISM.
NBasis= 56 RedAO= T EigKep= 1.76D-03 NBF= 42 14
NBsUse= 56 1.00D-06 EigRej= -1.00D+00 NBFU= 42 14
Initial guess from the checkpoint file: "step_000_DFT.chk"
B after Tr= 0.000000 -0.000000 -0.000000
Rot= 0.998838 -0.000000 -0.000000 -0.048193 Ang= -5.52 deg.
Initial guess orbital symmetries:
Occupied (A') (A') (A') (A') (A") (A') (A') (A') (A') (A')
(A") (A') (A') (A') (A') (A') (A") (A') (A') (A")
(A') (A') (A") (A')
Virtual (A') (A") (A') (A") (A') (A") (A') (A') (A') (A')
(A") (A') (A') (A") (A') (A') (A') (A") (A') (A')
(A') (A") (A') (A') (A') (A") (A') (A") (A') (A')
(A') (A')
ExpMin= 4.11D-02 ExpMax= 6.11D+04 ExpMxC= 9.18D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00
Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess.
HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14
ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000
FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0
NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T
wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0
NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0
Petite list used in FoFCou.
Keep R1 ints in memory in symmetry-blocked form, NReq=2159799.
Requested convergence on RMS density matrix=1.00D-08 within 128 cycles.
Requested convergence on MAX density matrix=1.00D-06.
Requested convergence on energy=1.00D-06.
No special actions if energy rises.
SCF Done: E(RB3LYP) = -1451.86779894 A.U. after 19 cycles
NFock= 19 Conv=0.32D-08 -V/T= 2.0018
Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0.
***** Axes restored to original set *****
Center Atomic Forces (Hartrees/Bohr)
Number Number X Y Z
1 26 -0.002475531 0.002170910 0.000000000
2 8 -0.009275511 -0.015400826 0.000000000
3 6 0.012873515 0.005174131 0.000000000
4 8 -0.001122473 0.008055785 -0.000000000
Cartesian Forces: Max 0.015400826 RMS 0.007028017

GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad
Berny optimization.
Using GEDIIS/GDIIS optimizer.
FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4.
Internal Forces: Max 0.017401591 RMS 0.010265616
Search for a local minimum.
Step number 3 out of a maximum of 20
All quantities printed in internal units (Hartrees-Bohrs-Radians)
Mixed Optimization -- RFO/linear search
Update second derivatives using D2CorX and points 1 2 3
DE= -2.46D-03 DEPred=-2.64D-03 R= 9.30D-01
TightC=F SS= 1.41D+00 RLast= 2.91D-01 DXNew= 8.4853D-01 8.7386D-01
Trust test= 9.30D-01 RLast= 2.91D-01 DXMaxT set to 8.49D-01
The second derivative matrix:
R1 R2 R3 A1 A2
R1 0.14042
R2 0.04009 0.84593
R3 -0.15330 0.08559 1.42002
A1 0.01583 -0.02335 0.04566 0.25643
A2 0.00387 -0.03883 0.02611 0.01417 0.08070
A3 0.00000 -0.00000 0.00000 0.00000 0.00000
A3
A3 0.05456
ITU= 1 1 0
Use linear search instead of GDIIS.
Eigenvalues --- 0.05456 0.07570 0.11658 0.25847 0.84223
Eigenvalues --- 1.45052
RFO step: Lambda=-2.28883397D-03 EMin= 5.45649275D-02
Quartic linear search produced a step of -0.27572.
Iteration 1 RMS(Cart)= 0.11082651 RMS(Int)= 0.00968836
Iteration 2 RMS(Cart)= 0.01008655 RMS(Int)= 0.00002336
Iteration 3 RMS(Cart)= 0.00002996 RMS(Int)= 0.00000000
Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000
ClnCor: largest displacement from symmetrization is 3.37D-09 for atom 3.
Variable Old X -DE/DX Delta X Delta X Delta X New X
(Linear) (Quad) (Total)
R1 3.82794 0.00252 -0.05323 0.09099 0.03776 3.86570
R2 2.29202 0.01740 0.01413 -0.00542 0.00871 2.30074
R3 2.23126 0.00426 -0.01140 0.02206 0.01067 2.24192
A1 2.09349 -0.00809 0.00292 -0.02802 -0.02510 2.06839
A2 3.48040 -0.01548 -0.05726 -0.11944 -0.17670 3.30370
A3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159
Item Value Threshold Converged?
Maximum Force 0.017402 0.000450 NO
RMS Force 0.010266 0.000300 NO
Maximum Displacement 0.128723 0.001800 NO
RMS Displacement 0.114165 0.001200 NO
Predicted change in Energy=-1.691720D-03
GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad

Input orientation:
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z
1 26 0 2.587635 8.230504 5.000000
2 8 0 4.627577 8.077882 5.000000
3 6 0 5.286906 9.101397 5.000000
4 8 0 6.081924 9.981983 5.000000
Distance matrix (angstroms):
1 2 3 4
1 Fe 0.000000
2 O 2.045643 0.000000
3 C 2.836286 1.217497 0.000000
4 O 3.908674 2.395981 1.186375 0.000000
Stoichiometry CFeO2
Framework group CS[SG(CFeO2)]
Deg. of freedom 5
Full point group CS NOp 2
Largest Abelian subgroup CS NOp 2
Largest concise Abelian subgroup C1 NOp 1
Standard orientation:
Center Atomic Atomic Coordinates (Angstroms)
Number Number Type X Y Z